
ibm.com/redbooks

AIX 5L
Workload Manager (WLM)

Sofia Castro
Nurcan Tezulas

BooSeon Yu
Diana Gfroerer

Effectively manage your system
resources

Learn how to deploy the new
functionality

Manage multiple
instances of a database

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

AIX 5L Workload Manager (WLM)

November 2000

SG24-5977-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 2000)

This edition applies to AIX Workload Manager for use with the AIX 5L for Power Version 5.0 Operating
System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix G, “Special notices” on page 269.

Take Note!

Contents

Preface .ix
The team that wrote this redbook. ix
Comments welcome. x

Chapter 1. The need for workload management 1
1.1 Architectural differences . 2

1.1.1 Physical partitioning . 2
1.1.2 Logical partitioning (LPAR) . 2
1.1.3 Workload management. 4

1.2 The purpose of AIX WLM . 5

Chapter 2. AIX Workload Manager functionality 7
2.1 Overview . 8
2.2 Classes . 9

2.2.1 A hierarchy of classes . 9
2.2.2 Superclasses . 10
2.2.3 Subclasses . 12
2.2.4 Backward compatibility considerations . 12

2.3 Tiers . 13
2.4 Class attributes . 14
2.5 Classification process. 17

2.5.1 Automatic assignment . 17
2.5.2 Manual assignment . 18
2.5.3 Class assignment rules. 19

2.6 Resources . 22
2.6.1 Resources managed by WLM . 22
2.6.2 Class resource shares . 24
2.6.3 Class resource limits . 26
2.6.4 Backward compatibility considerations . 28

2.7 WLM interaction with the kernel . 29
2.7.1 Uniform Resource Access Priority (URAP) 29
2.7.2 Interaction with the scheduler . 29
2.7.3 Interaction with VMM . 30
2.7.4 Interaction with disk device drivers . 30

2.8 WLM Application Programming Interface (API) 30

Chapter 3. AIX Workload Manager administration 31
3.1 Property files . 32
3.2 WLM operation . 40

3.2.1 Modes of operation. 40
3.2.2 Start/Stop/Update WLM - wlmcntrl . 41
© Copyright IBM Corp. 2000 iii

3.3 WLM configuration . 48
3.3.1 Steps for a WLM configuration . 48
3.3.2 Working with WLM configurations . 51
3.3.3 Working with classes . 57

3.3.3.1 Working with sets of subclasses . 57
3.3.3.2 Adding a class - mkclass . 58
3.3.3.3 Updating a class - chclass . 66
3.3.3.4 Listing the classes - lsclass . 71
3.3.3.5 Removing a class - rmclass . 74

3.3.4 Working with rules . 76
3.3.4.1 Adding a rule . 76
3.3.4.2 Changing a rule . 80
3.3.4.3 Listing the rules . 82
3.3.4.4 Removing a rule. 83

3.3.5 Checking the configuration - wlmcheck. 84
3.3.6 Working with resource sets. 86

3.3.6.1 Rset registry . 87
3.4 WLM monitoring . 90
3.5 Hints and tips . 90

3.5.1 Things to do . 90
3.5.2 Things to be aware of . 94
3.5.3 Additional characteristics . 95

Chapter 4. WLM performance tools . 97
4.1 wlmstat. 97
4.2 ps . 101
4.3 topas . 104
4.4 svmon . 116

4.4.1 Workload manager class report . 118
4.4.2 Workload manager tier report . 125

4.5 Web-based System Manager (WSM) . 130
4.6 Monitoring Workload Manager with PTX . 132

4.6.1 xmperf . 133
4.6.2 xmservd . 139
4.6.3 Performance Toolbox (PTX) Outlook . 140

Chapter 5. Manual assignment . 141
5.1 Description . 141

5.1.1 First assignment . 142
5.1.2 Reassignment and cancellation . 143
5.1.3 Interaction with inheritance . 143

5.2 Manual assignment methods . 146
5.3 Examples . 152

5.3.1 Oracle example . 152
iv AIX 5L Workload Manager (WLM)

5.3.2 DB2 UDB example . 154
5.4 Conclusion . 156

Chapter 6. WLM Application Programming Interface (API) 157
6.1 Application tag . 157

6.1.1 Description . 157
6.1.2 An application tag situation. 158
6.1.3 Example of an application tag program. 159

6.2 Class management . 160
6.3 WLM management . 162
6.4 WLM statistics . 162
6.5 WLM classification . 163
6.6 Binary compatibility . 163
6.7 Integration with Tivoli products . 163

6.7.1 TAPM overview . 163
6.7.1.1 Application instrumentation . 163
6.7.1.2 Transaction simulation . 164

6.7.2 TAPM and WLM . 164
6.7.3 Monitoring an application in a WLM and Tivoli environment . . . 164

6.8 Summary . 166

Chapter 7. Sizing recommendations for Workload Manager 167
7.1 Typical UNIX system capacity sizing . 167
7.2 Considerations about server consolidation . 168
7.3 System capacity sizing for Workload Management 169

7.3.1 System capacity sizing steps for server consolidation. 170
7.3.1.1 Step 1 - Monitor resource usage . 170
7.3.1.2 Step 2 - Estimate the requirements for each application 171
7.3.1.3 Estimate the capacity for integrated applications. 172

7.3.2 Examples . 173
7.3.2.1 Base line - Applications running on separate systems 173
7.3.2.2 Approach 1 - All applications are mission-critical. 177
7.3.2.3 Approach 2 - Only some of the applications are important . . . 178
7.3.2.4 Comparison of the cases . 179

7.3.3 Considerations for memory and disk I/O bandwidth 181
7.4 Conclusion . 181

Chapter 8. Practical experience . 183
8.1 ISV case studies . 183

8.1.1 PeopleSoft . 183
8.1.1.1 Case study description. 184
8.1.1.2 Case study method . 185
8.1.1.3 WLM configuration . 188
8.1.1.4 One batch - Two OLTP benchmarks: PAYROLL-FI-HR 194
v

8.1.1.5 One batch - Two OLTP benchmarks: GL-FI-HR 195
8.1.1.6 Two batch benchmarks: GL-PAYROLL 196
8.1.1.7 Two batch - Two OLTP benchmarks: PAYROLL-GL-FI-HR . . 196
8.1.1.8 Summary . 198

8.1.2 SAP R/3 . 199
8.1.2.1 Case study description. 201
8.1.2.2 Case study method . 202
8.1.2.3 WLM configuration . 203
8.1.2.4 Two R/3 instances with separate databases 208
8.1.2.5 Two R/3 instances with a single database. 208
8.1.2.6 R/3 and non-R/3 application . 208
8.1.2.7 Special considerations for using WLM with R/3 209

8.2 Customer experience - WLM and a compute server for research . . . 210
8.2.1 The installation . 210
8.2.2 The central AIX system. 211
8.2.3 Problems . 211
8.2.4 A pre-WLM solution . 212
8.2.5 The WLM solution with AIX Version 4.3.3-02 212

8.2.5.1 Major advantages of this solution . 215
8.2.5.2 Disadvantage of this solution . 215

8.2.6 The second WLM solution with AIX 5L 215
8.2.7 Conclusion . 216

Appendix A. AIX Workload Manager API routines 217
A.1 The Include file - sys/wlm.h. 217
A.2 WLM API functions error codes . 224
A.3 Initialization routines . 227
A.4 Application tag . 229
A.5 Class management . 230
A.6 WLM management . 236
A.7 WLM statistics . 241
A.8 WLM classification . 246

Appendix B. Sample workload program . 249

Appendix C. Sample Korn shell scripts for manual assignment 259
C.1 Oracle example script . 259
C.2 DB2 UDB example script . 260

Appendix D. Sample program for application tag. 263
D.1 settag.c . 263
vi AIX 5L Workload Manager (WLM)

Appendix E. Sample for CPU resource usage calculation 265

Appendix F. Using the additional material . 267
F.1 Using the diskette . 267

F.1.1 System requirements for using the diskette 267
F.1.2 How to use the diskette. 267

F.2 Locating the additional material on the Internet 267

Appendix G. Special notices . 269

Appendix H. Related publications . 273
H.1 IBM Redbooks . 273
H.2 IBM Redbooks collections . 273
H.3 Other resources . 273
H.4 Referenced Web site . 274

How to get IBM Redbooks . 275
IBM Redbooks fax order form . 276

Abbreviations and acronyms . 277

Index . 279

IBM Redbooks review . 287
vii

viii AIX 5L Workload Manager (WLM)

Preface

This IBM Redbook will help you work with AIX Workload Manager (WLM) by
exploiting the whole spectrum of functionality provided by WLM. It contains
the WLM features, including the WLM performance tools, introduced in the
Fall of 2000 and is intended to be a workbook and reference that helps
system administrators and technical support and service professionals gain a
deeper understanding of AIX WLM.

This redbook contains a detailed description of how to configure WLM,
explains the use of new features, such as manual assignment, the WLM API,
and the WLM performance tools, and provides hints and tips gained from
practical experience. A chapter for guidance on system sizing with WLM,
primarily in Server Consolidation environments, has been included.

The Appendixes describe the test programs that were used during the
creation of this redbook, and they contain sample scripts for manual
assignment that can help you use the new features in your environment. They
also contain an exhaustive explanation of the WLM API routines as well as a
sample program for application tagging to be used with the WLM API.

The shell scripts and sample program are included on a floppy disk at the
back of this book.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Diana Gfroerer is an International Technical Support Specialist for RS/6000
and AIX Performance at the International Technical Support Organization,
Austin Center. She writes extensively and teaches IBM classes worldwide on
all areas of AIX, with a focus on performance and tuning. Before joining the
ITSO in 1999, Diana Gfroerer worked in AIX pre-sales Technical Support in
Munich, Germany, and led the Region Central, EMEA, and World Wide
Technical Skill Communities for AIX and PC Interoperability.

Sofia Castro is an IT Specialist working for IBM Global Services in Portugal
since December 1995. She has four and half years of experience in AIX and
communication applications in the area of post-sales support and services.
She holds a degree in Computer Science from the Universidade Nova de
Lisboa, Portugal, and the University of Leeds, England.
© Copyright IBM Corp. 2000 ix

Nurcan Tezulas is an IT Specialist working for IBM Germany since March
1996. She began working at IBM Global Services and moved to the Web
Server Sales - Enterprise Systems Groups Central Region division in August,
1998. Her areas of expertise include HACMP, SAP R/3, and RS/6000
high-end and midrange servers. Currently, Nurcan Tezulas leads the High
End Technology Focus Group. She holds a degree in Mathematics from the
Fachhochschule, Stuttgart, Germany.

BooSeon Yu is an IT Specialist working for IBM Korea since April 1996. He
spent six months on the S/390 marketing team and has worked for the
pre-sales technical support team for RS/6000 since then. His mission
includes various benchmark tests, performance tuning, troubleshooting, and
solution implementation. BooSeon Yu holds a degree in Materials
Engineering.

Special thanks to the following people for their invaluable contributions to this
project:

IBM Austin
George Accapadi, André Albot, Jack Alford, Jim Beesley, Lee Cheng,
Mark Greenberg, Mike Harrell, Stephen Nasypany, Anthony Ramirez,
Ken Rozendal

IBM Dallas
Tim Leo

IBM Germany, ISICC Walldorf
Carol Davis, Bardin Nelson

IBM Netherlands
Michael A.M. Felt

Tivoli Systems
Fergus Stewart

Zentralinstitut für Angewandte Mathematik, Forschungszentrum Jülich,
Germany
Klaus Wolkersdorfer

Comments welcome

Your comments are important to us!
x AIX 5L Workload Manager (WLM)

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 287 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii AIX 5L Workload Manager (WLM)

Chapter 1. The need for workload management

This chapter describes the differences between physical partitioning, logical
partitioning, and workload management based on the AIX Workload
Manager.

First, it is important to understand why workload management becomes vital.
The conflicting pressures of costs, a lack of skilled support people,
fast-growing server farms, and the need for competitive advantage are forcing
customers to look for proactive solution designs. Solutions that are not
scalable or flexible enough to handle or that cannot avoid increased
architectural complexity lead directly to administrator overhead and solution
downtime. The consequences are much larger and longer-term problems:

• Increased Total Cost of Ownership (TCO), such as increased hardware,
software, and maintenance costs, and costs of excess administrators

• Increasing fragmentation of data and applications across the enterprise

• Reduced ability to exercise financial oversight

• Increased business costs due to outages

Server consolidation is one solution. It helps customers deliver higher IT
service levels in a more cost-effective fashion by optimizing both the quantity
and distribution of servers supporting their mission-critical IT functions.

However, server consolidation does not only mean physical consolidation of
many small servers into fewer, more powerful servers. Administrators must go
beyond simply moving department applications onto a single system. They
must:

• Understand how applications behave under loads and be able to realize
what expected loads will be

• Guarantee service levels, such as faster response times, continuous
availability, and increased access to data

• Gather detailed information on usage and capacity

• Maximize their ability to make system changes flexibly

• React to changes in workload

Workloads from many different server systems are combined into a single,
large system. The most frequent different server systems to be combined are
OLTP, batch, print, and general user processing systems. These workloads
often interfere with each other and have different goals and service
agreements.
© Copyright IBM Corp. 2000 1

The ability to change resource allocation very rapidly with minimal operator
intervention but maximum precision utilizing scripts, traditional system
management tools, and other components of their IT infrastructure becomes
very necessary.

1.1 Architectural differences

The demand for advanced management functionality has caused some
confusion about the differences between physical partitioning and workload
management.

These two functions are successfully merged in mainframe environments.
Current UNIX offerings for physical partitioning and workload management
have clear architectural differences. While physical partitioning creates
isolation between multiple applications running on a single server, workload
management supplies effective management of multiple, diverse workloads to
efficiently share a common pool of resources.

1.1.1 Physical partitioning
Mainframes first addressed the need to isolate application environments from
each other through physical partitioning. A certain degree of operator
intervention was involved when resizing the physical partitions, and
applications had to be quiesced before boundaries could be shifted. This
explicit management burden limited the use of physical partitions as a tool to
respond to fluctuating workload needs.

About 15 to 20 years ago, mainframe developers replaced physical partitions
with logical partitions (LPARs). LPARs are virtual-machine-like and can be
configured only at IPL time. They also created an additional layer of resource
management across partitions by specifying of time-slicing parameters. With
these functions, logical partitions provided a much finer degree of granularity
than physical partitions.

At the same time, mainframe developers produced workload management
tools. Systems were now able to respond dynamically to fluctuating loads.
These tools were implemented as a kernel function within each of the
mainframe’s SMP partitions.

1.1.2 Logical partitioning (LPAR)
In current UNIX environments, logical partitioning (LPAR) means splitting a
hardware system on specific hardware boundaries and then running a
separate operating system on each piece of hardware. Each physical partition
2 AIX 5L Workload Manager (WLM)

can run a different level of operating system. This can be done on SMP
systems or NUMA nodes.

Figure 1. LPAR

Each partition has its own memory and processors.

Partitioning can be used to solve several problems, such as running
production and test versions of an application or operating system on
different partitions for verification or certification purposes. It can also be
used for operating system fault isolation. It does not solve hardware or
application faults.

Extra resources are needed due to the fact that each partition requires its
own operating system that has to be managed as an individual system.

Resources may be wasted because the granularity of control is done on
hardware boundaries, such as individual processors. Since resources cannot
easily be switched from one partition to another, free resources on one
partition will be wasted if they are not used by any application on that
particular partition.

A more flexible solution to this problem is provided by various workload
management products, such as the AIX Workload Manager (WLM).
Chapter 1. The need for workload management 3

1.1.3 Workload management
Workload management allows the system administrator to divide resources
between jobs without having to partition the system as shown in Figure 2.

Figure 2. Workload Management

WLM provides isolation between user communities with very different system
behaviors. This can prevent effective starvation of workloads with certain
characteristics, such as interactive or low CPU usage jobs by workloads with
other characteristics, such as batch or high memory usage jobs.

The setup of WLM is much simpler than partitioning where reinstallation and
reconfiguration are required. With WLM, a single operating system manages
the entire system and all jobs; so, only one system has to be administered.

WLM manages percentages of CPU time rather than CPUs. This allows
control over CPU resources at a finer granularity.

CPU time, memory, and I/O bandwidth are managed separately. Therefore,
different styles of applications can be managed.
4 AIX 5L Workload Manager (WLM)

AIX Workload Manager (WLM) is an operating system feature introduced in
AIX Version 4.3.3. It is part of the operating system kernel at no additional
charge.

AIX WLM delivers the basic ability to give system administrators more control
over how scheduler, Virtual Memory Manager (VMM), and device driver calls
allocate CPU, physical memory, and I/O bandwidth to classes-based user,
group, application path, process type, or application tag.

It allows a hierarchy of classes to be specified, processes to be automatically
assigned to classes by the characteristics of a process, and manual
assignment of processes to classes.

Classes can be superclasses or subclasses.

AIX WLM self-adjusts when there are no jobs in a class or when a class does
not use all the resources that are allocated for it. The resources will
automatically be distributed to other classes to match the policies of the
system administrator.

Since the scheduling is done within a single AIX operating system, system
management is less complex.

Unlike LPAR, workload management does not allow multiple operating
systems that may be useful for testing and certification purposes on one
hardware system.

1.2 The purpose of AIX WLM

Customers, system administrators, performance consultants, and managers
should be aware that Workload Manager is not a tuning tool. AIX WLM is a
resource management tool that specifies the relative importance of each
workload by classes, tiers, limits, shares, and rules.

WLM is ideally suited to balance the demands or requests of competing
workloads when one or more resources are constrained.

It prevents a relatively uncontrolled way of resource scheduling for different
applications on the system. Administrators are spared the requirement of
writing complex scripts.

Before sizing a consolidated system (see Chapter 7, “Sizing
recommendations for Workload Manager” on page 199) by putting two or
more systems on a single, more powerful server, one thing is vital: Know your
Chapter 1. The need for workload management 5

workload. It is very important that you understand the requirements of the
workloads on each individual server that you are planning to incorporate onto
the consolidated server.

Your application vendor might provide you with recommendations for system
sizing. It is more important is, however, that you create application
documentation based on your actual workloads in addition to that, which
means gathering detailed information on usage and capacity for your
individual systems. This can be done by performance monitoring.

Document the workload behavior in a standalone situation, that is, on each
traditional single workload server. After migrating from the standalone servers
to the consolidated server, which might have improvements in CPU
performance or internal and external bus bandwidth, the workload behavior
should again be documented so that you can compare future changes to this
relative load. After this, you can start implementing different WLM
configurations and testing what works best for you.

The same applies if WLM is used on a server that already has several
different workloads running. Get a baseline first by monitoring the system
performance without WLM; then, implement different WLM configurations,
and monitor each of them in order to decide which one works best in your
environment. Chapter 8, “Practical experience” on page 183, provides helpful
examples on how this can be done.
6 AIX 5L Workload Manager (WLM)

Chapter 2. AIX Workload Manager functionality

AIX Workload Manager (WLM) is an operating system feature released with
AIX V4.3.3. With AIX maintenance level 2 (APAR IY06844), additional
features were added to the first release of WLM. These were:

• Classification of existing processes to avoid stopping and starting
applications when stopping and starting WLM

• Passive mode to allow “before” and “after” WLM comparisons

• Management of application file names, which allowed WLM to start even if
some applications listed in the rules file could not be accessed

In this chapter, we first focus on WLM’s functionality, which is available with
AIX 5L, by outlining the enhancements it offers over its earlier release:

• Management of disk I/O bandwidth in addition to the already-existing CPU
cycles and real memory

• Graphical display of resource utilization

• Performance Toolbox integration with WLM classes enabling the toolbox to
display WLM performance statistics

• Fully-dynamic configuration including setup of new classes without
restarting WLM

• Application Programming Interface (API) to enable external applications to
modify the system’s behavior

• Manual reclassification of processes, which provides the ability to have
multiple instances of the same application in different classes

• More application isolation and control:

- New subclasses add ten times the granularity of control (from 27 to 270
controllable classes).

- Administrators can delegate subclass management to others users and
groups rather than root or system.

- Possibility of inheritance of classification from parent to child
processes.

• Application path name wildcard flexibility extended to user name and
group name

• Tier separation enforced for all resources, enabling a deeper prioritization
of applications
© Copyright IBM Corp. 2000 7

2.1 Overview

WLM gives the system administrator the ability to create different classes of
service for jobs and to specify attributes for those classes. These attributes
specify minimum and maximum amounts of CPU, physical memory, and disk
I/O throughput to be allocated to a class. WLM then classifies jobs
automatically to classes using class assignment rules provided by a system
administrator. These assignment rules are based on the values of a set of
attributes of a process. The system administrator or a privileged user can
also manually assign jobs to classes, thereby, overriding the automatic
assignment. The basic WLM elements are depicted in Figure 3.

Figure 3. Basic WLM elements

This way, WLM monitors and regulates the CPU utilization of threads,
physical memory consumption, and disk I/O bandwidth use of processes
active on the system. The manner in which the resources are regulated is
dependent on the WLM configuration defined by the system administrator.

There are a number of controlling variables in WLM that facilitate managing
classes of jobs to achieve the automatic application of resource entitlement
policy you define (see Figure 3). The primary concept to remember is that
classes are what you manage in WLM, and there are five job attributes
8 AIX 5L Workload Manager (WLM)

available for process identification: users, groups, application path names,
process types, and application tags (application tags are set by the WLM
API). Class resource shares and class resource limits allow you to define
resource entitlements for each class. Tiers allow you to prioritize groups of
classes.

WLM configuration can be performed through direct editing of the
configuration files and AIX commands or through the AIX administration tools,
SMIT, or Web-based System Manager (WSM) graphical user interface.

In the following sections, these points will be covered in greater detail.

2.2 Classes

The central concept of WLM is the class. A class is a collection of processes
(jobs) that has a single set of resource limits applied to it. WLM assigns
processes to the various classes and controls the allocation of system
resources among the different classes. For this purpose, WLM uses class
assignment rules and per-class resource shares and limits set by the system
administrator. The resource entitlements and limits are enforced at the class
level. This is a way of defining classes of service and regulating the resource
utilization of each class of applications to prevent applications with very
different resource utilization patterns from interfering with each other when
they are sharing a single server.

2.2.1 A hierarchy of classes
WLM allows system administrators to set up a hierarchy of classes with two
levels by defining superclasses and subclasses. The main difference between
superclasses and subclasses is the resource control (shares and limits):

• At the superclass level, the determination of resource entitlement based
on the resource shares and limits is based on the total amount of each
resource managed by WLM available on the machine.

• At the subclass level, the resource shares and limits are based on the
amount of each resource allocated to the parent superclass.

The system administrator can delegate the administration of the subclasses
of each superclass to a superclass administrator, thus, having the option of
allocating a portion of the system resources to each superclass and then
letting superclass administrators distribute the allocated resources among the
users and/or applications they manage.
Chapter 2. AIX Workload Manager functionality 9

WLM supports 32 superclasses (27 user defined plus five predefined). In
turn, each superclass can have 12 subclasses (10 user-defined and two
predefined). Depending on the needs of the organization, a system
administrator can decide to use only superclasses or both superclasses and
subclasses. He or she can also use subclasses only for some of the
superclasses.

Each class is given a name by the WLM administrator who creates it. A class
name is up to 16 characters long and can contain only uppercase and
lowercase letters, numbers, and underscores (_). For a given WLM
configuration, the names of all the superclasses must be different from one
another, and the names of the subclasses of a given superclass must be
different from one another. Subclasses of different superclasses can have the
same name. The fully-qualified name of a subclass is
superclass_name.subclass_name.

In the remainder of this chapter, whenever the term class is used, it is
applicable to both subclasses and superclasses. The following sections
describe both super and subclasses in greater detail as well as the backward
compatibility WLM provides to configurations of its first release.

2.2.2 Superclasses
A superclass is a class with subclasses associated with it. No processes can
belong to the superclass without also belonging to a subclass, either
predefined or user-defined. A superclass has a set of class assignment rules
that determines which processes will be assigned to it. A superclass also has
a set of resource limitation values and resource target shares that determine
the amount of resources that can be used by processes belonging to it. These
resources will be divided among the subclasses based on the resources
limitation values and resource target shares of the subclasses.

Up to 27 superclasses can be defined by the system administrator. In
addition, five superclasses are automatically created to deal with processes,
memory, and CPU allocation as follows:

• Default superclass: The default superclass is named Default and is always
defined. All non-root processes that are not automatically assigned to a
specific superclass will be assigned to the Default superclass. Other
processes can also be assigned to the Default superclass by providing
specific assignment rules.

• System superclass: This superclass is named System and will have all
privileged (root) processes assigned to it if they are not assigned by rules
to a specific class, plus the pages belonging to all system memory
10 AIX 5L Workload Manager (WLM)

segments, kernel processes, and kernel threads. Other processes can
also be assigned to the System superclass. The default is for this
superclass to have a memory minimum limit of one percent.

• Shared superclass: This superclass receives all the memory pages shared
by processes in more than one superclass. This includes pages in shared
memory regions and pages in files that are used by processes in more
than one superclass (or in subclasses of different superclasses). Shared
memory and files used by multiple processes that belong to a single
superclass (or subclasses of the same superclass) are associated with
that superclass. The pages are placed in the Shared superclass only when
a process from a different superclass accesses the shared memory region
or file. This superclass can have only physical memory shares and limits
applied to it. It cannot have shares or limits for the other resource types,
subclasses, or assignment rules specified.

• Unclassified superclass: The processes in existence at the time WLM is
started are classified according to the assignment rules of the WLM
configuration being loaded. During this initial classification, all the memory
pages attached to each process are charged either to the superclass to
which the process belongs (when not shared or shared by processes in
the same superclass) or to the Shared superclass when shared by
processes in different superclasses. However, there are a few pages that
cannot be directly tied to any processes (and, thus, to any class) at the
time of this classification, and this memory is charged to the Unclassified
superclass. An example for that would be pages from a file that has been
closed. The file pages will remain in memory, but no process really owns
these pages; therefore, they cannot be charged to any specific class. Most
of this memory will end up being correctly reclassified over time, when it is
either accessed by a process or freed and reallocated to a process after
WLM is started. There are only a few kernel processes, such as wait or
lrud, in the Unclassified superclass. Even though this superclass can have
physical memory shares and limits applied to it, WLM commands do not
allow you to set shares and limits or specify subclasses or assignment
rules on this superclass.

• Unmanaged superclass: A special superclass, named Unmanaged, will
always be defined. No processes will be assigned to this class. This class
will be used to accumulate the memory usage for all pinned pages in the
system that are not managed by WLM. The CPU utilization for the
waitprocs is not accumulated in any class. This is done deliberately;
otherwise, the system would always seem to be at 100 percent CPU
utilization, and it could be misleading for users when looking at the WLM
or system statistics. This superclass cannot have shares or limits for any
resource types, subclasses, or assignment rules specified.
Chapter 2. AIX Workload Manager functionality 11

2.2.3 Subclasses
A subclass is a class associated with exactly one superclass. Every process
in the subclass is also a member of the superclass. Subclasses only have
access to resources that are available to the superclass. A subclass has a set
of class assignment rules that determine which of the processes assigned to
the superclass will belong to it. A subclass also has a set of resource
limitation values and resource target shares that determine the resources that
can be used by processes in the subclass. These resource limitation values
and resource target shares indicate how much of the superclass’ target (the
resources available to the superclass) can be used by processes in the
subclass.

Up to 10 subclasses can be defined by the system administrator or by the
superclass administrator for each superclass. In addition, two special
subclasses, Default and Shared, are always defined in each superclass as
follows:

• Default subclass: The default subclass is named Default and is always
defined. All processes that are not automatically assigned to a specific
subclass of the superclass will be assigned to the Default subclass. You
can also assign other processes to the Default subclass by providing
specific assignment rules.

• Shared subclass: This subclass receives all the memory pages used by
processes in more than one subclass of the superclass. This includes
pages in shared memory regions and pages in files that are used by
processes in more than one subclass of the same superclass. Shared
memory and files used by multiple processes that belong to a single
subclass are associated with that subclass. The pages are placed in the
Shared subclass of the superclass only when a process from a different
subclass of the same superclass accesses the shared memory region or
file. There are no processes in the Shared subclass. This subclass can
have only physical memory shares and limits applied to it. It cannot have
shares or limits for the other resource types or assignment rules specified.

2.2.4 Backward compatibility considerations
System administrators have the option of using only superclasses or both
superclasses and subclasses in their WLM configurations. The system
administrator can also choose to create subclasses only for some
superclasses. So, when starting AIX 5L’s WLM with configurations created in
its first or AIX V4.3.3 release, only superclasses will be used. The default
output of the wlmstat command, in this case, will show just the superclasses
and will be similar to the one users of the first release are familiar with.
12 AIX 5L Workload Manager (WLM)

Note the following example:

If some of the superclasses have subclasses defined by a WLM administrator,
the subclasses will be shown in wlmstat output as the following:

The same thing happens with the output of the ps command. For processes in
a superclass without any subclasses, pswill show the superclass name as the
process' class name:

2.3 Tiers

Tier configuration is based on the importance of a class relative to other
classes in WLM. There are 10 available tiers from 0 through to 9. Tier value 0

wlmstat
CLASS CPU MEM DKIO
Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 2 0
System 2 12 0
db1 0 0 0
db2 0 0 0
devlt 0 4 2

wlmstat
CLASS CPU MEM DKIO
Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 2 0
System 3 11 7
db1 46 0 0
db2 48 0 0
devlt 50 0 0
devlt.Shared 0 0 0
devlt.editors 18 0 0

ps -ae -o pid,user,class,args
PID USER CLASS COMMAND
1 root System /etc/init
5614 dbadmin db1 /etc/ora_db_writer
5750 dbadmin db2 /etc/ora_db_writer
5980 jim devlt.editors /bin/vi
6714 sue devlt.build /bin/cc
Chapter 2. AIX Workload Manager functionality 13

is the most important and the value, 9, is the least important. As a result,
classes belonging to tier 0 will get resource allocation priority over classes in
tier 1; classes in tier 1 will have priority over classes in tier 2, and so on. The
default tier number, if the attribute is not specified, is 0.

The tier applies at both the superclass and subclass levels. Superclass tiers
are used to specify resource allocation priority between superclasses, and
subclass tiers are used to specify resource allocation priority between
subclasses of the same superclass. There is no relationship between tier
numbers of subclasses of different superclasses.

Tier separation in terms of prioritization is much more enforced in AIX 5L than
what was observed in the previous release. A process in tier 1 will never have
more priority than a process in tier 0 since there is no overlapping of priorities
in tiers. It is most unlikely that classes in tier 1 will get hold of any resources if
processes in tier 0 are using up all the resources. This occurs because the
control of leftover resources is much more restricted than what was
happening in WLM’s first AIX V4.3.3 release.

2.4 Class attributes

The attributes of a class are as follows:

• Class name: Up to 16 characters long. Can contain only uppercase and
lowercase letters, numbers, and underscores (_).

• Tier: Number between 0 and 9 for class priority ranking.

• Inheritance: Specifies whether or not a child process inherits the class
assignment from its parent.

• Adminuser, admingroup (superclass only): Used to delegate the
administration of a superclass.

• Authuser, authgroup: Used to delegate the right to manually assign a
process to a class.

• Resource Set: Used to limit the set of resources to which a given class has
access in terms of CPUs (processor set).

Tier
This attribute holds the tier number to which the class belongs. It is used to
prioritize resource allocation between classes. Refer to Section 2.3, “Tiers”
on page 13, for further details on tiers.
14 AIX 5L Workload Manager (WLM)

Inheritance
The inheritance attribute indicates whether or not a child process should
inherit its parent’s class or be classified according to the automatic
assignment rules upon exec. The possible values are yes or no, and the
default if the attribute is not specified is no. This attribute can be specified at
both the superclass and subclass level. For a subclass of a given superclass:

Table 1. Inheritance attribute at superclass and subclass level meaning

The inheritance attribute has a different reading when manual assignment is
being used. This feature is fully-described in Section 5.1.3, “Interaction with
inheritance” on page 143. Additionally, there is also the concept for tag
inheritance from parent to child processes when application tagging is being
used. This subject is covered in Section 6.1, “Application tag” on page 157.

Superclass
level
inheritance
value

Subclass
level
inheritance
value

Meaning

yes yes A child of a process in the subclass will
remain in the same subclass upon exec.

yes no or
unspecified

A child of a process in the subclass will
remain in the same superclass and will be
classified in one of its subclasses
according to the assignment rules for the
superclass upon exec.

no or
unspecified

yes A child of a process in the subclass will be
submitted to the automatic assignment
rules for the superclasses upon exec. If the
process is classified by the rules in the
same superclass, it will remain in the
subclass (it will not be submitted to the
subclasses assignment rules). If the
process is classified by the superclass
rules in a different superclass, the subclass
assignment rules of the new superclass are
applied to determine the subclass of the
new superclass to which the process will be
assigned.

no or
unspecified

no or
unspecified

A child of a process in the subclass will be
submitted to the standard automatic
assignment upon exec.
Chapter 2. AIX Workload Manager functionality 15

Adminuser, admingroup
These attributes are valid only for superclasses. They are used to delegate
the superclass administration to a user and/or group of users:

• Adminuser specifies the name of the user (as listed in /etc/passwd)
authorized to perform administration tasks on the superclass. This can
also be an NIS user.

• Admingroup specifies the name of the group of users (as listed in
/etc/group) authorized to perform administration tasks on the superclass.
This can also be an NIS group.

Only one value (user/group name) is allowed for each attribute. Any one of
them, none, or both can be specified. The user and/or group has authority to
create/delete subclasses, change the attributes and resource shares and
limits for the subclasses, define, remove, or modify subclass assignment
rules, and refresh (update) the active WLM configuration for the superclass.
In addition, root always has authority on any superclass.

Authuser, authgroup
These attributes are valid for all the classes. They are used to specify the
user name and/or the group name of the user and/or group authorized to
manually assign processes to the class. When manually assigning a process
(or a group of processes) to a superclass, the assignment rules for the
superclass are used to determine which subclass of the superclass each
process will be assigned to.

• Authuser specifies the name of the user (as listed in /etc/passwd)
authorized to manually assign processes to the class.

• Authgroup specifies the name of the group of users (as listed in
/etc/group) authorized to manually assign processes to the class.

Only one value (user/group name) is allowed for each attribute. Any one of
them, none, or both can be specified. In addition, root and the administrators
of a superclass specified by adminuser/admingroup can always manually
assign processes to a superclass or to a subclass of the superclass.

Resource set (rset)
This attribute is valid for all the classes. Resource sets are an operating
system feature introduced in AIX 5L. This feature allows the system
administrator to define subsets of system resources through SMIT or WSM
and give them a name using a new registry service.

WLM uses the concept of resource sets (or rsets) to restrict the processes in
a given class to a subset of the system's physical memory and processors. A
16 AIX 5L Workload Manager (WLM)

valid resource set is composed of memory (currently only one domain shared
by all resource sets) and at least one processor.

Using SMIT or Web-based System Manager, a system administrator has the
ability to define and name resource sets containing a subset of the resources
available on the system. Then, using the WLM administration interfaces, root
or a designated superclass administrator can use the name of the resource
set as the rset attribute of a WLM class. From then on, every thread assigned
to this WLM class is only dispatched on one of the processors in the resource
set. This is a very effective way of further separating workloads for the CPU
resource. Refer to Section 3.3.6, “Working with resource sets” on page 86 for
further information on resource sets.

Since all of the current systems have only one memory domain shared by all
the resource sets, this method does not allow the physical separation of
workloads in memory.

2.5 Classification process

There are two ways to classify processes in WLM:

• Automatic assignment when a process calls the system call, exec, using
assignment rules specified by a WLM administrator. This automatic
assignment is always in effect (cannot be turned off) when WLM is active.
This is the most common method of assigning processes to the different
classes.

• Manual assignment of a selected process or group of processes to a class
by a user with the required authority on both the process and the target
class. This manual assignment can be done either by a WLM command,
which can be invoked directly or through SMIT or WSM, or by an
application, using a function of the WLM Application Programming
Interface. Manual assignment overrides automatic assignment.

2.5.1 Automatic assignment
The automatic assignment of processes to classes uses a set of class
assignment rules specified by a WLM administrator. There are two levels of
assignment rules:

• A set of assignment rules at the WLM configuration level used to
determine which superclass a given process should be assigned to.

• A set of assignment rules at the superclass level used to determine which
subclass of the superclass the process should be assigned to.
Chapter 2. AIX Workload Manager functionality 17

The assignment rules at both levels have exactly the same format.

When a process is created (fork), it remains in the same class as its parent
(for more information on inheritance, see Section 5.1.3, “Interaction with
inheritance” on page 143). Usually, reclassification happens when the new
process calls the system call exec. In order to classify the process, WLM
starts by examining the top level rules list for the active configuration to find
out which superclass the process should belong to. For this purpose, WLM
takes the rules one at a time in the order in which they appear in the file and
checks the current values for the process attributes against the values and
lists of values specified in the rule. When a match is found, the process will be
assigned to the superclass named in the first field of the rule. Then, the rules
list for the superclass is examined in the same way to determine which
subclass of the superclass the process should be assigned to. For a process
to match one of the rules, each of its attributes must match the corresponding
field in the rule. The rules to determine whether the value of a process
attribute matches the values in the field of the rules list are as follows:

• If the field in the rule has a value of hyphen (-), any value of the
corresponding process attribute is a match.

• If the value of the process attribute (for all the attributes except type)
matches one of the values in the list in a rule and it is not excluded
(prefaced by a (!)), it is considered a match.

• When one of the values for type attribute in the rule is comprised of two or
more values separated by a plus (+) sign, a process will be a match for this
value only if its characteristics match all the values mentioned above.

As stated before, at both the superclass and subclass levels, WLM goes
through the rules in the order in which they appear in the rules list and
classifies the process in the class corresponding to the first rule for which the
process is a match. This means that the order of the rules in the rules list is
extremely important, and caution must be applied when modifying it in any
way.

2.5.2 Manual assignment
In addition to automatic class assignment, a user with the proper authority
can manually assign processes or groups of processes to a specific
superclass or subclass. This feature is described in greater detail in Chapter
5, “Manual assignment” on page 141.
18 AIX 5L Workload Manager (WLM)

2.5.3 Class assignment rules
After the definition of a class, it is time to set up the class assignment rules so
that WLM can perform its automatic assignment. The assignment rules are
used by WLM to assign a process to a class based on the user, group,
application pathname, type of process, and application tag or a combination
of these five attributes.

The next sections describe all attributes that constitute a class assignment
rule. All these attributes can contain a hyphen (-), which indicates that they
are not specified.

Class name
This field must contain the name of a class that is defined in the class file
corresponding to the level of the rules file we are configuring (either
superclass or subclass). Class names can contain only uppercase and
lowercase letters, numbers, and underscores (_) and can be up to 16
characters in length. No assignment rule can be specified for the system
defined classes Unclassified, Unmanaged, and Shared.

Reserved
Reserved for future use. Its value must be a hyphen (-), and it must be
present in the rule.

Users
The user name (as specified in the /etc/passwd file or in NIS) of the user
owning a process can be used to determine the class to which the process
belongs. This attribute is a list of one or more user names separated by a
comma (,). Users can be excluded by using an exclamation point (!) prefix.
Patterns can be specified to match a set of user names using full Korn shell
pattern matching syntax.

Applications that use the setuid permission to change the effective user ID
under which they run are still classified according to the user that invoked
them. The processes are only reclassified if the change is done to the real
UID.

WLM class assignment rules or process classification attributes:

• User
• Group
• Application path name
• Process type
• Application tag

Note
Chapter 2. AIX Workload Manager functionality 19

Groups
The group name (as specified in the /etc/group file or in NIS) of a process can
be used to determine the class to which the process belongs. This attribute is
a list composed of one or more groups separated by a comma (,). Groups can
be excluded by using an exclamation point (!) prefix. Patterns can be
specified to match a set of group names using full Korn shell pattern matching
syntax.

Applications that use the setgid permission to change the effective group ID
under which they run are still classified according to the group that invoked
them. The processes are only reclassified if the change is done to the real
GID.

Application pathnames
The full pathname of the application for a process can be used to determine
the class to which a process belongs. This attribute is a list composed of one
or more applications and separated by a comma (,). The application
pathnames will be either full pathnames or Korn shell patterns that match
pathnames. Application pathnames can be excluded by using an exclamation
point (!) prefix.

Process types
In AIX 5L, the process type attribute is introduced as one of the ways to
determine the class to which a process belongs. This attribute is a comma
(,)-separated list of single values or combinations of two or more single
values joined with plus signs (+). A plus sign (+) means AND, and a comma
(,) means OR. For example:

• 64bit,plock+fixed

• plock+fixed+64bit,32bit

• plock,fixed,64bit

The list of values that can figure on this attribute is shown in the following
section. 32 bit and 64 bit are mutually exclusive:

Attribute value Process type

32bit The process is a 32 bit process.

64bit The process is a 64 bit process.

plock The process called plock() to pin memory.

fixed The process is a fixed priority process

(SHED_FIFO or SCHED_RR).
20 AIX 5L Workload Manager (WLM)

Application tags
In AIX 5L, the application tag attribute is introduced as one of the forms of
determining the class to which a process belongs. This is an attribute meant
to be set by WLM’s API as a way of further extending the process
classification possibilities. This was created with the main purpose of allowing
differentiated classification for different instances of the same application.
This attribute can have one or more application tags separated by commas
(,). An application tag is a string of up to 30 alphanumeric characters.

The classification is done by comparing the value of the attributes of the
process at exec time against the lists of class assignment rules to determine
which rule is a match for the current value of the process attributes. The class
assignment is done by WLM:

• When WLM is started for all the processes existing at that time.

• Every time a process calls, the system calls exec, setuid (and related

calls), setgid (and related calls), setpri, and plock, once WLM is
started.

There are two default rules that are always defined (that is, hardwired in
WLM). These are the default rules to assign all processes started by the user
root to the System class, and all other processes to the Default class. If WLM
does not find a match in the assignment rules list for a process, these two
rules will be applied (the rule for System first), and the process will go to
either System (uid root) or Default. These default rules are the only
assignment rules in the standard configuration installed with AIX. In the
example of Table 2, the rule for Default class is omitted from display, though
this class’ rule is always present in the configuration.

Table 2. Examples of class assignment rules

The rule for System is explicit and has been put first in the file. This is done
deliberately so that all processes started by root will be assigned to the
System superclass. By moving the rule for the System superclass further

Class Reserved User Group Application Type Tag

System - root - - - -

db1 - - - /usr/oracle/bin/db* - _db1

db2 - - - /usr/oracle/bin/db* - _db2

devlt - - dev - 32bit -

VPs - bob,sally - - - -

acctg - !ted acct* - - -
Chapter 2. AIX Workload Manager functionality 21

down in the rules file, the system administrator could have chosen to assign
to System only the root processes that would not be assigned to another
class (because of the application executed, for instance). In the example
shown in Table 2, with the rule for System on top, if root executes a program
in /usr/oracle/bin/db* set, the process will be classified as System. If the rule
for the System class were after the rule for the db2 class, the same process
would be classified as db1 or db2 depending on the tag.

These examples show that the order of the rules in the assignment rules file
is very important. The more specific assignment rules should appear first in
the rules file, and the more general rules should appear last. An extreme
example would be putting the default assignment rule for the Default class, for
which every process is a match, first in the rules file. That would cause every
process to be assigned to the Default class. Then, the other rules would, in
effect, be ignored.

You can define multiple assignment rules for any given class. You can also
define your own specific assignment rules for the System and/or Default
classes. The default rules mentioned above for these classes would still be
applied to processes that would not be classified using any of the explicit
rules.

2.6 Resources

WLM monitors and regulates the resource utilization of the threads and
processes active on the system. The monitoring and regulation is done per
class. You can set minimum or maximum limits per class for each resource
type managed by WLM. In addition, a target value for each resource per class
may be given. This target, named share, is representative of the amount of
the resource that would be optimal for the jobs in the class.

The shares and limits at the superclass level refer to the total amount of each
resource available on the system. At the subclass level, they refer to the
amount of each resource made available to the superclass the subclass is in
(superclass’ target). The hierarchy of classes is, thus, a way for a system
administrator to divide up the system resources between groups of users
(superclasses) and delegate the administration of this share of the resources
to superclass administrators. Each superclass administrator can then
redistribute this amount of resources between the users in the group by
creating subclasses and defining resource entitlements.

2.6.1 Resources managed by WLM
WLM manages three types of resources:
22 AIX 5L Workload Manager (WLM)

• The CPU utilization of the threads in a class. This is the sum of all the
CPU cycles consumed by every thread in the class.

• The physical memory utilization of the processes in a class. This is the
sum of all the memory pages that belong to the processes in the class.

• The disk I/O bandwidth of the class. This is the bandwidth (in 512 byte
blocks per second) of all the I/Os started by threads of the class on the
disk devices accessed.

Once a second WLM calculates the per-class utilization for each resource
during the last second as a percentage of the total resource available.

CPU
The total amount of CPU time available every second is equal to one second
times the number of CPUs on the system. For instance, on an eight-way SMP,
if all the threads of a class combined consumed two seconds of CPU time
during the last second, this represents a percentage of 2/8 = 25 percent. The
percentage used by WLM for regulation is a decayed average over a few
seconds of this instantaneous per-second resource utilization.

Physical memory
The total amount of physical memory available for processes at any given
time is the total number of memory pages physically present on the system
minus the number of pinned pages. The pinned pages are not managed by
WLM since these pages cannot be stolen from a class to give them to another
class in order to regulate memory utilization. The memory utilization of a
class is simply the ratio of the number of (non-pinned) memory pages being
used by all the processes in the class to the number of pages available on the
system, as defined above, expressed as a percentage.

Disk I/O
For the disk I/O, the main difficulty is to determine a meaningful available
bandwidth for a device. When a disk is 100 percent busy, its throughput (in
blocks per second) will be very different if one application is doing sequential
I/Os than if several applications are doing random I/Os. If the maximum
throughput measured for the sequential I/O case was used as a value of the
I/O bandwidth available for the device to compute the percentage of utilization
under random I/Os, statistical errors would be created. It might lead one to
think that the device is, for instance, 20 percent busy, while it is, in fact, at 100
percent utilization.

In order to get more accurate and reliable percentages of per-class disk
utilization, WLM uses the data provided by the disk drivers (which are
displayed with the AIX iostat command) giving, for each disk device, the
Chapter 2. AIX Workload Manager functionality 23

percentage of the time the device has been busy during the last second.
WLM knows how many blocks in total have been read/written on a device
during the last seconds by all the classes accessing the device, how many
blocks have been read/written by each class, and what was the percentage of
utilization of the device and can easily calculate what percentage of the disk
throughput was consumed by each class. For instance, if the total number of
blocks read or written during the last second was 1000 and the device had
been 70 percent busy, it means that a class reading/writing 100 blocks used
seven percent of the disk bandwidth. Similarly, to the CPU time (another
renewable resource), the values used by WLM for its disk I/O regulation are
also a decayed average over a few seconds of these per-second
percentages.

For the disk I/O resource, the shares and limits apply to each disk device
accessed by the class individually, and the regulation is done independently
for each device.

2.6.2 Class resource shares
The number of shares of a resource for a class determine the proportion of
the resource that is allocated to the processes assigned to the class. In
simple terms, the resource shares are specified as relative amounts of usage
between different classes in the same tier. One way of thinking about shares
is as a self-adapting percentage.

For example, a system has three classes defined, A, B, and C, whose targets
are 50, 30, and 20 respectively.

• If all three classes are active, the total number of shares for the active
classes is 100. Their targets, expressed as percentages, are 50 percent,
30 percent, and 20 percent.

• If A is not active, the total number of shares is 50 (so, each share
represents two percent). The target percentages for B and C are 60
percent and 40 percent.

• If only one class is active, its target is 100 percent.

A class is considered active (regardless of its resource consumption) when it
has at least one process assigned to it.

In this example, the sum of the shares for the three classes was 100 simply to
make the sample calculation easier. A target can be any number between 1
and 65535.

The preceding example implicitly supposes that:
24 AIX 5L Workload Manager (WLM)

• A, B, and C are either all superclasses or all subclasses of the same
superclass.

• A, B, and C are in the same tier.

The relative share numbers of a subclass and a superclass, of two
subclasses of different superclasses, or of classes in different tiers do not
give any indication of their relative resource entitlements. As explained
earlier, the shares are used by WLM to calculate for each class a percentage
goal of resource utilization for each resource type. This goal represents a
percentage of resources that can vary widely depending on how many
classes are active at any given time. However, WLM makes sure that the
dynamic value of this percentage goal remains compatible with the minimum
and maximum limits for the class. If the calculated percentage is below the
minimum, WLM uses the minimum as the target. If the percentage is above
the maximum limit, WLM uses the maximum as the target. If the percentage
is between the minimum and the maximum limit, WLM uses the calculated
value.

The share number can be specified as a hyphen (-) for any resource type to
indicate that the class' resource utilization for this resource type is not
regulated by WLM. This is the default when no share value has been
specified for a resource type. Note that this default is different from the default
value of one share in the first version of WLM.

What exactly does it mean to have a resource type that is not regulated by
WLM on a certain class? It means that the resource target for that class will
always be 100 percent. WLM will never penalize this class for being above its
target, for there is no such thing as the notion of WLM target for this resource
for this class. The consequence is (as expected) that a class with a
non-regulated resource in tier 0 is capable of starving all the other classes for
this resource. It is, therefore, recommended to reserve this non-regulated
value for notoriously well-behaved classes, such as System, for instance.

The example shown in Figure 4 on page 26 displays resource allocation
before and after a new class is activated. Initially, there are three active
classes that have been allocated five, seven, and two resource shares
respectively. These resource shares in combination are allocated 100 percent
of the resource in accordance with their relative share values. When the new
class, which has three resource shares, is activated, there are four active
classes with resource shares of five, seven, two, and three with the total
active resource shares equal to 17. As a result, when all four classes are
active, the class with five resource shares will be allocated five of the total of
Chapter 2. AIX Workload Manager functionality 25

17 shares or 29 percent of the system resource (29.4 percent will be rounded
down to 29 percent).

Figure 4. Example of share distribution automatically adjusting resources

2.6.3 Class resource limits
The class resource limits define the minimum and maximum amount of a
resource that may be allocated to a class as a percentage of the total system
resources. The different resources can be limited by the following values:

• The minimum percentage of the resource that must be made available
when requested. The possible values are integers from 0 to 100. If
unspecified, the default value is 0.

• The maximum percentage of a resource that can be made available when
there is contention for the resource. If the contention no longer exists, this
maximum limit can be surpassed. This is called a soft maximum, since it is
possible for a class to get more resource than this soft maximum value if
there is no contention. The possible values are integers from 1 to 100. If
unspecified, the default value is 100.

• The maximum percentage of a resource that can be made available, even
if there is no contention for the resource. This is called a hard maximum. A
class will never get more resource than its hard maximum limit, even if it is
the only one active on the system. The possible values are integers from 1
to 100. If unspecified, the default value is 100.

WLM does not impose hard constraints on the values of the resource limits.
The following are the only constraints:

• The minimum limit must be less than or equal to the soft maximum limit.

• The soft maximum limit must be less than or equal to the hard maximum
limit.

• The sum of the minimum of all the superclasses within a tier cannot
exceed 100.

Before:
0 10 20 30 40 50 60 70 80 90 100

5 shares 7 shares 2 shares

After:
0 10 20 30 40 50 60 70 80 90 100

5 shares 7 shares 2 shares 3 shares
26 AIX 5L Workload Manager (WLM)

• The sum of the minimum of all the subclasses of a given superclass within
a tier cannot exceed 100.

• WLM will not let users set a hard memory limit on the System class
because of potential deadlock situations.

For instance, consider the case in which performing file system I/Os
involves a system daemon (a good example is NFS). If there is a hard
maximum limit on the System class and the class reaches its maximum
limit, the VMM page replacement algorithm (LRU) will be started and will
initiate page-outs. No page will be given to processes in the System class
until those page-outs complete, thus, bringing the System class below its
maximum limit. Since there is intensive stealing of the pages belonging to
the processes in the System class due to the maximum limit, it is entirely
possible that the file system daemon needs a page to start processing the
I/Os. So, VMM will not give it a page until the I/Os are complete, and the
daemon will not process any I/O until it gets its page(s). From then on, no
System process will ever be given a memory page, and the system will
halt in a matter of seconds.

When a class (other than System) has reached its hard memory limit and
requires more pages, the VMM page replacement algorithm (LRU) is initiated
to steal pages from the class at limit, lowering its number of pages below the
hard maximum before handing out new pages (the class pages against itself).
This is, of course, the desired behavior, but this extra paging activity, which
can take place even where there are plenty of free memory pages available,
will impact the general performance of the system. Memory minimums for
other classes should be used before imposing a memory hard maximum for
any class.

This constraint about the sum of the minimum limits within a tier being less
than or equal to 100 means that a class in the highest priority tier is always
allowed to get resources up to its minimum limit. However, WLM cannot
guarantee that the class will actually reach its minimum limit. This depends
on how the processes in the class use their resources and on other limits that
may be in effect. For example, a class may not be able to reach its minimum
CPU entitlement because it cannot get enough memory.

For physical memory, setting a minimum limit gives some protection to the
pages of the processes in the class (again, at least for the highest priority
tier). Pages should not be stolen from a class below its minimum limit unless
all the active classes are below their minimum limit and one of them requests
more pages.
Chapter 2. AIX Workload Manager functionality 27

With this constraint, it means that pages should never be stolen from a class
in the highest tier below its minimum limit. So, setting a memory minimum
limit for a class of interactive jobs helps ensure that their pages will not all
have been stolen between consecutive activations (even in cases where the
memory is tight) and improves response time.

2.6.4 Backward compatibility considerations
As mentioned earlier, in the first release of WLM, the system default for the
resource shares was one share. In AIX 5L it is (-), which means that the
resource consumption of the class for this particular resource is not regulated
by WLM. This changes the semantics quite a bit, and it is advised that system
administrators review their existing configurations and consider if the new
default is good for their classes or if they would be better off either setting up
a default of one share to go back to the previous behavior or setting explicit
values for some of the classes.

For the limits, the first release of WLM only had one maximum, not two. This
maximum limit was, in fact, a soft limit for CPU and a hard limit for memory.
Limits specified with the old format, min percent-max percent, will have, in
AIX 5L, the max interpreted as a softmax for CPU, and a max that was set for
memory will become both hardmax and softmax for memory in AIX 5L (which
will give hardmax and softmax an equal value in this case). All interfaces
(SMIT, AIX commands, and WSM) will convert all data existing from its old
format to the new one.

The disk I/O resource is new for the current version; so, when activating
AIX 5L’s WLM with configuration files of the first WLM release, the values for
the shares and the limits will just be the default ones for this resource. The
system defaults are as follows:

• shares = -

• min = 0 percent, softmax = 100 percent, hardmax = 100 percent.

So, for existing WLM configurations, the disk I/O resource will not be
regulated by WLM, which should lead to the same behavior for the class as
with the first version.

Resource limits take precedence over class resource share values.

Note
28 AIX 5L Workload Manager (WLM)

2.7 WLM interaction with the kernel

WLM’s management of system resources interacts with the already-existing
kernel control mechanisms. These mechanisms are the scheduler for the
CPU, the Virtual Memory Manager for memory, and device driver calls for the
disk I/O bandwidth. They all use the allocation priority value calculated by
WLM for each resource for each WLM class. This value is called Uniform
Resource Access Priority (URAP).

2.7.1 Uniform Resource Access Priority (URAP)
URAP is a generic mapping of resource usage mechanisms. Each resource
allocation mechanism (CPU, memory, and disk I/O) determines what will be
the input to the URAP computation, named resource usage. It may be
decayed CPU ticks, a number of memory pages, or a time-decayed amount of
disk I/O blocks. In return, the URAP value will allow the subsystem to take
decisions regarding the regulation of the resource. There is one URAP value
independently computed for each resource in each class. The URAP value
represents the priority of access to resources.

2.7.2 Interaction with the scheduler
AIX scheduler calls a WLM routine to inquire about the scheduling priority of
each thread. This priority is determined by WLM using the URAP algorithm,
which calculates the allocation priority for CPU for the class of the thread in
question.

In a WLM environment, the nice command will cause a process to have its
CPU usage selectively favored or penalized with respect to other processes
in the same class as the process in question. The nice command will not
affect the CPU utilization of processes in other classes because WLM will
work to have the class' resources meet the requested number of resource
shares and resource limits.

The schedtune command can be used to modify the behavior of the scheduler.
All options to schedtune continue to work in a WLM environment. The use of
schedtune options will not significantly impact the ability of WLM to manage
CPU usage.

It is recommended that any tuning with schedtune be done prior to using
WLM.

Note
Chapter 2. AIX Workload Manager functionality 29

2.7.3 Interaction with VMM
WLM controls the memory used by each class according to the tier where the
class resides and the minimum, share, and maximum thresholds defined for
the class. Regulation is based on memory URAPs computed from class
consumption rates each second by wlmsched. This value is then used by VMM
to control memory allocation to threads.

The vmtune command can be used to modify the behavior of VMM. All vmtune
options work in a WLM environment. Some of the options to vmtune,
particularly minperm, maxperm, minfree and maxfree, can hamper WLM's
ability to achieve the specified physical memory usage goals.

2.7.4 Interaction with disk device drivers
WLM intercepts the call to devstrat and executes its own algorithm for the
regulation of disk I/O bandwidth:

• For I/O to a disk device, WLM updates the class per device statistics.

• If the class needs to be restricted (over target, for example), WLM delays
the I/O. The delay is adjusted to regulate the I/O throughput utilization of
the class (on a per-device basis).

• Each second, WLM calculates the percentage of disk utilization
contributed by each class. For this purpose, WLM uses the statistics given
by the device drivers (through iostat and dkstat), which contain the
percentage of time the device was busy during that same time interval.

• Based on these statistics and on the allocation priority value calculated for
disk I/O bandwidth for the class of the thread being controlled, WLM
regulates the resource allocation for the thread.

2.8 WLM Application Programming Interface (API)

The WLM API supplies applications with the ability to perform every task a
system administrator does through WLM commands. The API is described in
Chapter 6, “WLM Application Programming Interface (API)” on page 157.

It is recommended that any tuning with vmtune be done prior to using WLM.

Note
30 AIX 5L Workload Manager (WLM)

Chapter 3. AIX Workload Manager administration

WLM can be administered using three different methods:

• Command line and file editing

• System Management Interface Tool (SMIT), initiated with the AIX
command smit wlm or smitty wlm

• Web-based System Manager (WSM) graphical user interface, initiated
with the AIX command wsm

Throughout this chapter, you will find descriptive examples of each of these
methods’ functionality. These examples differ from method to method, even
when they are outlined within the same section, in order to give you a broader
perspective on the functionality.

Figure 5. WLM screen in WSM

WLM commands can also be initiated through crontab entries to take
advantage of WLM’s various configuration capabilities. This way, job rankings
can be changed at specific times of day and/or days of the week.
© Copyright IBM Corp. 2000 31

3.1 Property files

The WSM and SMIT interfaces record the configuration information in the
same flat text files. These files are called the WLM property files and reflect
WLM’s two-layered class configuration.The various WLM configurations are
placed in subdirectories of /etc/wlm. A symbolic link, /etc/wlm/current, points
to the directory containing the current configuration files. For example, the
current running rules file is stored in a file, /etc/wlm/current/rules. This link is
updated by the wlmcntrl command when WLM starts with a specified set of
configuration files. The sample configuration files shipped with AIX are in the
/etc/wlm/standard directory.

The example in Figure 6 shows a configuration, called Config, which is,
therefore, placed in /etc/wlm/Config.

Figure 6. WLM’s property files

The various files are explained below:

• description contains the description of the configuration.

• classes contains the class definitions of the configuration.

• shares contains the resource entitlements of the configuration.

• limits contains the resource limits of the configuration.

• rules contains the assignment rules of the configuration.

/etc/wlm/Config

classes

shares

limits

rules
devlt

description

shares

limitsclasses

rules
32 AIX 5L Workload Manager (WLM)

The configuration, Config, has a superclass, named devlt. Each superclass is
represented by a subdirectory in the configuration directory named after the
superclass. For each superclass, this subdirectory contains the classes,
shares, limits, and rules files corresponding to the superclass’s subclasses,
resource entitlements, limits, and assignment rules.

The WLM property files for a WLM configuration must have write permission
only for root. The WLM property files for superclasses must have write
permission for the adminuser and admingroup for the superclass. If there is
no adminuser for the superclass, the files should be owned by root. If there is
no admingroup for a superclass, the WLM property files for the superclass
should be the group system, and have no write permission for the group.

classes file
This file contains the definition of WLM superclasses or subclasses for a
given configuration. This file is organized into stanza names, which are WLM
class names, and contents, which are attribute-value pairs specifying
characteristics of the class. Each stanza names a WLM class. The only
names that have a special meaning to the system are Default, Shared,
Unclassified, Unmanaged, and System. Unclassified and Unmanaged cannot
appear as class names in this file. The superclasses, Default, Shared, and
System, are always defined. The subclasses, Default and Shared, are always
defined. The class attributes that can be defined in the classes file are tier,
inheritance, adminuser, admingroup, authuser, authgroup, and resource set
(rset). Refer to Section 2.4, “Class attributes” on page 14, for further details
about these attributes. The attributes that have not been explicitly set by the
system administrator are omitted from this file. The default values for these
attributes can be changed using a special default stanza at the very top of
this file. Be extra careful when using this default stanza because it can lead to
starvation of your System superclass.

The following is part of a typical /etc/wlm/Config/classes file for the example
in Table 2 on page 21. In this example, the tier for db2 would have to be set to
1 because the default value, specified for the tier attribute in the special
default stanza at the top of this file, has been set to tier 0:

* This is the default special stanza, valid for all classes
* if not specified otherwise:
*
default:

tier=0

* System defined classes
* All attributes to default value
* Attribute values can be specified
Chapter 3. AIX Workload Manager administration 33

Default:

System:

Shared:

* User defined classes
*
db1:

inheritance = "yes"
adminuser = "bob"
authgroup = "devlt"

db2:
tier = 1
admingroup = "sales"
authuser = "sally"
rset = "part1"

shares file
This file contains the definition of the number of shares of all the resources
allocated to superclasses or subclasses for a given configuration. This file is
organized into stanza names, which are WLM class names, and contents,
which are attribute-value pairs specifying the number of shares allocated to
the class for the various resources. The attribute names identify the resource.
The shares value is either an integer between 1 and 65535 or a hyphen (-) to
indicate that WLM does no regulation for the class for the given resource.
This is the system default. Each stanza names a WLM class, which must exist
in the classes file at the corresponding level (superclass or subclass). The
class attributes defined in the shares file are CPU, memory, and disk I/O.
Refer to Section 2.6.1, “Resources managed by WLM” on page 22, for further
detail on these attributes. The values just mentioned as being the system
default can be modified using a special stanza, called default, at the very top
of the shares file. Be extra careful when using this default stanza because it
can lead to starvation of your System superclass.

The asterisk (*) is the comment character used in the classes file.
The example shows comments in the classes file for clarity only. Comments
can be added by directly editing the file. However, users should be aware
that all other interfaces to create/modify/delete classes (command line,
SMIT, WSM) will remove the comments when updating the file.

Note
34 AIX 5L Workload Manager (WLM)

The following is part of a typical /etc/wlm/Config/shares file for the example in
Table 2 on page 21. In this example, System, Shared, and db2 would get four
shares of CPU as specified by the default special stanza:

* This is the default special stanza, valid for all classes
* if not specified otherwise:
*

default:

CPU = 4

*
* System Defined Classes
* In this example, the system administrator uses
* only default values for the System and Shared
* superclasses, which are omitted in the file.
* The system administrator gives non default values
* only for the Default class:

Default:
CPU = 2
memory = 10

*
* User defined classes
*
db1:

CPU = 8
memory = 20
diskIO = 6

db2:
memory = 12
diskIO = 6

limits file
Contains the specification of the minimum and maximum limits for the
resources allocated to superclasses or subclasses of a given configuration.
Although the limits at the superclass level represent a percentage of the total

The asterisk (*) is the comment character used in the shares file.

The example shows comments in the shares file for clarity only. Comments
can be added by directly editing the file. However, users should be aware
that all other interfaces to create/modify/delete shares (command line,
SMIT, WSM) will remove the comments when updating the file.

Note
Chapter 3. AIX Workload Manager administration 35

amount of resource available on the system, and the limits at the subclass
level represent a percentage of the target usage configured for the
superclass, the description of resource limits for the superclasses and
subclasses have the same format. This file is organized into stanza names,
which are WLM class names, and contents, which are attribute-value pairs
specifying the minimum and maximum resource allocated to the class for the
various resources. The attribute names identify the resource. For each
resource, three values must be provided: The minimum limit (m), a soft
maximum limit (SM), and a hard maximum limit (HM). Refer to Section 2.6.3,
“Class resource limits” on page 26, for further details about these values. The
limits are expressed as percentages. The minimum limit is a number between
0 and 100, and the maximum limits are numbers between 1 and 100. The
hard maximum must be greater than or equal to the soft maximum, which
must be greater than or equal to the minimum. The system default values,
when the limits are not specified for a class or a resource type, are 0 for the
minimum and 100 for both the soft and hard maximum.

The syntax is:

attribute = m%-SM%;HM%

Each stanza names a WLM class, which must exist in the classes file at the
corresponding level (superclass or subclass). The class attributes defined in
the limits file are CPU, memory and disk I/O. Refer to Section 2.6.1,
“Resources managed by WLM” on page 22, for further details about these
attributes. The values mentioned above as being the system default can be
modified using a special stanza, called default, at the very top of the limits
file. Be extra careful when using this default stanza because it can lead to
starvation of your System superclass.

The following is part of a typical /etc/wlm/Config/limits file for the example in
Table 2 on page 21. In this example, db2 and Default would be assigned a
minimum of zero percent, a soft maximum of 50 percent, and a hard
maximum of 70 percent for CPU resource because of the special default
stanza:

* This is the default special stanza, valid for all classes
* if not specified otherwise:

* default:
CPU = 0%-50%;70%

* System Defined Classes
* In this example, the system administrator uses
* default values for the Shared
* superclass (memory only).
36 AIX 5L Workload Manager (WLM)

* The system administrator gives non default values
* for the Default and System classes. The System class
* has a memory minimum of 1% by default. This value
* can be increased by system administrator:
*
System:

CPU = 0%-100%;100%
memory = 1%-100%;100%

Default:
memory = 0%-25%;50%

*
* User defined classes
*

db1:
CPU = 10%-100%;100%
memory = 20%-100%;100%
diskIO = 0%-33%;50%

db2:
memory = 0%-20%;50%
diskIO = 10%-66%;100%

rules file
This file defines the automatic class assignment rules for the superclasses or
subclasses of a given configuration. Each line of this file represents an
assignment rule for a given class. There can be several assignment rules for
the same class. Each rule lists the name of a class and a list of values for
some attributes of a process that are used as classification criteria. The
various fields of a rule are separated by blank spaces. Attributes whose
values are not specified will be represented by a hyphen (-). The fields of an
assignment rule, listed in the order in which they must appear in the rules file,
are class name, reserved, user, group, application, type, and application tag.
Refer to Section 2.5.3, “Class assignment rules” on page 19, for further detail
on these attributes. The class name and the first two attribute fields (reserved
and user) are mandatory. The other fields, if not present, will default to (-).

The asterisk (*) is the comment character used in the limits file.

The example shows comments in the limits file for clarity only. Comments
can be added by directly editing the file. However, users should be aware
that all other interfaces to create/modify/delete limits (command line, SMIT,
WSM) will remove the comments when updating the file.

Note
Chapter 3. AIX Workload Manager administration 37

Remember, however, that WLM recognizes the fields by their position on the
line. It is, therefore, not possible to omit one field in the middle of the line. For
example, if you skip a group name and enter an application name, WLM will
take the application name as a group name and give error messages about
invalid groups.

WLM will scan this file from top to bottom, looking for the first rule that is a
match for the set of process attributes (user, group, application, type, and tag)
for each application:

• If the value in the rule is a hyphen (-), any value of the corresponding
process attribute is a match.

• If the value of a process attribute other than type appears in the list of
values specified in the corresponding field in the rule and is not preceded
by the exclusion character (!), this is a match for the specified attribute.

• If the values of the process type attribute (32bit/64bit, plock, fixed) match
all the values (separated by (+) signs) provided in the list of one or more
comma-separated values for the type field in the rule, this is a match for
the process type. For example, for 32bit,plock+fixed, it had to match either
32bit or plock and fixed.

• The process will be classified in the class specified in the class field of the
rule if all the values of the process attributes in the table above match the
values in the corresponding field of the rule.

When classifying a process, WLM will first scan the rules file for the
superclasses of the current configuration to determine which superclass the
process will be assigned to, and then, WLM scans the rules file for this
specific superclass to determine which subclass of the superclass the
process will be assigned to.

There are implicit rules for the Default superclass and the Default subclass of
all superclasses (whether or not they are present in the rules files), which will
classify all processes that did not match any of the other rules.

The following is an example of a /etc/wlm/Config/rules file for the
configuration given in the example in Table 2 on page 21:

* This file contains the rules used by WLM to
* assign a process to a superclass
*
* class resvd user group application type tag
System - root - - - -
db1 - - - /usr/oracle/bin/db* - _db1
db2 - - - /usr/oracle/bin/db* - _db2
devlt - - dev - 32bit -
38 AIX 5L Workload Manager (WLM)

VPs - bob,sally- - - -
acctg - !ted acct* - - -

The following is an example of the rules file for the devlt superclass in
/etc/wlm/Config/devlt/rules of the previous example:

* This file contains the rules used by WLM to
* assign a process to a subclass of the
* superclass devlt
*
* class resvd user group application type tag
hackers - jim,liz - - - -
hogs - - - - 32bit+plock -
editors - !sue - /bin/vi,/bin/emacs - -
build - - - /bin/make,/bin/cc - -
Default - - - - - -

In the /etc/wlm/.running directory, the system administrator can find an image
of what is exactly the currently-running configuration in the kernel.

The class definitions, shares, and limits in effect at a given time (that is,
known to the kernel at this time), may be different from the class definitions,
shares, and limits in the current configuration (the set of files in the directory
pointed to by /etc/wlm/current) for several reasons:

1. The configuration files could have been modified, but WLM has not been
refreshed yet.

2. Classes have been created and/or shares and limits were changed directly
into the kernel (without updating the configuration files) either by an
application using the API, or the command line interface (by specifying an
empty string as the configuration name (-d "").

This is why WLM keeps a set of configuration files in a special directory,
/etc/wlm/.running, which, at any given time, reflects the class definitions,
shares, limits, and rules exactly as they are known to the kernel.

The asterisk (*) is the comment character used in the rules file.

The example shows comments in the rules file for clarity only. Comments
can be added by directly editing the file. However, users should be aware
that all other interfaces to create/modify/delete rules (command line, SMIT,
WSM) will remove the comments when updating the file.

Note
Chapter 3. AIX Workload Manager administration 39

3.2 WLM operation

Operating WLM consists, basically, of turning it on, off, or refreshing its
running configuration for any changes made. The main issue when operating
WLM is the two different modes in which it can be started. The following
sections focus on all these points.

3.2.1 Modes of operation
WLM can be turned on in one of two modes:

• In the active mode, WLM classifies new and existing processes and
regulates their resource usage according to the class shares and resource
limits defined in the active WLM configuration. This is the normal mode of
operation.

• A passive mode is provided to help system administrators understand
what the resource requirements of their applications on a system are,
thus, helping them better tune their WLM configurations.

In this mode, WLM classifies new and existing processes and gathers
statistics about their resource usage but does not try to regulate this
usage. In this mode, the processes compete for resources exactly as they
would if WLM was off. The wlmstat command can then be used to get
snapshots of the resource usage for the different classes.

The wlmcntrl command lets you switch from passive to active mode or from
active to passive mode at any time. In addition, rset binding can be turned on
or off, so that all classes have access to the whole resource set of the system
use (use wlmctrl -g to turn it off). All possible combinations are allowed, as
follows:

• active mode + rset on

• active mode + rset off

• passive mode + rset on

• passive mode + rset off

The passive mode can be used for various purposes. Here are a few
examples:

• Before fully-enabling WLM on a production system, the system
administrator could use the passive mode to check the assignment rules.

With WLM started in the passive mode, all the processes would be
classified according to the assignment rules, and the system administrator
could use ps to check that the various applications are classified in the
40 AIX 5L Workload Manager (WLM)

correct class. Since there is no regulation in this mode, this has virtually
no impact for the users of the system.

• When the system administrator is satisfied with the classification, the
system can be allowed to run for some time in passive mode to gather
base line resource usage statistics with the wlmstat command. These
statistics provide a reference that can be used to determine how to apply
the shares and, if necessary, resource limits to favor critical applications
and/or restrain less important work to match the business goals.

3.2.2 Start/Stop/Update WLM - wlmcntrl
WLM is not enabled at system installation and must be activated by the
system administrator. This may be performed from the command line with the
wlmcntrl command or from the administration tools, SMIT or WSM. Either
way, the wlmcntrl command does some very important processing of the
WLM property files before passing the configuration information to the
operating system. In particular:

• It converts all the user and group names into numerical user IDs and
group IDs.

• It expands the wild cards (if applicable) in the users, groups, or application
pathnames in the rules files and accesses all the target application files to
transform the pathnames into information usable by the kernel, such as
device identifiers and inode numbers.

The wlmcntrl command will issue an error message and will not start WLM if it
cannot translate a user or group name in a rule. If one or more of the
application file names cannot be accessed, the wlmcntrl command will issue
warning messages identifying the files causing a problem, but it will still start
WLM. The problem files’ names will just be ignored. Even though this
condition is not fatal, the system administrator should try to understand why
some of the application files cannot be accessed and take corrective actions.
The problem could be due to a file system that was not mounted or an NFS
server being down, for example. If none of the application files listed in an
assignment rule can be accessed, the entire rule is ignored.

The following describes the functionality of each of the aforementioned WLM
operating methods.

Command line
From the command line, WLM can be started, updated, stopped, and queried
by running the wlmcntrl command with the appropriate option.

The syntax for this command can take two forms:
Chapter 3. AIX Workload Manager administration 41

wlmcntrl [[-a | -p] [-g] [-d Config_dir]] [-o | -q]

or

wlmcntrl -u [-S Superclass | -d Config_dir]

The options of the wlmcntrl command are:

-a To start WLM in active mode or to switch from passive to
active mode. This is the default when no option other
than -d is specified.

-p To start WLM in passive mode or to switch from active to
passive mode.

-d Config_dir To consider /etc/wlm/Config_dir as the directory to use
for the classes, resource limits, resource shares, rules
files and superclasses directories.

-g To disable the enforcement of resource set bindings at
WLM startup.

-o To stop WLM.
-u To send an update request to change the attributes of

the running classes or to change the current
configuration in use. Can be used alone or in
conjunction with -S or -d options.

-S Superclass To specify the running superclass whose attributes are
to be updated. Can only be used in conjunction with the
-u

option.
-q To query WLM state. Returns 0 if WLM is running in

active mode, 1 if WLM is not started, or 2 if WLM is
running in passive mode. A message indicating the
current state of WLM is the output.

A system administrator has the option of modifying the current configuration
files and making the changes active without stopping WLM by using:

wlmcntrl -u

Any attributes of classes in the current configuration can be changed and are
then used to reclassify the processes to which they apply.

Administrators also have the option of creating a new configuration with
different classes, shares, limits, and/or tier numbers and making this new
configuration active without stopping WLM by using:

wlmcntrl -u -d <new_config>
42 AIX 5L Workload Manager (WLM)

This second option is interesting since it allows administrators to create
different configurations, such as a day_config and a night_config, and flip
from one to the other at given times using the AIX cron facility.

Starting WLM by a direct invocation of the wlmcntrl command, however, only
causes WLM to be initialized at that moment, not on every system boot. To
configure WLM to start automatically at system boot, manually edit
/etc/inittab. Make sure the WLM entry is placed directly after the mounting of
filesystems so that the maximum number of processes are classified.

The line to add to /etc/inittab is:

wlm:2:once:/usr/sbin/wlmcntrl > /dev/console 2>&1 #Start WLM

SMIT
WLM can be started, stopped, updated or queried by accessing the SMIT
Start/Stop/Update WLM screen, shown in Figure 7, or by using the following
fastpath:

smitty wlmmanage

Figure 7. smitty wlmmanage

Under Start Workload Management, you will be able to specify the
Management Mode (active or passive) if you want WLM to enforce resource

Always perform tests in non-production environments.

Note
Chapter 3. AIX Workload Manager administration 43

set bindings and if WLM is supposed to start now, at the next boot, or both
ways.

Under Update Workload Management, you will be asked to specify a
superclass name that you can leave blank if you wish to do a general update)
not bound to a specific superclass only. You cannot use the SMIT interface to
change the currently-running configuration.

Under Stop Workload Management, you are able to stop WLM either now, at
the next boot, or both ways.

Show WLM Status will give you information about WLM’s mode of operation
(active, passive, or inactive), as well as whether WLM was started with
resource set bindings enforced. It will also display the currently-configured
superclasses. Figure 8 shows the WLM status screen in SMIT.

Figure 8. Show WLM status screen in SMIT

WSM
WLM can be controlled from inside the Overview and Tasks screen of WSM
shown in Figure 9 on page 45.
44 AIX 5L Workload Manager (WLM)

Figure 9. Overview and Tasks screen in WSM

The WLM status and currently-running configuration are shown as we enter
the screen. In Figure 9, we can observe that WLM status is Started and
Active, and the current configuration is Config. From this screen:

• WLM can be started in active or passive mode, now, at system boot, or
both with or without resource set bindings (specifying the chosen
configuration) by clicking on Start Workload Manager:. Figure 10 on page
46 shows the Start Workload Manager screen in WSM.
Chapter 3. AIX Workload Manager administration 45

Figure 10. Start Workload Manager screen in WSM

• WLM can be stopped by clicking Stop Workload Manager (confirmation is
requested): Figure 11 shows the Stop Workload Manager screen in WSM.

Figure 11. Stop Workload Manager screen in WSM

• A new class for this configuration can be created by clicking Create a new
class in the default configuration (the class management subject is
discussed later).

• The currently running configuration can be modified by clicking Change
Configuration:. The Change Configuration screen appears as shown in
Figure 12 on page 47.
46 AIX 5L Workload Manager (WLM)

Figure 12. Change Configuration screen in WSM

Alternatively, inside the Configurations/Classes screen, some of the icons
displayed at the top of the WSM window can be used for WLM management:

As a third option, WLM can be managed in the Configurations/Classes screen
by right clicking in a selected configuration and choosing any of the
management options, shown in Figure 13 on page 48. In this section, only the
options related to WLM management are mentioned. All others are described
in later sections.

Start Workload Manager (see Figure 10 on page 46)

Stop Workload Manager (see Figure 11 on page 46)
Chapter 3. AIX Workload Manager administration 47

Figure 13. Configuration options in WSM

The WLM management options in the configuration options’ screen are:

• Start Workload Manager

• Stop Workload Manager

3.3 WLM configuration

This section discusses some of the steps a system administrator needs to
take to configure WLM on a system. First, it points out the method to follow to
configure WLM in a manner that is easy to maintain and update. Afterwards, it
shows how the configuration can be done in practice, using any of the three
methods provided to configure WLM: Command line, SMIT, and WSM.

3.3.1 Steps for a WLM configuration
In order to successfully configure WLM on a system, it is recommended that
the system administrator follow a set of steps described in the following
sections.
48 AIX 5L Workload Manager (WLM)

Step 1 - Design your classification
The first step is to define your classes (superclasses first). In order to define
which classes you need, you must know your users and their computing
needs, the applications on your system and their resource needs and the
requirements of your business (that is, which tasks are critical and which can
be given a lower priority). This depends a lot on what you'll be using WLM for.
If this is a case of server consolidation, you probably already know the
applications and the users and their resource requirements, and you may be
able to skip or shorten some of the steps.

WLM is very flexible, and allows you to classify processes by user/group,
application (besides type and application tag), or any possible combination.
Since WLM regulates the resource utilization among the classes, you should
group in the same classes applications and/or users with the same resource
utilization patterns. For instance, you generally want to separate the
interactive jobs that typically consume very little CPU time but require quick
response time when activated from batch type jobs that, typically, are very
CPU- and memory-intensive. It is the same in a database environment where
you probably need to separate the OLTP type traffic from the heavy queries of
data mining, for example.

WLM cannot help much in this initial design phase. You will probably have to
go through a few iterations to refine your classification and optimize your
class definitions. At the end of this step, you should be able to set up your
class definitions and the corresponding assignment rules.

Step 2 - Create the superclasses and assignment rules
This step is done using the WLM administration interfaces, WSM, SMIT, or
command line interface. In the next sections, the process of configuring WLM
using these tools will be covered. The first few times, it is probably a good
idea to use WSM or SMIT. They will take you through the steps of creating
your first WLM configuration including defining the superclasses and setting
their attributes. For the first pass, you can set up only some of the attributes
and leave the others at their default value. Same thing for the resource shares
and limits. All these characteristics of the classes can be dynamically
modified later on. The goal is to have a basic set of superclasses and the
associated assignment rules defined. When that is done, you can start WLM
in passive mode, check your classification, and start looking at the resource
utilization patterns of your applications.

Step 3 - Use WLM to refine your class definitions
When Step 2 above is complete, you can check your configuration using the
wlmcheck command or the corresponding SMIT or WSM menus and start WLM
in passive mode on the newly-defined configuration. This means that WLM
Chapter 3. AIX Workload Manager administration 49

will classify all the existing processes (and all processes created from then
on) and start getting statistics on the CPU, memory, and disk I/O utilization of
the various classes but will not try to regulate this resource usage. This is,
basically, what needs to be accomplished at that point: check that the various
processes are classified in the right class as expected by the system
administrator (using the -o class option of the ps command). If some of the
processes are not classified as you expect, you can modify your assignment
rules and/or set the inheritance bit for some of the classes (if you want the
new processes to remain in the same class as their parent) and update WLM.
You can repeat the process until you are satisfied with this first level of
classification (superclasses).

Running WLM in passive mode and refreshing WLM (always in passive
mode) is a very low-risk, low-overhead operation and can be done safely on a
production system without disturbing normal system operation.

Step 4 - Gather resource utilization data
For this purpose, WLM should be run in passive mode (using the class
definitions resulting from Step 3) and gather statistics using the wlmstat

command. This command can be started to display the per class resource
utilization (as a percentage of the total resource available for superclasses)
repeatedly and at regular time intervals. You can thus monitor your system for
extended periods of time to look at the resource utilization of your main
applications over time.

With this data and your business goals defined in Step 1 (which applications
and/or system users are critical for your business and which are somewhat
less important), you can start deciding (or refining) which tier number will be
given to every superclass and what share of each resource should be given to
the various classes.

Step 5 - Turn WLM on
You are now ready to start WLM in active mode and monitor the system again
with the wlmstat command to check if the regulation done by WLM is in line
with your goals and if applications are not unduly deprived of resources while
others get more than they should. If this is the case, adjust the shares and
refresh WLM.

For some specific cases, you may have to use minimum and/or maximum
limits. If possible, try to adjust the shares (and potentially tier numbers) to get
closer to your resource allocation goals first and reserve limits for cases that
cannot be solved with shares only. Use minimum limits for applications that
typically have low resource usage but need a quick response time when
activated by an external event. One of the problems faced by interactive jobs
50 AIX 5L Workload Manager (WLM)

in situations where memory becomes tight is that their pages get stolen
during the periods of inactivity (waiting for user input, for instance). A memory
minimum limit can be used to protect some of the pages of interactive jobs
(up to the minimum limit) if the class is in tier 0. Use maximum limits to
contain some resource-hungry, low-priority jobs. Again, unless you want to
partition your system resources for other reasons, a hard maximum will make
sense mostly for a non renewable resource, such as memory, because of the
time it would take to write data out to the paging space if a higher priority
class would suddenly need pages that this other class would have used. For
CPU, you can use tiers or soft maximum to make sure that if a higher priority
class needs the CPU, it gets it right away. Again, monitor and adjust the
shares, limits, and tier numbers until you are satisfied with the system's
behavior.

Step 6 - Fine tune your configurations
In this step, you can decide whether you need to use subclasses and, if you
do, whether you want to delegate the subclasses administration for some or
all of the superclasses. When creating and adjusting the parameters of
subclasses, you can refresh WLM only for the subclasses of a given
superclass without affecting users and applications in the other superclasses.
The administrator of each superclass can repeat the same process described
above (Steps 1 through 5) for the subclasses of the superclass. The only
difference is that it is not possible to run WLM in passive mode at the
subclass level only. The subclass configuration and tuning might have to be
done with WLM in active mode. In this case, one way of not impacting users
and applications in the superclass is to start with the tier number, the shares
and limits for the subclasses at their default value ((-) for shares, 0 percent for
min, and 100 percent for soft and hard max) so that WLM will not regulate the
resource allocation between the subclasses. The administrator can then
monitor and set up the subclasses shares, limits, and tier number as
explained in the steps above.

Step 7 - Create other configurations as needed
When you are done with your initial configuration, you can repeat the process
to define other configurations with different parameters for nights and
weekends, for instance, according to the needs of the business. When doing
so, you can, probably, take shortcuts for some of the steps since you will not
be creating your configurations from scratch, but, rather, copying and
modifying existing configurations.

3.3.2 Working with WLM configurations
WLM allows the setup of various configurations. They can be used
interchangeably, for instance, manually or by configuring cron to change WLM
Chapter 3. AIX Workload Manager administration 51

into a particular configuration at a specific point of time (night time or
weekends, for example).

Let us consider an example: A system runs an interactive job that is heavily
used during daytime, a batch calculation job that must not interfere with the
previous one, and a backup that must not interrupt or steal resources from
any of the jobs mentioned previously. Nevertheless, all these jobs are to
perform their tasks eventually. So, the system administrator might want to
make sure the calculation job runs every night from 0:00h to 3:00h a.m. and
the backup is done from 4:00 to 6:00 a.m. One way to set up all this is:

• Create a configuration, daytime, with classes for all these jobs: interactive
in tier 0, batch in tier 1 and backup in tier 2.

• Create a second configuration, nightime1, with batch in tier 0, interactive
in tier 1, and backup in tier 2.

• Create a third configuration nightime2 with backup in tier 0, batch in tier 1
and interactive in tier 2.

• Setup cron to change WLM from daytime to nightime1 at 0:00h and from
nightime1 to nightime2 at 4:00h a.m.

This is only one of the ways this setup can be implemented. The idea here is
to illustrate the use of WLM’s various configurations capability.

Command line
Using command line, the way to create configurations in WLM is simply to
create new directories under /etc/wlm, to copy the contents from one
configuration already made to the new one (if this is the first configuration,
use /etc/wlm/templates) and edit the files manually. The name of the
configurations will be the subdirectory names under /etc/wlm.

So, if in our example, we already had the configuration, daytime, which could
have been created by setting up the subdirectory, /etc/wlm/daytime, and
creating the classes in it, we could now copy this configuration into
newly-created /etc/wlm/nightime1 and /etc/wlm/nightime2 subdirectories and
edit the files manually to alter the tier attribute of the classes. The mkclass

command could be used to set up new classes (see also Section 3.3.3.2,
“Adding a class - mkclass” on page 58), and the lsclass command could be
used to list the contents of our new configurations (see also Section 3.3.3.4,
“Listing the classes - lsclass” on page 71).
52 AIX 5L Workload Manager (WLM)

SMIT
To set up our example in SMIT, we could access the Work on alternate
configurations screen, shown in Figure 14 on page 53, or we could use the
following fastpath:

smitty wlmconfig

Figure 14. smitty wlmconfig

From this screen, the system administrator can:

• See all the existing configurations (Show all configurations).

• Copy an existing configuration into a new one (Copy a configuration).

• Create a brand new configuration (Create a configuration).

• Select a configuration to work with (Select a configuration). See also
Figure 15 on page 54. The output of this option is the listing of the
superclasses and subclasses of the selected configuration. All changes
made from this option on (create, change, delete classes, or rules) will
apply to the selected configuration, leaving the currently-running
configuration unchanged. The scope is returned to the currently-running
configuration if SMIT is exited and restarted.

• Enter a description for the configuration (Enter configuration description).

• Remove a configuration (Remove a Configuration).
Chapter 3. AIX Workload Manager administration 53

Figure 15. Select a configuration screen in SMIT

WSM
Configurations can be managed in WSM from the Configurations/Classes
screen. As we enter this screen and all existing configurations are listed, we
can right-click on the configuration to be updated, and all the configuration
options will be listed in a pop-up window (see Figure 13 on page 48). Some of
these options, namely, the ones related to WLM management, are described
in Section 3.2.2, “Start/Stop/Update WLM - wlmcntrl” on page 41. Only the
options regarding WLM configurations are described in this section.

• The Properties option allows the system administrator to visualize general
characteristics of the configuration (name, description, and whether it is
the currently-running configuration or not) and change the description.
Alternatively, the properties icon in the upper part of the WSM window can
be clicked:

• The Copy option allows the system administrator to create a new
configuration out of an already-existing one. Alternatively, the copy icon at
the top of the WSM window can be clicked:

Properties

Copy
54 AIX 5L Workload Manager (WLM)

• Show Configuration Details shows general characteristics of the
configuration, such as its classes and theirs shares and limits. In Figure
16, you can see a possible output for the example in Table 2 on page 21.

Figure 16. Show Configuration Details screen in WSM

• New Configuration allows the system administrator to setup a new
configuration to work with.

• Refresh Current Configuration updates the configuration with the changes
made. This screen is shown in Figure 17 on page 56.
Chapter 3. AIX Workload Manager administration 55

Figure 17. Refresh Current Configuration screen in WSM

Alternatively, one of the icons in the top of the WSM’s window can be used
to perform this task:

To remove a configuration, click on the configuration to be deleted and then
press the delete icon in the top of the window:

Refresh Current Configuration

Delete
56 AIX 5L Workload Manager (WLM)

3.3.3 Working with classes
After defining the configuration name, superclasses must be added to it, and,
then, subclasses can be configured. This section will show how the system
administrator can deal with both superclasses and subclasses.

3.3.3.1 Working with sets of subclasses
This method of working with sets of subclasses is only applicable to SMIT.
WSM uses a different approach to work with classes. It consists of changing
the context we are currently working in into the superclass environment. This
is the best way for a superclass administrator to work because he or she does
not have any privileges to work in any other environment besides the scope of
his or her own superclass. Once inside the context of a superclass A, every
class that is listed, created, changed, or removed (even specifying only its
short name) will always be treated as a subclass of superclass A.

The context to a specified superclass in SMIT can be changed through the
Work on a set of Subclasses screen. After selecting the superclass to be
worked on, the list of its subclasses is displayed. From this point on, any work
in other SMIT screens in this same SMIT session is done inside this
superclass environment.

To know in which context the current work is, the Show current focus
(Configuration, Class Set) screen can be accessed in the SMIT session
where the context was changed. The configuration shown in the output of this
command is, by default, the currently-running one. However, you can work on
other configurations (leaving the currently-running one untouched) if you
select a configuration to work with inside the Work on alternate configurations
screen (see Section 3.3.2, “Working with WLM configurations” on page 51, for
further details on how to work with alternate configurations).

So, if the context is changed into the devlt superclass in configuration Config,
from the example in Table 2 on page 21, the focus is the output shown in
Figure 18 on page 58. Note that, since the configuration focus has not been
changed, the working configuration is presented as being the
currently-running one.

After exiting SMIT and reentering it, the context is drawn back to the root of
the currently-running WLM configuration.

Note
Chapter 3. AIX Workload Manager administration 57

Figure 18. Show current focus screen in SMIT

If the configuration focus had been changed into, for instance, a configuration
named Config_2, and the class focus had been changed into the set of
subclasses of superclass OLTP, then the:

• Configuration focus in Figure 18 was Config_2
• Class set was Subclasses of OLTP
• Currently-running configuration was Config

3.3.3.2 Adding a class - mkclass
To add a class (either superclass or subclass), any of the three methods
mentioned earlier can be used:

Command line
The command to create classes in WLM is mkclass. The syntax of this
command is as follows:

mkclass [-a Attribute=Value ...] [-c | -m | -b KeyWord=Value] [-d
Config_Dir] [-S SuperClass] Name

The mkclass command creates a superclass or a subclass identified by the
Name parameter. The class must not already exist. The name parameter can
contain only uppercase and lowercase letters, numbers, and underscores (_).
The name is in the format, supername or subname (with the -S supername
option) or supername.subname. Supername and subname are each limited to
16 characters in length. The names, Default, System, and Shared, are
reserved. They refer to predefined classes. Any Attribute=Value or
58 AIX 5L Workload Manager (WLM)

KeyWord=Value argument will initialize the specified attribute or resource
limit.

The options for this command are:

-a Attribute=Value To set up an attribute value. The valid names for
attributes are tier, inheritance, authuser, authgroup, rset,
adminuser, and admingroup.

-b KeyWord=Value Changes a limit or share value for disk I/O throughput.
Possible KeyWords are min, softmax, hardmax, or
shares.

-c KeyWord=Value Changes a limit or share value for a CPU. Possible
KeyWords are min, softmax, hardmax, or shares.

-d Config_dir To use /etc/wlm/Config_dir as an alternate directory for
the properties files. When this option is not used,
mkclass uses the configuration files in the directory
pointed to by /etc/wlm/current.

-m KeyWord=Value Changes a limit or share value for memory. Possible
KeyWords are min, softmax, hardmax, or shares.

-S Superclass To specify the name of the superclass when creating a
subclass. There are two ways of creating the subclass,
sub, of the superclass, Super:

• Specify the full name of the subclass as Super.Sub for
Name, and do not use -S.

• Use the -S option to give the superclass name, and
use the short name for the subclass: mkclass
<options> -S Super Sub

So, to set up the devlt superclass and the subclass, hackers, from the
example in Table 2 on page 21, the following commands could be run:

mkclass -a inheritance=yes -a tier=0 -a adminuser=bob devlt

mkclass -a inheritance=no -a tier=0 -S devlt hackers

or

mkclass -a inheritance=no -a tier=0 devlt.hackers

SMIT
To create a class through SMIT, simply access the Add a class screen, or use
the following fastpath:
Chapter 3. AIX Workload Manager administration 59

smitty wlmaddclass

Figure 19. smitty wlmaddclass

In this screen, the system administrator can create a superclass by entering
its name or a subclass by entering its full name (superclass.subclass). The
superclass must already exist for this to be possible. Every other attribute
works exactly the same for both superclasses and subclasses.

If the screen, Work on a set of subclasses, has been accessed to change into
a superclass’ context (see Section 3.3.3.1, “Working with sets of subclasses”
on page 57, for further information about how to change the focus), the Add a
class screen will operate on the superclass’ environment of the chosen
superclass. While operating under a superclass’ scope, the short name can
be specified when creating a subclass for that superclass.

WSM
To add a class in WSM, several paths can be taken.

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note
60 AIX 5L Workload Manager (WLM)

The first way is to create a new class in the currently running configuration
inside the Overview and Tasks screen (see Figure 9 on page 45). In this
screen, click on the Create a new class in the default configuration link. This
will guide you through the New Class Wizard (see Figure 20), which sets up a
new class and its attributes (tier, inheritance, adminuser, admingroup,
resource set, authuser, and authgroup). The class can be a superclass with
the name, supername, or a subclass of an already-existing superclass with
the name, supername.subname:

Figure 20. New Class Wizard in WSM

Another way to create a class is to right-click on the configuration to be
altered (see Figure 13 on page 48) inside the Configurations/Classes screen,
and choose the New Class option.
Chapter 3. AIX Workload Manager administration 61

Figure 21. Create a class in Configurations/Classes screen in WSM

From here, you can choose to use the wizard mentioned earlier (see Figure
20 on page 61) or the Advanced configuration tool, which, in addition, allows
other class attributes to set up shares and limits for the class being created.
The class can be a superclass with the name, supername, or a subclass of an
already-existing superclass with the name, supername.subname:
62 AIX 5L Workload Manager (WLM)

Figure 22. New Class advanced in WSM - Setting up limits and shares

The third way to create a class is to click the expand icon, found at the right
hand side of the configuration selected, to expand the view to all the
configured classes in that configuration.

All the superclasses with subclasses will also be shown with an expand icon
that can be selected to extend even further down the view into the subclass
level. From this view, by right clicking the name of a class, the class options
screen is displayed as shown in Figure 23 on page 64.

Expand
Chapter 3. AIX Workload Manager administration 63

Figure 23. Class options screen in WSM

The bottom part of the class options screen is exactly equal to the bottom
part of the configuration options screen; so, what has been (and will be) said
about the latter also applies to the former. In this section, only the options of
this screen that apply to creating classes are mentioned. All others are
described in later sections.

From this screen, the system administrator can create a new class as follows:

• Copy the selected class attributes into a new class, making any necessary
changes (Copy). Alternatively, the copy icon at the top of the WSM window
can be pressed.

• Create a subclass for the selected superclass (New Subclass) using either
the Wizard or the Advanced tool for that purpose as shown in Figure 24 on
page 65.

Copy
64 AIX 5L Workload Manager (WLM)

Figure 24. New Subclass Advanced in WSM

• Copy the selected class into another configuration (Add to Another
Configuration as shown in Figure 25):

Figure 25. Add to another configuration screen in WSM
Chapter 3. AIX Workload Manager administration 65

3.3.3.3 Updating a class - chclass
Updating a class can mean either changing or setting new values for the
attributes that can be configured by the time the class is created or setting up
shares or limits for it. To do this, the three methods mentioned earlier can be
used:

Command line
The command to update a class is chclass. The syntax of this command is:

chclass -a Attribute=Value {[-a Attribute=Value]...} [-c|-m |-b
Keyword=Value] [-d Config_dir] [-S Superclass] Name

The chclass command changes attributes for the class identified by the Name
parameter. The class must already exist. To change a class attribute (tier,
inheritance, adminuser, admingroup, rset, authuser, and authgroup), specify
the attribute name and the new value with the -a Attribute=Value option. To
change/set a limit or shares value, use option -c for cpu, -m for memory, and
-b for disk I/O (stands for block I/O), with the Keyword value in min, softmax,
hardmax, or shares.

The options for this command are:

-a Attribute=Value To change a class attribute (attribute in tier, inheritance,
adminuser, admingroup, rset, authuser, and authgroup).

-c Keyword=Value To change CPU resource limits or shares (keyword in
min, softmax, hardmax, or shares).

-m Keyword=Value To change memory resource limits or shares (keywordin
min, softmax, hardmax, or shares).

-b Keyword=Value To change Disk I/O resource limits or shares (keywordin
min, softmax, hardmax, or shares).

-d Config_dir To use /etc/wlm/Config_dir as an alternate directory for
the properties files. If this option is not present, the
current configuration files in the directory pointed to by
/etc/wlm/current are used.

-S Superclass To specify the name of the superclass when changing
the attributes of a subclass. There are two ways of
specifying that the change is to be applied to the
subclass, Sub, of the superclass, Super:

• Specify the full name of the subclass as Super.Sub
and not use -S.
66 AIX 5L Workload Manager (WLM)

• Use the -S option to give the superclass name and use
the short name for the subclass:
chclass <options> -S Super Sub

So, to change the devlt class from the example in Table 2 on page 21, we
could run the following command to give it 20 CPU shares, change the
administration user to bob, and set 10 percent as the memory minimum limit:

chclass -a adminuser=bob -c shares=20 -m min=10 devlt

SMIT
In SMIT, the characteristics of a class can be changed in the Change/Show
Characteristics of a class screen, shown in Figure 26, or with the following
fastpath:

smitty wlmchclass

Figure 26. smitty wlmchclass

In the General characteristics of a class screen, shown in Figure 27 on page
68, the class attributes (tier, inheritance, adminuser, admingroup, rset,
authuser, and authgroup) can be changed or set.
Chapter 3. AIX Workload Manager administration 67

Figure 27. General characteristics of a class screen in SMIT

Any of the resource relative attributes (shares and minimum and maximum
limits) can be changed under the option referring to the required resource
(CPU, memory, or disk I/O).

This way, to change CPU’s shares to 20 in devlt class from the example in
Table 2 on page 21, we need to access the CPU resource management
screen, shown in Figure 28 on page 69.
68 AIX 5L Workload Manager (WLM)

Figure 28. CPU resource management screen in SMIT

To change the memory minimum limit to 10 percent, we need to access the
Memory resource management screen shown in Figure 29.

Figure 29. Memory resource management screen in SMIT

If the Work on a set of subclasses screen has been accessed to change into
a superclass’ context (see Section 3.3.3.1, “Working with sets of subclasses”
on page 57, for further information on how to change the focus), the
Change/Show Characteristics of a class screen will operate on the
Chapter 3. AIX Workload Manager administration 69

subclasses of the chosen superclass. While operating under a superclass’
scope, the short name can be specified when changing a subclass of that
superclass.

WSM
In WSM, the classes attributes can be changed in the Configurations/Classes
screen, in the classes view (or the subclasses view for a specific superclass)
by right-clicking the name of the class to update and selecting Properties.
This can also be done by simply double-clicking the name of the class.

An example of changes that can be made to shares and limits in this screen is
shown in Figure 30.

Figure 30. Changing class properties in WSM

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note
70 AIX 5L Workload Manager (WLM)

Alternatively, the properties icon at the top of the WSM window can be clicked
for the same purpose:

3.3.3.4 Listing the classes - lsclass
To list the classes configured in our system, the three methods mentioned
earlier can be used:

Command line
The command to list classes is lsclass. The syntax of this command is:

lsclass [-C |-D |-f] [-r] [-d Config_dir] [-S Superclass] [Class]

With no arguments, lsclass simply lists all superclasses in the current
configuration. This command is accessible to all users in the system.

The options for this command are:

-C To display the class attributes, shares, and limits in
colon-separated records:

-D To display the default values for the class attributes, shares,
and limits in colon-separated records:

-f To display the output in stanzas, with each stanza identified
by a class name. Each Attribute=Value pair is listed on a
separate line:

Properties

lsclass -C devlt
#name:description:tier:inheritance:authuser:authgroup:adminuser:
admingroup:rset:CPUshares:CPUmin:CPUsoftmax:CPUhardmax:
memoryshares:memorymin:memorysoftmax:memoryhardmax:
DiskIOshares:DiskIOmin:DiskIOsoftmax:DiskIOhardmax
devlt::0:no:::bob:::20:0:100:100:-:10:100:100:-:0:100:100

lsclass -D devlt
#name:description:tier:inheritance:authuser:authgroup:adminuser:
admingroup:rset:CPUshares:CPUmin:CPUsoftmax:CPUhardmax:memoryshares:
memorymin:memorysoftmax:memoryhardmax:DiskIOshares:DiskIOmin:
DiskIOsoftmax:DizkIOhardmax
::0:no::::::-:0:100:100:-:0:100:100:-:0:100:100
Chapter 3. AIX Workload Manager administration 71

-r To recursively display the superclasses with all their subclasses. When
specifying -r:

- If no class name is given, lsclass will show all the superclasses with all
their subclasses.

- If the name of a superclass is given, lsclass displays the superclass
with all its subclasses.

- If the name of a subclass is given, -r is ineffective (displays only the
subclass).

-d Config_dir To use /etc/wlm/Config_dir as alternate directory for the
definition files. If this option is not present, the current
configuration files in the directory pointed to by
/etc/wlm/current are used.

-S Superclass To restrict the scope of the command to the subclasses of
the specified superclass. When -S is used, only subclasses
are shown.

SMIT
In SMIT, the classes can be listed through the List all classes screen or the
following fastpath:

smitty wlmlsclass

When under the scope of the general configuration, the screen will show all
superclasses configured as shown in Figure 31 on page 73.

Class:
attribute1=value
attribute2=value
attribute3=value
72 AIX 5L Workload Manager (WLM)

Figure 31. smitty wlmlsclass

If the Work on a set of subclasses screen has been accessed to change into
a superclass’ context (see Section 3.3.3.1, “Working with sets of subclasses”
on page 57, for further information on how to change the focus), the List all
classes screen will print out the subclasses of the chosen superclass.

WSM
There are two views in WSM where the classes and their attributes for the
chosen configuration can be visualized:

• In the Configurations/Classes screen, select the configuration option,
Show Configuration Details (see also Figure 16 on page 55).

• In the Configurations/Classes screen, two icons can be seen at the top of
the WSM window. They are Tree and Tree-Details:

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note

Tree

Tree-Details
Chapter 3. AIX Workload Manager administration 73

The first icon sets up a view that only shows the tree of configurations,
superclasses, and subclasses. The second one creates a view in which
some of the class attributes can be seen as shown in Figure 32.

Figure 32. Tree-Details view in WSM

3.3.3.5 Removing a class - rmclass
To remove a class configured in our system, the three methods mentioned
earlier can be used:

Command line
The command to remove classes is rmclass. The syntax of this command is:

rmclass [-d Config_dir] [-S Superclass] Name

The rmclass command removes the superclass or the subclass identified by
the Name parameter from the class definition file, the class limits file, and the
class shares file. The class must already exist. The predefined Default,
System, Shared, Unmanaged, and Unclassified classes cannot be removed.
In addition, when removing a superclass, Super, the directory,
/etc/wlm/Config_dir/Super, and all the WLM property files it contains (if they
74 AIX 5L Workload Manager (WLM)

exist) are removed. Removing a superclass will fail if any user created
subclass still exists (subclass other than Default and Shared).

Only root can remove a superclass. Only authorized users whose user ID or
group ID matches the user name or group name specified in the attributes,
adminuser and admingroup, of a superclass can remove a subclass of this
superclass.

The options for this command are:

-d Config_dir To use /etc/wlm/Config_dir as alternate directory for the
properties files. If this flag is not used, the configuration
files in the directory pointed to by /etc/wlm/current are
used.

-S Superclass To specify the name of the superclass when removing a
subclass. There are two ways of specifying the subclass
Sub of superclass Super:

•Specify the full name of the subclass as Super.Sub and
not use -S.

•Use the -Soption to give the superclass name and use the
short name for the subclass:
rmclass <options> -S Super Sub

SMIT
In SMIT, a class can be removed by accessing the Remove a class screen or
using the following fastpath

smitty wlmrmclass

A superclass is removed by specifying its name, and a subclass is removed
by specifying its full name.

If the Work on a set of subclasses screen has been accessed to change into
a superclass’ context (see Section 3.3.3.1 on page 57 for further information
about changing the configuration’s focus), the Remove a class screen will
operate on the subclasses of the chosen superclass. While operating under a
superclass’ scope, the short name can be specified when removing a
subclass of that superclass.

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note
Chapter 3. AIX Workload Manager administration 75

WSM
To remove a class in WSM, the system administrator can highlight the class
to be deleted and press the Delete key, right-click on the class name, and
chose the Delete option or click on the delete icon at the top of the WSM’
window:

3.3.4 Working with rules
After configuring the needed classes, the process assignment criteria must
be set up to have the applications classified according to the configuration
design. This is done by creating the class assignment rules.

3.3.4.1 Adding a rule
To add a rule, we can directly edit the rules files; use SMIT or WSM.

Editing the rules files
As shown in Section 2.5.3, “Class assignment rules” on page 19, an
assignment rule is a set of attributes with which the characteristics of a given
process can be matched (or not). The rules file has the same format for both
superclasses and subclasses, the only difference being the non-existence of
a System class rule in the subclasses’ rules files due to the non-existence of
System subclasses.

The rules file for the example shown in Table 2 on page 21 would be:

* IBM_PROLOG_BEGIN_TAG

* This is an automatically generated prolog.

* bos43N src/bos/etc/wlm/rules 1.1

* Licensed Materials - Property of IBM

* (C) COPYRIGHT International Business Machines Corp. 1999

* All Rights Reserved

* US Government Users Restricted Rights - Use, duplication or

* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

* IBM_PROLOG_END_TAG

* class resvd user group application type tag

System - root - - - -

db1 - - - /usr/oracle/bin/db* - _db1

db2 - - - /usr/oracle/bin/db* - _db2

devlt - - dev - 32bit -

VPs - bob,!ted - - - -

acctg - - acct* - - -

Delete
76 AIX 5L Workload Manager (WLM)

Default - - - - - -

The resvd attribute (reserved for future use) must always exist and must
always be set to hyphen (-).

Any hyphens (-) at the end of a rule can be omitted, as long as no subsequent
attribute is set. For instance, the rule for the acctg superclass could be

acctg - - acct*

but the rule for the db1 superclass could not be

db1 - - - /usr/oracle/bin/db* _db1

because _db1 would be interpreted by WLM as the type attribute, returning,
thus, an invalid type attribute error.

For the type attribute position, one or more values could be placed, either
ORed with commas (,), or ANDed with plus signs (+). For instance, the rule
for the devlt class in the previous example could be:

devlt - - dev - 32bit,plock+fixed -

specifying that the processes classified under this class needed to be either
32 bit processes or have called plock and be fixed priority at the same time.

SMIT
In SMIT, a rule can be created by accessing the Class assignment rules and
Create a new rule screens or by using the following fastpath:

smitty crewlmrs

If the Work on a set of subclasses screen has been accessed to change into
a superclass’ context (see Section 3.3.3.1 on page 57 for more information
about changing the configuration’s focus), the Create a new rule screen will
work under the scope of the chosen superclass. It will, therefore, create the
rules for the superclass’ subclasses. While operating under a superclass’
scope, the short name can be specified when creating rules for a subclass of
that superclass.

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note
Chapter 3. AIX Workload Manager administration 77

In Figure 33, we can see an example of the creation of a rule for the hogs
subclass of the devlt superclass (from the example in Table 2 on page 21),
after changing into devlt superclass’ scope:

Figure 33. Create a new Rule screen in SMIT

The type for the hogs subclass in Figure 33 could be configured as
32bit,plock+fixed to specify that a process classified under this subclass had
to be either 32 bit or have called plock and have fixed priority at the same
time. If the F4 function key is pressed on the type attribute and more than one
value chosen, they get comma-separated (or ORed). If the AND option is
required, the plus sign must be entered manually in this attribute.

WSM
Working with rules in WSM (at general configuration or superclass levels) can
be done in the Configurations/Classes screen by right clicking on the
configuration to be changed and choosing the Class Assignment Rules
option. The Class Assignment Rules screen is shown in Figure 34 on page
79.
78 AIX 5L Workload Manager (WLM)

Figure 34. Class Assignment Rules screen in WSM

To add a rule, click on Insert Rule. The attributes of a rule can now be set
(user, group, application, process type, and tag) as shown in Figure 35 on
page 80.
Chapter 3. AIX Workload Manager administration 79

Figure 35. Adding a rule in WSM - setting process type attribute

After a rule has been created, it can be moved up or down the rules list by
clicking on the options, Move Up or Move Down, in the Class Assignment
Rules screen.

3.3.4.2 Changing a rule
A rule can be changed by directly editing the rules file (see Section 3.3.4.1,
“Adding a rule” on page 76, for more information about editing the rules file)
or by using SMIT or WSM.

SMIT
A rule can be changed in SMIT through the Class assignment rules screen
and Change/Show Characteristics of a Rule or through the following fastpath:

smitty chgwlmrs

Figure 36 on page 81 shows the Select a Rule screen.
80 AIX 5L Workload Manager (WLM)

Figure 36. Selecting a rule in SMIT

After selecting the rule to be changed, any of its attributes can then be edited,
such as changing the group to dev in db1 superclass’ rule as shown in Figure
37 on page 81.

Figure 37. Change/Show Characteristics of a Rule screen in SMIT
Chapter 3. AIX Workload Manager administration 81

If the Work on a set of subclasses screen has been accessed to change into
a superclass’ context (see Section 3.3.3.1, “Working with sets of subclasses”
on page 57, for more information about changing the configuration’s focus),
the Change/Show Characteristics of a Rule screen will operate on the rules of
the subclasses of the chosen superclass.

If the F4 function key is pressed on the type attribute and more than one
value chosen, they get comma-separated (or ORed). If the AND option is
required, the plus sign must be manually entered in this attribute.

WSM
To change a rule in WSM, click Edit Rule in the Class Assignment Rules
screen (see Figure 34 on page 79) at either the superclass or subclass level.
A screen similar to the one in Figure 35 on page 80 will be shown allowing the
system administrator to alter the rule’s attributes.

3.3.4.3 Listing the rules
The rules currently configured can be visualized in the rules files. SMIT or
WSM tools can also be used to list them.

SMIT
The rules in SMIT can be listed by accessing the Class assignment rules
screen, followed by the List all Rules screen shown in Figure 38 on page 83.

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note
82 AIX 5L Workload Manager (WLM)

Figure 38. List all Rules screen in SMIT

If the Work on a set of subclasses screen has been accessed to change into
a superclass’ context (see Section 3.3.3.1, “Working with sets of subclasses”
on page 57, for more information about changing the configuration’s focus),
the List all Rules screen will print out the rules of the subclasses of the
chosen superclass.

WSM
Listing the rules in WSM is done by simply accessing the Class Assignment
Rules screen (see Figure 34 on page 79) either at the superclass or subclass
level. The rules are immediately listed.

3.3.4.4 Removing a rule
A rule can be removed by either deleting its line from the rules file or by using
SMIT or WSM tools.

Remember that the scope will be returned to the root of the
currently-running configuration if the SMIT session is exited and restarted.

Note
Chapter 3. AIX Workload Manager administration 83

SMIT
In SMIT, a rule can be deleted by accessing the Class assignment rules
screen and choosing Delete a Rule. See Figure 36 on page 81 for details
about selecting a rule.

WSM
In WSM, a rule can be deleted by accessing the Class Assignment Rules
screen, highlighting the rule to be removed, and clicking Delete Rule.

3.3.5 Checking the configuration - wlmcheck
The configuration is set and running. Now is probably a good time to use the
WLM checking command, wlmcheck. This command checks automatic
assignment rules and/or determines the class in which a process with a
specified set of attributes will be classified.

Command line
The syntax for the wlmcheck command is as follows:

wlmcheck [-d config_dir] [-a <process attributes>] [-q]

The following are the options for this command:

-d config Uses the WLM property files in /etc/wlm/config instead of the
values currently loaded into the kernel (active configuration).

-a attributes Used to pass a set of values for the classification attributes of
the process in order to determine which class the process will
be put into. This is a way to check that the assignment rules
are correct and classify processes as expected.

-q Suppresses the output of the status of the latest
activation/update of WLM (stands for quiet).

The wlmcheck command with no arguments returns the status of WLM and
makes some coherency checks:

• Displays the current status of WLM (running/non running, active/passive,
rsets bindings active/non active).

• Displays the status files that report the last loading errors, if any.

• Checks the coherency of the assignment rules files (syntax, existence of
the classes, validity of user and group names, application path names, and
so on).

If the -d config_dir option is not specified, the checks are performed on the
configuration that is loaded into the kernel at this time. If WLM is not active,
84 AIX 5L Workload Manager (WLM)

an error message is displayed. Specifying a configuration with -d config_dir

allows you to perform the checks on configuration files, including the ones in
/etc/wlm/current.

Used with the -a option, the wlmcheck command displays the class the
process would be assigned to according to the set of assignment rules of the
specified configuration.

The attributes are given as a string similar to the format used in the
assignment rules file (single string with several space-separated fields) and
should be enclosed in quotes. The fields are the same and appear in the
same order as in the rules file: reserved, user name, group name, application
path name, process type, application tag (see Section 3.1, “Property files” on
page 32, for more information about the rules property file).

The difference is that, unlike in the assignment rules:

• The class field is omitted (it is actually an output of the wlmcheck

command).

• Each field can have, at most, one value. Exclusions (!), comma-separated
lists, and wild cards are not allowed.

• At least one field must be specified (have a value different from a hyphen
(-)).

In addition, the first two fields are mandatory. The other fields, if not present,
will default to a hyphen (-), which means that any value in the corresponding
field of an assignment rule is a match. When one or more of the fields in the
attribute string are either not present or specified as a hyphen (-), the string is
likely to match more than one rule. In this case, the wlmcheck command will
display all the classes corresponding to all the possible matches.

Example of valid attribute strings:

wlmcheck -a "- root system /usr/bin/vi - -"

wlmcheck -a "- - staff - 32bit"

wlmcheck -a "- bob"

By default, the wlmcheck command outputs the contents of the status files for
the last activation or update of WLM.

WSM
In WSM, wlmcheck can be invoked to check on the assignment rules
coherency and to evaluate to which class a specific process would be
Chapter 3. AIX Workload Manager administration 85

assigned. This can be done in the Configurations/Classes screen by right
clicking the configuration to be checked and choosing Check Assignment for
the process classification evaluation and Check Rules for the coherency test.
The Check Assignment screen, shown in Figure 39, appears.

Figure 39. Check Assignment in WSM

3.3.6 Working with resource sets
WLM uses the concept of resource sets (or rsets) to restrict the processes in
a given class to a subset of the system's physical resources. In AIX 5L, the
physical resources managed are the memory and the processors. A valid
resource set is composed of memory and, at least, one processor.

Figure 40 on page 87 shows the SMIT panel where a resource set can be
specified for a specific class.
86 AIX 5L Workload Manager (WLM)

Figure 40. Resource Set definition to a specific class

By default, the system creates one resource set for all physical memory, one
for all CPU’s, and one separate set for each individual CPU in the system.
The lsrset command lists all resource sets defined. The following is a sample
output for the lsrset command:

lsrset -av
T Name Owner Group Mode CPU Memory Resources
r sys/sys0 root system r----- 4 511 sys/sys0
sys/node.00000 sys/mem.00000 sys/cpu.00003 sys/cpu.00002 sys/cpu.00001
sys/cpu.00000
r sys/node.00000 root system r----- 4 511 sys/sys0
sys/node.00000 sys/mem.00000 sys/cpu.00003 sys/cpu.00002 sys/cpu.00001
sys/cpu.00000
r sys/mem.00000 root system r----- 0 511 sys/mem.00000
r sys/cpu.00003 root system r----- 1 0 sys/cpu.00003
r sys/cpu.00002 root system r----- 1 0 sys/cpu.00002
r sys/cpu.00001 root system r----- 1 0 sys/cpu.00001
r sys/cpu.00000 root system r----- 1 0 sys/cpu.00000

3.3.6.1 Rset registry
As mentioned earlier, by default in AIX 5L, some resource sets are created for
memory and CPU. It is possible to create different resource sets by grouping
two or more resource sets and storing the definition in the rset registry.
Chapter 3. AIX Workload Manager administration 87

The rset registry services enable system administrators to define and name
resource sets so that they can then be used by other users or applications. In
order to alleviate the risks of name collisions, the registry supports a two-level
naming scheme. The name of a resource set is in the form,
name_space/rset_name. Both the namespace and rset_name may each be
255 characters in size, are case-sensitive, and may contain only upper and
lowercase letters, numbers, underscores, and periods (.). The namespace of
sys is reserved by the operating system and used for rset definitions that
represent the resources of the system.

The SMIT rset command has options to list, remove, show a specific resource
set used by a process, and the management tools as shown in Figure 41.

Figure 41. SMIT main panel for Resource Set Management

To create, delete, or change a resource set in the rset registry, you must
select Manage Resource Set Database in the SMIT panel. In this panel, it is
also possible to reload the rset registry definitions to make all changes
available to the system. Figure 42 on page 89 shows the SMIT panel for rset
registry management.
88 AIX 5L Workload Manager (WLM)

Figure 42. SMIT panel for rset registry management

To add a new resource set, you must specify a name space, a resource set
name, and the list of resources. It is also possible to change permissions for
the owner and group of this rset. In addition, the permissions for the owner,
groups, and others can be specified. Figure 43 on page 90 shows the SMIT
panel for this task.
Chapter 3. AIX Workload Manager administration 89

Figure 43. SMIT panel to add a new resource set

Whenever a new rset is created, deleted, or modified, a reload in the rset
database is needed to make the changes effective.

3.4 WLM monitoring

To monitor the system’s behavior under the influence of WLM, the wlmstat tool
has been provided along with some changes in already-existing commands,
such as ps and svmon. A higher interaction with Performance Toolbox was also
supplied. Due to the vast extension of the monitoring theme, it is fully covered
in Chapter 4, “WLM performance tools” on page 97.

3.5 Hints and tips

Practical use of WLM provided a collection of configuration and utilization
hints and tips that help the system administrator take better advantage of the
feature and avoid some identified problems. Some additional characteristics
of WLM will also be pointed out in this section.

3.5.1 Things to do
The following points are some hints that can help you configure and use WLM
to a considerable extent:
90 AIX 5L Workload Manager (WLM)

Before you start
Always study and anticipate the behaviors of your applications before
beginning to use WLM. Know your applications’ needs for disk, memory, and
CPU use. Otherwise, you could end up giving unnecessary CPU cycles to a
memory-bound application, instead of giving it the memory space it really
needs.

A starting point
Keep it very simple at first, then build. A good starting point for a configuration
of WLM would be to create a batch jobs class, an On-line Analytical
Processing (OLAP) class, an On-line Transaction Processing (OLTP) class, a
backup tasks class, and a Transaction Program class. Depending on the set
of applications that are to be run on the system, the OLAP class could take
DB2, UDB, or ORACLE; the OLTP class could contain SAP or Baan, and the
Transaction Program class could hold MQSeries or Encina, for example.
Classifying the processes per function gives the system administrator the
ability to more easily decide where to change the configuration and
progressively make it meet its original performance objective. This can be
done by either gradually partitioning it into additional super or subclasses or
by changing the rules or values of shares and limits. Additionally, it also helps
to better determine where the source of a problem might reside. An unclear
configuration gets too complex to manage as the number of classes or rules
goes up.

Configuration steps
When configuring WLM on a server, perform the following steps:

1. Balance the load using only shares at first. Monitor WLM and the system
for a reasonable period of time to assess application performance, and
tune these values if necessary.

2. Set minimum limits for the applications that do not appear to be given their
share of resources.

3. Prioritize workloads using tiers, if necessary, to promote a ranking among
jobs. For greater impact, increase the separation of tiers. For example, the
impact of a tier 1 and tier 7 separation will be greater than the impact of a
tier 1 and tier 4 separation.

4. Set soft or hard maximum limits only if absolutely necessary to control
poorly-behaved applications. Remember, a class at its memory maximum
limit will cause paging activity even if there are plenty of free memory
pages available.
Chapter 3. AIX Workload Manager administration 91

Tiers
Tiers are used when a high-level of separation of processes’ priorities is
needed. This happens when there is a defined priority ranking among the
applications. Configuration in tiers must be done bearing in mind that the
processes assigned to higher numbered tiers should not expect to be able to
compete for resources with the processes assigned to lower tiers. If process
A from tier 0 has a high number of shares for resources and uses them all
(running, for instance, a tight loop), process B from tier 1 might never get any
CPU time during the execution of process A. But, this is exactly what is
expected to happen sometimes; the system administrator should not allow a
backup to stall a heavily-loaded e-business application during regular work
hours, for instance. To make sure that the backup eventually happens, the
system administrator can take advantage of the ability to have several WLM
setups ready to run. He or she can configure cron to change WLM, at some
chosen point in time, into a configuration where the backup process is
assigned to tier 0, and, this way, it finally has its chance to run.

System and Default superclasses
For a given program, WLM chooses the first in the list of rules that matches
the process’ configuration, either by USERID, GROUPID, the name of the
executable itself, the type, tag, or any possible combination of these
attributes. Since every process is considered to belong to, at least, the
Default superclass, and since system jobs should not be classified differently
than they are in the System superclass, we should have the System class’
rule placed as close to the top of the rules list as possible, and Default class’
rule should be placed at the very bottom. The only circumstance in which the
list of rules may and must have other classes before the System class’ rule is
when the root user is supposed to launch a program that we want placed in a
specific, user-created class. There are no reasons why any rule should come
after Default’s rule; it would never be used.

The System superclass should not be anywhere other than in tier 0. Placing it
on a different tier would ruin the normal functioning of the system. We must
not forget that, besides the user applications, kernel processes are being
controlled by WLM as well, and if they do not get their share of resources
and, therefore, are not allowed to do their work, nothing else will be able to
run properly. This idea must also be kept in mind when configuring the values
for shares and limits for the System superclass. These values should never

WLM configuration should be tested in a non-production environment to
avoid possible disruption to users and applications.

Note
92 AIX 5L Workload Manager (WLM)

be so low as to impair the system’s work or so high that they substantially
subtract performance from the applications.

Shares versus hard and soft limits
It is recommended to use resource shares rather than limits to start with.
WLM sees resource shares as goals to be achieved, and this allows greater
system flexibility than imposed limits. If the resource shares set up by a
system administrator are not optimal, the system should still be able to
balance the load reasonably well. With hard limits set, WLM can do little to
prevent applications from being starved of resources. For example, if the
maximum memory limit is set smaller than the average working set of the
application, this may incur significant performance degradation. In summary,
it is better to wait to assign limits until after experience has been gained with
the results from setting resource shares, and when setting resource limits,
start by setting only the minimums. It is also suggested that memory
minimums for all classes be used before imposing a memory maximum for
any class. This is for performance reasons, basically. A class that reaches its
maximum memory limit starts paging against itself, which causes the paging
algorithm (LRU) to run even when there are plenty of memory pages
available. This, by itself, causes some performance impact. The
recommended minimum limit for other classes is to make sure that LRU will
not steal pages from these classes below those limits, which would cause an
even greater performance impact. This would happen if, by some chance,
some last and most probable next accessed pages were stolen from a
non-minimum limited class.

Rules
The more specific assignment rules should appear first in the rules file, and
the more general rules should appear last.

High-availability clustering multiprocessing program (HACMP)
It is recommended to make the HACMP startup entry in WLM systems as
close to the end of the /etc/inittab file as possible in order to make sure WLM
is fully-initialized before the cluster manager starts. Otherwise, the deadman
switch might trigger a false failover while something, such as WLM, initializes.

WLM on the SP systems
WLM cannot be used to provide distributed workload management over
multiple nodes on the SP systems. Nevertheless, if some nodes are similar in
applications structure and configurations, having WLM working in all of them
is as easy as performing the following steps:

1. Configure WLM in one node.
Chapter 3. AIX Workload Manager administration 93

2. Use the tar command to gather all text files which make up the
configuration.

3. Use dsh to distribute them to every node applicable.

4. Use the tar command to unpack the files.

5. Start up WLM, specifying the configuration files directory.

3.5.2 Things to be aware of
The following points are descriptions of some difficulties found:

svmon
A problem with the svmon command is observed while submitting a heavy
memory workload on an 64 bit machine with more than 2 GB memory running
AIX 4.3.3 system at maintenance level 2 and perfagent.tools at the 2.2.33.15
level. svmonneeds to allocate real memory to work, and being unable to do so,
it halts the system. Though this is not a problem directly connected to WLM, it
is bound to be observed in WLM environments; so, the use of the svmon tool is
only recommended in WLM systems with the perfagent.tools fileset at the
2.2.33.16 level or later.

wlmstat
On WLM’s first release, when using tee and wlmstat commands together to
monitor performance on the screen and gather the information on a file at the
same time, the output of wlmstat was not immediate. It only displayed
information on the screen or wrote something on the file every 4 KB of data
gathered. This situation is solved in AIX 5L.

vmtune
Unless done with extreme caution, changing some vmtune options, such as
minperm, maxperm, minfree, and maxfree to anything other than default values
might impair WLM and degrade system performance. Any potential tuning of
these values should be done before using WLM.

Non-configured WLM startup
WLM is not started on AIX by default. Its startup must be issued manually or
placed in /etc/inittab to be launched upon reboot. The system administrator
must make sure, however, that this does not happen before WLM is

If a problem is experienced with WLM after changing any vmtune values,
these settings should be moved back to default options.

Note
94 AIX 5L Workload Manager (WLM)

fully-configured and ready to run. A non-configured WLM startup degrades
system performance significantly.

Setuid inside applications
If an application runs a setuid while launched to change its effective UID, its
classification stays related to the UID of the user that originally started it,
because it occurs no reclassification. A dynamic reclassification only occurs
in those cases when the change is made to the process’ real UID.

The same situation is observed for groups and setgid.

3.5.3 Additional characteristics
The following points depict some additional characteristics of WLM:

Overhead
Comparing both performances of AIX 4.3.2 (without WLM) and 4.3.3 (with
WLM), WLM process does not represent any overhead on the system. The
reason for this situation to be observed is based on the significant
improvements in performance that AIX provides in the 4.3.3 release, with the
creation of dedicated run queues per processor, for instance. These
improvements, combined with the further enhancements of performance that
a well-tuned WLM supplies, make the overhead of having an additional
process to control the resources almost ineffective. Nevertheless, between an
AIX V4.3.3 system and an AIX V4.3.3 system with WLM, some overhead
might be noticed. This will increase based on the number and complexity of
the rules configured in WLM.

Passive mode
When configuring WLM, know your users and applications. It is important to
understand the user base and their computing needs. It is also important to
have an understanding of the resources required by all applications in the
system. This is where the WLM passive mode can help.

The passive mode provides a way to monitor the impact WLM brings to the
system. By comparing system behavior between active and passive modes,
the system administrator can easily redefine WLM configuration strategies.

If any undesirable behavior occurs when WLM is running, it can be stopped
using the wlmcntrl -o command. Stopping WLM will turn off all WLM
management of resources, and the system behavior will quickly return to
the normal state.

Note
Chapter 3. AIX Workload Manager administration 95

Monitoring
Performance monitoring experiences a deep change with the introduction of
WLM. The scheduler and WLM use fairly different time boundaries to work:

• WLM uses a 1 ms time boundary for CPU use accounting and 10 ms for
dispatching and makes priority recalculations every second.

• The scheduler uses a 10 ms time boundary for CPU use accounting, 10
ms for dispatching, and it makes priority recalculations every second.

These differences create the substantial value discrepancies that can be
observed when wlmstat and vmstat are run simultaneously in a WLM
environment. As a result of WLM using 1 ms as a time boundary for CPU use
accounting (against the 10 ms the scheduler uses), the wlmstat command
gets to be much more accurate in its calculations than vmstat. Therefore, for
reliable values, wlmstat is the suggested tool to use in WLM environments.

Dynamic update
Tiers, resource soft and hard limits, resource shares, rules, and every sort of
WLM configuration can now be modified while WLM is running and take
immediate effect without the need to stop and restart WLM that existed in its
previous release.

Dump analysis
The snap command is used to collect system information and dump files for
problem determination. In AIX 5L, this command has a -w option, which is
used to gather WLM information and join it to the already-existing one
(basically, assembles the contents of the /etc/wlm directory). This feature can
be very useful when analyzing an unknown technical problem, that might (or
might not) be WLM-related.

The substitute for the kernel-debugging crash command in AIX 5L, the kdb

command, also incorporates options to analyze the behavior of WLM
configuration at the kernel level when, for instance, a dump occurs.
96 AIX 5L Workload Manager (WLM)

Chapter 4. WLM performance tools

This chapter presents useful tools to monitor and analyze WLM activity. The
real time performance tools, such as wlmstat, ps, topas, and svmon, are
components of the AIX base operating system. System administrators who
need a long-term analysis tool and a method to collect trend values should
use wlmperf, xmtrend, and jazizo. They are delivered with the Performance
Trend Toolbox Feature.

4.1 wlmstat

To monitor the statistical resouce utilization by each superclass and subclass
and to display the status of WLM, use the wlmstat command. This command
shows the contents of WLM data structures that are retrieved from the kernel.

The syntax is:

wlmstat [-l class | -t tier] [-S | -s] [-c | -m | -b] [-B device] [-q]
[-T] [-a] [-w][-v] [interval] [count]

Where:

-l class Indicates the resource utilization for a specific class. If not
specified, all classes are displayed.

-t tier Displays statistics only for the given tier.

-S Displays statistics for superclasses only.

-s Displays statistics for subclasses only. If neither -S nor -s
are specified, the statistics for both superclasses and
subclasses are displayed. In this case, the statistics for
each superclass are listed followed by the statistics for the
subclasses belonging to that superclass.

-c Shows only CPU statistics.

-m Shows only physical memory statistics.

-b Shows only disk I/O statistics.

-B device Displays statistics for the given disk I/O device. Statistics
for all the disks accessed by the class are displayed by
passing an empty string (-B ““).

-q Represses output of status files of last action (quiet).

-T Returns the total numbers for resource utilization since
each class was created (or WLM started). The units are:
© Copyright IBM Corp. 2000 97

• Number of CPU ticks per CPU (seconds) used by each
class

• Number of memory pages multiplied by the number of
seconds used by each class

• Number of 512 byte blocks sent/received by a class
for all the disk devices accessed

-a Delivers absolute figures (relative to the total amount of
the resource available to the whole system) for
subclasses, with a 0.01 percent resolution. By default, the
figures shown for subclasses are a percentage of the
amount of the resource used by the superclass, with a
one percent resolution. For instance, if a superclass has a
CPU target of seven percent and the CPU percentage
shown by wlmstat without -a for a subclass is five percent,
wlmstat with -a will show the CPU percentage for the
subclass as 0.35 percent.

-w Displays the memory high water mark, that is, the
maximum number of pages that a class had in memory
since the class was created (or WLM started).

-v Shows most of the attributes concerning the class. The
output includes internal parameter values intended for AIX
support persons. Table 3 shows a list of some attributes
that may be of interest to users.

Table 3. wlmstat - selection of internal parameters

Column header Description

CLASS Class name

tr Tier number from 0...9

i Value of the inheritance attribute: 0 = no , 1 = yes

#pr Number of processes in the class. If no process is assigned to
a class, the following values may not be significant.

CPU CPU utilization of the class in percent

MEM Physical memory utilization of the class in percent

DKIO Disk I/O bandwidth utilization for the class in percent

sha Number of shares. If no (“-”) shares are defined, then sha = -1

min Resource minimum limit in percent

smx Resource soft maximum limit in percent
98 AIX 5L Workload Manager (WLM)

interval Specifies an interval in seconds (default to 1).

count Specifies how many times wlmstat will print a report
(default to 1).

The results of wlmstat in the normal (non verbose) case are tabulated with the
following fields:

CLASS Class name

CPUtotal CPU time used by the class in percent

MEM Physical memory used by the class in percent

DKIO Disk I/O bandwidth used by the class in percent

Examples:
To get a printout of current WLM activity, enter:

hmx Resource hard maximum limit in percent

des desired percentage target calculated by WLM using the
numbers of the shares in percent

npg number of memory pages owned by the class

Column header Description

DKIO is the average of the disk bandwidth on all the disk devices accessed
by the class. It is not very significant. For instance: A class uses 80 percent
of the bandwidth of one disk and 5 percent of the bandwidth of two other
disks. Then the value of DKIO for this class is 30 percent:

To achieve a detailed output of the utilization per disk, use the -B device
option.

80 percent (disk1) 5 percent (disk2) 5 percent (disk3)+ +()
3 number of disks()--- 30 percent=

Disk I/O
Chapter 4. WLM performance tools 99

To get a report for the superclass, oltp, enter:

To get a report for the subclass, spray, of the superclass, oltp, updated every
10 seconds for one minute, enter:

To get a detailed CPU report for all classes, enter the information shown in
the next screen.

(0)itsosrv1:/# wlmstat
CLASS CPU MEM DKIO

Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 0 0
System 0 6 0
oltp 75 18 0

oltp.Default 68 17 0
oltp.Shared 0 0 0
oltp.spray 7 1 0

dss 10 27 0
backup 13 28 0

(0)itsosrv1:/#

(0)itsosrv1:/# wlmstat -l oltp
CLASS CPU MEM DKIO
oltp 74 17 0

oltp.Default 67 16 0
oltp.Shared 0 0 0
oltp.spray 7 2 0

(0)itsosrv1:/#

(127)itsosrv1:/# wlmstat -l oltp.spray 10 6
CLASS CPU MEM DKIO

oltp.spray 5 1 0
oltp.spray 5 2 0
oltp.spray 7 1 0
oltp.spray 6 2 0
oltp.spray 6 1 0
oltp.spray 5 1 0
(0)itsosrv1:/#
100 AIX 5L Workload Manager (WLM)

4.2 ps

The ps command writes the current status of active processes and
associated kernel threads to standard output.

Syntax (X/Open Standards):

ps [-A] [-N] [-a] [-d] [-e] [-f] [-k] [-l] [-F format] [-o Format]
[-c Clist] [-G Glist] [-g Glist][-m] [-n NameList] [-p Plist]
[-t Tlist] [-U Ulist] [-u Ulist]

In this book, we focus on the ps command to view the current status of
processes in a single class or set of classes (either subclass or superclass).

Flags:

-a Writes information about all processes to standard output,
except the session leaders and processes not associated
with a terminal.

-e Writes information about all processes to standard output,
except kernel processes.

-c Clist Only displays information about processes assigned to the
workload management classes listed in the Clist variable.

(0)itsosrv1:/# wlmstat -c -v
CLASS tr i #pr CPU sha min smx hmx des rap urap pri

Unclassified 0 0 1 0 -1 0 100 100 100 0 97 10
Unmanaged 0 0 0 0 -1 0 100 100 0 0 97 10
Default 0 0 1 0 -1 0 100 100 0 0 97 97

Default.Default 0 0 1 0 1 0 100 100 100 100 48 48
Default.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

Shared 0 0 0 0 -1 0 100 100 0 0 97 97
Shared.Default 0 0 0 0 1 0 100 100 100 100 48 48
Shared.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

System 0 0 43 0 10 10 100 100 10 100 0 0
System.Default 0 0 43 0 1 0 100 100 100 100 0 0
System.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

oltp 0 0 101 77 35 0 100 100 38 -100 194 194
oltp.Default 0 0 -5 71 -1 0 100 100 100 0 144 144
oltp.Shared 0 0 0 0 -1 0 100 100 0 0 144 144
oltp.spray 0 0 107 6 30 0 100 100 6 -90 187 187

dss 0 0 3 10 20 0 100 100 22 100 0 0
dss.Default 0 0 2 10 1 0 100 100 100 100 0 0
dss.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

backup 0 0 2 11 35 0 100 100 38 100 0 0
backup.Default 0 0 3 11 1 0 100 100 100 100 0 0
backup.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

(0)itsosrv1:/#
Chapter 4. WLM performance tools 101

The Clist variable is either a comma-separated list of
class names or a list of class names enclosed in double
quotation marks (" ") and separated from one another by
a comma or by one or more spaces, or both.

-o Format Displays information in the format specified by the Format
variable. Multiple field specifiers can be specified for the
Format variable. The Format variable is either a
comma-separated list of field specifiers or a list of field
specifiers enclosed within a set of " " (double-quotation
marks) and separated from one another by a comma, one
or more spaces, or both.
Each field specifier has a default header. The default
header can be overridden by appending an = (equal sign)
followed by the user-defined text for the header. The fields
are written in the order specified on the command line in
column format. The field widths are specified by the
system to be at least as wide as the default or
user-defined header text. If the header text is null (for
example, if -o user= is specified) the field width is at least
as wide as the default header text. If all header fields are
null, no header line is written.
The following field specifiers are recognized by the system
and are relevant for use with WLM:

pid Indicates the decimal value of the process ID. The
default header for this field is PID.

user Indicates the effective user ID of the process. The
textual user ID is displayed. If the textual user ID
cannot be obtained, a decimal representation is
used. The default header for this field is USER.

class Indicates the workload management class
assigned to the process. The default header for
this field is CLASS.

pcpu Indicates the ratio of CPU time used to CPU time
available, expressed as a percentage. The default
header for this field is %CPU.

tag Indicates the Workload Manager application tag.
The default header for this field is TAG. The tag is
a character string up to 30 characters long and
may be truncated when displayed by ps. For
processes that do not set their tag, this field
displays as a hyphen (-).
102 AIX 5L Workload Manager (WLM)

thcount Indicates the number of kernel threads owned by
the process. The default header for this field is
THCNT.

vsz Indicates, as a decimal integer, the size in
kilobytes of the process in virtual memory. The
default header for this field is VSZ.

wchan The event for which the process or kernel thread is
waiting or sleeping. For a kernel thread, this field
is blank if the kernel thread is running. For a
process, the wait channel is defined as the wait
channel of the sleeping kernel thread if only one
kernel thread is sleeping; otherwise, a star is
displayed. The default header for this field is
WCHAN.

args Indicates the full command name being executed.
All command-line arguments are included, though
truncation may occur. The default header for this
field is COMMAND.

To get a detailed report of all classes, enter:

ps -ae -o pid,user,class,pcpu,tag,thcount,vsz,wchan,args

Examples:
To get a simple ps output for the superclass, backup, and the subclass, spray,
of the superclass, oltp (oltp.spray), enter the information in the following
screen:
Chapter 4. WLM performance tools 103

4.3 topas

The topas command reports selected statistics about activity on the local
system. It uses the curses library to display its output in a format suitable for
viewing on an 80x24 character-based display or in a window of at least the
same size in a graphical display.

The topas command requires the perfagent.tools fileset to be installed on the
system.

Syntax:

topas [-d number_of_hot_disks] [-h show help information]
[-i monitoring_interval_in_seconds] [-n number_of_hot_network_interfaces]
[-p number_of_hot_processes] [-w number_of_hot_WLM classes]
[-c number_of_hot_CPUs]

(0)itsosrv1:/# ps -c backup,oltp.spray
PID TTY TIME CMD

14086 pts/6 0:00 sh
16490 pts/6 0:00 spray
17234 pts/6 0:00 spray
17698 pts/6 0:00 spray
18928 pts/6 0:00 spray
19868 pts/6 0:00 spray
20878 pts/6 0:00 spray
21108 pts/6 0:00 spray
21718 pts/1 0:00 ksh
24124 pts/6 0:00 spray
25102 pts/6 0:00 spray
25696 pts/6 0:00 spray
26286 pts/6 0:00 spray
26836 pts/6 0:00 spray
27964 pts/1 0:01 backupserver
28988 pts/6 0:00 spray
31850 pts/6 0:00 spray
32718 pts/6 0:00 spray
33778 pts/1 110:09 backupserver
36112 pts/6 0:00 spray
36414 pts/6 0:00 spray
38842 pts/6 0:00 spray
40650 - 0:00
41310 pts/6 0:00 spray
41524 pts/6 0:00 spray
42904 pts/6 0:00 spray
43854 pts/6 0:00 spray
45848 pts/6 0:00 spray
46180 pts/6 0:00 sh
(0)itsosrv1:/#
104 AIX 5L Workload Manager (WLM)

If the topas command is invoked without flags, it runs with its following default
flags:

topas -d5 -i2 -n2 -p12 -w2 -c1

topas extracts statistics from the system with an interval specified by the
monitoring_interval_in_seconds argument.

The following flags can be used when starting topas.

-d Specifies the maximum number of disks shown. If this
number exceeds the number of disks installed, the latter is
used. If this argument is omitted, a default of five is
assumed. If a value of zero is specified, no disk
information is displayed.

-h Displays help information.

-i Sets the monitoring interval in seconds. The default is two
seconds.

-n Specifies the maximum number of network interfaces
shown. If this number exceeds the number of network
interfaces installed, the latter is used. If this argument is
omitted, a default of two is assumed. If a value of zero is
specified, no network information is displayed.

-p Specifies the maximum number of processes shown. If
this argument is omitted, a default of 12 is assumed. If a
value of zero is specified, no process information is
displayed. Retrieval of process information constitutes the
majority of the topas overhead. If process information is
not required, you should always use this option to specify
that you don't want process information.

-w Specifies the maximum number of WLM classes to
display. If this number exceeds the number of WLM
classes installed, the latter is used. If this argument is
omitted, a default of two is assumed. If a value of zero is
specified, no WLM class information is displayed.

-c Specifies the maximum number of CPUs to display. If this
number exceeds the number of CPUs available, the latter
is used. If this argument is omitted, a default of one is
assumed. If a value of zero is specified, no CPU
information is displayed.
Chapter 4. WLM performance tools 105

While topas is running, it accepts one-character subcommands. Each time the
monitoring interval elapses, the program checks for one of the following
subcommands and responds to the action requested.

a Show all of the variable sections (network, disk, and
process) if screen space allows.

c Show CPU data. Pressing the c key the first time will list
the CPUs. Pressing it again will show the totals; pressing
it a third time will turn off this section, and pressing it
again will list the CPUs, and so on.

d Show disk information. If the requested number of disks
and the requested number of network interfaces will fit on
a 24-line display, both are shown. If there is space left on
a 24-line display to list at least three processes, as many
processes as will fit are also displayed. Pressing the d key
the first time will list the disks. Pressing it again will show
the totals; pressing it a third time will turn off this section,
and pressing it again will list the disks, and so on.

h Show the same help screen as displayed by the -h

command line argument.

n Show network interface information. If the requested
number of disks and the requested number of network
interfaces will fit on a 24-line display, both are shown. If
there is space left on a 24-line display to list at least three
processes, as many processes as will fit are also
displayed. Pressing the n key the first time will list the
network adapters. Pressing it again will show the totals;
pressing it a third time will turn off this section, and
pressing it again will list the disks, and so on.

w Display WLM classes. Pressing the w key will toggle this
section on and off.

W Replace the default display with a WLM classes only
display. This display gives more detailed information about
WLM classes running on the system than the WLM
section of the main display. When the W key is pressed
again, it toggles back to the default main display.

p Show process information. If the requested number of
processes leaves enough space on a 24-line display to
also display the requested number of network interfaces,
those are shown. If there is also space to show the
requested number of disks, those are shown as well.
106 AIX 5L Workload Manager (WLM)

P Replace the default display with a process only display.
This display provides more detailed information about
processes running on the system than the process section
of the main display. When the P key is pressed again, it
toggles back to the default main display.

f Move the cursor over the WLM class and press Focus to
show the top processes in the group.

q Quit the program.

The output consists of two fixed parts and a variable section. The top two
lines at the left of the display show the name of the system on which topas
runs, the date and time of the last observation, and the monitoring interval.

The second fixed part fills the rightmost 25 positions of the display. It contains
five subsections of statistics, as follows:

EVENTS/QUEUES

Displays the per-second frequency of selected system-global events and the
average size of the thread run- and wait queues:

Cswitch The number of context switches per second over the
monitoring interval

Syscalls The total number of system calls per second executed
over the monitoring interval

Reads The number of read system calls per second executed
over the monitoring interval

Writes The number of write system calls per second executed
over the monitoring interval

Forks The number of fork system calls per second executed over
the monitoring interval

Execs The number of exec system calls per second executed
over the monitoring interval

Runqueue The average number of threads that were ready to run but
were waiting for a processor to become available

Waitqueue The average number of threads that were waiting for
paging to complete

FILE/TTY

Displays the per-second frequency of selected file and tty statistics.
Chapter 4. WLM performance tools 107

Readch The number of bytes read per second through the read
system call over the monitoring interval

Writech The number of bytes written per second through the write
system call over the monitoring interval

Rawin The number of raw bytes read per second from TTYs over
the monitoring interval

Ttyout The number of bytes written to TTYs per second over the
monitoring interval

Igets The number of calls per second to the inode lookup
routines over the monitoring interval

Namei The number of calls per second to the pathname lookup
routines over the monitoring interval

Dirblk The number of directory blocks scanned per second by
the directory search routine over the monitoring interval

PAGING

Displays the per-second frequency of paging statistics.

Faults Total number of page faults taken per second over the
monitoring interval. This includes page faults that do not
cause paging activity.

Steals Physical memory 4K frames stolen per second by the
virtual memory manager over the monitoring interval.

PgspIn Number of 4K pages read from paging space per second
over the monitoring interval.

PgspOut Number of 4K pages written to paging space per second
over the monitoring interval.

PageIn Number of 4K pages read per second over the monitoring
interval. This includes paging activity associated with
reading from file systems. By subtracting PgspIn from this
value, you get the number of 4K pages read from file
systems per second over the monitoring interval.

PageOut Number of 4K pages written per second over the
monitoring interval. This includes paging activity
associated with writing to file systems. By subtracting
PgspOut from this value, you get the number of 4K pages
written to file systems per second over the monitoring
interval.
108 AIX 5L Workload Manager (WLM)

Sios The number of I/O requests per second issued by the
virtual memory manager over the monitoring interval.

MEMORY

Displays the real memory size and the distribution of memory in use.

Real,MB The size of real memory in megabytes.

% Comp The percentage of real memory currently allocated to
computational page frames. Computational page frames
are generally those that are backed by paging space.

% Noncomp The percentage of real memory currently allocated to
non-computational frames. Non-computational page
frames are generally those that are backed by file space,
either data files, executable files, or shared library files.

% Client The percentage of real memory currently allocated to
cache remotely mounted files.

PAGING SPACE

Displays size and utilization of paging space.

Size,MB The sum of all paging spaces on the system, in
megabytes

% Used The percentage of total paging space currently in use

% Free The percentage of total paging space currently free

NFS

Displays NFS status in calls/second

• Server V2 calls/sec

• Client V2 calls/sec

• Server V3 calls/sec

• Client V3 calls/sec

The variable part of the topas display can have up to five subsections. If more
than one appears, they are always shown in the following order:

• CPU

• Network Interfaces

• Physical Disks

• WorkLoad Management Classes
Chapter 4. WLM performance tools 109

• Processes

CPU utilization

By default, this display shows a bar chart with cumulative CPU usage. If more
than one CPU is displayed, a list of CPUs are displayed followed by the
cumulative totals across all CPUs on the system, not just what is displayed.

User This shows the percent of CPU used by programs
executing in user mode. (Default sorted by User%)

Kern This shows the percent of CPU used by programs
executing in kernel mode.

Wait This shows the percent of time spent waiting for I/O.

Idle This shows the percent of time the CPU(s) is idle.

Network Interfaces

Lists the selected number of network interfaces. The interfaces are ordered
after the activity over the monitoring interval. The interface that transferred
most bytes (sum of bytes read and written) over the interval is listed first.
Sorting is only valid for up to 16 network adapters. For each network
interface, the following fields are displayed:

Network The name of the network interface.

KBPS The total throughput in megabytes per second over the
monitoring interval. This field is the sum of kilobytes
received and kilobytes sent per second.

I-Pack The number of data packets received per second over the
monitoring interval.

O-Pack The number of data packets sent per second over the
monitoring interval.

KB-In The number of kilobytes received per second over the
monitoring interval.

KB-Out The number of kilobytes sent per second over the
monitoring interval.

Physical disks

Lists the selected number of physical disks. The disks are ordered after the
activity over the monitoring interval. The interface that was most busy over
the interval is listed first. Sorting is only valid for up to 128 disks. For each
disk, the following fields are displayed:
110 AIX 5L Workload Manager (WLM)

Disk The name of the physical disk.

Busy% Indicates the percentage of time the physical disk was
active (bandwidth utilization for the drive).

KBPS The number of kilobytes read and written per second over
the monitoring interval. This field is the sum of KB-Read
and KB-Read.

TPS The number of transfers per second that were issued to
the physical disk. A transfer is an I/O request to the
physical disk. Multiple logical requests can be combined
into a single I/O request to the disk. A transfer is of
indeterminate size.

KB-Read The number of kilobytes read per second from the
physical disk.

KB-Writ The number of kilobytes written per second to the physical
disk.

WLM Classes

Workload Management Classes displays the top n WLM Classes by default
sorted by CPU%.

WLM-Class The name of the class. The mode in which WLM is running
(active) or (passive) is shown

CPU% The average CPU utilization of the WLM class over the
monitoring interval

Mem% The average memory utilization of the WLM class over the
monitoring interval

Disk-I/O% The average percent of disk I/O of the WLM class over the
monitoring interval

Processes

Lists the selected number of processes or as many as will fit on the display.
The processes are ordered after their CPU usage over the monitoring
interval. The process that consumed the most CPU over the interval is listed
first. For each process, the following fields are displayed:

Name The name of the executable program executing in the
process. The name is stripped of any pathname and
argument information and truncated to nine characters in
length.
Chapter 4. WLM performance tools 111

PID The process ID of the process.

CPU% The average CPU utilization of the process over the
monitoring interval. The first time a process is shown, this
value is the average CPU utilization over the lifetime of the
process.

PgSp The size of the paging space allocated to this process.
This can be considered an expression of the footprint of
the process but does not include the memory used to keep
the executable program and any shared libraries on which
it may depend.

Owner The name of the user that owns the process (only when
WLM section is off).

Class The WLM class to which the process belongs (only when
WLM section is on).

Examples
To run the program with default options, type:

topas

The result is shown in Figure 44 on page 113.
112 AIX 5L Workload Manager (WLM)

Figure 44. topas - example 1

To display five hot disks every five seconds and omit network interface and
process information, type:

topas -i5 -d5 -n0 -p0

The result is shown in Figure 45 on page 114.
Chapter 4. WLM performance tools 113

Figure 45. topas - example 2

To display the five most active processes and neither network nor disk
information, type:

topas -p5 -n0 -d0

The result is shown in Figure 46 on page 115.
114 AIX 5L Workload Manager (WLM)

Figure 46. topas - example 3

To see detailed information about the defined WLM classes running on the
system, use the subcommand, W, when topas is running as shown in Figure
47 on page 116.
Chapter 4. WLM performance tools 115

Figure 47. topas - example 4

4.4 svmon

This tool generates snapshots of a system’s virtual memory. It has been
enhanced with usability, scalability, and speed improvements on the largest
enterprise server systems. In addition, the svmon tool was enhanced to
generate reports on users, commands, and WLM classes to support WLM
functions.

The svmon command requires the perfagent.tools fileset to be installed on the
system.

The svmon command displays information about the current state of memory.
The displayed information does not constitute a true snapshot of memory
because the svmon command runs at the user level with interrupts enabled.
The segment is the basic object used to report memory consumption. A
segment is a set of pages; so, the statistics reported by svmon are expressed
116 AIX 5L Workload Manager (WLM)

in terms of pages. A page is a 4K block of virtual memory while a frame is a
4K block of real memory. Unless otherwise noted, all statistics are in units of
4096-bytes of memory pages.

The memory consumption is reported using the inuse, free, pin, virtual and
paging space counters. The inuse counter represents the number of used
frames. The free counter represents the number of free frames from all
memory pools. The pin counter represents the number of pinned frames, that
is frames that cannot be swapped. The virtual counter represents the number
of pages allocated in the system virtual space. The paging space counter
represents the number of pages reserved or used on paging spaces.

A segment can be used by multiple processes. Each page from such a
segment is accounted for in the inuse, pin, virtual, or pgspace fields for each
process that uses the segment. Therefore, the total of the inuse, pin, virtual,
and pgspace fields over all active processes may exceed the total number of
pages in memory or on paging space.

VMM manages virtual page counters for statistical purpose only, which
means they are not always up-to-date, and their values may be less than the
corresponding inuse counters.

A segment belongs to one of the five following types: persistent, working,
client, mapping, or real memory mapping. Persistent segments are used to
manipulate files and directories. Working segments are used to implement
the data areas of processes and shared memory segments. Client segments
are used to implement some virtual file systems, such as the Network File
System (NFS) and the CD-ROM file system. Mapping segments are used to
implement the mapping of files in memory. Real memory mapping segments
are used to access the I/O space from the virtual address space.

The svmon command can create nine types of reports:

• Global

• User

• Command

• Class

• Tier

• Process

• Segment

• Detailed segment
Chapter 4. WLM performance tools 117

• Frame

This book focus on describing only the workload management reports, class
and tier. These reports are available when the workload manager is running.
Otherwise, the message, "WLM must be started", is displayed, and no
statistics are reported. When the workload manager is running in passive
mode, svmon will display the message, "WLM is running in passive mode",
before displaying the statistics.

4.4.1 Workload manager class report
There are two types of classes: superclasses and subclasses. Superclass
names are up to 16 characters long and cannot contain a period. Subclass
names start with their superclass name followed by a period and subclass
part, which can be up to 16 characters long and cannot contain a period. The
total number of superclasses that can be defined is limited to 27. The total
number of subclasses that can be defined for a superclass is 10.

Superclasses and subclasses will be treated identically. When a superclass is
passed as an argument, svmon reports all the segments belonging to all the
subclasses of the superclass without giving subclass statistics.

The class report is printed when -W is specified.

Syntax:

svmon -W [clnm1...clnmN] [-e] [-k] [-r] [-n | -s] [-w | -f | -c][-tCount]
[-u | -p | -g | -v] [-iInterval [NumIntervals]] [-l] [-d] [-z] [-m]

The following flags can be specified:

WLM provides dynamic reclassification of processes and their segments.
At each iteration, svmon uses a snapshot of the class configuration by
using the wlm_get_info system call and accesses the related processes
and segments. The segstat_tbl, process_tbl and wlm_tbl are freed at the
end of each iteration. Consequently, svmon is able to see the changes.
Also, if a class disappears, svmon reports a message without any error.

Problems may appear when a segment or process is loaded in the svmon
private data base with a given class ID associated to a given classname
and the class ID or the classname changes before the real analysis of the
segment or process. Then svmon can report wrong statistics.

Note
118 AIX 5L Workload Manager (WLM)

-e Shows the statistics of the subclasses of the class and
reports the segments statistics per subclass. In this case,
the class parameter must be a superclass name.

-k When -k is specified, svmon reports statistics using a
process point of view. There will be no change to this
option except when -e is specified. Then, the segments of
each subclass will be split into three categories: System,
exclusive, and shared.

-r If the -r flag is specified, each segment is followed by the
range(s), within the segment, where pages have been
allocated.

-n Indicates that only non-system segments are to be
included in the statistics. By default, all segments are
analyzed.

-s Indicates that only system segments are to be included in
the statistics. By default, all segments are analyzed.

-w Indicates that only working segments are to be included in
the statistics. By default, all segments are analyzed.

-f Indicates that only persistent segments (files) are to be
included in the statistics. By default, all segments are
analyzed.

-c Indicates that only client segments are to be included in
the statistics. By default, all segments are analyzed.

-tCount Displays memory usage statistics for the top Count object
to be printed.

-u Indicates that the objects to be printed are sorted in
decreasing order by the total number of pages in real
memory. It is the default sorting criteria if none of the
following flags are present: -p, -g, or -v.

-p Indicates that the objects to be printed are sorted in
decreasing order by the total number of pages pinned.

-g Indicates that the objects to be printed are sorted in
decreasing order by the total number of pages reserved or
used on paging space. This flag, in conjunction with the
segment, report shifts the non-working segment at the end
of the sorted list.

-v Indicates that the objects to be printed are sorted in
decreasing order by the total number of pages in virtual
Chapter 4. WLM performance tools 119

space. This flag, in conjunction with the segment report,
shifts the non-working segment at the end of the sorted
list.

-iInterval Instructs the svmon command to print statistics out
[NumInterval] repeatedly. Statistics are collected and printed every

Interval seconds. NumIntervals is the number of
repetitions; if not specified, svmon runs until user
interruption (Ctrl-C).

-l Shows, for each displayed segment, the list of process
identifiers that use the segment and, according to the type
of report, the entity name (login, command, or class) to
which the process belongs. For special segments, a label
is displayed instead of the list of process identifiers.
System segment:
This label is displayed for segments that are flagged
system.
Unused segment:
This label is displayed for segments that are not used by
any existing processes.
Shared library text:
This label is displayed for segments that contain text of
shared library and that may be used by most of the
processes (libc.a). This is to prevent the display of a long
list of processes.

-d Displays for a given entity, the memory statistics of the
processes belonging to the entity.

-z Displays the maximum memory size dynamically allocated
(malloc) by svmon during its execution.

-m Displays information about source segment rather than a
mapping segment when a segment is mapping a source
segment.

The column headings in a class report are:

Class or Indicates the class or superclass name.
Superclass

Inuse Indicates the total number of pages in real memory from
segments belonging to the class

Pin Indicates the total number of pages pinned from segments
belonging to the class
120 AIX 5L Workload Manager (WLM)

Pgsp Indicates the total number of pages reserved or used on
paging space by segments belonging to the class

Virtual Indicates the total number of pages allocated in the virtual
space of the class

After these statistics are displayed, svmon displays information about the
segments belonging to the class.

Examples:
To print out the memory usage statistics for the superclass, backup, enter the
information shown in the following screen:

To print out the memory usage statistics for the subclass, spray, enter the
information shown in the following screen.

((0)itsosrv1:/# svmon -W backup

===
Superclass Inuse Pin Pgsp Virtual
backup 52833 10 0 50329

Vsid Esid Type Description Inuse Pin Pgsp Virtual
6784 - work 27989 0 0 28017
1aa18 - work 21887 0 0 21887
14356 - pers /dev/lv_wlm1:17 1250 0 - -
173f5 - pers /dev/lv_wlm2:17 1250 0 - -
5347 - work 103 2 0 101
c34e - work 77 0 0 77
1891a - work 77 0 0 77
14636 - work 46 0 0 37
5327 - work 28 0 0 20
1d83f - work 16 0 0 18
1e33c - work 16 0 0 13
10772 - work 15 0 0 13
6a84 - work 15 0 0 13
15457 - work 14 0 0 14
38a1 - work 8 0 0 8
126f0 - work 8 0 0 8
11313 - pers /dev/hd1:26 6 0 - -
e50c - work 5 2 0 5
b549 - work 5 2 0 5
12e3 - work 3 2 0 3
13351 - work 3 0 0 3
14a16 - work 3 0 0 0
12970 - work 3 0 0 5
6904 - work 2 2 0 2
a9c8 - work 1 0 0 3
2320 - pers /dev/hd1:32 1 0 - -
1d39f - pers /dev/hd2:16870 1 0 - -
834a - pers /dev/hd1:23 1 0 - -
Chapter 4. WLM performance tools 121

To print out the memory usage for the superclass, oltp, with its subclasses,
enter the information shown in the following screen.

(0)itsosrv1:/# svmon -W oltp.spray

===
Class Inuse Pin Pgsp Virtual
oltp.spray 852 20 0 944

Vsid Esid Type Description Inuse Pin Pgsp Virtual
d96f - work 77 2 0 77
c6ae - work 76 2 0 76
da0f - work 76 2 0 76
98eb - work 75 2 0 75
d5cf - work 75 2 0 75
12350 - work 75 2 0 75
1da1f - work 75 2 0 75
e9ac - work 34 0 0 22
1f9bd - work 34 0 0 22
4786 - work 34 0 0 22
147d6 - work 33 0 0 22
23c0 - work 33 0 0 22
13771 - work 33 0 0 22
5e2 - work 33 0 0 22
44c6 - work 29 0 0 21
862a - work 20 2 0 80
e9cc - work 20 2 0 80
d8af - work 20 2 0 80=
122 AIX 5L Workload Manager (WLM)

To print out statistics using a process of view for each subclass of the
superclass oltp, enter:

(0)itsosrv1:/# svmon -W oltp -e

===
Superclass Inuse Pin Pgsp Virtual
oltp 35941 26 0 35934

===
Class Inuse Pin Pgsp Virtual
oltp.Default 35895 24 0 35899

Vsid Esid Type Description Inuse Pin Pgsp Virtual
a4c8 - work 33198 0 0 33206
17995 - work 1493 0 0 1533
33e1 - work 194 0 0 195
782 - work 189 0 0 189
92eb - work 103 2 0 101
1d81f - work 88 0 0 88
1e99c - work 84 0 0 84
e6ec - work 74 0 0 74
10712 - work 57 0 0 48
c2ee - work 53 0 0 53
e2ec - work 28 0 0 20
98ab - work 22 0 0 22
3541 - work 18 0 0 20
126b0 - work 17 0 0 17
152f7 - work 13 0 0 11
c38e - work 8 0 0 8
72e5 - pers /dev/hd1:25 6 0 - -
e58c - work 4 2 0 4
1971b - work 3 0 0 0
b8a9 - work 2 2 0 2
b2e9 - pers /dev/hd1:19 1 0 - -
f2ed - pers /dev/hd1:28 1 0 - -
1e4bc - work 1 0 0 3

===
Class Inuse Pin Pgsp Virtual
oltp.spray 46 2 0 35

Vsid Esid Type Description Inuse Pin Pgsp Virtual
848a - work 76 2 0 76
1d8bf - work 58 2 0 58
1d75f - work 33 0 0 22
1d85f - work 29 0 0 21
17535 - work 20 2 0 80
d7ef - work 20 2 0 80
157b7 - work 16 0 0 11

===
Class Inuse Pin Pgsp Virtual
oltp.Shared 0 0 0 0
Chapter 4. WLM performance tools 123

(0)itsosrv1:/# svmon -W oltp -e -k

===
Superclass Inuse Pin Pgsp Virtual
oltp 21432 3670 1584 23238

===
Class Inuse Pin Pgsp Virtual
oltp.Default 16340 1929 792 17146
...
SYSTEM segments Inuse Pin Pgsp Virtual

4209 1759 792 3151

Vsid Esid Type Description Inuse Pin Pgsp Virtual
0 0 work kernel seg 3939 1735 792 2881

62e4 - work 270 24 0 270
...
EXCLUSIVE segments Inuse Pin Pgsp Virtual

11108 170 0 10914

Vsid Esid Type Description Inuse Pin Pgsp Virtual
135f1 3 work shmat/mmap 9 0 0 9
902 2 work process private 4 2 0 4
eaec f work shared library data 1 0 0 1

...
SHARED segments Inuse Pin Pgsp Virtual

1010 0 0 3070

Vsid Esid Type Description Inuse Pin Pgsp Virtual
16834 f work shared library data 29 0 0 21
14094 - pers /dev/hd2:16981 2 0 - -

===
Class Inuse Pin Pgsp Virtual
oltp.spray 5092 1741 792 6092
...
SYSTEM segments Inuse Pin Pgsp Virtual

3939 1735 792 2881

Vsid Esid Type Description Inuse Pin Pgsp Virtual
0 0 work kernel seg 3939 1735 792 2881

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual

167 4 0 156

Vsid Esid Type Description Inuse Pin Pgsp Virtual
6724 2 work process private 58 2 0 58
6904 f work shared library data 33 0 0 22

...
SHARED segments Inuse Pin Pgsp Virtual

947 0 0 3027

Vsid Esid Type Description Inuse Pin Pgsp Virtual
c02c d work shared library text 869 0 0 3027
e0ae 1 pers code,/dev/hd2:4205 57 0 - -

===
Class Inuse Pin Pgsp Virtual
oltp.Shared 0 0 0 0
124 AIX 5L Workload Manager (WLM)

4.4.2 Workload manager tier report
The tier value for a superclass is the position of the class in the hierarchy of
resource limitation desirability. The tier value for a subclass is the position of
the subclass in the hierarchy of resource limitation desirability.

The tier report is printed when -T is specified.

Syntax:

svmon -T [tier1...tierN] [-a supclnm] [-x] [-e] [-r] [-u | -p | -g | -v]
[-n | -s] [-w | -f |-c] [-t Count] [-iInterval[NumIntervals]][-l] [-z] [-m]

The following flags can be specified:

-a Applies a tier to a superclass.

-x Displays information about the segments belonging to
each class.

-e Reports the statistics of the subclasses of each
superclass belonging to the tier.

-r If the -r flag is specified, each segment is followed by the
range(s), within the segment, where pages have been
allocated.

-l If the -l flag is specified, each segment is followed by the
list of process identifiers that are using it. Besides the
process identifier, the tier number and class that the
process belongs to are also displayed.

The column headings in a tier report are:

Tier Indicates the tier number.

Superclass Optional column heading. Indicates the superclass name
when tier applies to a superclass (when the -a flag is
used).

Inuse Indicates the total number of pages in real memory from
segments belonging to the tier.

-e is only allowed with -T and -W

-x is only allowed with -T

-x is only allowed with -T

-r or -l is only allowed with -T if -x is specified

Note
Chapter 4. WLM performance tools 125

Pin Indicates the total number of pages pinned from segments
belonging to the tier.

Pgsp Indicates the total number of pages reserved or used on
paging space by segments belonging to the tier.

Virtual Indicates the total number of pages allocated in the virtual
space of the tier.

After these statistics are displayed, svmon displays information about the
classes belonging to the tier.

Examples:
To print out the memory usage for all defined tiers, enter the information
shown in the following screen:

To print out the memory usage for the tier 0, enter the information shown in
the following screen.

(0)itsosrv1:/# svmon -T

===
Tier Inuse Pin Pgsp Virtual

0 234012 10687 1498 195497

===
Superclass Inuse Pin Pgsp Virtual
backup 67746 10 0 65721
dss 64771 8 0 64799
oltp 42123 182 0 41726
Unclassified 31181 26 0 126
System 26744 10459 1498 19158
Shared 1207 0 0 3760
Default 240 2 0 207
Unmanaged 0 0 0 0
126 AIX 5L Workload Manager (WLM)

To print out the memory usage for all tier subclasses of the superclass oltp,
enter the following:

To print out the memory usage for the tier 0, including the subclass statistics,
enter the information shown in the following screen.

(0)itsosrv1:/# svmon -T

===
Tier Inuse Pin Pgsp Virtual

0 234012 10687 1498 195497

===
Superclass Inuse Pin Pgsp Virtual
backup 67746 10 0 65721
dss 64771 8 0 64799
oltp 42123 182 0 41726
Unclassified 31181 26 0 126
System 26744 10459 1498 19158
Shared 1207 0 0 3760
Default 240 2 0 207
Unmanaged 0 0 0 0

(0)itsosrv1:/# svmon -T -a oltp

===
Tier Inuse Pin Pgsp Virtual

0 oltp 35677 18 0 35651

===
Class Inuse Pin Pgsp Virtual
oltp.Default 35677 18 0 35651
oltp.Shared 0 0 0 0

===
Tier Inuse Pin Pgsp Virtual

1 oltp 524 22 0 656

===
Class Inuse Pin Pgsp Virtual
oltp.spray 524 22 0 656
Chapter 4. WLM performance tools 127

To print out the memory usage for the subclasses in tier 0 of the superclass,
oltp, including the segment statistics and the list of process identifiers, enter
the information shown in the following screen.

(0)itsosrv1:/# svmon -T 0 -e

===
Tier Inuse Pin Pgsp Virtual

0 228018 10511 1372 189497

===
Superclass Inuse Pin Pgsp Virtual
backup 68169 8 0 65673
dss 65995 6 0 66025

===
Superclass Inuse Pin Pgsp Virtual
oltp 34587 20 0 34540

===
Class Inuse Pin Pgsp Virtual
oltp.Default 34587 20 0 34540
oltp.Shared 0 0 0 0
oltp.spray 0 0 0 0
Unclassified 31181 26 0 116
System 26639 10449 1372 19176
Shared 1207 0 0 3760
Default 240 2 0 207
Unmanaged 0 0 0 0
128 AIX 5L Workload Manager (WLM)

(0)itsosrv1:/# svmon -T 0 -a oltp -x -l

===
Tier Inuse Pin Pgsp Virtual

0 oltp 36063 28 0 36010

===
Class Inuse Pin Pgsp Virtual
oltp.Default 36063 28 0 36010

Vsid Esid Type Description Inuse Pin Pgsp Virtual
44c6 f work shared library data 13 0 0 11

pid:23798 tier: 1 class:oltp.spray
f4ad - work 13 0 0 11

Unused segment
e32c f work shared library data 13 0 0 11

pid:36314 tier: 0 class:oltp.Default
7e2 - work 13 0 0 11

Unused segment
402 f work shared library data 13 0 0 11

pid:31514 tier: 0 class:oltp.Default
1f4bd - work 13 0 0 11

Unused segment
13a31 f work shared library data 13 0 0 11

pid:29392 tier: 1 class:oltp.spray
168f4 - work 12 0 0 12

Unused segment
152f7 f work shared library data 12 0 0 10

pid:18794 tier: 0 class:oltp.Default
1993b 2 work process private 11 2 0 11

pid:33954 tier: 1 class:oltp.spray
72e5 1 pers code,/dev/hd1:25 6 0 - -

pid:37556 tier: 0 class:oltp.Default
pid:31514 tier: 0 class:oltp.Default
pid:29392 tier: 1 class:oltp.spray
pid:23156 tier: 0 class:oltp.Default
pid:22092 tier: 1 class:oltp.spray
pid:18794 tier: 0 class:oltp.Default
pid:18496 tier: 1 class:oltp.spray

c2ee 3 work shmat/mmap 6 0 0 6
D2ef 2 work process private 5 2 0 5

pid:18794 tier: 0 class:oltp.Default
15837 2 work process private 4 2 0 4

pid:31514 tier: 0 class:oltp.Default
ea8c - work 4 0 0 4

Unused segment
16754 - work 4 0 0 4

Unused segment
178d5 2 work process private 4 2 0 4

pid:29392 tier: 1 class:oltp.spray
9aeb 2 work process private 4 2 0 4

pid:37556 tier: 0 class:oltp.Default

===
Class Inuse Pin Pgsp Virtual
oltp.Shared 0 0 0 0
Chapter 4. WLM performance tools 129

4.5 Web-based System Manager (WSM)

Apart from being a graphical user interface to configure WLM, Web-based
System Manager (WSM) provides some monitoring tools to analyze and
manipulate resource usage on a per-resource and per-class basis and view
the allocation of processes to classes. WSM filesets are shipped with the
Base Operating System, and the tool is launched with the AIX command, wsm.

The resource-based monitoring screens are accessible under the Resources
view. When WLM is started, this option displays a view of the managed
resources in the current configuration, and their current resource usage as
shown in Figure 48.

Figure 48. Resources screen in WSM

By double clicking any of the resources, its utilization on a per class basis is
displayed. For instance, a sample output of memory usage by class could be
the one shown in Figure 49 on page 131.
130 AIX 5L Workload Manager (WLM)

Figure 49. Memory usage by class

This screen also allows the system administrator to directly edit and modify
the values in the different fields by clicking on the field whose value should be
changed. After changing one or more of the values, the administrator clicks
on Apply, waits a few minutes for the new settings to take effect, then clicks
on Refresh Actual to see the updated actual usage. If the new usage
numbers are not satisfactory, the administrator can repeat the process.

From this screen, the system administrator can also choose to monitor and
manipulate resource utilization at the subclass level. For that purpose, the
superclass whose subclasses are to be analyzed must be highlighted, and
the Show Subclasses option must be chosen. The output is similar to that
shown in Figure 49.

It is also possible in WSM to observe the processes classification on a
per-class basis. In the Configurations/Classes view, by right-clicking the
name of a class in a configuration tree, you get access to the classes options.
One of them is Show Processes, which launches a view of the allocated
Chapter 4. WLM performance tools 131

processes to the specified class. An example of the output of this option for a
class with the /usr/bin/vi process in it can be seen in Figure 50.

Figure 50. Show processes in WSM

4.6 Monitoring Workload Manager with PTX

Performance Toolbox (PTX) for AIX provides a high-level graphical user
interface for monitoring a wide variety of system resources. It can be used to
view and analyze AIX WLM information. These interfaces allow the user to
monitor the behavior of a WLM configuration, analyze trends, and record
activities.

A new parent context name, WLM, is added to the System Performance
Measurement Interface (SPMI). In PTX, the SPMI provides access to
hundreds of performance metrics. For each WLM class, it includes metrics
and associated properties (min, soft max, hard max, target, and actual
usage). Any metric available via the SPMI can be processed by the PTX
agents, recorded, filtered, and viewed by local or remote PTX clients.

There are no design limitations on the SPMI for two reasons:
132 AIX 5L Workload Manager (WLM)

• WLM already collects most of the data needed to provide performance
monitoring support.

• An API exists to retrieve data.

4.6.1 xmperf
xmperf is the primary Performance Toolbox Manager user interface.

This tool is used for monitoring any metric on local or remote systems. The
interface is composed of a set of instruments, with each instrument
containing one or more metrics. Instruments can be displayed in a variety of
styles (including lines, bars, pie charts, and speedometers). Each set of
metrics can be displayed at sampling periods measuring from under 1 second
to a half-hour.

The xmperf tool can also record and play back metric values for long-term
analysis.

Using xmperf has little impact on system performance because the SPMI
utilizes existing system calls to access the WLM information.

The standard xmperf menus allow users to select the metrics to be displayed.
Figure 51 on page 134, Figure 52 on page 135, and Figure 53 on page 136
show the hierarchy of WLM-related metrics.

Superclass configurations are defined as percentages of total system
resources. Subclass attributes, such as shares, min, and max, are defined
as percentages of the parent superclass allocations. However, PTX reports
all class resource usage as a percentage of the total system resource.

Note
Chapter 4. WLM performance tools 133

Figure 51. xmperf selection list for available classes

Selecting Statistics for WLM class System, takes you to a selection of the
resources that are available to the selected class, System, as shown in Figure
52 on page 135.
134 AIX 5L Workload Manager (WLM)

Figure 52. xmperf selection list for the previously selected classes resources

Selecting Statistics for WLM class CPU resource takes you to a panel where
you can select the resource attributes for the resource CPU for the class,
System, as shown in Figure 53 on page 136.
Chapter 4. WLM performance tools 135

Figure 53. xmperf selection list for the classes resource attributes

These xmperf selections built PTX monitoring consoles.

The following are some examples of typical PTX monitoring consoles. This
PTX console, shown in Figure 54 on page 137, displays two instrument
windows.
136 AIX 5L Workload Manager (WLM)

Figure 54. PTX console displaying CPU and class CPU metrics

The top instrument displays the CPU user, kernel, and wait metric values in a
stacked area format. Stacked metrics are added together and displayed in
separate colors. Here, user and kernel mode are each using about 50 percent
of the system.

The lower instrument displays the load of four WLM superclasses on system
CPU resource. The classes are stacked on top of each other in bar format.
This format shows their relative sizes to each other. For display purposes, the
upper scale is adjusted to 25 percent.

Both instruments are recording the data. In the PTX console, displayed in
Figure 55 on page 138, the colors are used to associate the real time bars
with the associated metric.
Chapter 4. WLM performance tools 137

Figure 55. PTX console displaying WLM class metrics in bar format

Here again, the upper scale for the lower instrument is adjusted to 25
percent. The lower instrument of the PTX console, shown in Figure 56 on
page 139, shows the WLM class metrics in a pie format.
138 AIX 5L Workload Manager (WLM)

Figure 56. PTX console displaying WLM class metrics in pie format

4.6.2 xmservd
The PTX Performance Aide consists of a set of agents and utilities for
collecting, filtering, recording, and reporting performance metrics. The
Performance Aide is required for the PTX Manager to view metrics remotely
over the network.

The Performance Aides primary agent is known as xmservd. This agent can
also record metrics specified in a configuration file. The configuration file
specifies the Metric name, start time, stop time, days to record, recording
frequency, and other items. Refer to the AIX Performance Toolbox User’s
Guide V1 and V2.1, SC23-2625, for more details on using the Performance
Aide to monitor a system. The HTML version of this guide ships with the base
AIX media, along with other standard documentation.
Chapter 4. WLM performance tools 139

Performance Aide recordings can be post-processed by the PTX Azizo and
ptxtab tools. The ptxtab tool allows users to convert the recording into a
comma- or tab-delimited spreadsheet format that can be imported into
third-party spreadsheet applications.

For more information please refer to:

AIX Performance Toolbox User’s Guide V1 and V2.1, SC23-2625

4.6.3 Performance Toolbox (PTX) Outlook
The following updates to PTX are planned for the first half of 2001:

• Customer interfaces to WLM for analyzing long-term performance: This
update will include interfaces for quick-look, detailed, and tabular formats.
Analysis fidelity will be measured in minutes and hours and time periods
from different parts of the day, week, or month can be compared to one
another.

• wlmmon
wlmmon: The tool will be shipped in the base AIX operating system as a
stand-alone java application. It can be started from Web-based System
Manager but will not use the Web-based System Manager framework.
Analysis fidelity will be measured in minutes and hours and time periods
can be analyzed within 6-24 hours of current time.

• Customer graphical user interface for monitoring real-time WLM activity.
Views will be based on the busiest WLM classes, resources, and
processes. This capability will be equivalent to a graphical version of the
topas tool, and will include recording and playback features.
140 AIX 5L Workload Manager (WLM)

Chapter 5. Manual assignment

The automatic assignment, used by WLM throughout its whole execution, is
based on five attributes to work. These attributes are the process’
characteristics used as classification criteria: User name, group name,
application pathname, process type, and application tag. Refer to Section
2.5.1, “Automatic assignment” on page 17, for more information on how
automatic assignment works. With these attributes as classification criteria, it
is practically impossible for WLM to automatically classify two instances of
the same application differently. Unless the application itself uses WLM’s API
routine, wlm_set_tag, to tag all its occurrences differently, all these attributes
will, most of the time, be equal throughout all instances of a process. For
example, different Oracle database instances in a system are normally
launched by the same user (therefore, having the same group), have the
same executable, and, of course, are of the same type. If application tagging
is not being used, WLM cannot place the database instances in different
classes, but, depending on the importance to the business that these
instances might have, the system administrator might want to assign the
resources throughout these processes differently. That is when manual
assignment joins the party.

Manual assignment is a feature introduced in AIX 5L. It allows system
administrators and applications to, at any time, override the traditional WLM
automatic assignment (processes’ automatic classification based on class
assignment rules) and force a process to be classified in a specific class. The
following sections focus on the description of manual assignment and on
some sample scripts that can be used to manually assign different instances
of some database products.

5.1 Description

The manual assignment can be made or canceled separately at the
superclass level, the subclass level, or both. In order to manually assign
processes to a class or cancel an existing manual assignment, a user must
have the right level of privilege (that is, they must be the root user or
adminuser/admingroup for the superclass or authuser/authgroup for the
superclass or subclass). A process can be manually assigned to a superclass
only, a subclass only, or to a superclass and a subclass of the superclass. In
the latter case, the dual assignment can be done simultaneously (with a
single command or API call) or at different times, possibly by different users.
© Copyright IBM Corp. 2000 141

A manual assignment will remain in effect (and a process will remain in its
manually-assigned class) until:

• The process terminates.

• WLM is stopped. When WLM is restarted, the manual assignments in
effect when WLM was stopped are lost.

• The class the process has been assigned to is deleted.

• A new manual assignment overrides a prior one.

• The manual assignment for the process is canceled.

In order to assign a process to a class or cancel a prior manual assignment,
the user must have authority both on the process and on the target class.
These constraints translate into the following:

• The root user can assign any process to any class.

• A user with administration privileges on the subclasses of a given
superclass (that is, the user or group name matches the attributes,
adminuser or admingroup, of the superclass) can manually reassign any
process from one of the subclasses of this superclass to another subclass
of the superclass.

• An user can manually assign his/her own processes (same real or
effective user ID) to a superclass and/or a subclass for which he or she
has manual assignment privileges (that is, the user or group name
matches the attributes, authuser or authgroup, of the superclass or
subclass).

This defines three levels of privilege among the persons who can manually
assign processes to classes, root, of course, being the highest. In order for a
user to modify or cancel a manual assignment, he or she must be at the same
level of privilege as the person who issued the last manual assignment or
higher.

5.1.1 First assignment
In this section, the first time assignment is described with a few examples:

The system administrator manually assigns process P1 from the superclass,
superA, to the superclass, superB. The automatic assignment rules for the
subclasses of the superclass, superB, will be used by WLM to determine
which subclass of the superB superclass the process is ultimately assigned
to. P1 will end up, for instance, in the subclass, superB.subA, and is flagged
as having a superclass only assignment.
142 AIX 5L Workload Manager (WLM)

A user with the right privileges assigns a process, P2, from its current class,
superA.subA, to a new subclass of the same superclass, superA.subB. P2 is
assigned to its new subclass and flagged as having a subclass only
assignment.

The WLM administrator of the subclasses of the superclass superB, can
decide to manually reassign the process, P1, to another subclass of superB,
for instance, subC. P1 will be reclassified into superB.subC and will be now
flagged as having both superclass and subclass level assignment.

5.1.2 Reassignment and cancellation
In this section, the reassignment and assignment cancellation are explained
with a few examples:

Suppose that the system administrator thinks that P2 should really be in a
superclass with more resource, and decides to manually assign P2 above to
the superclass, superC. Previously, P2 was manually assigned to the
subclass, subB, of the superclass, superA, with a subclass only assignment.
Since P2 is assigned to a different superclass, the previous manual
assignment becomes meaningless and is canceled. P2 now has a superclass
only manual assignment to the superclass, superC, and is assigned to a
subclass of superC using the automatic assignment rules.

Now, the system administrator decides to terminate the manual assignment
from P1 to the superclass, superB, set up earlier. P1's superclass level
manual assignment is canceled, and P1 is assigned a superclass using the
top level automatic assignment rules:

• If the rules have not changed, P1 will be assigned to the superclass,
superA (its original class), and its subclass level manual assignment to
superB.subC above becomes meaningless and is canceled.

• If for some reason the top level rules assign P1 in superclass superB, then
the subclass level assignment to superB.subC is still valid and remains in
effect. P1 now has a subclass only manual assignment.

The reassignment/cancellation of a manual assignment at the subclass level
is simpler and just affects the subclass level assignment.

5.1.3 Interaction with inheritance
When a process is manually assigned to a superclass and/or subclass with
the inheritance attribute set to yes, if the process is a process group leader,
WLM will attempt to reclassify all the processes in the process group.
Chapter 5. Manual assignment 143

So, the class inheritance attribute has two interpretations, depending on if we
are dealing with automatic or manual assignment. See Figure 57.

Figure 57. Inheritance in automatic and manual assignments

Let us describe how all this works together with a few examples:

Refer to Figure 58 on page 145 for an illustration of the first example:

1. Process A, classified into class1, which has inheritance set to yes,
launches the child processes, A1 and A2.

2. A1 and A2 get classified into class1 as well.

3. The system administrator manually assigns process A into class2, which
also has inheritance set to yes. A1 and A2 stay in class1.

4. Process A launches a new child process, A3, which gets classified in
class2.

5. The manual assignment of process A is cancelled. A goes back to class1,
and A3 stays in class2.
144 AIX 5L Workload Manager (WLM)

Figure 58. First example of manual assignment and inheritance interaction

Refer to Figure 59 on page 146 for an illustration of the second example:

1. Process B is the leader of a process group (PGID1) of which processes C
and D are members. Processes B, C, and D are automatically classified in
class1.

2. The system administrator manually assigns process B to class2, which, as
we know, has inheritance set to yes.

3. Processes C and D follow the process group leader B into class2.
Chapter 5. Manual assignment 145

Figure 59. Second example of manual assignment and inheritance interaction

There are cases where some of the processes in the process group will not
be reclassified to the new class of the group leader. For instance, if some of
the processes themselves have been manually assigned to their current
class, they will remain in their class.

5.2 Manual assignment methods

A process or a group of processes can be manually assigned to a superclass
and/or subclass using the WLM administration interfaces Web-based System
Manager (WSM) and SMIT, the command, wlmassign, or an application using
the WLM API function, wlm_assign.

Command line - wlmassign
The command used in WLM to perform manual assignments and
unassignments is wlmassign. The syntax of the command is:

wlmassign [-s | -S] [-u | class] [pid_list] [-gpgid_list]

The options to this command are:
146 AIX 5L Workload Manager (WLM)

-u Cancel any manual assignment in effect for the processes in
the pid_list or the pgid_list. If none of the -s or -S flags are
used, this cancels the manual assignments for both the
superclass and the subclass level.

-S To specify a superclass-only level assignment or
unassignment when used with a subclass name of the form,
supername.subclass.

-s To specify a subclass-only level assignment or
unassignment, when used with a subclass name of the form,
supername.subname.

-g pgid_list To indicate that the following is a list of pgids (and not pids,
which would be what the command would interpret by
default).

The wlmassign command is used to:

• Assign a set of processes specified by a list of process identifiers (pids)
and/or process group identifiers (pgids) to a specified superclass or
subclass, thus, overriding the automatic class assignment or a prior
manual assignment

• Cancel a previous manual assignment for the processes specified in
pid_list and/or pgid_list allowing the processes to be subjected to the
automatic assignment rules again.

The wlmassign command allows you to specify processes using a list of pids, a
list of pgids, or both. The format of these lists is pid[,pid[,pid[...]]] or
pgid[,pgid[,pgid[...]]], that is, comma (,) separated lists of pids and pgids.

The name of a valid superclass or subclass must be specified to manually
assign the target processes to a class. The assignment can be done or
canceled at the superclass level, the subclass level, or both. The processes
can be assigned to the superclass only by specifying the -S option or the
subclass only by specifying the -s option. For a manual assignment, if the
class name is the name of a superclass, the processes in the list will be
assigned to the superclass. The subclass will then be determined using the
assignment rules for the subclasses of the superclass. If the class name is a
subclass name, supername.subname, the processes will, by default, be
assigned to both the superclass and the subclass. The following are
examples from Table 2 on page 21:

1. To assign a process with pid 9846 to superclass VPs, enter:

wlmassign -S VPs 9846

or:
Chapter 5. Manual assignment 147

wlmassign VPs 9846

This is a superclass-only assignment. The assignment rules for superclass
VPs select a subclass for the process (for instance, Default)

2. To assign at the subclass level, the process with pid 9846 from VPs.Default
to VPs.editors, enter:

wlmassign -s VPs.editors 9846

or:

wlmassign VPs.editors 9846

This would become a superclass and subclass assignment.

3. To cancel the subclass level assignment of a process with pid 9846 (the
process still has the superclass level assignment staying, thus, in superclass
VPs and being submitted to the superclass assignment rules), enter:

wlmassign -u -s 9846

4. Finally, to cancel the superclass level assignment of a process with pid
9846 (making it be submitted to the general configuration assignment rules):

wlmassign -u -S 9846

SMIT
A process can be manually assigned in SMIT by accessing the
Assign/Unassign processes to a class/subclass screen or using the following
fastpath

smitty wlmassign

For instance, to manually-assign a process with pid 9846 to superclass VPs,
(from the example in Table 2 on page 21) and subclass editors, see Figure 60
on page 149.
148 AIX 5L Workload Manager (WLM)

Figure 60. Manual assignment in SMIT

To manually unassign the same process from the subclass editors of VPs
superclass, the administrator can assign it to another class or cancel its
subclass level assignment as shown in Figure 61.

Figure 61. Subclass level unassignment in SMIT
Chapter 5. Manual assignment 149

Finally, to unassign the same process from the superclass VPs altogether, the
system administrator can assign it to another class or cancel its superclass
level assignment, as shown in Figure 62.

Figure 62. Superclass level manual unassignment in SMIT

The PGID’s could have been used as well to perform the assignments and
unassignments.

WSM
In WSM, manual assignment and unassignment is done by right clicking the
configuration name to work with in the Configurations/Classes screen and by
choosing the Add or Remove Processes option as shown in Figure 63 on
page 151.
150 AIX 5L Workload Manager (WLM)

Figure 63. Manual Assignment in WSM

Applications - wlm_assign
An application can perform its own manual assignments and unassignments,
using, for that purpose, one of the WLM API routines: wlm_assign. For more
information about manual assignment in the API, see also Chapter 6, “WLM
Application Programming Interface (API)” on page 157, and Appendix A.6,
"WLM management" on page 236.
Chapter 5. Manual assignment 151

5.3 Examples

The examples described in this section focus mainly on well-known database
applications that are the most commonly-known programs running more than
one instance at the same time in the same system. Nevertheless, the scripts
supplied are general enough (or easily modifiable) to meet any application
whose behavior is similar to the examples.

5.3.1 Oracle example
Some databases, such as Oracle, for instance, change their processes to
show the instances name in them. With this facility, we can differentiate
Oracle’s several instances by the name their processes assume on the
process table. For example, if we have an Oracle instance, named wlmdb,
and another, named acct, running on the same machine, the output of ps -ef

| grep ora for their processes would be something like the following:

From this knowledge, it is possible to create a Korn shell script that would be
set to run at every boot of the system to classify these instances differently,
using manual assignment. This script should only be run when it is absolutely
certain that all the instances’s processes are up and running. A position close
to the end of /etc/inittab is recommended.

ps -ef | grep ora
oracle 35614 1 0 23:20:49 - 0:00 ora_dbwr_wlmdb
oracle 35872 1 0 23:20:49 - 0:00 ora_reco_wlmdb
oracle 36130 1 0 23:20:49 - 0:00 ora_pmon_wlmdb
oracle 36388 1 0 23:20:49 - 0:00 ora_smon_wlmdb
oracle 36654 1 0 23:20:49 - 0:00 ora_lgwr_wlmdb
oracle 63186 1 0 23:20:50 - 0:00 ora_d000_wlmdb
oracle 94736 1 0 23:20:49 - 0:00 ora_s000_wlmdb
oracle 35614 1 0 23:20:49 - 0:00 ora_dbwr_acct
oracle 35872 1 0 23:20:49 - 0:00 ora_reco_acct
oracle 36130 1 0 23:20:49 - 0:00 ora_pmon_acct
oracle 36388 1 0 23:20:49 - 0:00 ora_smon_acct
oracle 36654 1 0 23:20:49 - 0:00 ora_lgwr_acct
oracle 63186 1 0 23:20:50 - 0:00 ora_d000_acct
oracle 94736 1 0 23:20:49 - 0:00 ora_s000_acct
root 64040 85492 7 23:56:12 pts/21 0:00 grep ora

Keep in mind that all manual assignments are cancelled if WLM or the
applications are stopped. If, for any reason, the system administrator needs
to stop and restart WLM or any of the manually-assigned applications, the
manual assignments need to be remade by rerunning the script.

Note
152 AIX 5L Workload Manager (WLM)

A sample script for this situation is provided in Appendix C.1, "Oracle
example script" on page 259. Its functionality is described here.

Configuration file
The script uses a configuration file, which, for the sake of the example, is
/etc/wlm/ma.conf. The format of this configuration file is one line per required
manual assignment. These lines have the following format:

<Instance name> <Class> <Inheritance>

where:

• Instance name is the Oracle (or other application in a similar situation)
instance name.

• Class is the name of the classes to manually assign the processes to. This
name is supername for the superclasses and supername.subname for the
subclasses.

• Inheritance is a flag that is set to yes if the processes belonging to a
process group (whose leader is a process being manually assigned)
should be manually assigned as well. If the group members should stay in
the original class, this flag must be set to no.

Data structure
The script uses as data structure an array of three positions, named
MANUAL, where:

• Position 0 takes the instance name.

• Position 1 takes the class name.

• Position 2 takes the inheritance flag value.

Function
The script has one single function, named getpids(), which receives, as a
parameter, the instance name whose processes are to be manually assigned.
The function gets the processes’ IDs related to that instance (the ones that
have the instance’s name as part of their own name in the process table) and
returns them in the format of a comma (,) separated list.

Script process
For each line read from the configuration file, the script does the following:

• Sets the MANUAL array with the values read from the configuration file
(instance name, class name, and inheritance flag) and works with this
data structure.
Chapter 5. Manual assignment 153

• Saves the inheritance attribute value of the target class and sets it to its
new value.

• Invokes getpids() to get a comma (,) separated list of the PIDs to be
manually assigned, that is, the ones related to the instance in question.

• Manually assigns the list of processes to the target class.

• Reverts the inheritance attribute value of the target class to the saved one.

5.3.2 DB2 UDB example
Some databases, such as DB2 UDB, hold the name of the instance in one of
their processes’ environmental variables. For DB2 UDB, for instance, the
variable is called DB2INSTANCE. This way, we can differentiate the
processes running under each instance by checking their environment
DB2INSTANCE variable. For example, if 31538 is the PID for a db2resyn

process, its environmental variables could be seen through the following
command:

From this knowledge, it is possible to create a Korn shell script that would be
set to run at every boot of the system to classify these instances differently,
using manual assignment. This script should only be run when it is absolutely
certain that all the instance’s processes are up and running. A position close
to the end of /etc/inittab is recommended.

A sample script for this situation is provided in Appendix C.2, "DB2 UDB
example script" on page 260. Its functionality is described here:

ps eww 31538
PID TTY STAT TIME COMMAND

31538 - A 0:04 db2resyn DB2COMM=TCPIP DB2INSTANCE=db2
HOME=/usr/db2 LANG=en_US PWD=/usr/db2 TZ=CST6CDT USER=db2
PATH=/usr/db2/sqllib/bin:/usr/db2/sqllib/adm:/bin:
LIBPATH=/usr/db2/sqllib/lib:/usr/db2/sqllib/function:

Keep in mind that all manual assignments are cancelled if WLM or the
applications are stopped. If, by any chance, the system administrator
needs to stop and restart WLM or any of the manually assigned
applications, the manual assignments need to be re-made by re-running
the script.

Note
154 AIX 5L Workload Manager (WLM)

Configuration file
The script uses a configuration file, which, for the sake of the example, is
/etc/wlm/ma.conf. The format of this configuration file is one line per required
manual assignment. These lines have the following format:

<Instance name> <Class> <Inheritance>

where:

• Instance name is the DB2 UDB (or other application in a similar situation)
instance name.

• Class is the name of the classes to manually assign the processes to. This
name is supername for the superclasses and supername.subname for the
subclasses.

• Inheritance is a flag that is set to yes if the processes belonging to a
process group (whose leader is a process being manually assigned)
should be manually assigned as well. If the group members should stay in
the original class, this flag must be set to no.

Data structure
The script uses, as a data structure, an array of three positions, named
MANUAL, where:

• Position 0 takes the instance name.

• Position 1 takes the class name.

• Position 2 takes the inheritance flag value.

The variable APP is a string that characterizes the application in the process
table. In the DB2 UDB example, it is set to db2.

The variable, VARIABLE, holds the name of the environmental variable that is
to be used. In the DB2 UDB example, it is set to DB2INSTANCE.

Function
The script has one single function, named getpids(), which receives as
parameter, the instance name whose processes are to be manually-assigned.
The function gets the processes’ IDs related to that instance (the ones that
have the name of that instance associated with the environmental variable
pointed to by VARIABLE) and returns them in the format of a comma (,)
separated list.

Script process
For each line read from the configuration file, the script does the following:
Chapter 5. Manual assignment 155

• Sets a MANUAL array with the values read from the configuration file
(instance name, class name, and inheritance flag) and works with this
data structure

• Saves the inheritance attribute value of the target class and sets it to its
new value

• Invokes getpids() to get a comma (,) separated list of the PIDs to be
manually assigned, that is, the ones related to the instance in question

• Manually assigns the list of processes to the target class

• Reverts the inheritance attribute value of the target class to the saved one

5.4 Conclusion

Wrapping up the subject of manual assignment, it must be regarded as a very
useful increment to WLM’s automatic functionality. In WLM’s first release, all
the instances of a database were classified in the same manner, disregarding
the importance each one of them could have to the business. Manual
assignment comes forth to bring additional classification options (providing
more flexibility of control over some important applications) essential to
successful server consolidation.
156 AIX 5L Workload Manager (WLM)

Chapter 6. WLM Application Programming Interface (API)

The AIX Workload Manager Application Programming Interface (API) is
comprised of a set of routines in the /usr/lib/libwlm.a library. These routines
provide applications with the capability to perform all the tasks a WLM
administrator can carry out using the WLM commands, that is, create,
change, and remove classes, manually assign processes to specific classes
and get WLM statistics. In addition, a routine, wlm_set_tag, allows an
application to set up a process tag and specify whether this tag should be
inherited by child processes at fork and/or exec times. The library provides
support for multi-threaded 32 or 64 bit applications. Refer to Appendix A.1,
"The Include file - sys/wlm.h" on page 217, for a technical description of the
sys/wlm.h header file.

The API routines have the additional ability (over WLM commands’ regular
functionality) to make changes only to the currently-running configuration
(in-core) data in the kernel, not saving them into the property files (thus, not
making them available after restarting WLM). These changes can only be
seen while existing in the directory that holds the image of the running
configuration, /etc/wlm/.running.

The application programmer must be aware that there are some initialization
routines in the API that must be run before any others. Refer to Appendix A.3,
"Initialization routines" on page 227, for the technical description of the
initialization routines.

6.1 Application tag

The application tag interface, wlm_set_tag, is a technique provided to the
applications that want to have some level of control over how their various
instances are classified, such as databases, for example. The tag is a string
of characters that is used as one of the classification criteria for the automatic
classification of processes (using the rules file). This, basically, provides a
process with an additional classification condition to add to the already
defined ones, such as user, group, application pathname, and process type.
Refer to Appendix A.4, "Application tag" on page 229 for a technical
description of the wlm_set_tag routine.

6.1.1 Description
When an application process sets its tag, it is immediately reclassified using
the superclass and subclass rules in effect for the currently-active WLM
configuration. WLM goes through the assignment rules looking for a match
© Copyright IBM Corp. 2000 157

using all the process attributes, including the new tag. In order to be effective,
this tag must appear in one or more of the assignment rules. This means that
the format and the use of the various tags each application might create must
be clearly-specified in the application's administration documentation. This
way, WLM administrators get to know all the choices of values a specific
application tag might take and can use them in their assignment rules to
distinguish between different instances of the same application.

Different system administrators might have different requirements depending
on what set of application process characteristics they want to use to classify
them. It is recommended that the application provide a set of configuration or
runtime attributes that could be used to build the tag. This would provide the
application administrator with the ability to specify the format of this tag to the
application. The attributes that can be used for the tag and the syntax to be
used to specify the format of the WLM tag are application dependent and are
the responsibility of the application provider.

6.1.2 An application tag situation
Let us suppose that an instance of a database server is able to determine
which database is working on db_name and through which TCP port,
port_num, a given user is connected. Some WLM administrators may want to
create different classes for processes accessing different databases and give
each class different resource entitlements. Others might want to separate the
processes serving remote requests from different origins and use the port
number as a classification attribute. Others might want both and create one
superclass for each database and subclasses per port numbers in each
superclass. A way of accommodating these different needs would be to
specify the content and format of the tag. We can imagine, for the sake of the
example, that this could be passed to the application in a configuration file or
runtime parameter, such as:

WLM_TAG=<$db_name> or WLM_TAG=<$port_num>

or

WLM_TAG=<$db_name>_<$port_num>

When setting its tag, an application can specify whether or not it will be
inherited by its children so that all the processes spawned by a specific
instance of an application can be classified in the same class. Setting the tag
inheritance is probably how the application tag will be used most of the time.

Taking the example of a database, here is how application tags can be used:
158 AIX 5L Workload Manager (WLM)

Consider Table 2 on page 21, where the provider of a database server
application could have specified that the tag would be the database name.
Then, two instances of the server working on two different databases would
set up two different tags, for instance, _db1 and _db2. A system administrator
could create two different classes, db1 and db2 and classify the two database
servers (and all their children if tag inheritance is used) in these classes using
the tags. It would then be possible to give each class a different resource
entitlement according to specific business goals.

The corresponding assignment rules could look like:

* class resvd user group application type tag
*
db1 - - - /usr/oracle/bin/db* - _db1
db2 - - - /usr/oracle/bin/db* - _db2

6.1.3 Example of an application tag program
A simple program to launch an application with a specified tag in provided in
Appendix D, "Sample program for application tag" on page 263. Let us say
the program is called settag, and its syntax is:

settag tag_name program_name

where:

tag_name is the string we want to tag the application with.

program_name is the application to be tagged.

Basically, the program procedure is:

• Run wlm_initialize, which is required before using any other API routine
(refer to Appendix A.3, "Initialization routines" on page 227, for a technical
description of the initialization routines).

• Run wlm_set_tag, to set the application tag. The flags argument of this
routine is set in such a way that child processes of settag inherit the tag at
exec and fork times.

• Launch the application, which inherits the tag from its parent, settag.

With this program, a system administrator can launch any application
explicitly tagged and let WLM automatically classify it using, for that purpose,
the rules that should have been previously created to handle the application
tags.
Chapter 6. WLM Application Programming Interface (API) 159

As a usage example of this program, let us consider a Korn shell script, test,
that simply issues a sleep command. The following rule was created to
classify this process in the class, myclass, when issued with the _mytag tag:

myclass - root - test - _mytag

The next screen exhibits the test performed and the output obtained:

• First, the settag program was run to launch and tag the test process with
_mytag.

• The ps command was used to check the classification and tagging
process.

• Second, the settag program was run again to launch and tag the test
process with _notag.

• The ps command was used to check the classification and tagging
process.

Note that, in the first settag run, the process, test, and the child process,
sleep, were classified correctly in the myclass superclass. The second time
settag was run, both processes were classified in the System class because
there is no rule for tag _notag, and root was being used in the tests. This
demonstrates how an application can provide differentiation between its
various instances using application tagging:

6.2 Class management

The WLM API provides applications with the ability to:

• Query the names and characteristics of the existing classes of a given
WLM configuration (wlm_read_classes)

• Create a new class for a given WLM configuration and define the values of
the various attributes of the class (tier, inheritance, adminuser,

settag _mytag test &
ps -ae -o class,pid,ppid,tag,args |grep tag |grep -v grep |grep -v ps
myclass.Default 2270 7324 _mytag sleep 100
myclass.Default 7324 12192 _mytag sh -- test
settag _notag test &
ps -ae -o class,pid,ppid,tag,args |grep tag |grep -v grep |grep -v ps
myclass.Default 2270 7324 _mytag sleep 100
myclass.Default 7324 12192 _mytag sh -- test
System 9214 17192 _notag sleep 100
System 17192 12192 _notag sh -- test
160 AIX 5L Workload Manager (WLM)

admingroup, rset, authuser, and authgroup) and the shares and limits for
the resources managed by WLM, such as CPU, physical memory, and disk
I/O (wlm_create_class)

• Change the characteristics of an existing class of a given WLM
configuration, including the class attributes and resource shares and limits
(wlm_change_class)

• Delete an existing class of a given configuration (wlm_delete_class).

The changes will be applied only to the property files of the specified WLM
configuration. Optionally, by specifying an empty string as the configuration
name, it is possible to apply the change only to the currently-running classes
resulting in an immediate update of the state of the active configuration.

The API calls require the same level of privilege from the caller that would be
required for the command line, SMIT or WSM interfaces:

• Any user can read the class names and characteristics.

• Only root can create/modify/delete superclasses.

• Only root or designated superclass administrators (superclass attributes,
adminuser and admingroup) can create/modify/delete subclasses of a
given superclass.

In cases where WLM administration is done both through the command line
and administration tools by WLM administrators and by applications through
the API, some caution must be applied. Both interfaces share the same name
space for the superclass/subclass names and the total number of
superclasses and subclasses. In addition, when the API directly modifies the
currently-running (in-core) WLM data (create new classes, for instance), the
WLM administrators are not aware of this until they see classes they did not
create appear on the output of commands, such as wlmstat. In order to avoid
conflicts that would confuse the applications using this API, the classes
created through the API that are not defined in the WLM property files are not
automatically removed from the in-core data if the system administrator
updates WLM. They remain in effect until explicitly removed through the
wlm_delete_class routine or through an invocation of the rmclass command
(invoked directly or through SMIT or WSM by the system administrator).

Refer to Appendix A.5, "Class management" on page 230, for technical
descriptions of the class management routines.
Chapter 6. WLM Application Programming Interface (API) 161

6.3 WLM management

The WLM API also provides applications with the ability to:

• Query/change the mode of operation of WLM using the wlm_set function.

- Query the current status of WLM.

- Stop WLM.

- Switch from active to passive mode and vice-versa.

- Turn the rset binding on and off.

• Start/update WLM, using the current (or an alternate) configuration, with
wlm_load routine.

• Assign a process or a group of processes to a class using the wlm_assign

routine.

Here again, the API requires the same levels of privilege as the
corresponding command line interfaces, wlmcntrl and wlmassign:

• Any user can query the state of WLM.

• Only root can change the mode of operation of WLM.

• Only root can update/refresh a whole configuration.

• Only root or an authorized superclass administrator
(adminuser/admingroup) can update WLM for the subclasses of a given
superclass.

• Only root, an authorized user (specified by authuser/authgroup) or an
authorized superclass administrator (adminuser/admingroup) can assign
processes to a superclass and/or subclass.

Refer to Appendix A.6, "WLM management" on page 236, for technical
descriptions of WLM management routines.

6.4 WLM statistics

The WLM API routines wlm_get_info and wlm_get_bio_stat provide
applications with access to the WLM statistics displayed by the wlmstat

command.

Refer to Appendix A.7, "WLM statistics" on page 241 for technical
descriptions of WLM statistics routines.
162 AIX 5L Workload Manager (WLM)

6.5 WLM classification

The API, routine wlm_check, allows to check the class definitions and the
assignment rules for a given WLM configuration.

The API routine wlm_classify allows an application to find out which class a
process with a specified set of attributes would be classified to.

Refer to Appendix A.8, "WLM classification" on page 246 for technical
descriptions of WLM classification routines.

6.6 Binary compatibility

In order to provide binary compatibility, in the future, if there are any changes
in the data structures, each API call receives a version number as one of the
parameters. This will allow the library to determine which version of the data
structures the application has been built with and read and/or write the
correct data.

6.7 Integration with Tivoli products

By itself, WLM does not allow a system administrator to monitor the
performance of an application. It can only work with system resources’ usage
and monitor if that usage is above or below the defined targets. However, an
integration of the WLM API with Tivoli Application Performance Management
(TAPM) can bring the best of the two worlds together: Monitoring an
application’s availability and response time and its behavior at the system
level (resource usage).

6.7.1 TAPM overview
TAPM focuses on two different approaches to measure applications
availability and response time: Application instrumentation and transaction
simulation. Both methods consist of using the TAPM Application Response
Measurement (ARM) API routines.

6.7.1.1 Application instrumentation
The application instrumentation approach focuses on changing the
application code to include ARM API function calls. This method has the
advantage of giving the application control over what is monitored and when
but has the obvious drawback of the unavailability of the application’s source
code to many customers.
Chapter 6. WLM Application Programming Interface (API) 163

An example of application instrumentation would be to measure the
end-user’s response time, which could be defined as the time between the
user submitting the transaction and the screen refreshing with the result.
In order to measure the end-user’s response time, ARM API calls that start
and stop the TAPM agent timer have to be placed in the application code
around the user transaction. In other words, an arm_start call must be made
when the user clicks on the submit button, and an arm_stop call must be made
when the screen refreshes.

The time the server component of the transaction takes could be measured in
the same way.

6.7.1.2 Transaction simulation
In the second approach, meant for when the application’s source code is not
available, typical end-user transactions are collected in a script for simulation
purposes. This script is edited to include the ARM API function calls, just like
the application instrumentation approach. The script is then set to run
periodically from a dedicated client, simulating the chosen transactions. The
measurements it provides are good approximations of real end-user
experience.

6.7.2 TAPM and WLM
In both approaches described in the previous section, the WLM API can work
together with the ARM API to gather statistics of both system resources
usage and response times on an AIX application environment. This can help
to determine if an application performance bottleneck resides in the
application itself or in a less appropriate configuration of resource targets for
the application class. The WLM API calls to gather these statistics are
wlm_get_info and wlm_get_bio_stat. Refer to Appendix A.1, "The Include file -
sys/wlm.h" on page 217, for a description of the routines’ data structures and
to Appendix A.7, "WLM statistics" on page 241, for a technical description of
the routines.

6.7.3 Monitoring an application in a WLM and Tivoli environment
In this section, the steps of the process of monitoring an application and
using WLM and Tivoli products together are described.

The first step is to determine what to monitor and when:

• Which transactions within the application are to be studied?

• Which approach is to be used?

• At what time of day should the monitoring process run?
164 AIX 5L Workload Manager (WLM)

• What sort of system resource statistics are to be collected?

After the planning is done, the chosen method is applied. Applications are
instrumented or scripts are written using the WLM and ARM API calls to
collect the chosen statistics and performance measurements.

At this time, the instrumented applications or scripts need to be registered
within the Tivoli environment and added to TAPM profiles before distributing
them to any specific endpoints. The subsequent profile distribution will make
the scripts or instrumented applications generate data. This data is stored in
an external database, and, with the use of Tivoli Decision Support (TDS),
reports can be generated from it.

The Distributed Monitoring agent provided with TAPM also enables you to
detect and act upon any exceptions that might occur. These events can be
forwarded to the Tivoli Enterprise Console (TEC). Examples of events
needing immediate action would be a critical application getting resources
way below its target (thus, presenting really low performance) or another
process starving all other applications of a particular resource.

This process is briefly represented in Figure 64:
Chapter 6. WLM Application Programming Interface (API) 165

Figure 64. WLM and Tivoli interaction

6.8 Summary

The WLM API provides the applications with the ability to:

• Perform regular WLM and class administration tasks

• Tag processes to extend the range of classification criteria

• Gather resource usage statistics

With Tivoli product interaction, WLM’s monitoring functionality can be
extended to an application performance oriented one.
166 AIX 5L Workload Manager (WLM)

Chapter 7. Sizing recommendations for Workload Manager

The introduction of Workload Manager has greatly enhanced not only the
functionality of AIX, but also helps to more efficiently use the capacity of
RS/6000 servers. WLM provides the means to use otherwise wasted
“overcapacity” without impairing the performance requirements of the primary
workload(s). However, only after proper sizing and control of the nature and
behavior of the workload mix will you achieve the expected improvement in
overall system usage.

This chapter will suggest some recommendations for system capacity sizing
when using AIX WLM. It does not deal with the sizing theories for individual
applications.

7.1 Typical UNIX system capacity sizing

Few production UNIX systems have an average utilization of more than 70
percent (often more than 80 percent is considered resource constrained).
Moreover, it is not surprising to find that the average utilization of most UNIX
systems is below 40 percent. This is chiefly due to the following reasons:

• System sizing should be based on the highest expected peak load, not on
the average workload.

• Generally, we want to have a generous amount of buffering capacity, often
more than 20 percent, in addition to the top peak load.

• The duration of peak load time is, usually, not long.

• In most cases, a UNIX server is dedicated to only one application service,
thus, producing a single pattern of peak loads.

The typical UNIX system resource utilization, therefore, is similar to that
shown in Figure 65 on page 168. Actually, a substantial percentage of the
total system resource is wasted in most UNIX systems, just in preparation for
some peak loads that do not last long.

These peak loads cannot simply be ignored. When there is an unexpected
peak of heavy workload whose resource consumption exceeds the system
capacity, we often experience a duration of system hang-up until the load is
over. This is one of the system administrator’s nightmares. So, even if system
resource utilization is quite low, a system large enough to survive such peak
workloads without a hang-up has to be prepared.
© Copyright IBM Corp. 2000 167

7.2 Considerations about server consolidation

The key to right-sizing a UNIX system is to eliminate that wasted capacity. It
would not be practical to try to change the behavior of the application itself.
Nor would it be acceptable to force the service users not to produce those
peak loads.

One of the more reasonable solutions to this problem is to combine multiple
application services with different system resource utilization patterns into a
single server. By doing that, multiple patterns of peak loads can be combined
to produce a greater average system usage.

Figure 65. A typical CPU usage of a UNIX system running a single application service

Integrating multiple applications that run on separate, single systems into one
system of larger capacity is part of a server consolidation solution. Running
multiple applications on one server of larger capacity has many pros and
cons.

The pros are:

• Only one instance of OS is required, thus, saving the resources needed for
multiple OS instances, such as memory and disk space.

• More flexible utilization of system resources.

• The total cost of ownership is decreased (that is, less maintenance cost
and less manpower).

• Even though there is more complexity in the system being administered,
there are fewer systems to be maintained (for operating system updates,
for instance).

Time

0

10

20

30

40

50

60

70

80

C
P

U
us

ag
e

%

Appl. A
168 AIX 5L Workload Manager (WLM)

• Simpler architecture than that of distributed server systems.

The cons are:

• Running more than one application service in one system can lead to
resource contention among the applications, thus, degrading the
performance of critical services or workloads.

• It is not always possible to limit the resource usage of some applications
that are not mission-critical or tend to take up all the available system
resources.

• If the system fails due to OS or other application errors, all other services
are lost.

• If one application crashes or goes out of control, the other applications
may be brought down due to it.

Many of these problems against server consolidation can be overcome with
the modern UNIX technologies. The availability problems can be addressed
by UNIX clustering technologies, such as HACMP for AIX. The resource
contention problems can be solved by using a workload management
solution.

The main reason for performance degradation when running multiple
applications in a single system is the resource contention between
applications. AIX WLM can effectively isolate applications by controlling the
resource allocation algorithm of the UNIX scheduler, virtual memory manager
(VMM), and the bandwidth of disk devices so that applications of more
importance can be configured to receive preferential allocation of resources
compared to less important ones.

To learn what functionality Workload Manager provides for integrating
multiple applications on single systems, refer to Chapter 2, “AIX Workload
Manager functionality” on page 7.

7.3 System capacity sizing for Workload Management

Workload Management can be very useful in terms of system capacity usage
in two ways:

• WLM can help, by integrating multiple applications on a single server, to
utilize the unused portion of system resource that would be wasted just in
preparation for the peak loads if the applications ran on separate
individual systems.
Chapter 7. Sizing recommendations for Workload Manager 169

• WLM automates the process of (re-)scheduling system resources
allocated to lower priority workloads back to high priority (critical)
workloads whenever these enter their peak load period. This reallocation
process can be so extreme that low priority jobs seem to be stopped.
Therefore, the system should be sized sufficiently to handle the combined
peak loads of critical workloads. Although some buffering (that is, extra
resources) may still be desired to meet increasing resource requirements
by critical applications, the amount of consolidated buffer space can be
less than the combined buffers of individual systems.

7.3.1 System capacity sizing steps for server consolidation
One method of estimating the required system capacity for server
consolidation is explained here. It should be noticed that this is just one of
many methods of system sizing and that the method explained here may not
be applicable to all cases. Basically, this method is based on the highest peak
load of the monitored application. It is assumed that each existing application
is running on its dedicated system.

7.3.1.1 Step 1 - Monitor resource usage
First, monitor for a sufficiently long period to get a distribution of workload
load levels. The maximum load is an important statistic. A second important
statistic is the average load exclusive of peak loads (for instance, 0-5 percent
or 20 percent versus 80 percent peak load). Each of these levels has to be
described according to their period and distribution over the day, week, and/or
month.

Wherever possible, identify patterns related to the business cycle (Monday,
Friday, weekend, end of month, end of quarter, end of business year). For
example, in the banking business, there can be some days in a month on
which the systems are used much more than on others.

The existing systems may be underutilized or overutilized. If the system is
overutilized, that is, if the application requires more resource than is available
in the current system, you cannot obtain the exact value of the highest peak
load for that application. In that case, a test system with a larger capacity may
be used, or the theoretical peak load has to be extrapolated using the
monitored data.

As a result, a resource usage data table, such as the one in Appendix E,
"Sample for CPU resource usage calculation" on page 265, can be obtained.

It is recommended that you draw a graph, such as the one shown in Figure 66
on page 174, for each application using the resource usage data.
170 AIX 5L Workload Manager (WLM)

7.3.1.2 Step 2 - Estimate the requirements for each application
The calculations to be done for such an estimation are:

• Minimum required capacity (AR)

• Resource Utilization Percentage (RUP)

• Average resource utilization percentage (ARUP)

Minimum required capacity (AR)
For a consolidated system, first build a table without regard to buffering.

The system sizing buffer is an estimate of the additional resources needed to
handle:

1. Concurrent critical applications growth

2. Concurrent (though lower priority) resources for other workloads during
critical application peak load requirements.

The minimum required capacity for each application is calculated by adding
the estimated buffer to the highest peak load observed.

The minimum required system capacity, which is further on in this example
used as the total available system resource, is calculated with the following
formula

AR = Minimum Required System Capacity, in the following used as the Total
Available System Resource.

HP = The highest peak load.

BF = The buffering factor as a percentage of the total capacity need.

Assume that this application is run on the system of this estimated capacity.

Resource Utilization Percentage (RUP)
Then, the Resource Utilization Percentage (RUP) of the application on this
system of the estimated capacity can be calculated using the resource usage
graph displayed in Section 7.3.1.1, “Step 1 - Monitor resource usage” on page
170, as follows:

AR HPx 100 BF+()
100

--=

RUP URxLTU()
ARxTUxLTU()

·

x100=
Chapter 7. Sizing recommendations for Workload Manager 171

UR = Actually used resource during the period (colored area under the
usage curve of the example graph). UR can be calculated by adding
the values of the resource usage measured at each measuring point.

AR = Total Available System Resource calculated earlier as the Minimum
Required System Capacity (total area of the example graph).

TU = Number of time units during the monitoring period.

LTU = Length of Time Unit. If the monitoring interval is, for instance, set to
seven seconds, the Length of Time Unit (LTU) is 7.

Average resource utilization percentage (ARUP)
The overall average of the resource utilization percentage of the multiple
systems is calculated as follows:

SUR = Sum of actually-used resources per system during the measuring
period accommodating all the applications on one system.
This value is obtained by adding up the values of each system’s Total
Actually Used Resource (UR) and is the sum of the colored areas
under the usage curves of the graphs in the example.

SAR = Sum of total available resources of all the systems or the sum of the
total required system capacity for accommodating all the applications
on one system.
This value is obtained by adding up the values of each system’s
Minimum Required System Capacity (AR) and is the sum of total
areas of the graph boxes in the example.

TU = The number of time units during the monitoring period

7.3.1.3 Estimate the capacity for integrated applications
In this step, the minimum required capacity of a single system required for
integrated applications is estimated.

Taking the sum of individual resource usage values of all the applications at
one of the measurement points gives the expected resource usage value of
the applications integrated into one system at the same measurement point.
Repeating this at all measurement points produces a table of the expected
resource usage data when the applications are integrated into one system,
such as the one that is obtained for each separate application by actual
monitoring in Section 7.3.1.1, “Step 1 - Monitor resource usage” on page 170.

ARUP SUR
SARxTU()-----------------------------x100=
172 AIX 5L Workload Manager (WLM)

An expected resource usage graph, such as the one shown in Figure 70 on
page 178, can be obtained from this.

The minimum required capacity and the resource utilization percentage for
integrated applications are calculated as described in Section 7.3.1.1, “Step 1
- Monitor resource usage” on page 170.

7.3.2 Examples
The following examples give a good illustration of the capacity usage benefit
using the WLM solution.

The resource usage data table used in these examples is available in
Appendix E, "Sample for CPU resource usage calculation" on page 265. The
time unit used in the table is 10 minutes, and the number of this time unit
monitored here is 50. Thus, the total monitoring duration is 500 minutes. It
should be noticed that the minimum monitoring period has to be at least 24
hours in actual cases. The length of 500 minutes is used here just for
simplicity of the example.

The examples here are about the CPU resource only. Considerations for
memory and disk I/O bandwidth are discussed in Section 7.3.3,
“Considerations for memory and disk I/O bandwidth” on page 181.

7.3.2.1 Base line - Applications running on separate systems
For example, assume that there are four different applications that have the
CPU usage patterns shown in the following four figures.

Application A, shown in Figure 66 on page 174, exhibits short, pronounced
peak loads.
Chapter 7. Sizing recommendations for Workload Manager 173

Figure 66. CPU usage pattern of Application A

Application B, shown in Figure 67, shows workload increasing and
decreasing gradually over time.

Figure 67. CPU usage pattern of Application B

Application C, shown in Figure 68 on page 175, can be a good example of a
nightly batch job.

Time
0

20

40

60

80

100

C
P

U
us

ag
e

%

App. A

Time
0

20

40

60

80

100

C
P

U
us

ag
e

%

App. B
174 AIX 5L Workload Manager (WLM)

Figure 68. CPU usage pattern of Application C

Application D, shown in Figure 69, has a comparatively flat, constant resource
usage pattern.

Figure 69. CPU usage pattern of Application D

Assume the capacity of the system on which these individual applications are
running is10,000 tpm (transactions per minute). Because the system capacity
is 10,000 tpm, each percentage value in the graphs is easily converted, by

Time

0

20

40

60

80

100

C
P

U
us

ag
e

%

App. C

Time
0

20

40

60

80

100

C
P

U
us

ag
e

%

App. D
Chapter 7. Sizing recommendations for Workload Manager 175

multiplying by 100, to the actual tpm value that was consumed by each
application at the moment of measurement.

The highest peak loads of the applications are as follows:

• Application A: 5,600
• Application B: 3,400
• Application C: 5,700
• Application D: 1,900

The minimum required system capacity for each of the applications, based on
the highest peak loads with a moderate buffering factor of 20 percent would
be:

• Application A: 5600 X 1.2 = 6,700 tpm

• Application B: 3400 X 1.2 = 4,100 tpm

• Application C: 5700 X 1.2 = 6,800 tpm

• Application D: 1900 X 1.2 = 2,300 tpm

The values below one hundred are rounded here.

If these four applications are run on four individual servers dedicated to each
application, the total CPU power needed for these four applications will add
up to 19,900 tpm.

Total CPU power = the sum of CPU power of individual systems

= 6,700 + 4,100 + 6,800 + 2,300 = 19,900

The overall CPU utilization percentages of each application that runs on its
dedicated individual system that has the respective minimum required system
capacity calculated above are calculated as follows:

Resource utilization percentage = (UR / (AR X TU)) X 100

(See Section 7.3.1.2, “Step 2 - Estimate the requirements for each
application” on page 171, for detailed information about this calculation.)

• Application A: (86800/(6700X50)) X 100 = 26 percent

• Application B: (111600/(4100X50)) X 100 = 54 percent

• Application C: (73600/(6800X50)) X 100 = 22 percent

• Application D: (74500/(2300X50)) X 100 = 65 percent
176 AIX 5L Workload Manager (WLM)

You can notice that the less variance the CPU resource utilization pattern
shows along with time, the higher overall resource utilization percentage we
get.

The average resource utilization percentages of the four systems are
calculated as follows:

The average resource utilization percentage = (SUR / (SAR X TU)) X 100

(See Section 7.3.1.2, “Step 2 - Estimate the requirements for each
application” on page 171, for detailed information about this calculation.)

The average resource utilization percentages of the four systems
= ((86800+111600+73600+74500) / ((6700+4100+6800+2300)X50)) = 35
percent

7.3.2.2 Approach 1 - All applications are mission-critical
Now, consider using WLM to integrate the four applications on a single
server. It is assumed that WLM can address all the obstacles against the
application integration on a single system. Then, the usage pattern shown in
Figure 70 on page 178 is obtained.

In this case, the minimum required system capacity for the integrated
applications based on the highest peak load, with the same buffering factor of
20 percent as before, is estimated as follows:

• The highest peak load in Figure 70 on page 178 is 9700.

• The minimum required capacity = 9700 X 1.2 = 11,600 tpm

The overall CPU usage percentage on the server of this capacity during the
given time span would be:

Resource utilization percentage = (UR / (AR X TU)) X 100

(See Section 7.3.1.2, “Step 2 - Estimate the requirements for each
application” on page 171, for detailed information about this calculation.)

Resource utilization percentage

= (86800+111600+73600+74500)/(11600X50) X 100 = 60 percent
Chapter 7. Sizing recommendations for Workload Manager 177

Figure 70. CPU usage pattern of applications integrated on a single server

7.3.2.3 Approach 2 - Only some of the applications are important
The capacity usage benefit of WLM becomes manifest when some of the
integrated applications are not mission-critical. If WLM is not used, the
system does not offer any practical method to give the higher priority to the
more important applications. As a consequence, if the system resource is
running short, all applications will contend for the resource, thus, hurting the
performance of all applications. To guarantee the performance of some
mission-critical applications, the required system capacity has to be
estimated based on the top peak load, usually with some percentage of buffer
capacity in case of unexpected heavy workloads, even if their duration is
short.

The required system capacity can be reduced using WLM, if the performance
of some of the integrated applications is not important. WLM can effectively
control the resource allocation to each application, with its shares, limits, and
tiers, to guarantee the performance of mission-critical applications. Of course,
this makes sense only if the performance degradation of the other
applications is acceptable to the business.

For example, in Figure 70, assume that Application B and Application D do
not require prompt response or output and that only the response time of
Application A and the processing time of Application C are important. Then,
the required capacity is estimated (with a generous buffering factor of 40
percent) as follows:

Time

0

20

40

60

80

100

C
P

U
us

ag
e

% App. D

App. C

App. B

App. A
178 AIX 5L Workload Manager (WLM)

The required capacity

= (the top peak of (Application A + Application C)) X 1.4

= 6,500 X 1.4 = 9,100 tpm

Because there are several points at which the total required CPU resource
exceeds this value, without WLM, all the applications will be slowed down.
However, by using WLM and placing Application A and Application C in a
higher tier than the others, we can isolate the important applications from the
others. At those points where resource is running short, only Application B
and Application D are slowed down, which is acceptable to the overall
business operation.

In this case, the overall resource utilization percentage is calculated as
follows:

Resource utilization percentage = (UR / (AR X TU)) X 100

(See Section 7.3.1.2, “Step 2 - Estimate the requirements for each
application” on page 171, for detailed information about this calculation.)

Resource utilization percentage

= ((86800+111600+73600+74500)/(9100X50)) X 100 = 76 percent

7.3.2.4 Comparison of the cases
You can clearly see the capacity usage benefit of server consolidation using
WLM, as shown in Table 4 on page 180.

If you use four individual systems for your applications, you have to pay for
four systems with the total capacity of 19,900 tpm, and you will be using only
35 percent of the total available resource. However, if you decide to integrate
the applications into one system using WLM, you will need a system of
11,600 tpm, and the overall utilization will be up to 60 percent. Granted that
only the performance of Application A and Application C is important, you can
Chapter 7. Sizing recommendations for Workload Manager 179

cut the estimate down to 9,100 tpm, even with a generous buffering factor of
40 percent. The overall utilization will be as high as 76 percent.

Table 4. Comparison of individual application systems and one integrated system

There are several points that you have to consider before estimating the
required system capacity when using AIX WLM.

1. AIX WLM can help improve the overall resource utilization percentage,
thus, reducing the required system capacity.

2. AIX WLM can be helpful in improving system capacity usage especially
when the resource usage patterns of the applications are quite different
from one another.

3. It is recommended that you integrate mission-critical applications with
non-critical ones on one system to get the maximum benefit from using
WLM.

4. If the overall resource utilization percentages of the individual application
servers are already good, for example, more than 70 percent, and if you
want to guarantee the performance of all the applications to be integrated
into one system, there would be only a little gained in system capacity by
using AIX WLM.

Required
capacity
(tpm)

Overall
utilization
(percent)

Remarks

Application A 6,700 26 Pronounced, short
peaks in resource
usage pattern

Application B 4,100 54 Moderate peaks

Application C 6,800 22 Nightly batch

Application D 2,300 65 The most even resource
usage pattern

Sum of A,B,C,
and D

19,900 35 Total, and average of the
four systems

Integrated
applications

11,600 60

Applications B
and D are
considered
non-critical

9,100 76 There are some points
where Applications B
and D are slowed down
180 AIX 5L Workload Manager (WLM)

Thus, it is very important to have a well-designed plan on the grouping and
deployment of different applications to get the expected improvement. For
example, in Figure 70 on page 178, it would be a better idea to integrate
Application A and Application C, which have different peak time and behavior
on one system than to integrate Application B with Application D, both of
which have rather constant, even resource utilization patterns. Often, it is
more important to make a right selection of applications to be integrated, than
to make good property files for WLM configurations.

7.3.3 Considerations for memory and disk I/O bandwidth
Basically, the same methodology can be used to estimate the capacity of
memory and disk I/O bandwidth resources as that used to estimate CPU
resource. However, special care should be taken when estimating the
required capacity of memory since this is, by nature, not a renewable
resource, as opposed to CPU, meaning that AIX might first have to take
actions in order to provide the application with memory (for instance, freeing
up memory pages by paging out the pages that another application is using).

The performance of mission-critical classes can be protected from memory
swapping to or from paging spaces by setting generous minimum limits for
them and/or placing those classes in a higher tier than the others. The
system-defined classes, such as Shared and System, should be given
enough minimum limits to ensure overall constant performance. However, the
overall system performance might be degraded when some processes in one
class begin to swap to or from paging spaces. It is recommended that you use
a more conservative estimation for memory capacity sizing than for CPU
capacity sizing.

It certainly helps to guarantee the performance of mission-critical applications
by entitling more disk I/O bandwidth to them than to non-critical ones.
However, in most situations, it is difficult to trace which process is using which
disk for which logical volume. Thus, it is not easy to estimate the capacity
usage benefit by using WLM.

7.4 Conclusion

AIX WLM can reduce the required minimum system capacity for applications
by enhancing the overall system resource utilization. However, there is no
committed capacity gain from using AIX WLM. Only by selecting the right set
of applications to be integrated on a single system and by correct planning of
the WLM configuration can you benefit from WLM in terms of system capacity
Chapter 7. Sizing recommendations for Workload Manager 181

usage. It is recommended that you set up the consolidation plan after
monitoring the resource utilization pattern of each application.
182 AIX 5L Workload Manager (WLM)

Chapter 8. Practical experience

This chapter reflects some practical experiences with AIX WLM. The ISV
case studies were carried out in the first six months of 2000. Therefore, new
features of AIX WLM could not be tested. Readers should be aware of this
fact and be motivated to make their own experiences after studying the
results of this chapter.

Section 8.2, “Customer experience - WLM and a compute server for
research” on page 210, reflects some experiences with WLM in a production
environment at the Forschungszentrum Jülich GmbH (Research Center
Jülich), in Germany, from the perspective of a system administrator.

8.1 ISV case studies

The case studies have been set up in the PeopleSoft ISV Lab in Austin, Texas
USA, and in the IBM SAP International Competence Center (ISICC) in
Walldorf, Germany.

The goal of the case studies was to see the effect of various WLM
configurations on the different scenarios described in the following sections.

Be aware that the case studies did not focus on tuning the results to optimal
performance.

8.1.1 PeopleSoft
The idea of this case study was to run four concurrent PeopleSoft benchmark
kits in different combinations and different WLM configurations:

• PeopleSoft General Ledger (GL)

• PeopleSoft Payroll (PAYROLL)

• PeopleSoft Financial (FI)

• PeopleSoft Human Resources (HR)

GL and PAYROLL are batch benchmarks.

FI and HR are OLTP benchmarks.

The primary concern was to demonstrate that one class, such as batch, with
high CPU requirements, does not dominate response time for
interactive/OLTP workloads.
© Copyright IBM Corp. 2000 183

Because 32bit Oracle was run, it was decided to create four independent
databases with four Oracle listener processes to improve performance. By
doing this, the total System Global Area (SGA) size for all four benchmarks
was about 10 GB, whereas, with a single database, the limit is about 2.5 GB.

8.1.1.1 Case study description
The OLTP benchmarks were run in a logical three tier configuration. With this
setup, the number of users in the load was reduced. This means that the
database server and application server were installed on the same host.

In the OLTP benchmarks, average retrieve and update response times were
measured for an individual client with 1250 FI and 6000 HR concurrent users.

Mercury Interactive’s LoadRunner was used to simulate concurrent users. For
the FI benchmark, it submitted a business transaction at an average rate of
five transactions per second. For the HR benchmark, it submitted a business
transaction at an average rate of 13 transactions per second.

SQA Robot was used to automatically submit transactions and record the
benchmark measurements on the client PCs. Measurements were recorded
when the user load was attained and the environment reached the steady
state.

Batch processes are background processes requiring no operator
intervention or interactivity. Results of these processes are automatically
logged in the database. The runtimes are posted to the Process Request
database table. Both batch benchmark processes were initiated at the client
workstations. For these benchmarks, all jobs were started from MicroFocus
COBOL 4.1 script files executed on the RS/6000 S80 server (see Table 5 on
page 187).

In PeopleSoft General Ledger (GL), the batch performance of 40 Journal Edit
processes were measured. The eight Journal Post processes were not
measured.

The Journal Edit process validates journal entries including items, such as
ChartField values, control totals, and debit/credit balancing.

The Journal Post process summarizes detail line activity and either inserts a
new row or updates an existing row in the ledger. There is one ledger row for
each unique combination of ChartField values, accounting period, and fiscal
year. In this benchmark, the Post step updated only existing ledger rows. This
is typical for companies that perform the edit and post functions on a frequent
184 AIX 5L Workload Manager (WLM)

basis. The database model represented an extra large organization that
processes 3,000,000 journal transactions per run.

The PeopleSoft Payroll benchmark commits 32 jobs. Each of the jobs has
three phases: Creation, Calculation, and Confirmation.

The Paysheet Creation process generates payroll data worksheets for
employees consisting of standard payroll information for each employee for
the given pay cycle. This process ran separately from the other two tasks and
was not measured.

The Payroll Calculation process looks at Paysheets and calculates checks for
those employees. Payroll Calculation can be run any number of times
throughout the pay period. The first run does most of the processing while
each successive run updates only the calculated totals of changed items.
This interactive design minimizes the time required to calculate a payroll as
well as the processing resources required. In this benchmark, Payroll
Calculation was run only once as though it was the end of a pay period.

The Payroll Confirmation takes the information generated by Payroll
Calculation and updates the employees’ balances with the calculated
amounts. The system assigns check numbers at this time and creates direct
deposit records. Confirm can only be run once and, therefore, must be run at
the end of the pay period. Only the last two phases were measured. The
database model represented a large organization with 72,000 employees.

8.1.1.2 Case study method
First, each of the benchmarks was run individually on a six-way and 24-way
RS/6000 S80 to establish the baseline. In this step, WLM was inactive.

Then, six WLM control files were set up to get a baseline running WLM in
passive mode (see Section 8.1.1.3, “WLM configuration” on page 188).
Running WLM in passive mode allows you to observe class resource
allocations without actually incurring any WLM adjustment. The observed
results were used as guidelines for setting up shares and limits in the WLM
control files.

After getting a baseline running WLM in passive mode, the benchmarks were
started consolidated with WLM in active mode. The goal of these runs was to

The results of the six-way baseline are not listed for all the tests described
in this chapter.

Note
Chapter 8. Practical experience 185

make the two OLTP benchmarks work better in the consolidated server and
not really care about the two batch benchmarks.

Both OLTP benchmarks ran with the GL batch and also with the PAYROLL
batch (see Section 8.1.1.4, “One batch - Two OLTP benchmarks:
PAYROLL-FI-HR” on page 194, and Section 8.1.1.5, “One batch - Two OLTP
benchmarks: GL-FI-HR” on page 195).

Both batch benchmarks ran with two different WLM configuration files with no
OLTP benchmark (see Section 8.1.1.6, “Two batch benchmarks:
GL-PAYROLL” on page 196).

Finally, all four benchmarks ran with four different WLM configurations (see
Section 8.1.1.7, “Two batch - Two OLTP benchmarks: PAYROLL-GL-FI-HR”
on page 196). Figure 71 shows the HR OLTP benchmark environment.

Figure 71. HR OLTP benchmark

The HR OLTP Mercury scripts were started on an RS/6000 F80 (see Table 5
on page 187). Three application server domains, each with 2000 users, ran
on the RS/6000 S80 (see Table 5 on page 187). Figure 72 shows the FI OLTP
benchmark environment.
186 AIX 5L Workload Manager (WLM)

Figure 72. FI OLTP benchmark

The FI OLTP Mercury scripts were started on an RS/6000 S7A (see Table 5
on page 187). One application server domain with 1250 users ran on the
RS/6000 S80 (see Table 5 on page 187).

Table 5 gives a list of the hardware configuration used for this case study.

Table 5. PeopleSoft case study HW configuration

Additionally, four PC clients were used as shown in Table 6.

Table 6. PeopleSoft case study PC HW configuration

Function Model CPU Memory

DB and AP Server
(logical 3-tier)

RS/6000 S80 24 Way 32 GB

HR Load Driver RS/6000 F80 6 Way 16 GB

FI Load Driver RS/6000 S7A 12 Way 16 GB

2 x Display Server RS/6000 B50 1 Way 1 GB

Function Clock speed CPU Memory

FS Client 400 MHz 1 Way 64 MB
Chapter 8. Practical experience 187

The following is a list of the software used for this case study:

• AIX 4.3.3 Maintenance level 2

• PeopleSoft Financials 7.52

• PeopleSoft Payroll 7.50

• PeopleSoft General Ledger 7.50

• PeopleSoft HRMS 7

• PeopleTools 7.55

• Oracle 8.0.5.1

• BEA TUXEDO 6.4 and 6.5

• Micro Focus COBOL 4.1

• SQR 4.3.2

• Mercury Interactive’s LoadRunner 5.02

• Microsoft Windows NT 4.0

• SQA Suite Robot 6.1.0.42

• PAY Client: PT 7.58

• GL Client: PT 7.54.1

• FI Client: PT 7.55

• HR Client: PT 7.54.1

8.1.1.3 WLM configuration
Several WLM configurations were tested with various share and limit
combinations.

Eight classes were active. Four classes were supplied by WLM (Unclassified,
Shared, System, and Default). Four classes were configured by the
benchmark team (pay, gl, fs, and hr).

For the two pseudo-classes (Unclassified and Shared) no classification rules,
resource limits, or resource shares can be specified. These classes are

HR Client 166 MHz 1 Way 64 MB

PAY Client 180 MHz 1 Way 112 MB

GL Client 180 MHz 1 Way 80 MB

Function Clock speed CPU Memory
188 AIX 5L Workload Manager (WLM)

outside WLM control and, therefore, fall under default AIX resource allocation
control.

A unique user ID was created for each of the four databases. Each user
belongs to the DBA group.

The WLM configuration is described in the following tables.

The WLM configuration, p_conf_1 (see Table 7), contains:

• Classes fs, hr, System, and Default: tier=0

• Classes pay and gl: tier=1

• All classes: CPU min=0 percent, max=100 percent, and share=1

• All classes: Memory min=0 percent, max=100 percent, and share=1

Table 7. p_conf_1

WLM configuration, p_conf_2 (see Table 8 on page 190), contains:

• Classes System and Default: tier=0

• Classes pay, gl, fs, and hr: tier=1

• Classes pay and gl: CPU min=0 percent, max=25 percent, and share=25

Tier Class User CPU Memory

1 pay pay750 min=0
max=100
share=1

min=0
max=100
share=1

1 gl gl75 min=0
max=100
share=1

min=0
max=100
share=1

0 fs fs75 min=0
max=100
share=1

min=0
max=100
share=1

0 hr hr75 min=0
max=100
share=1

min=0
max=100
share=1

0 System root min=0
max=100
share=1

min=0
max=100
share=1

0 Default - min=0
max=100
share=1

min=0
max=100
share=1
Chapter 8. Practical experience 189

• Classes pay and gl: Memory min=0 percent, max=100 percent, and
share=1

• Classes hr and fs: CPU min=0 percent, max=100 percent, and share=25

• Classes hr and fs: Memory min=0 percent, max=100 percent, and share=1

• Class System: CPU min=0 percent, max=100 percent, and share=1

• Class System: Memory min=1 percent, max=100 percent, and share=1

• Class Default: CPU min=0 percent, max=100 percent, and share=1

• Class Default: Memory min=0 percent, max=100 percent, and share=1

Table 8. p_conf_2

WLM configuration p_conf_3 (see Table 9 on page 191) contains:

• Classes System and Default: tier=0

• Classes fs and hr: tier=1

• Classes pay and gl: tier=7

• All classes: CPU min=0 percent, max=100 percent, and share=1

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 25
share = 25

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 25
share = 25

min = 0
max = 100
share = 1

1
fs fs75 min = 0

max = 100
share = 25

min = 0
max = 100
share = 1

1 hr hr75 min = 0
max = 100
share = 25

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 1
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1
190 AIX 5L Workload Manager (WLM)

• All classes: Memory min=0 percent, max=100 percent, and share=1

Table 9. p_conf_3

WLM configuration, p_conf_4 (see Table 10 on page 191), contains:

• Classes System and Default: tier=0

• Classes pay and gl: tier=1

• Classes pay and gl: CPU min=0 percent, max=100 percent, and share=50

• Classes pay and gl: Memory min=0 percent, max=100 percent, and
share=1

• Classes System and Default: CPU min=0 percent, max=100 percent, and
share=1

• Classes System and Default: Memory min=0 percent, max=100 percent,
and share=1

Table 10. p_conf_4

Tier Class User CPU Memory

7 pay pay750 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

7 gl gl75 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

1 fs fs75 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

1 hr hr75 min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 100
share = 50

min = 0
max = 100
share = 1
Chapter 8. Practical experience 191

WLM configuration p_conf_5 (see Table 11 on page 192) contains:

• Classes System and Default: tier=0

• Classes pay and gl: tier=1

• Class pay: CPU min=0 percent, max=100 percent, and share=32

• Class gl: CPU min=0 percent, max=100 percent, and share=40

• Classes System and Default: CPU min=0 percent, max=100 percent, and
share=1

• All classes: Memory min=0 percent, max=100 percent, and share=1

Table 11. p_conf_5

WLM configuration p_conf_6 (see Table 12) contains:

• Classes System and Default: tier=0

• Classes pay, gl, fs, and hr: tier=1

1 gl gl75 min = 0
max = 100
share = 50

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 100
share = 32

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 100
share = 40

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1

Tier Class User CPU Memory
192 AIX 5L Workload Manager (WLM)

• Classes pay and gl: CPU min=0 percent, max=100 percent, and share=10

• Classes pay and gl: Memory min=0 percent, max=100 percent, and
share=1

• Classes fs and hr: CPU min=0 percent, max=100 percent, and share=40

• Classes fs and hr: Memory min=0 percent, max=100 percent, and share=1

• Class System: CPU min=0 percent, max=100 percent, and share=1

• Class System: Memory min=1 percent, max=100 percent, and share=1

• Class Default: CPU min=0 percent, max=100 percent, and share=1

• Class Default: Memory min=0 percent, max=100 percent, and share=1

Table 12. p_conf_6

Tier Class User CPU Memory

1 pay pay750 min = 0
max = 100
share = 10

min = 0
max = 100
share = 1

1 gl gl75 min = 0
max = 100
share = 10

min = 0
max = 100
share = 1

1 fs fs75 min = 0
max = 100
share = 40

min = 0
max = 100
share = 1

1 hr hr75 min = 0
max = 100
share = 40

min = 0
max = 100
share = 1

0 System root min = 0
max = 100
share = 1

min = 1
max = 100
share = 1

0 Default - min = 0
max = 100
share = 1

min = 0
max = 100
share = 1
Chapter 8. Practical experience 193

8.1.1.4 One batch - Two OLTP benchmarks: PAYROLL-FI-HR
Table 13 presents the process results of the two OLTP and one batch
benchmark.

Table 13. PAYROLL-FI-HR

For the batch benchmark, it shows the number of employees processed per
hour for the Calculation and Confirmation phases and the CPU utilization in
percent.

For the OLTP benchmarks, it displays the average retrieval time in seconds,
the average update time in seconds, the overall average time in seconds, the
CPU utilization in percent, and the number of transactions per minute (TPM).

Observations:

• The performance of FI and HR OLTP benchmarks improves when
activating WLM.

• The performance of PAYROLL batch benchmark also improves when
activating WLM.

Application Measured
data

24-way
baseline

WLM
passive

WLM
active
with
p_conf_3

PAYROLL
(batch)

Calc+Cnfrm/Hr 407,932 227,488 241,530

Percent CPU 74 41 42

FI
(OLTP)

Average Ret 0.530 0.593 0.586

Average Updte 0.755 1.002 0.868

Overall Avrge 0.579 0.682 0.647

Percent CPU 31 27 26

TPM 257 262 264

HR
(OLTP)

Average Ret 0.870 1.254 0.949

Average Updte 0.672 0.779 0.736

Overall Avrge 0.791 0.917 0.864

Percent CPU 26 26 24

TPM 922 911 897
194 AIX 5L Workload Manager (WLM)

8.1.1.5 One batch - Two OLTP benchmarks: GL-FI-HR
Table 14 presents the process results of the two OLTP and one batch
benchmark.

Table 14. GL-FI-HR

For the batch benchmark, it shows the number of journal lines processed per
hour in the Edit phase and the CPU utilization in percent.

For the OLTP benchmarks, it displays the average retrieval time in seconds,
average update time in seconds, overall average time in seconds, CPU
utilization in percent, and the transactions per minute (TPM).

Observations:

• The performance of FI and HR OLTP benchmarks improves when
activating WLM.

• The performance of GL batch benchmark also improves when activating
WLM.

Application Measured
data

24-way
baseline

WLM
passive

WLM
active
with
p_conf_3

GL
(batch)

Edit 13,088,434 7,680,491 8,125,457

Percent CPU 82 48 50

FI
(OLTP)

Average Ret 0.530 0.703 0.618

Average Updte 0.755 1.285 0.994

Overall Avrge 0.579 0.829 0.700

Percent CPU 31 25 24

TPM 257 261 261

HR
(OLTP)

Average Ret 0.870 1.085 0.972

Average Updte 0.672 0.867 0.740

Overall Avrge 0.791 0.998 0.879

Percent CPU 26 25 24

TPM 922 911 909
Chapter 8. Practical experience 195

8.1.1.6 Two batch benchmarks: GL-PAYROLL
Table 15 presents the process results of the two batch benchmarks with
different WLM configurations.

Table 15. GL-PAYROLL

For the GL benchmark, it presents the number of journal lines processed per
hour in the Edit phase and the CPU utilization in percent.

For the PAYROLL benchmark, it presents the number of employees
processed per hour for the Calculation and Confirmation phases and the CPU
utilization in percent.

Observations:

The performance of GL batch benchmark with 40-32 shares (p_conf_5) has a
worse result than the passive or equal shares (p_conf_4) run.

8.1.1.7 Two batch - Two OLTP benchmarks: PAYROLL-GL-FI-HR
Table 16 shows the two batch and two OLTP process results with different
WLM configurations.

Table 16. PAYROLL-GL-FI-HR

Application Measured
data

24-way
baseline

WLM
passive

WLM
active
with
p_conf_4

WLM
active
with
p_conf_5

GL
(batch)

Edit 13,088,434 9,237,306 9,285,051 9,021,199

Percent CPU 82 58 58 58

PAYROLL
(batch)

Calc+Cnfrm/Hr 407,932 237,938 263,833 245,399

Percent CPU 74 39 42 39

Application Measured
data

24-way baseline WLM passive WLM active with
p_conf_3

WLM active with
p_conf_6

PAYROLL
(batch)

Calc+Cnfrm/Hr 407,932 155,072 145,425 148,423

Percent CPU 74 24 22 23

GL
(batch)

Edit 13,088,434 5,244,846 5,027,567 5,285,877

Percent CPU 82 29 30 30
196 AIX 5L Workload Manager (WLM)

For the GL benchmark, it shows the number of journal lines processed per
hour in the Edit phase and the CPU utilization in percent.

For the PAYROLL benchmark, it displays the number of employees processed
per hour for the Calculation and Confirmation phases and the CPU utilization
in percent.

For the OLTP benchmarks, it displays the average retrieval time in seconds,
the average update time in seconds, the overall average time in seconds, the
CPU utilization in percent, and the transactions per minute (TPM).

Observations:

• FI OLTP benchmark performance is best with p_conf_3.

• HR OLTP benchmark performance is best with p_conf_6.

• GL batch benchmark performance is best with p_conf_6.

• Payroll batch benchmark performance is best when running WLM in
passive mode.

The following tables display the best results in the top row and the worst
results in the bottom row.

p_conf_3
Default and System classes were in tier 0; HR and FI classes were in tier 1 to

FI
(OLTP)

Average Ret 0.530 0.821 0.625 (not measured)

Average
Updte

0.755 1.933 1.075 (not measured)

Overall Avrge 0.579 1.062 0.723 0.738

Percent CPU 31 24 24 24

TPM 257 261 262 262

HR
(OLTP)

Average Ret 0.870 1.249 1.080 (not measured)

Average
Updte

0.672 1.013 0.821 (not measured)

Overall Avrge 0.791 1.154 0.976 0.973

Percent CPU 26 23 23 23

TPM 922 901 905 904

Application Measured
data

24-way baseline WLM passive WLM active with
p_conf_3

WLM active with
p_conf_6
Chapter 8. Practical experience 197

provide better fulfillment of their resource requirements, and payroll and GL
classes were in tier 7 (see Table 9 on page 191). Table 17 contains an
overview of the results for p_conf_3.

Table 17. Overview of the results for p_conf_3

p_conf_6
Default and System classes were in tier 0; all four benchmark classes were in
tier 1, and the shares were adjusted in the shares file (see Table 12 on page
193). Table 18 contains an overview of the results for p_conf_6.

Table 18. Overview of the results for p_conf_6

8.1.1.8 Summary
Without the involvement of WLM, three out of the four workloads suffered
from server consolidation, that is, running WLM in passive mode.

The CPU-intensive batch jobs dominated the usage of the CPU resource.

• Both OLTP benchmarks suffered from the server consolidation.

• The Payroll benchmark suffered from the server consolidation.

• The General Ledger benchmark benefited from the server consolidation.

Payroll GL HR FI

24-way baseline
407,932 emp/hr

24-way baseline
13,088,434 lines/hr

24-way baseline
0.791 sec

24-way baseline
0.579 sec

6-way baseline
158,486 emp/hr

WLM passive
5,244,846 lines/hr

WLM active
0.976 sec

WLM active
0.723 sec

WLM passive
155,072 emp/hr

WLM active
5,027,567 lines/hr

6-way baseline
0.990 sec

6-way baseline
0.756 sec

WLM active
145,425 emp/hr

6-way baseline
3,794,586 lines/hr

WLM passive
1.154 sec

WLM passive
1.062 sec

Payroll (batch) GL (batch) HR (OLTP) FI (OLTP)

24-way baseline
407,932 emp/hr

24-way baseline
13,088,434 lines/hr

24-way baseline
0.791 sec

24-way baseline
0.579 sec

6-way baseline
158,486 emp/hr

WLM active
5,285,877 lines/hr

WLM active
0.973 sec

WLM active
0.738 sec

WLM passive
155,072 emp/hr

WLM passive
5,244,846 lines/hr

6-way baseline
0.990 sec

6-way baseline
0.756 sec

WLM active
148,423 emp/hr

6-way baseline
3,794,586 lines/hr

WLM passive
1.154 sec

WLM passive
1.062 sec
198 AIX 5L Workload Manager (WLM)

Setting WLM active improves all three benchmarks that suffered before:

• The two OLTP benchmarks no longer suffer from the server consolidation.
In fact, some performance gains were observed.

• The performance of the General Ledger benchmark improved.

• The Payroll benchmark's performance decreased even more.

Since the WLM configuration was only targeted to bring up the performance
of online benchmarks, these results were expected.

The goals were accomplished with appropriate resource share allocation.
Finer control can be further accomplished by observing the resource
allocation of each class and making more adjustments.

Another attempt with OLTP benchmarks in tier 0 and batch benchmarks in tier
1 (p_conf_1, see Table 7 on page 189) did not accomplish the goals.

8.1.2 SAP R/3
There are at least three situations where WLM can be used to manage a
large R/3 server.

Buffering R/3 from non-R/3 applications

Here, an R/3 system is running on a server with other non-R/3 applications,
such as print spooling, backup, decision support, or tape library
management.

In this environment, WLM manages two important issues: It guarantees the
operation of the R/3 system without any interference from other non-R/3
applications, and it secures sufficient resources to keep R/3 from dominating
other non-R/3 applications. This is the easiest of the situations to configure
and manage WLM, because the classes are easy to define and resource
allocation is relatively simple.

Using two or more R/3 instances with a single database

In the second situation, multiple R/3 server application instances for a single
R/3 system are placed on a single large server.

WLM can be used to ensure that each instance always has at least the
minimum required resources available. A very desirable implementation of
WLM is to separate all batch activities into specific instances and put these at
a lower priority than the OLTP instances.
Chapter 8. Practical experience 199

However, you have to be aware of the fact that even though you have multiple
instances of a single R/3 system on a host, they all run as the same user and
group. Also, they all use the same executables. There is only one difference
in the processes. The processes from each of the instances are started via a
link, and the link name is related to the instance number.

A workprocess for the instance, DV01, would appear using ps -ef as
dw.sapSID_DV01, and the instance, DV02, would appear as
dw.sapSID_DV02.

Each of these would be running the same executable loaded from the same
runtime directory. By executing xmpeek -l, you see that the exe is named
disp+work. The process is started from a link in an instance private directory:

• /usr/sap/SID/DV01/work/dw.sapSID_DV01

• /usr/sap/SID/DV01/work/dw.sapSID_DV02

At the time the case study was set up, important WLM features were not
available. The API of WLM released with AIX 5L (see Section Section 2.8,
“WLM Application Programming Interface (API)” on page 30) allows you to set
up a new process attribute that can be used as a classification criteria to
differentiate between two instances.

SAP is integrating APIs into its Computing Center Management System
(CCMS) modules. The CCMS Monitoring Architecture offers a read API for
the usage in partners’ System Management products. The library is available
as a static library, alxxrlib.[o|obj|lib], and, for some platforms, as the shared
library, ccmsrdsl.[o|so|dll]. Each vendor can develop applications that
interface with CCMS; for example, Tivoli uses APIs through CCMS. One
approach is to check the usage of WLM API and application tagging with R/3.

If you are using the CCMS API and application tagging, you should be aware
that this is not so easy to realize since it requires that new scripts be
developed or code to be changed.

Another idea is to check if manual assignment (see Chapter 5, “Manual
assignment” on page 141) might be a possible solution. If application tagging
is not being used, WLM cannot automatically place database or R/3 instances
in different classes, but, with the manual assignment function, a process or a
group of processes can be manually assigned to different classes.

The ISICC team is working on this issue and look forward to finding a solution
to enable a multiple instance scenario with SAP R/3 under WLM.
200 AIX 5L Workload Manager (WLM)

Using two or more R/3 instances with separate databases

This is the most common situation where users want to put multiple R/3
instances representing separate R/3 systems on a single large server. These
are independent R/3 systems, such as test, development, and training
systems.

Currently, SAP is very restrictive in supporting more than one production
system on a single server. Also, it is not supported to put one (or several)
production systems with other R/3 systems on a single server. The reason for
this constraint is that it will be impossible to precisely monitor the
performance of any of the systems in the CCMS modules that are totally
independent of each other. In this case, the SAP Technical Competence
Center (TCC) will be unable to use the existing SAP tools, such as
EarlySupport, to support their customers. This is the case with or without
WLM. Today, a script, called saposcol, is running on all instances and collects
operating system information, such as CPU and memory usage, and feeds
the SAP monitoring tool, CCMS.

In AIX 5L, WLM provides performance monitoring tools, such as topas and
svmon (see Chapter 4, “WLM performance tools” on page 97). These tools
can monitor superclasses or subclasses assigned to an R/3 system and the
system utilization can be clearly separated from the other workloads running
on the server.

Accordingly, since it is easy to differentiate the jobs of the various instances
by user ID, this is also an easy situation to define and configure. As long as
the shared server is acceptably sized, WLM could be used to ensure that
each instance runs within the resource boundaries set for it.

There are at least three approaches to monitoring several R/3 systems using
WLM with the SAP monitoring tool:

• Modifying the saposcol script

• Creating a new monitoring object within the CCMS modules

• Using the new CCMS agent developed for mySAP.com

The case study team will test the WLM performance monitoring tools
released in AIX 5L and verify the use of WLM with these three approaches.

8.1.2.1 Case study description
The idea of this study was to install two central SAP R/3 systems, TS1 and
TS2, each with its own Oracle database to drive different tests with different
WLM configurations. Both 2-tier SAP R/3 systems were configured identically.
Chapter 8. Practical experience 201

The following R/3 sessions were defined for each instance:

DIA Six dialogue sessions

VB Two synchronous update sessions

VB2 Two asynchronous update sessions

ENQ One enqueue session

BTC One batch session

SPO One spooler session

Each instance has two standard R/3 users:

• ts1adm and orats1

• ts2adm and orats2

For each instance, separate logical volumes and filesystems were defined
over five physical SSA disks.

8.1.2.2 Case study method
Table 19 lists the hardware configuration used for this case study.

Table 19. SAP case study HW configuration

The following list shows the software configuration used for this case study:

• AIX 4.3.3.0

• SAP R/3 Rel. 4.0B patchlevel 631

• Oracle 8.0.4

The Sales and Distribution (SD) Benchmark driver was used to load both
instances. It simulates different levels of user activity. The SD benchmark is
one of the most CPU-consuming benchmarks. It is, primarily, used for
hardware sizing and upper limit studies on new hardware. The dialog steps of
the standard SD Benchmark are shown in Figure 73.

Function Model CPU Memory

Central instance
TS1

RS/6000 H70 4 Way 6 GB

Central instance
TS2

RS/6000 H70 4 Way 6 GB
202 AIX 5L Workload Manager (WLM)

Figure 73. Dialog steps SD benchmark

8.1.2.3 WLM configuration
Like the PeopleSoft Case Study, several WLM configurations were tried with
various share and limit combinations.

A list of classes follows:

Default The WLM default class

System The WLM system class

TS1 Instance TS1

TS2 Instance TS2

LOADER Sample non-R/3 application

ORATS1 Oracle processes of instance TS1

ORATS2 Oracle processes of instance TS2

TS1Gp1 R/3 instance 00 of TS1

TS1Gp2 R/3 instance 01 of TS1

User and groups were standard R/3 user. For the non-R/3 application, a user
(test), was created.

The WLM configuration is described in the following tables.
Chapter 8. Practical experience 203

WLM configuration s_conf_1 (see Table 20 on page 204) contains:

• All classes: tier=0

• Classes TS1 and TS2: CPU min=0 percent, max=100 percent, share=45

• Classes TS1 and TS2: Memory min=0 percent, max=100 percent,
share=45

• Class System: CPU min=0 percent, max=100 percent, share=10

• Class System: Memory min=0 percent, max=100 percent, share=10

• Class Default: CPU min=0 percent, max=100 percent, share=1

• Class Default: Memory min=0 percent, max=100 percent, share=1

Table 20. s_conf_1

The WLM configuration s_conf_2 (see Table 21 on page 205) contains:

• All classes: tier=0

• Classes TS1, TS2, ORATS1, and ORATS2: CPU min=0 percent, max=100
percent, share=45

• Classes TS1, TS2, ORATS1, and ORATS2: Memory min=0 percent,
max=100 percent, share=45

• Class System: CPU min=0 percent, max=100 percent, share=10

• Class System: Memory min=0 percent, max=100 percent, share=10

• Class Default: CPU min=0 percent, max=100 percent, share=1

Tier Class User CPU Memory

0 TS1 ts1adm, orats1 min=0
max=100
share=45

min=0
max=100
share=45

0 TS2 ts2adm, orats2 min=0
max=100
share=45

min=0
max=100
share=45

0 System root min=0
max=100
share=10

min=0
max=100
share=10

0 Default - min=0
max=100
share=1

min=0
max=100
share=1
204 AIX 5L Workload Manager (WLM)

• Class Default: Memory min=0 percent, max=100 percent, share=1

Table 21. s_conf_2

The WLM configuration is described in the following tables.

The WLM configuration, s_conf_3 (see Table 22 on page 206), contains:

• All classes: tier=0

• Classes ORATS1, TS1Gp1, and TS1Gp2: CPU min=0 percent, max=75
percent, share=30

• Classes ORATS1, TS1Gp1, and TS1Gp2: Memory min=0 percent,
max=100 percent, share=30

• Class TS1Gp1: Application=/usr/sap/TS1/DV00/work/dw.sapTS1_DV00

• Class TS1Gp2: Application=/usr/sap/TS1/DV01/work/dw.sapTS1_DV01

• Class System: CPU min=0 percent, max=100 percent, share=10

• Class System: Memory min=0 percent, max=100 percent, share=10

• Class Default: CPU min=0 percent, max=100 percent, share=1

Tier Class User CPU Memory

0 TS1 ts1adm min=0
max=100
share=45

min=0
max=100
share=45

0 TS2 ts2adm min=0
max=100
share=45

min=0
max=100
share=45

0 ORATS1 orats1 min=0
max=100
share=45

min=0
max=100
share=45

0 ORATS2 orats2 min=0
max=100
share=45

min=0
max=100
share=45

0 System root min=0
max=100
share=10

min=0
max=100
share=10

0 Default - min=0
max=100
share=1

min=0
max=100
share=1
Chapter 8. Practical experience 205

• Class Default: Memory min=0 percent, max=100 percent, share=1

Table 22. s_conf_3

The WLM configuration, s_conf_4 (see Table 23 on page 206), contains:

• All classes: tier=0

• Class TS1: CPU min=0 percent, max=100 percent, share=50

• Class TS1: Memory min=0 percent, max=50 percent, share=10

• Class LOADER: CPU min=0 percent, max=30 percent, share=30

• Class LOADER: Memory min=0 percent, max=30 percent, share=30

• Class System: CPU min=0 percent, max=100 percent, share=10

• Class System: Memory min=0 percent, max=100 percent, share=10

• Class Default: CPU min=0 percent, max=100 percent, share=1

• Class Default: Memory min=0 percent, max=100 percent, share=1

Table 23. s_conf_4

Tier Class User Application CPU Memory

0 ORATS1 orats1 - min=0
max=75
share=30

min=0
max=100
share=30

0 TS1Gp1 ts1adm /usr/sap/TS1/
DV00/work/
dw.sapTS1_
DV00

min=0
max=75
share=30

min=0
max=100
share=30

0 TS1Gp2 ts1adm /usr/sap/TS1/
DV01/work/
dw.sapTS1_
DV01

min=0
max=75
share=30

min=0
max=100
share=30

0 System root - min=0
max=100
share=10

min=0
max=100
share=10

0 Default - - min=0
max=100
share=1

min=0
max=100
share=1

Tier Class User CPU Memory

0 TS1 ts1adm min=0
max=100
share=50

min=0
max=50
share=10
206 AIX 5L Workload Manager (WLM)

The WLM configuration, s_conf_5 (see Table 24), contains:

• All classes: tier=0

• Class TS1: CPU min=0 percent, max=100 percent, share=70

• Class TS1: Memory min=0 percent, max=100 percent, share=50

• Class LOADER: CPU min=0 percent, max=50 percent, share=100

• Class LOADER: Memory min=0 percent, max=50 percent, share=100

• Class System: CPU min=0 percent, max=100 percent, share=10

• Class System: Memory min=0 percent, max=100 percent, share=10

• Class Default: CPU min=0 percent, max=100 percent, share=1

• Class Default: Memory min=0 percent, max=100 percent, share=1

Table 24. s_conf_5

0 LOADER test min=0
max=30
share=30

min=0
max=30
share=30

0 System root min=0
max=100
share=10

min=0
max=100
share=10

0 Default - min=0
max=100
share=1

min=0
max=100
share=1

Tier Class User CPU Memory

0 TS1 ts1adm min=0
max=100
share=70

min=0
max=100
share=50

0 LOADER test min=0
max=100
share=50

min=0
max=100
share=50

0 System root min=0
max=100
share=10

min=0
max=100
share=10

0 Default - min=0
max=100
share=1

min=0
max=100
share=1

Tier Class User CPU Memory
Chapter 8. Practical experience 207

8.1.2.4 Two R/3 instances with separate databases
For this test, the WLM configuration, s_conf_1 (see Table 20 on page 204),
was used. Workload was generated by loading from 50 to 150 users per
instance driving the system to 95 percent CPU. Each Oracle instance used a
separate listener, which insured the integrity of shadow process
classification.

This test confirmed that WLM worked to allocate resources between two SAP
R/3 systems.

However, an improperly-configured WLM setup could degrade performance
on a host with two or more perfectly tuned R/3 instances.

A second test was performed similar to test 1 but with two additional classes
for the Oracle processes (see WLM configuration s_conf_2, Table 21 on page
205). No advantage was seen for this configuration, but there was a slightly
higher overhead for WLM.

8.1.2.5 Two R/3 instances with a single database
This test was driven by using the WLM configuration, s_conf_3 (see Table 22
on page 206), without using multiple Oracle listeners.

It was very difficult to use program names as a way of including or excluding
processes from a class because R/3 makes extensive use of links, and most
processes actually run the same procedure.

As was mentioned in Section 8.1.2, “SAP R/3” on page 199, this scenario will
be tested by using the API of WLM and setting up an application tag that can
be used as a classification criteria to distinguish between two instances. The
possibility of manual assignment solving the problem will also be checked.

8.1.2.6 R/3 and non-R/3 application
Here, only one R/3 instance was run against a locally-written load generation
program that spawned multiple processes, each loading lists of files found on
the server into memory arrays.

This test confirmed that WLM can easily be used to manage the allocation of
resources between an R/3 instance and a non-R/3 application sharing a
single host. Basically, this use of WLM is the best way to prevent non-R/3
applications from taking over system resources.
208 AIX 5L Workload Manager (WLM)

8.1.2.7 Special considerations for using WLM with R/3
SAP R/3 is designed to use memory to achieve maximum performance and
throughput. Therefore, memory is very important to an R/3 installation and
can have a dramatic impact on performance.

Shared memory is not a problem since most memory sharing is within an
instance. When multiple R/3 instances run on a common host, some memory
is shared across instances. Minimum resources are used by saposcol, for
example, and the fact that it will be placed in a single class is of little
consequence.

Memory management is of vital concern. Memory planning becomes even
more critical when using WLM. This is especially true if WLM memory limits
are to be used to restrict memory availability to an R/3 instance (when
partitioning memory between multiple R/3 instances). If more memory is
defined within the R/3 configuration than is made available through WLM
memory management, unnecessary page stealing can occur resulting in
declining system performance. Also, if too little memory is available to an R/3
system, extensive swapping can occur. The effect is a dramatic performance
degradation. Therefore, it is easier to guarantee minimum memory availability
to instances.

If WLM is planned for use on a R/3 Central Instance host supporting multiple
R/3 instances and databases, it is a requirement to classify processes by
instance. The standard installation of an SAP R/3 instance or of an Oracle
database installs and configures a single listener process, regardless of how
many Oracle databases are installed. The Oracle listener process spawns
Oracle processes to talk to the database (shadow processes).

There is, generally, one shadow process spawned for each R/3 work process
associated with that instance. Because WLM classifies processes based on
the process that spawns them, in a standard setup, these processes are all
assigned to the same class as the listener, regardless of the instance they
belong to. To correctly classify shadow processes, processes have to be
identified by their unique job names rather than just by user.

Although, DB2 was not tested, these special considerations would also effect
instances using DB2 databases.

For the latest information about SAP’s position regarding the usage of WLM
in SAP R/3 or mySAP.com scenarios, please refer to SAP R/3 note 21960.
R/3 notes are available on the SAP service marketplace (former SAPNet)
under the following URL:
Chapter 8. Practical experience 209

http://service.sap.com

8.2 Customer experience - WLM and a compute server for research

The following chapter describes how WLM is used on a central AIX server in
a research environment where interactive and batch work is done on the
same machine.

When WLM was presented by IBM at the SHARE conference (IBM user
organization) in Anaheim, CA in March 2000, it was obvious that WLM was
the long awaited tool to overcome some problems in managing AIX,
especially distributing resources according to installation-specified policies.
In April, WLM was installed and ran successfully in passive mode. In May
2000, it was decided to use WLM on the production system in active mode.

8.2.1 The installation
The Forschungszentrum Jülich GmbH (Research Center Jülich), one of 16
Helmholtz research centers in Germany, links all its work to the common
denominator, “The future is our mission”. A staff of 4300 are devoted to
investigating current issues in the areas of energy, environment, life,
information, and matter in one of the largest research institutes in Europe. In
Jülich, scientists from many different disciplines including physics, chemistry,
biology, medicine, and engineering work closely together. This work results in
contributions to basic research and long-term programs, applied research,
and key technologies. For more information about the Jülich Research
Center, visit the following Web site:

http://www.fz-juelich.de

The Central Institute for Applied Mathematics (ZAM) within
Forschungszentrum Jülich is responsible for the planning, installation, and
operation of the supercomputers and central server systems and of the
campus-wide computer networks and communication systems. The services
comprise all functions of a computer center including user support.

As part of the John von Neumann Institute for Computing (NIC), ZAM
provides supercomputer resources for the scientific community in Germany.
For more information about the Central Institute for Applied Mathematics, visit
the following Web site:

http://www.fz-juelich.de/zam
210 AIX 5L Workload Manager (WLM)

ZAM runs one of the most powerful scientific computer centers in Europe with
six supercomputers, an IBM server, and a series of systems for special
purposes, such as visualization and communications.

For a detailed configuration, see the following Web site:
http://www.fz-juelich.de/zam/CompServ/services/config.html

8.2.2 The central AIX system
The central computing system offers a wide spectrum of application software.
It is used interactively and offers batch services for long running jobs. The
hardware and software configuration of the system is as follows:

• RS/6000 44P-270, 4 Way, 8GB RAM

• Operating System AIX 4.3.3-03

• Batch-System LoadLeveler V1.3

• Overall peak performance 4.8 Gigaflops

• Concurrent users (peak) approximate 150

• Joined users approximate 1650

• Disk capacity for user data 360 GB

This system allows users without local computing resources, to access Unix
applications via X-terminals or PCs with an appropriate X emulation. It is an
application server for software. It is available as a computing resource for
scalar, interactive, and batch work. In particular, applications with demands
for large virtual memory run extremely well on this machine.

8.2.3 Problems
When the same server is used for interactive and batch work, the distribution
of resources between these two different workloads is a difficult task. On one
side, interactive work should experience the optimum performance to give
scientists the best response time for their current work. On the other side,
batch jobs using several hours of CPU time should have reasonable
turn-around times.

Batch jobs in this environment are typically CPU-bound.

When we tried to maximize system utilization by allowing as many batch jobs
to run as there were processors, interactive users complained about
excessive response times.
Chapter 8. Practical experience 211

When the number of simultaneous batch jobs was reduced, batch users
complained about idle system time and long queues for their batch jobs.

Another problem showed up during the production period: Interactive
X-terminal users often started Netscape processes on the central machine
because they had no other workstation or PC to browse the Internet.
Depending on the Web site visited, these Netscape processes sometimes
went into a tight CPU loop without doing anything useful according to the
user. What is worse, these tight CPU loops were not automatically ended
through the cpu_hard parameter in /etc/security/limits.

8.2.4 A pre-WLM solution
To overcome the problems in AIX releases without WLM, the following rules
were adopted and put in place:

• Half of the CPUs are reserved for interactive work only at prime times
(workdays from 8:00 a.m. to 6:00 p.m.).

• At least one CPU is reserved for interactive work all the time.

• Interactive work is limited to 30 CPU minutes per process.

• Batch jobs (submitted through LoadLeveler) can use up to 10 hours of
CPU time.

• Batch jobs (submitted through LoadLeveler) run at a lower priority (higher
nice values).

• Netscape processes are killed without warning if they have used 30
minutes of CPU time.

8.2.5 The WLM solution with AIX Version 4.3.3-02
The WLM files listed in Table 25 were defined for peak times (Monday through
Friday, 8:00 a.m. to 6:00 p.m.).

Table 25. WLM configuration for peak time

Tier Class User Application CPU Memory

9 slow /usr/local/
netscape/
netscape_aix4

min=0
max=10
share=1

min=0
max=10
share=1

2 batch batuser1 min=0
max=100
share=100

min=0
max=100
share=100
212 AIX 5L Workload Manager (WLM)

Two adjustments were made for offpeak time:

• tier value batch class = tier value Default class

• shares batch class = 1/2 shares Default class

Table 26. WLM configuration for offpeak time

2 batch batuser2 min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser3 min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser. min=0
max=100
share=100

min=0
max=100
share=100

2 batch batuser99 min=0
max=100
share=100

min=0
max=100
share=100

0 System root min=10
max=100
share=200

min=13
max=100
share=200

0 System loadl min=10
max=100
share=200

min=13
max=100
share=200

0 System admusr min=10
max=100
share=200

min=13
max=100
share=200

0 System dispatch min=10
max=100
share=200

min=13
max=100
share=200

1 Default min=20
max=100
share=100

min=20
max=100
share=100

Tier Class User Application CPU Memory

9 slow /usr/local/
netscape/
netscape_aix4

min=0
max=10
share=1

min=0
max=10
share=1

Tier Class User Application CPU Memory
Chapter 8. Practical experience 213

With these definitions, WLM was started in passive mode, and the wlmstat

output was analyzed. After some minor adjustments, WLM was run in active
mode:

Peak time (Monday till Friday, 8 am to 6 pm): wlmcntrl -d peak

Other: wlmctrnl -d offpeak

1 batch batuser1 min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser2 min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser3 min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser. min=0
max=100
share=50

min=0
max=100
share=50

1 batch batuser99 min=0
max=100
share=50

min=0
max=100
share=50

0 System root min=10
max=100
share=200

min=13
max=100
share=200

0 System loadl min=10
max=100
share=200

min=13
max=100
share=200

0 System admusr min=10
max=100
share=200

min=13
max=100
share=200

0 System dispatch min=10
max=100
share=200

min=13
max=100
share=200

1 Default min=20
max=100
share=100

min=20
max=100
share=100

Tier Class User Application CPU Memory
214 AIX 5L Workload Manager (WLM)

The 30 minutes CPU time limit for interactive processes was still in effect in
/etc/security/limits.

8.2.5.1 Major advantages of this solution
More batch jobs could be started without disturbing interactive users
because, in peak times, the batch jobs with their lower tier value could just
absorb the CPU cycles of the machine that would go idle otherwise. In this
way, a higher batch load could take advantage of the overlaps of I/O and CPU
demands.

The priority of Netscape processes can now never be higher than any other
processes.

8.2.5.2 Disadvantage of this solution
Sometimes, batch users wanted to do some interactive work at the same
time. Because their user ID was defined in the rules file belonging to the
batch class they had to use different user IDs to prevent the system from
running their interactive work with the batch tier.

This is, of course, not practical and creates an administrative nightmare. So,
the inheritance feature of WLM allowing the class inheritance of processes
started by LoadLeveler was really needed badly.

8.2.6 The second WLM solution with AIX 5L
Among many additional features, the new functions of WLM released in AIX
5L allow the class inheritance of processes started by a batch system (that is
LoadLeveler). With this enhancement, the definition of the WLM files is now
very easy. Table 27 shows the WLM configuration with AIX 5L.

Table 27. WLM configuration with AIX 5L

Tier Class Inheritance User Application CPU Memory

9 slow no /usr/local/
netscape/
netscape_aix4

min=0
max=10
share=1

min=0
max=10
share=1

2 batch yes ~loadl/bin/
LoadL_starter

min=0
max=100
share=100

min=0
max=100
share=100

0 System no root min=10
max=100
share=200

min=13
max=100
share=200
Chapter 8. Practical experience 215

These changes allow batch processes to inherit the class characteristics of
the LoadLeveler starter process. They combine the advantages of the
previous WLM release and get rid of its disadvantages.

8.2.7 Conclusion
WLM allows an installation to administer the system in a much more flexible
way compared to previous AIX releases. There is no additional effort to install
WLM because it is included in the AIX kernel. Configuring WLM is very easy:

1. Start up with a simple model.

2. Run WLM in passive mode.

3. Do some refinements.

4. Repeat the last two steps a few times.

5. Run WLM in active mode.

6. Collect statistics with wlmstat to see if the defined goals are achieved.

7. Modify shares, rules, and tiers.

8. Go to step 6.

9. Decide which is your best WLM configuration.

This process could be done over a few days. It is a powerful tool to allow
resources to be distributed to users in an installation-defined policy. For the
first time, service level agreements can be negotiated and enforced in a
production environment.

0 System no loadl min=10
max=100
share=200

min=13
max=100
share=200

0 System no admusr min=10
max=100
share=200

min=13
max=100
share=200

0 System no dispatch min=10
max=100
share=200

min=13
max=100
share=200

1 Default no min=20
max=100
share=100

min=20
max=100
share=100

Tier Class Inheritance User Application CPU Memory
216 AIX 5L Workload Manager (WLM)

Appendix A. AIX Workload Manager API routines

The WLM API routines are described in this appendix from a technical
viewpoint, for practical utilization purposes.

A.1 The Include file - sys/wlm.h

Purpose
Defines the constants, data structures and function prototypes used by the
Workload Manager Application Programming Interface (API) routines.

Description
The wlm.h file defines the wlm_args, wlm_assign, wlm_info and
wlm_bio_class_info structures, which are used by the WLM API functions in
libwlm.a.

Data structures
The wlm_args structure is used to pass class information to WLM when using
the API functions to create, modify or delete a class.

The wlm_args structure has the following fields:

Field Description

versflags The four high order bits contain a version number used by
the API to maintain binary compatibility in the event of
future modifications of the data structures. The rest of the
integer will be used to pass flags to the API functions when
needed. This field should be initialized with a logical OR
between the version number, WLM_VERSION, and
whatever flags are needed by the target function. One flag
common to all the API call is WLM_MUTE, which is used to
suppress the output of error messages from the WLM
library on stderr.

confdir Null-terminated string. This field must be initialized with the
name of the WLM configuration the target API function
applies to (when applicable - see individual API
subroutines). Alternatively, this field can be set to a null
string (\0) to indicate that the class addition/modification is
to be applied only to the WLM kernel data and not to the
class description files.
© Copyright IBM Corp. 2000 217

The main structure in class_definition is the class description, struct
class_descr with the following fields:

class This field is a structure of type struct, class_definition,
which contains all the information pertaining to the
superclass or subclass needed by the target API function.
The fields in this structure can be initialized by a call to
wlm_init_class_definition so that programmers will only
have to initialize the fields they wish to modify.

Field Description

res An array of type struct wlm_bounds containing for each
resource type:

min: Minimum limit: value between 0 (default) and 100.

shares: Shares number: value between 1 and 65535. The
value -1 (default) indicates that the given resource is not
managed by WLM for this class.

softmax: Soft maximum limit: value between 0 and 100
(default). Must be greater than or equal to min.

hardmax: Hard maximum limit: value between 0 and 100
(default). Must be greater than or equal to min and softmax.

The resource types are defined as WLM_RES_CPU,
WLM_RES_MEM and WLM_RES_BIO. Each value
represents the index in the array of the element
corresponding to the type of resource.

tier Tier number for the class: value between 0 (default) and 9.

inheritance Flag to indicate whether a new process should be
automatically classified on exec using the assignment rules
(value 0, which is the default), or just inherit the class from
its parent process (value 1).

assign_uid User ID of the user allowed to manually assign processes
to this class. When specified, it must be a valid user ID. The
default when this attribute is not specified is that no user is
authorized (WLM_NOGUID).

Field Description
218 AIX 5L Workload Manager (WLM)

In addition to the class description, class_definition adds two fields:

assign_gid Group ID of the group of users allowed to manually assign
processes to this class. When specified, it must be a valid
group ID. The default when this attribute is not specified is
that no group is authorized (WLM_NOGUID).

If both assign_uid and assign_gid are left to their default
value (WLM_NOGUID), only root can assign processes to
the class.

admin_uid The user ID of the user allowed to administrate the
subclasses of the superclass (superclass only).

admin_gid Group ID of the users allowed to administrate the
subclasses of the superclass (superclass only).

If both admin_uid and admin_gid are left to their default
value (-1), only root can administrate the subclasses of this
superclass.

name The null-terminated full name of the class in the form
supername, for a superclass and supername.subname for
a subclass. The superclass name, supername, and the
subclass names, subname, above are both limited to 16
characters. There is no default value for this field.

Field Description

rset_name A null-terminated character string containing the name of
the resource set (partition) the class is restricted to (when
applicable). The default is that the class can access all the
resources on the system.

descr_field A null-terminated character string containing the
description text of the class. This is an optional field; there
is no default.

Field Description
Appendix A. AIX Workload Manager API routines 219

The wlm_assign structure is used to manually assign processes or groups of
processes to a specified superclass or subclass using the wlm_assign routine.
The wlm_assign structure has the following fields:

The wlm_info structure is used to extract information about the current
configuration parameters and current resource utilization of the active classes
using the function wlm_get_info.

The wlm_info structure has the following fields:

Field Description

wa_versflags The four high order bits contain a version number used by
the API to maintain binary compatibility in the event of
future modifications of the data structures. The rest of the
integer will be used to pass flags to the API functions
when needed. This field should be initialized with the
version number, WLM_VERSION. The flag, WLM_MUTE,
can be used to suppress the output of error messages
from the WLM library on stderr.

wa_pids The address of an array containing the process identifiers
(pid's) of the processes to be manually assigned.

wa_pid_count The number of pid's in the array above.

wa_pgids The address of an array containing the process group IDs
(pgid's) of the process groups to be manually assigned.

wa_pgid_count The number of pgid's in the array above.

wa_classname The full name of the superclass (supername) or the
subclass (supername.subname) of the class to which you
want to manually assign processes.

Fields Description

i_descr The class description of type struct, class_descr,
described above.
220 AIX 5L Workload Manager (WLM)

There are two structures used to get the I/O statistics using wlm_get_bio_stats

depending on whether the application wants per-class or per-device statistics.

The wlm_bio_class_info_t structure is used to gather I/O statistics per class
and per device. This structure contains the following fields:

i_regul A per-resource type array of structures of type struct
wlm_regul containing the following fields:

consum: The resource consumption of the class
expressed as a percentage of the total resource
available.

total: This 64 bit number represents the total amount
of the resource consumed by the class since its
creation (or since WLM started). The unit is CPU ticks
for CPU, a number of pages * seconds for memory and
the total number of 512 byte blocks for disk I/O.

The indexes into the array of the various resources are
defined as above by WLM_RES_CPU,
WLM_RES_MEM, and WLM_RES_BIO.

i_class_id Class identifier (index of internal kernel class related
to classes, class_control_block (ccb[]) table).

i_cl_pri Priority delta applied to the threads in the class (CPU
regulation).

i_cl_inuse The current number of processes in the class.

i_cl_npages The number of memory pages currently allocated to
the class.

i_cl_mem_hwm The maximum number of (resident) memory pages
this class had since its creation (memory high water
mark).

i_cl_change_level Incremented every time there is a change in the
current WLM configuration. For use by the WLM
monitoring tools.

Field Description

wbc_dev Device identifier (dev_t).

Fields Description
Appendix A. AIX Workload Manager API routines 221

The wlm_bio_dev_info_t structure is used to gather the global statistics for a
given device (takes into account all I/Os to and from the device by all the
classes accessing the device). This structure contains the following fields:

wbc_cid Class identifier (index of the internal kernel class related to
classes class_control_block (ccb[]) table). The connection
between the class ID and the class name can be done
using wlm_get_info, which returns both the class name (in
field i_descr) and the class ID (in i_class_id) in the
wlm_info structure.

wbc_regul A structure of type struct, wlm_regul, already described,
containing the disk I/O statistics for the given class and
device: Resource utilization expressed as a percentage of
the total available throughput of the device (consum) and
the total number of 512 byte blocks read/written from and
to the device by processes in the class since the creation
of the class or since WLM started (whichever happened
last).

wbc_delay Delay (in milliseconds) imposed to the I/Os of the
processes in the class to the device in order to limit the
utilization of this device by the processes in this class when
this is consuming more than its entitlement.

Field Description

wbd_dev Device identifier (dev_t).

wbd_active_cntrl Number of classes actively accessing the device.

wbd_in_queue Number of requests in the device queue.

Field Description
222 AIX 5L Workload Manager (WLM)

wbd_last Device statistics for the last second. This field is an
array of integer values. Symbolic values defined in the
header file describe each index in the array:

WBS_OUT_RTHRPUT: Number of blocks actually
read from the device (I/O completed).

WBS_OUT_WTHRPUT: Number of blocks actually
written to the device (I/O completed).

WBS_IN_RTHRPUT: Requested number of blocks to
read from the device.

WBS_IN_WTHRPUT: Requested number of blocks to
write to the device.

WBS_REQUESTS: Number of requests (read/write).

WBS_QUEUED: Number of requests queued.

WBS_STARVED: Number of requests starved (not
serviced during the time interval).

For the wbd_last field, those numbers represent
activity during the last second (for instance, the
number of requests queued during the last second).

wbd_max This field contains the maximum values observed
since the device was first used (after WLM started) for
all the entries of the array described above (for
instance, the maximum number of blocks actually read
from the device in one second since the device was
first accessed).

wbd_av This field contains the average values for all the
entries in the array (for instance, the average number
of requests in the device queue).

wbd_total This field is an array of 64 bit integers parallel to the
arrays above which contains, for all the entries, the
total of all the values measured every second since the
device was first accessed (for instance the total
number of blocks written to the device since the device
was first accessed).

Field Description
Appendix A. AIX Workload Manager API routines 223

A.2 WLM API functions error codes

The various API functions may return one or several of the following error
codes:

WLM_BADVERS Bad Version number passed in versflags.
WLM_NOTINITED No prior call to wlm_initialize.

WLM_ALREADYINIT There already have been a prior call to
wlm_initialize.

WLM_UNSUPP Operation or flags value not supported.
WLM_OPENERR A file could not be opened.
WLM_CREATERR A file could not be created.
WLM_MKDIRERR A directory could not be created.
WLM_WRITERR An attempt to write in a file did not succeed.
WLM_REMERR An attempt to remove a file did not succeed.
WLM_RENAMERR An attempt to rename a file did not succeed.
WLM_SYMLERR An attempt to create a symbolic link did not

succeed.
WLM_NOMEM Not enough memory.
WLM_NOCLASS The specified class does not exist.
WLM_RNOCLASS A class specified in the rules file does not exist.
WLM_EXISTS The specified class already exists.
WLM_MAXCLASSES The maximum number of classes has been reached.
WLM_RMPREDEF Predefined classes, such as Default and System,

cannot be removed.
WLM_NOSUBS The target superclass has no subclasses.
WLM_HASSUBS The target superclass has subclasses.
WLM_SHAREDSUB Shared superclass cannot have subclasses.
WLM_SHAREDLIM Shared class can have shares and limits set only for

memory.
WLM_BADDEFSHR Default shares value specified in the shares file

is invalid.
WLM_BADDEFLIM Default limits value specified in the limits file is

invalid.
WLM_BADLIMFMT Value specified for minimum or maximum resource

limit invalid.
WLM_BADSHRFMT Value specified for resource shares is invalid.
WLM_BADTIER Tier values must be between 0 and 9.
WLM_BADSHARES Shares values must be between 1 and 65535.
WLM_BADMIN Minimum resource limits values must be between 0

and 100.
WLM_BADSMAX The soft maximum limit values must be between 1

and 100.
WLM_BADHMAX The hard maximum limit values must be between 1
224 AIX 5L Workload Manager (WLM)

and 100.
WLM_BADCNAME Class names must be alphanumeric.
WLM_TOOLONG The specified class name is too long.
WLM_MINSMAX The minimum limit cannot be greater than the soft

maximum limit.
WLM_SMAXHMAX The soft maximum limit cannot be greater than the

hard maximum limit.
WLM_SUMMINS The sum of the minimum limits for a given resource

and a given tier cannot exceed 100 percent.
WLM_BADINHER The value specified for the class inheritance

attribute is invalid.
WLM_LOADERR A class cannot be loaded into the kernel.
WLM_RULESERR The assignment rules table cannot be loaded into

the kernel.
WLM_SETERR The WLM state transition requested is illegal.
WLM_QUERYERR Cannot query wlm state.
WLM_MANYRULES Too many assignment rules.
WLM_MANYITEMS Too many items in an assignment rule.
WLM_RULERR An assignment rule has an invalid format.
WLM_BADLIST The process attribute list of an assignment rules is

invalid.
WLM_BADUSR The specified user ID is not valid on the system.
WLM_BADRUSR A user name specified in the rules file is invalid on

the system.
WLM_BADUID The specified user ID is not valid on the system.
WLM_BADGRP The specified group ID is not valid on the system.
WLM_BADRGRP A group name specified in the rules file is invalid on

the system.
WLM_BADGID The specified group ID is not valid on the system.
WLM_BADTAG An invalid tag is specified in a rule.
WLM_BADTYP An invalid type is specified in a rule.
WLM_NOSHRRULE Cannot specify the rule for a Shared class.
WLM_NOWILDCRD Wildcards are not allowed in this field.
WLM_STATERR One (or more) file names specified in the

application field of an assignment rule could not be
accessed. The corresponding names are ignored
(warning).

WLM_EMPTYRULE None of the file names specified in the application
field of an assignment rule could be accessed. The
rule is ignored (warning).

WLM_RUNERR The WLM library was not able to execute a
command needed for the specific function. This is
not an application error but, most likely, a system
Appendix A. AIX Workload Manager API routines 225

administration problem. The commands used by the
library are basic AIX commands, such as lsuser,
lsgroup, echo, and grep.

WLM_BADCONFIG Invalid configuration name.
WLM_CLASSMIS No class definition found.
WLM_EMPTYATTR No valid attributes found in attributes string for

wlm_classify.

WLM_MULTATTR Multiple specifications not allowed in attributes
string for wlm_classify.

WLM_EXCLATTR Exclusions not allowed in attributes string for
wlm_classify.

WLM_ATTERR Attribute format error in attributes string for
wlm_classify.

WLM_BADATTUSR Unknown user in attributes string for wlm_classify.
WLM_BADATTGRP Unknown group in attributes string for wlm_classify.
WLM_BADATTAPP Application file in attributes string for wlm_classify

could not be accessed.
WLM_BADATTTAG Invalid tag in attributes string for wlm_classify.
WLM_BADATTTYP Invalid type in attributes string for wlm_classify.
WLM_TOOMANYATT Too many items in attributes string for wlm_classify.
WLM_WILDCRDATT Wildcards not allowed in attribute field.
WLM_RUNERRATT Cannot expand attribute.
WLM_BADLISATT Invalid list in attributes string for wlm_classify.
WLM_TOOLONGATT Attribute list for wlm_classify too long.
WLM_EFAULT Bad parameter address.
WLM_NOTCOMPLETE Warning: could not assign all processes

(wlm_assign was partially successful).
WLM_NOTRUNNING WLM is not running.
WLM_ESRCH No such processes.
WLM_TOOMANYPID Process ID list too long.
WLM_EPERM Permission denied.
WLM_CANTASSIGN Internal error: Could not make assignment.
WLM_TAGTOOLONG Tag is too long.
WLM_BADFLAGS Invalid flags value.
WLM_CANTSETTAG Internal error: Could not set tag.
WLM_CANTCHECK Unable to check the configuration.
WLM_TOOSMALL Output buffer too small.
WLM_BADRSET Bad Rset attribute for a class.
WLM_CHOWNERR Cannot change file owner.
WLM_LOCKERR Cannot take file lock.
WLM_ERRNO A system call returned an error.
WLM_BADCLNAME Class name invalid: Some class names cannot be

used for internal reasons. For instance, Default.
226 AIX 5L Workload Manager (WLM)

WLM_BADSUPER Bad superclass for subclass assignment.
WLM_NOTASSGND Process has not been manually assigned to a class.
WLM_RULTOOLNG Rule exceeds 4096 characters in length

(WLM_RULE_LEN).
WLM_NOADMINSUB adminuser/admingroup attributes not applicable to

subclasses.

A.3 Initialization routines

There are two initialization routines in the API: wlm_init_class_definition and
wlm_initialize.

wlm_init_class_definition
Purpose: Initializes a variable of type struct class_definition, defined in
<sys/wlm.h> for use as an argument to WLM API function calls.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_init_class_definition (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_init_class_definition subroutine initializes (or
reinitializes) the data structure of the type struct, class_definition, which is
part of the argument of type struct wlm_args pointed to by wlmargs (field
class), so that this data structure can be used as an argument for the class
management subroutines of the WLM API library. The purpose of this call is
to allow applications to initialize only the fields that are relevant for the
operation they execute. For example, to change a CPU limit or share for an
existing class, after a call to wlm_init_class_definition, the application will
just have to initialize the fields corresponding to the values it wishes to
modify. This routine initializes all values to specific invalid values so that the
WLM library routines can find out which fields have been explicitly initialized
by the user. This way, they can set or modify only the corresponding
attributes.

When creating a class, for instance, it is different to leave a class attribute at
its invalid value set by wlm_initialize than to set its value to the current
default value for the attribute. In the former case, the attribute will not appear
in the property file. In the latter, it will appear and be set with the value
passed. This makes a difference if a WLM administrator decides to change
the default value for an attribute using the special stanza, default, in a
property file. For instance, the system default for the inheritance attribute is
no. If, at some point in time, a WLM administrator wants the inheritance to be
Appendix A. AIX Workload Manager API routines 227

yes by default, using this special stanza, all the classes in the classes
property file, for which the inheritance attribute has not been specified will
now use the default of yes. Those for which the inheritance attribute has been
specified with its old default of no will not have inheritance.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure to be initialized. Only the
versflags field of the wlm_args structure passed needs to be
initialized with WLM_VERSION.

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_init_class_definition subroutine is unsuccessful, a non 0 value is
returned.

Error Codes: There are two possible error codes returned by
wlm_init_class_definition:

BADVERSION The value of the versflags parameter is not a supported
version number.

NOTINITED The WLM API has not been initialized by a prior call to
wlm_initialize.

wlm_initialize
Purpose: Prepares WLM for use by an application.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_initialize (flags)
int flags;

Description: The wlm_initialize subroutine initializes the WLM API for use
with an application program. It is mandatory to call wlm_initialize prior to
using the WLM API. Otherwise, all other WLM API function calls will return an
error. If wlm_initialize is used in a multi-threaded application, the routine
should be called by the main thread before additional threads are started.

Parameter:

flags The format is the same as the versflags field of the wlm_args
structure: The value for the argument must have the version
number in the upper 4 bits (WLM_VERSION) possibly ORed
with a flag in the lower 28 bits.
228 AIX 5L Workload Manager (WLM)

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_initialize subroutine is unsuccessful, a non 0 value is returned.

Error Codes: There are two possible error codes returned by wlm_initialize:

BADVERSION The value of the flags parameter is not a supported
version number.

WLMINITED There has already been a previous call to
wlm_initialize.

A.4 Application tag

The routine described in this section is the one used to tag a process:
wlm_set_tag.

wlm_set_tag
Purpose: Sets the current process' tag and related flags

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

#include <sys/user.h>
int wlm_set_tag (tag, flags)
char *tag;
int *flags;

Description: The tag is a new attribute of a process that can be set using the
WLM function wlm_set_tag. This tag is a character string with a maximum
length of WLM_TAG_LENGTH (not including the null terminator). Process
tags can be displayed using the ps command. The tag is also one of the
process attributes used in the assignment rules to automatically assign a
process to a given class. The main utilization of the tag attribute is to allow
WLM administrators to discriminate between several instances of the same
application, which, typically, have the same user and group IDs, execute the
same binary, and, therefore, would end up in the same class using the
standard classification criteria. When an application sets its tag using
wlm_set_tag, it is automatically reclassified according to the current
assignment rules, and the new tag is taken into account when doing this
reclassification. In addition to the tag itself, the application can also specify
flags indicating to WLM whether a child process should inherit the tag from its
parent after a fork and/or an exec system call. A process does not require any
special privileges to set its tag.

Parameters:

tag The address of a character string. An error will be returned if
Appendix A. AIX Workload Manager API routines 229

this tag is too long.
flags The address of an integer interpreted in a manner similar to the

versflags field of the wlm_args structure passed to other API
routines. The integer pointed to by flags should be initialized
with WLM_VERSION. In addition, one or more of the following
values can be ORed to WLM_VERSION:

SWLMTAGINHERITFORK The children of this process will inherit
the parent's tag on fork.

SWLMTAGINHERITEXEC The process will retain its tag after a
call to exec. Both flags can be set to
specify that the children of a tagged
process will inherit the tag on fork and
then retain it on exec.

Return Values: Upon successful completion, a value of 0 is returned. In case
of error, a non zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h in Section A.1,
“The Include file - sys/wlm.h” on page 217.

A.5 Class management

The class management routines are wlm_read_classes, wlm_create_class,
wlm_change_class, and wlm_delete_class.

wlm_read_classes
Purpose: Read the characteristics of superclasses or subclasses.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_read_classes (wlmargs, class_tbl, nclass)
struct wlm_args *wlmargs;
struct class_definition *class_tbl
int *nclass

Description:The wlm_read_classes subroutine is used to get the
characteristics of the superclasses or of the subclasses of a given superclass
of a WLM configuration. If the name of a configuration is passed in the confdir
field, the subroutine, wlm_read_classes, will read the property files of the
classes of the specified configuration. If confdir is set to a null string (\0),
wlm_read_classes will read the property files of the in-core classes if WLM is
on. If WLM is off, wlm_read_classes, with a null string as the configuration
230 AIX 5L Workload Manager (WLM)

name, will fail. Note that if WLM is on and a null string was passed in the
confdir field, wlm_read_classes will return the characteristics of the classes as
they are known by WLM at the time of the call. These values may be different
from the values in the property files of the configuration pointed to by
/etc/wlm/current. For instance, a WLM administrator has modified the
property files for the configuration pointed to by /etc/wlm/current but has not
refreshed WLM yet. Another example would be if applications dynamically
created or modified classes through the API without saving the changes in
the current configuration property files. If your application specifically needs
to access the properties of the classes as described in the /etc/wlm/current
configuration, you must specify current as the configuration name in confdir. If
the name of a valid superclass of the given configuration is passed in the
name field of the class_descr substructure of wlm_args, wlm_read_classes will
read the property files for the subclasses of this superclass. If a null string (\0)
is passed in the name field, wlm_read_classes will read the property files for
the superclasses of the WLM configuration described above. When
wlm_read_classes is successful, the characteristics of the superclasses or
subclasses are copied into the array of class_definition structures pointed to
by class_tbl. The integer value pointed to by nclass indicates the maximum
number of class definitions to be copied. Upon successful return from the
function, this value reflects the actual number of classes read. If the number
of elements copied by wlm_read_classes is strictly smaller than the number of
elements passed as an argument, this means that all the classes have been
read. If it is equal, it may mean that some classes were not copied into the
class_tbl array because its size is too small. The maximum number of classes
read by wlm_read_classes is 32 when reading superclasses and 10 when
reading subclasses characteristics. Upon successful return from
wlm_read_classes, the substructure class of type struct class_definition, of the
structure pointed to by wlmargs contains the default values of the various
class attributes for the returned set of classes. This operation does not
require any special privileges and is accessible to all users.

Parameters:

wlmargs The address of a struct wlm_args data structure. The following
fields of the wlm_args structure and the embedded
substructures need to be provided:

versflagsNeeds to be initialized with WLM_VERSION.
confdir The name of a WLM configuration. It must be either

the name of a valid subdirectory of /etc/wlm or a null
string (starting with \0).

name The name of a superclass existing in the specified
configuration, or a null string.
Appendix A. AIX Workload Manager API routines 231

All the other fields can be left uninitialized.

class_tbl The address of an array of structures of type
struct class_definition. Upon successful return from
wlm_read_classes, this array will contain the characteristics of
the classes read.

nclass The address of an integer containing the maximum number of
elements (class definitions) for wlm_read_classes to copy into
the array above. If the call to wlm_read_classes is successful,
this integer will contain the number of elements actually
copied.

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_read_classes subroutine is unsuccessful, a non 0 value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.

wlm_create_class
Purpose: Creates a new WLM class.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_create_class (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_create_class subroutine creates a new class for a given
WLM configuration using the values passed in the data structure of type
struct wlm_args pointed to by wlmargs. If the name of a configuration is
passed in the confdir field, the subroutine updates the WLM properties files
for the target configuration. When creating the first subclass of a superclass,
the subroutine will create the WLM property files in a subdirectory of
/etc/wlm/<confdir> with the name of the superclass. The newly-created
property files will have entries for the Default and Shared subclasses
automatically created in addition to entries for the new subclass. If a null
string (\0) is passed in the confdir field, the new superclass or subclass will be
created only in the in-core WLM data. No WLM property file will be updated.
The structure of type struct class_definition, which is part of struct wlm_args,
has normally been initialized with a call to wlm_init_class_definition. Once
this has been done, programmers just need to initialize the fields of this
structure that have no default value (for example, the name of the new class)
or for which the desired value is different from the default value. For a
232 AIX 5L Workload Manager (WLM)

description of the possible values for all the class attributes and their default
values, refer to the description of wlm.h in Appendix A.1 on page 217.

The caller must have root authority to create a superclass and must have
administrator authority on a superclass to create a subclass of the
superclass.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure for the new class to be created.
The following fields of the wlm_args structure and the
embedded sub-structures need to be provided:

versflagsNeeds to be initialized with WLM_VERSION.
confdir The name of the WLM configuration the new class is

to be added to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting
with \0). If the name is a valid subdirectory, the new
class data will be added to the given WLM
configuration's class description files. If the name is
a null string, no description files will be updated. The
new class will be created and the data passed to the
kernel immediately.

name The name of the superclass or of the subclass to be
created. If this is a subclass name, it must be of the
form, supername.subname. There is no default for
this field.

All the other fields can be left at their default value if the user
does not wish to use specific values.

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_create_class subroutine is unsuccessful, a non 0 value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Appendix A.1
on page 217.

wlm_change_class
Purpose: Changes some of the attributes of a class.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>
Appendix A. AIX Workload Manager API routines 233

int wlm_change_class (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_change_class subroutine changes attributes of an
existing superclass or subclass. The attributes of the class that can be
dynamically modified by a call to wlm_change_class are the tier number, class
inheritance, class description string, resource shares and limits, and the
resource set name (all attributes, except, of course, the name of the class). If
the name of a valid configuration is passed in the confdir field, the subroutine
updates the WLM property files for the target configuration. If a null string (\0)
is passed in the confdir field, the changes are applied only to the in-core WLM
data. No WLM property files will be updated. The structure of type struct
class_definition, which is part of struct wlm_args, should be initialized with a
call to wlm_init_class_definition. Once this has been done, programmers just
need to initialize the fields of this structure that are required (for example, the
name of the class to be modified) and the fields corresponding to the class
attributes one wants to modify. For a description of the possible values for the
various class attributes and their default values, refer to the description of
wlm.h in Appendix A.1 on page 217.

The caller must have root authority to change the attributes of a superclass
and must have administrator authority on a superclass to change the
attributes of a subclass of the superclass.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure for the new class to be created.
The following fields of the wlm_args structure and the
embedded substructures need to be provided:

versflagsNeeds to be initialized with WLM_VERSION.
confdir The name of the WLM configuration the target class

belongs to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting
with \0). If the name is a valid subdirectory, the
relevant class description files in the given
configuration will be modified. If the name is a null
string, no description files will be updated. The
modified class attributes will be passed immediately
to the kernel.

name The name of the superclass or of the subclass to be
modified. If this is a subclass name, it must be of the
form supername.subname. There is no default for
234 AIX 5L Workload Manager (WLM)

this field. All the other fields can be left at their initial
value as set by wlm_init_class_definition, if the
user does not wish to change their current values.

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_change_class subroutine is unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.

wlm_delete_class
Purpose: Deletes a class.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_delete_class (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_delete_class subroutine deletes an existing superclass
or subclass. A superclass cannot be deleted if it still has subclasses other
than Default and Shared defined. If the name of a valid configuration is
passed in the confdir field, the subroutine updates the WLM property files for
the target configuration, removing all references to the class to be deleted. If
a null string (\0) is passed in the confdir field, the changes are applied only to
the in-core WLM data. No WLM property file will be updated.

The caller must have root authority to delete a superclass and must have
administrator authority on a superclass to delete a subclass of the
superclass.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the information about the class to be deleted. The following
fields of the wlm_args structure and the embedded
sub-structures need to be provided:

versflags Needs to be initialized with WLM_VERSION.
confdir The name of the WLM configuration the target class

belongs to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting
with \0). If the name is a valid subdirectory, the
relevant class description files in the given
configuration will be modified. If the name is a null
Appendix A. AIX Workload Manager API routines 235

string, no description files will be updated. The class
will be removed immediately from the kernel WLM
data structures.

name The name of the superclass or of the subclass to be
deleted. If this is a subclass name, it must be of the
form supername.subname. There is no default for
this field.

All the other fields can be left uninitialized for this call.

Return Values: Upon successful completion, a value of zero is returned. If
the wlm_delete_class subroutine is unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file sys/wlm.h in Appendix A.1 on
page 217.

A.6 WLM management

The WLM management routines are wlm_set, wlm_load and wlm_assign.

wlm_set
Purpose: Changes or queries the state of WLM.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_set (flags)
int *flags;

Description: The wlm_set subroutine is used to set, change, or query the
mode of operations of WLM. The state of WLM can be:

• OFF: WLM does not classify processes, monitor, or regulate
resource utilization.

• ON in passive mode: WLM classifies the processes and monitor
their resource usage, but does no regulation.

• ON in active mode: This is the normal operating mode where WLM
classifies processes, and monitors and regulates the resource
usage.

Parameter:

flags The address of an integer interpreted in a manner similar to
the versflags field of the wlm_args structure passed to the
other API routines. The integer pointed to by flags should be
236 AIX 5L Workload Manager (WLM)

initialized with WLM_VERSION. In addition, one or more of
the following values can be ORed to WLM_VERSION:

• WLM_TEST_ON to just query the state of WLM without
altering it.

• WLM_OFF to turn WLM off.

• WLM_ACTIVE to turn WLM on in active mode, or transition
from passive to active mode.

• WLM_PASSIVE to turn WLM on in passive mode or
transition from active to passive mode.

• WLM_BIND_RSETS to requests that WLM takes the
resource set bindings into account.

Not all combinations of the aforementioned flags are valid:

• WLM_OFF, WLM_ACTIVE and WLM_PASSIVE are mutually
exclusive.

• WLM_BIND_RSETS is ineffective when used together with
WLM_OFF.

• Only WLM_TEST_ON is allowed to non root users.

Return Values: Upon successful completion, a value of 0 is returned and the
current state of WLM is returned in the integer pointed to by flags. The return
value will be WLM_OFF, WLM_ACTIVE or WLM_PASSIVE. When WLM was
on in either active or passive mode, the WLM_BIND_RSETS flag is added
when WLM uses resource sets bindings.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.

wlm_load
Purpose: Loads a WLM configuration into the kernel.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_load (wlmargs)
struct wlm_args *wlmargs;

Description: The wlm_load subroutine loads into the kernel the property files
for the WLM configuration passed in the confdir field of the wlm_args
structure. If no superclass name is given in the name field of the
Appendix A. AIX Workload Manager API routines 237

class_definition substructure, the routine loads the class properties for all the
superclasses of the target configuration. If a superclass name is given, only
the subclasses of the given superclass are refreshed. Flags passed in the
flags portion of the versflags field can be used to modify the mode of
operation of WLM. The values are identical to the flag values passed to the
wlm_set API routine. Not all combinations of parameters are allowed, and
different combinations may require different levels of privilege as explained
below:

• The name of a configuration must be passed in the confdir field in
order to start or update WLM. wlm_load updates or starts WLM using
the properties files from the given configuration. Only root can
specify the name of a configuration different from the currently
active configuration (specified as current in confdir).

• When WLM is on (the operation is an update), if the name of the
configuration passed in the confdir field of the wlm_args structure is
the name of the currently-active configuration, the name of a
superclass can be given in the name field in order to update only the
subclasses of the given superclass. This functionality is accessible
to root and to users with administration privileges on the subclasses
of the superclass. wlm_load cannot be used in this context to alter
the state of WLM (start, stop, or switch between active and passive
modes).

• If the caller of wlm_load has root privileges and does not specify a
superclass, the flags passed in versflags can be used to alter
WLM's mode of operation: Start WLM in active or passive mode;
switch between active and passive modes, and/or enable/disable
the rset bindings.

Parameter:

wlmargs The address of the struct wlm_args data structure containing
the class_definition structure. The following fields of the
wlm_args structure and the embedded sub-structures can be
provided:

versflagsNeeds to be initialized with WLM_VERSION.
Optionally, some of the flags used when calling
wlm_set in order to change the mode of operation of
WLM can be given by the root user. The valid values
are WLM_ACTIVE, WLM_PASSIVE and
WLM_BIND_RSETS. Of course, WLM_ACTIVE and
WLM_PASSIVE are mutually exclusive. The flag,
WLM_SAME_STATE, should be used if the
238 AIX 5L Workload Manager (WLM)

application does not wish to change the current
mode of operation of WLM.

confdir The name of the WLM configuration to be loaded
into the kernel. It must be either the name of a valid
subdirectory of /etc/wlm or the string current to refer
to the active configuration.

name The name of a superclass. This is used to refresh
only the subclasses of a given superclass.

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_load subroutine is unsuccessful, a non 0 value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.

wlm_assign
Purpose: Manually assigns processes to a class or cancels prior manual
assignments for processes.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_assign (args)
struct wlm_assign *args;

Description: The wlm_assign function is used to:

• Assign a set of processes specified by their process identifiers
(pids) or process group identifiers (pgids) to a specified superclass
or subclass, thus, overriding the automatic class assignment or a
prior manual assignment.

• Cancel a previous manual assignment, allowing the processes to be
subjected to the automatic assignment rules again.

The target processes are identified by their process ID (pid) or by their
process group ID (pgid). The wlm_assign subroutine allows you to specify
processes using a list of pids, a list of pgids, or both.

A manual assignment will remain in effect (and a process will remain in its
manually assigned class) until:

• The process terminates.

• WLM is stopped. When WLM is restarted, the manual assignments
in effect when WLM was stopped are lost.
Appendix A. AIX Workload Manager API routines 239

• The class the process has been assigned to is deleted.

• The manual assignment for the process is canceled.

• A new manual assignment overrides a prior one.

The name of a valid superclass or subclass must be specified to manually
assign the target processes to a class. The assignment can be done or
canceled at the superclass level, the subclass level, or both. Flags in the
wa_versflags field described below are used to specify whether the requested
operation is an assignment or cancellation and at which level.

In order to assign a process to a class or cancel a prior manual assignment,
the caller must have authority both on the process and on the target class.
These constraints translate into the following:

• The user root can assign any process to any class.

• A user with administration privileges on a given superclass (that is,
the user or group name matches the user or group names specified
in the attributes, adminuser and admingroup, of the superclass) can
manually reassign any process from one of the subclasses of this
superclass to another subclass of the superclass.

• A user can manually assign his/her own processes (same real or
effective user ID) to a superclass or a subclass for which he/she has
manual assignment privileges (that is, the user or group name
matches the user or group names specified in the attributes,
authuser, and authgroup of the superclass or the subclass).

This defines three levels of privilege among the persons who can manually
assign processes to classes, root being, of course, the highest. In order for a
user to modify or terminate a manual assignment, he/she must be at the
same level of privilege or higher than the person who issued the last manual
assignment.

Parameter:

args The address of the struct wlm_assign data structure
containing the parameters for the desired class assignment.
The following fields of the wlm_assign structure and the
embedded sub-structures can be provided:

wa_versflags Needs to be initialized with WLM_VERSION.
The flags values available, defined in the header
file <sys/wlm.h>, are the following:
WLM_ASSIGN_SUPER, WLM_ASSIGN_SUB,
240 AIX 5L Workload Manager (WLM)

WLM_ASSIGN_BOTH,
WLM_UNASSIGN_SUPER,
WLM_UNASSIGN_SUB and
WLM_UNASSIGN_BOTH.

wa_pids The address of the array containing the process
identifiers (pid’s) of processes to be manually
assigned. When this list is empty, a NULL
pointer can be passed together with a count of
zero (0).

wa_pid_count The number of elements (pids) in the above
array.Could be zero (0) if using only pgid's to
identify the processes.

wa_pgids The address of the array containing the process
group identifiers (pid's) of processes to be
manually assigned. When this list is empty, a
NULL pointer can be passed together with a
count of zero (0).

wa_pgid_countThe number of elements (pgids) in the above
array.Could be zero (0) if using only pid's to
identify the processes. If both pid's and pgid's
counts are zero, no process will be assigned, but
the operation will be considered successful.

wa_classname The full name of the superclass, supername, or
the subclass, supername.subname, of the class
you want to manually assign processes to. The
class name field is ignored when canceling an
existing manual assignment.

Return Values: Upon successful completion, a value of zero (0) is returned. If
the wlm_assign subroutine is unsuccessful, a non-zero (0) value is returned. A
partial success return code will be returned if some of the target processes
are not found (to account for process terminations). If none of the processes
in the lists can be found, this will be considered an error.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Appendix A.1
on page 217.

A.7 WLM statistics

The WLM statistics routines are wlm_get_info and wlm_get_bio_stats.
Appendix A. AIX Workload Manager API routines 241

wlm_get_info
Purpose: Read the characteristics of superclasses or subclasses.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_get_info (wlmargs, info, count)
struct wlm_args *wlmargs;
struct wlm_info *info
int *count

Description: The wlm_get_info subroutine is used to get the characteristics of
the classes defined in the active WLM configuration together with their
current resource usage statistics. For a detailed description of the fields of
the structure, wlm_info, refer to the description of the header file,
<sys/wlm.h>, in the Files Reference documentation. By default, the scope of
the wlm_get_info subroutine is all the superclasses and all the subclasses.
This scope can be limited to a subset of the classes using flags in the
versflags field of wlm_args and/or a superclass or subclass name in the name
field of the substructure, class_definition of wlm_args. The information
related to the superclasses and subclasses within the scope of wlm_get_info
will be copied to the array of wlm_info structures pointed to by info. The total
number of classes for which information is copied to the array at info is limited
to the value of the integer pointed to by count. If the routine is successful, the
value of the integer pointed to by count is set to the actual number of classes
copied. If the value passed to the routine for the count is equal to zero (0),
wlm_get_info does not copy any class statistics but sets this count to the
number of classes in scope for the specific set of parameters. This is a way of
finding out how big an array is needed to get all the information for a given set
of classes (superclasses and/or subclasses).

wlm_get_info does not require any special privileges and is accessible to all
users. wlm_get_info will fail if WLM is off.

Parameters:

wlmargs The address of a struct wlm_args data structure. The following
fields of the wlm_args structure and the embedded
sub-structures need to be provided:

versflagsNeeds to be initialized with WLM_VERSION.
Optionally, the following flag values can be ORed to
WLM_VERSION:

• WLM_SUPER_ONLY: Limits the scope to superclasses only.

• WLM_SUB_ONLY: Limits the scope to subclasses only.
242 AIX 5L Workload Manager (WLM)

• WLM_VERBOSE_MODE: Shows the system defined
subclasses, Default and Shared, even if they have not been
modified by a WLM administrator.

• WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually
exclusive.

name This field must contain either a null string, or the
name of a valid superclass or subclass (in the form
Super.Sub). This field can be used in conjunction
with the flags to further narrow the scope of
wlm_get_info:

• If the name of a subclass is provided, wlm_get_info will
return the statistics only for the specified subclass.

• If the name of a superclass is provided and none of the
WLM_SUPER_ONLY and WLM_SUB_ONLY flags are
provided, wlm_get_info will return the statistics for the
specified superclass and all its subclasses.

• If the name of a superclass is provided together with
WLM_SUPER_ONLY, wlm_get_info will return only the
statistics for the specified superclass.

• If the name of a superclass is provided together with
WLM_SUB_ONLY, wlm_get_info will return the statistics for
all the subclasses of the specified superclass.

All the other fields of the wlm_args structure can be left
uninitialized.

info The address of an array of structures of type struct
wlm_info. Upon successful return from wlm_get_info,
this array will contain the WLM statistics for the
classes selected.

count The address of an integer containing the maximum
number of elements (of type wlm_info) for
wlm_get_info to copy into the aforementioned array. If the call
to wlm_get_info is successful, this integer will contain the
number of elements actually copied. If the initial value is equal
to zero (0), wlm_get_info will set this value to the number
of classes selected by the specified combination of
versflags and name above.

Return Values: Upon successful completion, a value of zero is returned. If
the wlm_get_info subroutine is unsuccessful, a non-zero value is returned.
Appendix A. AIX Workload Manager API routines 243

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.

wlm_get_bio_stats
Purpose: Read the WLM disk I/O statistics per class or per device.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/types.h>

#include <sys/wlm.h>
int wlm_get_bio_stats (dev, array, count, class, flags)
dev_t dev;
void *array;
int *count;
char *class;
int flags;

Description: The wlm_get_bio_stats subroutine is used to get the WLM disk
I/O statistics. There are two types of statistics available:

• The statistics about disk I/O utilization per class and per devices,
returned by wlm_get_bio_stats in wlm_bio_class_info_t structures.

• The statistics about the disk I/O utilization per device, all classes
combined, returned by wlm_get_bio_stats in wlm_bio_dev_info_t
structures.

The type of statistics returned by the function are related to the value of the
flags argument. The flags argument, together with the dev and class
arguments, is used to restrict the scope of the function to a class or a set of
classes and/or a device or a set of devices. It is also used to restrict the
statistics to superclasses only, subclasses only, and to a set of devices.

wlm_get_bio_stats does not require any special privileges and is accessible to
all users. wlm_get_bio_stats will fail if WLM is off.

Parameters:

flags Needs to be initialized with WLM_VERSION. Optionally, the
following flag values can be OR'ed to WLM_VERSION:

• WLM_SUPER_ONLY: Limits the scope to superclasses only.

• WLM_SUB_ONLY: Limits the scope to subclasses only.

• WLM_BIO_CLASS_INFO: Per class statistics requested.

• WLM_BIO_DEV_INFO: Per device statistics requested.
244 AIX 5L Workload Manager (WLM)

• WLM_BIO_ALL_DEV: Requests statistics for all devices.
When this flag is set, the value passed in the dev argument
is ignored.

• WLM_BIO_ALL_MINOR: Requests statistics for all devices
associated with a given major number. When this flag is set,
only the major number part of the value passed in the dev
argument is used.

• WLM_VERBOSE_MODE: Shows the system-defined
subclasses, Default and Shared, even if they have not been
modified by a WLM administrator.

One of the flags, WLM_BIO_CLASS_INFO or
WLM_BIO_DEV_INFO (and only one), must be specified.
WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually-
exclusive.

dev Device identification (major, minor) of a disk device.

• If dev is equal to 0, the statistics for all devices are returned
(even if WLM_BIO_ALL_DEV is not specified in the flags
argument).

• If dev is not equal to 0 and WLM_BIO_ALL_MINOR is
specified in the flags argument, the statistics for all disk
devices with the same major number specified in dev are
returned.

• If dev is not equal to 0 and WLM_BIO_ALL_MINOR is not
specified in the flags argument, only the statistics for the
disk device with the major and minor numbers specified in
dev are returned.

array Pointer to an array of wlm_bio_class_info_t structures (when
WLM_BIO_CLASS_INFO is specified in the flags argument)
or an array of wlm_bio_dev_info_t structures (when
WLM_BIO_DEV_INFO is specified in the flags argument).

count The address of an integer containing the maximum number of
elements to be copied into the array above. If the call to
wlm_get_bio_stats is successful, this integer will contain the
number of elements actually copied.

class A pointer to a character string containing the name of a
superclass or subclass. If class is a pointer to an empty string
(""), the information for all classes is returned. The class
parameter is taken into account only when the flag,
WLM_BIO_CLASS_INFO, is set.
Appendix A. AIX Workload Manager API routines 245

Return Values: Upon successful completion, a value of 0 is returned and the
value pointed to by count is set to the number of elements copied into the
array of structures pointed to by array. If the wlm_get_bio_stats subroutine is
unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file, sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.

A.8 WLM classification

The WLM classification routines are wlm_check and wlm_classify.

wlm_check
Purpose: Checks automatic assignment rules and/or determines the class a
process with a specified set of attributes will be classified in.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_assign (config)
char *config;

Description: The wlm_check function checks the coherency of the assignment
rules files (syntax, existence of the classes, validity of user and group names,
application path names, and other consistency checks) for the configuration
whose name is passed as an argument. If config is a null pointer or points to
an empty string, wlm_check performs the checks on the configuration files in
the configuration pointed to by /etc/wlm/current.

Parameter:

config A pointer to a character string. This pointer should be:

• The address of a character string representing the name of
a valid configuration (a subdirectory of /etc/wlm)

• A null pointer

• A pointer to a null string ("")

If config is a null pointer or a pointer to a null string, the
configuration files in the directory pointed to by
/etc/wlm/current (active configuration) will be checked for
errors. Otherwise, the configuration files in the directory,
/etc/wlm/<config_name>, will be checked.
246 AIX 5L Workload Manager (WLM)

Return Values: Upon successful completion, a value of 0 is returned. If the
wlm_check subroutine is unsuccessful, a non-zero value is returned.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file sys/wlm.h. in Section A.1,
“The Include file - sys/wlm.h” on page 217.

wlm_classify
Purpose: Given a list of process attributes, wlm_classify determines which
class or classes this process will be assigned to.

Library: Workload Manager Library (libwlm.a)

Syntax: #include <sys/wlm.h>

int wlm_classify (config, attributes, class, len)
char *config;
char *attributes;
char *class;
int *len;

Description: This routine must receive the name of a valid configuration and
a set of process attributes in a format identical to the one of the rules file
(assignment rules). On output, the names of the classes are copied into the
area pointed to by class. The integer pointed to by len contains the size of the
class names area on input, and the number of matches on output. If the area
pointed to by class is not big enough to contain the names of all the potential
matches, an error is returned.

The normal use of this routine is to explicitly provide all the process
classification attributes: User name, group name, application path name, and
tag (when applicable). This should give a match to a single class, but, in order
to implement what-if scenarios, the interface allows some of the attributes
unspecified by putting a hyphen (-) instead. This may lead to multiple classes
the process could be assigned to, depending on the values of the unspecified
attributes. If all the attributes are left unspecified, an error is returned.

The attributes string is provided in a format identical to the one of the
attributes in the rules file: A list of attribute values separated by spaces. The
order of the attributes in the assignment rules is:

1. Reserved: must be a hyphen (-)
2. User name
3. Group name
4. Application pathname
5. Process type
6. Tag
Appendix A. AIX Workload Manager API routines 247

A valid specification for the attributes string could be:

- bob staff /usr/bin/emacs -

or:

- - devlt /usr/bin/cc -

The class names returned by the function in the class buffer will be
fully-qualified, null-terminated class names of the form, supername.subname.

This function does not require any special privileges and can be called by all
users.

Parameters:

config A pointer to a string containing the name of a valid WLM
configuration (the name of a subdirectory of /etc/wlm). If a null
string (\0) is given, wlm_classify will use the in-core class
and rules definitions.

attributes The address of a string, with the format described above,
containing a list of values for the process attributes used for
automatic classification of processes.

class A pointer to a buffer where the name of the class or classes
the process could be assigned to are returned as consecutive,
null-terminated character strings.

len A pointer to an integer containing the length, in bytes, of the
buffer pointed to by class when calling wlm_classify, and the
actual number of class names copied into the class buffer
upon successful return.

Return Values: Upon successful completion, a value of zero is returned. In
case of error, a non zero value is returned. When a non-zero value is
returned, the content of the class buffer and the value of the integer pointed
to by len are unspecified.

Error Codes: For a list of the possible error codes returned by the WLM API
functions, see the description of the header file sys/wlm.h, in Section A.1,
“The Include file - sys/wlm.h” on page 217.
248 AIX 5L Workload Manager (WLM)

Appendix B. Sample workload program

This appendix describes the sample program that was used to generate
workload during the development of this redbook. It launches a number of
CPU bound threads, creates network traffic, allocates memory, and generates
disk I/O.

The sample program hog.c:

static char sccsid[] = "@(#)93 1.0 hog.c 8/30/99 11:30";
/*
* COMPONENT_NAME: hog
*
* WRITTEN BY: Tim Leo
*
* FUNCTIONS: Exercises SMP CPU Load (utilization), Disk I/O and Memory Usage

* To be used for testing AIX WLM (Workload Manager)
*
* OBJECT CODE ONLY SOURCE MATERIALS
* (C) COPYRIGHT International Business Machines Corp. 1989, 1991
* All Rights Reserved
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*/
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>
#include <stdlib.h>
#include <locale.h>
#include <sys/limits.h>
#include <nl_types.h>
#include <sys/param.h>

/* Start of Global Vars **/
char *cp; /* Current Program name */
int login; /* true if invoked as login shell */
char firstchar; /* first char of name of prog invoked as */

extern int optind;
extern char *optarg;

usage() /* Prints help info for hog Program */
© Copyright IBM Corp. 2000 249

{
printf("%s: usage is %s [-t thread_count [-n iptarget]] [-m memory_valu

e] [-d] [-?] \n",cp,cp);
printf("\n\nARGUMENTS: \n");
printf("-t thread_count : Launch a number of CPU Bound Threads \n");
printf(" where thread_count is an integer specifying\n

");
printf(" the number of threads to launch.\n\n");
printf("-m memory_value : Determines the amount of working memory to be

allocated and\n");
printf(" utilized by the main program to be touched co

ntinuously,\n");
printf(" where memory_value is an integer specifying t

he number \n");
printf(" of MB (MegaBytes) to allocate.\n\n");
printf("-d : Generates Disk I/O.\n\n");
printf("-n iptarget : Threads should generate network I/O.\n");
printf(" where iptarget is either an IP address or hos

tname\n");
printf(" (the default iptarget is loopback) \n");

printf("-? : Obtains this screen of help info and exit. \n
");
}

/* More Global Vars ************/

int loop_stat;
pthread_mutex_t m;
char *waste_of_space=NULL;
size_t megs=0;

struct arg {
char *string;
int net;

};
typedef struct arg arg_t;

/* Sample Memory Grabber Thread Routine *****************/
void *Memory_Thread(void *x)
{
printf("Starting memory scan...\n");
while(1)
{

if ((waste_of_space =(char *)calloc(megs,1))==NULL)
printf("%s: Could not allocate memory...errno was %d\n",cp,errno);

else {
system("date");
printf("%s has allocated a %d byte array of storage...\n",cp,(int)megs);
sleep(10);

free(waste_of_space);
}

}
}

250 AIX 5L Workload Manager (WLM)

/* Sample Disk I/O Generator Thread Routine ************/

void *Gen_File_IO(void *x)
{
while (1)
{
system ("dd if=/unix of=/wlm_fs1/test1 count=10000 2>/dev/null");
system ("dd if=/wlm_fs1/test1 of=/wlm_fs2/test2 count=10000 2>/dev/null");
/* system ("run_disks 4"); */
system ("date");
printf("%s: Finished a Disk Cycle...\n",cp);
}
pthread_exit((void *)1);

}
/* Sample CPU Bound Thread Routine ************/

void *Thread(void *x)
{

int l;
while (1)

{
/* l=0; while (l < 1000) l++; Delay loop */
usleep(5);
pthread_mutex_lock(&m);

loop_stat++;
pthread_mutex_unlock(&m);

if ((loop_stat%1000)== 0){
system ("date");
printf("%d transactions so far...\n",loop_stat);

}
/* Turn on network traffic */
if (((arg_t*)x)->net==1) system(((arg_t *)x)->string);

}
pthread_exit((void *)1);

}

/* hog main program **/
main(argc, argv)

char **argv;
int argc;

{

/* Start of Local Vars for Main *************/
#ifdef PATH_MAX
#undef PATH_MAX
#endif
#define PATH_MAX 257 /* Maximum path +\0 */
Appendix B. Sample workload program 251

register int i, j;
int tp, thread_max;
int mflag=0;

int dflag=0;
int tflag=0;
pthread_t h_th[32000];
pthread_t d_th;
pthread_t m_th;
arg_t arg_th;
char *iptarget="`hostname "̀;
char temp[PATH_MAX];

arg_th.net=0;
system("date");
(void) setlocale (LC_ALL,"");

login = (argv[0][0] == '-');
cp = rindex(argv[0], '/');
firstchar = login ? argv[0][1] : (cp==NULL) ? argv[0][0] : cp[1];
cp = argv[0]; /* for Usage */

printf("\n");
printf("%s Beta test version.\n",cp);
printf(" (C) COPYRIGHT International Business Machines Corp. 1999\n");
printf(" All Rights Reserved\n");
if (argc==0) {usage(); exit(1);}
while ((tp = getopt(argc, argv,"t:n:m:d?")) != EOF)

switch(tp) {
case 't':

if (tflag==1) { printf("%s: Multiple -t switch
ignored \n",cp); break; }

if (*optarg==0) {
printf(

"%s: The number of threads to launch was not
specified with the '-t' option \n", cp);

printf("%s: By default 1 thread will be laun
ched.\n",cp);

thread_max=1;
}
else thread_max=atoi(optarg);
/* check for errors here */
if ((thread_max < 1)||(thread_max > 32000)) {

printf(
"%s: invalid number of threads requested (mu

st be between 1 and 32000)\n",cp);
usage();
exit(1);

}
tflag=1;
break;

case 'n':
if (tflag==0) {printf("%s: -t switch must be sp

ecified first to use -n option\n",cp);
usage(); exit(2);
}

252 AIX 5L Workload Manager (WLM)

if (arg_th.net==1) { printf("%s: Multiple -n sw
itch ignored \n",cp); break; }

if (*optarg != 0) iptarget = optarg;
if(sprintf(temp,"spray %s -l 1024 -c 50 2> /dev

/null > /dev/null",iptarget)) printf("%s: sprintf errno was %d\n %s\n",cp,errno
,temp);

arg_th.string=temp;
arg_th.net=1;

break;

case 'm':
if (mflag==1) { printf("%s: Multiple -m switch

ignored \n",cp); break; }

if (*optarg==NULL) {
printf(
"%s: Memory value must be specified with 'm'

option \n", cp);
usage();
exit(1);

}
else megs=atoi(optarg);
/* check for errors here */
if ((megs < 0)||(megs >= 64000)) {

printf(
"%s: invalid memory value requested (must be

between 0 and 64000) MB\n",cp);
usage();
exit(1);

}
megs *= (size_t)(1024*1024);
mflag=1;
break;

case 'd':
if (dflag==1) { printf("%s: Multiple -d switch

ignored \n",cp); break; }
dflag=1;

break;

case '?':
usage();
exit(1);
break;

default:
printf("%s: Bad flag '%s' option ignored\n",cp,

tp);
}

/* End of argument finder */
/* Debug routine */
#ifdef DEBUG
printf("\n%s: debug active : thread_max=%d, tflag=%d, mflag=%d, dflag=%d \n meg
s=%d, arg_th.string=%s, arg_th.net=%d \n Normal debug exit \n",cp,thread_max,tf
lag,mflag, dflag, megs, arg_th.string, arg_th.net);
exit(0);
#endif

if (arg_th.net==1) { printf("%s: Multiple -n sw
itch ignored \n",cp); break; }

if (*optarg != 0) iptarget = optarg;
if(sprintf(temp,"spray %s -l 1024 -c 50 2> /dev

/null > /dev/null",iptarget)) printf("%s: sprintf errno was %d\n %s\n",cp,errno
,temp);

arg_th.string=temp;
arg_th.net=1;

break;

case 'm':
if (mflag==1) { printf("%s: Multiple -m switch

ignored \n",cp); break; }

if (*optarg==NULL) {
printf(
"%s: Memory value must be specified with 'm'

option \n", cp);
usage();
exit(1);

}
else megs=atoi(optarg);
/* check for errors here */
if ((megs < 0)||(megs >= 64000)) {

printf(
"%s: invalid memory value requested (must be

between 0 and 64000) MB\n",cp);
usage();
exit(1);

}
megs *= (size_t)(1024*1024);
mflag=1;
break;

case 'd':
if (dflag==1) { printf("%s: Multiple -d switch

ignored \n",cp); break; }
dflag=1;

break;

case '?':
usage();
exit(1);
break;

default:
printf("%s: Bad flag '%s' option ignored\n",cp,

tp);
}

/* End of argument finder */
/* Debug routine */
#ifdef DEBUG
printf("\n%s: debug active : thread_max=%d, tflag=%d, mflag=%d, dflag=%d \n meg
s=%d, arg_th.string=%s, arg_th.net=%d \n Normal debug exit \n",cp,thread_max,tf
lag,mflag, dflag, megs, arg_th.string, arg_th.net);
exit(0);
#endif
Appendix B. Sample workload program 253

This script was compiled with the following make file:

printf("\n%s: Configuration Summary \n",cp);
/* CPU Bound Thread Launch Stuff */
if (tflag==1) {

pthread_mutex_init(&m, NULL);
for (i=0,j=1;i<thread_max;i++) {

if (pthread_create(&h_th[i], NULL, Thread, &arg_th))
{
j=0;
printf("Launched %d threads so far...Error Launching more, errn

o was %d\n",i,errno);
break;

}
}
if (j==1) printf("Launched %d thread(s) \n",--i);

} else printf("No CPU Bound Threads Launched...\n");

/* Disk I/O Stuff */
if (dflag==1)

if (pthread_create(&d_th, NULL, Gen_File_IO, &arg_th))
printf("%s: Couldn't create Disk I/O Thread...errno was %d\n",

cp,errno);
else printf("Launched I/O Generator Thread \n");

/* End of Thread Launching */

/* Memory Use Stuff */
if (mflag==1) {

if (pthread_create(&m_th, NULL, Memory_Thread, &arg_th))
printf("%s: Couldn't create Memory Thread...errno was %d\n",cp

,errno);
else printf("Launched Memory Allocator Thread \n");

}
pthread_exit(0);
printf("%s:Normal Exit",cp);
system("date");
exit(0);

}

#Make file for loadgen benchmarks.

clean:
rm dssserver oltpserver backupserver loadgen

all: hog.c
cc_r -g -o loadgen hog.c -bD:0x80000000 -lm
cp loadgen /home/dssadm/dssserver
cp loadgen /home/oracle/oltpserver
cp loadgen /home/adsm/backupserver

(0)itsosrv1:/wlm/scripts#
254 AIX 5L Workload Manager (WLM)

• Three users were created to run this test: oracle, dssadm, and adsm.

• Two groups were created: dba and admin.

• Two filesystems were created on different disks: /wlm_fs1 and /wlm_fs2.

• Due to the test system being a 12-way SMP with 1 GB Memory, the
arguments displayed in the next screenshot were chosen to start the
different workloads, OLTP, DSS, and backup.

The goal was that the OLTP workload always has enough resources. This
workload mainly consumes CPU and memory resources and is, therefore,
competing with the backup and the DSS workload over these resources.

The backup workload consumes mainly disk I/O resources next to CPU and
memory.

The DSS workload consumes CPU, memory, and disk I/O resources.

Parameters used to start the different workloads:

-t thread_count Launch a number of CPU Bound threads where
thread_count is an integer specifying the number of
threads to launch.

-n iptarget Threads should generate network I/O where iptarget is
either an IP address or hostname.

-m memory_value Determines the amount of working memory to be
allocated and utilized by the main program. Memory will
be touched continuously, where memory_value is an integer
specifying the number of MB (Megabytes) to allocate.

-d Generates disk I/O.

After defining the parameters, the three scripts, oltp.sh, dss.sh, and back.sh,
were started by executing the start.sh script:

(0)itsosrv1:/# cat /home/oracle/oltp.sh
oltpserver -t 100 -n 9.3.240.10 -m 128 >> ~oracle/oracle.log
(0)itsosrv1:/# cat /home/dssadm/dss.sh
dssserver -t 50 -m 256 -d >> ~dssadm/dss.log
(0)itsosrv1:/# cat /home/adsm/back.sh
backupserver -t 25 -m 256 -d >> ~adsm/back.log
(0)itsosrv1:/#
Appendix B. Sample workload program 255

Important:
In /etc/security/limits the data file entry was set to -1 (for unlimited).

Suggestions:
It proved to be helpful to first take the actual WLM configuration and run WLM
in passive mode. Get a performance report for all classes every 10 seconds
and this for five minutes as shown in the following screenshots:

(0)itsosrv1:/wlm/scripts# pg start.sh
/usr/samples/kernel/vmtune -P 30
su - oracle -c "~oracle/oltp.sh & "
su - dssadm -c "~dssadm/dss.sh & "
su - adsm -c "~adsm/back.sh & "
(0)itsosrv1:/wlm/scripts#

Ĉ(130)itsosrv1:/# wlmstat 10 30
CLASS CPU MEM BIO

Unclassified 0 0 0
Unmanaged 0 0 0
Default 0 0 0
Shared 0 1 0
System 0 8 0
oltp 0 0 0

oltp.Default 0 0 0
oltp.Shared 0 0 0
oltp.spray 0 0 0

dss 0 0 0
backup 0 0 0

.....

.....
256 AIX 5L Workload Manager (WLM)

To collect more detailed information, the following statistics can be run:

After the first run, the shares and tiers were changed, and further
observations with wlmstat were made before WLM was turned into active
mode.

(0)itsosrv1:/# wlmstat -c -v
CLASS tr i #pr CPU sha min smx hmx des rap urap pri

Unclassified 0 0 1 0 -1 0 100 100 100 0 97 10
Unmanaged 0 0 0 0 -1 0 100 100 0 0 97 10
Default 0 0 1 0 -1 0 100 100 0 0 97 97

Default.Default 0 0 1 0 1 0 100 100 100 100 48 48
Default.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

Shared 0 0 0 0 -1 0 100 100 0 0 97 97
Shared.Default 0 0 0 0 1 0 100 100 100 100 48 48
Shared.Shared 0 0 0 0 -1 0 100 100 0 0 96 96

System 0 0 44 0 10 10 100 100 100 100 0 0
System.Default 0 0 44 0 1 0 100 100 100 100 0 0
System.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

oltp 0 0 0 0 50 0 100 100 47 100 0 0
oltp.Default 0 0 0 0 -1 0 100 100 100 0 23 23
oltp.Shared 0 0 0 0 -1 0 100 100 0 0 23 23
oltp.spray 1 0 0 0 30 0 100 100 61 100 97 97

dss 0 0 1 0 20 0 100 100 100 100 0 0
dss.Default 0 0 1 0 1 0 100 100 100 100 0 0
dss.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

backup 0 0 0 0 35 0 100 100 63 100 0 0
backup.Default 0 0 0 0 1 0 100 100 100 100 0 0
backup.Shared 0 0 0 0 -1 0 100 100 0 0 48 48

(0)itsosrv1:/#

(130)itsosrv1:/# wlmstat -m -v
CLASS tr i #pr MEM sha min smx hmx des rap urap npg

Unclassified 0 0 1 0 -1 0 100 100 100 0 511 0
Unmanaged 0 0 0 0 -1 1 100 100 0 100 0 2
Default 0 0 1 0 -1 0 100 100 0 0 511 240

Default.Default 0 0 1 0 1 0 100 100 100 100 255 240
Default.Shared 0 0 0 0 -1 0 100 100 0 0 510 0

Shared 0 0 0 1 -1 0 100 100 100 0 511 3230
Shared.Default 0 0 0 1 1 0 100 100 100 98 260 3230
Shared.Shared 0 0 0 0 -1 0 100 100 0 0 510 0

System 0 0 44 8 10 10 100 100 99 100 0 30720
System.Default 0 0 44 8 1 0 100 100 100 85 38 30753
System.Shared 0 0 0 0 -1 0 100 100 0 0 255 0

oltp 0 0 0 0 50 0 100 100 44 100 0 0
oltp.Default 0 0 0 0 -1 0 100 100 100 0 127 0
oltp.Shared 0 0 0 0 -1 0 100 100 0 0 127 0
oltp.spray 1 0 0 0 30 0 100 100 86 100 512 0

dss 0 0 1 0 20 0 100 100 30 100 0 0
dss.Default 0 0 1 0 1 0 100 100 100 100 0 0
dss.Shared 0 0 0 0 -1 0 100 100 0 0 255 0

backup 0 0 0 0 35 0 100 100 77 100 0 0
backup.Default 0 0 0 0 1 0 100 100 100 100 0 0
backup.Shared 0 0 0 0 -1 0 100 100 0 0 255 0

(0)itsosrv1:/#
Appendix B. Sample workload program 257

General recommendations
An easy way to analyze a system running WLM is:

1. Start with a simple model.

2. Run WLM in passive mode.

3. Do some refinements.

4. Repeat the last two steps a few times.

5. Run WLM in active mode.

6. Collect statistics, via wlmstat, to see if the defined goals are achieved.

7. Modify shares, rules, and tiers.

8. Go to step 6.

9. Decide which is your best WLM configuration.
258 AIX 5L Workload Manager (WLM)

Appendix C. Sample Korn shell scripts for manual assignment

In this appendix, the scripts used for the manual assignment examples of
Chapter 5, “Manual assignment” on page 141, are listed. They are also
available for practical use on the floppy disk provided with the redbook.

C.1 Oracle example script

This is the script used in the Oracle example described in Section 5.3,
“Examples” on page 152:

#/bin/ksh
Sample script to perform manual assignment of processes whose different
instances can be differentiated by their output in ps -ef.
Examples of this kind of processes are ORACLE database instances.
#
Create a configuration file /etc/wlm/ma.conf with the following format:
One line for each combination of:
<Instance name> <Class> <Inheritance>
where:
o Instance Name is the ORACLE instance.
o Class is the name of the class to assign the processes to;
Either ‘supername’ for superclasses or ‘supername.subname’
for subclasses.
o Inheritance is a flag, which should be set to yes if you
want all processes belonging to a process group, whose
leader is the process being manually assigned, to be
manually assigned too, or no, otherwise.
MANUAL is an array of three positions, which one of them being:
o Position 0: Instance name.
o Position 1: Class name.
o Position 2: Inheritance flag.

##
DIRECTORIES
##
WLMDIR=/etc/wlm

##
VARIABLES
##
CONFFILE=$WLMDIR/ma.conf
PATH=/usr/bin:/usr/sbin:$PATH

##
FUNCTIONS
##
© Copyright IBM Corp. 2000 259

getpids()
{

echo ‘ps -ef | grep $1 | grep -v grep | awk ‘{ print $2 }’‘ | sed \
‘s/ /,/g’

}

##
MAIN
##
(while read LINE
do

set -A MANUAL $LINE

echo "Changing the inheritance attribute on class ${MANUAL[1]}..."
OLDINH=‘lsclass -f ${MANUAL[1]} | grep inheritance | awk ‘{ print \

$3 }’ | sed "s/\"//g"‘
[! "$OLDINH"] && OLDINH="no"
chclass -a inheritance=${MANUAL[2]} ${MANUAL[1]}

echo “Refreshing WLM...”

wlmcntrl -u

echo "Getting PIDS' list for instance ${MANUAL[0]}..."
PIDLIST=$(getpids ${MANUAL[0]})

if [-z "$PIDLIST"]
then

echo "No processes found for class ${MANUAL[1]}, skipping \
assignment ..."

else
echo "Manually assigning the processes to class ${MANUAL[1]}..."
wlmassign ${MANUAL[1]} $PIDLIST

fi

echo "Resetting old inheritance value on class ${MANUAL[1]}..."
chclass -a inheritance="$OLDINH" ${MANUAL[1]}
echo “Refreshing WLM...”

wlmcntrl -u
done
) < $CONFFILE

C.2 DB2 UDB example script

This is the script used for the DB2 UDB example of Section 5.3, “Examples”
on page 152:

#/bin/ksh

Sample script to perform manual assignment
260 AIX 5L Workload Manager (WLM)

of processes whose different instances

can be differentiated by an environmental variable.

Examples of this kind of processes are DB2 database instances.

#
Create a configuration file /etc/wlm/ma.conf with the following format:
One line for each combination of:
<Instance name> <Class> <Inheritance>
where:
o Instance Name is the DB2 instance name.
o Class is the name of the class to assign the processes to;
Either ‘supername’ for superclasses or ‘supername.subname’
for subclasses.
o Inheritance is a flag, which should be set to yes if you
want all processes belonging to a process group, whose
leader is the process being manually assigned, to be
manually assigned too, or no, otherwise.
MANUAL is an array of three positions, which one of them being:
o Position 0: Instance name.
o Position 1: Class name.
o Position 2: Inheritance flag.
APP is a string naming the application in question, in the format that
matches the launched processes in the process table (db2, in this
example).
VARIABLE is the name of the environmental variable that establishes the
difference between instances (DB2INSTANCE, in this example).

##
DIRECTORIES
##
WLMDIR=/etc/wlm

##
VARIABLES
##
CONFFILE=$WLMDIR/ma.conf
PATH=/usr/bin:/usr/sbin:$PATH
APP="db2"
VARIABLE="DB2INSTANCE"

##
FUNCTIONS
##
getpids()
{

unset PIDLIST
for PID in ‘ps -ef | grep $APP | grep -v grep | awk ‘{ print $2 }’‘
do

(ps eww $PID | grep "$VARIABLE=$1" > /dev/null) && \
Appendix C. Sample Korn shell scripts for manual assignment 261

if [! "$PIDLIST"]
then

PIDLIST=$PID
else

PIDLIST="$PIDLIST,$PID"
fi

done
print $PIDLIST

}

##
MAIN
##
(while read LINE
do

set -A MANUAL $LINE

echo "Changing the inheritance attribute on class ${MANUAL[1]}..."
OLDINH=`lsclass -f ${MANUAL[1]} | grep inheritance | awk '{ print \

$3 }' | sed "s/\"//g"`
[! "$OLDINH"] && OLDINH="no"
chclass -a inheritance=${MANUAL[2]} ${MANUAL[1]}

echo “Refreshing WLM...”

wlmcntrl -u

echo "Getting PIDS' list for instance ${MANUAL[0]}..."
PIDLIST=$(getpids ${MANUAL[0]})

if [-z "$PIDLIST"]
then

echo "No pids found for class ${MANUAL[1]}, skipping \
assignment ..."

else
echo "Manually assigning the processes to class ${MANUAL[1]}..."
wlmassign ${MANUAL[1]} $PIDLIST

fi

echo "Resetting old inheritance value on class ${MANUAL[1]}..."
chclass -a inheritance="$OLDINH" ${MANUAL[1]}

echo “Refreshing WLM...”

wlmcntrl -u
done
) < $CONFFILE
262 AIX 5L Workload Manager (WLM)

Appendix D. Sample program for application tag

In this appendix, the program, settag.c, used for the application tag example
of Section 6.1.3 on page 159 is listed. It is also available for practical use on
the floppy disk provided with the redbook:

D.1 settag.c

#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <sys/wlm.h>

/* Program for launching and tagging an application */
main (argc,argv)

char **argv;
int argc;

{
int rc,flags;
if (argc != 3) {

usage(argv[0]);
exit(1);

}
flags= WLM_VERSION|SWLMTAGINHERITFORK|SWLMTAGINHERITEXEC;
if(wlm_initialize(WLM_VERSION)){

perror("wlm_initialize");
exit(1);

}
if(wlm_set_tag(argv[1],&flags)){

perror("wlm_set_tag");
exit(2);

}
if (execlp(argv[2],argv[2],0)){

perror("execlp"); printf("Problem launching app...\n");
exit(3);

}
exit(0);

}

usage(char *cp)
{

printf("\n %s takes 2 arguments:\n",cp);
printf("Usage: %s tag_name program_name \n",cp);
printf("where: tag_name is the rule tag that program_name will inherit \

\n");
}

© Copyright IBM Corp. 2000 263

264 AIX 5L Workload Manager (WLM)

Appendix E. Sample for CPU resource usage calculation

A sample spread sheet that contains the CPU resource usage data of
Applications A, B, C, and D from Section 7.3.2, “Examples” on page 173, is
listed below. This was obtained separately by monitoring Applications A, B, C,
and D respectively, which ran on a system that has a capacity of 10,000 tpm
(transaction per minute). The resource usage was measured for each
application at 10 minute intervals for 500 minutes. The unit of the
measurement is a percentage.

Because the system capacity is 10,000 tpm, each percentage value in the
spread sheet is easily converted, by multiplying by 100, to the actual tpm
value that was consumed by each application at the moment of
measurement.

This data is not from monitoring a real system but was simulated as a general
example.
© Copyright IBM Corp. 2000 265

Tim e un it A p p lic a t io n A A p p lic a t io n B A p p lic a t io n C A p p lic a t io n D S um o f A , B , C , D
--

1 1 1 3 4 2 1 8 6 5
2 1 4 3 2 3 1 9 6 8
3 1 2 3 3 5 1 5 6 5
4 1 6 3 2 3 1 3 6 4
5 2 5 2 5 4 1 6 7 0
6 3 9 2 2 2 1 2 7 5
7 5 6 1 8 1 1 5 9 0
8 2 1 2 2 3 1 9 6 5
9 1 2 2 3 4 1 4 5 3

1 0 9 2 6 2 1 3 5 0
1 1 1 5 2 4 1 1 6 5 6
1 2 1 8 2 3 2 1 7 6 0
1 3 1 1 1 7 3 1 6 4 7
1 4 2 1 1 9 2 1 8 6 0
1 5 4 6 1 8 1 1 6 8 1
1 6 5 1 1 5 2 1 4 8 2
1 7 1 6 1 6 3 1 6 5 1
1 8 1 2 1 8 2 1 5 4 7
1 9 1 7 1 9 3 1 7 5 6
2 0 1 8 2 0 4 1 6 5 8
2 1 1 6 1 8 5 1 6 5 5
2 2 1 5 2 1 3 1 8 5 7
2 3 4 2 2 2 2 1 9 8 5
2 4 5 4 2 1 4 1 8 9 7
2 5 3 5 2 5 2 1 9 8 1
2 6 2 2 2 4 1 1 7 6 4
2 7 2 1 2 7 2 1 8 6 8
2 8 1 8 2 8 2 1 7 6 5
2 9 1 5 3 4 3 1 8 7 0
3 0 2 3 3 2 1 1 6 7 2
3 1 2 1 3 3 3 1 5 7 2
3 2 1 5 3 3 2 1 6 6 6
3 3 1 2 3 1 3 1 2 5 8
3 4 8 2 6 3 1 7 5 4
3 5 6 2 5 2 1 4 4 7
3 6 7 2 3 1 1 3 4 4
3 7 8 2 2 2 1 4 4 6
3 8 6 2 4 5 1 3 4 8
3 9 6 1 9 3 5 1 2 7 2
4 0 7 1 8 5 4 1 2 9 1
4 1 8 1 5 5 7 1 3 9 3
4 2 6 1 7 5 5 1 1 8 9
4 3 5 1 7 5 6 1 2 9 0
4 4 8 1 6 5 7 1 1 9 2
4 5 9 1 5 5 4 1 1 8 9
4 6 8 1 5 5 3 1 2 8 8
4 7 7 1 6 5 5 1 1 8 9
4 8 7 1 6 5 5 1 1 8 9
4 9 7 1 4 5 6 1 3 9 0
5 0 6 1 3 5 1 1 1 8 1

--
To ta l 8 6 8 1 1 1 6 7 3 6 7 4 5 3 4 6 5
266 AIX 5L Workload Manager (WLM)

Appendix F. Using the additional material

This redbook contains additional material in diskette format. See the
appropriate section below for instructions on using or downloading each type
of material.

F.1 Using the diskette

The diskette that accompanies this redbook contains the following:

File name Description
ma_db2.sh Sample script for manual assignment with DB2
ma_oracle.sh Sample script for manual assignment with Oracle
settag.c Sample source code for Application Tag setting
settag Sample binary for Application Tag setting

F.1.1 System requirements for using the diskette

The following system configuration is recommended for optimal use of the
diskette.

Operating System: AIX 5L for Power Version 5.0 or higher
Processor: IBM RS/6000

F.1.2 How to use the diskette

You can access the contents of the diskette by extracting the files on the
diskette with tar -xvf /dev/fd0 into your current directory.

F.2 Locating the additional material on the Internet

The diskette material associated with this redbook is also available in
softcopy on the Internet from the IBM Redbooks Web server. Point your Web
browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245977

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with
the redbook form number.
© Copyright IBM Corp. 2000 267

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/

268 AIX 5L Workload Manager (WLM)

Appendix G. Special notices

This publication is intended to help system administrators and technical
support specialists implement and use AIX Workload Manager efficiently. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by AIX 5L. See the PUBLICATIONS
section of the IBM Programming Announcement for AIX 5L for more
information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2000 269

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not, in any manner, serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

e (logo) IBM
LoadLeveler MQSeries
Netfinity Redbooks
Redbooks Logo RS/6000
S/390 SP
System/390 Wizard
270 AIX 5L Workload Manager (WLM)

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Lotus Notes is a registered trademark of Lotus Development Corporation.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix G. Special notices 271

272 AIX 5L Workload Manager (WLM)

Appendix H. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

H.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 275.

• Introducing Tivoli Application Performance Management, SG24-5508

• Server Consolidation on RS/6000, SG24-5507

• AIX 5L Differences Guide Version 5.0 Edition, SG24-5765 (to be published
in December, 2000)

H.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates, and formats.

H.3 Other resources

These publications are also relevant as further information sources:

• Workload Management Surges to Prominence in UNIX Servers, D. H.
Brown Associates, Inc.

• AIX Workload Manager Technical Reference - February Update, IBM
Whitepaper

• AIX Performance Toolbox User’s Guide V1 and V2.1, SC23-2625

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 273

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

H.4 Referenced Web site

The following Web site is also relevant as a further information source:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

AIX online documentation
274 AIX 5L Workload Manager (WLM)

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 275

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
276 AIX 5L Workload Manager (WLM)

Abbreviations and acronyms

AIX Advanced Interactive
Executive

APAR Authorized Program
Analysis Report

API Application
Programming Interface

ARM Application Response
Measurement

CCMS Computing Center
Management System

CPU Central Processing Unit

DB Database

DB2 Database 2

DBA Database Administrator

DKIO Disk I/O

GB Gigabyte

GID Group Identification

GL Peoplesoft General
Ledger

HACMP High Availability Cluster
Multi-Processing

HM Hard Maximum limit

HTML Hypertext Markup
Language

IBM International Business
Machines Corporation

ID Identification

I/O Input/Output

IPL Initial Program Load

ISICC IBM SAP International
Competence Center

IT Information Technology

ITSO International Technical
Support Organization

KB Kilo Byte
© Copyright IBM Corp. 2000
LPAR Logical Partitioning

LRU Least Recently Used

m Minimum limit

MB Mega Byte

NFS Network File System

NIC John von Neumann
Institute for Computing

NIS Network Information
Service

NUMA Non-Uniform Memory
Access

OLAP On-line Analytical
Processing

OLTP On-line Transaction
Processing

OS Operating System

PGID Process Group
Identifier

PID Process Identifier

PTX Performance Toolbox

rset Resource set

SAP Systems, Applications,
and Products in Data
Processing

SD Sales and Distribution

SGA System Global Area

SM Soft Maximum limit

SMIT System Management
Interface Tool

SMP Symmetric
Multi-Processing

SPMI System Performance
Measurement Interface

SSA Serial Storage
Architecture
277

TAPM Tivoli Application
Performance
Management

TCC SAP Technical
Competence Center

TCP Transmission Control
Protocol

TEC Tivoli Enterprise
Console

TDS Tivoli Decision Support

TOC Total Cost of
Ownership

TPM Transactions per
minute

TTY Teletype Terminal

UID User Identification

URAP Uniform Resource
Access Priority

VMM Virtual Memory
Manager

WLM Workload Manager

WSM Web-based System
Manager

ZAM Central Institute for
Applied Mathematics
278 AIX 5L Workload Manager (WLM)

Index

Symbols
/etc/group 16, 20
/etc/inittab 93, 94, 152, 154
/etc/passwd 16, 19
/etc/security/limits 256
/etc/wlm 32, 52, 96
/etc/wlm/.running 39, 157
/etc/wlm/current 39, 231
/etc/wlm/current/rules 32
/etc/wlm/standard 32
/etc/wlm/templates 52
/usr/include/sys/wlm.h 217
/usr/lib/libwlm.a 157

Numerics
32bit 20
64bit 20

A
Active mode 40
Add a class 60
Add a class to another configuration 65
Add or remove processes 150
Adding a rule 76
Admingroup 16, 141
Administration 31
Adminuser 16, 141
AIX

AIX 5L 7
V4.3.3 7, 12

AIX Workload Manager
See also WLM

Alternate configurations 57
API 21, 157
API routines 217
Application pathname 20
Application Programming Interface (API) 157
Application Response Measurement (ARM) 163
Application tag 21, 157, 229

Example 158
Example program 159
Sample program 263

ARM 163
Authgroup 16, 141
Authuser 16, 141
© Copyright IBM Corp. 2000
Automatic assignment 17

B
Backward compatibility 12, 28
Base line 173
Binary compatibility 163

C
Change Configuration 46
Change/Show Characteristics of a class 69
Change/Show Characteristics of a rule 81
Changing a rule 80
chclass 66

Syntax 66
Check assignment 86
Checking the configuration 84
Class

Change/Show Characteristics 69
Update a class 66

Class assignment rules 19, 37
Application pathname 20
Application tag 21
Default class 22
Examples 21
Group 20
Process type 20
System class 21
User 19

Class attributes 14, 33
Admingroup 16
Adminuser 16
Authgroup 16
Authuser 16
Inheritance 15
Resource set (rset) 16
Tiers 14

Class definitions
Refinement 49

Class management 160
Class name 10, 19
Class report 118
Class resource limits 26
Class resource shares 24
Class Set 57
class_definition 218, 219
class_descr 218
279

class_tbl 231
Classes 9

Default 22, 92
Listing classes 71
Remove a class 74
System 21, 92
Working with classes 57
Working with sets of subclasses 57

Classes file 33
Classification process 17
Command line 31
Commands

chclass 66
crash 96
cron 51, 92
dkstat 30
iostat 23, 30
kdb 96
lsclass 71
lsrset 87
mkclass 58
nice 29
ps 13, 101
rmclass 74, 161
schedtune 29
smit wlm 31
smitty wlm 31
snap 96
svmon 94, 116
tee 94
topas 104
vmstat 96
vmtune 30, 94
wlmassign 146
wlmcheck 49, 84
wlmcntrl 32, 40, 41, 95
wlmstat 12, 40, 94, 96, 97, 162
wsm 31, 130

Compatibility 12, 28
Configuration file 153, 155
Configuration steps 91
Configuring WLM 216
Copy a configuration 53, 54
Copy class attributes 64
CPU 23
crash 96
Create a configuration 53
Create a new class 46, 61
Create a new configuration 55

Create a new rule 77
Create a subclass 64
Create assignment rules 49
Create other configurations 51
Create superclasses 49
cron 51, 92
Crontab 31
Customer experience 210

Pre-WLM solution 212
WLM solution with AIX 5L 215
WLM solution with AIX Version 4.3.3-03 212

D
Data mining 49
DB2 UDB

Example script 260
Instances example 154

DB2INSTANCE 154
db2resyn 154
default stanza 33, 34, 36
Delete Rule 84
Design phase 49
Design your classification 49
devstrat 30
Disk device driver interaction 30
Disk I/O 23, 30, 99
DKIO 99
dkstat 30
Dump analysis 96
Dynamic update 96

E
Edit a rule 82
Enter configuration description 53
exec 18, 21, 157, 159, 229

F
Fine tune your configurations 51
fixed 20
fork 18, 157, 159, 229

G
Gather resource utilization data 50
getpids 153, 154, 155
Group 20
280 AIX 5L Workload Manager (WLM)

H
HACMP 93
Hard maximum limit (HM) 36
Hints and Tips 90

I
Inheritance 15, 18, 143

Automatic assignment 144
Child processes 144
Group members 145
Manual assignment 144
Subclass level 15
Superclass level 15

Insert a rule 79
iostat 23, 30
ISV Case Studies 183

J
Job attributes 8
John von Neumann Institute for Computing 210

K
kdb 96
Kernel interaction 29

L
Limits 22, 26, 63

Constraints 26
Hard maximum 26
Hard maximum limit (HM) 36
Maximum 25
Minimum 25, 26
Minimum limit (m) 36
Soft maximum 26
Soft maximum limit (SM) 36

Limits file 35
Limits versus shares 28, 93
List all classes 73
Listing the classes 71
Listing the rules 82
Logical partitioning (LPAR) 2
LPAR 2
LRU 27
lsclass 71

Syntax 71
lsrset 87

M
Manual assignment 17, 18, 141

DB2 UDB example 154
DB2 UDB example script 260
Examples 152
First assignment 142
Methods 146
Oracle example 152
Oracle example script 259
Sample Korn shell scripts 259

maxfree 94
maxperm 94
Memory 23
Memory resource management 69
minfree 94
Minimum limit (m) 36
minperm 94
mkclass 58

Syntax 58
Modes of operation 40
Monitoring 96, 132

N
New Class Wizard 61
nice 29
NIS 16, 19, 20
Non configured WLM startup 94
NUMA 3

O
OLAP 91
OLTP 49, 91, 184
Oracle

Database instances 141
Example script 259
Instances example 152

P
Passive mode 7, 40, 50, 95
PeopleSoft

Case study 183
Case study method 185
OLTP benchmarks 184, 186
One batch - two OLTP benchmarks 194, 195
Two batch - two OLTP benchmarks 196
Two batch benchmarks 196
WLM configuration 188
281

Performance Toolbox (PTX) 132
Console 136
Monitoring console 136
Outlook 140

Performance tools 97
PGID 150
Physical memory 23
Physical partitioning 2
PID 156
plock 20, 21
Practical experience 183
Process classification attributes

See also Class assignment rules
Process type 20
Properties 54, 70
Property files 32
ps 13, 101

Syntax 101

R
Reassignment 143
Refresh Current Configuration 55
Remove a class 74, 75
Remove a configuration 53
Removing a rule 83
Resource limits 26
Resource manipulation 130
Resource set (rset) 16
Resource shares 24
Resource target 25
Resource usage monitoring 170
Resources 22, 130

CPU 23, 29
Disk I/O 23, 30
Physical memory 23, 30

resvd attribute 77
rmclass 74, 161

Syntax 74
rset 87
rset registry 87
Rules 76, 93

Adding a rule 76
Change/Show characteristics 81
Changing a rule 80
Edit a rule 82
Insert a rule 79
Listing rules 82
Removing a rule 83

Working with 76
Rules file 37, 76

S
Sample workload program 249
SAP R/3

Buffering R/3 from non-R/3 applications 199
Case Study 199
Case study description 201
Case study method 202
R/3 and non-R/3 application 208
Special considerations 209
Two or more R/3 instances - one database 199
Two or more R/3 instances - separate databases
201
Two R/3 instances - one database 208
Two R/3 instances - separate databases 208
WLM configuration 203

schedtune 29
Scheduler interaction 29
Select a configuration 53
Server consolidation 1, 6, 168

Capacity sizing steps 170
setgid 20, 21, 95
setpri 21
settag.c 159, 263
setuid 19, 21, 95
Shares 22, 24, 63
Shares file 34
Shares versus limits 28, 93
Show all configurations 53
Show Configuration Details 55, 73
Show current focus 57
Show Processes 131
Show Subclasses 131
Sizing 167, 169

All applications are mission-critical 177
CPU 173
CPU resource usage calculation sample 265
Estimate for each application 171
Estimate for integrated applications 172
Examples 173
Memory and disk I/O bandwidth 181
Some applications are mission critical 178

SMIT 31
smitty

chgwlmrs 80
crewlmrs 77
282 AIX 5L Workload Manager (WLM)

wlmaddclass 60
wlmassign 148
wlmchclass 67
wlmconfig 53
wlmlsclass 72
wlmmanage 43
wlmrmclass 75

snap 96
Soft maximimum limit (SM) 36
SP systems 93
SPMI 132
Start Workload Management 43
Start Workload Manager 45, 48
Statistics for WLM 134
Stop Workload Management 44
Stop Workload Manager 46, 48
Subclasses 10, 12

Default 12
Shared 12
Work on a set of 60, 69, 73, 75, 77, 82, 83
Working with sets of 57

Superclass administrator 9
Superclasses 10

Default 10
Shared 11
System 10
Unclassified 11
Unmanaged 11

svmon 94, 116
Examples 121, 126
Reports 117
Syntax 118, 125

SWLMTAGINHERITEXEC 230
SWLMTAGINHERITFORK 230
System Performance Measurement Interface 132

T
TAPM 163, 164

Distributed Monitoring agent 165
Target 25
tee 94
Tier report 125
Tiers 13, 92

AIX 5L versus AIX V4.3.3 14
Tivoli

Integration with WLM 163
Monitoring an application 164

Tivoli Application Performance Management 163

Tivoli Decision Support (TDS) 165
Tivoli Enterprise Console (TEC) 165
topas 104

CPU Utilization 110
EVENTS/QUEUES 107
Examples 112
FILE/TTY 107
MEMORY 109
Network Interfaces 110
NFS 109
PAGING 108
PAGING SPACE 109
Physical Disks 110
Processes 111
subcommands 106
Syntax 104
WLM Classes 111

Tree-Details 74

U
Uniform Resource Access Priority (URAP) 29
UNIX system capacity sizing 167
Update Workload Management 44
Updating a class 66
URAP 29
User 19

V
VMM 27
VMM interaction 30
vmstat 96
vmtune 30, 94

W
Web-based System Manager (WSM) 31, 130
WLM

Active mode 40
Administration 31
Alternative configurations 51
API routines 217
Application Programming Interface (API) 157
Basic elements 8
Before you start 91
Classes 9
Classification 163
Commands 31
Configuration 48
283

Configuration steps 48
Customer experience 210
Functionality 7
General recommendations 258
Integration with Tivoli 163
Library 225
Management 162
Modes of operation 40
Monitoring 90, 96, 132
Monitoring in a Tivoli environment 164
Operation 40
Overhead 95
Overview 8
Passive mode 40
Performance Tools 97
Purpose of 5
Resources 22
Sizing recommendations 167
Statistics 162
Status 45
Turn on 50

WLM API
Application tag 229
Class management 230
Classification 246
Constants 217
Data structures 217
Function prototypes 217
Functions error codes 224
Management 236
Statistics 241

WLM in a research environment 210
wlm_args 217
wlm_assign 151, 220, 239

Parameter 240
args 240

wlm_bio_class_info_t 221
wlm_bio_dev_info_t 222
wlm_change_class 161, 233

Parameter 234
wlmargs 234

wlm_check 163, 246
Parameter 246

config 246
wlm_classify 163, 247

Parameters 248
attributes 248
class 248
config 248

len 248
wlm_create_class 161, 232

Parameter 233
wlmargs 233

wlm_delete_class 161, 235
Parameter 235

wlmargs 235
wlm_get_bio_stat 162, 164
wlm_get_bio_stats 244

Parameters 244
array 245
class 245
count 245
dev 245
flags 244

wlm_get_info 162, 164, 242
Parameters 242

count 243
info 243
wlmargs 242

wlm_info 220
wlm_init_class_definition 232, 234

Parameter 228
wlmargs 228

wlm_initialize 159, 224
Parameter 228

flags 228
wlm_load 162, 237

Parameter 238
wlmargs 238

WLM_MUTE 217
wlm_read_classes 160, 230

Parameters 231
class_tbl 232
nclass 232
wlmargs 231

wlm_set 162, 236
Parameter 236

flags 236
wlm_set_tag 141, 157, 159, 229

Parameters 229
flags 230
tag 229

WLM_VERSION 217, 230
wlmassign 146

Syntax 146
wlmcheck 49, 84

Syntax 84
wlmcntrl 32, 40, 41, 95
284 AIX 5L Workload Manager (WLM)

Syntax 41
wlmmon 140
wlmsched 30
wlmstat 12, 40, 94, 96, 97, 162

Internal parameters 98
Syntax 97

Work on alternate configurations 57
Working with WLM configurations 51
Workload management 4

Need for 1
Workloads 6
WSM 31

Advanced configuration tool 62
Class Assignment Rules 78, 82, 83, 84
Configurations/Classes 47, 54, 61, 70, 73, 78,
86, 131, 150
Overview and Tasks 44, 61
Resources 130

wsm 130

X
xmperf 133
xmservd 139
285

286 AIX 5L Workload Manager (WLM)

© Copyright IBM Corp. 2000 287

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5977-00
AIX 5L Workload Manager (WLM)

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

AIX 5L W
orkload M

anager (W
LM

)

®

SG24-5977-00 ISBN 0738418668

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DISKETTE
INCLUDED

AIX 5L
Workload Manager (WLM)

Effectively manage
your system
resources

Learn how to deploy
the new functionality

Manage multiple
instances of a
database

Effectively managing system resources in growing UNIX
server environments has become a primary task. Each
workload on the server must be assured the appropriate
amount of system resources without penalizing
mission-critical applications. AIX 5L Workload Manager
provides a great set of tools and functionalities to efficiently
manage system resources on a consolidated server.

This IBM redbook exploits the entire functionality of AIX 5L
Workload Manager, which has been enhanced in many ways
since its first introduction with AIX V4.3.3. The new manual
assignment feature allows you to separate, for example,
multiple instances of a database. An API allows you to perform
all the WLM administration and configuration tasks from a
program. A step-by-step guide is provided for planning and
configuring AIX WLM through file editing, AIX commands, the
System Management Interface Tool (SMIT), or Web-based
System Manager (WSM). Real-life examples have been added
to demonstrate the impact and benefits of using AIX Workload
Manager.

This IBM redbook is the ultimate guide for system architects,
technical support specialists, and system administrators who
have to plan, implement, and administer a Workload Manager
solution in a consolidated server environment.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. The need for workload management
	1.1 Architectural differences
	1.1.1 Physical partitioning
	1.1.2 Logical partitioning (LPAR)
	1.1.3 Workload management

	1.2 The purpose of AIX WLM

	Chapter 2. AIX Workload Manager functionality
	2.1 Overview
	2.2 Classes
	2.2.1 A hierarchy of classes
	2.2.2 Superclasses
	2.2.3 Subclasses
	2.2.4 Backward compatibility considerations

	2.3 Tiers
	2.4 Class attributes
	2.5 Classification process
	2.5.1 Automatic assignment
	2.5.2 Manual assignment
	2.5.3 Class assignment rules

	2.6 Resources
	2.6.1 Resources managed by WLM
	2.6.2 Class resource shares
	2.6.3 Class resource limits
	2.6.4 Backward compatibility considerations

	2.7 WLM interaction with the kernel
	2.7.1 Uniform Resource Access Priority (URAP)
	2.7.2 Interaction with the scheduler
	2.7.3 Interaction with VMM
	2.7.4 Interaction with disk device drivers

	2.8 WLM Application Programming Interface (API)

	Chapter 3. AIX Workload Manager administration
	3.1 Property files
	3.2 WLM operation
	3.2.1 Modes of operation
	3.2.2 Start/Stop/Update WLM - wlmcntrl

	3.3 WLM configuration
	3.3.1 Steps for a WLM configuration
	3.3.2 Working with WLM configurations
	3.3.3 Working with classes
	3.3.4 Working with rules
	3.3.5 Checking the configuration - wlmcheck
	3.3.6 Working with resource sets

	3.4 WLM monitoring
	3.5 Hints and tips
	3.5.1 Things to do
	3.5.2 Things to be aware of
	3.5.3 Additional characteristics

	Chapter 4. WLM performance tools
	4.1 wlmstat
	4.2 ps
	4.3 topas
	4.4 svmon
	4.4.1 Workload manager class report
	4.4.2 Workload manager tier report

	4.5 Web-based System Manager (WSM)
	4.6 Monitoring Workload Manager with PTX
	4.6.1 xmperf
	4.6.2 xmservd
	4.6.3 Performance Toolbox (PTX) Outlook

	Chapter 5. Manual assignment
	5.1 Description
	5.1.1 First assignment
	5.1.2 Reassignment and cancellation
	5.1.3 Interaction with inheritance

	5.2 Manual assignment methods
	5.3 Examples
	5.3.1 Oracle example
	5.3.2 DB2 UDB example

	5.4 Conclusion

	Chapter 6. WLM Application Programming Interface (API)
	6.1 Application tag
	6.1.1 Description
	6.1.2 An application tag situation
	6.1.3 Example of an application tag program

	6.2 Class management
	6.3 WLM management
	6.4 WLM statistics
	6.5 WLM classification
	6.6 Binary compatibility
	6.7 Integration with Tivoli products
	6.7.1 TAPM overview
	6.7.2 TAPM and WLM
	6.7.3 Monitoring an application in a WLM and Tivoli environment

	6.8 Summary

	Chapter 7. Sizing recommendations for Workload Manager
	7.1 Typical UNIX system capacity sizing
	7.2 Considerations about server consolidation
	7.3 System capacity sizing for Workload Management
	7.3.1 System capacity sizing steps for server consolidation
	7.3.2 Examples
	7.3.3 Considerations for memory and disk I/O bandwidth

	7.4 Conclusion

	Chapter 8. Practical experience
	8.1 ISV case studies
	8.1.1 PeopleSoft
	8.1.2 SAP R/3

	8.2 Customer experience - WLM and a compute server for research
	8.2.1 The installation
	8.2.2 The central AIX system
	8.2.3 Problems
	8.2.4 A pre-WLM solution
	8.2.5 The WLM solution with AIX Version 4.3.3-02
	8.2.6 The second WLM solution with AIX 5L
	8.2.7 Conclusion

	Appendix A. AIX Workload Manager API routines
	A.1 The Include file - sys/wlm.h
	A.2 WLM API functions error codes
	A.3 Initialization routines
	A.4 Application tag
	A.5 Class management
	A.6 WLM management
	A.7 WLM statistics
	A.8 WLM classification

	Appendix B. Sample workload program
	Appendix C. Sample Korn shell scripts for manual assignment
	C.1 Oracle example script
	C.2 DB2 UDB example script

	Appendix D. Sample program for application tag
	D.1 settag.c

	Appendix E. Sample for CPU resource usage calculation
	Appendix F. Using the additional material
	F.1 Using the diskette
	F.1.1 System requirements for using the diskette
	F.1.2 How to use the diskette

	F.2 Locating the additional material on the Internet

	Appendix G. Special notices
	Appendix H. Related publications
	H.1 IBM Redbooks
	H.2 IBM Redbooks collections
	H.3 Other resources
	H.4 Referenced Web site

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Abbreviations and acronyms
	Index
	IBM Redbooks review

