
IBM WebSphere Performance Pack:
Load Balancing with IBM
SecureWay Network Dispatcher

Marco Pistoia, Corinne Letilley

International Technical Support Organization

SG24-5858-00

http://www.redbooks.ibm.com

International Technical Support Organization SG24-5858-00

IBM WebSphere Performance Pack:
Load Balancing with IBM
SecureWay Network Dispatcher

October 1999

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 1999)

This edition applies to IBM SecureWay Network Dispatcher, the Load Balancing component of WebSphere
Performance Pack Version 2, for use with the AIX, Solaris, and Windows NT operating systems.

TComments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix D,
“Special Notices” on page 413.

Take Note!

Contents

Preface . ix
The Team That Wrote This Redbook . ix
Comments Welcome . x

Part 1. SecureWay Network Dispatcher Usage and Administration .1

Chapter 1. IBM WebSphere Performance Pack Concepts3
1.1 AFS Enterprise File System in Distributed Computing Environments.4
1.2 Caching and Filtering to Manage Internet Traffic and Bandwidth Demand. .5
1.3 Load Balancing and Server Monitoring Capabilities6
1.4 Building Record-Breaking Web Sites. .7
1.5 What Is New in Version 2 .9

1.5.1 Quality of Service Enhancements .10
1.5.2 New ND Functions .10
1.5.3 New WTE Functions .11
1.5.4 New AFS Enterprise File System Function .15
1.5.5 New Functions Available by Combining Components15

1.6 Who Can Benefit .17
1.6.1 Content Hosting Internet Service Providers .17
1.6.2 Corporate Web Sites and Content Aggregators18
1.6.3 Corporate Headquarters Buildings or Large Campuses21
1.6.4 Backbone Internet Service Providers. .21
1.6.5 Access Internet Service Providers. .22
1.6.6 Access ISPs with Subscriber Home Page Hosting.23

1.7 Other IBM WebSphere Offerings. .23
1.7.1 IBM WebSphere Application Server .23
1.7.2 IBM WebSphere Studio .25

Chapter 2. IBM SecureWay Network Dispatcher Concepts27
2.1 Load Balancing Technologies .27
2.2 Functions of the ND Component .28

2.2.1 Dispatcher. .29
2.2.2 Interactive Session Support. .29
2.2.3 Content-Based Routing .30

2.3 What Is New in This Version? .30
2.3.1 ISS .32
2.3.2 CBR .32

2.4 Why Do I Need IBM SecureWay Network Dispatcher?33
2.5 How the Dispatcher Function Works .34

2.5.1 Dispatcher Components .35
2.5.2 Proportions of Importance .35
2.5.3 Information Flow .37
2.5.4 TCP Ports Used by the Dispatcher .38

2.6 How the ISS Function Works .38
2.6.1 ISS Cells and Services .39
2.6.2 ISS Configuration .40
2.6.3 ISS Cell and Its Attributes .44
2.6.4 Configuring Nodes .45
2.6.5 Services .45
2.6.6 Resources. .46
© Copyright IBM Corp. 1999 iii

2.6.7 Metrics. 46
2.6.8 ISS Observers . 48
2.6.9 ISS Selection Methods. 50
2.6.10 Ports used by ISS . 51

2.7 How the CBR Function Works . 51
2.7.1 Why Do I Need CBR? . 52
2.7.2 Client Affinity with CBR . 52

Chapter 3. ND Installation and Basic Configuration Issues 55
3.1 Installation of ND . 55

3.1.1 Installation on UNIX Systems. 55
3.1.2 Installation on Windows NT . 61
3.1.3 SecureWay Network Dispatcher Default Installation Directories 69

3.2 Deinstallation of IBM SecureWay Network Dispatcher 69
3.2.1 Deinstallation on UNIX Systems . 69
3.2.2 Deinstallation on Windows NT . 71

3.3 Configuration Methods. 74
3.3.1 Remote Authenticated Administration . 75

Chapter 4. ND Basic Scenarios. 81
4.1 Load Balancing Basic Scenario Using the Dispatcher 81

4.1.1 Installation of Dispatcher . 81
4.1.2 Network Environment. 81
4.1.3 Cluster Address and Nonforwarding Address. 83
4.1.4 Dispatcher Configuration . 83
4.1.5 TCP Servers Configuration . 107
4.1.6 How the Dispatcher Works – The Flow of the IP Packets 114
4.1.7 RoundRobin Load Balancing Scenario. 118
4.1.8 Analyzing the Flow with a Network Monitoring Tool 123
4.1.9 Activating the Managers and the Advisors 124
4.1.10 Customization of the Manager for the Advisors 130
4.1.11 Saving the Configuration . 132
4.1.12 Saving the Host Connections . 136
4.1.13 Stopping the Executor and the GUI . 136

4.2 Load Balancing Scenario Using the Dispatcher and ISS 137
4.2.1 Installation of ISS. 137
4.2.2 Scenario Configuration . 139
4.2.3 Network Environment. 139
4.2.4 ISS Configuration. 140
4.2.5 Managing ISS . 158

Chapter 5. Rules-Based Load Balancing . 163
5.1 Types of Rules . 163
5.2 How Rules Are Evaluated . 165
5.3 Rules-Based Load Balancing Scenario . 165

5.3.1 Network Environment. 165
5.3.2 Rules Configuration . 167

Chapter 6. ND High Availability Support . 177
6.1 Dispatcher High-Availability Scenario . 177

6.1.1 Network Architecture . 178
6.1.2 Configuration Steps Common on Both the Machines 179
6.1.3 Configuration Steps for High Availability . 184
6.1.4 Experimenting with High Availability. 196
iv IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

6.1.5 Experimenting with the Recovery Strategy197

Chapter 7. Dispatcher Colocation Option .203
7.1 Dispatcher Colocation Scenario .203

7.1.1 Network Environment .203
7.1.2 Setting up the Aliases .205
7.1.3 Access From the Client’s Perspective .206
7.1.4 Packet Flow .208

Chapter 8. Wide Area Network Dispatcher Support211
8.1 Wide Area Network Dispatcher Scenario. .211

8.1.1 Network Architecture .211
8.1.2 Local Dispatcher Configuration Steps .213
8.1.3 Remote Dispatcher Configuration Steps .216
8.1.4 Wide Area Load Balancing Scenario Results.217
8.1.5 How WAN Dispatcher Support Works – The Packet Flow221

8.2 Using Remote Advisors with WAN Dispatcher Support223
8.3 WAN Dispatcher Support and ISS .223
8.4 WAN Dispatcher Support with Remote Dispatcher High Availability224

8.4.1 Scenario .225

Chapter 9. Server Directed Affinity API .243
9.1 Server Directed Affinity Scenario .243

9.1.1 Servlet Client Counter Example. .244
9.1.2 Experimenting with the Servlet .249
9.1.3 Using the Servlet on a Cluster of Web Servers251
9.1.4 Enabling SDA .254
9.1.5 Modifying the Sample SDA Client Code .256
9.1.6 A Different Scenario Implementation .260

Chapter 10. Custom Advisors .263
10.1 Custom Advisor Scenarios .264

10.1.1 Normal Mode Custom Advisor .264
10.1.2 Replace Mode Custom Advisor .264

10.2 Workload Manager Advisor .271
10.2.1 ISS Restriction .271

Chapter 11. Firewall Load Balancing and High Availability273
11.1 Firewall High Availability Using the Dispatcher273

11.1.1 Installation. .273
11.1.2 Basic Configuration Issues .274
11.1.3 Setting the Rules for IBM eNetwork Firewall281
11.1.4 Scenario Implementation .283

11.2 Firewall Load Balancing .285
11.2.1 IP Filter Load-Balancing Scenario – Wildcard Cluster and Port . . .287
11.2.2 HTTP Proxy Server Load Balancing Scenario295
11.2.3 FTP Proxy Server Load-Balancing Scenario303
11.2.4 Firewall SOCKS Server Load-Balancing Scenario303
11.2.5 DNS Proxy Server Load-Balancing Scenario307

Chapter 12. Automatic ND Startup on Windows NT309
12.1 High Availability Dispatcher Autostart Scenario309

12.1.1 Network Environment .309
12.1.2 Configuration Steps. .310
v

12.1.3 The AUTOEXNT.BAT File . 311
12.1.4 High-Availability Script Files. 314
12.1.5 Testing the Configuration . 317

Chapter 13. Binary Logging and Statistics . 321
13.1 Starting the Logging Facility . 321
13.2 Examining the Log Files . 322

13.2.1 Using the LOG_SampleReader Sample Java Program 322

Part 2. WebSphere Performance Pack Component Integration . 327

Chapter 14. Content Based Routing . 329
14.1 Installation of the CBR Function . 329

14.1.1 Installation Locations . 330
14.2 Configuration of the CBR Function . 331
14.3 CBR Scenario . 332

14.3.1 WTE Configuration Overview . 332
14.3.2 WTE Configuration File CBR Modifications 333
14.3.3 CBR Configuration . 335
14.3.4 CBR Manager and Advisors . 343
14.3.5 Saving the Configuration . 344
14.3.6 Scenario Results . 345

14.4 WTE CacheByIncomingUrl Directive . 349

Chapter 15. Remote Cache Access . 351
15.1 How RCA Works . 351
15.2 Planning for RCA . 353
15.3 RCA Scenario . 353

15.3.1 Scenario Implementation . 354

Chapter 16. Peak Load Management . 357
16.1 How Peak Load Management Works . 357
16.2 Peak Load Management Scenario . 357

16.2.1 Dispatcher Configuration . 359
16.2.2 Configuration of the WTE Proxy Servers 360
16.2.3 Testing the Peak Load Management Scenario 360

Chapter 17. Common Configuration . 365
17.1 Installation . 365

17.1.1 Planning for the Installation . 365
17.1.2 Installing the Common Configuration Utility 366
17.1.3 Remaining Installation Steps . 373

17.2 Preparing for the Common Configuration Utility 376
17.3 Launching the Common Configuration Utility . 377

Appendix A. ADV_sample Custom Advisor .383

Appendix B. SDA_SampleAgent Code .389

Appendix C. LOG_SampleReader Program .407

Appendix D. Special Notices .413

Appendix E. Related Publications .415
E.1 International Technical Support Organization Publications415
vi IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

E.2 Redbooks on CD-ROMs . 415
E.3 Other Publications. 415
E.4 Referenced Web Sites . 415

How to Get ITSO Redbooks .417
IBM Redbook Fax Order Form . 418

List of Abbreviations .419

Index .421

ITSO Redbook Evaluation .425
vii

viii IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Preface

IBM WebSphere Performance Pack is Web infrastructure software that addresses
the scalability, reliability and performance needs of e-business applications in
both local and geographically distributed environments. Its functions incorporate
leading-edge and robust caching, file management and load balancing, that
together compensate for the inherent weakness of the Internet to support critical
business applications and expectations.

This redbook will give you a clear understanding of the features of IBM
SecureWay Network Dispatcher, the Load Balancing component of IBM
WebSphere Performance Pack. It shows how to plan for, install, configure, use,
tune and troubleshoot this component and offers specific implementation
examples. Moreover, it helps explain how to build complex scenarios that involve
all the components of IBM WebSphere Performance Pack, to give you a better
understanding of the technologies involved.

Note that this publication was written in conjunction with two other volumes about
WebSphere: IBM WebSphere Performance Pack: Web Content Management with
IBM AFS Enterprise File System, SG24-5857, and IBM WebSphere Performance
Pack: Caching and Filtering with IBM Web Traffic Express, SG24-5859. To realize
the most benefit, all three volumes should be obtained.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The leader of this project was Marco Pistoia.

Marco Pistoia is an Advisory Software Engineer, working as a project leader at
the International Technical Support Organization Raleigh Center. He writes
extensively and teaches IBM classes worldwide on all areas of the e-business
Application Framework, WebSphere, Java and Internet security. Marco holds a
Master of Science degree with honors in Pure Mathematics from the University of
Rome. Before joining the ITSO, he was a System Engineer in IBM Italy. He
received an Outstanding Technical Achievement Award in 1996.

Corinne Letilley is an Advisory Availability Systems Specialist - AIX and
RS/6000 Systems with IBM Global Services Canada Ltd. She has been working
with AIX and RS/6000 since the product’s introduction in the early 1990s. She
holds a degree in Commerce with a major in Computer Science from the
University of Saskatchewan. Her areas of expertise include computer graphics as
well as the IBM eBusiness product set.

Thanks to the following people for their invaluable contributions to this project:

Poh Yee Tiong
IBM Singapore

Steve Roma, Rick Schenck, Jerry Gschwind, Jeremy Noonan, Blake Corbitt,
Susan Hanis, Andy Dingsor
IBM Research Triangle Park, North Carolina
© Copyright IBM Corp. 1999 ix

Shawn Walsh, Jorge Ferrari, Tim Kearby, Margaret Ticknor, Pat Donleycott,
Tate Renner, Linda Robinson, Gail Christensen
International Technical Support Organization, Raleigh Center

Vincenzo Iovine, Stefano Pischedda
IBM SEMEA Sud, Italy

Karen Gelveles
IBM Boca Raton

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 425 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an internet note to redbook@us.ibm.com
x IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Part 1. SecureWay Network Dispatcher Usage and Administration
© Copyright IBM Corp. 1999 1

2 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 1. IBM WebSphere Performance Pack Concepts

IBM WebSphere Performance Pack is Web infrastructure software that
addresses the scalability, reliability and performance needs of e-business
applications in both local and geographically distributed environments. Its
functions incorporate leading-edge and robust caching, file management and
load balancing, that together compensate for the inherent weakness of the
Internet to support critical business applications and expectations.

IBM WebSphere Performance Pack has been developed using IBM’s extensive
experience with very demanding Web sites.

IBM WebSphere Performance Pack is composed of three main components,
which permit you to reduce Web server congestion, increase content availability
and improve Web server performance:

1. File sharing

The file-sharing component, known as IBM AFS Enterprise File System (AFS),
is an enterprise file system that enables cooperating hosts (clients and
servers) to efficiently share file system resources across both local area
networks (LANs) and wide area networks (WANs). It provides non-disruptive
real-time replication of information across multiple servers, which guarantees
data consistency, availability, global stability and administrative efficiency,
necessary by large distributed Web sites or by Web sites with volatile content
requiring considerable administrative effort to maintain content links and URLs
to file I/O mapping.

2. Caching and filtering

The caching and filtering component, known as IBM Web Traffic Express
(WTE), is a caching proxy server that provides highly scalable caching and
filtering functions associated with receiving requests and serving URLs. With
tunable caching capable of supporting high cache hit rates, this component
can reduce bandwidth costs and provide more consistent rapid customer
response times.

3. Load balancing

The load balancing component, known as IBM SecureWay Network
Dispatcher (ND), is a server that is able to dynamically monitor and balance
TCP servers and applications in real time. The main advantage of the load
balancing component is that it allows heavily accessed Web sites to increase
capacity, since multiple TCP servers can be dynamically linked in a single
entity that appears in the network as a single logical server.

WebSphere Performance Pack V2 offers a fourth component named Common
Configuration. This new feature allows for centralized configuration of the main
components and can be run remotely on a separate machine connected to the
network.

The WebSphere Performance Pack components, which were previously
unavailable in a single Internet software offering, can increase the scalability,
availability and reliability of your Web site while reducing infrastructure costs.

Installation procedures permit selection of which components to install, and
specification of on which machine(s) the selected component(s) should be
© Copyright IBM Corp. 1999 3

located. Subject to installation needs and operating platforms, components can
coexist on a single machine or can be distributed over multiple machines.

IBM WebSphere Performance Pack Version 2 is supported on the following
platforms:

• Any IBM RISC/6000-based machine running IBM AIX 4.2.1 or later and Java
Runtime Environment (JRE)1 1.1.6 or later

• Any SPARC workstation running Sun Solaris 2.6 or later and JRE 1.1.6 or later
– JRE 1.1.7B or later is required to use ND

• Any Intel x86 PC running Microsoft Windows NT2 4.0 and JRE 1.1.6 or later –
JRE 1.1.7B is required to use ND

If you are planning to use the Common Configuration, then you need the Java
Development Kit (JDK)3 1.1.6 or higher and a Java 1.1-enabled Web browser,
such as:

• Netscape Communicator V4.08 or higher

• Microsoft Internet Explorer V4.01 with the fix pack, or higher

• Sun HotJava V1.1 or higher

1.1 AFS Enterprise File System in Distributed Computing Environments

AFS has provided scalable file administration and file sharing for large
enterprises for many years, based upon its use of a virtual name space to make
naming and logical directory structures of files independent of their physical
location. AFS clients and AFS servers are used to establish this virtual name
space capability. In typical local area network (LAN) file systems, this is achieved
by installing AFS clients on user workstations, communicating with an AFS server
that manages the I/O operations associated with the actual files. In a Web site,
the AFS clients can be installed on HTTP servers to reduce the administrative
effort associated with maintaining URL to file I/O mapping relationships. In
addition, HTTP servers that are simultaneously AFS clients can significantly
increase the connectivity capacity to Web server content and can provide local
and geographically distributed access efficiency.

AFS is a central and scalable file system:

• It is central because AFS brings together all of the files within the file system
into a single name space. Every AFS user shares this same name space,
making all AFS files easily available from any AFS machines. With AFS, the
name of a file is independent of both the file’s and the user’s physical location,
contributing to ease of file sharing and resource management.

• It is scalable because AFS is able to manage a very large number of files,
spread across many geographical locations. When remote files, residing on
AFS servers, are accessed by remote AFS clients, they are cached on the
client machines to improve performance. This makes remote working across
global distances feasible, since it is possible to access your own files from
sites many thousands of miles away as if they were local.

1 You can download the JRE from http://www.javasoft.com.
2 IBM WebSphere Performance Pack can be installed on either Windows NT Server or Workstation V4.0. However, Windows NT Server
is required for PCs running the ND functions Interactive Session Support (ISS) Nameserver and Observers.
3 You can download the JDK from http://www.javasoft.com.
4 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Both small and large-scale distributed environments benefit from AFS
mechanisms to reduce server and network load:

• AFS caches data on client machines to reduce subsequent data requests
directed at file servers, substantially reducing network and server loads.
Servers keep track of data given to clients through callbacks, guaranteeing
cache consistency without constant queries to the server to see if the file has
changed. It is important to underline that AFS also allows disk cache, not just
memory cache. This is a key advantage of AFS over other shared file
systems.

• The AFS remote procedure call (RPC) reads and writes data to an RPC
stream, further improving the efficiency of data transfer across a local or wide
area network.

Extended security is guaranteed through Kerberos authentication and access
control lists (ACLs). AFS Kerberos-based authentication requires that users
prove their identities before accessing network services. Once authenticated,
AFS access control lists give individual users or groups of users varying levels of
permission to perform operations on the files in a directory.

The AFS component also offers replication techniques for file system reliability.
Multiple copies of frequently accessed (but infrequently changed) data are
replicated on multiple file servers within a cell. When accessing this information,
a client will choose among the available servers that house replicas. If one server
is unavailable or unreachable, the client will go to another server. Replication also
reduces the load on any particular server by placing frequently accessed
information on multiple servers.

Moreover, management utilities are provided to ease the load of system
administrators in growing environments. Backup, reconfiguration and routine
maintenance are all done without any system down time. Files remain available
to users during these operations. This is done by creating online clones of
volumes.

AFS commands are RPC-based. Administrative commands can be issued by any
authenticated administrator from any client workstation. System databases track
data location information, authentication information and protection groups.
These databases are replicated on multiple servers, and are dynamically updated
as information changes. Server processes accomplish many tasks automatically,
such as restarting servers, tracking file locations and updating file servers with
new binaries and configuration files.

1.2 Caching and Filtering to Manage Internet Traffic and Bandwidth Demand

WTE, the caching and filtering component of IBM WebSphere Performance Pack,
is both a caching proxy server and a content filter. The advanced caching of this
component minimizes network bandwidth and ensures that end users spend less
time when retrieving the same content multiple times.

This component acts as a gateway for multiple clients and performs basic Web
server duties, such as receiving requests and serving URLs.

A traditional proxy server receives a request for a URL from a client and it
forwards the request to the destination content server. WTE does something
Chapter 1. IBM WebSphere Performance Pack Concepts 5

more; it can save or cache the Web documents it retrieves, and serve subsequent
requests for those documents from its local cache. The client gets the requested
information faster and network bandwidth is reduced.

This component of IBM WebSphere Performance Pack also offers other key
features of advanced caching, such as:

• The ability to handle very large caches

• An option to automatically refresh the cache with the most frequently
accessed pages

• The possibility to cache even those pages where the header information says
to fetch them every time

• Configurable daily garbage collection, to improve server performance and
ensure cache maintenance

• Remote Cache Access (RCA), a new function – available for the first time with
IBM WebSphere Performance Pack V2 – that allows multiple WTE machines
to share the same cache by using a distributed file system, such as AFS,
therefore reducing redundancy of cached content

Moreover, WTE allows you to set content filtering at the proxy server level, rather
than or in addition to the browser level, where content filtering could be easily
compromised or over-ridden. This way, offensive contents will not be displayed
on the client’s browser, depending on the parameters used in the configuration.
Content filtering in WTE can use:

• Platform for Internet Content Selection (PICS) rules guiding use of rating
labels - such as Recreational Software Advisory Council on the Internet
(RSACi) criteria for inappropriate language, nudity or violence - placed in
HTML or HTTP headers or third-party content rating label distributions

• Lists of URLs/sites for which access is to be blocked

• APIs for filtering applications

1.3 Load Balancing and Server Monitoring Capabilities

The Internet has grown so rapidly over the last few years, that you are probably
looking for a way to handle your company's share of that traffic. If this growth is
not properly handled, users get slow response or refused connections, creating
an unsatisfactory user experience which may cause the user never to visit your
site again. Internet sites can become unstable or even fail under critical load
conditions. What is needed is a solution that balances the load effectively and
protects the user from these bad experiences.

ND, the load balancing component of IBM WebSphere Performance Pack, has
been developed to address these limitations and provide customers with
advanced functions to meet their site’s scalability and availability needs. It
consists of three functions: the Dispatcher, Interactive Session Support (ISS) and
the new Content Based Routing (CBR) function, available for the first time with
IBM WebSphere Performance Pack V2. These three functions can be deployed
separately or together in various configurations to suit a wide variety of customer
application requirements:
6 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• You can use the Dispatcher function to balance the load on the server within a
local area network or wide area network using a number of weights and
measurements that are set dynamically.

• ISS is a DNS-based load monitoring component (daemon) that can be
installed on each of your servers. This group of daemons is called an ISS cell.
One of the members of the cell becomes a spokesman for the load monitoring
service.

You can use the ISS function to balance the load on servers within a local area
network or wide area network using a domain name server round-robin
approach or a more advanced user-specified approach. ISS periodically
monitors the level of activity on a group of servers and detects which server is
the least heavily loaded.

ISS provides an observer interface to enable other applications to use the load
monitoring service. Observers watch the cell and initiate actions based on the
load. Application servers with the ISS load monitor daemon installed can pass
periodic load reports to the Dispatcher using the Dispatcher observer. The
results of these reports can be factored into the load-balancing performed by
Dispatcher.

• You can use the CBR function (which must be installed and configured to work
together with WTE) to load balance traffic based on the content of a client’s
URL request. CBR also offers a Cookie Affinity feature that allows requests
from a particular HTTP client session to be load balanced to the same server
for a specified time period. The client session will maintain affinity for a
particular server without relying on the IP address of the client.

These three components offer a high availability feature:

• The Dispatcher high availability feature involves the use of a secondary
machine that monitors the main, or primary, machine and stands by to take
over the task of load balancing, should the primary machine fail at any time.
This feature is available on all the platforms where IBM WebSphere
Performance Pack is supported, without using High Availability Cluster
Multi-Processing (HACMP).

• In ISS high availability, all the nodes in a site work together to eliminate any
single point of failure.

• Multiple CBR machines can be load balanced in turn using ND, therefore
granting CBR high availability.

The high availability feature provided by the Dispatcher function can be
successfully used even in other configurations, for example to guarantee firewall
high availability.

1.4 Building Record-Breaking Web Sites

IBM WebSphere Performance Pack allows you to design several architectures to
enhance the performance of your Web site. Figure 1 on page 8 offers an idea of
the multiple configurations that can be obtained combining the WebSphere
Performance Pack components:
Chapter 1. IBM WebSphere Performance Pack Concepts 7

Figure 1. How to Implement a WebSphere Performance Pack Environment

• The WTE component minimizes response time and network bandwidth
utilization by providing Web content caching. It also ensures reliable content
filtering at the proxy server level. Multiple WTE servers can be load balanced.

• The ND component distributes the load between multiple clustered Web
servers and WTE servers. As soon as a client request arrives, the load
balancing machine uses sophisticated monitoring tools and then forwards the
request to the least loaded server. High availability is provided by a backup
Dispatcher machine, which monitors the state of the primary machine and
takes over the primary machine if it fails.

• The clustered Web servers can share the same content by using AFS. This
ensures scalability, high availability, reliable access to replicated data and an
efficient security model for access and group management.

AFS can also be integrated with RCA, so that clustered WTE servers can
share the same Web cache therefore eliminating the need to fetch the same
Web pages multiple times.

• The server selected by the ND machine can then respond directly to the client
without any further involvement of the ND machine. Since there is no need for
the server response to go back through the same physical path, a separate
high-bandwidth connection can be used.

IBM used the WebSphere Performance Pack technology to create a scalable and
reliable system that efficiently handled unprecedented traffic volumes. On
February 17th, 1998, at 12:41 (Japan Standard Time), the official Web site of the
Olympic Winter Games in Nagano made Internet history by logging a staggering
98,226 hits per minute. Less than a week later, a new all-time record was
established with a peak load of more than 103,400 hits per minute, while still

Client

ND Primary

Web Server
AFS Client

Internet

AFS Server(s)

ND BackupND Primary

ND Backup WTE
AFS Client

WTE
AFS Client

AFS Server(s)
8 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

providing normal response time. The Internet site of the 1998 Nagano Olympic
Winter Games is recognized by the Guinness Book of World Records.

In addition to the Winter Olympics site, IBM has built some of the largest Web
sites in the world. For example, IBM hosted the Deep Blue chess match, the 1996
Olympic Games, the U.S. Open tennis tournament, Wimbledon, the Masters golf
tournament, and the official Web site of the 1998 French Open tennis
championship.

By using WebSphere Performance Pack on your Web site, you will have an
efficient Web site, capable of providing fast responses. Your Web site will be able
to handle very large amounts of simultaneous requests, without any major delay.
Furthermore, the high availability features built into WebSphere Performance
Pack will make the Web services available even when one or more of your server
machines should unexpectedly fail.

The following figure shows an example of what your Web customers would not
see if your Web site uses WebSphere Performance Pack:

Figure 2. Don’t Let This Happen to You!

1.5 What Is New in Version 2

In addition to the functions already available in Version 1.0, described in the IBM
redbook IBM WebSphere Performance Pack Usage and Administration,
SG24-5233, IBM WebSphere Performance Pack enhancements in Version 2
include:

• Quality of service enhancements

• New ND functions

• New WTE functions

• New AFS functions

• New functions available by combining components

• Integrated configuration assistance
Chapter 1. IBM WebSphere Performance Pack Concepts 9

1.5.1 Quality of Service Enhancements
WebSphere Performance Pack now provides support for differentiated quality of
service, as discussed in the following sections.

1.5.1.1 User Classes
User classes give you the ability to change the level of service depending on the
identity of the user. Preferred customers would expect to get better service. In
Version 1.0, ND provided this capability by allowing rules-based load-balancing
based on the client IP address, and WTE allowed PICS filtering based on the
client IP address or the user and group. In Version 2, ND and WTE add the ability
for rules-based load-balancing based on HTTP headers including Cookie, Referer,
and User-Agent.

Differentiated service based on user identity lets you determine what level of
service should be provided. For example, a frequent buyer can be routed to a
higher capacity server or given access to additional content (for example, sale
information) not made available to an unknown customer. The information used to
identify the user comes from cookies or header information in the HTTP request.

1.5.1.2 Service Classes
Server classes give you the ability to change the level of service depending on
the information or application requested by the client. Services involving a
purchase would get better service than requests for information. In Version 1.0,
WTE provided this capability through its reverse proxy function by allowing
requests to be redirected to different servers based on the contents of the URL.
In Version 2, ND and WTE add the ability for rules-based load-balancing based
on the protocol, host, and path portion of the URL.

Differentiated service based on the service requested lets you give preferential
service to some requests. For example, you may want to give preferential service
to a proceed to checkout request over a search request.

1.5.2 New ND Functions
ND has been enhanced to include several new features. These are discussed in
the following sections.

1.5.2.1 Server Directed Affinity API
In previous releases, administrators could define a particular port to be
configured as sticky, meaning all requests to that port remain with a particular
physical server for a short period of time. When a client connects to a sticky port,
an entry for that client’s IP address is made in the affinity table, and a time stamp
is set. If a new connection from the same client arrives, and the time stamp has
not expired, then the new connection is sent to the same server as before. This
function is still available in Version 2, but it is no longer the only option.

Customers can now write their own software using the Server Directed Affinity
(SDA) Application Programming Interface (API) to implement an SDA agent,
which communicates with a listener in the Dispatcher. This software can then
manipulate the Dispatcher affinity tables to:

• Query the contents

• Insert new records
10 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• Remove records

1.5.2.2 Binary Logging and Statistics
Dispatcher now provides a log in binary format. The command line and the GUI
have been enhanced to provide access to the binary log information. A sample
Java program is provided to allow customers to access and manipulate the log.

1.5.2.3 Remote Administration
In the previous release, the Dispatcher administration GUI could only be run on
the same machine where Dispatcher was installed. Now remote administration is
possible, since the Dispatcher administration GUI can be run on a separate
machine.

1.5.2.4 Authenticated Administration
Authentication is provided to make remote administration more secure. The
communication between the ND server and an ND administration client is
authenticated using a key pair.4 These keys are generated when the ND server is
started for the first time.

1.5.2.5 Wildcard Cluster
Wildcard cluster is the capability to define a cluster which will receive traffic which
is not destined for this particular machine, or which is destined for this machine,
but for an address which is not defined as a cluster. The traffic will be intercepted
and routed to a default cluster. This feature also makes it easier to configure
multiple aliases on the same Dispatcher machine to use the same port and server
configuration.

1.5.2.6 Wildcard Port
Wildcard port is the capability to define default actions when no port matches a
particular request. You can use this to create a load balancing configuration for
traffic to any port that has not been explicitly defined in your Dispatcher
configuration, for example in a firewall load balancing environment, or to discard
requests for ports that have not been configured.

1.5.2.7 ISS GUI
The GUI for ISS is essentially an isscontrol command generator much like the
Dispatcher GUI. In other words, the user makes a change in the GUI, and an
isscontrol command is generated and issued. Asynchronously, the issd daemon
tells the GUI that the configuration has changed and the GUI refreshes itself.

1.5.3 New WTE Functions
The enhancements to the WTE component of WebSphere Performance Pack are
described in the following sections.

1.5.3.1 Transparent Proxy
Transparent proxying means that the client software is totally unaware of the
existence of the intermediate proxy server. Normally, if a client browser uses a
proxy server, then the browser must be configured to specify the address and
port of the proxy server. This is no longer necessary with transparent proxy, in
fact the client is unaware that an intermediate proxy is in the network.

4 A key pair is a matching pair of public and private keys, used for digital signatures and asymmetric encryption.
Chapter 1. IBM WebSphere Performance Pack Concepts 11

To use transparent proxy, the router, which may be a Dispatcher machine, is
programmed to redirect requests to the WTE transparent proxy. WTE then
intercepts all HTTP requests on port 80 that are targeted at some server out in
the Internet. The request is parsed and processed, and may be satisfied from the
transparent proxy’s cache.

Note that in WebSphere Performance Pack V2, transparent proxy is only
supported on the AIX platform and works for HTTP requests only.

1.5.3.2 Proxy Autoconfiguration Support
WTE now supports automatic proxy configuration, a feature of Netscape
Navigator 2.0 (and later) and Microsoft Internet Explorer V 4.0 (and later). This
feature provides a form of transparency, in that clients do not have to configure
their browser to point to a specific proxy or SOCKS server, but to an automatic
configuration file, as shown in the following figure:

Figure 3. Automatic Proxy Configuration in Netscape Navigator

This lets the system administrator modify the configuration with little impact to the
clients, who update their automatic configuration files and are automatically
directed to the new configuration. Server administrators can use this to reroute
requests when servers are down, to balance workload, to send requests for
specific URLs to specific proxies, or other reasons specific to their installation.

1.5.3.3 FTP Proxy Enhancements
The WTE FTP proxy code now includes FTP PUT capability, improved
authentication to prompt for the user ID and password (instead of requiring it in
12 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

the URL), and a configuration directive to allow the user to specify whether FTP
URLs will be treated as relative URLs or absolute URLs.

1.5.3.4 SNMP Subagent and MIB Support
WTE provides a Simple Network Management Protocol (SNMP) management
information base (MIB) and SNMP subagent so you can use any SNMP-capable
network management system, such as Tivoli NetView or Tivoli Distributed
Monitoring to monitor your proxy server’s health, throughput, and activity. The
MIB data describes the proxy server being managed, reflects current and recent
server status, and provides server statistics.

1.5.3.5 Performance Improvements
The cache architecture has been restructured to map URLs onto the cache file
system more efficiently. This speeds retrieval of cached objects, uses disk space
more efficiently within the cache, and speeds cache garbage collection. The
cache also uses write-behind techniques for greater throughput.

Additionally, WTE now includes caching of Domain Name System (DNS) server
lookup results, which can improve response time and reduce network load.

1.5.3.6 HTTP 1.1-Compliant Proxy Server
WTE is now an HTTP 1.1-compliant proxy server. WTE identifies itself as an
HTTP 1.1 server and sends HTTP 1.1 in the outbound flows to origin servers.
Persistent connections are supported from the client to the proxy, and from the
proxy to the origin server. HTTP 1.1 cache control headers are processed and
used to determine if a Web document is able to be cached. WTE receives and
processes chunked data sent by HTTP 1.1 origin servers; WTE will unchunk data
before giving control to a data filter or transmogrifier plug-in.

WTE provides new directives that allow the administrator to override certain
HTTP 1.1 cache control headers. For example, query strings – URLs with a
question mark (?) in them – are not considered cacheable by the HTTP 1.1
protocol, but WTE provides a directive that allows the administrator to specify
which query strings should be cached.

WTE also provides an aggressive caching directive that allows the administrator
to override the Cache-Control: no-cache header in Web documents.

1.5.3.7 Customization Exits
Several enhancements have been made to the WTE API to simplify writing an
application plug-in. New request steps (exit points) have been added:
transmogrifier and garbage collection (GC) advisor.

The transmogrifier gives the application write access to the outgoing data stream
while the GC advisor allows the plug-in to influence garbage collection decisions:

• The transmogrifier step is intended to be used by applications that wish to
perform transformations on the HTTP response data stream. Examples
include converting Adobe PDF files to HTML, converting high resolution
images to lower resolution quality, or translating pages from one language to
another. The transmogrifier step is an extension of the data filter step.

The WTE enhancements allow the application to specify multiple
transmogrifiers, thus allowing the application to have multiple plug-ins, each of
them performing different transformations on the data.
Chapter 1. IBM WebSphere Performance Pack Concepts 13

WTE introduces a correlator mechanism that eases state maintenance in the
plug-in; WTE now automatically determines the content length of the response
data, and the application no longer has to buffer the data to determine the
content length. WTE also makes HTTP header processing easier; the
response headers can now be extracted and set using API variables.

• The GC Advisor step is called for each file in the cache during the garbage
collection process and allows the application to influence which files are kept
and which are discarded.

1.5.3.8 Tivoli Ready
WTE is Tivoli Ready, which means it can be managed through either the Tivoli
Enterprise Console (TEC), or through Tivoli Global Enterprise Manager (GEM).
Supported Tivoli configurations include managing IBM applications that are
installed on Tivoli-managed nodes, PC-managed nodes and endpoints in a
distributed environment.

With the purchase of an IBM software product that carries the Tivoli Ready logo,
you have the ability to manage your IBM software products through the Tivoli
Enterprise management products, allowing you to automatically discover,
monitor, and inventory one or more Tivoli Ready applications.

This Tivoli Ready instrumentation, when configured, provides you with the ability
to:

• Graphically view the health of WTE through Tivoli GEM 2.2, TEC 3.1 or higher
consoles

• Inventory WTE using Tivoli Inventory Version 3.2

1.5.3.9 Variant Caching
Variant caching extends the capabilities of the transmogrifier and allows WTE
applications to request that WTE cache another version (variant) of the original
document retrieved from the Web. This need arises when a plug-in performs a
transformation on the original page retrieved from the Web. For example, if a
plug-in translates a page from English to Italian, it would be advantageous to be
able to cache not only the original document but the variant, as well. In fact,
transformations of Web data are very CPU-intensive and degrade the
performance of the proxy server.

By caching the variant, the number of transformations required is decreased,
which improves overall proxy caching performance. The WTE API provides new
predefined functions, HTTPD_variant_lookup() and HTTPD_variant_insert(), to
allow the application to find a variant that has already been cached, and to insert
a new variant into the cache.

1.5.3.10 Enhanced Log Maintenance
To effectively manage the space requirements for the four logs (error, access,
proxy access, and cache access) generated by WTE, two improved functions
have been implemented. They are compression and purging:

• Compression can be specified for the logs by date. The logs are compressed
and stored with no regard for storage constraints.

• Purging is done by date and size of each file. The maximum size for each log
is set during configuration of WTE. When the logs are purged by date, if the
14 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

maximum size for a log is still exceeded, daily logs are removed until the
maximum size is no longer exceeded.

1.5.3.11 Error Message Personalization
The error messages sent to the client’s browser are kept in HTML pages, which
lets you change or alter the message. You can use this to give additional
information, give additional instructions, or include things such as logos.

1.5.3.12 Secure Request Filtering
Filtering for Secure Sockets Layer (SSL) requests is done by using PICS filtering
on the non-secure home page of the URL and applying the receive or block
decision to the secure request.

1.5.3.13 Configuration Enhancements
Configuring the server using the browser, local or remote, is improved and more
user friendly. The configuration screen is divided into three areas: navigation,
workspace, and header. Navigation between different areas of the configuration
process is always available in the navigation portion of the screen with a click of
the mouse. The forms to be filled in are displayed in the workspace. The header
portion contains a Help button and a Restart Server button. The server can be
restarted anytime with the Restart Server button. When the Help button is clicked,
another instance of the browser that does not interfere with the form being used
displays the help information. The help information is divided into three types:
field definition of the form being viewed, task oriented, and server general help.

1.5.4 New AFS Enterprise File System Function
The AFS component of WebSphere Performance Pack now provides some new
features.

1.5.4.1 AFS Server for Windows NT
WebSphere Performance Pack Version 1.0 included AFS client and server for
AIX and Solaris, but only the client was included for Windows NT. WebSphere
Performance Pack V2 includes AFS Version 3.5 for Windows NT, which offers
AFS server for Windows NT. With this component, you can store AFS files and
directories, and run processes that provide servers on a Windows NT machine.

1.5.4.2 AFS Control Center
The AFS Control Center is a set of Windows NT-based tools for managing AFS
cells. The AFS Control Center includes a User Administration graphical user
interface (GUI) for account management and a Server Manager GUI for volume
management. The Control Center helps simplify AFS server and account
administration by letting administrators manage entire environments from a single
Windows NT workstation, for example, monitoring file server utilization,
transferring collections of files across servers, performing load balancing, or
managing AFS accounts.

1.5.5 New Functions Available by Combining Components
As we said, WebSphere Performance Pack is composed of three main
components: ND, WTE and AFS. Although these components can be installed
separately, they are not different products; especially in this new version of
WebSphere Performance Pack, new functions have been provided to integrate
Chapter 1. IBM WebSphere Performance Pack Concepts 15

these components together and supply services that were not previously
available.

1.5.5.1 Content Based Routing
Content Based Routing (CBR) is a new ND function that provides load balancing
enhancements to the reverse proxy capabilities of WTE. CBR works in
conjunction with WTE, which must be installed on the same machine.

The same rules used for Dispatcher can be used with CBR to load-balance
requests over different sets of servers based on the client IP address, the entire
URL, the protocol portion of the URL, the host portion of the URL, the path
portion of the URL, the Referer HTTP header, or the User-Agent HTTP header.

1.5.5.2 Peak Load Management
Peak load management is the ability to detect and react to sudden increases in
activity. In Version 1.0, ND allowed rules-based routing to alter the load-balancing
algorithm based on the current connection rate, the number of active
connections, and the time of day. In Version 2, an advisor for Dispatcher
enhances load management on WTE by preventing Dispatcher from sending new
requests to a WTE node that is engaged in garbage collection or cache refresh.

1.5.5.3 Remote Cache Access
RCA provides a way to share cache content among proxies. In many scenarios,
multiple proxies are deployed near (in network terms) each other. Typically, they
will have a load balancer in front of them for load balancing and high availability
reasons. Each proxy has its own cache, and if the cached data cannot be shared,
this results in cache space being wasted as multiple copies of the same
document are stored. Also, since each cache is smaller than the sum of all the
disks, the cache hit rate is lower (due to the smaller cache size).

RCA is a new, powerful feature implemented in WTE, and not available in the
previous release of IBM WebSphere Performance Pack. RCA allows multiple
proxy servers to cooperate to form cache arrays. Using RCA, multiple proxy
servers can distribute the cache contents across their combined, logical cache to
improve hit rates and reduce redundancy of cached content.

WTE uses new caching algorithms and information-sharing technologies to
enable an Internet service provider (ISP) to manage its servers more efficiently
by storing information where it is more likely to be needed and delivering it more
efficiently to customers. These enhancements reduce transmission costs and
eliminate the need for ISPs to replicate information in redundant proxy servers.

Although RCA is a new feature of WTE, it is best used in conjunction with the
other components of WebSphere Performance Pack. In fact, RCA enables
multiple peer WTE proxy servers, load balanced by one ND machine, to share the
contents of their caches utilizing a shared file system, such as AFS, DFS, NFS, or
Windows NT file sharing. We recommend the use of AFS, since it offers
nondisruptive real-time replication of information across multiple servers, data
consistency, availability, global stability and data consistency.

1.5.5.4 Integrated Configuration Assistance
To facilitate proxy caching, the install program automatically sets up caching with
WTE. WebSphere Performance Pack also provides wizards to make
configuration easier. Invoked from a browser, these wizards can configure key
16 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

WebSphere Performance Pack scenarios that involve all of the WebSphere
Performance Pack components.

1.6 Who Can Benefit

IBM WebSphere Performance Pack allows you to design and use multiple
architectures. The scenarios described in this section provide specific examples
of how various ISP implementations can benefit from the use of IBM WebSphere
Performance Pack.

1.6.1 Content Hosting Internet Service Providers
Content hosting ISPs can use WebSphere Performance Pack to more efficiently
support and distribute the content from their own Web sites, and to provide more
response- and cost-effective access to other sites.

Figure 4. Content Hosting Internet Service Providers

Within a content hosting server farm, the WebSphere Performance Pack
components can be configured to provide high availability and accessibility as
follows:

• Content for hosted Web sites can be distributed over multiple volumes using
the AFS virtual name space to simplify administration of page content.
Because all of the Web servers need to have equal access to the Web
content, a shared file system is an obvious choice for manageability of the
Web content. AFS is a superior file system in this environment because of its
replication capabilities, which provide improved availability and scalability. The
disk caching capability of the AFS client ensures that network accesses to the
file server are minimized.

AFS
File Server

for Replicated Web Content

AFS
File Server

for Replicated Web Content

Web Client
Gateway

or
Firewall

Network Dispatcher
Load-Balancing Primary

HTTP Server A

AFS Client

HTTP Server B

AFS Client

HTTP Server C

AFS Client

Network Dispatcher
Load-Balancing Backup
Chapter 1. IBM WebSphere Performance Pack Concepts 17

• Scalability of access to the content can be achieved by adding multiple HTTP
servers that are simultaneously AFS clients to access AFS server content,
and by using efficient load balancing to dispatch requests to the HTTP server
with the best capacity to handle the requests. ND, the load balancing
component of IBM WebSphere Performance Pack guarantees improved
availability and scalability by allowing a farm of Web servers to provide a
single Web site image to clients.

• High availability can be maintained by using AFS file replication capabilities,
and by configuring a hot standby ND component.

• Proxy caching can be used to provide more responsive access to content from
other sites, as well as to optimize backbone network traffic capacity.

• Both availability and performance may be further enhanced by geographically
distributing HTTP servers with AFS clients, together with proxy caching for
other Internet content closer to user access points, such as points of presence
(POPs) and network access points (NAPs).

Thus, content hosting service providers or corporate webmasters can benefit
from the non-disruptive replication and distribution capabilities of the file sharing
functions, local and wide area load balancing, and proxy caching. Flexible
configuration of these components can ensure that requests are directed to the
most appropriate local or remote location, and can enable location outages or
routine maintenance schedules to be handled without disrupting customers.

The IBM WebSphere Performance Pack components can be used in conjunction
with firewalls and authentication gateways to provide secure access where
desired, and the load balancing function of WebSphere Performance Pack can
also be used to scale these capabilities.

1.6.2 Corporate Web Sites and Content Aggregators
Use of IBM WebSphere Performance Pack by corporate Web sites and content
aggregators is similar to that of content hosting ISPs.
18 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 5. Corporate Web Sites and Content Aggregators

In many cases, corporate Web sites and content aggregators need to maintain a
demilitarized zone (DMZ) to ensure that access to Web content by employees,
business partners, or customers does not expose internal computer resources to
unauthorized users or hackers. However, firewalls cannot be deployed between
AFS clients and their servers. In such instances, AFS replication can be used to
establish read-only AFS servers within the DMZ. Here multiple AFS clients and
the load balancing ND function can be used to provide the degree of scalability
necessary to satisfy users. In addition, WTE caching and filtering proxy servers
may be deployed on the same machines or on separate systems to filter or
optimize access from within the corporation to external Web sites.

Many corporate Web sites are located at head office or regional locations, while
branch offices or business partners may need frequent access to the content.
Most offices of this type have relatively low line speed (somewhat less than 1.5
Mbps) network access to the regional or corporate sites. Relatively few users
can, with concurrent usage, use all the available bandwidth with resulting erratic
response times. At these locations HTTP servers with AFS clients combined with
general purpose caching can provide more consistent user response time.

Network Dispatcher
Load-Balancing Primary

HTTP Server A

AFS Client

HTTP Server D

AFS Client

Web
Client

Gateway
or

Firewall

HTTP Server B

AFS Client

HTTP Server C

AFS Client

Web Traffic Express
Caching

Reverse Proxy

Network Dispatcher
Load-Balancing Backup

AFS
File Server B

for Web Content

AFS
File Server A

for Web Content

Web Traffic Express
Caching

Reverse Proxy

Internet
Chapter 1. IBM WebSphere Performance Pack Concepts 19

Figure 6. Head Office - Branch Office

Some industries also have small branch offices in addition to larger branch or
regional offices. A simple deployment of WTE caching and filtering on a single
platform, eventually combined with a firewall, is probably sufficient to provide
more consistent response time for employees in the small branch offices.5 In the
larger branches or regional offices, it may be desirable to have more than one
WTE proxy server and to use the load balancing ND functionality to provide better
resource management.

Two approaches can be used to reduce redundant page storage and to address
the effectiveness of caching in these locations:

1. Hierarchical caching

Optimize a primary (initial) cache for higher page hit rate by favoring more files
of a smaller size, and a hierarchical cache for higher hit byte rate by favoring
fewer files of a larger size.

2. RCA

Configure RCA together with the load balancing function of ND and with AFS
shared file storage to reduce the index size of each proxy and to increase the
scalability of the caching storage.

5 IBM has recently released a new product in the WebSphere family, called WebSphere Performance Pack WebSphere Cache Manager.
This product is a caching and filtering proxy server obtained by the same code base as WTE. Cache Manager is available on Windows
NT and Linux. Only a subset of the functions available in WTE are implemented in Cache Manager. For this reason, Cache Manager is
particularly indicated for small companies or for small branch offices of large industries.

Network Dispatcher
Load-Balancing

Backup

Network Dispatcher
Load-Balancing

Primary

Web
Client

AFS File Server
for Replicated Web

Content

AFS File Server
for Replicated Web

Content

Gateway
or

Firewall

HTTP Server A
AFS Client

Internet
or

Intranet

Gateway
or

Firewall

HTTP Server
AFS Client

Web Traffic Express
Caching & Filtering

Proxy

Gateway
or

Firewall

Corporate Head Office

Branch Office

HTTP Server B
AFS Client

HTTP Server C
AFS Client

Network Dispatcher
Load-Balancing

Primary

Network Dispatcher
Load-Balancing

Backup

Web Traffic Express
Caching & Filtering

Proxy Web
Client
20 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

1.6.3 Corporate Headquarters Buildings or Large Campuses
On large campuses or in corporate headquarter buildings, the size of the campus
or number of personnel frequently lead to the creation of smaller local area
networks (LANs) interconnected by routers and a backbone LAN. Busy LAN
servers combined with increasing use of Web server applications can result in
congestion on the backbone LAN segments. This can be reduced by installing
AFS client-enabled HTTP servers and general proxy caching on user LAN
segments. The AFS clients can provide caching for corporate Web content, while
the WTE proxy server can provide caching and filtering for external Internet
access.

Design considerations for the smaller LAN segments are similar to those for small
branch offices discussed earlier.

1.6.4 Backbone Internet Service Providers
Backbone ISPs typically provide co-location and/or peering services for other
ISPs in addition to content hosting for large national or international corporations.
In many cases they may provide virtual ISP services for other service providers
such as content hosting ISPs. Backbone ISP customers are increasingly
demanding both high availability and differentiated service levels, and backbone
ISPs are responding by enhancing their Internet infrastructures. Features
demanded by backbone ISPs include:

• Load balancing for a variety of traffic (for example, mail and FTP in addition to
Web traffic)

In addition, requests are made for traffic balancing management and high
availability for authentication servers and management systems.

• Proxy caching

To minimize the effects of hot potato routing and Web traffic surges, backbone
ISPs are typically installing highly scalable caches at major peering points and
network interconnections points such as network access points (NAPs).

Figure 7. Hierarchical Caching

Gateway
or

Firewall

Web Traffic Express
Caching & Filtering

Proxy

Web Traffic Express
Caching & Filtering

Proxy

Web
Client

Internet
Web Servers

Gateway
or

Firewall

Web Traffic Express
Caching & Filtering

Proxy

Network Dispatcher
Load-Balancing Primary

Network Dispatcher
Load-Balancing Backup
Chapter 1. IBM WebSphere Performance Pack Concepts 21

International ISPs in particular need caching to reduce the costs associated with
trans-oceanic links. Such installations can make very effective use of the RCA
feature of WTE, a variation of the traditional caching function that when used
together with load balancing and shared file storage can dramatically reduce
redundancy of page storage.

Typical configurations for backbone ISPs would include load balancing for
authentication gateways (such as authentication servers and subscriber
management application servers) as well as for WTE caching proxy servers.
Because of the amount of traffic and the desire for high availability, such caching
servers would likely use the RCA feature and would thus also be configured as
AFS clients. Therefore, there would also be an AFS server with the file content.

1.6.5 Access Internet Service Providers
Access ISPs need to provide both more consistent response time to their
customers and to conserve their backbone network link and access charges.
Thus caching at POPs would address these needs. These configurations would
be similar to those for backbone ISP solutions.

Because access service providers target many of the small- to medium-size
business customers, there is also an opportunity for them to create revenue
producing services, by deploying smaller caching devices on customer premises
but configuring and managing them as an ISP service. For this scenario, the
caching would look much as it does for corporate branch offices.

Figure 8. Access Internet Service Providers

Internet
Web

Servers

ISPs Intranet

Web
Client

Gateway
or

Firewall

Gateway
or

Firewall

Web Traffic Express
Caching & Filtering

Proxy

Web Traffic Express
Caching & Filtering

Proxy

Web Traffic Express
Caching & Filtering

Proxy

Network Dispatcher
Load-Balancing Primary

Network Dispatcher
Load-Balancing Backup

Web Traffic Express
Caching & Filtering

Proxy

Web Traffic
Express Caching &

Filtering Proxy

Web Traffic Express
Caching & Filtering

Proxy

Network Dispatcher
load balancing primary

Network Dispatcher
load balancing

backup

Gateway
or

Firewall

Gateway
or

Firewall

Web
Client

Gateway
or

Firewall
22 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

1.6.6 Access ISPs with Subscriber Home Page Hosting
Access ISPs providing subscriber home page hosting typically do so on
multi-homed servers, allowing subscribers to have their own domains. Such
servers may have frequent changes, requiring the ISP to dedicate considerable
time to administering the servers from a directory and backup perspective. For
example, if the ISP is successful in recruiting new users, therefore having to
expand the server capacity, it may involve reorganizing the various servers to
spread the load and to allow room for individual sites to expand. The file
management services provided by IBM WebSphere Performance Pack enable
the ISP to reduce this maintenance workload, and to provide high availability
replication for subscribers willing to pay for continuous availability. They also
allow the ISP to scale up the site capacity with additional AFS clients, without the
need to reorganize the underlying Web servers. ND load balancing can ensure
that despite the growth users get rapid response time. In addition, when
combined with subscriber management routings, to intelligently assign DHCP IP
addresses, it becomes possible to offer differentiated classes of services for
customers paying a premium.

1.7 Other IBM WebSphere Offerings

This section describes the other IBM WebSphere products that can interact with
IBM WebSphere Performance Pack in an e-business Application Framework
environment: IBM WebSphere Application Server and IBM WebSphere Studio.

Notice that IBM WebSphere Performance Pack can be integrated with a number
of other IBM e-business products, such as IBM eNetwork Firewall, IBM HTTP
Server and Lotus Domino Go Webserver. In this redbook, there are several
examples and scenarios where all these e-business products are used together
to create a powerful and secure Web site.

1.7.1 IBM WebSphere Application Server
IBM WebSphere Application Server lets you achieve your Write Once, Run
Anywhere goal for Java servlet development. The product consists of a
Java-based servlet engine that is independent of both your Web server and its
underlying operating system.

WebSphere Application Server offers a choice of server plug-ins that are
compatible with the most popular server APIs. The supported Web servers are:

• IBM HTTP Server
• Apache Server
• Domino
• Lotus Domino Go Webserver
• Netscape Enterprise Server
• Netscape FastTrack Server
• Microsoft Internet Information Server

IBM WebSphere Application Server V2.0 is available in Standard Edition and
Advanced Edition.6 In addition to the servlet engine and plug-ins, WebSphere
Application Server Standard Edition provides:

• Implementation of the JavaSoft Java Servlet API, plus extensions of and
additions to the API

6 See http://www.software.ibm.com/webservers/appserv/.
Chapter 1. IBM WebSphere Performance Pack Concepts 23

• Sample applications demonstrating the basic classes and the extensions

• The IBM WebSphere Application Server Manager, a graphical interface
making it easy to:

• Set options for loading local and remote servlets

• Set initialization parameters

• Manage servlets

• Specify servlet aliases

• Create servlet chains and filters

• Administer and monitor Enterprise Java Services (EJS) components

• Enable Lightweight Directory Access Protocol (LDAP) directory support

• Log servlet messages

• Enable JVM debugging

• Monitor resources used by Application Server

• Monitor loaded servlets, active servlet sessions, and JDBC connections

• Monitor errors, events, exceptions, and log output

• Create dumps and data snapshots

• Dynamically enable and disable tracing

• A connection management feature that caches and reuses connections to
your JDBC-compliant databases

When a servlet needs a database connection, it can get one from the pool of
available connections, eliminating the overhead required to open a new
connection for each request.

• Additional Java classes, coded to the JavaBeans specification, that allow
programmers to access JDBC-compliant databases

These data access beans provide enhanced function while hiding the
complexity of using relational databases. They can be used in a visual manner
in an integrated development environment.

• Support for dynamic page content called JavaServer Pages (JSP)

JSP technology lets you produce dynamic Web pages with server-side
scripting. The result is to separate your presentation logic (for example, the
HTML code that defines your Web site structure and appearance) from your
business logic (for example, the Java code that accesses a database for
information to display on the Web site). For flexibility, JSP files can include
any combination of inline Java, <SERVLET> tags, National Center for
Supercomputing Applications (NCSA) tags, and JavaBeans.

• Enablement for LDAP supported directory services

• Modules and a command line interface for integrating Application Server and
Apache Server into the Tivoli environment for distributed monitoring and
operations

• eXtensible Markup Language (XML) Document Structure Services

WebSphere Application Server Advanced Edition provides all the features of
Standard Edition, plus:
24 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• Enterprise Java Services

This function is provided to run and manage applications coded to Sun's
Enterprise JavaBeans (EJB) specification.

• Common Object Request Broker Architecture (CORBA) support, enhanced to
provide both bean-managed and container-managed persistence.

IBM WebSphere Application Server will also be available in an Enterprise Edition,
which will include the same features as the Advanced Edition, plus:

• TXSeries support, IBM's world-class transactional application environment

• Component Broker (CB) support, with its fully distributed object and business
process integration capabilities

1.7.2 IBM WebSphere Studio
IBM WebSphere Studio is a suite of tools that can be used by people involved in
creating and maintaining Web sites. It allows your team to:

• Easily create Java beans, database queries, and Java servlets using the
Studio wizards

• Group your Web site files into projects and folders

• Edit and update the files with your preferred tools

• Publish all or part of the Web site on any of your WebSphere Application
Server systems

• Maintain the files locally on individual workstations, or in a central location
using a source control system

IBM WebSphere Studio is the tool complement of IBM WebSphere Application
Server. This suite of tools makes it easier to design, develop and maintain
dynamic, interactive Web sites.

The tools provided by IBM WebSphere Studio are:

• Studio workbench

The workbench helps you manage and maintain your Web site applications
and files. It uses projects and folders to group and organize the files and lets
you perform all other functions from this central location. The Studio supports
all file types. You can create files, open them, edit them, copy them, move
them around, delete them, publish them. And, you can do all this right from the
workbench using the workbench menu functions, the wizards, and your
preferred Web development software.

• Studio wizards

The wizards are the fastest way to add dynamic content to your Web pages.
They help you retrieve information from common databases, use server-side
JavaBeans, capture information about your customers, and register Web
visitors. You don't have to be expert at SQL syntax or Java programming. The
wizards walk you through step-by-step and then generate sophisticated
servlet code for you.

• Companion products
Chapter 1. IBM WebSphere Performance Pack Concepts 25

For added convenience the Studio comes with an integrated set of companion
products. Everything is included for you to build, manage, and publish
complete Web sites:

• NetObjects ScriptBuilder

Use this text-based editor for files that contain common markup, scripting,
and programming languages, such as HTML, DHTML, and JavaServer
Page (JSP) extensions, JavaScript, JScript, and Java. Its features make
the scripting process easy. You can quickly preview scripted Web pages,
reference and add language elements, and navigate to embedded
functions and objects.

• NetObjects Fusion

Build your Web sites in a visual manner, dragging and dropping pages to
create an interconnected hierarchy. You can view individual pages or the
entire site structure. This powerful tool lets you include images,
multi-media, and dynamic HTML, and control the visual appearance of an
entire site from one central location.

• NetObjects BeanBuilder

BeanBuilder allows you to put an applet in your Web site in a very short
time. This visual authoring tool lets you quickly combine Java beans into
new applets.

• VisualAge for Java, Professional Edition

If you are familiar with Java programming, you can use this robust,
full-function environment to create and customize Java components. This
award-winning tool includes advanced functions, such as incremental
compilation and the ability to invoke methods while debugging. You can
use it to build sophisticated Java beans that you can use in the Studio
basic servlet wizard. And, in turn, you can also use it to modify the Java
servlets and beans generated by the Studio wizards.

• WebSphere Application Server

What good is server-side Java logic without a server that can handle it? For
your convenience, the best place to publish your Web sites is right in the
package. The WebSphere Studio comes with a complimentary copy and a
developer's license for the WebSphere Application Server.

• Base HTTP servers

The WebSphere Application Server runs on several HTTP servers and
more than one operating system. But, just in case you don't have one
handy, the Apache Web server and a base HTTP server are included for
good measure.
26 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 2. IBM SecureWay Network Dispatcher Concepts

In this chapter, we discuss the IBM SecureWay Network Dispatcher (ND) Version
2.1 component of IBM WebSphere Performance Pack Version 2. This load
balancing software improves the performance of servers by distributing TCP/IP
session requests to different servers belonging to a group of servers. ND is
derived from a lineage of proven products used to load balance TCP traffic on
many of today’s most active Web sites, as well as several high profile events over
the past couple of years. Notable among these are the IBM Corporation home
page http://www.ibm.com, IBM Software home page http://www.ibm.com/software,
Masters Golf Tournament, Wimbledon Tennis Championship, French Open Tennis
Championship, U.S. Open Tennis Tournament, the ACM Chess Challenge sites
(Gary Kasparov versus IBM’s chess playing supercomputer, Deep Blue), the
1996 Olympic Games in Atlanta and the 1998 Nagano Olympic Games, where a
peak of almost 104,000 hits per minute was achieved.

The code that would eventually evolve into this product began as the TCP Router
project in Hawthorn, England. The working prototype from that project was
implemented at the 1996 Olympic Games in Atlanta. In its first release as a
product, this software was packaged with a component of the SP Loadleveler
software known as Interactive Session Support (ISS), developed in Hursley,
England. This also was the name given to the product. ISS Version 1.0 ran only
on AIX at the time. ISS V1.0 for AIX was used at the 1998 Nagano Olympic
games. More specifically, a variant of the TCP Router component, not the ISS
component, was used in Nagano.

The first name change for the product came with the next release, known as
Interactive Network Dispatcher Version 1.1. In this release, the code was ported
to Solaris and Windows NT and some portions of it were written in Java to aid in
the porting process. The complete product port came in the next release:
Interactive Network Dispatcher Version 1.2.

The next change for the product saw not only a change in the name to IBM
SecureWay Dispatcher Version 2, but also its packaging. IBM SecureWay
Network Dispatcher Version 2 was included as the Load Balancing component of
IBM WebSphere Performance Pack Version 1.0, along with IBM AFS Enterprise
File System (AFS) – the File Sharing component – and IBM Web Traffic Express
(WTE) – the Caching and Filtering component.

In the new version of WebSphere Performance Pack, Version 2, the name of the
Load Balancing component has changed again. IBM SecureWay Network
Dispatcher Version 2 is now known as IBM SecureWay Network Dispatcher
Version 2.1.

2.1 Load Balancing Technologies

The first generation of Web traffic load balancing, called DNS round-robin, simply
had a Domain Name System (DNS) name server rotating the resolution of names
among a hard-coded list of IP addresses for Web application servers. Some
degree of balancing is achieved with round-robin, and the multiserver hardware is
used, but the balancing is hardly optimal, since the DNS round-robin treats all the
requests as equal. Round-robin load balancing does not take into account the
© Copyright IBM Corp. 1999 27

availability of the servers and the workload on them. Moreover DNS round-robin
does not provide the ability to differentiate by port.

The next generation of load balancing software included a more intelligent
round-robin method along with a user-specified approach to distributing TCP/IP
session requests. The ND component of IBM WebSphere Performance Pack
Version 2 takes the capabilities of this proven load balancing software another
step forward. ND improves the performance of servers by basing its load
balancing decision not only on the servers’ availability, capability and workload,
but also on many other new user-defined criteria as well. As a result of ND’s
inherent flexibility, Web sites can now take advantage of differentiated qualities of
service, based on request origin, request content and overall load on the system.
The entire load balancing operation is transparent to end users and other
applications.

The ND component of IBM WebSphere Performance Pack is very useful for
applications such as e-mail servers, World Wide Web (WWW) servers, distributed
parallel database queries, and many other TCP/IP applications. When used with
Web servers, it can help maximize the potential of a Web site by providing a
powerful, flexible, and scalable solution to peak-demand problems. If visitors to
your site can’t get through at times of greatest demand, the ND component of
IBM WebSphere Performance Pack can automatically find the optimal server to
handle incoming requests, thus enhancing your customers’ satisfaction and your
profitability.

The ND component of IBM WebSphere Performance Pack consists of three
subcomponents that can be used separately or together to provide superior
load-balancing results: Dispatcher, ISS, and Content Based Routing (CBR).

• You can use the Dispatcher component by itself to balance the load on servers
within a local area network (LAN) or wide area network (WAN) using a number
of weights and measurements that are dynamically set by Dispatcher. This
function provides load balancing at a level of specific services, such as HTTP,
FTP, SSL, NNTP, POP3, SMTP, and Telnet. It does not use a DNS server to
map domain names to IP addresses.

• You can use the ISS component by itself to balance the load on servers within
a local or wide area network using a DNS round-robin approach or a more
advanced user-specified approach. Load balancing is performed at the
machine level. ISS can also be used to provide server load information to a
Dispatcher machine.

When used for load balancing, ISS works in conjunction with the DNS server
to map DNS names of ISS services to IP addresses. When used to provide
server load information, a DNS is not required.

• The CBR component works along with WTE to load balance client Web
requests to specified servers; the routing is determined by comparing the
content of the request to rules that have been defined in the CBR component.

2.2 Functions of the ND Component

The three components that make up the SecureWay Network Dispatcher Version
2.1 are the Dispatcher, ISS and CBR. ND gives you the flexibility of using these
components separately or together, depending on your site configuration. This
section gives an overview of the Dispatcher, ISS and CBR components.
28 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

2.2.1 Dispatcher
The Dispatcher component does not use a DNS for load balancing. It balances
traffic among your servers through a unique combination of load balancing and
management software. The Dispatcher can also detect a failed server and
forward traffic around it.

All client requests sent to the Dispatcher machine are directed to the server
selected by the Dispatcher as optimal according to certain dynamically set
weights. You can use the default values for those weights or change the values
during the configuration process.

The Dispatcher has two important features:

1. The server sends a response back to the client without any involvement of the
Dispatcher.

2. No additional code is required on your servers to communicate with the
Dispatcher.

The Dispatcher function is the key to stable, efficient management of a large,
scalable network of servers. With the Dispatcher, you can link many individual
servers into what appears to be a single, virtual server. Your site thus appears as
a single IP address to the world. Dispatcher functions independently from a DNS
in that all requests are sent to the IP address of the Dispatcher machine.

The Dispatcher provides distinct advantages for balancing traffic load to clustered
servers, resulting in stable and efficient management of your site.

2.2.1.1 Dispatcher High Availability
The Dispatcher offers a built-in high availability feature. Dispatcher high
availability involves the use of a second Dispatcher machine that monitors the
main, or primary, machine and stands by to take over the task of load balancing
should the primary machine fail at any time.

For more details on Dispatcher high availability, see Chapter 6, “ND High
Availability Support” on page 177.

2.2.2 Interactive Session Support
You can use the ISS component with or without a DNS name server:

• If you are using ISS for load balancing, a DNS server is required. This can
either be an actual DNS server or, if you set up a small, separate subdomain
for a new name server, a replacement name server provided by ISS. Using this
approach, ISS runs on a DNS machine. A client submits a request for
resolution of the DNS name for an ISS-associated service, which has been set
up by an administrator. ISS then resolves the name to the IP address of a
server in the cell, and forwards this IP address to the client.

• If you are using ISS to collect server load information, a DNS is not needed.
The ISS monitor collects server load information from the ISS agents running
on the individual servers and forwards it to the Dispatcher. The Dispatcher
uses this load information, along with other sources of information, to perform
load balancing.

ISS periodically monitors the level of activity on a group of servers and detects
which server is the least heavily loaded. It can also detect a failed server and
Chapter 2. IBM SecureWay Network Dispatcher Concepts 29

forward traffic around it. Once every monitoring period, ISS ensures that the
information used by the DNS server or the Dispatcher accurately reflects the load
on the servers. The load is a measure of how hard each server is working. The
system administrator controls both the type of measurement used to measure the
load and the length of the load monitoring period. You can configure ISS to suit
your environment, taking into account such factors as frequency of access, the
total number of users, and types of access (for example, short queries,
long-running queries, or CPU-intensive loads).

2.2.2.1 ISS High Availability
Implementing ISS high availability is very simple. All the nodes in a site work
together to eliminate any single point of failure. Should the monitor machine fail,
the survivors elect a new monitor to take over automatically.

For more details on ISS high availability, see 4.2, “Load Balancing Scenario Using
the Dispatcher and ISS” on page 137.

2.2.3 Content-Based Routing
CBR is a new component of ND. WTE, the caching proxy server that is also a part
of WebSphere Performance Pack Version 2, must be installed on the same
machine as CBR to proxy client requests to specified servers. WTE allows you to
manipulate caching details for faster Web document retrieval with low network
bandwidth requirements. CBR along with WTE filters Web page content using
specified rule types.

CBR gives you the ability to specify a set of servers that should handle a request
based on regular expression matching the content of the request. Because CBR
allows you to specify multiple servers for each type of request, the requests can
be load balanced for optimal client response. CBR will also detect when one
server in a set has failed, and stop routing requests to that server. The load
balancing algorithm used by the CBR component is identical to the proven
algorithm used by the Dispatcher component.

When a request is received by the WTE proxy, it is checked against the rules that
have been defined in the CBR component. If a match is found, then one of the
servers associated with that rule is chosen to handle the request. WTE then
performs its normal processing to proxy the request to the chosen server.

CBR has the same functions as the Dispatcher with the exception of high
availability, subagent, wide area network support, and some configuration
commands.

CBR can only function as part of WTE. WTE must be running before any CBR
configuration can be performed.

2.3 What Is New in This Version?

In addition to Content-Based Routing, this version of IBM WebSphere
Performance Pack offers several new features in the Dispatcher and ISS
functions.

The Dispatcher component has been enhanced to include the following:

• Configuration Wizard
30 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• This feature allows you to define a cluster quickly using a graphical user
interface. See Chapter 3, “ND Installation and Basic Configuration
Issues” on page 55 for further information on the configuration wizard’s
capabilities.

• Assisted Interface Configuration

• The assisted interface configuration generates required network interface
configuration commands on the Dispatcher machine. For more information
on this, see Chapter 4, “ND Basic Scenarios” on page 81.

• Server Directed Affinity (SDA) API

• The new SDA feature provides an API that allows an external agent to
influence the Dispatcher affinity behavior. For more information on this, see
Chapter 9, “Server Directed Affinity API” on page 243.

• Binary Logging and Statistics

• The Dispatcher and CBR components now provide an optional logging
facility. This will capture server statistics at a user-specified interval. A
sample program is provided for reading the binary logs. This program can
be modified to process the binary information as appropriate for your site.
For more information on this, see Chapter 13, “Binary Logging and
Statistics” on page 321.

• Remote Authenticated Administration

• The remote authenticated administration allows the ND components to be
configured remotely with the ND configuration GUI, or by using a
separately installable configuration component, the Common Configuration
Utility. The remote configuration uses public/private keys for authentication.
For more information see Chapter 3, “ND Installation and Basic
Configuration Issues” on page 55 and Chapter 17, “Common
Configuration” on page 365.

• Wildcard Cluster and Wildcard Port

• The Wildcard Cluster acts as a catch-all cluster. There are two ways to use
this feature:

• You can configure multiple aliases on the Dispatcher machine, and have
them all use the same port and server configuration.

• You can make the Dispatcher machine the default route for some traffic,
and have it load balance all the IP traffic for ports configured on the
wildcard cluster.

The wildcard port can be used to create a load balancing configuration for
traffic to any port that has not been explicitly defined on your configuration.

We will discuss wildcard card and wildcard port in more detail in Chapter
11, “Firewall Load Balancing and High Availability” on page 273, where we
will also see how these two features of Dispatcher can be successfully
used to load balance firewalls.

• Web Traffic Express Advisor

This new Advisor specifically monitors the state of WTE servers being
load-balanced. This feature will be discussed in .

• Workload Manager Advisor
Chapter 2. IBM SecureWay Network Dispatcher Concepts 31

The workload manager (WLM) Advisor is designed to work in conjunction
with servers on OS/390 mainframes running the MVS Workload Manager
component. For more information, see Chapter 10, “Custom Advisors” on
page 263.

2.3.1 ISS
There are also some new features and fields for ISS as listed below:

• ISS GUI

• The ND GUI can now also be used to define cells, resources, services, and
observers for a given host. For more information see Chapter 4, “ND Basic
Scenarios” on page 81.

• NotISSAgent

• This feature is needed if you have a mixed group of servers that are not all
AIX, Solaris, or Windows NT. For more information see 2.6.4, “Configuring
Nodes” on page 45.

• Statistical RoundRobin

• This feature allows the server to handle extremely heavy traffic. For more
information, see 2.6.9, “ISS Selection Methods” on page 50.

2.3.2 CBR
CBR, which we introduced in 2.2.3, “Content-Based Routing” on page 30, is an
entirely new component with this release of ND. The CBR component works with
IBM’s WTE proxy server to load balance traffic based on the content of a client’s
URL, FTP, and SSL requests.

Local content for a Web site can be placed behind a WTE proxy server, and the
content can be served from different sets of workstations based on the type of
request. For example, one or more Web servers can be set up to handle CGI-BIN
requests, while other local requests are sent to a different set of Web servers.
The CBR component provides load balancing and failure detection for all the Web
servers.

Configuring CBR is very similar to configuring the Dispatcher component. For
more information, see Chapter 14, “Content Based Routing” on page 329.

2.3.2.1 Client IP and Cookie Affinity
The Client IP Affinity is a feature of ND that can be used in both the Dispatcher
and CBR components. With this support, the ND server maintains affinity
between a client and one of the TCP servers based on the IP address of the
client. Though a powerful concept, Client IP Affinity is very useful in an intranet
environment, but cannot help in a real-life Internet environment, where all the
clients are masked by the single IP address of a firewall machine.

To solve the problem just described, CBR offers a feature called Cookie Affinity.
The Cookie Affinity support allows requests from a particular HTTP client to be
load balanced to the same server for a specified time period. The client session
will maintain affinity for a particular server without relying on the IP address of the
client. To achieve this result, the CBR machine sets a cookie in the client
machine.
32 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

2.4 Why Do I Need IBM SecureWay Network Dispatcher?

The number of users and networks connected to the global Internet is growing
exponentially. This growth is causing problems of scale that can limit users’
access to popular sites. Currently, network administrators are using numerous
methods to try to maximize access. Some of these methods allow users to
choose a different server at random if an earlier choice is slow or not responding.
This approach is cumbersome, annoying, and inefficient.

Another method is standard round-robin, in which the DNS server selects TCP
servers in turn to handle requests. This approach is better, but still inefficient
because it blindly forwards traffic without any consideration of the server
workload. In addition, even if a server fails, requests will continue to be sent to it,
and end users on the client machines will experience serious problems.

The need for a more powerful solution has resulted in the development of ND. It
offers numerous benefits over earlier and competing solutions:

• Scalability

As the number of client requests increases, you can add servers dynamically,
providing support for tens of millions of requests per day, on tens or even
hundreds of servers.

• Efficient use of equipment

Load balancing ensures that each group of servers makes optimum use of its
hardware by minimizing the hot-spots that frequently occur with a standard
round-robin method.

• Easy integration

ND uses standard TCP/IP protocols. You can add it to your existing network
without making any physical changes to the network. It is simple to install and
configure.

• Low overhead

ND needs only to look at the inbound client-to-server flows. It does not need to
see the outbound server-to-client flows. This significantly reduces its impact
on the application compared with other approaches and can result in improved
network performance.

• Non-invasive technology

ND does not modify any packets, nor does it require any modifications to the
operating system on which it runs.

• Content Based Routing

CBR gives a WTE administrator the ability to proxy requests to specific
servers based on the content requested. For example, if a request contains
the string /cgi-bin/ in the directory portion of the URL, and the server name is
a local server, CBR can direct the request to the best server in a set of servers
specifically allocated to handle CGI-BIN requests.

• High Availability

The Dispatcher component of ND offers built-in high availability, utilizing a
standby machine that remains ready at all times to take over load balancing
should the primary Dispatcher machine fail.
Chapter 2. IBM SecureWay Network Dispatcher Concepts 33

ISS is intrinsically highly available. All the nodes in an ISS configuration work
together to eliminate any single point of failure within ISS.

CBR does not offer a high availability feature, but multiple CBR machines can
be load balanced by an additional ND machine; if a CBR machine should
unexpectedly fail, the ND server realizes it and directs traffic around the failing
machine. This way, CBR high availability can be achieved as well.

• Colocation option

The Dispatcher component can be installed on the same machine where one
of the application servers reside. This option is particularly useful if you want
your Web site to benefit from the high availability and scalability options of the
load balancing component with a minimal investment.

The colocation option is currently available only on AIX and Solaris.

2.5 How the Dispatcher Function Works

The Dispatcher creates the illusion of having just one server by grouping systems
together into a cluster that behaves as a single, virtual server. The service
provided is no longer tied to a specific server system, so you can add or remove
systems from the cluster, or shut down systems for maintenance, while
maintaining continuous service for your clients. For the clients, the balanced
traffic among servers seems to be a single, virtual server, and the site appears as
a single IP address to the world. All requests are sent to the IP address of the
Dispatcher machine, which decides for each client request which server is the
best one to accept requests, according to certain dynamically set weights. The
Dispatcher routes the client’s request to the selected server, and then the server
responds directly to the client without any further involvement of the Dispatcher.
The Dispatcher can also detect a failed server and route traffic around it.

The Dispatcher receives the packets sent to the cluster. These packets have a
source and a destination address; the destination address is the IP address of the
cluster. All servers in the cluster and in the Dispatcher system have their own IP
address and an alias for the IP address of the cluster; the Dispatcher system has
the cluster address aliased on the network interface, while all the TCP servers
that will be load balanced by this ND machine have the cluster address aliased on
the loopback adapter. The Dispatcher system checks which server is the next
best server to handle the load and routes the packet to that server. The
Dispatcher routes this request based on the hardware address of the network
adapter (MAC address) of the chosen server. It changes the hardware address of
the packet to the hardware address of the selected server and sends the packet
to the server. However, the Dispatcher does not change the source and
destination IP addresses in the packet. The server receives the packet and
accepts it because all servers in the cluster have an alias for the cluster’s IP
address on the loopback interface. Then, the server sends a response back to the
client by inverting the source and destination IP addresses from the original
packet received. This way, the server can respond directly to the client. We see a
more detailed explanation of this process in Chapter 4, “ND Basic Scenarios” on
page 81.

The fact that the server can respond directly to the client makes it possible to
have a small bandwidth network for incoming traffic, such as Ethernet or
34 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

token-ring, and a large bandwidth network for outgoing traffic, such as
Asynchronous Transfer Mode (ATM) or Fiber Distributed Data Interface (FDDI).

The server machines in the cluster could be a mixture of heterogeneous servers
of different sizes and types, such as UNIX, Windows NT or OS/2 machines. We
will see more details on this in Chapter 4, “ND Basic Scenarios” on page 81, and
Chapter 6, “ND High Availability Support” on page 177.

2.5.1 Dispatcher Components
The Dispatcher consists of three main functions:

1. Executor

This function supports port-based routing of TCP and UDP connections to
servers based on the type of request received (for example HTTP, FTP or
SSL). This module always runs when the Dispatcher function is being used.

For further details, see Chapter 4, “ND Basic Scenarios” on page 81.

2. Manager

This function sets weights used by the Executor based on internal counters in
the Executor itself and feedback from the Advisors and ISS monitoring (if ISS
is used as a monitoring tool). Each unit of information given to the Manager by
the Advisors, ISS and Executor factor has a relative importance, so you can
give more importance to one unit of information over the others, or totally
ignore one or more units of information. Using the Manager is optional, but if
the Manager is not used, load balancing is performed using weighted,
round-robin scheduling based on the current server weights.

For further details, see Chapter 4, “ND Basic Scenarios” on page 81.

3. Advisors

Advisors send requests to the TCP servers to measure actual client response
time for a particular protocol. These results are then fed to the Manager to
adjust the load balancing weights. Currently, there are Advisors available for
HTTP, FTP, SSL, SMTP, NNTP, POP3 and Telnet. Three new Advisors have
been added in this version: ping, WTE, and WLM. Using the Advisors is
optional, but recommended. You also have the option of writing your own
Advisors. A custom Advisor will provide the precise information about servers
that you need. Advisors, like the rest of the Dispatcher, must be compiled with
Java 1.1. To ensure access to Dispatcher classes, make sure that the
ibmnd.jar file (located in the lib subdirectory of the base directory) is included
in the classpath system environment variable. Only Advisors written to the
correct level of Java will be supported.

For further details, see Chapter 4, “ND Basic Scenarios” on page 81 and
Chapter 10, “Custom Advisors” on page 263.

There is also an SNMP subagent function that allows an SNMP-based
management application to monitor the status of the Dispatcher.

2.5.2 Proportions of Importance
The Manager decides which is the least-loaded server on a particular port in the
cluster by looking at the weight of each server. The Manager will periodically
update the weight of each of the server machines, basing its decision on four
parameters or policies:
Chapter 2. IBM SecureWay Network Dispatcher Concepts 35

1. The number of active connections on each TCP server

2. The number of new connections for each TCP server

3. Input from TCP server Advisors

4. Information from system monitoring tools, such as ISS

Setting the servers’ weights in the load-balancing process is performed by using
the so-called proportions of importance. Each of the above factors is attributed a
number, from 0 to 100, that acts as a percentage. 0 means that the policy is not
used, while 100 means that only that factor will be used. It is necessary that those
proportions add up to 100. The default settings at the startup appears as 50 50 0

0.

2.5.2.1 Guidelines on Proportions of Importance Settings
Although there are generally not fixed rules on how to set the proportion value, it
is still possible to provide some useful guidelines, described in the following.

The first two proportions are related to active and new connections respectively
(see points 1 and 2 above). Typically in an out-of-the-box configuration, this is all
you will be able to use. That is why the default proportions at startup of
Dispatcher appear as 50 50 0 0.

Anyway, the load on a classical Web server depends mainly on the number of
connections, both active and new. Just consider the following. If the client
connections to the services provided by the TCP server machines are quick (such
as small Web pages served using the HTTP GET method), then the number of
active connections will be expected to be fairly low. On the contrary, if the client
connections are slower (such as database queries), then the number of active
connections will be higher.

If you then start the Manager, it makes sense now to use a non-zero value for the
Advisor proportion (see point 3 above). The standard Advisors shipped with
Dispatcher execute a trivial transaction on each TCP server. Normally you would
expect a trivial response time to this transaction. Experience shows us that it is
not a good idea to set the Advisor proportion to a high value. We recommend 49

49 2 0 for this setup.

Things change if you start using a custom Advisor. Your custom Advisor can, for
example, execute a Java servlet (or other application transaction) on the server
side, and this servlet can gather very precise values about performance,
throughput, and response time via the server's API and feed it to the Advisor
when asked. Thus, you may find it appropriate to put the Advisor proportion at a
higher value. However, we recommend that you do not overcompensate, and do
not set active and new connection proportions too low; otherwise you begin to
restrict Dispatcher's adaptive and smoothing capabilities. Moreover, you may end
up with a load balancer that follows your Advisor too closely, resulting in a choppy
profile that is probably less than ideal. In the final analysis, what works for you is
best; you need to experiment with your custom Advisor to see what results you
get in the real world.

Finally, if you install the ISS daemon on your servers, it makes sense to add the
ISS proportion to your mix (see item 4 on page). If you use a custom metric in
ISS as well as a custom Advisor, be sure to have them go after similar objectives;
36 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

otherwise you may come to set one against the other with undesirable
consequences.

2.5.3 Information Flow
The typical flow of information used in the Dispatcher is shown in the Figure 9:

Figure 9. Information Flow Used in the Dispatcher

The first step that must be done after installing and configuring the Dispatcher is
to run it using the following command:

ndserver

The logical information flow, represented in the above diagram, is described in
the following list:

1. The Executor supplies information about new and active connections based
on its internal counters to the Manager.

2. The Advisors collect information about response time and availability from the
servers for each service and each port.

3. After processing this information, they send it to the Manager.

4. The Manager uses all the information it receives (including information sent by
the ISS component, if active, about the servers’ load balancing according to a
specific metric), calculates the new weights to be used in connection routing.
and sends the results to the Executor.

5. The Executor uses these new weights for TCP and UDP routing. If the
Manager and the Advisors are not running, the Executor does the routing
based on its internal counters.

Dispatcher

ndcontrol GUI

1

2
3

4

5

Manager

Executor

AdvisorsAdvisorsAdvisors

Server 1

Server 2

Server N

5233\523302

6

ndserver
Chapter 2. IBM SecureWay Network Dispatcher Concepts 37

6. A command line interface, represented by the ndcontrol command, and the
graphical user interface (ND GUI) are provided to configure and manage the
Executor, Advisors and the Manager.

2.5.4 TCP Ports Used by the Dispatcher
The Dispatcher uses three TCP ports for its communications:

1. Port 10099

This port is used for receiving commands from the ndcontrol program.

2. Port 10005

This port is used to receive information from an SDA agent.

3. Port 10004

This port is used to receive metric response from ISS.

If another application is already using port 10099 or port 10005 for
communication, then you will need to change the ndserver script to use different
ports:

• On AIX, ndserver is located by default under the /usr/bin directory.

• On Solaris, ndserver is located by default under the /bin directory.

• On Windows NT, the script is called ndserver.cmd and is located by default in
C:\WINNT\system32.

To change the port used for receiving ndcontrol commands, change the
ND_RMIPORT variable to the new value. Similarly, to change the port used to
communicate to an SDA agent, change the ND_AFFINITY_PORT variable to the
new port number.

To change the port used to receive metric reports from ISS, use the metric_port

option when starting the manager:

ndcontrol manager start log_file metric_port

Notice that if you specify a metric_port you must also specify a log_file. The
above command has a corresponding version in the GUI, as we see in Chapter 4,
“ND Basic Scenarios” on page 81.

To inform ISS of a change in the metric port number, when you define the
Dispatcher Observer in the ISS configuration file, you should indicate the new
port number:

Dispatcher hostname metric_port

This is shown in Figure 13 on page 43.

2.6 How the ISS Function Works

This section describes the ISS function and its concepts.
38 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

2.6.1 ISS Cells and Services
ISS logical architecture is based on the concept of a cell. A cell is a group of
servers administered as a single, logical unit. Each server in a cell is also called a
node.

A group of servers (or nodes) that perform the same function is a service. Think
of a service as a group of nodes in the cell that will serve the request only for a
particular protocol (for example HTTP, FTP, or telnet).

It is possible in a cell to define different services (corresponding, for example, to
HTTP, FTP, or Telnet). Moreover a node can belong to one or more services. The
following figure offers a graphical representation of a possible situation:

Figure 10. Cell, Services and Nodes

In this example, we have a cell with six nodes, named N1, N2, N3, N4, N5 and
N6, and three services, S1, S2, S3. You can see that:

• The service S1 contains the nodes N1, N2 and N3.

• The service S2 contains the nodes N2, N4 and N6.

• The service S3 contains the nodes N5 and N6.

Note that some nodes belong to only one service, and other nodes belong to
more services. In particular:

• N1 and N3 run only service S1.

• N4 runs only service S2.

• N5 runs only service S3.

• N2 runs services S1 and S2.

• N6 runs services S2 and S3.

On each node of the cell the ISS component must be installed, configured, and
activated. The ISS will run as a daemon, called the issd daemon.

S1

S2

S3

N1

N3

N2

N4

N5

N6
Chapter 2. IBM SecureWay Network Dispatcher Concepts 39

2.6.2 ISS Configuration
A significant enhancement has been made to the ISS component of IBM
eNetwork Dispatcher Version 2.1 (shipped with WebSphere Performance Pack
Version 2) in regards to ISS configuration. Configuration of the ISS cell
environment has been incorporated into the IBM eNetwork Dispatcher
configuration GUI. ISS cells, hosts, resources, services and observers for a given
ISS environment can be defined by using the GUI. Prior to using the GUI for ISS
configuration, a minimal ISS configuration file must be defined to instruct the issd
daemon on how to act. A sample basic configuration file that is shipped for this
purpose can be modified by you before starting the GUI. See Chapter 4, “ND
Basic Scenarios” on page 81 for an example of starting and using the GUI for ISS
configuration.

In total, five sample configuration files are shipped with the product. These five
ISS sample configuration files are very useful for understanding how to configure
ISS in your environment:

1. The Basic.sample file contains only the minimum two entries (one local cell
and one host) necessary to start using the GUI to perform further
configuration.

2. The Dispatcher.sample file illustrates how ISS can be used to supply load data
to two Dispatcher machines in a highly availability configuration.

3. The ReplaceDNS.sample file illustrates how ISS can be used as a limited DNS
name server to perform load balancing for two clusters of servers.

4. The TwoTier.sample file illustrates how ISS can be used with the Dispatcher in
a two-tiered architecture, as shown in Figure 11 on page 41. The bottom tier
consists of two clusters of servers. Each cluster itself has two servers. Two
Dispatcher machines are used to balance these clusters. The top tier consists
of two Dispatcher nodes. In this configuration, ISS performs two functions:

1. It performs DNS load balancing for the top tier.

2. It provides the Dispatchers with additional server load information, so that
they can load balance the bottom tier more accurately.
40 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 11. Two-Tiered ISS and Dispatcher Configuration

5. The file PingTri.sample file actually contains two sample configuration files.
Each sample configuration file is for use in a separate cell. One is for use in a
cell called Hursley, and the other for use in a cell called Raleigh. Each file
defines the other cell as a global cell. With this configuration, each machine
can communicate with all the other nodes in its cell, and knows enough about
the remote cell to exchange ping information and redirect traffic to it. This is
called ping triangulation and is one of the possible methods used by ISS to
determine which server should respond to client requests. Ping triangulation is
a technology that allows you to find out which server site is the closest to a
given client.

When ISS is installed, these configuration files are placed in installbase/samples,
where installbase is the installation directory for the ISS component and varies by
operating system. See Table 1 on page 69 for a list of the installation directory
locations.

For the purpose of explaining how ISS is configured, we will list the contents of
the Dispatcher.sample file:

Servers

Client

Bottom Tier

ISS
Agent

ISS
Agent

ISS
Agent

ISS
Agent

ISS
MonitorInternet

Top Tier

Dispatcher

ISS
Agent

ISS
Monitor

Dispatcher

ISS
Agent

ISS
Monitor

5315\531510
Chapter 2. IBM SecureWay Network Dispatcher Concepts 41

Figure 12. (Part 1 of 2). Dispatcher.sample Configuration File

--
#
Dispatcher Sample configuration file for ISS
#
--
#
This is a simple configuration file used to supply an additional
load value to Network Dispatcher. There is only one (local)
cell, and one service running. Two Metrics are combined to
create the load value for the service. Since there are two
Dispatcher machines running in a Highly Available configuration,
both dispatchers are listed as observers.

Parameters for the whole cell
In this cell, ITL, the Monitor will attempt to reach each node
every 5 seconds (HeartbeatInterval). After 3 Intervals, or
15 seconds, each service will be executed.
Cell ITL local
AuthKey 10043572 ADE4F354 7298FAE3 1928DF54 12345678
LogLevel INFO
HeartbeatInterval 5
HeartbeatsPerUpdate 3
PortNumber 7139

Individual node data

The node dispatch1 has ISS monitor priority 1 and will run the issd
process in ISS monitor mode. The node dispatch2 has monitor priority 2
and can run as a backup ISS monitor when dispatch1 is down. The last
node, server2, is declared NotMonitor. The issd processes on this node
will run as ISS agents, collecting load statistics, but cannot assume
the role of an ISS monitor. The nodes dispatch2 and server1 are equipped
with additional resources and are considered to have an advantage over
the other servers and should be recommended more often than the others.
Therefore they are given a higher weight.

Node dispatch1.raleigh.ibm.com 001
Node dispatch2.raleigh.ibm.com 002
NodeWeight 1.5
Node server1.raleigh.ibm.com 003
NodeWeight 1.5
Node server2.raleigh.ibm.com 098
NotMonitor
NodeWeight 1.0

The service is configured to depend on two resources -- CPU availability
and the process count. Load balancing is therefore performed based on CPU
utilization and the number of processes currently running. However, ISS
will not schedule work for nodes that are unreachable on the network.
#
In this configuration, CPU utilization has more value than the process
count for determining a better performance from a server. Therefore, the
CPU value will be considered 2.0 times more valuable than the ProcessCount.
#
Definition of "CPU" ResourceType
#
The specified MetricLimits indicate that a node will not be used if its
CPU usage goes over 95% and will not be put back in the list until CPU usage
goes back down to 80%.
42 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 13. (Part 2 of 2). Dispatcher.sample Configuration File

In the following sections, we see how the ISS function works to understand the
settings shown in the above configuration file better. We recommend that you

ResourceType CPU
Metric Internal CPULoad
MetricNormalization 0 100
MetricLimits 80 95
Policy Min
MetricWeight 2.0

Definition of "ProcessCount" ResourceType

The metric associated with ProcessCount is assigned a range of (0-250).
If "ps -fe | wc -l" returns a value greater than 250, the metric is
assigned the upper limit of 250. When the value of this metric on a node
is greater than 225, the node is removed from active participation
in the Service that it is associated with. The node is returned to active
participation when the metric has a value less than or equal to 200.

ResourceType ProcessCount
Metric External ps -ef | wc -l
MetricNormalization 0 250
MetricLimits 200 225
Policy Min
MetricWeight 1.0

The one configured service, NDService, is an identifying string for the
service, and is used when balancing between cells. In this configuration,
it is used simply to identify what the service is for and define which
servers to collect the selected metric values from.
#
The name PlaceHolder is not needed when you are using ISS to update the
Dispatcher. The "cluster address", Dispatch_cluster, and port 80, are used
to signify which set of Dispatcher servers are relevant to this service,
and where ISS should send the load information to. ISS itself does no load
balancing in this scenario.

Service NDService PlaceHolder Dispatch_cluster 80
NodeList dispatch2.raleigh.ibm.com server1.raleigh.ibm.co
m server2.raleigh.ibm.com
ResourceList CPU ProcessCount
SelectionMethod Best

The machine dispatch1.raleigh.ibm.com and dispatch2.raleigh.ibm.com have an
Network Dispatcher configured to listen for load values on port 10004. Since
Dispatcher is running in a High Availability configuration, both Dispatchers
need to be listed.

Dispatcher dispatch1.raleigh.ibm.com 10004
ServiceList NDService

Dispatcher dispatch2.raleigh.ibm.com 10004
ServiceList NDService
End of ISS configuration file
Chapter 2. IBM SecureWay Network Dispatcher Concepts 43

read the information provided in the following sections in parallel with the above
configuration file.

2.6.3 ISS Cell and Its Attributes
The first thing that an ISS configuration file does is to define the cell and declare
some cell attributes.

A cell can be local or global, and this is specified in the ISS configuration file
through the keywords local or global respectively. A local cell is the one that the
node will be a member of. There must be one and only one local cell defined in
the ISS configuration file. A global cell is a separate, remote cell that you want
your node to communicate with. You must have a global cell if you have widely
separated mirror sites and want to perform ping triangulation.

A cell can have the following attributes, specified in the ISS configuration file:

• Authkey

This key is used to provide authentication during the ISS internal traffic among
the nodes of the cell. If this keyword is not specified in the configuration file, a
default key will be used. A node can have its own Authkey attribute, which has
to be specified after the node is defined.

• LogLevel

You can have five different log levels, each one providing more information
than the previous one:

[None | Error | Info | Trace | Debug]

The above values for the LogLevel attribute are self-explanatory.

• PortNumber

This option specifies the port number used for ISS internal traffic:

PortNumber [number]

• HeartbeatInterval

ISS will periodically contact all servers that provide a specific service to
ensure that they are still alive. ISS does this using the equivalent of the ping

command. This does not verify that the service is running on the servers, but
at least ensures that the servers can be contacted at the IP level. ISS
maintains a ranking that lists the servers in their current priority order
according to the configured load measurement metric. If the currently
top-ranked server fails to respond, the next server will be selected. This check
is referred to as a heartbeat. The time between heartbeats is determined by
the HeartbeatInterval setting. The syntax is:

HeartbeatInterval [seconds]

• HeartbeatsPerUpdate

The syntax of this keyword is:

HeartbeatsPerUpdate count

Where count is a non-negative integer.

The HeartbeatsPerUpdate value is multiplied by the value of HeartbeatInterval
to give a time called the update interval. The value assigned to the update
interval parameter indicates the number of heartbeats after which ISS will
44 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

determine whether a domain name server update or a Dispatcher update is
required.

Note that the value of HeartbeatsPerUpdate will be ignored in the situation
where the top ranked server fails to respond to a heartbeat. The server will
immediately be removed from its top-ranked position.

2.6.4 Configuring Nodes
After defining the cell, you must list all the nodes that will be part of it using the
Node keyword. The syntax is:

Node [hostname | IP address] priority

In your cell configuration, when using ISS, you should elect one of the nodes as
the cell leader, or monitor, while all the other nodes act as agents. In other words,
if ISS is used to collect server load information, there is an ISS monitor that
collects this information from the ISS agents that run on the individual servers.
The ISS monitor can then be used to send the ISS agent information to the
Dispatcher. The ISS monitor can be installed on one of the servers, a Dispatcher
machine, or on a different machine.

Moreover, you can configure one or more other nodes to back up the monitor
node, by defining a different priority number for each one. In a backup node, the
issd daemon usually runs in agent mode, and the node can only be a server that
provides a service. If the monitor fails, the first (in the priority scale) backup node
in the list takes over, and on this node the issd process switches from agent mode
to monitor mode. As soon as the previous node is available again, it will become
the monitor because of its higher priority value. This functionality provides ISS
high availability.

If you don’t want a particular machine to run as an issd monitor, you have to
declare this using the NotMonitor keyword immediately after the node declaration.
In this case the priority field is only a numeric identifier for that node.

2.6.5 Services
Before explaining how to define the resources, we prefer first to focus on the
section of the configuration file where the services are defined, along with their
parameters:

• Service

You declare a service with the Service keyword, followed by the service name,
the fully qualified service DNS name (which is the DNS name of the pool of
machines that provide the same service), the cluster IP address, and the port
number. The correct syntax is:

Service name DNSName [cluster address] [port number]

• NodeList

A new attribute has been added for the node declaration in this version. If the
node is not running AIX, Solaris or Windows NT, then you need to indicate this
by using the NotISSAgent keyword immediately after the node declaration.

New Node Attribute: NotISSAgent
Chapter 2. IBM SecureWay Network Dispatcher Concepts 45

After defining the service, you need to use the NodeList keyword, which allows
you to specify the list of nodes and members of your cell providing the service.
NodeList must be followed by the host names or IP addresses of those servers:

NodeList DNSName [DNSName ...]

• ResourceList

The ResourceList parameter allows you to declare which resource will be used
to determine the appropriate node that will provide that service. A resource
can be CPU, disk, process, and so forth.

• Overflow

This keyword identifies a server on which to fall back if all the other nodes
specified in NodeList are unable to provide the service. The syntax is:

Overflow DNSName

2.6.6 Resources
When you define a service in the configuration file, you specify the name of one
or more resources as arguments of the ResourceList parameter. A single resource
can be used as the selection criterion in different services. Consequently, the
resources should be defined in the configuration file before the service
definitions.

You define resources using the ResourceType parameter and its own keywords
Metric, MetricNormalization, MetricLimits, and Policy.

The ResourceType keyword must be followed by the symbolic name of the resource
you are defining. It specifies the criteria you have decided to use for selecting the
best server in a service. The syntax is:

ResourceTypes Name

The next section explains how to use these parameters.

2.6.7 Metrics
A resource type is characterized by several parameters that define the metric that
will be used to measure the load among the servers.

A metric defines how ISS will measure the load on the server for each service.
This measurement should be appropriate to the particular service. For example, if
the service provided is CPU-intensive, the metric could be defined as the
percentage of time that the CPU is busy. If the service is disk- or I/O-intensive,
the metric could be based on the amount of time that the disks are busy or the
time spent waiting for I/O to complete.

The metric keywords are the following:

• Metric

The keyword Metric in the configuration file specifies the type of measurement
ISS will use to provide a specific service. The syntax is:

Metric [Internal | External] string

where the string field indicates a command or a program that gives a
numeric output.
46 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

The sample configuration file Dispatcher.sample that we have shown uses the
line:

Metric Internal CPULoad

The keyword Internal identifies a given measurement method as being
provided by the system. The parameter CPULoad forces ISS to measure the
percentage of the CPU that is being utilized. The other system-provided
measurement system is FreeMem, which returns the amount of free physical
memory as a percentage.

When you set Metric to External, you define how to measure the load on the
servers. This metric is anything that can be executed on the server and returns
a numeric value as a result. In this case the string field defines a command
or program that when executed, returns a numeric value that can be used to
measure of the load on the server.

The Dispatcher.sample file shown defines a metric based on the number of
processes running on the server:

Metric External ps -ef | wc -l

• MetricNormalization

This is a range between the lower and upper limits of measurement, indicated
as integer numbers. The syntax is:

MetricNormalization LowerLimit UpperLimit

The limits referred to depend upon the metric you are using. In case you want
to measure the CPU utilization, as shown in the Iss_config_1 sample
configuration file, the two limits are percentage points. The range is therefore
0 to 100. Any metrics coming into the monitor outside of this range would be
corrected by being clipped to fit within these limits.

• MetricLimits

The syntax for this entry is:

MetricLimits RecoverLimit FailLimit

You can set these limits to prevent a server from failing totally by having too
many requests assigned to it. ISS measures the loads on servers periodically.
If the loads on a certain server are within predefined limits, ISS continues to
keep the server in the list of the available nodes. If the loads are outside the
limits, ISS removes the server from the ranks of that service. If the server is
handling more than one service, it may still be included in the ranks of the
other service or services. There are two levels you define:

1. The FailLimit level represents the level beyond which the metric should
not go. When the FailLimit level is reached, ISS removes the server from
the ranking. In the Dispatcher.sample configuration file that we have
shown, the specified value for FailLimit indicates that a node will not be
used if its CPU usage goes over 95%.

2. The RecoverLimit level sets the point at which a node that had been
removed from the ranking should be returned to active participation. In the
Iss_config_1 ISS sample configuration file, the RecoverLimit parameter is
set to 80%.

So, defining the limits of the CPU load metric with the following entry causes
the resource to be removed at 95% of utilization, and returned only when it is
back down to 80%:
Chapter 2. IBM SecureWay Network Dispatcher Concepts 47

MetricLimits 80 95

Specifying a significant difference between the two above levels prevents the
phenomenon wherein resources come into service, fail, then come back after
minimal recovery only to quickly fail again.

• Policy

The parameter Policy can be assigned either the value Max or Min. The correct
syntax is:

Policy { Max | Min }

It indicates whether a metric function is to be minimized or maximized. The
default value is Max.

For example, a metric based on the number of active users would regard the
smallest value as the best and would have the following entry:

Policy Min

On the other hand, a metric function based on CPU idle time would regard the
maximum value as best and, therefore, the policy would be specified as the
following:

Policy Max

2.6.8 ISS Observers
After configuring nodes and services, and after defining the resources, you
should define who will use the information about the status of nodes. In other
words, you should configure the observers.

An observer is a network process (such as a Dispatcher) that uses information
about the status of nodes. ISS provides three observers, which perform different
actions but have the same purpose: load balancing. The three observers are
named NameServer, ISSNameServer and Dispatcher. These names correspond
to the keywords NameServer, ISSNameServer and Dispatcher that you should use in
your ISS configuration file.

Depending on how you decide to configure your environment, you can configure
one or more observers in your cell. This is very important as it determines how
ISS will be implemented (statistics gathering versus load balancing).

2.6.8.1 NameServer
When using the NameServer observer, ISS runs in conjunction with a DNS name
server. It uses the DNS name server to map DNS names of ISS services to IP
addresses of the most appropriate server. ISS assists the DNS server in making
the balancing decision. ISS monitors the load on each server of the cell and
ensures that the server currently used for a particular service is the one with the
lightest load.

It is not mandatory that the machine where the issd monitor process running as a
monitor is the same machine where the DNS daemon named runs. For this
reason, you can configure one or more servers on your cell as backup issd
monitor nodes.

The load-balancing decisions are based on how you have configured ISS. In this
case, ISS makes load-balancing decisions by itself and instructs the DNS name
server about the server that the incoming request are to be routed to.
48 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

The NameServer observer involves some load on the DNS server machine. Every
time a new server is selected as the top-ranked server, the DNS configuration
files are updated. A signal is then sent to the named daemon to reload the name
resolution data files. If these files are large, it can take a significant amount of
time and processing for the named daemon to process them. During this
processing, the named daemon is unable to respond to name resolution requests.

The syntax to define a NameServer observer is the following:

NameServer DNSName [PortNumber]

2.6.8.2 ISSNameServer
When using the ISSNameServer observer, ISS works as a DNS name server. In
this case, ISS runs on a DNS domain name server machine, where the DNS
daemon named is not running.

ISS replaces the named daemon and makes use of the DNS configuration file of
the DNS name server. In this case ISS provides the name serving function by
providing minimal name server implementation. In this way, besides taking over
the DNS, ISS makes load-balancing decisions by itself.

Using the ISSNameServer observer does not increase the load on the DNS
machine, so it is a good option to use the ISSNameServer observer with a new
subdomain for your pool of servers.

The syntax to define an ISSNameServer observer is the following:

ISSNameServer DNSName [PortNumber]

For example, the following is the entry used in the Iss_config_1 sample
configuration file:

ISSNameServer delta 53

2.6.8.3 Dispatcher
When using a Dispatcher observer, you should have defined in your cell a
Dispatcher machine, which ISS strictly cooperates with to perform load balancing.
Different from the previously mentioned two observer types, a DNS server is not
required (neither a DNS server nor an ISSNameServer observer working as
DNS).

The ISS configuration file will reflect your cell configuration, and the Dispatcher
machine you selected should be specified immediately after the Dispatcher

keyword, according to the following syntax:

Dispatcher DNSName [PortNumber]

The Dispatcher.sample configuration file shown contains two Dispatcher observer
entries. There is one entry for each Dispatcher machine that is to receive load
information from ISS.

With this type of Observer, you can view ISS as a monitoring tool on the TCP
server machines. ISS provides the Dispatcher with load server information, but
ISS does not make any load-balancing decision.

The ISS monitor collects specific server information, in this case CPU usage and
process count information, but could also include memory usage and disk activity,
Chapter 2. IBM SecureWay Network Dispatcher Concepts 49

from the ISS agents running on the individual servers, and forwards it to the
Dispatcher. The Dispatcher uses this load information, along with other sources
of information, to determine which is the least-loaded server of the cluster and
then routes the request.

2.6.9 ISS Selection Methods
For each observer you plan to use in your cell, you should specify a selection
method, which defines how the ISS monitor selects the best node to perform that
service. A third selection method has been added to ISS in this version of ND.
The three selection methods- RoundRobin, Best and Statistical RoundRobin - are
identified with the keywords RoundRobin , Best and Statistical RoundRobin

respectively.

1. RoundRobin

The load among servers is distributed on a round-robin basis; the load on
each server is ignored, although a server will not be recommended if it
appears to be down.

The main advantage of using round-robin is that round-robin avoids overhead
in the server associated with other measurement types. The main
disadvantage of using round-robin is that ISS does not notice whether a
particular service is getting very busy, and ISS could continue to use a busy
server as the server to which new users connect.

2. Best

For each service, the ISS monitor maintains a ranking of the best nodes to
perform that service. Periodically, the monitor calculates the best server for
every defined service and updates the ranking of the nodes. Before the next
updating (that is, for the update period), ISS will use (or recommend to use)
the highest server in the ranking.

In order to establish the ranking, ISS monitors the load on each server and for
a particular service selects the node that best performs that service. In this
case, the node selection performed by ISS truly depends on the resources
defined for the service.

3. Statistical RoundRobin

This selection method is a new feature of ISS in WebSphere Performance
Pack V2. It allows the server to handle extremely heavy traffic. For each
update period, the monitor calculates the load on each server and assigns a
proportion of tokens to that server. Each incoming request is assigned a
token. If the number of tokens runs out before the next update, then the token
levels are reset based on the latest available figures.

Each service may have a different selection method without affecting any other
services. A node may belong to more than one service and each of those
services may have different selection methods without affecting any other.

For all of the selection methods, ISS detects if a server fails and does not
schedule requests for that service to that server.

Server Failure
50 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

2.6.10 Ports used by ISS
ISS uses four TCP ports for its communications, which we discuss in this section.

1. Port 7139

As shown in Figure 12 on page 42 and Figure 13 on page 43, port 7139 is
used for communication between the ISS monitor and agents. This can be
changed with the PortNumber cell attribute in the configuration file or by using
the -p option when starting ISS.

2. Port 12099

This port is used to receive commands from the GUI. Use the -g option when
starting ISS to change this port number.

Each of the defined Observers also must have a port specified to communicate
with the ISS monitor. The three Observer types have these default ports used for
this communication:

3. Port 53

NameServer and ISSNameServer- DNS protocol communications

4. Port 10004

ISS metric updates are communicated to the Dispatcher on this port.

These port numbers can be changed by modifying the ISS configuration file or by
specifying a different port number value when the Observer is added to the
configuration through the GUI. Additionally, in the case of the Dispatcher, see
2.5.4, “TCP Ports Used by the Dispatcher” on page 38 for instructions on how to
inform the Dispatcher Manager of the new port number.

It is important to note that the initial transfer of the ISS configuration file to the
other nodes in the cell, before ISS has been started for the first time on the other
nodes, must be done by you. Once ISS has been started on the other nodes in
the cell, changes made to the ISS configuration file through the configuration GUI
or with the isscontrol command are automatically propagated to all the other
machines participating in the cell. A demonstration of this feature is shown in
Chapter 4, “ND Basic Scenarios” on page 81.

2.7 How the CBR Function Works

CBR works in conjunction with Web Traffic Express (WTE), whereby a client
sends a request to a WTE proxy server that has been configured to make use of
the CBR functionality; CBR must be installed and configured on the same
machine as the WTE server. The WTE server queries the CBR component to see
if it knows which server should serve the request. When CBR receives the
request, it tries to match the request to a set of prioritized rules. If a match is
found, CBR then selects the best server from a preconfigured set of servers, by
load balancing the request. The incoming URL is then changed to point to the
selected server.

If WTE caching is enabled, and a cache hit is found for the requested page, WTE
will use the cached copy to fulfill the request. Otherwise, WTE proxies the request
to the CBR-recommended server by using the translated outgoing URL. When
the server responds back to the proxy server, the page can then be cached by its
incoming or outgoing URL and sent back to the client.
Chapter 2. IBM SecureWay Network Dispatcher Concepts 51

CBR is very similar to the Dispatcher in its component structure. The three key
functions of CBR (Executor, Manager, and Advisors) interact to balance and
dispatch the incoming requests between servers. Along with load-balancing
requests, the Executor monitors the number of new connections and active
connections and supplies this information to the Manager. Notice that, unlike
Dispatcher and ISS, CBR does not offer a high availability function. Nonetheless,
multiple CBR servers can be load balanced by an ND server, which would detect
if one of the CBR servers has failed and stop routing client requests to that CBR
server, therefore allowing CBR high availability.

See Chapter 14, “Content Based Routing” on page 329 for details on how to
install and configure a CBR environment.

2.7.1 Why Do I Need CBR?
The CBR component allows you to partition your site so that different content or
application services can be served by different sets of servers. This partitioning
will be transparent to clients accessing your site. By allowing multiple servers to
be assigned to each type of content, you are protected if one server fails. CBR
will recognize the failure and continue to load balance client requests to the other
servers in the set.

CBR is a very powerful function of ND. Using CBR, local content for a Web site
can be placed behind a WTE proxy server and the content can be served from
different sets of servers based on the type of requests. For example, one or more
Web servers could be set up to handle servlet requests, while other requests
would be sent to a different set of Web servers. This allows you, for example, to
choose a set of more powerful Web servers to serve applications that require a
fast response, while other, less powerful Web servers in the same Web site can
be used to serve static Web pages.

The set of servers that should handle particular requests can be specified based
on regular expression matching of the content of the request. Because CBR
allows you to specify multiple servers for each type of request, the requests can
be load balanced for optimal client response.

2.7.2 Client Affinity with CBR
Some applications have been designed assuming a single-server environment.
They keep state information in memory or on local disk across multiple URLs.
When you put these applications on a cluster of servers with load balancing,
subsequent connections go to a different server and the URL application cannot
locate the state information. ND sticky port support is an attempt to help address
this problem without correcting the application. Sticky port support overrides load
balancing and sends all connections from the same user on a specific port back
to the same server for a configured period of time. ND must assume that all
connections from the same source IP address are potentially from the same user.

This works fine on an intranet where each source IP address represents a single-
user machine. This assumption breaks down on intranets with multi-user
machines (UNIX, DEC VMS, IBM OS/400, IBM VM, IBM MVS) but these are
unusual clients in the Web workload.

More importantly, it breaks down the majority of the time on the Internet. For
security and network cost reasons, most large ISPs and corporate networks go
52 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

through either a proxy server or a SOCKS server before reaching the Internet.
These both terminate the real clients connection and open a new connection to
the target server. This concentrates the users behind them onto the single IP
address of the proxy or SOCKS server. The result is that ND cannot distinguish
whether two connections from the same source IP are independent users or the
same user, so it must assume that all connections from that source are from a
single user. For this reason, sticky ports largely defeat load balancing in an
Internet environment. Note that this is a load issue, not a functional issue. The
application works, but you wind up with severe hot spots because of the client IP
address concentration.

CBR has two ways to maintain client affinity:

• Client IP affinity, based on the IP address of the client requesting a Web page

• Cookie affinity, obtained by setting a cookie on the client system

Both these kinds of affinity require a sticky time to be set; this indicates the time
after which the affinity expires.

2.7.2.1 Client IP Affinity
Client IP affinity is based on the client IP address. This affinity works very well in
an intranet environment, but it fails if client requests pass through a proxy or a
SOCKS server. In fact, in this case client IP addresses are all masked by the
proxy or firewall IP address; multiple requests coming from different clients would
appear as coming from the same client, and would not be load balanced among
the available Web servers. On the contrary, these requests would be directed to
the same Web server.

Another limit of client IP affinity is evident in the case where multiple browser
sessions are running on the same client machine. In this case, the requests
coming from the browser sessions appear as coming from the same client,
because the IP address is the same, and CBR would redirect them to the same
Web server if client IP affinity is configured.

This demonstrates that CBR client IP affinity has the same disadvantages as the
sticky port support provided by ND. However, while a sticky port, once configured,
would be activated at each client’s request on that specific port, the advantage of
CBR is that you can configure it to invoke client IP affinity only when it is really
necessary. For example, you can configure CBR so that client IP affinity is
activated every time the URL contains the string purchase.

2.7.2.2 Cookie Affinity
Cookie-based affinity solves the problems of client IP affinity and is particularly
indicated for an Internet environment. The cookie-based affinity feature applies
only to the CBR component and provides a new way to make clients sticky to a
particular server. This function is enabled by setting the sticky time of a rule to a
positive number and setting the affinity to Cookie. This can be done when the
rule is added, or using the command:

cbrcontrol rule set

Once a rule has been enabled for cookie affinity, new client requests will be
load-balanced using standard CBR algorithms, while succeeding requests from
the same client will be sent to the initially chosen server. The chosen server is
stored as a cookie in the response to the client. As long as the client’s future
Chapter 2. IBM SecureWay Network Dispatcher Concepts 53

requests contain the cookie, and each request arrives within the sticky time
interval, the client will maintain affinity with the initial server.

Cookie affinity is used to ensure that a client continues to be load balanced to the
same server for some period of time. This is accomplished by sending a cookie to
be stored by the client’s browser. The cookie contains the cluster:port:rule

information that was used to make the decision, the server that was load
balanced to, and a timeout timestamp for when the affinity is no longer valid.
Whenever a rule is found that has cookie affinity turned on, the cookies sent by
the client are examined. If a cookie is found that contains the identifier for the
cluster:port:rule information, then the server load balanced to and the
timeout timestamp are extracted from the cookie. If the server is still in the set
used by the rule, its weight is greater than zero, and the timeout timestamp is
greater than now, then the server in the cookie is chosen to load balance to. If any
of the preceding three conditions are not met, a server is chosen using the
normal algorithm. Once a server has been chosen (using either of the two
methods) a new cookie is constructed with the five pieces of information.

A cookie set on the client machine always starts with the string IBMCBR. The
cluster:port:rule information and the server chosen to load balance to are
encoded so that no information about the CBR configuration is revealed.

An Expires parameter is also inserted in the cookie. This parameter is in a format
the browser can understand, and causes the cookie to become invalid two hours
after the timeout timestamp. This is so the clients’ cookie database is not
cluttered up.

This new cookie is then inserted in the headers that go back to the client, and if
the client’s browser is configured to accept cookies, it will send it back in
subsequent requests.

The following figure shows what a user in the client system would see when CBR
sends a cookie to the client and the browser is configured to warn the user before
accepting cookies:

Figure 14. CBR Cookie Warning

Cookie affinity does not work if cookie support is absent or has been disabled in
the browser.
54 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 3. ND Installation and Basic Configuration Issues

This chapter shows how to install IBM SecureWay Network Dispatcher (ND), the
Load Balancing component of IBM WebSphere Performance Pack V2. In addition
to the installation procedures, this chapter also describes the configuration
methods offered by this new version of ND.

3.1 Installation of ND

ND is supported on three operating systems: IBM AIX 4.2.1 or later, Microsoft
Windows NT 4.0 Server or Workstation, and Sun Solaris 2.6 or later.

In this section we show you step by step how to perform the installation on AIX,
Solaris and Windows NT using the WebSphere Performance Pack Version 2 Java
InstallShield.

3.1.1 Installation on UNIX Systems
In this section we describe the installation of ND on UNIX systems. The
installation of WebSphere Performance Pack V2 can be performed through a
Java program, and there are no particular differences when installing on AIX and
Solaris systems. For this reason, we will focus only on AIX systems in this
section.

For the AIX installation, we used a uniprocessor IBM RS/6000 43P with 192 MB
of RAM, 2.2 GB of hard disk and one token-ring interface. AIX Version 4.3.1 was
installed on the machine.

The AIX installation program for WebSphere Performance Pack Version 2 makes
use of the Java InstallShield’s setup class. For this reason you are required to
pre-install the Java Runtime Environment (JRE) Version 1.1.6 or later. The JRE is
part of the Java Development Kit (JDK) Version 1.1.6. In effect, you don’t need
the full JDK, but only its subset known as JRE, which contains just the Java
Virtual Machine (JVM), the Java platform core classes, and supporting files. In
other words, the JRE is the smallest set of executables and files that constitute
the standard Java platform and it contains only the run-time part of the JDK: no
compiler, no debugger, and no tools.

Use the following command to determine whether or not Java is installed on your
machine:

java -version

If Java is not installed on your machine or installed at a lower level than 1.1.6, you
can find the install image for JDK 1.1.6 for AIX at
http://www.ibm.com/java/jdk/download/index.html or on the IBM WebSphere
Performance Pack Version 2 CD (in the jdk/aix directory). The installation of JDK
on AIX is described in the IBM redbook Network Computing Framework
Component Guide, SG24-2119. Notice that if the level of Java on your AIX
system is 1.1.6, it is necessary to install the patch IX83246, or the Dispatcher
Manager will not start. This additional requirement does not apply with later
versions of Java.

In our case, we used just the JRE provided by the filesets:
© Copyright IBM Corp. 1999 55

• Java.rte.bin
• Java.rte.classes
• Java.rte.lib

To prepare for the installation of ND on AIX, follow the steps listed below:

1. Insert the IBM WebSphere Performance Pack Version 2 CD in the CD-ROM
drive

2. From a command line, enter the following commands:

mkdir /cdrom
mount -rv cdrfs /dev/cd0 /cdrom
cd /cdrom/aix

3. To start the Java InstallShield installation program, enter:

java setup

4. The first screen you will see is the Welcome window. After clicking the Next
button, we saw another window displaying the IBM WebSphere Performance
Pack Version 2 Readme file. We suggest that you take a look at the file, since
it contains interesting information about the product. After clicking the Next
button, we were prompted to enter the destination location or accept the
default. Note that this is a working directory for WebSphere Performance
Pack. We accepted the default location of /usr/lpp/WSPP.

Figure 15. Choose Destination Location (aNDinst01)

5. In the above window, you are prompted to click Install to proceed. Such a
button does not exist, due to a known InstallShield for Java problem. Click the
Next button to continue instead. If the destination directory does not exist on
your system, you will be presented with a question dialog asking you if you
would like the location to be created.
56 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 16. Location Creation Confirmation Dialog (aNDinst01a)

6. Then you will be presented with a window allowing you to choose which IBM
WebSphere Performance Pack V2 components you want to install:

• File Sharing

• Load Balancing

• Caching and Filtering

• Common Configuration

We selected Load Balancing, and a scrolled list of ND components was
added to the window, as shown in the following figure:

Figure 17. Choose Components to Install

Note that as you select each subcomponent in the selection list, a description
of that component is displayed as well as the space required to install all the
selected components. This window also shows you how much space is
available in the destination location file system.

The ND components that appear on that list are:
Chapter 3. ND Installation and Basic Configuration Issues 57

• Dispatcher Runtime

• Dispatcher Administration

• Dispatcher License

• Interactive Session Support Runtime

• Interactive Session Support Administration

• Interactive Session Support License

• Content Based Routing Runtime

• Content Based Routing Administration

• Content Based Routing Runtime

• User's Guide

The ability to select individual ND components for installation via the Java
InstallShield is a new feature in WebSphere Performance Pack Version 2. In
the previous version of WebSphere Performance Pack, smitty or installp
were required to install individual ND components. However, for those of you
who prefer to use the command line, the option to use smitty or installp is still
available.

7. After you click Next, you will see a window that asks if you want the installation
program to replace other programs already installed on your system. We
selected No in this case, since we had not installed any programs on our
system yet.

Figure 17 on page 57 shows that we selected the three subcomponents that
make up the Dispatcher and the three subcomponents that make up the ISS.
Not shown is that we also selected the User’s Guide for installation. The User’s
Guide subcomponent contains the SecureWay Network Dispatcher User’s
Guide v2.1 for AIX, Solaris and Windows NT, GC31-8496, in HTML and PDF
formats. After installing the User’s Guide, we were able to access this book with
a local browser at file://usr/lpp/nd/documentation/ndugv2r1.htm or
file://usr/lpp/nd/documentation/ndugv2r1.pdf.

ND Documentation on AIX

If you select the Content Based Routing Runtime ND component, the
Caching and Filtering WebSphere Performance Pack Version 2 component is
automatically selected to be installed, as Content Based Routing (CBR) cannot
be installed without it. For more details on CBR, see 2.7, “How the CBR
Function Works” on page 51 and Chapter 14, “Content Based Routing” on page
329.

Content Based Routing
58 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 18. Choose to Replace Version (aNDinst05)

8. When we clicked Install the following window was displayed:

Figure 19. SecureWay Network Dispatcher Installation Screen

9. At this point, the Java install terminated with this successful completion
message window:
Chapter 3. ND Installation and Basic Configuration Issues 59

Figure 20. Installation Completed Successfully

10.The Java InstallShield uses installp to install the selected components.
Because of this, you are able to use lslpp to verify that the filesets have been
successfully installed. We verified that the product had been installed by
entering the following command:

lslpp -h | grep intnd

By entering the command above, the list of ND filesets installed when all of the
ND components are selected is displayed, and you should see the following
output:

Each of the subcomponent’s message filesets are installed in the language that
the locale of the machine was set to when the java setup command was run.

intnd.admin.rte
intnd.cbr.license
intnd.cbr.rte
intnd.cbradmin.rte
intnd.doc.en_US
intnd.iss.license
intnd.iss.rte
intnd.issadmin.rte
intnd.msg.en_US.cbr.rte
intnd.msg.en_US.cbradmin.rte
intnd.msg.en_US.iss.rte
intnd.msg.en_US.issadmin.rte
intnd.msg.en_US.nd.rte
intnd.msg.en_US.ndadmin.rte
intnd.nd.driver
intnd.nd.license
intnd.nd.rte
intnd.ndadmin.rte
60 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

At this point you are ready to configure ND to load balance yourservers.

3.1.2 Installation on Windows NT
In this section we describe the steps that were necessary to install the ND
component of IBM WebSphere Performance Pack Version 2 on our Windows NT
platform.

The machine where we performed this installation was an IBM PC 750 with 166
MHz of CPU, 96 MB of RAM, 1.5 GB of hard disk and one token-ring adapter.
This machine had been installed with Windows NT Server 4.0 and Service Pack
3. Service Pack 4 and 5 are supported as well.

The Windows NT installation program for each component of IBM WebSphere
Performance Pack makes use of Java InstallShield’s setup class. For this reason
you are required to pre-install the JRE, which is a subset of the JDK, as we
explained in 3.1.1, “Installation on UNIX Systems” on page 55. Unlike our
experience with ND on AIX, we found that on our Windows NT system we needed
the full JDK to be installed in order to install ND.

The IBM WebSphere Performance Pack Version 2 CD contains JDK 1.1.6 for
Windows NT in the nt\jdk directory. The latest version of the JDK can also be
downloaded for free from the JavaSoft Web site http://www.javasoft.com. On our
platform we used JDK 1.1.6.

For further details on installing the JDK for Windows NT, see the IBM redbook
Internet Security in the Network Computing Framework, SG24-5220.

In order to perform the following steps, you must be a Windows NT system
administrator. To install ND, we followed the steps listed below:

1. We inserted the IBM WebSphere Performance Pack Version 2 CD in the
CD-ROM drive.

2. To start the Java InstallShield installation program, we entered the following
command from a Command Prompt window:

E:\ND\java setup

1. E in our case was the letter assigned to the CD-ROM drive. We saw this
message:

The name specified is not recognized as an
internal or external command, operable program or batch file.

2. This error message is displayed when you launch the java command, but the
Java bin directory containing all the Java executable files was not in our Path
system environment variable. JDK 1.1.6 is installed by default in the directory
C:\jdk1.1.6, and this was also the location where it was installed on our
system, so we appended the location of the java.exe executable (in this case
C:\jdk1.1.6\bin) to the value of the Path system environment variable,
accessible through the System dialog box of the Control Panel folder:
Chapter 3. ND Installation and Basic Configuration Issues 61

Figure 21. Adding the Java bin Directory to the Java Environment Variable

3. After setting the Path system environment variable correctly, we launched the
ND install again and saw the Welcome window. After clicking the Next button,
we saw another window displaying the IBM WebSphere Performance Pack
Version 2 Readme file. We suggest that you take a look at the file as it
contains interesting information about the product.

4. After clicking the Next button, we were prompted to enter the destination
location or accept the default C:\WSPP. We accepted the default location, as
shown in the following figure.
62 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 22. Choose Destination Location

5. In the above window, you are prompted to click Install to proceed. However,
the install button does not exist. As we already said in 3.1.1, “Installation on
UNIX Systems” on page 55, this is a known InstallShield for Java problem, and
so we clicked the button labeled Next to continue instead. If the destination
directory does not exist on your machine, you will receive a window asking you
if you would like it to be created. Then we were presented with a window
allowing us to choose which IBM WebSphere Performance Pack V2
components we wanted to install.
Chapter 3. ND Installation and Basic Configuration Issues 63

Figure 23. Select the Load Balancing Component to Install

6. We selected Load Balancing, and a scrolled list of ND subcomponents was
added to the window:

Figure 24. ND Component Selection List

Note that as you select each subcomponent in the selection list, a description of
that component is displayed as well as the space required to install all the
64 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

selected components. This window also shows you how much space is available
in the destination location file system.

The ND components that appear on that list are:

• Dispatcher Runtime
• Dispatcher Administration
• Dispatcher License
• Interactive Session Support Runtime
• Interactive Session Support Administration
• Interactive Session Support License
• Content Based Routing Runtime
• Content Based Routing Administration
• Content Based Routing Runtime
• User's Guide

The ability to select individual ND components for installation via the Java
InstallShield is a new feature in WebSphere Performance Pack Version 2. In the
previous version of WebSphere Performance Pack, a non-Java custom install was
required to install individual ND components.

7. We selected the three Dispatcher and the three Interactive Session Support
(ISS) components to continue with the installation. After we clicked Next, we
were asked if the installation program should replace the current version of
any product already installed on the system. We selected No in this case,
since we had not installed any programs on our system yet:

Figure 24 on page 64 shows that we selected the three subcomponents that
make up the Dispatcher and the three subcomponents that make up the ISS.
Not shown is that we also selected the User’s Guide for installation. The User’s
Guide subcomponent contains the SecureWay Network Dispatcher User’s
Guide v2.1 for AIX, Solaris and Windows NT, GC31-8496 in HTML and PDF
formats. After installing the User’s Guide, we were able to accessed this book
with a local browser at file://C:/WSPP/nd/documentation/ndugv2r1.htm or
file://C:/WSPP/nd/documentation/ndugv2r1.pdf.

ND Documentation on NT

If you select the Content Based Routing Runtime ND components, the
Caching and Filtering WebSphere Performance Pack Version 2 component is
automatically selected to be installed, as CBR cannot be installed without it.
For more information about CBR, see 2.7, “How the CBR Function Works” on
page 51 and Chapter 14, “Content Based Routing” on page 329.

Content Based Routing
Chapter 3. ND Installation and Basic Configuration Issues 65

Figure 25. Choose to Replace Version

8. When we clicked the Install button, we were notified of the progress of the
installation as shown in the following screen:

Figure 26. IBM SecureWay Network Dispatcher Installation Screen

9. At the same time that the progress indicator window was visible, we also saw
the InstallShield Setup Notification (see Figure 27) and the Language
Selection Window (see Figure 28).
66 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 27. InstallShield Setup Notification Window

Figure 28. Language Selection Window

10.We selected U.S.English and clicked the OK button. Shortly, this successful
installation notification window was displayed along with a Reboot Message
window (see Figure 30):

Figure 29. ND Successful Installation Notification
Chapter 3. ND Installation and Basic Configuration Issues 67

Figure 30. Reboot Notification

The IBM Network Dispatcher process should automatically start when the
machine is rebooted. After the system restarts, check the Services folder of the
Control Panel to verify that the ND has been started. Our Services window
appeared as follows:

Figure 31. Services Panel Showing that the IBM Network Dispatcher Has Not Been Started

In our case, the status of the IBM Network Dispatcher is not started. This was due
to the fact that we were not logged on as a Windows NT administrator. In order to
launch the IBM Network Dispatcher process, we needed to log on as a user that
had administrator authority.

While we were still logged on without administrator authority, we could not launch
the SecureWay Network Dispatcher configuration graphical user interface (GUI).1

We tried to start the ND GUI from the Start menu by selecting Programs, IBM
WebSphere, Performance Pack and finally SecureWay Network Dispatcher,
but received the following error:

1 Notice that in order to start the ND GUI, the ND server must be running. Therefore, even if you were logged on as Administrator (or a
user with Administrator authority), you would not have been able to start the GUI if IBM Network Dispatcher was set to start manually.
68 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 32. The Error Seen When Trying to Start ND without the Correct Authorization

11.After we logged off and back on with a user ID that had administrator authority,
the IBM Network Dispatcher was automatically started. We were then able to
launch the ND GUI and start to configure the Dispatcher and ISS components.

3.1.3 SecureWay Network Dispatcher Default Installation Directories
The following table shows the default installation directory for each of the ND
components on each of the supported operating system platforms. The entries in
the table are valid when the WebSphere Performance Pack Version 2 Java
InstallShield method of installing the components is used (as shown in 3.1,
“Installation of ND” on page 55).

Table 1. ND Default Installation Base Directories

Note that if instead of using the WebSphere Performance Pack setup program
(the Java InstallShield method as shown in 3.1, “Installation of ND” on page 55)
to install the components, you used the SecureWay Network Dispatcher setup
program in the \nt\nd subdirectory of the WebSphere Performance Pack Version 2
installation CD on Windows NT, then the install base directories will be different
from what is shown in the above table. In that case, Program Files is substituted
for the WSPP element of the path. AIX and Solaris install directories are the
same regardless of the installation method used.

3.2 Deinstallation of IBM SecureWay Network Dispatcher

At this time the Java InstallShield cannot be used to deinstall ND or any of its
subcomponents. The methods used to deinstall ND or any of its subcomponents
vary on each of the three platforms. We will discuss how to perform a
deinstallation on AIX, Solaris and Windows NT.

3.2.1 Deinstallation on UNIX Systems
For the reasons we explained in 3.1.1, “Installation on UNIX Systems” on page
55, we will focus only on AIX systems.

To uninstall ND on AIX is as simple as typing:

installp -u intnd

Platform SecureWay Network Dispatcher Components

Dispatcher ISS CBR Admin

AIX /usr/lpp/nd/dispatcher /usr/lpp/nd/iss /usr/lpp/nd/cbr /usr/lpp/nd/admin

Solaris /opt/nd/dispatcher /opt/nd/iss /opt/nd/cbr /opt/nd/admin

Windows NT C:\WSPP\IBM\nd\dispatcher C:\WSPP\IBM\nd\iss C:WSPP\IBM\nd\cbr C:\WSPP\IBM\nd\admin
Chapter 3. ND Installation and Basic Configuration Issues 69

In order for you to deinstall ND or any of its subcomponents with smitty, it is
necessary for you to know the names of the filesets that make up each of the ND
subcomponents. For demonstration purposes we installed all of the ND
components. The following table shows the ND AIX filesets that could be
deinstalled and which function they are associated with:

Table 2. ND Function Fileset Names on AIX

The filesets installed on your machine may differ from this list if not all the
components are installed. The language component of the message filesets may
also not be en_US on your machine. To deinstall any or all of the ND filesets, use
the command:

smitty remove

In the SOFTWARE name field of the Remove Installed Software panel, you can type
the names of the filesets you want to deinstall or press the F4 key to display a list
of installed filesets for you to select from.

Function Fileset

Dispatcher intnd.nd.license
intnd.nd.rte
intnd.nd.driver
intnd.ndadmin.rte
intnd.msg.en_US.nd.rte
intnd.msg.en_US.ndadmin.rte

ISS intnd.iss.license
intnd.iss.rte
intnd.issadmin.rte
intnd.msg.en_US.iss.rte
intnd.msg.en_US.issadmin.rte

CBR intnd.cbr.license
intnd.cbr.rte
intnd.cbradmin.rte
intnd.msg.en_US.cbr.rte
intnd.msg.en_US.cbradmin.rte

Base Administration intnd.admin.rte
intnd.msg.en_US.admin.rte

User’s Guide intnd.doc.en_US

The Base Administration fileset provides the ND admin GUI. Both it and its
associated message fileset are prerequisites of the three component admin
filesets:

• intnd.ndadmin.rte
• intnd.issadmin.rte
• intnd.cbradmin.rte

You can verify the dependency on your system with the command:

lslpp -d intnd.admin.rte

Base Administration Filesets
70 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

As you can see in Figure 33 on page 71, you can use the wildcard character (*) in
the SOFTWARE name field:

Figure 33. The smitty Used to Deinstall ND (aNDdinst00)

In order to perform the deinstall, you will have to change the PREVIEW only? flag
from its default value of yes to no (you can use the Tab key to change this value).
Deinstalling the ND components does remove the filesets, but does not remove
the destination directory (or its contents) that was used to perform the installation
(by default, /usr/lpp/WSPP).

Note that some of the filesets cannot be removed unless other filesets that
require them as prerequisites are also removed. For example, you cannot remove
intnd.iss.rte without also removing intnd.iss.license and intnd.msg.en_US.iss.rte.

3.2.2 Deinstallation on Windows NT
In order to perform the deinstall, select the SecureWay Network Dispatcher
entry on the Install/Uninstall folder accessible through the Add/Remove Programs
dialog box of the Control Panel:
Chapter 3. ND Installation and Basic Configuration Issues 71

Figure 34. Add/Remove Program Window

After clicking the Add/Remove button, you will be asked to confirm that you want
to remove SecureWay Network Dispatcher and all of its components.

Figure 35. DeInstallation Confirmation Panel

After clicking the Yes button, you will be shown the following progress indicator
window:
72 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 36. Deinstallation Progress Indicator

The successful completion window will appear at the end, as shown in the
following figure:
Chapter 3. ND Installation and Basic Configuration Issues 73

Figure 37. Deinstallation Successful Completion

Notice that this deinstallation method removes all of the ND components. You do
not have the option to remove only selected components.

3.3 Configuration Methods

In order to perform the configuration, you must be the root user on AIX and
Solaris or, if the SecureWay Network Dispatcher server is installed on Windows
NT, a member of the Administrators group.

Several methods can be used to configure the Dispatcher, ISS and CBR
components of ND:

• Command Line

You can enter the ndcontrol, isscontrol, and cbrcontrol commands from a
command prompt.

• Scripts

You can put the commands into a configuration file script that acts as a batch
file. When the script is run, the commands are executed in sequence.

• GUI

With the ND GUI, the user is able to perform all the configuration steps that
can be performed with the ndcontrol, isscontrol, and cbrcontrol commands.
Also new to this version are the capabilities of the GUI and the ndcontrol

commands to implement the basic system TCP/IP commands that previously
had to be performed outside the GUI manually.
74 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Another enhancement to the ND GUI in this version is that the user is no
longer restricted to performing the configuration on the machine that is
running the ND server. This new feature is referred to as Remote
Authenticated Administration and is explained further in 3.3.1, “Remote
Authenticated Administration” on page 75.

• WebSphere Performance Pack Common Configuration Utility

This is a new separately installable component of WebSphere Performance
Pack Version 2. With this utility, configuration can be performed from a Web
browser accessing configuration servlets that reside on a configuration server.
Currently the Common Configuration utility provides access to seven
browser-based wizards, one of which can be used to add a ND cluster. It does
not provide access to all the functions available with the ND GUI. For further
details on the Common Configuration component, refer to Chapter 17,
“Common Configuration” on page 365.

• SecureWay Network Dispatcher Configuration Wizard

This Java-based wizard guides you step by step through the process of
creating a basic configuration for the Dispatcher component. After launching it
from the command line with the ndwizard command or from the ND GUI, you
will be asked questions about your network and guided through the setup of a
cluster for which traffic is to be load balanced. The wizard does not provide
access to all the functions of the ND GUI.

The functionality provided by the Common Configuration Utility and the
Configuration Wizard are very similar, although their implementation is different.
The Add Cluster wizard provided by the Common Configuration Utility was one of
many wizards implemented as servlets and intended to be used on all of the
WebSphere Performance Pack components. The SecureWay Network Dispatcher
Configuration Wizard has been developed as an extension to the ND GUI, which
is used exclusively by the SecureWay Network Dispatcher components.

3.3.1 Remote Authenticated Administration
ND V2.1 introduces a new method of accessing the configuration and
administration programs for the three ND server programs: ndserver, issd, and
the CBR subprocess of the WTE server. We now have the option of running the
configuration and administration programs on a machine other than the one
running these servers. This machine is sometimes referred to as the
administration client machine.

The following table shows which configuration methods have been enhanced to
use Remote Authenticated Administration for each of the ND components:

Table 3. ND Remote Authenticated Administration Methods by Component

Dispatcher ISS CBR

ND GUI

ndcontrol isscontrol cbrcontrol

Common Configuration –
Add Cluster wizard

Configuration Wizard – Add
Cluster wizard
Chapter 3. ND Installation and Basic Configuration Issues 75

Communication between the configuration and administration programs running
on the administration client machine and the ND servers is performed using Java
Remote Method Invocation (RMI) calls. If the RMI call comes from a machine
other than the local machine, a public/private key authentication sequence must
take place before the configuration command will be performed on the ND server.
This means that if you want to perform configuration on any of the ND servers
from a machine (the administration client) other than where the ND server is
running, the steps described in the following sections must be completed before
the remote configuration will work.

3.3.1.1 Generating the Key Pairs
You must manually create the public/private key pairs on the machine that is
running the ND server. The public/private key pairs, for Dispatcher, CBR, and ISS
respectively, can be generated or deleted with these commands:

ndkeys [create|delete]
cbrkeys [create|delete]
isskeys [create|delete]

The create option causes two files (each one contains a key) to be created on the
ND server machine.

One key is placed in the component’s key directory and the other key is placed in
the component’s administration keys’ directory. The file name of this second key
is based on the IP address of the server and RMI port it is listening on, and it
contains the public key that must be copied over to the administration client
machine.

For example, if the ndserver process is running on an AIX machine with address
10.0.0.25 and is listening on RMI port 10099, the ndkeys create command would
generate these files:

• /usr/lpp/nd/dispatcher/key/authorization.key as the private key

• /usr/lpp/nd/admin/keys/dispatcher/10.0.0.25-10099.key as the public key

The public key file (10.0.0.25-10099.key) must then be placed in the
/usr/lpp/nd/admin/keys/dispatcher/ directory on the remote machine. When this is
done, the remote client is authorized to configure the ndserver process on
10.0.0.25. This same key must be used on all remote clients that you want to
authorize to configure the ndserver process on 10.0.0.25.

If you were to run the command ndkeys create again, a new set of public/private
keys would be generated. This would mean that all remote clients who tried to
connect using the previous keys would not be authorized. The new key would

In this book we are referring to the two keys that are generated differently from
how they are referred to in the SecureWay Network Dispatcher User’s Guide
v2.1 for AIX, Solaris and Windows NT, GC31-8496. We have chosen to refer to
the key that is distributed as the public key, and the key that is kept on the ND
server machine as the private key, in accordance with the current asymmetric
key cryptography conventions.

Key Naming Conventions
76 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

have to be placed in the correct directory on those clients you want to
reauthorize.

The command ndkeys delete deletes the public and private keys on the server
machine. If these keys are deleted, no remote clients will be authorized to
connect the servers.

The two key files must be protected from any unauthorized access. Only the ND
administrator should be allowed to handle these files.

The following figure summarizes the keys that are involved in the ND
administration and the context in which they are used:

Figure 38. Remote Configuration Possibilities

isscontrol
or

ND GUI

ISS Keys

ndserver
issd

WTE httpd

CBR Keys

cbrcontrol
or

ND GUI

ND Server

Common Configuration
Web Server

Web Browser

ndcontrol
or

ND GUI

ndwizard

5315\531519

ND
Key

s

ND Keys

ND
Keys

Add Cluster Wizard
Chapter 3. ND Installation and Basic Configuration Issues 77

3.3.1.2 Initiating Remote Configuration
The Dispatcher Administration component, ISS Administration component or the
Content Based Routing Administration component must be installed on the
remote machine to perform remote administration. These components can be
installed during the installation process (see 3.1, “Installation of ND” on page 55)
by selecting the related check boxes when prompted (see Figure 17 on page 57
and Figure 24 on page 64).

After the public key is transported to the administration client machine,
subsequent invocations of the ND GUI on the administration client machine will
automatically add the ND server machine from where the key originated, to its list
of hosts to connect to. From within the ND GUI, a Dispatcher host connection list
may appear as follows:

Figure 39. Host Connection Selection Screen

When we clicked the OK button, we saw the following message:

Remote Authenticated Administration Limitations

The level of security built into this feature as it is implemented does not contain
the robustness required for remote configuration to be performed on a machine
outside the local network for the reasons listed below. For network
administrators who are considering remote configuration from a client machine
that resides outside the local network, please consider these issues:

• Transmission of the public key file to the remote client machine should be
done in a secure fashion to prevent unwanted listeners.

• Once the public key resides on the remote client machine, subsequent
communication between the client and the SecureWay Network Dispatcher
server machine is not encrypted. Keys are used only for authentication
purposes. The encryption would have to be performed by you.

The intention of the Remote Authenticated Administration in this release is to
allow for an in-shop means for an administrator to be able to configure the
SecureWay Network Dispatcher server without physically having to be at the
machine.
78 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 40. Unable to Access the Server Machine

This will occur if the ndserver program (in this case the ndserver program for the
Dispatcher component) is not running. When we started the ndserver on rs60023
we were able to successfully connect.

Once the host connection is successful, you can proceed to configure the server
process (ndserver, issd, or the CBR subprocess of the WTE server) as if you
were performing the configuration on the same machine as the server.
Chapter 3. ND Installation and Basic Configuration Issues 79

80 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 4. ND Basic Scenarios

In this chapter we show you how to configure basic scenario making use of IBM
SecureWay Network Dispatcher (ND), the Load Balancing component of IBM
WebSphere Performance Pack V2.

The scenarios described in this chapter show you how to configure Dispatcher
and Interactive Session Support (ISS). For details on the Content Based Routing
(CBR) component, see Chapter 14, “Content Based Routing” on page 329.

4.1 Load Balancing Basic Scenario Using the Dispatcher

In this section we show you how to create a basic configuration for the
Dispatcher. We built up a network environment with five workstations. On one of
them we installed the Dispatcher component of ND, which worked to load balance
requests to three TCP Web servers. Another machine played the role of the Web
client.

4.1.1 Installation of Dispatcher
You do not need to install all the three ND components to run a scenario that
makes use of the Dispatcher, but does not make use of ISS and CBR. In this
section we give you directions to install only the Dispatcher component.

Dispatcher is supported on three operating systems: IBM AIX 4.2.1 or later,
Microsoft Windows NT 4.0, and Sun Solaris 2.6 or later. Refer to the appropriate
platform section of 3.1, “Installation of ND” on page 55 for details on how to use
the Java InstallShield on your respective platform. When you reach the point
where you choose which ND component to install (see Figure 17 on page 57 and
Figure 24 on page 64), select these three components to install Dispatcher on
your machine:

• Dispatcher Runtime
• Dispatcher Administration
• Dispatcher License

Then, follow the steps indicated in 3.1.1, “Installation on UNIX Systems” on page
55 if the platform where you are installing is AIX and Solaris, and 3.1.2,
“Installation on Windows NT” on page 61 if the platform where you are installing is
Windows NT.

4.1.2 Network Environment
A summary of the hardware, software and network configuration of the
environment where we performed our test is reported in the following table:

Table 4. Basic Scenario - Hardware, Software, and Network Configuration

Workstation Host Name IP Address Operating System Service

IBM PC 365 wtr05212 9.24.104.218 Windows NT Server 4.0 Web Client

IBM RS/6000 43P rs600023 9.24.104.128 AIX 4.3.1 Dispatcher

clusterend 9.24.104.105

IBM RS/6000 43P aixncf157 9.24.104.157 AIX 4.3.1 Web Server
© Copyright IBM Corp. 1999 81

All the above machines were provided with a token-ring interface and connected
to the same local area network (LAN).

Notice that:

1. The load balancing function was provided by the Dispatcher component of ND
Version 2.1.

2. Netscape Navigator 4.5 was the Web browser running on the Web client
machine.

3. The Web server function on the three clustered Web servers was provided by
the IBM HTTP Server Version 1.3.3.

The following figure offers a graphical representation of the network environment
where we performed this scenario:

Figure 41. Graphical Representation of the Basic Dispatcher Scenario

IBM RS/6000 43P aixafs 9.24.104.158 AIX 4.3.1 Web Server

IBM PC 365 wtr05193 9.24.104.239 Windows NT Server 4.0 Web Server

Workstation Host Name IP Address Operating System Service

Internet

Dispatcher

cluster address
9.24.104.105

clusterend.itso.ral.ibm.com

nonforwarding address
9.24.104.128

rs600023.itso.ral.ibm.com

9.24.104.157 9.24.104.158 9.24.104.239

5315\531512
82 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.1.3 Cluster Address and Nonforwarding Address
Note that for the Dispatcher machine two addresses are needed:

1. The primary IP address for the Dispatcher machine is the IP address that is
returned by the command:

host hostname

It is also called a nonforwarding address.

Through the nonforwarding address, you can connect to the machine for
management purposes (using FTP or Telnet, for example). In our
configuration, the nonforwarding address was 9.24.104.128. In fact, by issuing
the host rs600023 command, the output produced was:

rs600023.itso.ral.ibm.com is 9.24.104.128

2. The cluster address is the IP address that will be used by clients to access the
entire site. The Dispatcher’s work will be dedicated to load balancing requests
that are sent to this address.

A host name can be associated to the cluster address. In our configuration,
the cluster address of the Dispatcher machine was 9.24.104.105 and the
associated host name was clusterend.itso.ral.ibm.com.

Notice that you need to define a cluster address for each cluster you are going
to define in your environment.

All of our workstations were located in the same LAN, and each of them was
provided with only one token-ring network interface card. Notice that this
configuration involved only the Dispatcher component of the ND. We also ensured
that the workstations could ping each other.

Moreover, we made sure that the three Web servers hosted the same Web
content. We did this by simply duplicating the same Web page on the three
machines. In this case we did not use IBM AFS Enterprise File System (AFS), the
File Sharing component of IBM WebSphere Performance Pack Version 2, to make
the three Web servers share the same content.

The configuration process can be divided into two logical phases: the setup of the
Dispatcher machine and the setup of the TCP/IP server machines. For detailed
TCP/IP information, please refer to the IBM redbook TCP/IP Tutorial and
Technical Overview, GG24-3376.

4.1.4 Dispatcher Configuration
In the following, we refer to the configuration of the Dispatcher on the AIX
platform. The configuration process on Solaris is very similar. Also for Windows
NT there are no particular differences, and if something differs, we explicitly
mention it.

The cluster address is the unique IP address by which client requests
access your cluster. It is not a virtual address that is valid only locally. No
other machine in the network should be given that address. For this reason,
you must contact the network administrator before assigning a cluster
address and the associated host name to the Dispatcher.

Cluster Address and Network Administration
Chapter 4. ND Basic Scenarios 83

4.1.4.1 Configuration Methods
Consult 3.3, “Configuration Methods” on page 74 for a list of all the possible
methods that can be used to configure the Dispatcher.

We will demonstrate how the GUI can be used to achieve the same result as
performing ndcontrol from the command line. In our configuration process we
used a combination of the GUI and the command line to configure the Dispatcher.
It would be possible to use one or the other, provided that you have no special
TCP configuration requirements. For each of the configuration steps we show the
corresponding command line method.

In order to perform the configuration steps listed below, you must be the root user
on AIX and Solaris or, if the Dispatcher is installed on Windows NT, a member of
the system Administrator group.

4.1.4.2 Starting the Server Component
To start the server component of the Dispatcher, if on AIX and Solaris, from a
command line, enter the ndserver command.

Note that on Windows NT the server component is a Windows NT service that
starts automatically by default. The name of this service is IBM Network
Dispatcher. If you want to stop or restart the IBM Network Dispatcher service, you
should open the Services window of the Windows NT Control Panel, highlight
IBM Network Dispatcher and then click Stop or Start as required.

If you prefer that the IBM Network Dispatcher service does not start by default at
each system reboot, select IBM Network Dispatcher, click Startup..., and then
set the Startup Type to Manual.

On AIX, if you enter the ps command after launching the command ndserver, you
can see that the server component is implemented as a Java class, running
through the JVM java executable file:

Figure 42. ndserver Starts a Java Process

4.1.4.3 Starting the Configuration GUI
Now you can start the GUI. To do so, enter the command ndadmin.

If your platform is Windows NT, you can also click Start, select Programs and
then click Network Dispatcher. The Network Dispatcher item in the Programs
84 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

menu was created during the installation and is a method of launching the GUI.
You will see this window:

Figure 43. Network Dispatcher Configuration GUI

The left side of the window displays a tree structure, with Network Dispatcher at
the top level, and Dispatcher, Interactive Session Support and Content Based
Routing as components if they are installed. You can select elements in the tree
structure by clicking mouse button one (typically the left button) and display
pop-up menus by clicking mouse button two (typically the right button). The
pop-up menus for the tree elements are also accessible from the menu bar
located at the top of the window. Each item in the tree is marked with a plus sign
(+) or a minus sign (-). Click on the plus sign (+) to expand the items within it and
the minus (-) to compact the items.

The server component is implemented as a Java class, running through the JVM
java executable file. You can see this for example on AIX, if you enter the ps

command after launching the command ndadmin:
Chapter 4. ND Basic Scenarios 85

Figure 44. ndadmin Starts a Java Process

4.1.4.4 Connecting to a Host
The first step in configuring the Dispatcher is to make a connection to a host
where the Dispatcher is running. This is an effect of the new Remote
Authenticated Administration feature, which enables ND component configuration
to be done on a remote client machine. See 3.3.1, “Remote Authenticated
Administration” on page 75 for further details on remote configuration.

In this case, we were performing this configuration on the Dispatcher machine
itself; however, the connection still must take place.

To make the connection, we selected the Dispatcher in the tree structure and
right-clicked with the mouse. In the pop-up menu that appeared, we selected
Connect to Host....
86 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 45. Dispatcher Selection Menu

We selected the host name of our Dispatcher machine (see Table 4 on page 81)
in the following window:

Figure 46. Dispatcher Login Window (andcfg04)

After clicking OK, we were presented with this host statistics screen:
Chapter 4. ND Basic Scenarios 87

Figure 47. Dispatcher Host Statistics Display

On the right side of the window are two lists of status indicators for the element
currently selected. Current Statistics are at the top of the panel (you cannot
change these). Configurable Settings are at the bottom of the panel (these can
be changed by performing subsequent configuration). The Update
Configuration button at the bottom of the panel can be used to apply the latest
changes to the configuration currently running.

Note that if you connect to a host where the Executor is already running, then the
GUI will be updated to reflect the current execution environment running on the
machine. In our case the Executor was not already running, so we had to start it
as described in the next section.

4.1.4.5 Starting the Executor
The next step is to start the Executor function of the Dispatcher. The Executor is
the Dispatcher component that routes requests to the TCP and UDP servers. It
also monitors the number of new, active, and finished connections and performs
garbage collection of complete or reset connections. The Executor supplies
information about the new and active connections to the Manager component.
88 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

To start the Executor, we right-clicked the Host entry in the tree structure, and in
the pop-up menu that appeared selected Start Executor, as shown in the next
figure:

Figure 48. Start Executor

We then saw the following Executor Statistics window for our host:
Chapter 4. ND Basic Scenarios 89

Figure 49. Executor Status Window

Alternatively, you can start the Executor component from a command line by
entering the command:

ndcontrol executor start

Similarly, you can stop the executor with the command:

ndcontrol executor stop

Notice, however, that the Executor cannot be stopped on the Windows NT
platform.

4.1.4.6 Configuring the Executor
At this point, you might want to redefine the nonforwarding address or the host
name of the Load Balancing machine. In our configuration the nonforwarding
address appeared by default in the Configuration settings section of the Executor
Status window as 9.24.104.128 (which was the IP address assigned to the
network interface card of our machine), and we did not need to change that value
(see also Table 4 on page 81). However, there are cases where machines have
more than one network interface card and administrators may want to use one for
cluster traffic and the other for administrative purposes. In those cases, the
90 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

nonforwarding address displayed by default might not be the right one, and then it
becomes necessary to modify it by entering the proper value in the Configuration
settings section of the Executor Status window.

The Configuration settings section lists a set of parameters for the Executor that
you can change. Some of them have immediate meaning, such as the Maximum
number of clusters (default is 100), Default maximum ports per cluster (default is
8), and the Default maximum servers per port (default is 32). Others are more
difficult to understand, such as the FIN count and the FIN timeout. FIN is a control
bit occupying one sequence number, which indicates that the sender will send no
more data. A client sends a FIN after it has sent all its packets, so that the server
will know that the transaction is finished. When the Dispatcher receives a FIN, it
marks the transaction from active state to FIN state, and at this point the
Dispatcher garbage collector can clear the memory reserved for those
connections.

For a stable running configuration, you can safely leave the parameter values that
appear by default in the Configuration settings section of the Executor Status

To set the nonforwarding address from the command line, you can enter the
following command:

ndcontrol executor set nfa IP_address

Put the nonforwarding address in place of IP_address. For example, on our
platform, the full command should have been:

ndcontrol executor set nfa 9.24.104.128

However, as we said, we did not need to perform this step, since the correct
nonforwarding address by default appeared in the Executor Status window.

Using the Command Line

The nonforwarding address has a special meaning inside the kernel code. Any
packets that have the non-forwarding address as the destination address are
immediately given back to the local operating system for processing. No
Dispatcher logic is used to determine where the packet should go. This check
is done immediately after receiving the packet.

Notice that no error checking is done to see that the nonforwarding address is
an existing IP address on that machine, so you could even set the
nonforwarding address to an IP address that has not been defined on that
machine, and your command would be accepted, even if you could not
administer the Dispatcher machine using such an address.

Another use of the nonforwarding address is for colocated servers. If the
Dispatcher logic determines that the destination server has the nonforwarding
address as its address, the packet is given back to the underlying operating
system, not routed out to the network interface. Therefore, in order for
colocation to work, the server on the local machine must be added with the
nonforwarding address.

More About the Nonforwarding Address
Chapter 4. ND Basic Scenarios 91

window unchanged. For detailed information about the parameters, you can
consult the SecureWay Network Dispatcher help, which can be accessed by
selecting the Help button on the top menu bar, or see the document SecureWay
Network Dispatcher for Solaris, Windows NT and AIX User’s Guide, GC31-8496,
shipped with the CD-ROM of IBM WebSphere Performance Pack.

4.1.4.7 Adding a Cluster
Next, we needed to define a cluster. From the GUI, we right-clicked the left panel
(on the Executor item or below it), and in the pop-up menu that appeared
selected Add Cluster..., as shown in the next figure:

Figure 50. Adding a Cluster

Then we typed the cluster address in the panel that was brought up:
92 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 51. Enter the Cluster Address

The Cluster status window was displayed confirming that the cluster was added
to the configuration:

If instead of the GUI you elect to use the command line, then you should enter:

ndcontrol cluster add cluster_address

In our case the command would have been:

ndcontrol cluster add 9.24.104.105

Using the Command Line
Chapter 4. ND Basic Scenarios 93

Figure 52. Cluster Added

4.1.4.8 Methods of Aliasing the Cluster to the Network Interface
In order for the Dispatcher to route packets, each cluster address must be aliased
to a network interface card on the Dispatcher machine.

The next three sections describe different methods available for creating an alias
on the Dispatcher machine’s network interface card to the cluster address.
Although you will only need to use one of these methods, we describe details of
each of the available methods as well as when it may be more appropriate to use
one method over another. The three methods are:

• Using system commands ifconfig or ndconfig. This method is explained in
4.1.4.9, “Aliasing the Network Interface Using the Command Line” on page 95.

• Using configuration scripts to create this alias. Refer to 4.1.4.10, “Aliasing the
Network Interface Using Scripts” on page 97.

• New to SecureWay Network Dispatcher Version 2.1 is the ability to create this
alias with the ND GUI or the underlying ndcontrol commands. For further
information on using the GUI to alias the cluster, see 4.1.4.11, “Aliasing the
Network Interface Using the GUI” on page 99.
94 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.1.4.9 Aliasing the Network Interface Using the Command Line
On AIX and Solaris, the TCP/IP command ifconfig can be used to assign the
cluster address as an alias to the existing TCP network interface. The full
command syntax is as follows:

ifconfig interface_name alias cluster_address netmask netmask

where:

• interface_name is the name assigned to the network interface.

On our platform, the network interface name was tr0, since our machine was
equipped with a token-ring network adapter.

• cluster_address is the cluster address assigned to the Dispatcher machine.

In our case we entered 9.24.104.105, according to Table 4 on page 81.

• netmask is the netmask value you are using in the TCP/IP configuration of the
Dispatcher machine. It can be specified either in dotted-decimal or
hexadecimal form.

In our case we could have entered either 255.255.255.0 or 0xffffff00.

On Windows NT, you should use the command ndconfig instead. Actually, this
command does not belong to the set of system commands related to the TCP/IP
protocol. However, while installing the ND component of IBM WebSphere
Performance Pack, the installation process installs the executable for ndconfig
and the same installation process updates the value of the Path system
environment variable, adding the complete path to ndconfig. The syntax of the
ndconfig command is the same as the AIX and Solaris command ifconfig.

It is recommended that you know exactly the value of the netmask parameter as it
was set on your Dispatcher machine. If you fail or omit it, an unwanted route to
the IP address might be created in the routing table.

In order to know what the value of the netmask parameter is, on AIX and Solaris
you can enter the command ifconfig followed by the name of the network
interface. If the platform is Windows NT, ifconfig should be replaced by ndconfig.

For example, on the Dispatcher machine that we installed on AIX, we entered the
command:

ifconfig tr0

The output we received is displayed in the following screen:

Figure 53. ifconfig Command Entered to Discover the netmask Value
Chapter 4. ND Basic Scenarios 95

So, on our platform, the full command to create the alias on the network interface
tr0 to the cluster address 9.24.104.105 was:

ifconfig tr0 alias 9.24.104.105 netmask 255.255.255.0

To ensure that the alias has been created correctly, enter the command:

netstat -in

You should get two IP addresses for your network interface. The following figure
shows the output we got from the command above before and after we created an
alias on the Dispatcher network interface using the ifconfig command:

Figure 54. How to Verify that the Alias Has Been Created Correctly

Note that it is possible to configure the Dispatcher to manage more than one
cluster, whether your Dispatcher machine is shipped with one network interface
card or more than one. Following are some examples:

• If your Dispatcher machine has only one network interface adapter, you can
configure as many aliases as the number of clusters you want to define, on
the same network interface card.

• If your Dispatcher machine is shipped with two network interface cards (for
example, one Ethernet card, en0, and one token-ring card, tr0), and you
want to manage two clusters, one on en0 and the second on tr0, then each
cluster address must be aliased on the corresponding network interface
card.

• One more example is if your Dispatcher machine is shipped with two
network interface cards (one Ethernet card, en0, and one token-ring card,
tr0), and you want to manage five clusters, say three on en0 and two on tr0.
The first three cluster addresses should be aliased on en0, and the other
two cluster addresses on tr0.

No limits are known to the number of cluster addresses that can be aliased on
the same network interface card.

Cluster Addresses and Network Interfaces
96 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.1.4.10 Aliasing the Network Interface Using Scripts
For the Dispatcher to route packets, each cluster address must be aliased to a
network interface card.

Each time the Executor changes state, you will have to again configure all the
aliases for the network interfaces of the Dispatcher machine. To avoid manually
configuring the network interface every time, you can use one or more script files,
which are automatically launched by the Dispatcher as different conditions occur,
or as the Dispatcher changes its own state.

For example, when using the High Availability feature of the Dispatcher (as
described in Chapter 6, “ND High Availability Support” on page 177), when one
Dispatcher starts to monitor the condition of a currently active Dispatcher, and
does not do any load balancing itself, it is said that this Dispatcher has gone into
the standby state. Alternatively, when this standby Dispatcher finishes monitoring
the health of the active Dispatcher and it changes its state to begin load
balancing and routing packets, it is said that this Dispatcher has gone into the
active state.

Every time the Dispatcher changes state, a corresponding script is launched. For
example, when the Dispatcher goes into the idle state, the related script that is
launched is goIdle. The Dispatcher goes into the idle state when it begins routing
packets in a stand-alone configuration. Use of the goIdle.sample script file that
comes with the installation of the product is appropriate if you are not
implementing the High Availability feature in your Dispatcher configuration.
Sample versions of script files that accomplish these functions are located in the
directory installbase/samples, where installbase is for the Dispatcher component
and varies by operating system. See Table 1 on page 69 for a list of the
installbase locations.

We made a backup copy of goIdle.sample and then modified it by changing the IP
addresses and netmask to match our environment. When run, the script would
create an alias of the cluster address on the desired network interface card in our
Dispatcher machine, as shown in the following figure:
Chapter 4. ND Basic Scenarios 97

Figure 55. Modified goIdle.sample Script File on AIX

In order for the above script to run, you are required to name the file goIdle
(without an extension) and place it in the Dispatcher bin directory, which by
default is installbase/bin, where installbase is for the Dispatcher component and
varies by operating system. See Table 1 on page 69 for a list of the installbase
locations. You are also required to ensure that the script has execute permission.

Notice that the scripts are slightly different depending on the platform they are to
run, because the syntax depends on the operating system. Sample scripts are
provided in the installbase/samples directory on each platform, so it is not
necessary to show them here. The following box summarizes the syntax
modifications on Windows NT:

#!/bin/ksh
#
goIdle script
#
Configure this script only if you are not using the high
availability feature of Network Dispatcher.
Configuration of this script is optional in a stand-alone
configuration.
#
This script is executed when Network Dispatcher goes into the
'Idle' state and begins routing packets. This occurs when
the high availability feature has not been added. It can
also occur in a high availability configuration before the
high availability feature has been added or after it has been
removed. goIdle should NOT be used in conjunction with high
availability. Its intended purpose is for a stand-alone
environment.
#
This script must be placed in Network Dispatcher's bin
directory (by default this is /usr/lpp/nd/dispatcher)
and it needs to have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your
environment. en0=first Ethernet adapter, tr0=first Token ring
adapter, fi0=first FDDI adapter. NETMASK must be the netmask
of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.24.104
INTERFACE=tr0
NETMASK=0xffffff00
#
echo "Adding cluster alias(es)"
for CLUSTER in 105; do

ifconfig $INTERFACE alias $NETWORK.$CLUSTER netmask $NETMASK
done
98 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.1.4.11 Aliasing the Network Interface Using the GUI
As mentioned in 4.1.4.9, “Aliasing the Network Interface Using the Command
Line” on page 95, new to ND V2.1 is the ability to alias the network interface to
the cluster address with the GUI or the underlying ndcontrol commands.

To create an alias on the Dispatcher machine’s network interface card to the
cluster address with the GUI, once the cluster had been added, we right-clicked
the Cluster and in the pop-up menu, selected Configure Cluster Address..., as
shown in the following figure:

The script files performing the Dispatcher configuration need to be modified if
they have to be run on the Windows NT platform. The reason for this is that, on
the Windows NT platform, scripts have to follow a different syntax:

• The first line in the AIX script

#!/bin/ksh

is a special comment, which forces the script to be interpreted by the ksh
Korn shell interpreter, located in the /bin directory. That line should be
removed in the Windows NT script. On Windows NT, the first line is usually:

@echo off

With this instruction in place, the commands are not echoed on the screen.

• Comments on Windows NT must be preceded by the rem keyword, rather
than the pound sign (#). So, for example, the AIX script comment:

This script must be placed in Network Dispatcher's bin directory

on Windows NT becomes:

rem This script must be placed in Network Dispatcher's bin directory

• Settings must be preceded by the set keyword. So, for instance, the AIX
statement:

NETWORK=9.67.123

is equivalent on Windows NT to:

set NETWORK=9.67.123

• The value of a variable is obtained by typing the percent sign (%) before and
after the variable name, rather than using the dollar sign ($) before the
variable name. So, for instance, $CLUSTER on WIndows NT becomes
%CLUSTER%.

• There is no native ifconfig command on Windows NT. So all the
occurrences of ifconfig need to be replaced by calls to the ndconfig

command, which comes with the installation of ND.

• Commands must be preceded by the call keyword. So, for instance, the AIX
command:

ifconfig $SECINTERFACE delete $SECNETWORK.$SECCLUSTER

is equivalent on Windows NT to:

call ndconfig %SECINTERFACE% delete %SECNETWORK%.%SECCLUSTER%

Script Modifications on Windows NT
Chapter 4. ND Basic Scenarios 99

Figure 56. Configure Cluster Address with the GUI

We were prompted for an Interface name and Netmask. Filling in these values is
optional and should be used if your cluster address does not match any subnet
for existing addresses.

If instead of the GUI, you elect to use the command line, then you should enter:

ndcontrol cluster configure cluster_address

In our case, the command would have been:

ndcontrol cluster configure 9.24.104.105

Similarly, if your cluster address does not match any subnet for existing
addresses, you can extend the above command to include the interface name
and subnet mask.

Using the Command Line
100 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

When you configure the cluster address by either of these means, the system’s
adapter configuration command is used to alias the cluster.

As mentioned earlier, there are circumstances where you would not want to
configure the alias with this method:

• If the cluster is added to a standby server in high-availability mode

• If you use the goIdle script in standby mode

For these situations, refer to 4.1.4.9, “Aliasing the Network Interface Using the
Command Line” on page 95 and 4.1.4.10, “Aliasing the Network Interface Using
Scripts” on page 97.

4.1.4.12 Adding Ports
The Dispatcher can load balance any TCP or stateless UDP application. You
need to define as many ports as the protocols you want the Dispatcher machine
to communicate through. Table 5 lists some of the available protocols and
assigned ports:

Table 5. Protocol and Port Used by the Dispatcher

The port values shown in Table 5 reflect the assigned port numbers provided by
the Networking Working Group in the Request For Comments (RFC) 1700. See
http://info.internet.isi.edu/in-notes/rfc/files/rfc1700.txt for a complete list.

Note that if you want to use the FTP protocol, you should add port 21 (also known
as the FTP control port), which is the port through which an FTP server is
listening for the commands, and port 20 (also known as the FTP data port), which
is the port through which the data is transmitted during an FTP connection.

To add ports, from the GUI right-click the Cluster item in the left panel and in the
pop-up window that appears select Add Port..., as shown in the next figure:

Protocol Port

FTP 20, 21

Telnet 23

SMTP 25

HTTP 80

POP3 110

NNTP 119

SSL 443
Chapter 4. ND Basic Scenarios 101

Figure 57. Adding a Port

Then type the port number you want and click OK in the panel that appears:

Figure 58. Enter the Port Number

First of all, we entered 20, as shown in Figure 58 on page 102. Following the
same process, we also added ports 21 and 80 to the same cluster using the GUI.
We also added port 443, assigned to the SSL protocol, but in this case we wanted
102 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

to experiment with the command line, rather than using the GUI again, and so we
entered:

ndcontrol port add 9.24.104.105:443

Coming back to the GUI, and clicking the Refresh button in the top menu bar, we
got the updated configuration with the four ports added.

4.1.4.13 Adding Servers
At this point of the configuration process, you need to define the TCP server
machines that you want in the cluster for the ports you have just configured. To do
so, we right-clicked the Port 20 item and chose Add Server..., as shown in the
following figure:

Note that, using only the command line, you could add multiple ports entering
just one command. In our configuration, in order to add all four ports to the
cluster, we could have entered:

ndcontrol port add 9.24.104.105:20+21+80+443

Multiple Ports Using the Command Line
Chapter 4. ND Basic Scenarios 103

Figure 59. Adding a Server

Then type the server name and click OK in the panel that appears:

Figure 60. Enter Server Address
104 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

You can optionally click the Network router address radio button and fill in the
network router address if you are making use of the Wide Area Network
Dispatcher (WAND) support function. See Chapter 8, “Wide Area Network
Dispatcher Support” on page 211, for further details on how to do this.

We clicked OK, and by expanding the Port 20 item, we ensured that the server
with IP address 9.24.104.158 had been added to port 20 of the cluster with IP
address 9.24.104.105, as shown in the following window:

Figure 61. Verifying that the Server Has Been Added

Using the GUI, we added all the TCP servers of our environment to port 20 and
21. Then from a command line we added the same Web servers to port 80 and
443, by entering the following two commands:

ndcontrol server add 9.24.104.105:80:9.24.104.158+9.24.104.157+9.24.104.239
ndcontrol server add 9.24.104.105:443:9.24.104.158+9.24.104.157+9.24.104.239

Following is the updated ND GUI showing our configuration:
Chapter 4. ND Basic Scenarios 105

Figure 62. All Servers Added

At this point of the configuration, the Dispatcher machine is already capable of
performing load balancing using weighted round-robin scheduling, which is based
on the current servers’ weights. Weighted round-robin scheduling is not yet the
best way to implement load balancing, because you can change the weights of
the TCP servers statically, but they are not modified dynamically during the
load-balancing activities. So, for example, if one of the TCP servers becomes
very busy and cannot activate any more sessions, the Dispatcher, in the
configuration shown above, is not able to reduce the TCP server’s weight and
increase the other servers’ weights, and will continue to forward requests to that
TCP server irrespective of the workload. More importantly, the Dispatcher alone
does not have the ability to detect whether one of your server daemons has died.

The Manager component of the Dispathcer solves this problem. The Manager can
dynamically set weights of the TCP servers in the cluster, and determines each
single weight, basing its decision on internal counters in the Executor, feedback
from the Advisors, and feedback from a system-monitoring program, such as ISS.
Notice that weights are applied to all servers on a given port.
106 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

In this particular configuration, we wanted to set weights manually, and so we did
not run the Manager component. We accepted the default values for weights. As
you can see in Figure 62, each server has a weight of 10 on the HTTP port 80. In
this case, since all the servers would be balanced with the same weight, the
weighted round-robin load balancing performed by the Executor is reduced to a
standard round-robin balancing of client requests, done by the Dispatcher. We
used this weighted (with equal weights) round-robin approach to load balancing
until we started using the Manager component as shown in 4.1.9, “Activating the
Managers and the Advisors” on page 124.

4.1.5 TCP Servers Configuration
Before the Dispatcher starts to forward TCP/IP connection requests to the TCP
servers, it is necessary to set up the TCP server machines. For the reasons
explained in 2.5, “How the Dispatcher Function Works” on page 34, on each
server in the cluster, you must add an alias to the cluster address on the loopback
interface, often called lo0. This is the only configuration necessary in the TCP
server machines in order for them to be load balanced by the Dispatcher. The
loopback IP address is usually 127.0.0.1 and is never forwarded as a destination
on the network media.

The Dispatcher does not change the destination IP address in the TCP/IP packet
before forwarding the packet to a TCP server machine. By setting or aliasing the
loopback device to the cluster address, the TCP server machine will accept a
packet that was addressed to the cluster address.

Before going on with the TCP server’s configuration, you should understand the
flow of the incoming and outgoing IP packets. See 2.5, “How the Dispatcher
Function Works” on page 34 and 4.1.6, “How the Dispatcher Works – The Flow of
the IP Packets” on page 114 for detailed information on the IP packet flow.
However, if you prefer to go on with the configuration steps, you can safely
continue with the next section.

4.1.5.1 Aliasing the Loopback Device on AIX
To alias the loopback device on an AIX machine, use the following command
syntax:

ifconfig lo0 alias cluster_address netmask netmask

On our AIX Web server machines (see Table 4 on page 81), we entered the
command:

ifconfig lo0 alias 9.24.104.105 netmask 255.0.0.0

If you have a server running on an operating system that does not support
aliases, such as HP-UX and OS/2, you must set the loopback device to the
cluster address.

Other operating systems, such as Windows NT, AIX and Solaris, support
aliases, so you can follow the procedure we describe now.

OS/2 and HP-UX Operating Systems
Chapter 4. ND Basic Scenarios 107

Figure 63. netstat -rn Output before the Alias Was Added

Figure 64. netstat -rn Output after the Alias Was Added

You must alias the loopback device each time your AIX machine reboots, so it is
recommended that you put the previous command in a script and instruct the
machine to run it at reboot time. What we did in our case was to put the previous
command into the file /etc/rc.tcpip. This file contains commands that start TCP/IP
daemons (sendmail, inetd, etc.) on an AIX machine. It is launched at each reboot.
We added at the end of that file the following lines (note, however, that the first
and third lines contain only comments):

We found that on AIX, when we added the alias on lo0 with an incorrect subnet
mask value, a new route was automatically added by the system. The following
two figures show output from the command:

netstat -rn

executed before and after an alias was defined on an AIX 4.3.2 test system,
which was not part of this scenario. We created the route with:

ifconfig lo0 alias 9.24.104.105 netmask 255.0.0.0

In this case we determined that there was an extra route. It was the one in the
second row of the Route Tree shown in Figure 64 on page 108 and we deleted
it with the following command:

route delete 9/8 9.24.104.105

Locating An Extra Route
108 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.1.5.2 Aliasing the Loopback Device on Solaris
To alias the loopback device on a Solaris system, use the following command
syntax:

ifconfig lo0:1 cluster_address 127.0.0.1 up

For example:

ifconfig lo0:1 9.24.104.105 127.0.0.1 up

Also check for an extra route with the command:

netstat -rn

Then, if an extra route exists use the corresponding command:

route delete

4.1.5.3 Aliasing the Loopback Device on Windows NT
The procedure to add the alias on a Windows NT system is more complex,
because you first have to add and then configure the loopback device, as
reported in the following.

Click Start then Settings, and select Control Panel. Double-click the Network
icon, and in the Network window click the Adapters tab. Then select the Add...
button and from the list of adapters select MS Loopback Adapter, as shown in
the following window:

Figure 65. Select Network Adapter: MS Loopback Adapter

Click OK and you will get the following screen:

#Add alias on the loopback device:
ifconfig lo0 alias 9.24.104.105 netmask 255.0.0.0
#Remove the extra route:
route delete 9/8 9.24.104.105
Chapter 4. ND Basic Scenarios 109

Figure 66. MS Loopback Adapter Card Setup

We accepted the default configuration, clicked OK and, when prompted, inserted
the installation Windows NT CD-ROM.

After these simple steps, you will see another adapter added in your Windows NT
machine adapter list:

Figure 67. Adapters List Refreshed

Now select the Protocols tab and double-click the TCP/IP Protocol item.You
should then see the following window.
110 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 68. Configuring MS Loopback Adapter

If you open the Adapter list box, the MS Loopback Adapter should have been
added to the list.

As shown in Figure 68, select MS Loopback Adapter from the Adapter list box
and set the IP Address to the cluster address.

We suggest that you type 255.0.0.0 in the Subnet Mask field and do not enter a
gateway address. The setting of the subnet mask is not relevant on the loopback
interface and the reason for using 255.0.0.0 will become clear shortly.

We used the default subnet mask 255.0.0.0 and did not enter a gateway address.
Upon selecting the OK button, you will get the following window:

If the MS Loopback Adapter does not appear in the Adapter list box under the
TCP/IP protocol configuration window, this is because the Network panel
needs to be refreshed. You need to close and re-open the Microsoft TCP/IP
Properties window to see the new adapter.

Adapter Missing?
Chapter 4. ND Basic Scenarios 111

Figure 69. Network Setting Change - Reboot Your System

Choose Yes to reboot your system.

On Windows NT, after you install the MS Loopback Adapter, each time you reboot
the system you do not need to redefine the alias on your loopback device.
Instead, you have to accept the drawback that an extra route is created at each
reboot, and you need to delete it.

To check for an extra route, from a command prompt enter the command:

route print

A table similar to the following will be displayed:

Figure 70. Locating The Extra Route

In order to find the extra route, you should look for your cluster address under the
Gateway Address column. If the cluster address appears twice, it means you
have an extra route. In our case, the cluster address 9.24.104.105 appeared in
row 2 and row 8.

You need only one of those two entries; one of them is extra, and must be
removed. To determine which route is the extra one that needs to be deleted, you
can follow this simple rule, if you followed the suggestion to add the subnet mask
for the loopback adapter with the value 255.0.0.0: the extra route is the one that
has in the Network Address column the first octet of the address you entered (the
first number of the cluster address) followed by zeros in the other octets, and the
Gateway Address is the address of the cluster. Therefore, using a subnet mask of
255.0.0.0 makes it easier to spot the route that must be deleted.
112 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

If you used a different subnet mask, then the extra route is the one that has an
address in the Network Address column that has the same octets as the cluster
address in the network portion of the address with respect to the subnet mask
used to create the alias in Figure 68. The host portion of the address in the
Network Address column will be 0’s.

In our case, the extra route is the one in row 2, since it has Network Address
9.0.0.0:

Table 6. Extra Route

We entered the following command to delete the extra route:

route delete 9.0.0.0 9.24.104.105

Then we checked that the extra route had been deleted by entering the following
command:

route print

Figure 71. Extra Route Deleted

In order to automatically remove the extra route at each system reboot, you can
copy the full route delete command in a batch text file, named for example
Routedel.bat, and place it into your Windows NT Startup folder, as shown:

Network
Address

Netmask Gateway
Address

Interface Metric

9.0.0.0 255.0.0.0 9.24.104.105 9.24.104.105 1
Chapter 4. ND Basic Scenarios 113

Figure 72. Startup Folder of Windows NT Server)

4.1.6 How the Dispatcher Works – The Flow of the IP Packets
In 2.5, “How the Dispatcher Function Works” on page 34, we explained how the
IP packets start flowing from a TCP client to a TCP server passing through the
Dispatcher machine, and then how the server’s response flows directly from the
server to the client without any need to pass through the Dispatcher again. In this
section, we want to explain in more detail how this important mechanism works.

You need to perform IP configuration on the Dispatcher machine and on the TCP
servers. You also need to define aliases to the cluster address on the network
interface on the Dispatcher machine and on the loopback device on all the
cluster’s TCP servers. The reason for this is based on the way the Dispatcher
works and treats incoming IP packets.

The Dispatcher is designed to make several TCP servers appear as one in the
TCP/IP environment, typically for HTTP, FTP, and other protocols on the Internet.
Let’s assume that a request for the service managed by the cluster arrives. The
incoming IP packets have, among other data:

• The source address, which identifies who has sent the packet

• The destination address, which is the IP address of the cluster
114 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

For example, in the environment we built, an incoming IP packet has
9.24.104.218 as its source IP address, since this was the address of our Web
client machine, and 9.24.104.105 as the destination IP address, since this is the
cluster address (see Table 4 on page 81).

When the Dispatcher is installed, all the incoming IP packets sent by end users to
the cluster address first arrive at the Dispatcher machine, not at one of the TCP
servers. This is because the Dispatcher’s network interface, besides having its
own unique IP address, has been given an alias to the cluster address. The TCP
servers in the cluster also have an alias to the cluster address, but this is defined
on the loopback interface. The Dispatcher runs at a low level in the machine
operating system so it can directly intercept all the IP packets.

Each time a new connection is initiated by a client, the Dispatcher selects which
TCP server in the cluster should receive the connection packet. Now the
Dispatcher should be able to send that packet to the selected TCP server. How
can the Dispatcher do that? The answer is that the Dispatcher routes the packet
based on the Media Access Control (MAC) address of the network adapter on the
chosen TCP server.

So let’s assume that the Dispatcher has decided to send the connection IP packet
to the TCP server that has the following particulars (see Table 4 on page 81):

• Unique IP address 9.24.104.239 and host name wtr05193

• Cluster address 9.24.104.105 as the alias on the loopback interface

• Adapter MAC address equal to 0006296AA301

The Dispatcher must now transmit the IP packet over the token-ring network (but
in this context, Ethernet would be similar), so it must know the MAC address of
the selected TCP server.

Ethernet and token-ring devices require an adapter to physically attach to the
LAN. This adapter must provide both physical and logical capabilities for the
device. The adapter contains a unique 48-bit address, assigned to it during the
manufacturer process, called MAC address. All the MAC addresses are
assigned by the IEEE 802 committee. The IEEE provides the vendor building
adapters with a range of MAC addresses to use for assigning adapters their
unique 48-bit address so that no two adapters should ever have a duplicate
address.

Ethernet and token-ring require the MAC address for both the origin and the
destination adapters when communicating over a LAN. Besides the IP address,
the MAC address also must be known when sending data to a LAN-attached
device.

MAC Address
Chapter 4. ND Basic Scenarios 115

The original destination MAC address on the IP packet was the one of the
network interface on the Dispatcher machine itself. When the Dispatcher knows
the MAC address of the selected TCP server wtr05193, it changes the original
destination MAC address on the packet to the MAC address 0006296AA301. This
packet will now be encapsulated in the token-ring frame and transmitted to the
chosen TCP server wtr05193.

The Dispatcher then sets up a connection table entry to make sure that
subsequent incoming IP packets for this client continue to be forwarded to the
same server, until the connection is interrupted.

When the TCP server wtr05193 receives the packet, the information related to the
MAC addresses is eliminated and the source and destination IP addresses are
extracted.

The destination IP address is still the cluster address 9.24.104.105, but the TCP
server wtr05193 has its own IP address 9.24.104.239. However, wtr05193 can
accept that packet, since the cluster address is configured as an alias on
wtr05193’s loopback interface.

At this point, wtr05193 sends a response to the Web client that originated the
request. Now, let’s see what happens to the outgoing packets.

Once the TCP server wtr05193 receives all the IP packets of the originating
client’s request, it performs the standard TCP processing that is commonly
performed by all TCP servers while responding to a client. It switches the IP
source and destination addresses for the outgoing packets that form the response
to the client. The source address becomes in this case the cluster address
9.24.104.105, while the destination address is now the Web client IP address
9.24.104.218. This operation has an important consequence; the balancing
function is transparent both to the client and the clustered servers:

1. The destination IP address is the client’s IP address, not the Dispatcher’s. For
this reason, the TCP server wtr05193 can route the IP packets through its
default router directly to the client, and all the outgoing packets do not pass
back through the Dispatcher. There is no need to even return using the
original physical path and a separate high-bandwidth connection can be used.

This is very important, since in many cases, the volume of the outbound
server-to-client traffic is substantially greater than the inbound traffic. Typically,

If the TCP server’s MAC address is unknown to the Dispatcher, the same
Dispatcher is able to discover it by issuing an Address Protocol Request (ARP)
containing a broadcast LAN MAC address that will be read by all the network
interfaces attached to the same LAN. This request also specifies the IP
address 9.24.104.239 of the TCP server. Each of the network adapters
attached to the LAN will determine if its relative interface has been configured
with the IP address 9.24.104.239. Only the network interface adapter of
wtr05193 will respond with its own MAC address, 0006296AA301.

Once the Dispatcher knows the wanted TCP server’s MAC address, it will be
stored into the ARP cache to skip successive requests.

ARP Requests
116 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

HTML pages and imbedded images are at least 10 times the size of the client
URLs that requested them.

2. The source IP address in the outgoing packet sent by the TCP server shows
as the cluster address, and not as the TCP server’s IP address. The cluster
address was also the destination IP address in the IP packets sent by the
client in its request, so the client is not able to understand the TCP
architecture of the target server. This security feature offered by the
Dispatcher ensures privacy for a site that is composed of multiple TCP servers
load-balanced by a Dispatcher machine.

A user at the client machine on which a network monitoring tool is running
could understand that multiple TCP servers are part of the same cluster only if
no router, firewall or gateway is between the client itself and the servers – in
other words, the client and the servers must be part of the same intranet. In
this case, in fact, the network monitoring tool would show the MAC address of
the TCP server that actually served the request. In a real-life situation, the
MAC address shown in the packet is that of the router closest to the client.

The following diagram offers a graphical representation of the flow we have just
described:

Figure 73. The Flow of the IP Packets

Because the Dispatcher does not participate in bidirectional communications with
the client but simply forwards the incoming packets unchanged, its presence is
transparent to both client and server. The real TCP/IP connection is between the
client and the clustered server, and the Dispatcher soon disappears from the
scene after forwarding the incoming packets.

The only requirement for the TCP server is that its loopback device be set or
aliased to the cluster address. In this way, the server is capable of responding to
a request that was addressed to the cluster address.

Client

ND

TCP
Servers

Internet

Source Destination

IP Address Client Cluster

MAC Address Client Router

Source Destination

IP Address Client Cluster

MAC Address Router ND Machine

Source Destination

IP Address Client Cluster

MAC Address ND Machine TCP Server

Source Destination

IP Address Cluster Client

MAC Address TCP Server Router

1 2

34
5

Source Destination

IP Address Cluster Client

MAC Address Router Client

1

2

3

4

5

Chapter 4. ND Basic Scenarios 117

4.1.7 RoundRobin Load Balancing Scenario
Now that the TCP servers are configured, we want to show you how the
Dispatcher is able to do standard round-robin load balancing. Before going
in-depth, here is an explanation about the weights of the servers connecting to a
port in the cluster. As we also mentioned in 4.1.4, “Dispatcher Configuration” on
page 83, weights are applied to all servers on a given port, and for any particular
port, the requests will be distributed between servers based on their weights
relative to each other. For example, if the weight on one server is set to 10 and on
the other server to 5, the first server gets twice as many requests as the second
server.

In our configuration, since the weight for each server on port 80 had been set to
10 (see Figure 62 on page 106), we expected the Dispatcher to perform the
standard (not weighted) round-robin load balancing.

To do that, we performed the following demonstration. From a command line on
the Dispatcher machine, we entered the following command:

ndcontrol server report 9.24.104.105:80:9.24.104.157+9.24.104.158+9.24.104.239

A shortcut to the command above would have been:

ndcontrol server report ::

We saw that the total number of TCP connections on port 80 to the servers was 0:

Figure 74. TCP Connections on Port 80

We could verify with this that no connection had yet been activated.

Then we wrote three HTML files, which were very simple and very similar to one
another. The three of them were named cjl.html, and we distributed them all into
the document root directories of the three clustered Web servers of our platform:
118 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 75. /usr/lpp/HTTPServer/share/htdocs/cjl.html on Host 9.24.104.157

Figure 76. /usr/lpp/HTTPServer/share/htdocs/cjl.html on Host 9.24.104.158

Figure 77. C:\Program Files\IBM HTTPServer\htdocs\cjl.htm on 9.24.104.239

Notice that the three files have the same structure. In each file it is specified what
server in the cluster is actually the owner of the page. This will be displayed not
only in the body of the Web page, but also in the title bar of the browser window,
since we have inserted the host name of the TCP server between the HTML tags
<title> and </title>.

We started our Web browser and de-activated its memory and disk caches; then
we requested the URL http://9.24.104.105/cjl.html and got the following screen:

<html>
<title>Test Page from aixncf157</title>
<body>

This page comes from aixncf157.itso.ral.ibm.com
with ip address 9.24.104.157
</body>
</html>

<html>
<title>Test Page from AIXAFS</title>
<body>

This page comes from AIXAFS.itso.ral.ibm.com
with ip address 9.24.104.158
</body>
</html>

<html>
<title>Test Page from aixncf157</title>
<body>

This page comes from aixncf157.itso.ral.ibm.com
with ip address 9.24.104.157
</body>
</html>
Chapter 4. ND Basic Scenarios 119

Figure 78. HTML Page Served by the First Web Server

Note that the requested page came from the Web server with IP address
9.24.104.158. By entering the following command again we saw the Dispatcher
report:

ndcontrol server report 9.24.104.105:80:9.24.104.157+9.24.104.158+9.24.104.239

It confirmed that the server with IP address 9.24.104.158 had effectively served
the request, as shown in the following figure:

Figure 79. The First Web Server Has Served One Page

Then we reloaded the page from the browser by clicking the Reload button. This
time the page came from another server, the one with IP address 9.24.104.239,
as shown in the following figure:
120 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 80. HTML Page Served by the Second Web Server

Upon re-entering the following command we had another confirmation that the
server with IP address 9.24.104.239 had effectively served the request:

ndcontrol server report 9.24.104.105:80:9.24.104.157+9.24.104.158+9.24.104.239

This confirmation is shown in the following figure:

Figure 81. The Second Web Server Has Served One Page

At the end, we reloaded the page on the browser for the third time and saw that
the file cjl.html was served by the server with IP address 9.24.104.157, as shown
in the following figure:
Chapter 4. ND Basic Scenarios 121

Figure 82. HTML Page Served by the Third Server

We again entered the command:

ndcontrol server report 9.24.104.105:80:9.24.104.157+9.24.104.158+9.24.104.239

This time we saw the final report showing that all three machines had been
accessed one time each:

Figure 83. The Third Web Server Has Served One Page

So each time you reload the same Web page from the browser, the servers
honoring the response alternate in a nonweighted round-robin way.

It is worth emphasizing that we used a different test page on each of the three
servers. Each Web page was named cjl.html, but the contents were slightly
different. We did this just to show the round-robin balancing of the Dispatcher. In
a real situation, the pages would be identical, and this could be obtained by either
duplicating the same Web page in all the Web servers or using AFS, the File
Sharing component of IBM WebSphere Performance Pack, to dynamically
distribute the same file in multiple locations.

When using the Dispatcher component of ND V2.1, if the page is really the same,
the user cannot see any differences, since even the URL in the Location field of
the browser and the information displayed on the Page Info window of the
browser do not show that the page is served by different Web servers. The cluster
address of your site is the only IP address that is shown. In this sense, the load
balancing operation is transparent to the end user, since the Web server can
122 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

respond directly to the client, as explained in 4.1.6, “How the Dispatcher Works –
The Flow of the IP Packets” on page 114.

4.1.8 Analyzing the Flow with a Network Monitoring Tool
In this section we describe a scenario that helps us to understand how the
Dispatcher function really works. In this scenario, we repeated the scenario
described in 4.1.7, “RoundRobin Load Balancing Scenario” on page 118, but on
the client machine we had Microsoft Network Monitor Version 4.00 for Windows
NT Server running. This software can capture and display incoming packets
being transmitted from other machines within the same LAN segment where the
server running Network Monitor is attached.

The host name of the client machine was wtr05212, as specified in Table 4 on
page 81. From the Web browser installed on this machine, we sent some
requests to the clustered Web site we implemented, having cluster address
9.24.104.105, and we monitored the incoming network packets. We got the
following table from the Network Monitor:

Figure 84. Network Monitor Output Showing Mac Addresses of the Frames Source

In this table, take a look at the columns Src Other Addr (Source Other Address)
and Dst Other Addr (Destination Other Address). You can see that the client
machine cannot determine which server has honored the HTTP requests, since
the source address from which the response arrived is always the cluster address
(see 4.1.6, “How the Dispatcher Works – The Flow of the IP Packets” on page
114).

If you look closely at the table displayed by the Network Monitor, you can see that
the Frame numbers are not consecutive. For clarity, we filtered out the frames that
were being sent to our Windows NT machine from hosts that were not related to
this demonstration.

The following table shows the MAC addresses of the Web server that were part of
our cluster:

Table 7. Our Web Server MAC Addresses

Hostname IP Address Mac Address

aixafs 9.24.104.158 0004AC6213E4
Chapter 4. ND Basic Scenarios 123

The Src MAC Addr (Source MAC Address) column shows us that Frames 18
through 21 were served by the Web Server with MAC address 0004AC6213E4.
From Table 7 on page 123, we can see that the MAC address 0004AC6213E4
corresponds to host aixafs. Similarly, Frames 29 through 31 were served by
wtr05193, Frames 39 through 42 were served by aixncf157 and so on. Each
group of these frames represents the flow of data from the WebSphere machine
to the Web Client machine for one page load operation. This confirms the
analysis shown in 4.1.6, “How the Dispatcher Works – The Flow of the IP
Packets” on page 114.

This demonstration would have not worked if the TCP servers had been located
on a different LAN. In other words, we would not have been able to see the MAC
addresses of the various TCP servers if such Web servers had been located on a
different LAN. On the contrary, we would have seen the MAC address of the
router closest to the client machine. For this reason, in a real-life situation, the
TCP architecture of a clustered Web site remains hidden to remote clients, which
results in a further security feature offered by the Dispatcher component of ND
V2.1. This scenario will be demonstrated in 7.1.4, “Packet Flow” on page 208.

4.1.9 Activating the Managers and the Advisors
Now let’s go back to the GUI on the Dispatcher machine and activate the
functions responsible for gathering and processing the information about the
performance of the TCP servers for the purpose of improving load balancing: the
Manager and the Advisors.

4.1.9.1 Activating the Manager
The main load balancing function is the Manager. The Manager is the function
that collects the information from the Advisors about the servers’ conditions.
Based on that information, it then dynamically adjusts the weights of the single
server to reconfigure load distribution during run time.

If you want to start the Manager function through the GUI, right-click the Host
item (see Figure 62 on page 106) and from the pop-up menu select Start
Manager.... You are prompted to optionally type a log file name, in which the
Manager will log all its activities, and a metric port used by the ISS function, if
running, to report system loads. We used the default values for both the Log file
name (manager.log) and Metric port (10004) fields, as shown in the following
figure:

wtr05193 9.24.104.239 0006296AA301

aixncf157 9.24.104.157 0004AC34C9C8

Hostname IP Address Mac Address
124 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 85. Starting the Manager

In 2.5.4, “TCP Ports Used by the Dispatcher” on page 38, we explained how to
start the Manager function through the command line.

Once the Manager was started, the weights of the servers were changed by the
Manager. To see this, select Port: 80 and notice the Weight column in the List of
Servers section. If your HTTP servers are busy, you can click the Refresh
Statistics button and watch as the weights are dynamically changed by the
Manager.
Chapter 4. ND Basic Scenarios 125

Figure 86. The Manager is Changing the Weights of the Port 80 Servers

4.1.9.2 Activating the Advisors
In order to feed the Manager with more information about the ability of the TCP
servers to respond to requests, you need to start the Advisors. As we explained in
2.5.1, “Dispatcher Components” on page 35, the Advisors monitor each server
defined on the assigned port, and forward the information about the server’s
response time and availability to the Manager.

In the following table you find the list of the available Advisors along with their
respective protocols and ports:

Table 8. Advisors and Related Protocol and Ports

Advisor Name Protocol Port

ftp FTP 21

telnet Telnet 23

smtp SMTP 25

http HTTP 80

pop3 POP3 110

nntp NNTP 119
126 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Note that if you use the FTP Advisor, it should be started only on the FTP control
port 21, and not on the FTP data port 20 (see also Table 5 on page 101).

ND administrators have the ability to write a custom advisor for any protocol not
mentioned in the table above.

To start the Advisor from the GUI, right-click Manager and select Start Advisor...
from the pop-up menu that is automatically brought up, as shown in the following
figure:

Figure 87. Starting the Advisor

ssl SSL 443

Workload Manager private 10,007

WTE HTTP 80

PING ping 0

Advisor Name Protocol Port
Chapter 4. ND Basic Scenarios 127

Select the Advisor you want to add from the list box in the following panel. We
wanted to select the ssl Advisor, so we chose Ssl and the port was automatically
set to 443, as shown in the following figure:

Figure 88. Select Advisor to Start

If you click OK, you will see that the Advisor has been added to the configuration,
as shown in the following panel:
128 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 89. Advisor Added

We also added the HTTP and FTP Advisors, but for these we used the command
line, as follows:

ndcontrol advisor start http 80
ndcontrol advisor start ftp 21

From the GUI, we selected Port: 80, which was one of the ports that we just
added an Advisor on, and we could see the updated Port Status, as shown in the
following figure:
Chapter 4. ND Basic Scenarios 129

Figure 90. Other Advisors Added

4.1.10 Customization of the Manager for the Advisors
The load balancing action performed by the Dispatcher depends on several
settings, which we are going to describe in the following sections.

4.1.10.1 Proportions of Importance Settings
Now we show you how to set the proportions of importance for each of the
policies (see 2.5.2.1, “Guidelines on Proportions of Importance Settings” on page
36). In the configuration window shown in Figure 90 on page 130, click the
Manager item in the tree panel and in the right pane the Manager Status
information will appear. As we said in 2.5.2.1, “Guidelines on Proportions of
Importance Settings” on page 36, the default values are 50 50 0 0: we tried the
mix 46 46 8 0 by entering the new values directly into each of the respective
fields, as shown in Figure 91 on page 131, so that:

• Both the number of active connections and new connections will contribute
46% in the weighting process.

• The Advisors will contribute 8%.

• Input from system monitoring tools, such as ISS, will not be considered in the
weight decision. This is reasonable, because in this test we had not yet
activated any monitoring tool.
130 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.1.10.2 Smoothing Index
Another important parameter to be considered when using the Advisors (and/or
system monitoring tools such as ISS) is the smoothing index, which defines how
smooth the change of the servers’ weights will be. The Manager calculates and
then updates the servers’ weights dynamically. The weight values could change
very rapidly, and in some circumstances this might result in an oscillant effect in
the way the requests are load balanced. The distribution of the requests could be
made in a nonoptimized way, and needs to be smoothed. Based on the smoothing
index value, the Manager will change the servers’ weights more or less quickly.
The default value for smoothing index is 1.5, which could cause the Manager to
change the weights rather dynamically. Values around 5 are preferred for having
the Manager modify the weights slowly.

We set the Smoothing index value to 6. After you modify all the values you want in
the Manager Status window, click Update to have the configuration updated, as
shown in the following window:

Figure 91. Setting the Manager Proportions and Smoothing Level

Note that as a result of starting the Advisors, we noticed an increase in the
number of TCP connections reported in the ndcontrol server report.

After starting the HTTP Advisor on port 80 we again entered the command:

ndcontrol server report 9.24.104.105:80:9.24.104.157+9.24.104.158+9.24.104.239
Chapter 4. ND Basic Scenarios 131

Figure 83 on page 122 shows the command output before the Advisor was
started. No new client Web requests were made in the interim, just TCP
connections made by the Advisor:

Figure 92. The Many TCP Connections Made by the Advisor Are Shown

4.1.11 Saving the Configuration
Once you finish configuring the Dispatcher, it is recommended you save the
configuration of the Dispatcher to a file. To do this, right click Host and select
Save Configuration File As.... This is shown in the following figure:
132 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 93. Save Configuration File As... Option On the Host Pop-Up

In the resulting pop-up window, you will be prompted to enter the name of the
configuration file where you would like to save this information.

Figure 94. Enter Configuration File Name

By default this file is placed in the directory installbase/configurations/, where
installbase varies by component (Dispatcher or CBR) and operating system. See
Table 1 on page 69 for a list of the installbase locations.
Chapter 4. ND Basic Scenarios 133

In our testing, we noticed that the Dispatcher automatically makes a backup of
the execution environment in the file called backup.config once an hour when the
executor is running.

The configuration file is saved in ASCII format and contains the list of commands
that would be necessary to reconfigure your setup:
134 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 95. Configuration File backup01.config

ndcontrol executor start
ndcontrol executor set nfa 9.24.104.128

ndcontrol cluster add 9.24.104.105

ndcontrol port add 9.24.104.105:80

ndcontrol server add 9.24.104.105:80:9.24.104.158

ndcontrol server add 9.24.104.105:80:9.24.104.157

ndcontrol server add 9.24.104.105:80:9.24.104.239
ndcontrol server set 9.24.104.105:80:9.24.104.239 weight 9

ndcontrol port add 9.24.104.105:21
ndcontrol port set 9.24.104.105:21 staletimeout 900

ndcontrol server add 9.24.104.105:21:9.24.104.158

ndcontrol server add 9.24.104.105:21:9.24.104.157

ndcontrol server add 9.24.104.105:21:9.24.104.239
ndcontrol server set 9.24.104.105:21:9.24.104.239 weight 0

ndcontrol port add 9.24.104.105:20

ndcontrol server add 9.24.104.105:20:9.24.104.158
ndcontrol server set 9.24.104.105:20:9.24.104.158 weight 9

ndcontrol server add 9.24.104.105:20:9.24.104.157
ndcontrol server set 9.24.104.105:20:9.24.104.157 weight 9

ndcontrol server add 9.24.104.105:20:9.24.104.239
ndcontrol server set 9.24.104.105:20:9.24.104.239 weight 9

ndcontrol port add 9.24.104.105:443

ndcontrol server add 9.24.104.105:443:9.24.104.158

ndcontrol server add 9.24.104.105:443:9.24.104.157

ndcontrol server add 9.24.104.105:443:9.24.104.239
ndcontrol cluster configure 9.24.104.105 tr0 255.255.255.0

ndcontrol manager start manager.log 10004
ndcontrol manager proportions 46 46 8 0
ndcontrol manager smoothing 6.0

ndcontrol advisor start Http 80 Http_80.log

ndcontrol advisor start Ssl 443 Ssl_443.log

ndcontrol advisor start Ftp 21 Ftp_21.log
Chapter 4. ND Basic Scenarios 135

In our testing, we noticed that the line:

ndcontrol cluster configure 9.24.104.105 tr0 255.255.255.0

was included in the above configuration file in place of the UNIX command
ifconfig or the Windows NT command ndconfig that we had used. The command
above creates the cluster alias on the network interface and is indeed equivalent
to the ifconfig and ndconfig commands.

4.1.12 Saving the Host Connections
Host Connections can be saved by selecting File on the menu bar of the
configuration window (see Figure 91 on page 131) and then selecting Save Host
Connections As.... In the panel that appears, enter the configuration file name
that you would like the Host Connection information saved into.

Figure 96. Enter the Name of the Host Connection Save File

This file is saved in the directory installbase/configurations, where installbase is
the install directory for the admin component that varies by operating system. See
Table 1 on page 69 for a list of the installbase locations.

As a result of saving this information, on subsequent invocations of the GUI, this
host connection will be listed as one of the choices in the Connect to Host
selection screen (see Figure 46 on page 87).

4.1.13 Stopping the Executor and the GUI
To stop the Executor from the GUI right-click Executor and select Stop Executor
(see Figure 48 on page 89). The command line version of this is:

ndcontrol executor stop

On Windows NT, the Executor cannot be stopped. As an administrator, you can
select IBM Network Dispatcher from the Services folder of the Control Panel,
and then click Stop. However, this operation only stops the server, not the
Executor.

To exit the GUI, select File->Exit.
136 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

When you restart the GUI after connecting to a host, you can choose whether to
load a saved configuration, if any, or create a new one. To load a configuration
file, from the Host pop-up menu select Load New Configuration (see Figure 48
on page 89) and select the file name that contains your saved configuration from
the list box.

4.2 Load Balancing Scenario Using the Dispatcher and ISS

By using the monitoring capabilities provided by ISS on the TCP server
machines, you can provide the Dispatcher with load server information. In this
case the ISS cooperates with the Dispatcher, but ISS does not make any load
balancing decision. The ISS monitor collects specific server information such as
CPU usage, memory usage and disk activity from the ISS agents running on the
individual servers, and forwards it to the Dispatcher. The Dispatcher uses this
load information, along with other sources of information, to determine which is
the least loaded server of the cluster and then performs load balancing.

4.2.1 Installation of ISS
As already mentioned, the ND V2.1 component of IBM WebSphere Performance
Pack Version 2 has three subcomponents: Dispatcher, ISS and CBR. In this
section we discuss the installation of the ISS component.

ISS is supported on three operating systems: IBM AIX 4.2.1 or later, Microsoft
Windows NT 4.0 and Sun Solaris 2.6 or later. Refer to the appropriate platform
section of 3.1, “Installation of ND” on page 55 for details on how to use the Java
InstallShield on your respective platform. When you reach the point where you
choose which ND component to install (see Figure 17 on page 57 and Figure 24
on page 64), select these three components to install ISS on your machine:

• Interactive Session Support Runtime
• Interactive Session Support Administration
• Interactive Session Support License

This is shown in the following figure:

Remember that if you close the GUI without stopping the Executor, this
continues to run. In fact, if you restart the GUI with the command ndadmin, you
will still be shown the current running configuration.

On Closing the GUI
Chapter 4. ND Basic Scenarios 137

Figure 97. Select the Three ISS Components to be Installed

ISS has the special function of system monitoring. If you want ISS to be part of
your environment, you should select one machine to run as an ISS monitor, while
on the TCP servers in the cluster an ISS agent process should run, gathering
information about the status of the systems and feeding it back to the ISS
monitor. The three ISS components listed above should be installed on the ISS
monitor machine as well as on the TCP server machines.

On Windows NT, at the end of the ISS component installation, you will be
instructed to reboot. After rebooting, notice that the IBM Interactive Session
Support service is not automatically started, as we can see by viewing the
Services folder of the Control Panel:
138 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 98. The ISS Server Is Not Automatically Started after Rebooting

You should click Start to activate the ISS daemon. Refer to 4.2.4.2, “Starting the
ISS Daemon” on page 142 for further information on this.

4.2.2 Scenario Configuration
In this section we show you how to create a scenario where both the Dispatcher
and ISS components of ND V2.1 are used. We worked on the same environment
shown in Table 4 on page 81. However, we enhanced that scenario by adding the
ISS function. In the environment shown in Figure 41 on page 82, we decided to
have the Dispatcher machine run as the ISS monitor, too. ISS is used here only in
its capacity to gather server load information from the TCP servers, where the
ISS agent process runs. This information is then passed back to the ISS monitor
process, running in this case on the same Dispatcher machine. The monitor
interacts with the Dispatcher and provides it with information about the loads on
the servers. The Dispatcher uses this information, along with other sources to
perform the load balancing.

The steps required to configure ISS in this information-gathering capacity start
out essentially the same as if ISS were to perform the load balancing. They key
point that makes the difference between the information gathering function and
the load balancing function of ISS is in the choice of Observer type, as explained
below.

4.2.3 Network Environment
The following figure offers a graphical representation of the environment we used:
Chapter 4. ND Basic Scenarios 139

Figure 99. Graphical Representation of the Dispatcher and ISS Scenario Environment

Notice that, as soon as you make ISS part of the load balancing process, the
Manager configuration must reflect the presence of ISS. To do this, change the
proportions of importance (see 4.1.10.1, “Proportions of Importance Settings” on
page 130) to take into account the input coming from ISS. In this case, we set the
proportions of importance for the Manager to 48 48 2 2 (see also 2.5.2.1,
“Guidelines on Proportions of Importance Settings” on page 36).

The example we are going to show you is also very interesting because it
demonstrates how easy it is to implement ISS high availability.

4.2.4 ISS Configuration
In 4.1, “Load Balancing Basic Scenario Using the Dispatcher” on page 81, we
described the network environment we had set up using the Dispatcher, but
without using ISS. In this section we show how to add ISS to the already existing
environment.

Internet

9.24.104.157 9.24.104.158 9.24.104.239

5315\531513

Dispatcher and
ISS Monitor

WebServer

ISS Agent
+

WebServer

ISS Agent
+

WebServer

ISS Agent
+

Manager

Executor Advisors

Dispatcher
ISS
M
o
n
i
t
o
r

140 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.2.4.1 ISS Configuration Methods
In the previous version of WebSphere Performance Pack, we would have had to
modify the ISS configuration file by manually editing it. New to this version is the
ability to modify the ISS configuration file by using the ND configuration GUI.

In this section, we show how to make some changes to the Basic.Sample
configuration file shipped with the product and then how to complete the
customization with the GUI. Each customization that we performed with the GUI
could also have been performed on the command line with isscontrol commands.
We will supply the syntax of the corresponding isscontrol command that could be
used for several of the tasks that we use the GUI for. For further details on the
isscontrol command, please refer to SecureWay Network Dispatcher User’s
Guide V2.1 for AIX, Solaris and Windows NT, GC31-8496.

The Basic.Sample configuration file is located in the directory
installbase/samples, where installbase is for the ISS component and varies by
operating system. See Table 1 on page 69, for a list of the installbase locations.

The original Basic.Sample configuration file for the AIX platform, as it is shipped
with the product, is shown here:

Figure 100. ISS Shipped Configuration File Basic.Sample

See “Script Modifications on Windows NT” on page 99 for details on how script
files need to be modified on the Windows NT platform.

The following figure shows our customized version of Basic.Sample. We renamed
the modified version of Basic.Sample iss.cfg, and placed it in /etc on AIX (this is
also where it should be located on Solaris) and in \Program Files\nd on Windows
NT.

Note: It is important that when you start using ISS, all the machines in your cell
have the same ISS configuration file.

As the comments in the Basic.Sample file indicated, you must create this minimal
configuration file before you use the ISS GUI, if you do not have any preexisting
configuration files. We replaced yourCellName and yourHostName with Cary and
rs600023 respectively:

This is the basic configuration sample. You must create
this minimal configuration file before you use the ISS
GUI, if you do not have any pre-existing configuration
files. Replace yourCellName and yourHostName with names
appropriate for your configuration.

cell yourCellName local
node yourHostName 1
Chapter 4. ND Basic Scenarios 141

Figure 101. Customized Basic.Sample ISS Configuration File

In order to perform the configuration steps listed below, you must be the root user
on AIX and Solaris or, if the Dispatcher is installed on Windows NT, a system
administrator.

4.2.4.2 Starting the ISS Daemon
ISS operates as either monitor or agent depending on the contents of the
configuration file or parameters entered.

To start the ISS daemon, if on AIX and Solaris, from a command line enter the
command:

iss -g

The -g flag instructs the ISS daemon to monitor for communication from the ND
GUI on port 12099. If your iss.cfg file is not located in /etc or called iss.cfg, then
you will need to use the -c flag followed by the full path to the configuration file, to
let ISS know where the file is. The -l flag can be used to specify a log file.

Note that on Windows NT, ISS is a Windows NT service and is not automatically
started. To start ISS as administrator, open the Services window of the Windows
NT Control Panel (see Figure 98 on page 139), select IBM Interactive Session
Support and then click Start. In the Startup Parameters text field, you can
specify the arguments for the iss command. Notice, however, that if you want to
code a back lash (\), you have to type a double backslash (\\). For example, if
you want to specify the configuration file D:\issconf\isspistoia.cfg and the log file
D:\issconf\isspistoia.log, you have to type:

-c D:\\issconf\\isspistoia.cfg -l D:\\issconf\\isspistoia.log

On AIX, if you enter the ps command after launching the ISS daemon, you can
see that the ISS daemon process is running:

This is our initial customized copy of the basic configuration
sample. We created this minimal configuration file before
using the ISS GUI. We replaced yourCellName and yourHostName
with names appropriate for our configuration.

cell Cary local
node rs600023 1
142 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 102. Confirming that the ISS Daemon Process is Running

4.2.4.3 Starting the Configuration GUI
Now you can start the GUI. To do so, enter the command ndadmin.

If your platform is Windows NT, you can also click Start->Programs->Network
Dispatcher. The Network Dispatcher item in the Programs menu was created
during the installation and is another method of launching the GUI.
Chapter 4. ND Basic Scenarios 143

Figure 103. ND Configuration GUI Window

The left pane displays a tree structure, with Network Dispatcher at the top level,
and Dispatcher, Interactive Session Support and Content Based Routing as
components if they are installed. You can select elements in the tree structure by
clicking mouse button one (typically the left button), and you can display pop-up
menus by clicking mouse button two (typically the right button). The pop-up
menus for the tree elements are also accessible from the menu bar located at the
top of the window. Each item in the tree is marked with a plus sign (+) or a minus
sign (-). Click the plus sign (+) to expand the items within it and the minus sign (-)
to contract the items.

On AIX, if you enter the ps command after launching the command ndadmin, you
can see that ndadmin is implemented as a Java class, running through the JVM
java executable file (see Figure 44 on page 86)

4.2.4.4 Connecting to a Host
The next step in configuring ISS is to make a connection to a host where the ISS
daemon is running. This is an effect of the new Remote Authenticated
Administration feature, which enables ND component configuration to be done on
144 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

a remote client machine. See 3.3.1, “Remote Authenticated Administration” on
page 75 for further detail on remote configuration.

In this case, we are performing this configuration on the ISS manager machine
itself. However, the connection still must take place.

To make the connection, right-click Interactive Session Support in the tree
structure. In the pop-up window that appears, select Connect to Host..., as
shown in the following figure:

Figure 104. ISS Host Connection Menu

We selected the host name of the machine where we are doing the initial ISS
configuration, which was the same machine where we would be running the ISS
monitor and the Dispatcher (see Figure 99 on page 140) in the following window:
Chapter 4. ND Basic Scenarios 145

Figure 105. Selecting a Host to Perform the ISS Configuration On

After clicking OK, the GUI was refreshed to show the ISS host connection and the
single Cary cell that we had defined in our iss.cfg file. Selecting Cell: Cary shows
us the default values:

Figure 106. Default Cell Statistics
146 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

4.2.4.5 Adding Nodes
The next step is to add nodes to your configuration. To do this, right-click Cell:
Cary and then select Add Node in the Cell menu, as shown in the following
figure:

Figure 107. ISS Cell Menu

You will be prompted for the node name and the order number for the node as
seen in Figure 108.

We configured the Dispatcher machine rs600023 to be the primary ISS monitor,
and the three Web servers aixafs, aixncf157 and wtr05193 to be ISS agents.
While wtr05193 is explicitly set as incapable of becoming a monitor by using the
NotMonitor keyword, aixafs and aixncf157 were backups to the monitor node. The
NotMonitor keyword is not specified for aixafs and aixncf157 and the priority
numbers are set as 1 for rs600023, 2 for aixafs and 3 for aixncf157.

This means that aixafs will be the first ISS machine to take over and become the
ISS monitor, should the primary ISS monitor rs600023 fail. Should aixafs fail, then
it would be aixncf157 that takes over. These simple steps are enough to
implement ISS high availability.
Chapter 4. ND Basic Scenarios 147

Figure 108. Supplying Node Information to the GUI

At this point, the GUI is updated to reflect the new node that you added.

From the command line, we then added the remaining nodes with these
commands:

isscontrol add node aixncf157 3
isscontrol add node wtr05193 98

At this point, the configuration tree on the left side of the GUI was updated to
show the two nodes that were added from the command line. For node wtr05193,
we changed the ISS monitor attribute to NotMonitor by selecting Cannot Monitor
from the monitor selection menu, accessible by clicking the drop-down menu
indicator to the right of the monitor status value:
148 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 109. Changing the Monitor Attribute for Node wtr05193

The command-line version of this would be:

isscontrol set node wtr05193 CanMonitor false

When values are entered directly into the GUI window, as we did with the above
Monitor pull-down menu, it is important to click the Update Configuration button
at the bottom of the display. This writes the changes to the ISS configuration file,
iss.cfg.

If the nodes you are adding have multiple network interfaces on them, then you
can define these individually by right-clicking the Node entry; this would open the
Node menu, which can be used to select Add Interface to Node. In our scenario,
our nodes had only one network interface and so we did not need to do this step.

4.2.4.6 Defining Resource Types
The next step is to add resources to your configuration. To do this, right-click
Cell: Cary and then select Add ResourceType in the Cell menu (see Figure 107
on page 147).
Chapter 4. ND Basic Scenarios 149

In this case, we would like to add a CPU ResourceType and so we type CPU in the
Add ResourceType window, as shown in the following figure:

Figure 110. Adding a CPU Resource Type

ResourceType entries are given the following default values, which in this case
are appropriate for the CPU ResourceType:

Figure 111. The Default Values for the CPU Resource
150 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

We then modified the CPU ResourceType Recover limit and Fail limit by entering
the new values 80 and 95, respectively, directly into the GUI fields. Following this,
we clicked on Update Configuration to update the ISS configuration file, iss.cfg.

4.2.4.7 Defining Services
The next step was to add services to our configuration. To do this, we
right-clicked Cell: Cary and then selected Add Service in the Cell menu (see
Figure 107 on page 147). In the Add Service window, we gave the service a
name, wwwservice, and also supplied a service DNS name. The Service DNS
name is not needed when you are using ISS to update the Dispatcher as in this
case. However, you must fill in the blank with a placeholder name; for this reason,
we typed in PlaceHolder, as shown in the following figure:

Figure 112. Adding a Service

Once we added the service name, from the Service menu we selected Add
ResourceType to Service, as shown in the following figure:
Chapter 4. ND Basic Scenarios 151

Figure 113. The Service Menu

In the Add ResourceType to Service window, we selected the CPU ResourceType
that we had defined in 4.2.4.6, “Defining Resource Types” on page 149:

Figure 114. Adding a ResourceType to the Service

Following this, we selected Add Node Interface to Service from the Service
menu (see Figure 113) and then we were presented with the Add Node Interface
to Service window, showing the list of nodes we had added in 4.2.4.5, “Adding
Nodes” on page 147:
152 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 115. Add Node Interface to Service Selection List

We were able to only select one node at a time from this window. We added
aixafs through the GUI and added the other two nodes to our wwwservice from
the command line as follows:

isscontrol add node aixncf157 to service wwwservice
isscontrol add node wtr05193 to service wwwservice

The Interface List section of the Service information for the wwwservice service
was updated to reflect the three nodes we had added:
Chapter 4. ND Basic Scenarios 153

Figure 116. Service Statistics Showing ResourceType and Nodes (Interfaces) Added

4.2.4.8 Defining Observers
The next step was to add observers to our configuration. To do this, we
right-clicked Cell: Cary and then selected Add Observer in the cell menu (see
Figure 107 on page 147). The Add Observer window features three radio buttons
at the top where you select which type of Observer you are defining. In this case,
we selected Dispatcher and the default port number changed to 10004. This is
the port that is used to send the metric load information to the Dispatcher. In the
selection list at the bottom of the Add Observer window, we selected the host
where the Dispatcher server was running, rs600023. This host is the machine
where the Dispatcher was running and that ISS would be providing load statistics
to.
154 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 117. Add Observer

After we clicked OK, we went back to the GUI and selected the new Observer,
Observer: rs600023. The settings for this Observer were immediately displayed.
Next, we added a service to this Observer by right-clicking Observer: rs600023
in the tree and selecting Add Service to Observer, as shown in the following
figure:
Chapter 4. ND Basic Scenarios 155

Figure 118. Observer Menu

We were then shown a list of the defined Services in the Add Service to Observer
window, and in this case there was only one: wwwservice. We selected it and
clicked OK:

Figure 119. Add Service to Observer Window

As a result of this, the Service List section for our rs600023 Observer was
updated to reflect the service name we had just added to our Observer:
156 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 120. Updated Observer Information Showing the Service Name

At this point, we examined our ISS configuration file, /etc/iss.cfg, and saw that it
had been modified to include the ISS keywords required to create the ISS
environment that we had configured through the GUI, as shown below:
Chapter 4. ND Basic Scenarios 157

Figure 121. System Modified iss.cfg File

Once the configuration of our environment was complete, we placed a copy of
this configuration file on the three other nodes and then started the ISS daemon
on them as well. On the three Web server nodes, the ISS daemon started in its
capacity as an agent as a result of the format of its own Node entry in the
configuration file.

4.2.5 Managing ISS
In this section we explain how to stop and start both ISS and its configuration
GUI. See 4.2.4.2, “Starting the ISS Daemon” on page 142 for details on how to
start ISS, and see 4.2.4.3, “Starting the Configuration GUI” on page 143 for
instructions on how to start the configuration GUI.

In the following section, we see how ISS can be controlled and reconfigured
during run time.

4.2.5.1 Dynamically Reconfiguring ISS
You can control and reconfigure ISS while it is running by using the isscontrol

command or the GUI.

ISS Configuration file
Automatically generated at 1999/03/01 16:46:21

Cell Cary LOCAL
PortNumber 7139
LogLevel INFO
HeartbeatInterval 10
HeartbeatsPerUpdate 2
HeartbeatsToNetFail 4
HeartbeatsToNodeFail 6

Node rs600023 1
Node aixafs 2
Node aixncf157 3
Node wtr05193 98
NotMonitor

ResourceType CPU
Metric INTERNAL CPULoad
Policy MIN
MetricWeight 1.0
MetricNormalization 0.0 100.0
MetricLimits 80.0 95.0

Service wwwservice PlaceHolder 0
SelectionMethod BEST
ResourceList CPU
NodeList aixafs

aixncf157
wtr05193

Dispatcher rs600023 10004
ServiceList wwwservice
158 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

To demonstrate this, we used the environment described in 4.2, “Load Balancing
Scenario Using the Dispatcher and ISS” on page 137. In that scenario, Web
server nodes aixafs and aixncf157 were configured as being capable of taking
over the function of ISS monitor if required. On the contrary, Web server node
wtr05193 was configured to not take over the function of ISS monitor, as shown in
Figure 109 on page 149. The demonstration of changing the ISS configuration
was done in two steps:

1. We changed the designation of Web server node aixncf157 so that it could no
longer be selected as an ISS monitor.

2. We monitored for this change to be reflected in the configuration file of one of
our other nodes, for example aixafs.

Prior to the change being made, we used FTP to propagate the iss.cfg file to each
of the nodes in our cell. Following this, we started ISS on each of these nodes.

We then verified both in the ISS configuration file and via the GUI, that aixncf157
had been designated as a potential monitor. We did this verification on both
rs600023 and on aixafs. Following is the aixncf157 node status as it appeared on
rs600023:

Figure 122. Web Server Node aixncf157 Can Monitor Status as Shown on rs600023

The same status is shown on the other Web server node aixafs:
Chapter 4. ND Basic Scenarios 159

Figure 123. Web Server Node aixncf157 Can Monitor Status as Shown on aixafs

We then used the GUI on rs600023 to change the status of aixncf157. We did this
by selecting Cannot Monitor on the Monitor pull-down menu.

Then we clicked the Update Configuration button at the bottom of the GUI. We
also confirmed that the ISS configuration files were updated on all of the
machines by looking at the /etc/iss.cfg file on both rs600023 (where the change
was made) and aixafs (one of the nodes participating in the cell).

Following this, we refreshed the GUI on our other Web server machine aixafs and
saw that the Monitor status of aixncf157 had changed correspondingly:

The same change could have been accomplished by using the isscontrol

command from the command line:

isscontrol set node nodename CanMonitor false

In our case, this would have appeared as:

isscontrol set node aixncf157 CanMonitor false

Using the Command Line
160 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 124. Web Server Node aixncf157 Cannot Monitor Status as Shown on aixafs

We confirmed by the timestamp on the ISS configuration file on aixafs that the
change had been automatically propagated from rs600023.

4.2.5.2 Saving the Host Connections
The GUI host connections can be saved by selecting File on the menu bar of the
configuration window (see Figure 120 on page 157) and then clicking Save Host
Connections As.... In the panel that appears, enter the configuration file name
that you would like the Host Connection information saved into (see Figure 96 on
page 136). This file is saved in the directory installbase/configurations, where
installbase is the install directory for the admin component that varies by
operating system. See Table 1 on page 69 for a list of the installbase locations.

As a result of saving this information, on subsequent invocations of the GUI this
host connection will be listed as one of the choices in the Connect to Host
selection screen (see Figure 46 on page 87).

4.2.5.3 Disconnecting from the Host
To disconnect from the host, right-click the Host item, either in the tree or on the
menu bar, and then select Disconnect from Host.
Chapter 4. ND Basic Scenarios 161

4.2.5.4 Terminating the GUI
To exit the GUI, select File->Exit. Your ISS configuration file should automatically
be updated at this time.

4.2.5.5 Stopping ISS
On AIX and Solaris, as root, enter:

isscontrol shutdown nodename

On Windows NT, as a system administrator, from the Services folder of the
Control Panel, select IBM Interactive Session Support, then click Stop.
162 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 5. Rules-Based Load Balancing

You can use rules-based load balancing to fine tune when and why packets are
sent to which servers. Rules-based load balancing is a feature available only for
the Dispatcher and Content Based Routing (CBR) components of IBM
SecureWay Network Dispatcher (ND) V2.1. These components review any rules
you add from first priority to last priority, stopping on the first rule that they find to
be true, and then balance the load between any servers associated with the rule.

The Dispatcher already has the capability of balancing the load based on
destination and port. Using rules expands your ability to distribute connections
and offers another possible way to manage the load distribution in a cluster.
Rules are particularly useful when you want to distribute the load to a subset of
your servers for any reason. You must always use rules with the CBR component.

5.1 Types of Rules

You can use the following types of rules:

• Client IP address

You might want to use rules based on the client IP address if you want to
screen the customers and allocate resources based on where they are coming
from.

For example, you have noticed that your network is getting a lot of unpaid and
therefore unwanted traffic from clients coming from a specific set of IP
addresses. You can add a rule that instructs the Dispatcher not to serve those
requests, or to distribute them among a limited subset of your servers.

• Time of day

You may want to use rules based on the time of day for capacity planning
reasons. For example, if your Web site gets accessed most during the same
group of hours every day, you might want to dedicate five servers to HTTP
full-time, then add another five during the peak time period.

Another reason you might use a rule based on the time of day could be, for
example, if you want to bring some of the servers down for maintenance every
night at midnight. In this case, you would set up a rule that excludes those
servers during the necessary maintenance period.

• Connections per second on a port

You might want to use rules based on connections per second on a port if you
need to share some of your servers with other applications.

For example, you set two rules:

1. If the number of connections per second on port 80 is greater than 100,
then distribute the load on two specific Web servers.

2. If the number of connections per second on port 80 is greater than 2000,
then distribute the load on 10 specific Web servers.

Or you might be using Telnet and want to reserve two of your five servers for
Telnet use, except when the connections per second increase above a certain
level. This way, the Dispatcher would balance the load across all five servers
at peak times.
© Copyright IBM Corp. 1999 163

Note that the Manager must be running for the above to work.

• Active connections total for a port

You might want to use rules based on the total number of active connections
on a specific port. This is very useful for when your servers get overloaded
and start throwing packets away.

In fact certain Web servers will continue accepting connections even though
they do not have enough threads to respond to the requests. As a result, the
client requests time out and the customer coming to your Web site is not
served. You can set rules based on the total number of active connections to
balance capacity within a pool of servers.

For example, you know from your experience that your servers will stop
serving requests after they have accepted 250 connections. Then, you can
create a rule that instructs the Dispatcher to use your current servers, but
some additional servers are automatically added when the total number of
active connections becomes greater than 250. Those additional servers will
otherwise be used for other processing.

Note that the Manager must be running for the above to work. This type of rule
is available to both the Dispatcher and CBR components.

• Client port

You may want to use rules based on the client port if your clients are running
software that uses a specific client port when making requests.

For example, you could create a rule that says that any requests with a client
port of 10002 will have to use a set of special fast servers because you know
that any client requests with that port are coming from an elite group of
customers.

The client port rule type is available only for the Dispatcher component.

• Content of a request

Request content type rules are used to send requests to sets of servers
specifically set up to handle some subset of your sites traffic. For example,
you may want to use one set of servers to handle all CGI-BIN requests,
another set to handle all streaming audio requests, and a third set to handle all
other requests. To do this, you will add one rule with a pattern that matches
the path to your CGI-BIN directory, another that matches the file type or your
streaming audio files, and a third always true rule to handle the rest of the
traffic. You will then add the appropriate servers to each of the rules.

This rule type is available only to the CBR component. For further information
about configuring content type rules, see Chapter 14, “Content Based
Routing” on page 329.

• Always true

A rule can be created that is always true. Such a rule will always be selected,
unless all the servers associated with it are down. For this reason, it should
ordinarily be at a lower priority than other rules. You can even have multiple
always-true rules, each with a set of servers associated with it. The first true
rule with an available server is chosen.

For example, assume you have six servers. You want two of them to handle
your traffic under all circumstances, unless they are both down. If the first two
servers are down, you want a second set of servers to handle the traffic. If all
164 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

four of these servers are down, then you will use the final two servers to
handle the traffic. To do this, you can set up three always-true rules. Then, the
first set of servers will always be chosen as long as at least one is up. If they
are both down, one from the second set will be chosen, and so forth.

You can define more than one always-true rule, and thereafter adjust which
one gets executed by changing their priority levels.

We recommend that you make a plan of the logic that you want Dispatcher to
follow before you start adding rules to your configuration.

5.2 How Rules Are Evaluated

All rules have a name, type, priority, begin range, and end range, and may have a
set of servers. Rules are evaluated in priority order, with lower priority rules
evaluated first. In other words, a rule with a priority of 1 will be evaluated before a
rule with a priority of 2. The first rule that is satisfied will be used. Once a rule has
been satisfied, no further rules are evaluated.

For a rule to be satisfied, it must meet two conditions:

1. The predicate of the rule must be true. That is, the value it is evaluating must
be between the begin and end ranges. For always-true rules, the predicate is
always satisfied, regardless of the begin and end ranges.

2. If there are servers associated with the rule, at least one of them must be
available to forward packets to.

If a rule has no servers associated with it, the rule needs to meet only the first
condition to be satisfied. If no rules are satisfied, a server will be selected from
the full set of servers available on the port.

5.3 Rules-Based Load Balancing Scenario

In this section we show you how it is possible to integrate the load balancing rules
in a working scenario. Our scenario involved a Web client machine sending
requests to a Web site, composed of three clustered Web servers balanced by a
Dispatcher machine. We started by confirming that all three clustered servers
were receiving Web requests in a round-robin fashion. We then added a rule
eliminating one of the servers during certain hours of the day. We made some
requests during those hours and then examined again the distribution of requests
to verify the implication of the rule.

5.3.1 Network Environment
The network environment we used in this scenario is the same one that was used
in 4.2, “Load Balancing Scenario Using the Dispatcher and ISS” on page 137,
and is described in the following table:

Table 9. Basic Scenario - Hardware, Software, and Network Configuration

Workstation Host Name IP Address Operating System Service

IBM PC 365 wtr05212 9.24.104.218 Windows NT Server 4.0 Web Client
Chapter 5. Rules-Based Load Balancing 165

All the above machines were provided with a token-ring interface and connected
to the same local area network (LAN).

Notice that:

1. The load balancing function was provided by the Dispatcher component of ND
V2.1.

2. Netscape Navigator 4.5 was the Web browser running on the Web client
machine.

3. The Web server function on the three clustered Web servers was provided by
the IBM HTTP Server Version 1.3.3.

The following figure offers a logical representation of the network environment
where we performed this scenario:

IBM RS/6000 43P rs600023 9.24.104.128 AIX 4.3.1 Dispatcher

clusterend 9.24.104.105

IBM RS/6000 43P aixncf157 9.24.104.157 AIX 4.3.1 Web Server

IBM RS/6000 43P aixafs 9.24.104.158 AIX 4.3.1 Web Server

IBM PC 365 wtr05193 9.24.104.239 Windows NT Server 4.0 Web Server

Workstation Host Name IP Address Operating System Service
166 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 125. Graphical Representation of the Rules-Based Scenario

5.3.2 Rules Configuration
We added rules to our Dispatcher using the graphical user interface (GUI).

The following figure is the ND GUI that displays the basic running configuration of
the Dispatcher that we set up:

Internet

Dispatcher

cluster address
9.24.104.105

clusterend.itso.ral.ibm.com

nonforwarding address
9.24.104.128

rs600023.itso.ral.ibm.com

9.24.104.157 9.24.104.158 9.24.104.239

5315\531512
Chapter 5. Rules-Based Load Balancing 167

Figure 126. Basic Dispatcher Configuration

To generate the HTTP requests, we deactivated the browser cache on the Web
client machine, and set up a direct connection to the Internet without passing
through a proxy server.

Before adding a rule, we submitted a set of requests from the Web client and
verified that the Dispatcher was able to select each of the three servers members
of the cluster. We did this by using the ND GUI monitor to view the number of new
connections on port 80. To bring up the ND GUI monitor, we right-clicked on the
Port: 80 tree element, and in the pop-up menu we selected Monitor. The
manager component must be active in order for Monitor to be selectable. The
monitor output is shown in the following figure:
168 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 127. Dispatcher GUI Monitor

At this point, we wanted to add a rule based on the time of day. What we wanted
the Dispatcher to do was to distribute the incoming HTTP requests from 19:00
through 19:59 only to the two Web server machines with IP addresses
9.24.104.157 and 9.24.104.158. Outside of the specified time, all the three Web
servers should have been active.

To add the rule, we right-clicked the item Port: 80 in the left panel of the ND GUI,
and in the pop-up menu, selected Add Rule...:
Chapter 5. Rules-Based Load Balancing 169

Figure 128. Adding a Rule

Then the Add a Rule dialog window was displayed:
170 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 129. Add a Rule Dialog Window

We filled in the dialog window as follows:

• We assigned a mnemonic name to the rule. In our case, we entered
timeOnly157-158.

• We selected the type of the rule. In our case, we chose Time of Day.

Other choices for the rule type would be:

• IP address

The rule will be based on the client IP address.

• Total connections (per second)

The rule will be based on the number of connections per second on the
port. This rule will work only if the Manager is running.

• Active connections (total)

The rule will be based on the number of active connections total on the
port. This rule will work only if the Manager is running.

• Client port

The rule will be based on the client port number.

• Always true

The rule will always be true.
Chapter 5. Rules-Based Load Balancing 171

• Then we specified the priority of the rule. Priorities establish the order in which
rules will be reviewed. This parameter accepts integer values, and we set it to
10.

If you do not specify the priority of the first rule you add, Dispatcher will set it
by default to 1. When a subsequent rule is added, by default its priority is
calculated to be 10 plus the current lowest priority of any existing rule. For
example, assume you have an existing rule whose priority is 30. You add a
new rule and set its priority at 25 (which, remember, is a higher priority than
30). Then you add a third rule without setting a priority. The priority of the third
rule is calculated to be 30 + 10 = 40.

• Then we specified the begin range and the end range parameters.

The begin range parameter represents the lower value in the range used to
determine whether or not the rule is true. The type of values you can assign to
it depends on the type of the rule. The type of values and its default are listed
here, depending on the rule type:

• IP address

This is the address of the client as either a symbolic name or in
dotted-decimal format. The default is 0.0.0.0.

• Time of day

An integer is expected here. The default is 0, representing midnight.

• Total connections (per second)

An integer is expected here. The default is 0.

• Active connections (total)

This is an integer. The default is 0.

• Client port

This is an integer. The default is 0.

The end range parameter represents the higher value in the range used to
determine whether or not the rule is true. The type of values you can assign to
it depends on the type of the rule. The type of value and its default are listed
here, depending on the rule type:

• IP address

This is the address of the client as either a symbolic name or in
dotted-decimal format. The default is 255.255.255.254.

• Time of day

An integer is expected here. The default is 24, representing midnight.

Note that when defining the begin range and end range parameters for time
intervals, each value must be an integer representing only the hour portion
of the time; portions of an hour are not specified. For this reason, to specify
a single hour, say, the hour between 3:00 and 4:00 a.m., you would specify
a begin range of 3 and an end range also of 3. This will signify all the
minutes between 3:00 and 3:59. Specifying a begin range of 3 and an end
range of 4 would cover the two-hour period from 3:00 through 4:59.

In our case, we wanted the rule to be true during the time from 19:00
through 20:59, and so we set the begin range to 19 and the end range to
20.
172 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• Total connections (per second)

This is an integer. The default is 232 - 1.

• Active connections (total)

This is an integer. The default is 232 - 1.

• Client port

An integer is expected here. The default is 65535.

• The last item on the Add a rule dialog window is a new feature of this version.
You are presented with a scrolled list of server addresses to optionally choose
from. In this case we chose 9.24.104.158 and 9.24.104.157, the two servers
that we wanted to serve the client requests between 19:00 and 19:59. We
used the Shift key to select the second server after the first one was selected.

At this point we clicked the OK button in Figure 129 on page 171. The GUI
reported the configuration was updated with the added rule, as shown in the
following figure:

Figure 130. Updated Rule Status Window

Once the rule is added, if you want to change which servers to use if the rule is
true, right-click the Rule and select Add Server... or Remove Server as shown in
Figure 130.
Chapter 5. Rules-Based Load Balancing 173

This step completed the rule configuration.

The same configuration could have been accomplished from the command line by
using these commands:

ndcontrol rule add 9.24.104.105:80:timeOnly157-158 type time priority 10 beginrange 19 endrange 20

ndcontrol rule useserver 9.24.104.105:80:timeOnly157-158 9.24.104.158
ndcontrol rule useserver 9.24.104.105:80:timeOnly157-158 9.24.104.157

To verify that the configuration shown was working correctly, we submitted again
a set of requests from the Web browser to the clustered Web site, but this time we
set it between 19:00 and 19:59. The following screen shows the Dispatcher
monitor GUI displaying the new connections on port 80:

Figure 131. Verifying that the Rule Configuration Has Been Successful

This shows that the Dispatcher was not routing new requests to 9.24.104.239.
The base level for all three servers is not 0.0 because we have an active HTTP
advisor that is sending HEAD requests to each of the servers to ensure they are
still responding and to assess the load on each of them.

The Rule Status window, in the Current Statistics section, shows the number of
times the rule is activated:
174 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 132. Rule Status Window Showing the Number of Times the Rule Was Activated

The timeOnly157-158 rule triggered 199 times during our test. After 20:00, we
generated another HTTP request load from our Web browser. This time, as
expected, the Dispatcher made use of all three Web servers in the cluster.

Figure 131 and Figure 132 confirmed that the rule configuration was successful.
Chapter 5. Rules-Based Load Balancing 175

176 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 6. ND High Availability Support

In 4.2, “Load Balancing Scenario Using the Dispatcher and ISS” on page 137, we
showed how to implement ISS high availability.

The Dispatcher component of IBM WebSphere Performance Pack Version 2
offers built-in high availability also for the Dispatcher function. A standby
Dispatcher machine remains ready at all times to take over load balancing should
the primary Dispatcher machine fail.

The high-availability configuration detects and recovers from network and server
failures. The Dispatcher component of IBM WebSphere Performance Pack
Version 2 is smart enough to determine that a server or a network is down. In
case of failure, clients lose only the current connections, but they can immediately
establish a new connection to the remaining servers with no problems.

The high-availability environment involves two Dispatcher machines with
connectivity to the same clients, and to the same cluster of servers, as well as
connectivity between the Dispatchers. Both the Dispatchers must be using the
same operating systems.

The two Dispatcher machines are usually referred to as primary machine and
backup machine:

• The primary machine works normally as a Dispatcher, and is in the active
state while it is balancing the load among the servers of its clusters.

• The backup machine, configured in a very similar way to the primary machine,
stays in standby mode unless the primary fails.

The two machines are synchronized, and only the primary machine routes
packets, while the backup machine is continually updated.

The two machines establish communication to monitor the status of each other,
referred to as a heartbeat, using a port that you can choose. If the primary
machine fails, the backup machine detects this failure, switches to active state,
and begins to take over the routing of packets. When the primary machine is
operational again, but in standby state, you can either decide that it again
automatically becomes the active machine, or leave it in standby mode. In this
case, you will have to act manually if you want it to become the active machine
again.

We see in 6.1, “Dispatcher High-Availability Scenario” on page 177 how to
implement Dispatcher high availability. In 11.1, “Firewall High Availability Using
the Dispatcher” on page 273, we show how it is possible to use the
high-availability feature incorporated in the Dispatcher to provide firewall high
availability.

6.1 Dispatcher High-Availability Scenario

In this section we describe the procedure we followed to configure the Dispatcher
high-availability feature on our test environment.
© Copyright IBM Corp. 1999 177

6.1.1 Network Architecture
A summary of the hardware, software and network configuration of the
environment where we performed our test is reported in the following table:

Table 10. Basic Scenario - Hardware, Software, and Network Configuration

As you can see from the table above, the network interface on each Dispatcher
machine is configured to respond to two IP addresses and host names: the
nonforwarding address and the cluster address respectively.

All the above machines had a token-ring interface and were connected to the
same local area network (LAN). The domain name for all the machines was
itso.ral.ibm.com.

The following figure offers a graphical representation of the Dispatcher
high-availability scenario that we implemented:

Workstation Host Name IP Address Operating System Service

IBM RS/6000 43P rs600023 9.24.104.128 AIX 4.3.1 Primary Dispatcher

clusterend 9.24.104.105

IBM RS/6000 43P rs600030 9.24.104.97 AIX 4.3.1 Backup Dispatcher

clusterend 9.24.104.105

IBM RS/6000 43P aixncf157 9.24.104.157 AIX 4.3.1 Web Server

IBM RS/6000 43P aixafs 9.24.104.158 AIX 4.3.1 Web Server

IBM PC 365 wtr05193 9.24.104.239 Windows NT Server 4.0 Web Server

You can see that we installed both the primary and the backup Dispatcher
machines on AIX 4.3.1. The most important thing you should remember when
you make your plans for Dispatcher high availability is that the two machines
implementing the Dispatcher function are currently only supported if they run
the same operating system. You should not configure the high availability
feature if, for example, one Dispatcher machine runs Windows NT and the
other AIX or Solaris.

Dispatcher Operating Systems when Using High Availability
178 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 133. High-Availability Scenario Configuration

6.1.2 Configuration Steps Common on Both the Machines
Before starting the configuration, you need to define the cluster address, which
must be the same for both the Dispatcher machines. Both the primary and the
backup machines must have their own nonforwarding address for remote
administration and configuration.

Note that the primary and backup machines must be configured in the same way.
The same processes (Executor, Manager and Advisors) must run in both
machines.

In the following we show the configuration steps for the Dispatcher that we
elected to use as the backup Dispatcher machine (the machine with hostname
rs600030 and IP address 9.24.104.97). The same steps must be done on the
other machine that will act as the primary Dispatcher machine (the machine with
host name rs600023 and IP address 9.24.104.128).

Internet

Backup Dispatcher

cluster address
9.24.104.105

clusterend.tiso.ral.ibm.com

non-forwarding address
9.24.104.97

rs600030.itso.ral.ibm.com

cluster address
9.24.104.105

clusterend.itso.ral.ibm.com

non-forwarding address
9.24.104.128

rs600023.itso.ral.ibm.com

9.24.104.157 9.24.104.158 9.24.104.239

5315\531514

Primary Dispatcher
Chapter 6. ND High Availability Support 179

First we started the ndserver component. To do this, from a command line we
entered the ndserver command.

We decided to perform all the configuration activities for the Dispatcher by using
the GUI. The same steps could be performed by using the command line, as we
see in 11.1, “Firewall High Availability Using the Dispatcher” on page 273. We
launched the GUI by entering the ndadmin command.

Using the GUI, we started the Executor, with 9.24.104.97 as the nonforwarding
address; then we defined a cluster for the HTTP service on TCP port 80. On port
80 we added the three Web servers. Of course it was necessary to configure the
three Web servers to be nodes of the cluster. Then, on the Dispatcher machine,
we started the Manager and launched the HTTP Advisor on port 80. We also set
the proportions for the Manager and the smoothing index. For details on how to
perform all these configuration steps, see 4.1, “Load Balancing Basic Scenario
Using the Dispatcher” on page 81. You can add ISS to this configuration, using
the ISS high availability support. In this case we recommend you see 4.2, “Load
Balancing Scenario Using the Dispatcher and ISS” on page 137.

In the following figures we show the panels that summarize the configuration.

The first window shows the Executor Status panel for the backup Dispatcher
machine. We accepted all the default values:
180 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 134. Backup Dispatcher – Executor Status

The Executor Status window for the primary Dispatcher machine was very similar.
The only difference was that the nonforwarding address for the primary
Dispatcher showed as 9.24.104.128.

The Cluster Status panel is shown in the next figure:
Chapter 6. ND High Availability Support 181

Figure 135. Backup Dispatcher – Cluster Status

In Figure 136 you will find the Port Status panel. The addresses of the three Web
servers are visible in the figure:
182 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 136. Backup Dispatcher – Port Status

Finally, we show the Manager Status panel. In this case, we did not accept the
default values, but we changed the proportions to 49 49 2 0 and the smoothing
index values to 6, as shown in the following figure:
Chapter 6. ND High Availability Support 183

Figure 137. Backup Dispatcher – Manager Status

The reason we set the Proportions given to system metrics to 0 is that in this
particular scenario we are not making use of ISS. In fact, our purpose here is to
show how to configure Dispatcher high availability, and the use of ISS would not
make any difference here. However, you can add ISS to the scenario, and
configure ISS high availability as explained in 4.2, “Load Balancing Scenario
Using the Dispatcher and ISS” on page 137.

6.1.3 Configuration Steps for High Availability
Now we start the configuration of the Dispatcher high-availability feature. This
operation can easily be done through the GUI configuration panels.

On the backup Dispatcher machine, click Host and from the pop-up menu select
Add High Availability Backup. You will get a dialog similar to the following,
which requires you to specify several parameters:
184 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 138. Backup Dispatcher – Add Backup Panel

In the Port number field enter the port over which the two Dispatcher machines
will communicate to exchange data for the synchronization of the Dispatcher
information. Entering a correct port number is up to you. No default value will
appear. We entered a random port number, 34756, but we had to ensure that the
selected port was unused on both the Dispatcher machines. To check for that, we
issued on both machines the following command:

netstat -an | grep 34756

We received no output on both machines, which meant that port 34756 was not
already in use.

We then elected this machine to have the backup role. This can be done by
selecting Backup from the Role pop-up menu.

We also decided to set the recovery strategy to Auto. The recovery strategy
determines which course of action is taken when a failed primary becomes active
again. There are two kinds of recovery strategies:

1. Automatic

The primary machine resumes routing packets as soon as it becomes
operational again.

2. Manual

The backup machine continues routing packets even after the primary
machine becomes operational. Manual intervention is required to return the
primary machine to active state and reset the backup machine to standby.

Notice that the Recovery strategy parameter must be set the same for both
machines.
Chapter 6. ND High Availability Support 185

The manual recovery strategy allows you to force the routing of packets to a
particular machine, using the takeover command, which is also available through
the GUI. Manual recovery is useful when maintenance is being performed on the
other machine. The automatic recovery strategy is designed for normal
unattended operation. We explain the recovery strategy in more detail at the end
of this section.

In Figure 138 we also added the heartbeat information, the mechanism through
which the two Dispatchers continuously detect each other’s state.

The following figure shows the values we entered for the other Dispatcher
machine, the one we elected as primary Dispatcher:

Figure 139. Primary Dispatcher - Add Backup Panel

Notice that in this case the heartbeat addresses are inverted as compared with
the backup Dispatcher machine (see Figure 138). The Role field was set to
Primary and the port number was the same we used on the backup Dispatcher,
since we had already verified that it was not used by any other process.

The heartbeat is a mechanism of message exchange between the two
Dispatchers to detect Dispatcher failure. Besides this mechanism of failure
detection, there is another failure detection mechanism named reachability
criteria. When you configure the Dispatcher, you provide a list of hosts that each
of the Dispatchers should be able to reach by pinging in order to work correctly.
You should use at least one host for each subnet your Dispatcher machine uses.
The hosts could be routers, gateways, IP servers or other types of hosts. Host
reachability is obtained by the reach Advisor, which pings the host. Switchover
takes place if the heartbeat messages cannot go through or if the reachability
criteria are met better by the standby Dispatcher than by the primary Dispatcher.
To make the decision based on all the available information, the active Dispatcher
sends the standby Dispatcher its reachability capabilities. The standby
186 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Dispatcher then compares those capabilities with its own and decides whether to
switch.

We added the information about the reachability criteria in both the Dispatcher
machines in the same way. We right-clicked the High Availability item in the left
panel, then selected Add Reach Target from the pop-up menu. We were
presented with a dialog and in it we entered 9.24.104.1, which was the IP address
of the gateway machine in our intranet, as shown in the following figure:

Figure 140. Primary and Backup Dispatcher - Add a Reach Target

The following figure shows the High Availability status panel for the backup
Dispatcher:
Chapter 6. ND High Availability Support 187

Figure 141. Backup Dispatcher - High Availability Status

In the Current Statistics section of the High Availability Status panel, you can see
that this machine (the backup) is in standby state and is synchronized with the
other machine (the primary). This means that the heartbeat mechanism is
working correctly.

The following figure illustrates the High Availability Status panel for the primary
Dispatcher, which is in active state and is synchronized with the standby
Dispatcher as well:
188 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 142. Primary Dispatcher - High Availability Status

To further check whether the heartbeat mechanism was on, from a command line
we entered the following command:

tcpdump -I -nt -i tr0 port 34756

We got the output shown in the following figure:

Figure 143. Checking for Heartbeat
Chapter 6. ND High Availability Support 189

You can see that the two machines continuously exchange IP packets with each
other.

At this point the two Dispatchers are not yet actually able to route packets. The
reason is that in a high availability environment, preparations must be made to
alias the cluster IP address to the correct interface (either an active network
interface or the loopback interface) on both Dispatcher machines:

• On the machine currently in active state, you must alias the cluster address (or
each cluster address, if you defined more than one cluster) to a network
interface card.

• On the machine currently in standby state, you must alias the cluster address,
(or each cluster address, if you defined more than one single cluster) to the
loopback device lo0.

• On any Dispatcher machine (whatever its own current state), you should
remove all defined aliases for the cluster address (both on network interface
card and loopback device) when the Executor is stopped or before it is started
for the first time. In this way no conflicts are possible.

The above-mentioned changes must be made automatically on each Dispatcher
machine when its state changes. To ensure that this happens correctly, you need
to use three script files, named goActive, goStandby and goInOp, that must be
put into a specific directory, installbase/bin, where installbase varies by operating
system. See Table 1 on page 69 for a list of the installbase locations. On the
Windows NT platform, the script file must have the .cmd extension.

Sample versions of the script files are shipped with the product. The sample
script files are located in the directory installbase/samples. Notice that the
sample files shipped with the product carry a .sample extension, which must be
removed if the sample script files are customized and used.

A description of the three script files follows, along with our modified version of
the script files used in our AIX configuration:

• goActive script

This script deletes cluster loopback aliases and adds cluster device aliases. It
will be executed when a Dispatcher machine, either the primary or backup in a
high-availability configuration, goes into active state and begins routing
packets.
190 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 144. goActive Script

• goStandby script

This script deletes every cluster device alias and adds cluster loopback
aliases. It will be executed when a Dispatcher machine in a high-availability
configuration goes into standby state.

#
goActive script
#
Configure this script when using the high availability feature of
Network Dispatcher.
#
This script is executed when Network Dispatcher goes into the
'Active' state and begins routing packets.
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter.
#
NETMASK must be the netmask of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.24.104
INTERFACE=tr0
NETMASK=0xffffff00
#
echo "Adding cluster alias(es)"
for CLUSTER in 105; do

ifconfig lo0 delete $NETWORK.$CLUSTER
ifconfig $INTERFACE alias $NETWORK.$CLUSTER netmask $NETMASK

done
Chapter 6. ND High Availability Support 191

Figure 145. goStandby Script

• goInOp script

This script deletes all cluster device and loopback aliases. This script is
executed when a Dispatcher Executor is stopped and before it is started for
the first time.

#!/bin/ksh
#
goStandby script
#
Configure this script when using the high availability feature of
eNetwork Dispatcher.
#
This script is executed when Network Dispatcher goes into the
'Standby' state. Monitoring the health of the 'Active' machine
but not routing packets.
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter
#
NETMASK must be the netmask of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.24.104
INTERFACE=tr0
NETMASK=0xffffff00
#
echo "Deleting the device aliases and adding the loopback aliases"
for CLUSTER in 105 ; do

ifconfig $INTERFACE delete $NETWORK.$CLUSTER
ifconfig lo0 alias $NETWORK.$CLUSTER netmask $NETMASK

done
192 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 146. goInOp script

The script files used on Windows NT and Solaris are similar. In particular, you
can consult “Script Modifications on Windows NT” on page 99 to understand how
the script syntax differs on the Windows NT platform.

We made copies of the three files, customized them for our environment and
placed them in the installbase/bin directory. However, just placing them in the
right location was not enough to have the two Dispatcher machines be aware of
the exact configuration and deliver a highly available environment. We needed to
make the Dispatchers change their state in order to establish the correct
configuration for the aliases on the two machines. In other words, it was
necessary to stop and restart the Executor on both the machines.

First of all, we suggest that you save the current configuration. You can do this at
any time by right-clicking the Host item in the left panel, then selecting Save
Configuration File As... from the pop-up menu. When we did this on the backup
Dispatcher machine, we got the following panel, where we typed r30ha-bck-auto

as the name that we wanted to save the configuration file as:

#!/bin/ksh
#
goInOp script
#
Configure this script when using the high availability feature of
Network Dispatcher and optionally when using Network Dispatcher in a
standalone environment.
#
This script is executed when the Network Dispatcher executor is stopped
(and before the executor is initially started).
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER and INTERFACE to match your environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter
#
NETWORK=9.24.104
INTERFACE=tr0
#
echo "Removing all loopback and device aliases"
for CLUSTER in 105; do

ifconfig lo0 delete $NETWORK.$CLUSTER
ifconfig $INTERFACE delete $NETWORK.$CLUSTER

done
Chapter 6. ND High Availability Support 193

Figure 147. Save Configuration File – Backup Machine

The name we entered for the configuration file in the primary Dispatcher machine
was r23ha-pri-auto.

Then we stopped the Executor on both the machines by right-clicking the
Executor item on the left pane of the GUI, then clicking Stop Executor. It also
would have been possible to save the configuration when we stopped the
Executor, since there is a dialog box asking if you would like to save the
configuration before stopping the Executor.

When the Executor was stopped, the goInOp script was executed on both
machines, but without changing anything, since we did not previously define any
aliases.

Then we restarted the Executor on both machines by right-clicking the Host item
on the left pane of the GUI, clicking Load New Configuration, choosing the
configuration file name from the dialog that appears, and then clicking OK.

This is what we did on our backup Dispatcher machine to restore the
r30ha-bck-auto configuration:

Figure 148. Load Configuration File - Backup Machine

Similarly, on the primary Dispatcher machine, we loaded the configuration file
r23ha-pri-auto.

After restarting the Executors on both the machines, the primary Dispatcher
machine switched its State field to read Active (and the goActive script was
executed on that machine) while the State field in the backup Dispatcher machine
changed to Standby (and the goStandby script was executed on that machine).
Moreover, both the machines switched their Sub-state to Synchronized. Notice that
194 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

after restarting the Executors, it might be necessary to click the Refresh buttons
on the GUI to see the State and the Sub-state fields updated.

We wanted to check whether the aliases were correctly added, so from a
command line we issued the following command on both the machines:

netstat -in

We got the following output on the backup Dispatcher machine, which was in
standby state:

Figure 149. Network Interface Status - Backup Machine

This output confirmed that the alias to the cluster address 9.24.104.105 was
added on the loopback device lo0.

We got the following output on the primary Dispatcher machine, whose state was
marked as active:

Figure 150. Network Interface Status - Primary Machine

Notice that it would not really be necessary to restart the Executor on the
primary and backup machines. The scripts are executable, so you can just run
the goActive script on the primary machine and the goStandby script on the
backup machine, and the network interface cards and loopback devices would
be configured accordingly.

Executing the Scripts
Chapter 6. ND High Availability Support 195

This output verified that the alias to the cluster address 9.24.104.105 had been
added on the network adapter interface tr0.

Now all network and loopback interfaces are correctly configured. The primary
Dispatcher is able to route IP packets to the servers belonging to the defined
cluster, and the backup Dispatcher is able to take over in case the primary
Dispatcher should have a failure.

6.1.4 Experimenting with High Availability
We wanted to perform a test to demonstrate that the automatic takeover worked
correctly. Several tests could be done, such as disconnecting the network
interface on the primary machine, shutting down the primary machine, or even
turning it off.

We selected a solution that would not damage the stability of our test machines.
While the primary machine was in active state, on that machine we issued the
following command to shut down the network interface:

ifconfig tr0 down

This command effectively brought the token-ring interface down.

The backup machine detected that the primary machine was no longer available,
and changed to active state, as shown in the following figure:
196 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 151. Backup Dispatcher Automatically Takes Over

Of course, the Sub-state field appeared as Not Synchronized, since the primary
machine was no longer able to exchange heartbeat messages.

In general, as soon as the primary machine fails, a gratuitous Address Protocol
Request (ARP) is issued by the backup Dispatcher machine when it changes
states (see “ARP Requests” on page 116). After that, the goActive script file is
executed on the backup machine. Then we issued the following command on the
primary machine, to make it operational again:

ifconfig tr0 up

Since we had set the recovery strategy to Auto, the primary machine went
immediately to active state, while the backup machine changed its state back to
standby, by executing the goStandby script.

6.1.5 Experimenting with the Recovery Strategy
Now we want to explain to you in more detail the recovery strategy. Notice that in
the configuration we just described, where we set the Recovery strategy
parameter to Auto in both Dispatcher machines (see Figure 138 on page 185),
we found that the Takeover for Backup menu item had been disabled on both
machines. This was how the menu appeared after right-clicking the High
Chapter 6. ND High Availability Support 197

Availability item. The following screen was captured on the backup Dispatcher
machine:

Figure 152. Takeover Disabled when the Recovery Strategy Is Set to Auto

Then we tried another experiment. We defined two new configurations for the two
Dispatcher machines, still in high availability mode, but setting the Recovery
strategy field to Manual. After that we noticed that the Takeover for Backup item
from the High Availability pop-up menu, corresponding to the takeover command,
had been enabled on the backup Dispatcher machine, as shown in the following
figure:
198 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 153. Takeover Enabled when the Recovery Strategy Is Set to Manual

In the above figure you can see other details:

• We defined another port number, 56677, for the heartbeat mechanism, after
verifying that no other processes were using that specific port number.

• We saved the configuration in a new configuration file, which we named
r30ha-bck-man.

The Takeover for Backup item in the High Availability pop-up menu was still
disabled in the primary Dispatcher machine, since the state of this Dispatcher
machine was already set to Active, as shown in the following figure:
Chapter 6. ND High Availability Support 199

Figure 154. Takeover Disabled on the Primary Dispatcher Machine

In the configuration of the primary Dispatcher machine, we made the same
changes that were made on the backup machine configuration. We saved the new
configuration on the primary Dispatcher machine in a configuration file that we
named r23ha-pri-man.

Then, in the GUI of the backup Dispatcher machine we selected Takeover for
Backup, as shown in Figure 153 on page 199, and we saw the following:

Figure 155. Takeover Confirmation Window

The reason for this further confirmation window is that the takeover operation is
very important in a network environment where two Dispatchers are running in
200 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

high availability mode. We selected Yes and the GUI for the backup Dispatcher
machine appeared as shown in the following figure:

Figure 156. State Changes to Active on the Backup Machine after the Takeover

Notice that the Role of that Dispatcher machine remained set to Backup, but its
state changed to read Active and, for this reason, the Takeover for Backup item
was disabled again from the High Availability pop-up menu.

On the primary Dispatcher machine, the Dispatcher state appears set to Standby,
and the Takeover for Backup item became enabled, as you can see in the
following figure:
Chapter 6. ND High Availability Support 201

Figure 157. Takeover Enabled on the Primary Dispatcher Machine

This confirms that even if the primary machine is operational when the recovery
strategy is set to Manual, only a manual intervention can return the primary
machine to active state and reset the backup machine to standby. Otherwise the
backup machine continues routing packets.
202 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 7. Dispatcher Colocation Option

The Dispatcher component of IBM SecureWay Network Dispatcher (ND) Version
2.1 can be installed on the same machine as one of the clustered TCP servers.
This feature is known as colocation option and is currently available on the AIX
and Solaris platforms.

One of the most important benefits derived from using colocation is that you can
take advantage of having a highly available load-balanced TCP server
environment with a minimum of investment. In addition to this, by having a
Dispatcher in your configuration, you have a site that is highly scalable, simply by
adding one or more TCP servers to your cluster. Moreover, again with a minimum
of investment, you can easily implement colocation for both the primary and
backup Dispatcher in a Dispatcher high-availability configuration (see Chapter 6,
“ND High Availability Support” on page 177).

7.1 Dispatcher Colocation Scenario

In this scenario, we demonstrate setting up a load-balanced clustered Web server
site with only two machines.

7.1.1 Network Environment
A summary of the hardware, software, and network configuration of the
environment where we performed our colocation scenario is reported in the
following table:

Table 11. Colocation Scenario – Hardware, Software, and Network Configuration

Please note the following points:

• The load-balancing function was provided by the Dispatcher component of ND
V2.1, running on tricia with nonforwarding address 9.29.124.179.

• The cluster was defined at address 9.29.124.163, corresponding to the host
name elvis.

• The colocated Dispatcher machine and the other Web server machine were
both connected to the same Ethernet local area network (LAN).

• Lotus Domino Go Webserver Version 4.6 was the Web server software
running on tricia, whereas the Web server function on the other clustered Web
server, fortytwo, was provided by IBM HTTP Server Version 1.3.3.

• The two machines tricia and fortytwo were both part of the
vanisc.can.ibm.com domain.

Workstation Host Name IP Address Operating System Service

IBM PC 365 wtr05212 9.24.104.218 Windows NT Server 4.0 Web client

IBM RS/6000 C20 tricia 9.29.124.179 AIX 4.3.1 Dispatcher
Colocated Web server

elvis 9.29.124.163

IBM RS/6000 F50 fortytwo 9.29.124.183 AIX 4.3.2 Web server
© Copyright IBM Corp. 1999 203

• In this case, the Web Client machine was on a subnet different from the other
two machines. Netscape Navigator 4.5 was the Web browser running on the
Web client machine.

The following figure shows a logical representation of our colocated network
environment.

Figure 158. Dispatcher Colocation Scenario

The first step in configuring our colocation scenario was to start the ndserver
process on tricia. To do this, from a command line we entered the ndserver

command.

We decided to perform all the configuration activities for the Dispatcher by using
the graphical user interface (GUI). The same steps could be performed by using
the command line, as we see in 11.1, “Firewall High Availability Using the
Dispatcher” on page 273. We launched the GUI by entering the ndadmin

command.

Using the GUI, we started the Executor, with 9.29.124.179 as the nonforwarding
address; then we defined a cluster for the HTTP service on the TCP port 80. On
port 80 we added the two Web servers. For the colocated Web server we
specified tricia’s nonforwarding address, since the Web server was running on the
same machine as the Dispatcher. We then added the other Web server at IP
address 9.29.124.183.

Internet

5315\531515

Web Server
9.29.124.183

fortitwo.vanisc.can.ibm.com

Colocated Web Server
9.29.124.179

tricia.vanisc.can.ibm.com

cluster address
9.29.124.163

elvis.vanisc.can.ibm.com

non-forwarding address
9.29.124.179

tricia.vanisc.can.ibm.com

Dispatcher
204 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Of course it was necessary to start the Web servers on both of these machines.
Then, on the Dispatcher machine, we started the Manager and launched the
HTTP Advisor on port 80. We also set the proportions for the Manager and the
smoothing index. For details on how to perform these configuration steps, see
4.1, “Load Balancing Basic Scenario Using the Dispatcher” on page 81.

7.1.2 Setting up the Aliases
In this section, we describe the alias configuration.

• On the Dispatcher machine, we added an alias for the cluster address on
tricia’s en0 interface with the following command:

ifconfig en0 alias 9.29.124.163

See 4.1.3, “Cluster Address and Nonforwarding Address” on page 83 for
alternative methods of creating this alias.

• On the TCP server machine fortytwo, we created an alias of the local cluster
address on the loopback interface with the following command:

ifconfig lo0 alias 9.29.124.163 netmask 255.0.0.0

We then removed the duplicate route as follows:

route delete 9/8 9.29.124.163

See 4.1.5, “TCP Servers Configuration” on page 107 for further details on
aliasing the cluster to the loopback interface and removing duplicate routes.

The following window summarizes the configuration by showing the ND GUI
Cluster Status information on the Dispatcher machine:

We did not create an alias for the cluster address on the loopback interface on
the colocated server, even though there was a Web server running on that
machine. The reason for this is that when the Dispatcher logic determines that
the destination TCP server has the cluster’s nonforwarding address as its
address, the packet is given back to the underlying operating system, not
routed out the network interface.

Cluster Aliasing on a Colocated Machine
Chapter 7. Dispatcher Colocation Option 205

Figure 159. Colocated Cluster Status

7.1.3 Access From the Client’s Perspective
To demonstrate that both Web servers responded to our client requests to access
the clustered Web site, we wrote two simple similar HTML files. They were both
named cjl.html, and placed in the document root directories of the two clustered
Web servers.

Each of the files were of the following form, but each uniquely identified the
server that it was located on. This is the file from the colocated Web server,
having the host name tricia:

Figure 160. cjl.html on the Colocated Web Server tricia

<html>
<title> Test Page from tricia</title>
<body>

This page comes from tricia.vanisc.can.ibm.com
with ip address 9.29.124.179
</body>
</html>
206 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

On the other Web server machine, fortytwo, the file cjl.html appeared as shown in
the following figure:

Figure 161. cjl.html on the Web Server fortytwo

Similar to the scenario described in 4.1.7, “RoundRobin Load Balancing
Scenario” on page 118, we then started our Web browser and de-activated its
memory and disk caches. Then we requested the URL
http://9.29.124.163/cjl.html several times and saw that the page was provided in
turn by both of the Web server machines.

The following figure demonstrated that the page was effectively served by the
colocated Web server, tricia, having IP address 9.29.124.179:

Figure 162. HTML Page Served by the Colocated Web Server

The subsequent request for this page was responded to by the Web server
running on fortytwo:

<html>
<title> Test Page from fortytwo</title>
<body>

This page comes from fortytwo.vanisc.can.ibm.com
with ip address 9.29.124.183
</body>
</html>
Chapter 7. Dispatcher Colocation Option 207

Figure 163. HTML Page Served by the Second Web Server in the Cluster

7.1.4 Packet Flow
In this section we demonstrate an important characteristic of the underlaying
network frames transmitted to our local browser machine, in response to our
request for this clustered Web server on a remote LAN. On the client machine we
had Microsoft Network Monitor Version 4.00 for Windows NT Server running. This
package can capture and display incoming packets being transmitted from other
machines.

The host name of the client machine was wtr05212, as specified in Table 11 on
page 203. While we requested the pages shown in Figure 162 and Figure 163, we
monitored the incoming network packets. We got the following table from the
Network Monitor:

Figure 164. Network Monitor Output Showing Mac Addresses of the Frames Source

If you look closely at the table displayed by the Network Monitor, you can see that
the numbers in the frame column are not consecutive. In fact, for clarity, we
filtered out the frames that were being sent to our Windows NT machine from
hosts that were not related to this demonstration.

In this table, by looking at the Src Other Addr (Source Other Address) columns,
you can see that the client machine cannot determine which server has honored
208 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

the HTTP requests, since the source from which the response arrived is always
the cluster elvis.vanisc.can.ibm.com. We had already demonstrated this result in
4.1.8, “Analyzing the Flow with a Network Monitoring Tool” on page 123. The
reason for this feature was explained in 4.1.6, “How the Dispatcher Works – The
Flow of the IP Packets” on page 114.

However, this time there is a new particular that did not show up in 4.1.8,
“Analyzing the Flow with a Network Monitoring Tool” on page 123. The Src MAC
Addr (Source MAC Address) column shows us that all of the frames from
elvis.vanisc.can.ibm.com came to us from the same machine having a Media
Access Control (MAC) address 40002216AA00 (see “MAC Address” on
page 115). We entered the following command:

arp -a

With the command above, we could determine that this MAC address belonged to
the network adapter of the router on our local LAN, which has the IP address
9.24.104.1, as shown in the following figure:

Figure 165. arp -a Associates the MAC Address to an IP Address

Because the MAC addresses of the TCP servers cannot be seen when the Web
servers are located on a different LAN, the TCP architecture of a clustered Web
site remains hidden to remote clients. This is a further security feature offered by
the ND Dispatcher component.

In the scenario described in 4.1.8, “Analyzing the Flow with a Network Monitoring
Tool” on page 123, the MAC addresses of the Web servers could be discovered
with a network monitoring tool because the client machine and the Web server
machines all belonged to the same LAN.
Chapter 7. Dispatcher Colocation Option 209

210 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 8. Wide Area Network Dispatcher Support

IBM SecureWay Network Dispatcher (ND) Version 2.1, the load balancing
component of IBM WebSphere Performance Pack Version 2, adds a wide area
network (WAN) Dispatcher enhancement that offers support for remote servers. A
remote server consists of a remote Dispatcher machine and its locally attached
servers. A client’s packet can now go from the Internet to a Dispatcher machine,
from there to a geographically remote Dispatcher machine, then to one of its
locally attached servers, and from the server directly back to the Internet and the
client.

This allows one cluster address to support all worldwide client requests while
distributing the load to servers around the world.

The Dispatcher machine initially receiving the packet can still have the local
servers attached to it and can distribute the load between its local servers as well
as the remote servers.

Notice that wide area support is currently available only for the Dispatcher
component of ND.

8.1 Wide Area Network Dispatcher Scenario

In this section we describe the procedure we followed to configure our WAN
Dispatcher support test environment.

8.1.1 Network Architecture
A summary of the hardware, software and network configuration of the
environment where we performed our test is reported in the following two tables.
Table 12 represents the local Dispatcher environment and Table 13 represents
the remote Dispatcher environment. We linked the two Dispatchers together with
the WAN Dispatcher support tools provided by the Dispatcher component of ND
Version 2.1.

Table 12. Local Network Dispatcher Environment – Hardware, Software, and Network Configuration

As you can see, the local component of our WAN Dispatcher support scenario is
very similar to the one that was described in 4.1, “Load Balancing Basic Scenario
Using the Dispatcher” on page 81. In particular, notice that:

• The entry Dispatcher machine is the Dispatcher machine in the local area
network (LAN) to which all client machines directly point. This machine has
the nonforwarding address 9.24.104.128, corresponding with the host name

Workstation Host Name IP Address Operating System Service

IBM PC 365 wtr05212 9.24.104.218 Windows NT Server 4.0 Web Client

IBM RS/6000 43P rs600023 9.24.104.128 AIX 4.3.1 Entry Dispatcher

clusterend 9.24.104.105

IBM RS/6000 43P aixncf157 9.24.104.157 AIX 4.3.1 Web Server

IBM PC 365 wtr05193 9.24.104.239 Windows NT Server 4.0 Web Server
© Copyright IBM Corp. 1999 211

rs600023, and cluster address 9.24.104.105, corresponding to the host name
clusterend.

• All the above machines had a token-ring interface and were connected to the
same LAN.

• Both Web servers were IBM HTTP Server Version 1.3.3.

• The Web client was running Netscape Navigator 4.5.

• The domain name for all the machines was itso.ral.ibm.com.

Table 13. Remote Network Dispatcher Environment – Hardware, Software, and Network Configuration

Notice that:

• Both of the above machines were located together in the same LAN and each
had one Ethernet network interface card.

• The Web server on tricia was Lotus Domino Go Webserver Version 4.6.

• The Web server on fortytwo was IBM HTTP Server Version 1.3.3.

• The Dispatcher server was tricia with nonforwarding address 9.29.124.179.

• Both machines were in the vanisc.can.ibm.com domain.

The following figure offers a graphical representation of the WAN Dispatcher
support scenario that we implemented:

Workstation Host Name IP Address Operating System Service

IBM RS/6000 C20 tricia 9.29.124.179 AIX 4.3.1 Remote Dispatcher
Colocated Web server

IBM RS/6000 F50 fortytwo 9.29.124.183 AIX 4.3.2 Web server

You can see that we installed both the local and remote Dispatcher machines
on AIX 4.3.1. The most important thing you should remember when you make
your plans for WAN Dispatcher support is that the machines implementing the
Dispatcher function are currently required to run the same operating system.
You should not configure the WAN Dispatcher support feature if, for example,
one Dispatcher machine runs Windows NT and the other AIX or Solaris.

Dispatcher Operating Systems when Using Wide Area Support
212 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 166. Wide Area Scenario Configuration

The figure above shows that in our environment, the entry Dispatcher and its
local cluster were located in the United States, whereas the remote Dispatcher
and its remote cluster were located in Canada. This reflects the fact that the WAN
Dispatcher support allows one cluster address to support all worldwide client
requests while distributing the load to servers around the world.

8.1.2 Local Dispatcher Configuration Steps
In this section, we show the configuration steps for the Dispatcher that we elected
to use as the local Dispatcher machine (the machine with host name rs600023
and IP address 9.24.104.128).

For this scenario, we used the existing cluster address and cluster name that was
used in the scenario described in 4.1, “Load Balancing Basic Scenario Using the
Dispatcher” on page 81. We performed the following steps to set up the basic
cluster environment on our local Dispatcher server, rs600023.

1. First we started the ndserver component. To do this, from a command line we
entered the ndserver command.

2. We decided to perform all the configuration activities for the Dispatcher by
using the ND graphical user interface (GUI). The same steps could be
performed by using the command line, as we see in 11.1, “Firewall High

Client

Nonforwarding Address
9.24.104.128

rs600023.itso.ral.ibm.com

Cluster Address
9.24.104.105

Web Server
9.24.104.239

Web Server
9.24.104.157 Entry

Dispatcher

Internet

9.24.104.218

Web Server
9.29.124.183

Nonforwarding Address
9.29.124.179

tricia.vanisc.can.ibm.com

Cluster Address
9.24.104.105

Colocated
Web Server
9.29.124.179

Remote
Dispatcher

//

5315\531522
Chapter 8. Wide Area Network Dispatcher Support 213

Availability Using the Dispatcher” on page 273. We launched the GUI by
entering the ndadmin command.

3. Then, we defined the cluster. Using the GUI, we started the Executor, with
9.24.104.128 as the nonforwarding address; then we defined a cluster for the
HTTP service on the TCP port 80. On the port 80, we added the two local Web
servers, having IP addresses 9.24.104.157 and 9.24.104.239 respectively. Of
course it was necessary to start the Web servers on both of the server
machines. Then we started the Manager.

4. Following this, we aliased the cluster address 9.24.104.105 to the network
interface card on the Dispatcher machine and to the loopback interface on
both of the Web Server machines. For details on how to perform these aliasing
steps, see 4.1.4.8, “Methods of Aliasing the Cluster to the Network Interface”
on page 94 and 4.1.5, “TCP Servers Configuration” on page 107.

The next steps are unique to the WAN Dispatcher support environment:

1. We selected a port that would be used for WAN communication between the
two Dispatcher machines. The same port number is used on both Dispatchers.
We arbitrarily selected port 12345 after confirming with this command that the
port was not already in use on either of the machines.

netstat -a | grep 12345

No output from this command signified that the port was not already in use.
We set the WAN port with this command:

ndcontrol executor set wideportnumber 12345

We could also have entered this port number in the Wide port number field on
the Executor Status pane. This is the fifth field in the Configuration Settings
section of the window as seen in the following figure:
214 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 167. Local Dispatcher Executor Status Showing Wide Area Port Number

2. The next step is to add the remote Dispatcher as a third server to port 80. To
do this we right clicked the Port: 80 entry in the tree on the left side of the
GUI, and in the pop-up menu selected Add Server. In the server address field
we entered the remote Dispatcher’s nonforwarding address, and to indicate
that the server is remote, we specified the router through which the Dispatcher
must send the packets in order to reach the remote server. We put the IP
address of our router in the router field as follows:
Chapter 8. Wide Area Network Dispatcher Support 215

Figure 168. Add the Remote Dispatcher as a Port 80 Server on Local Dispatcher

We could have used the command-line version to add the server. This would
have been:

ndcontrol server add 9.24.104.105:80:9.29.124.179 router 9.24.104.1

3. As we had previously aliased the cluster address to the network interface on
the Dispatcher machine and to the loopback interface on each of the Web
Server machines, no further alias configuration was necessary either on the
local Dispatcher machine or the local Web Server machines.

8.1.3 Remote Dispatcher Configuration Steps
In this section we show the configuration steps that were performed on the
Dispatcher that we elected to use as the remote Dispatcher machine (the
machine with host name tricia and IP address 9.29.124.179):

1. First we started the ndserver process. To do this, from a command line we
entered the ndserver command.

2. Again, we performed all the configuration activities for the Dispatcher by using
the GUI. The same steps could be performed by using the command line, as
we see in 11.1, “Firewall High Availability Using the Dispatcher” on page 273.
We launched the GUI by entering the ndadmin command.

3. Using the GUI, we started the Executor, with 9.29.124.179 as the
nonforwarding address.

4. Then we defined the cluster with the same IP address that we used on our
local Dispatcher, 9.24.104.105. Next we added the TCP port 80 to our cluster
for the HTTP service. To port 80 we added the two Web servers. One of the
Web servers was running on the same machine as the Dispatcher, so we used
the 9.29.124.179 nonforwarding address for it. The other Web server was
defined with its address of 9.29.124.183. Both Web servers had been
previously configured and were running. Then we started the Manager.

5. Next, we configured the same port for wide area communication between the
two Dispatcher machines that was configured on the local Dispatcher. This
was done by entering the following command:

ndcontrol executor set wideportnumber 12345
216 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Following is the Cluster Status window on the remote Dispatcher that
summarizes the configuration:

Figure 169. Remote Dispatcher Port Status

6. The last step was to alias the cluster address to the loopback interface on
each of the Web Server machines. Further information about how to create the
alias can be found in 4.1.4.8, “Methods of Aliasing the Cluster to the Network
Interface” on page 94 and 4.1.5, “TCP Servers Configuration” on page 107. In
this case we used the following command on the fortytwo machine:

ifconfig lo0 alias 9.24.104.105 netmask 0xffffff00

Notice, however, that the cluster address is not aliased to the loopback
interface on the colocated Web server machine (which was also the
Dispatcher). If the Dispatcher logic determines that the destination server has
the same IP address as its own nonforwarding address, then the packet is
given back to the underlying operating system and not routed out the network
interface. This implies that in order for colocation to work, the colocated Web
server must be added with the nonforwarding address.

Notice also that the cluster address is not aliased to the network interface on the
remote Dispatcher machine.

8.1.4 Wide Area Load Balancing Scenario Results
We wrote four very simple similar HTML files. They were all named cjl.html, and
we distributed them all into the document root directories of the three local
clustered Web servers and the two remote clustered Web servers.
Chapter 8. Wide Area Network Dispatcher Support 217

Each of the files were of the following form, but each uniquely identified the
server that it was located on. This is the file from one of the local Web servers,
aixncf157:

Figure 170. cjl.html on Host 9.24.104.157

The other HTML files, located on the other Web server machines, were all very
similar.

Similar to the scenario described in 4.1, “Load Balancing Basic Scenario Using
the Dispatcher” on page 81, we then started our Web browser on the Web client
machine and deactivated its memory and disk caches. From the browser on our
client machine we requested the URL http://9.24.104.105/cjl.html several
times and saw that the page was provided in turn by each of the Web server
machines, as shown in the following four figures:

Figure 171. HTML Page Served by the First Web Server

Figure 172. HTML Page Served by the Second Web Server

<html>
<title> Test Page from aixncf157</title>
<body>

This page comes from aixncf157.itso.ral.ibm.com
with ip address 9.24.104.157
</body>
</html>
218 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 173. HTML Page Served by the Third Web Server

Figure 174. HTML Page Served by the Fourth Web Server

In the above figures, the requested page came from the four Web servers starting
with one of the remote Web servers, having IP address 9.29.124.179, then in turn
from the Web servers with IP addresses 9.24.104.239 and 9.24.104.158
respectively, and finally from the remaining remote Web server, with IP address
9.29.124.183.

The ND GUI Port 80 monitor shows a graphical representation of the distribution
of new connections made to the local Dispatcher:
Chapter 8. Wide Area Network Dispatcher Support 219

Figure 175. Port 80 Graphical Monitor

The same information can be seen in report format by entering the following
command on the local Dispatcher machine rs600023:

ndcontrol server report 9.24.104.105:80:9.24.104.157+9.24.104.158+9.29.124.179

The following is the local Dispatcher report, which includes the nonforwarding
address of the remote Dispatcher as one of its servers. We used the above
command to produce the local report:

Figure 176. Local ndcontrol Server Report Showing the Round-Robin Distribution of Requests

We used a similar command to produce the report on the remote Dispatcher:

ndcontrol server report 9.24.104.105:80:9.29.124.179+9.29.179.183

The output of the command above is shown in the following figure:
220 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 177. Remote ndcontrol Server Report Showing the Round-Robin Distribution of Requests

This verified that the local, or entry, Dispatcher was correctly routing requests in a
round-robin fashion to the remote Dispatcher which in turn distributed the client
requests to its local Web servers, also in a round-robin fashion. As we will see in
the next section, the remote Web server machine then sends the response back
to the client directly, with no requirement to pass the packets back through either
of the Dispatcher machines.

8.1.5 How WAN Dispatcher Support Works – The Packet Flow
In this section, we build upon the information given in 4.1.6, “How the Dispatcher
Works – The Flow of the IP Packets” on page 114 to include the details related to
using a remote Dispatcher.

In 2.5, “How the Dispatcher Function Works” on page 34, we explained how the
IP packets start flowing from a TCP client to a TCP server passing through the
Dispatcher machine, and then how the server’s response flows directly from the
server to the client without any need to pass through the Dispatcher again. When
we add a remote Dispatcher to the environment, the path that the IP packet flows
starts out the same as in the previous scenario. However, if the entry Dispatcher
chooses to forward the packet to a remote Dispatcher rather than one of its local
TCP servers, this is where the difference begins.

Recall that if the entry Dispatcher chooses to route the client TCP request to one
of its local servers, it changes the original Media Access Control (MAC) address
on the packet to the MAC address of the selected TCP server (for details on MAC
addresses, see “MAC Address” on page 115). This works because all of the TCP
servers are on the same subnet as the Dispatcher, since the MAC addresses
cannot be used to route the packets outside a router. The fundamental point is
that the destination IP address on the packet is not changed.

This presents a challenge to the WAN Dispatcher support because the MAC
address cannot be used to route the packet beyond the router. As well, we know
that the remote Dispatcher will not accept a packet destined to the cluster IP
address because the cluster address is not aliased to the network interface on
the remote Dispatcher.

From this we can infer that the destination IP address of the IP packet must be
changed from the cluster IP address to the nonforwarding address of the remote
Chapter 8. Wide Area Network Dispatcher Support 221

Dispatcher machine. However, doing this would mean we lose the advantage of
anonymity that was gained by not changing the IP destination of the packet.

All of these issues are addressed by encapsulating the entire IP packet from the
client within another IP packet. The encapsulating packet has in its header the
cluster address as the source IP address and the nonforwarding address of the
remote Dispatcher as the destination IP address. This encapsulated packet is
sent from the WAN port on the entry point Dispatcher to the WAN port on the
remote Dispatcher.

Before it is transmitted, it is of course encapsulated again in the frame type of the
hardware transport medium (token-ring, Ethernet, etc.) it travels on. The first leg
of its journey is to the router specified when the remote Dispatcher was added as
a server.

A graphical representation of this explanation is offered in the following figure:

Figure 178. IP Header Source and Destination Values with WAN Dispatcher Support

When the frame is received by the remote Dispatcher, the outer IP wrapper is
then stripped off and the inner client IP packet is then forwarded on one of the
local load-balanced TCP servers. Code is built into the Dispatcher to prevent the
packet from being forwarded again to another remote Dispatcher.

As before, the TCP servers have the cluster address aliased to the loopback
interface enabling them to accept the packet. Also, as before, the TCP server
selected by the remote Dispatcher responds by swapping the source and
destination IP addresses to go directly back to the client machine, bypassing both

Destination Source

9.24.104.218 9.24.104.105
Data

IP Header 1

Destination Source

9.24.104.105 9.24.104.218
Data

IP Header 1

IP Header 1

IP Header 2 IP Header 1

5315\531522

Destination Source

9.24.104.105 9.24.104.218
Data

Destination Source

9.29.124.179 9.24.104.128
Data

2

1

3

4

Destination Source

9.24.104.105 9.24.104.218
Data
222 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

of the network Dispatchers that have been involved in getting the client request
here in the first place.

Both Dispatchers set up an entry in their own connection table to make sure that
subsequent incoming IP packets for this client continue to be forwarded to the
same server. The entry Dispatcher’s connection table entry will point to the
remote Dispatcher, and the remote Dispatcher’s connection table entry will point
to the correct TCP server.

Because the Dispatchers do not participate in bidirectional communications with
the client but simply forward the incoming packets unchanged, their presence is
transparent to both client and server. The real TCP/IP connection is between the
client and the clustered server, and the Dispatchers soon disappear from the
scene after forwarding the incoming packets.

8.2 Using Remote Advisors with WAN Dispatcher Support

The purpose of a remote advisor in this case is to send requests to the remote
back-end servers to measure actual client response time for a particular protocol.
These results are then fed to the Manager component of the remote Dispatcher to
adjust the load-balancing weights.

On entry-point Dispatchers, advisors will work correctly without any special
configuration. On remote Dispatchers, for each remote cluster, you need to alias
the remote cluster address to the loopback interface. Recall that aliasing the
cluster address to the loopback interface was also necessary on the TCP server
machines and so we refer you back to the instructions in 4.1.4.8, “Methods of
Aliasing the Cluster to the Network Interface” on page 94 and 4.1.5, “TCP
Servers Configuration” on page 107. We provided those instructions to create the
aliases for each platform.

8.3 WAN Dispatcher Support and ISS

Prior to IBM eNetwork Dispatcher V2.0, where WAN Dispatcher support was
introduced, the only way remote sites could be configured was by using ISS in a
two-tier or ping triangulation configuration. These options are still available, and also
can be combined with the WAN Dispatcher support enhancement.

The combining of ISS and WAN Dispatcher support can be implemented in
several ways:

• ISS ping triangulation accessing a remote Dispatcher site, as shown for
Dispatcher 3 in Tier 1 in Figure 179.

• Dispatcher 3 could implement WAN Dispatcher support and include a remote
Dispatcher, as shown for Dispatcher 3remote in Tier 2 in Figure 179.

• Dispatcher 3remote and its local TCP servers could implement a local ISS
cell. A Dispatcher type observer could be defined in this cell to provide system
load information about the TCP servers to Dispatcher 3remote for it to use in
adjusting the load-balancing weights of the TCP servers (see Tier 3 in Figure
179).

It is important to note that a single local cell ISS implementation cannot contain a
remote node entry.
Chapter 8. Wide Area Network Dispatcher Support 223

Figure 179. Managing Local and Remote Servers with ISS and WAN Dispatcher Support

8.4 WAN Dispatcher Support with Remote Dispatcher High Availability

Dispatcher high availability can be implemented at either end or both ends of a
WAN Dispatcher support configuration. Both servers in the highly available
environment must be configured the same with respect to their role in the WAN
configuration. This means, for example, on the local or entry point Dispatcher
side of a wide area configuration, both the primary and backup Dispatcher
machines must have the WAN port configured and the remote Dispatcher’s
nonforwarding address set up as a server for the local cluster. Other than this, the
remaining steps required to configure Dispatcher high availability on the local
side of a WAN Dispatcher support environment are the same as those shown in
Chapter 6, “ND High Availability Support” on page 177.

Similarly, on the remote side of the WAN Dispatcher support configuration, both
the primary and backup Dispatcher machines must have the WAN port
configured, and have a definition for the remote cluster being serviced by their
own local TCP servers. However, one aspect of a remote high availability
configuration differs from a local high availability configuration.

Client

5315\531516

ISS
Monitor

Internet

Client
Client

Dispatcher
1

ISS Agent

Server Server Server

Dispatcher
2

ISS Agent

ServerServer Server

Dispatcher
3

ISS

Dispatcher
3remote

ISS Monitor

Server
ISS Agent

Server
ISS Agent

//

//
Tier 1
Ping

Triangulation

Tier 2
Dispatcher

WAND

Tier 3
ISS

Dispatcher
Observer
224 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Recall that in a typical WAN Dispatcher support environment, as seen in 8.1.5,
“How WAN Dispatcher Support Works – The Packet Flow” on page 221, the
packets are sent to the remote Dispatcher by being encapsulated in an IP packet
in whose header the destination IP address is the nonforwarding address of the
remote Dispatcher. However, when there is a highly available Dispatcher on the
remote side of a WAN Dispatcher support configuration, if a failover occurs, the
active Dispatcher’s nonforwarding address changes. This issue is addressed by
using a third IP address at the remote site. Both the primary and backup
Dispatcher machines at the remote site will have their own nonforwarding
address and will dynamically claim ownership of a third, common non-forwarding
address when they become active. To facilitate the change of ownership of the
third address, when a failover occurs the active Dispatcher sends out a gratuitous
ARP to inform the router of the new MAC address associated with this common
nonforwarding address.

In the following scenario, we make use of a third IP address on the remote
primary and backup Dispatcher machines.

Several times throughout the following scenario, we refer to three sections in this
book that describe basic Dispatcher configuration as well as the basics of
implementing WAN Dispatcher support and high availability. It may be helpful for
you to become familiar with those concepts before examining this scenario,
because in this scenario we build upon the details provided in those sections. The
three referenced sections are:

1. 4.1, “Load Balancing Basic Scenario Using the Dispatcher” on page 81

2. 6.1, “Dispatcher High-Availability Scenario” on page 177

3. 8.1, “Wide Area Network Dispatcher Scenario” on page 211

8.4.1 Scenario
We implemented this scenario in three stages:

1. In the first stage, we configured a simple local cluster.

2. In the second stage, we added a remote Dispatcher and its two local servers
to the configuration by making use of the WAN Dispatcher support
capabilities.

3. In the third stage, we changed the single remote Dispatcher to a highly
available remote Dispatcher by adding a backup Dispatcher.

After implementing each stage, we did a simple test to ensure the configuration
was correct. To do these tests, we placed a simple HTML file in the document root
directory of each Web server in our scenario. The page contained text that
uniquely identified the server that was serving the page. The tests were carried
out by starting our Web browser and deactivating its memory and disk caches;
then we requested the cluster address in the URL http://9.24.105.18/cjl.html.

The HTML files placed on the TCP servers were similar to the following, but each
contained the host name and IP address of the respective Web server:
Chapter 8. Wide Area Network Dispatcher Support 225

Figure 180. cjl.html on Host 9.24.104.157

8.4.1.1 Network Environment
The following figure offers a graphical representation of our scenario
environment:

Figure 181. WAN Dispatcher Support with Remote Dispatcher High Availability Scenario

<html>
<title> Test Page from AIXAFS</title>
<body>

This page comes from AIXAFS.itso.ral.ibm.com
with ip address 9.24.104.158
</body>
</html>

Internet

Cluster Address
9.24.105.18

clusterend.itso.ral.ibm.com

Entry Dispatcher
9.24.105.244

rs600031e.itso.ral.ibm.com

Cluster Address
9.24.105.18

Common Address
9.24.104.247

Server

9.24.104.158

Cluster Address
9.24.105.18

Remote Backup Dispatcher
9.24.104.157

aixncf157.itso.ral.ibm.com

Remote Primary Dispatcher
9.24.104.128

rs600023.itso.ral.ibm.com

Local Server
9.24.105.181

Router

9.24.104.239

Server

5315\531524

9.24.105.1

9.24.104.1
226 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

A summary of the hardware, software and network configuration of the machines
involved in each of the stages of our implementation is shown in the following
three tables:

Table 14. Stage 1 – Local Network Dispatcher Environment

Table 15. Stage 2 – WAN Dispatcher Support with Local Network Dispatcher Environment

Table 16. Stage 3 – WAN Dispatcher Support with Remote High Availability Local Network Dispatcher Environment

The version of the ND component that was used on all Dispatcher machines in
this scenario was 2.1.0.1.

8.4.1.2 Stage 1 – Local Cluster Configuration
The local component of our WAN Dispatcher support scenario is very similar to
the one that was described in 4.1, “Load Balancing Basic Scenario Using the
Dispatcher” on page 81.

We started the Dispatcher on rs600031e with the ndserver command and used
the ND GUI to start the executor with the default nonforwarding address,
9.24.104.128. We then configured the cluster with address 9.24.105.18 and to
this cluster we added port 80 as well as the server for it, 9.24.105.181.

We aliased the cluster address to the network interface on rs600031e (the
Dispatcher machine) with the command:

ifconfig en0 alias 9.24.105.18 netmask 255.255.255.0

We aliased the cluster address to loopback on rs60002 (the Web server machine)
and deleted the associated route with the following commands:

ifconfig lo0 alias 9.24.105.18 netmask 255.0.0.0
route delete 9/8 9.24.105.18

The Cluster Status from the ND GUI showing a summary of our configuration
appeared as follows:

Workstation Host Name IP Address Operating System Service

IBM PC 365 wtr05212 9.24.104.218 Windows NT Server 4.0 Web client

IBM RS/6000 43P rs600031e 9.24.105.244 AIX 4.3.1 Entry Dispatcher

clusterend 9.24.105.18

IBM RS/6000 43P rs60002 9.24.105.181 AIX 4.3.2 Web server

Workstation Host Name IP Address Operating System Service

IBM RS/6000 43P rs600023 9.24.104.128 AIX 4.3.1 Remote (primary)
Dispatcher

clusterend 9.24.105.18

IBM RS/6000 43P aixafs 9.24.104.158 AIX 4.3.1 Web server

IBM PC 365 wtr05193 9.24.104.239 Windows NT Server 4.0 Web server

Workstation Host Name IP Address Operating System Service

IBM RS/6000 43P aixncf157 9.24.104.157 AIX 4.3.1 Remote backup
Dispatcher

clusterend 9.24.105.18
Chapter 8. Wide Area Network Dispatcher Support 227

Figure 182. Cluster Status from the Local Dispatcher in Stage 1

To verify that the cluster was operational, we opened a browser on our Web client
machine and requested the cjl.html page from the cluster address. The page was
returned successfully from the single server that was defined in the cluster, as
shown in the following figure:

Figure 183. HTML Page Served by the Only Web Server in the Cluster
228 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

8.4.1.3 Stage 2 – Add WAN Dispatcher Support to the Local Cluster
In this stage we performed the following steps to configure rs600023 to be a
remote Dispatcher for the cluster with IP address 9.24.105.18, which we
configured in 8.4.1.2, “Stage 1 – Local Cluster Configuration” on page 227:

1. On the machine rs600023, we started the Dispatcher with the ndserver

command, started the ND GUI with the ndadmin command and from the GUI,
started the Executor.

2. In preparation for the configuration required in 8.4.1.4, “Stage 3 – Add High
Availability to the Remote Dispatcher” on page 233, we used the third IP
address that we selected for use at the remote end of our WAN Dispatcher
support environment as the nonforwarding address of our Executor. We did
this by typing 9.24.104.247 over the default nonforwarding address assigned to
the Executor, within the Executor Configuration settings in the ND GUI.

3. On the machine rs600023, we added the cluster with address 9.24.105.18. To
this cluster we added port 80 and the two local servers for it. These two
servers had IP address 9.24.104.158 and 9.24.104.239, respectively.

4. We followed the instructions in 8.1, “Wide Area Network Dispatcher Scenario”
on page 211 to pick a port to be used for wide area communications between
rs600031e and rs600023. We used the ND GUI to set the Executor WAN port
number on both Dispatchers, rs600031e and rs600023.

5. We aliased the new third IP address to the network interface on rs600023 with
the command:

ifconfig tr0 alias 9.24.104.247 netmask 255.255.255.0

We aliased the cluster address to loopback on the two Web server machines,
having IP addresses 9.24.104.158 and 9.24.104.239 respectively. On the AIX
Web server machine we used the following command to alias the cluster
address and delete the associated route:

ifconfig lo0 alias 9.24.105.18 netmask 255.0.0.0
route delete 9/8 9.24.105.18

Refer to 4.1.5.2, “Aliasing the Loopback Device on Solaris” on page 109 and
4.1.5.3, “Aliasing the Loopback Device on Windows NT” on page 109 for
instructions on how to alias an IP address to the loopback device on Solaris
and Windows NT Web server machines.

6. Back on the entry Dispatcher machine (rs600031e, configured in 8.4.1.2,
“Stage 1 – Local Cluster Configuration” on page 227), we added the remote
Dispatcher’s 9.24.104.247 IP address as a port 80 server to the 9.24.105.18
cluster.

The entry Dispatcher ND GUI appeared as follows:
Chapter 8. Wide Area Network Dispatcher Support 229

Figure 184. Entry Dispatcher Executor Configuration

The remote Dispatcher ND GUI appeared as follows:
230 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 185. Remote Dispatcher Executor Status

At this point we tested the configuration by making several requests for the
cjl.html page at the cluster address. The results confirmed that the entry
Dispatcher was correctly load balancing requests to both the local server and the
remote Dispatcher, as we saw on the following page served by the remote server
aixafs, as one of the pages we received in response to our request:
Chapter 8. Wide Area Network Dispatcher Support 231

Figure 186. HTML Page Served by One of the Cluster’s Remote Web Servers

The Port 80 monitor output from the entry Dispatcher also confirms that requests
are being sent to the remote Dispatcher with address 9.24.104.247:

Figure 187. Port 80 GUI Monitor Output on the Entry Dispatcher Machine
232 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

8.4.1.4 Stage 3 – Add High Availability to the Remote Dispatcher
In this stage we configured the machine aixncf157, with IP address 9.24.104.157,
as the high-availability remote backup Dispatcher for our Remote Dispatcher with
IP address 9.24.104.128 (which we now refer to as the remote primary
Dispatcher). The first four steps that we followed were essentially the same as the
first four steps in 8.4.1.3, “Stage 2 – Add WAN Dispatcher Support to the Local
Cluster” on page 229 (see Step 1 on page 229 through Step 4 on page 229),
except that we performed them on the backup remote Dispatcher machine,
aixncf157.

1. On aixncf157 we started the Dispatcher with the ndserver command, started
the ND GUI with the ndadmin command, and from the GUI started the Executor.

2. We typed 9.24.104.247 over the default non-forwarding address assigned to
the Executor, within the Executor Configuration settings in the ND GUI.

3. On aixncf157 we added the cluster with address 9.24.105.18. To this cluster
we added port 80 and the two local servers for it, 9.24.104.158 and
9.24.104.239.

4. We used the ND GUI to set the Executor WAN port number that was selected
on aixncf157 in 8.4.1.3, “Stage 2 – Add WAN Dispatcher Support to the Local
Cluster” on page 229.

5. Recall that in a WAN Dispatcher support environment, the cluster address is
not aliased to the network interface on the remote Dispatcher machine.
However, what needs to be done in this case is to alias the third IP address to
the network interface on the Remote Dispatcher. Recall, however, that as we
described in 6.1, “Dispatcher High-Availability Scenario” on page 177, the
network interface and loopback aliasing in a high-availability environment is
done by using three scripts that are run automatically when the Executor
changes state. We modified the goActive, goStandby and goInOp scripts
shown in the following figures, so that it was not the cluster IP address that
was being aliased, but the third common IP address, 9.24.104.247. We placed
the three scripts in the /usr/lpp/nd/dispatcher/bin directory on both the remote
primary Dispatcher machine and the remote backup Dispatcher machine. Our
modified scripts follow:

• goActive script

This script deletes the loopback aliases and adds an alias to our third
common IP address to the network interface. It is executed when either
Dispatcher goes into active state and begins load balancing requests.
Chapter 8. Wide Area Network Dispatcher Support 233

Figure 188. goActive Script

• goStandby script

This script deletes the device alias and aliases the third common IP
address to loopback. It is executed when either Dispatcher goes into
standby state.

#
goActive script
#
Configure this script when using the high availability feature of
Network Dispatcher.
#
This script is executed when Network Dispatcher goes into the
'Active' state and begins routing packets.
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter.
#
NETMASK must be the netmask of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.24.104
INTERFACE=tr0
NETMASK=0xffffff00
#
echo "Adding cluster alias(es)"
for CLUSTER in 247; do

ifconfig lo0 delete $NETWORK.$CLUSTER
ifconfig $INTERFACE alias $NETWORK.$CLUSTER netmask $NETMASK

done
234 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 189. goStandby Script

• goInOp script

This script deletes all cluster device and loopback aliases. This script is
executed when a Dispatcher Executor is stopped and before it is started for
the first time.

#!/bin/ksh
#
goStandby script
#
Configure this script when using the high availability feature of
eNetwork Dispatcher.
#
This script is executed when Network Dispatcher goes into the
'Standby' state. Monitoring the health of the 'Active' machine
but not routing packets.
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter
#
NETMASK must be the netmask of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.24.104
INTERFACE=tr0
NETMASK=0xffffff00
#
echo "Deleting the device aliases and adding the loopback aliases"
for CLUSTER in 247 ; do

ifconfig $INTERFACE delete $NETWORK.$CLUSTER
ifconfig lo0 alias $NETWORK.$CLUSTER netmask $NETMASK

done
Chapter 8. Wide Area Network Dispatcher Support 235

Figure 190. goInOp script

The scripts shown above have to respect a different syntax on the Windows
NT platform. See “Script Modifications on Windows NT” on page 99 for further
details.

6. The last step is to add the high-availability remote backup Dispatcher. On both
of the remote Dispatcher machines, from the ND GUI host menu, we selected
Add High Availability Backup. In the Configure high availability dialog
window on both Dispatchers, we added the port number over which the two
Dispatcher machines will communicate to exchange data for the
synchronization of the Dispatcher information. On the primary Dispatcher, we

#!/bin/ksh
#
goInOp script
#
Configure this script when using the high availability feature of
Network Dispatcher and optionally when using Network Dispatcher in a
standalone environment.
#
This script is executed when the Network Dispatcher executor is stopped
(and before the executor is initially started).
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER and INTERFACE to match your environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter
#
NETWORK=9.24.104
INTERFACE=tr0
#
echo "Removing all loopback and device aliases"
for CLUSTER in 247; do

ifconfig lo0 delete $NETWORK.$CLUSTER
ifconfig $INTERFACE delete $NETWORK.$CLUSTER

done

The scripts shown above should be modified under two circumstances:

• If you are using an Advisor on the remote Dispatcher machine, the
scripts must be modified to alias the cluster address to loopback on the
active Disptacher and add an entry to the ARP table for the remote
cluster address. See 8.2, “Using Remote Advisors with WAN Dispatcher
Support” on page 223 for further details on how to do this.

• If your remote highly-available Dispatcher is acting as an entry-point
Dispatcher for some other cluster addresses, the scripts must be
modified to include the aliasing for these as well. See 6.1.3,
“Configuration Steps for High Availability” on page 184 for further details.

Script Modifications
236 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

set the Role to Primary and added 9.24.104.128 as the heartbeat source and
9.24.104.157 as the heartbeat destination. On the backup Dispatcher we set
the Role to Backup and added 9.24.104.157 as the heartbeat source and
9.24.104.128 as the heartbeat destination. On both, we set the Recovery
strategy to Auto, meaning that, after recovering from a failure, the primary
Dispatcher will automatically take over.

Following is the Configure high availability dialog from rs600023:

Figure 191. Configure High Availability Dialog from rs600023

Following is the Configure high availability dialog from aixncf157:
Chapter 8. Wide Area Network Dispatcher Support 237

Figure 192. Configure High Availability Dialog from aixncf157

For testing purposes, we changed the Recovery strategy on both the Dispatcher
machines, setting it to Manual. Then, to test the high availability configuration, we
forced a takeover by selecting the Takeover for Backup item from the High
Availability menu in the ND GUI on aixncf157.

When the takeover was complete, we clicked the Refresh Statistics button on
the High Availability Status window on both the primary and backup Dispatcher
machines. The following window confirms that the remote backup Dispatcher has
taken over for the remote primary Dispatcher as the active Dispatcher:
238 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 193. High Availability Status from aixncf157

This High Availability status window from the remote primary Dispatcher confirms
that it was in standby state:
Chapter 8. Wide Area Network Dispatcher Support 239

Figure 194. High Availability Status from rs600023

The first test of the takeover that we performed was to verify that aixncf157 was
responding to the third IP address. To do this we simply did a telnet to
9.24.104.247:

telnet 9.24.104.247

We saw that the response came from the backup Dispatcher, aixncf157, rather
than the primary Dispatcher, rs600023.

Further confirmation of this was output from the command:

netstat -in

This command was executed on both machines. The output showed that the third
IP address had been aliased to tr0 on the backup Dispatcher (currently, the active
Dispatcher) and to lo0 on the primary Dispatcher (currently, the standby
Dispatcher). This is shown in the following two figures:
240 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 195. netstat -in Command Output from the Primary Dispatcher

Figure 196. netstat -in Command Output from the Backup Dispatcher

Following this, to verify that the cluster was operational, we opened a browser on
our Web client machine and requested the HTML file cjl.html from the cluster
address, repeatedly. The page was returned successfully from the local server as
well as the two remote servers, one of which appeared as follows:

Figure 197. HTML Page Served by the Only Web Server in the Cluster
Chapter 8. Wide Area Network Dispatcher Support 241

8.4.1.5 Configuration Summary
The following table summarizes the IP addresses configured on each of the
machines in our scenario:

Table 17. WAN Dispatcher Support with Remote HA Configuration Summary

Role IP Address –
Non-Forwarding
Address

Executor IP
Address

Defined
Cluster
Address

Aliases

Entry Dispatcher 9.24.105.244 9.24.105.244 9.24.105.18 9.24.105.18 on tr0

Remote primary Dispatcher 9.24.104.128 9.24.104.247 9.24.104.247 on tr0 or lo0 –
aliasing done by scripts

Remote backup Dispatcher 9.24.104.157

Web server 9.24.105.181 9.24.105.18 on lo0

Web server 9.24.104.157

Web server 9.24.104.239
242 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 9. Server Directed Affinity API

The load-balancing function in the Dispatcher component of IBM SecureWay
Network Dispatcher (ND) distributes client requests to the servers that belong to
a cluster of servers. If one client's transactions happen to use multiple TCP
connections, it is very likely that those connections will be distributed to and
handled by various servers. For most applications, such as serving Web pages,
this is a very desirable behavior.

However, some protocols or applications would work more efficiently if the
Dispatcher were to send all of the connections from a single client to the same
server for a period of time. For example, a shopping-cart server application that
does not have the ability to share state information between all of the server
machines would require that the client come back to the same server for all of the
TCP connections during a purchase. This mapping of client IP addresses to a
selected server is the purpose of the classical Dispatcher affinity feature.

The ability to bind a client to a particular server has existed for several releases in
the Dispatcher. This was accomplished by setting a sticky time value on the port.
When the first request comes in from a client to the port, the Dispatcher selects a
server to receive the request and then makes a record of this connection in one of
its affinity tables. Each affinity record lives for as many seconds as specified by
the sticky time value. Subsequent requests received from the same client within
the sticky time value will be directed to the same server. Notice that any
subsequent requests cause the sticky time to be reset back to its original value.
For example, if sticky time is set to one hour, and 58 minutes into that hour the
client does a request, that client now has another hour before the sticky time will
expire, not just two minutes.

In response to customer demand, the Server Directed Affinity (SDA) application
programming interface (API) has been introduced in this version of the
Dispatcher. The purpose of the API is to supply a method to the customer’s
applications to allow the applications to select which server their client requests
will be sent to, and also to control the length of time that the individual client
requests will be sent to this specific server for. This has been accomplished by
implementing a new socket listener within the Dispatcher to accept and handle
requests to query and modify the server’s affinity tables.

9.1 Server Directed Affinity Scenario

The example that we describe in this section shows how the SDA sample code
can be modified to create an affinity table entry so that all requests from a
particular client to port 80 at our cluster address would be handled by only one of
our clustered Web servers. We also show the effect of creating this affinity from
the client perspective.

Although we demonstrate creating this affinity entry from the command line, it
would be more likely that the affinity entry would be created by an application
program.

The application may base its decision about which server to connect the client to,
on whatever information is appropriate to the application. The implementation of
© Copyright IBM Corp. 1999 243

this application may take many forms, the simplest of which may be a CGI-BIN
application or a Java servlet.

It is important to note that, with this introductory implementation of the SDA API,
an affinity that already exists cannot be recreated. This implies:

• The affinity may be created by the application before the Dispatcher has had
an opportunity to select a server to receive the request. This may be done by
an application running on a server that creates affinity records for clients so
that subsequent connections from the clients go to a different server, or the
same server but a different port (thereby using a different affinity table).

• Another possibility is to use another program that is listening for requests to
create affinity table entries from applications, and have it delay the creation of
the affinity table entry until the Dispatcher-created entry has been cleared. In
this way an application running on a server that already has an affinity table
entry can make a request to have an affinity table entry created for it, when its
Dispatcher-created affinity table entry expires.

We begin by showing an example situation where the use of SDA would be
practical. We describe a servlet that we wrote for the purpose of counting the
number of times a particular HTML file is accessed by a particular client. Instead
of counting how many times the HTML file has been requested by all clients, as
you’ve probably seen, it holds different counters for different clients.

We will show how to compile the servlet and place it on our three port 80 servers
in our cluster environment. When we request the clustered Web page from our
Web client repeatedly, we will see that our request is load balanced to all three
servers. Without binding our client requests to one server, we see
nonconsecutive results in our client-specific counter. This could be very confusing
to the client, because from the client perspective he or she is making the same
request repeatedly from what they believe to be the same server, when in fact it is
a load-balanced clustered address. In the second part of our demonstration, we
bind our client session to one server with the modified sample code, and see that
the servlet client counter increments consecutively, as the end user would expect.

9.1.1 Servlet Client Counter Example
The servlet is called IncludedCounter. It is not supposed to be invoked directly by
pointing to its URL, but it is invoked from within the <SERVLET> tag on HTML pages
that have a .shtml extension. Its purpose is to produce a counter that can be
dynamically embedded inside an HTML file that carries the .shtml extension. It
counts how many times that HTML page has been accessed by a particular client
machine. Instead of counting how many times the HTML file has been requested
in general by all clients, it holds different counters for different clients. The output
of this servlet is simply an integer, that is dynamically embedded inside the HTML
page by using the servlet tag technique.

In addition, it is also possible that different HTML pages invoke this servlet,
provided that they call it with different instance names, using the Name attribute of
the <SERVLET> tag. In this way, there is an instance for each HTML page and each
instance counts the number of times its related HTML page has been invoked.

Each instance of the IncludedCounter servlet uses a Hashtable object to register
all the necessary information related to the HTML page invoking that instance.
The java.util.Hashtable class implements a hash table, which maps keys to values.
244 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

In this case, when a client machine requests the HTML page related to a particular
instance of the IncludedCounter servlet, its IP address is the key and the number
of times that client machine invoked that HTML page is the value. IP addresses
are held as string objects, while the counter is held by a support class, named
StoredData.

The IncludedCounter servlet also provides an interesting example of how to write
custom init() and destroy() methods. It is required, in fact, that the Hashtable
objects where the servlet instances hold their data are saved in permanent
storage, so that they are not lost when the servlet is destroyed and can be
retrieved when it is reinitialized. For that reason, this servlet, when it is invoked
from within the <SERVLET> tag of an HTML page, requires an initialization
parameter, filename. This is the name of the file where the servlet instance stores
the Hashtable object when the destroy() method for the servlet is called, typically
when the server is shut down. Different HTML pages use different files to store
their Hashtable objects, so that each HTML page invokes its own instance of the
IncludedCounter servlet and each instance stores its Hashtable object in its own
file.

It is not necessary for these files to be updated each time a client machine
requests an HTML page that invokes that servlet, because this would create a
slow mechanism for storing and retrieving data from the hard disk during the
servlet life cycle. The IncludedCounter servlet presents custom init() and
destroy() methods so that the Hashtable object is retrieved only when the servlet
is initialized, and it is stored only when the servlet is destroyed. The destroy()
method has been overridden in each instance to store the instance’s Hashtable
object in the file that has been specified as its initialization parameter.

In order to store an object, the Java 1.1 serialization mechanism is used. As we
indicated, the Hashtable object used by one instance of the IncludedCounter
servlet relates the IP address of a client machine to the number of times that the
client machine has accessed that HTML page. IP addresses are held as string
objects. Both the java.util.Hashtable and java.lang.String classes implement the
java.io.Serializable interface. To store the integer counter number, a support class
called StoredData is used. That class also implements java.io.Serializable, so
that, in effect, serialization is possible.

The description that we have provided for the IncludedCounter servlet should
help you understand the Java source code IncludedCounter.java, shown in the
following two figures:
Chapter 9. Server Directed Affinity API 245

Figure 198. (Part 1 of 2). Source of IncludedCounter.java

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class IncludedCounter extends HttpServlet
{

String objFile;
Hashtable table = new Hashtable();

public void init(ServletConfig config) throws ServletException
{

super.init(config);
log("init() method called");
try
{

objFile = getInitParameter("Filename");
if (objFile != null)
{

FileInputStream fis = new FileInputStream(objFile);
ObjectInputStream ois = new ObjectInputStream(fis);
table = (Hashtable)ois.readObject();
fis.close();

}
}
catch(ClassNotFoundException cnfe)
{

log("Class Not Found");
}
catch(FileNotFoundException fnfe)
{

log("File not found");
}
catch(IOException ioe)
{

log("Input/Output Error");
}

}

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
log("service() method called");
String remaddr = req.getRemoteAddr();
int number;
246 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 199. (Part 2 of 2). IncludedCounter.java

The following figure shows the StoredData.java file used to wrap all the counters:

synchronized(table)
{

StoredData counter = (StoredData)table.get(remaddr);
if (counter != null)

number = counter.increment();
else
{

counter = new StoredData(1);
table.put(remaddr, counter);
number = 1;

}
}
ServletOutputStream out = res.getOutputStream();
out.println(number);
out.close();
log("service() method exit");

}

public void destroy()
{

log("destroy() method called");
if (objFile != null)
{

try
{

FileOutputStream fos = new FileOutputStream(objFile);
ObjectOutputStream oos = new ObjectOutputStream(fos);
synchronized(table)
{

oos.writeObject(table);
}
fos.close();

}
catch (Exception e)
{

log("Exception");
}

}
super.destroy();

}

public String getServletInfo()
{

return "This servlet counts how many times each client accessed
a specified .shtml page" ;

}
}

Chapter 9. Server Directed Affinity API 247

Figure 200. StoredData.java

Finally, we want to show a simple HTML file that invokes the IncludedCounter
servlet form within the <SERVLET> tag of an HTML page, for example, the file
Page1.shtml, shown in the following figure:

Figure 201. Page1.shtml

When the client’s browser requests the Page1.shtml file, the .shtml extension
forces the Web server to search the pair of tags <SERVLET> and </SERVLET> within
the HTML code. Everything between these two tags, plus the tags themselves, is
replaced by the dynamic output of the IncludedCounter servlet.

import java.io.*;
public class StoredData implements Serializable
{

int number;
public StoredData(int value)
{

number = value;
}
public int increment()
{

++number;
return number;

}
}

<HTML>
<HEAD>

<TITLE>PAGE 1</TITLE>
</HEAD>
<BODY>

<H1>PAGE 1</H1>
This is the example of a SHTML page invoking the IncludedCounter
servlet on server 9.24.104.157
<HR>
The file containing the stored data is Page1.obj.
<HR>
<CENTER>

<H2>
You have invoked this page

<H1>
<SERVLET

Code=IncludedCounter.class
Name=IncludedCounter1
Filename="/tmp/Page1.obj">

</SERVLET>
</H1>

times
</H2>

</CENTER>
</BODY>

</HTML>
248 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Notice that this HTML page invokes the IncludedCounter servlet, so that the Web
server automatically creates an instance of that servlet. This instance is called
IncludedCounter1, according to the value of the Name attribute within the <SERVLET>

tag. This instance is related to the Page1.shtml file. The Filename initialization
parameter is passed to the servlet with the value /tmp/Page1.obj. This means that
the Hashtable object related to the Page1.shtml file (used to register all the
clients that have access to the Page1.shtml page and the number of their
accesses) will be saved in the Page1.obj file.

In order for the Web server to be able to create the IncludedCounter1 servlet
instance, the init() method is called. This method is used by the servlet to
discover the value of the filename initialization parameter and to retrieve the
Hashtable object, named table, from the file. Notice that the first time the servlet
is run, the Page1.obj file will be empty and no Hashtable object will be retrieved.
This situation is handled by simply catching an IOException.

The service() method works according to a very simple mechanism. First of all it
retrieves the IP address of the client machine from where the Page1.shtml page
was requested. This function is accomplished by the getRemoteAddr() method for
the HttpServletRequest object, called req, and passed to the service() method.
Then the service() method creates a StoredData object named counter, used to
retrieve the number of accesses to the Page1.shtml file from the client machine.
Also, the counter.increment() method is invoked to update the counter field.

If that client machine is accessing the Page1.shtml file for the first time, no
counter object can be created starting from the table, so the counter’s constructor
is invoked, passing it the int value 1. In this case the table object must be updated
with the IP address of the new client that accessed the Page1.shtml file and its
relative StoredData object.

Finally the service() method produces the dynamic HTML portion to embed inside
the Page1.shtml file.

The destroy() method is automatically invoked by the Web server only when the
Web server itself is shut down. It is used to store the table object inside the
Page1.obj file.

Notice that accesses to the table objects need to be synchronized in order to
avoid multiple threads from multiple client requests causing problems when
accessing the servlet concurrently.

Now that we have described how the IncludedCounter servlet works, we can
experiment with it.

9.1.2 Experimenting with the Servlet
Before experimenting with the IncludedCounter servlet, it is a good idea to open
the Preferences window for the Netscape browser to set the number of days after
which pages in history expire to 0. The Preferences window can be accessed
from the Edit menu. You can also select Advanced and then Cache in the
Preferences window and set Memory Cache and Disk Cache to 0 Kbytes. In this
way, you do not have to clear history, memory cache and disk cache for your
browser each time you request the Page1.shtml file to experiment with the
counter.
Chapter 9. Server Directed Affinity API 249

We compiled the IncludedCounter servlet and the StoredData class using the
Java compiler that comes with the Java Development Kit (JDK) 1.1.6. The
commands to issue are:

javac StoredData.java
javac IncludedCounter.java

The StoredData.java file must be compiled before compiling the IncludedCounter
servlet, because IncludedCounter uses the StoredData class. Only if
StoredData.java and IncludedCounter.java are in the same directory can you
compile IncludedCounter directly, and the Java complier will automatically
compile Notice that the full JDK 1.1.6 comes with the CD-ROM of WebSphere
Performance Pack Version 2.

To compile the servlet the CLASSPATH environment variable must be set
correctly, in order for the Java compiler to find the javax.servlet and
javax.servlet.http packages. To do this, we exported the CLASSPATH
environment variable on AIX as follows:

export CLASSPATH=/usr/lpp/IBMWebAS/lib/jsdk.jar:/usr/jdk_base/lib/classes.zip:.

Then we installed the class files StoredData.class and IncludedCounter.class,
along with the associated Page1.shtml file, on the server with IP address
9.24.104.157, which was our aixncf157 host. We placed the two class files inside
the servlet directory of WebSphere Application Server on our AIX system,
/usr/lpp/IBMWebAS/servlets.

We placed the Page1.shtml file in our AIX Web server’s document root directory,
/usr/lpp/HTTPServer/share/htdocs.

To set the CLASSPATH environment variable to contain the servlet library JAR
file, jsdk.jar, use this command on Windows NT:

set CLASSPATH=C:\WebSphere\AppServer\lib\jsdk.jar;C:\jdk1.1.6\lib\classes.zip;.

Alternately, you can set the value above for the CLASSPATH system
environment from the Control Panel, by double-clicking on the System icon,
selecting the Environment tab, and editing the value for CLASSPATH.

Use this command on Solaris:

export CLASSPATH=/opt/IBMWebAS/lib/jsdk.jar:/opt/jdk_base/lib/classes.zip:.

CLASSPATH on Windows NT and Solaris

The default WebSphere Application Server servlet directory on Windows NT is
C:\WebSphere\AppServer\servlets.

Servlet Directory on Windows NT

The default IBM HTTP Server document root directory on Windows NT is
C:\Program Files\IBM HTTP Server\htdocs.

Web Server Document root on Windows NT
250 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

We then used our browser to point to the Page1.shtml file and then clicked the
Reload button of the Netscape browser window several times. We saw
immediately how the IncludedCounter works. The dynamic portion embedded
inside the Page1.shtml file was automatically updated each time, and each time
the counter incremented consecutively. As an example, the fifth invocation is
shown in the following figure:

Figure 202. The Page1.shtml File Has Been Loaded Five Times

You can see that the counter, which is the dynamic portion of the HTML page,
was automatically increased each time we reloaded the page.

In this case, we achieved the desired results above by directing our browser to
the specific server (9.24.104.157) where we installed the servlet and its
associated Page1.shtml file. If, however, we place the servlet class files and the
SHTML file on multiple Web servers and access them through a Dispatcher that
is load balancing our requests for this page across the servers, the results are
less predictable. We discuss this issue in the next section.

9.1.3 Using the Servlet on a Cluster of Web Servers
The Dispatcher cluster environment in this scenario is shown in the following
window:
Chapter 9. Server Directed Affinity API 251

Figure 203. Dispatcher Cluster Environment for SDA Scenario

We placed a copy of the servlet and its associated Page1.shtml file on each of the
three Web server machines in our scenario.

On our Windows NT Web server machine we modified the Page1.shtml file to
point to the Page1.obj file as follows:

Filename="C:\\Objects\\Page1.obj″

Following this, we accessed the Page1.shtml file by using the cluster address
9.24.104.105 in our browser and saw the following sequence of pages, when we
clicked the Reload button:

Internet

Dispatcher

cluster address
9.24.104.105

clusterend.itso.ral.ibm.com

non-forwarding address
9.24.104.128

rs600023.itso.ral.ibm.com

9.24.104.157 9.24.104.158 9.24.104.217

5315\531520
252 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 204. First Access of 9.24.104.105/Page1.shtml

Figure 205. Second Access of 9.24.104.105/Page1.shtml
Chapter 9. Server Directed Affinity API 253

Figure 206. Third Access of 9.24.104.105/Page1.shtml

The client counter number does not increase consecutively because each time
we make a request for Page1.shtml, our request is load balanced by the
Dispatcher and sent to a different Web server. This scenario would be very
confusing to a customer accessing your Web site. Imagine what would happen if
this application, instead of a counter, were a bank application.

To prevent the client from seeing a not-consecutive counter, we could use the
SDA API to bind the client to one of our servers, so subsequent requests by the
client would result in a counter that increments as we would expect.

In the next section we show how to instruct the Dispatcher to listen for requests
from SDA agents. The SDA agents will either query or modify the contents of the
Dispatcher’s affinity table for a particular port.

9.1.4 Enabling SDA
Each cluster/port must be individually configured to allow SDA access. To enable
SDA access, you must define the port sticky time to be exactly one second.
Anything different from that, and you will not have SDA.

In our scenario, we used the ND configuration GUI to change the port sticky time
(seconds) value by typing 1 over the default value of 0 (representing no affinity) as
shown in the following figure:
254 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 207. Enabling the Dispatcher to Listen for SDA Requests

After changing the value, we clicked the Update Configuration button at the
bottom of the GUI.

To verify that the sticky setting took effect, we used the following command:

ndcontrol port status 9.24.104.105:80

We got the following output:

We could have done the same thing from the command line with the following
command:

ndcontrol port set 9.24.104.105:80 stickytime 1

Command-Line Version
Chapter 9. Server Directed Affinity API 255

The sticky time value of 1 confirms that we changed the setting successfully from
the GUI.

9.1.5 Modifying the Sample SDA Client Code
The sample SDA client code is distributed as a Java source program in this
directory installbase/lib/SDA, where installbase is for the Dispatcher component
and varies by operating system (see Table 1 on page 69 for a list of installbase
locations).

The SDA directory contains a file called SDA_API.htm and in it is a very good
description of how the API works.

There are three other files in the directory as well:

• SDA_SampleAgent.java – is the main program.

• SDA_Info.class – holds affinity information in the format for transfer to the
Dispatcher.

• SDA_Utils.class – implements miscellaneous utility routines to communicate
with the Dispatcher.

SDA_Info.class and SDA_Utils.class were designed so that you could use them
unchanged and intact, while replacing SDA_SampleAgent.java with your own code.
The full code of the Java file SDA_SampleAgent is shown in Appendix B,
“SDA_SampleAgent Code” on page 389.

In our case, we simply modified the supplied SDA_SampleAgent.java file to
prepare it for use in our scenario:

• We changed the IP addresses in the variables used by the constructor to build
the object used to communicate with the Dispatcher.

Port Status:

Port number 80
Cluster address 9.24.104.105
Number of servers 3
Stale timeout 300
Weight bound 20
Port type tcp/udp
Maximum number of servers 32
Sticky time 1
256 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 208. Our Modified SDA_SampleAgent Constructor

• We also changed the name of the copied Java file to SDA_bnd218157.java to
reflect the fact that it is used to bind the client machine with IP address ending
in 218 to the Web server with IP address ending in 157. We changed all the
references to SDA_SampleAgent in SDA_bnd218157.java, to SDA_bnd218157.

• We commented out the line in the main() method that performed the
subsequent delete of the added entry, because we wanted to leave the entry
in the affinity table for our test:

// sa.deleteRecord()

As well, we made another version of the SDA_SampleAgent, which performed
only the query function so we could verify what was contained in the affinity table.
To do this we again copied SDA_SampleAgent.java to SDA_Query.java and:

• We also changed the name of the copied Java file to SDA_Query.java and
changed all the references to SDA_SampleAgent in SDA_Query.java to SDA_Query.

• We commented out all of the lines in the main() method that performed
operations on the affinity table, except for a single query.

We ensured that the CLASSPATH system environment variable contained the
current directory:

• On AIX and Solaris:

export CLASSPATH=$CLASSPATH:.

• On Windows NT

set CLASSPATH=%CLASSPATH%;.

Then we compiled SDA_bnd218157.java and SDA_Query.java:

javac SDA_bnd218157.java
javac SDA_Query.java

//---
// Constructor.
//---
public SDA_Bind() throws Exception {

// Note: These values are samples only.
// You must modify them to work in your environment.

// Define the address and port to communicate with ND.
inaNetworkDispatcher = InetAddress.getByName("9.24.104.128");
// inaNetworkDispatcher = InetAddress.getByName("10.0.0.3");
iNetworkDispatcherPort = 10005;

// Define variables used as entries in the ND affinity table.
inaSdaCluster = InetAddress.getByName("9.24.104.105");
iSdaPort = 80;
inaSdaClient = InetAddress.getByName("9.24.104.218");
// inaSdaClient = InetAddress.getByName("10.0.0.3");
inaSdaServer = InetAddress.getByName("9.24.104.157");

}

Chapter 9. Server Directed Affinity API 257

These programs, can be launched from a command line by using the java

command. After running SDA_bnd218157, the output from SDA_Query appeared
as follows:

This verified that we had successfully bound our client IP address 9.24.104.218
to the server’s IP address 9.24.104.157 in the affinity table for our cluster
9.24.104.105 port 80 on our 9.24.104.128 Dispatcher machine.

Subsequent requests by our client machine were as follows:

SDA_Sample> Program sdacjl , version 1.0, March 14, 1998.
SDA_Sample> Opening connection with Network Dispatcher:

Address rs600023.itso.ral.ibm.com/9.24.104.128
Port 10005

SDA_Sample> Opened connection successfully.
SDA_Sample> About to send an auth string to ND...
SDA_Sample> About to send a CIB string to ND...
SDA_Sample> Waiting for an auth string from ND...
SDA_Sample> Successfully received an auth string from ND...
SDA_Sample> About to query the contents of the ND affinity table:
SDA_Info object:
--
MessageVersion 1
Command 4 (SDA_CMD_QUERY)
Response 0 (SDA_RSP_SUCCESS)
ClusterAddr 9.24.104.105
Port 80
NumAffinities 0

SDA_Sample> About to send an auth string to ND...
SDA_Sample> Waiting for an auth string from ND...
SDA_Sample> Successfully received an auth string from ND...
SDA_Sample> Received response from ND:
SDA_Info object:
--
MessageVersion 1
Command 4 (SDA_CMD_QUERY)
Response 0 (SDA_RSP_SUCCESS)
ClusterAddr 9.24.104.105
Port 80
NumAffinities 1
Record 0:
Response 0 (SDA_RSP_SUCCESS)
ClientAddr 9.24.104.218
ServerAddr 9.24.104.157

SDA_Sample> Closing socket in routine main.
258 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 209. First Request from the Client Machine with SDA Enabled

Figure 210. Second Request from the Client Machine with SDA Enabled
Chapter 9. Server Directed Affinity API 259

Figure 211. Third Request from the Client Machine with SDA Enabled

Any subsequent client requests for port 80 from this particular client machine
would continue to be routed to 9.24.104.157 until we explicitly remove the affinity
table entry.

9.1.6 A Different Scenario Implementation
Another possibility would have been for us to modify our IncludedCounter servlet
so that for each new client request to Page1.shtml, an entry would be added to
the Dispatcher’s affinity table to bind requests from our client machine to
whichever Web server machine was first selected to serve it. We could have
changed the of SDA_SampleAgent.java as follows:

• Copy the SDA_SampleAgent.java file to a new file and change all references
to the distributed name SDA_SampleAgent to the application’s new name, such as
SDA_Bind, for example.

• In your SDA_Bind.java file, change the constructor to allow another type of
instantiation of the object to accept the client IP address and the Web server
IP address as parameters. In this constructor, you could hardcode the
nonforwarding address of your Dispatcher and cluster IP address, and
dynamically obtain the client IP address and Web server IP address, as shown
in the following figure:
260 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 212. Possible Modified SDA_SampleClient Constructor

• You could also remove the main() method of the program.

• Place your modified code along with the two other distributed SDA class files
(SDA_Utils and SDA_Info) in your WebSphere Application Server servlet
directory and perform the Java compile.

To make use of the above, you could modify the service() method of the
IncludedCounter.java program shown in Figure 198 on page 246 and Figure 199
on page 247 so that for each new client request to Page1.shtml, an entry would
be added to the Dispatcher’s affinity table. The part to add to the service()
method of the IncludedCounter.java program follows:

//---
// Constructor.
//---
public SDA_Bind() throws Exception {

// Note: These values are samples only.
// You must modify them to work in your environment.

// Define the address and port to communicate with ND.
inaNetworkDispatcher = InetAddress.getByName("9.37.52.219");
// inaNetworkDispatcher = InetAddress.getByName("10.0.0.3");
iNetworkDispatcherPort = 10005;

// Define variables used as entries in the ND affinity table.
inaSdaCluster = InetAddress.getByName("9.37.61.44");
iSdaPort = 80;
inaSdaClient = InetAddress.getByName("9.37.52.219");
// inaSdaClient = InetAddress.getByName("10.0.0.3");
inaSdaServer = InetAddress.getByName("9.37.52.114");

}

public SDA_Bind(String clientIP, String serverIP) throws Exception {

// We added this section of the constuctor to accept two parameters
// and hardcoded our Dispatcher’s non forwarding address and cluster address

// Define the address and port to communicate with ND.
inaNetworkDispatcher = InetAddress.getByName("9.24.104.128");
iNetworkDispatcherPort = 10005;

// Define variables used as entries in the ND affinity table.
inaSdaCluster = InetAddress.getByName("9.24.104.105");
iSdaPort = 80;
inaSdaClient = InetAddress.getByName(clientIP);
inaSdaServer = InetAddress.getByName(serverIP);

System.out.println("ND=" + inaNetworkDispatcher +";ND_Port=" + iNetw
orkDispatcherPort + ";SdaCluster=" + inaSdaCluster + ";inaSdaClient=" + inaSda
Client + ";inaSdaServer=" + inaSdaServer);
}

Chapter 9. Server Directed Affinity API 261

Figure 213. Modified Service Function of IncludedCounter.java

You would then distribute your three SDA class files (the modified
SDA_SampleAgent, SDA_Utils and SDA_Info) and the modified servlet class
file(IncludedCounter) to your Web server machines. Repeated client requests for
the same Page1.shtml as before should result in the entry being added to the
Dispatcher’s affinity table, binding the client machine to whichever server the
Dispatcher sends it to the first time. The client counter numbers should increment
sequentially.

We could have put a timer inside of our IncludedCounter servlet to purge the
entry from the affinity table. Your application may have some other criteria on
which to base the decision as to when to remove the affinity entry, such as when
a particular transaction is completed.

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
log("service() method called");
String remaddr = req.getRemoteAddr();
String serverName = (InetAddress.getLocalHost()).getHostAddress();
int number;
synchronized(table)
{

StoredData counter = (StoredData)table.get(remaddr);
if (counter != null)

number = counter.increment();
else
{

counter = new StoredData(1);
table.put(remaddr, counter);
number = 1;
try
{

// Instantiate SDA_Bind class
SDA_Bind sa = new SDA_Bind(remaddr, serverName);

// Open a connection with ND and identify ourself.
sa.openND();

// Add the new affinity record.
sa.addRecord();

// Query the contents of the ND affinity table.
sa.queryTable();

}
catch(Exception e)
{

log("Excecption while executing SDA_Bind");
}

}
}

262 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 10. Custom Advisors

When Advisors are enabled within the Dispatcher or CBR components of IBM
SecureWay Network Dispatcher (ND), they measure actual client response time
for a particular protocol by periodically initiating a client-like exchange with the
back-end servers. These results are then fed to the Manager to adjust the
load-balancing weights. Currently, there are Advisors available for HTTP, FTP,
SSL, SMTP, NNTP, POP3 and Telnet, and three new Advisors have been added in
this version, namely ping, WTE1, and WLM2. Using the Advisors is optional, but
recommended. You also have the option of writing your own custom Advisors,
which are Java programs and can be compiled using the Java Development Kit
(JDK) 1.1.6, shipped with the product.

The Advisor component has been implemented so that most of the work is done
by the Advisor base code ADV_Base. This is true for both the supplied Advisors
and custom Advisors. The supplied and custom Advisors are small pieces of Java
code that extend the functionality of the ADV_Base base code simply by sending
and receiving user-defined data that is appropriate to the particular protocol
service whose health it is attempting to assess.

The Advisor base code ADV_Base provides these administrative services to both
supplied and custom Advisors:

• Socket connect and close operations

• Send and receive methods

• Methods to start and stop the Advisor

• Methods that provide status and report workload information back to the
Manager

• Methods that record history information to the log file

When a custom Advisor is created, a mode setting in its constructor defines how
the Advisor base code will determine the workload value to pass back to the
Manager component on behalf of the custom Advisor.

The Advisor base code determines the load value by using one of these two
methods:

• The Advisor base code monitors the duration of the custom Advisor’s data
exchange with the server and converts this to a load value. This is referred to
as normal mode.

• The Advisor base code simply passes on the load value returned from the
custom Advisor. This is referred to as replace mode.

With this feature, you have the flexibility of writing a very simple Advisor that
makes a basic connection to a port and allows the Advisor base code to time the
exchange. Alternatively, you can implement a more complex Advisor that
executes some code that will more accurately assess the load value of the
servers.

1 The WTE advisor is named after IBM Web Traffic Express (WTE), the Caching and Filtering component of IBM WebSphere
Performance Pack Version 2. This Advisor is specific for WTE (see 1.5.5.2, “Peak Load Management” on page 16).
2 The Workload Manager (WLM) Advisor will be discussed in 10.2, “Workload Manager Advisor” on page 271
© Copyright IBM Corp. 1999 263

10.1 Custom Advisor Scenarios

In this section, we show an example of a normal mode custom Advisor and a
replace mode custom Advisor.

10.1.1 Normal Mode Custom Advisor
A sample custom Advisor is provided with the Dispatcher and CBR components
of ND. The sample code is located in the directory
installbase/lib/CustomAdvisor/ADV_sample.java, where installbase varies by
component (Dispatcher or CBR) and operating system. See Table 1 on page 69
for a list of the installbase locations.

The provided ADV_sample.java file is essentially the same as the HTTP Advisor.
You can view the ADV_sample.java code in Appendix A, “ADV_sample Custom
Advisor” on page 383.

We use ADV_sample.java as our example of a normal mode custom Advisor.

10.1.2 Replace Mode Custom Advisor
For an example of a replace mode custom Advisor, we have chosen to implement
a custom Advisor that assesses the load information on a TN3270E server. We
chose to use this TCP server type in our example because an increasingly
popular use of the Dispatcher is to load balance requests to the TN3270E server
option of the IBM 2210 or 2216 routers.

10.1.2.1 TN3270E Background
Many companies today have consolidated their wide area network (WAN) traffic
into a single IP-only backbone. At the same time, other companies are simplifying
their workstation configuration and attempting to run only the TCP/IP protocol
stack at the desktop. However, most of these companies still require access to
System Network Architecture (SNA) hosts.

TN3270 meets these requirements by allowing you to run IP from the desktop
over the network and attach to your SNA host through a TN3270 server. The
clients connect to the server using a TCP connection. The server provides a
gateway function for the downstream TN3270 clients by mapping the client
sessions to SNA-dependent LU-LU sessions that the server maintains with the
SNA host. The TN3270 server handles the conversion between the TN3270 data
stream and a SNA 3270 data stream.

Figure 214. TN3270 Scenario

page number

TN3270e

SNA 3270

TCP/IP
network

SNA
network

TN3270
Server
264 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

The Network Utility option of the IBM 2210 or 2216 routers implements a TN3270
server function with extended capabilities (hence the TN3270E nomenclature). It
can be deployed in several configurations. For example, the TN3270E server
function can be placed either in the remote branch or in the data center where the
SNA host resides. It can attach to the host via a traditional SNA subarea
connection or it can use Advanced Peer-to-Peer Networking (APPN). The solution
can also scale to very large configurations while providing high availability and
redundancy.

10.1.2.2 Custom Advisor Java Code
While a traditional Dispatcher cluster configuration can be used to load balance
the TN3270e server requests, the ND code as distributed does not currently
include an Advisor for this type of TCP server. The following code is offered as an
example implementation of a custom Advisor that operates in replace mode to
assess the performance capabilities of TN3270E servers:
Chapter 10. Custom Advisors 265

Figure 215. (Part 1 of 4). IBM 2216 TN3270E Custom Advisor

//==
// ADV_tn3r:
//
// This is a custom Advisor meant for use with IBM 2216 routers configured as TN3270 servers.
// It exploits a special control port available in the server to report on
// its health and loading.
//
// This is *NOT* a general-purpose TN3270 Advisor.
//
// Note: This Advisor runs on the software-platform Network Dispatcher.
// It has no interaction with the Network Dispatcher function in the 2216.
//===//
Implementation notes:
//
// This Advisor does not use the socket opened by ND on the protocol-specific port.
// Instead, it opens another java socket to the server on a 'control port'.
// The server immediately sends a number (an ascii string) which indicates
// the health of the server.
//
// The server returns number values in the range 1-100 and 9999, where:
// 1 means a fast server
// 100 means a slow server
// 9999 means a very slow server (do not mark down, but send no more connections.)
// Within this Advisor, the range of these values is checked, and optionally a
// normalization may be done. These values are inserted into the Manager's
// port-specific table in the manager report as normal load values.
// In the constructor, super(), we specify 'true'. This tells the
// ND Advisor code use our load number in 'replace' mode rather than
// using ND's timestamp value.
//==
// We place this code in the archive as an example of an Advisor which opens its
// own socket to the to the server, extracts customer-proprietary data from
// the server, and returns it as a load value.
//==
package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.nd.advisors.*;
import com.ibm.internet.nd.common.*;
import com.ibm.internet.nd.server.SRV_ConfigServer;

public class ADV_tn3r extends ADV_Base implements ADV_MethodInterface
{
String COPYRIGHT = "(C) Copyright IBM Corporation 1997, All Rights Reserved.\n";

static final String ADV_NAME = "TN3R";
static final int ADV_DEF_ADV_ON_PORT = 23;
static final int ADV_DEF_CONTROL_PORT = 10008;
static final int ADV_DEF_INTERVAL = 7;
266 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 216. (Part 2 of 4). IBM 2216 TN3270E Custom Advisor

/**
* Constructor. Parms: None;
* but the constructor for ADV_Base has several parameters that must be passed to it.
*/
public ADV_tn3r()
{
super(ADV_NAME,

"2.0.0.0-12.08.98",
ADV_DEF_ADV_ON_PORT,
ADV_DEF_INTERVAL,
"", // not used
true); // replace mode

super.setAdvisor(this);
}

/**
* ADV_AdvisorInitialize*
* Any Advisor-specific initialization that must take place after the Advisor base is started.
* This method is called only once and is typically not used.
*/
public void ADV_AdvisorInitialize()
{
return;

}

/**
* normalizeLoad()
* AD 12/21/1998 48102
*/
int normalizeLoad(int iLoadOld) {
int iLoadNew;
// This routine implements a 'graph' with two straight lines.
// For load values below a knee, the load value is returned unchanged.
// This section of the 'graph' has a steady 1:1 slope.
// For values above the knee, a value which rapidly grows up to 9999
// is returned. This section of the 'graph' has a very steep slope.
// Define the load value at which the graph becomes very steep.
int iKnee = 85; // Don't use 100 (lest you divide by zero)!

if (9999 == iLoadOld) {
iLoadNew = iLoadOld;

}
else if (iKnee >= iLoadOld) {
iLoadNew = iLoadOld;

}
else { // Between the knee and 100 inclusive.
int iDelta = (9999 - 100) / (100 - iKnee);
iLoadNew = iKnee + (iLoadOld - iKnee) * iDelta;

}
return iLoadNew;

}

Chapter 10. Custom Advisors 267

Figure 217. (Part 3 of 4). IBM 2216 TN3270E Custom Advisor

/**
* getLoad()
*/
public int getLoad(int iConnectTime, ADV_Thread caller)
{
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1
boolean bLoadValid = false;
BufferedReader brIn = null;
Socket soServer = null;

// Notice: This Advisor does not use the socket connection which has
// been opened for us by the ND base classes. We open a new java
// socket connection with the server on a special port to fetch
// health information from the server.

// Get the name of the server on which we are advising.
String sServer = caller.getCurrentServer();
// System.out.println("ADV_tn3r: Entry. Starting a new advise cycle for server " + sServer);

try {
// Open a new socket with the server machine's control port.
// System.out.println("ADV_tn3r: Opening socket with server: " + soServer);
soServer = new Socket(sServer, ADV_DEF_CONTROL_PORT);
// System.out.println("ADV_tn3r: Socket opened successfully: " + soServer);

// Extract a stream for reading.
brIn = new BufferedReader(new InputStreamReader(soServer.getInputStream()));

// Set a max receive timeout so we do not wait forever.
int iRecvTimeout = 10000; // milliseconds.
soServer.setSoTimeout(iRecvTimeout);

// Read a load value from the server's control port.
// System.out.println("ADV_tn3r: Reading response.");
String sResponse = brIn.readLine();
// System.out.println("ADV_tn3r: After reading. Got response >>>" + sResponse + "<<<");

// Convert the response from a string to an int.
if (null != sResponse) {
if ((0 < sResponse.length()) && (6 > sResponse.length())) {
String sResponseTrim = sResponse.substring(0, 4);
// System.out.println("ADV_tn3r: After substring, sResponseTrim = >>>" + sResponseTrim +

"<<<");
iLoad = new Integer(sResponseTrim).intValue();
bLoadValid = true;
// System.out.println("ADV_tn3r: Converted to an int. iLoad=" + iLoad);

}
else {
// System.out.println("ADV_tn3r: Error: length is " + sResponse.length());

}
}

268 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 218. (Part 4 of 4). IBM 2216 TN3270E Custom Advisor

This Advisor has the following unique features:

• It does not make use of the TCP socket that has been opened by the base ND
classes on the client port number. Instead, it opens its own Java socket to the
server on a special control port number. From there, it gets a number from the
server indicating the load on the server machine.

• It operates in replace mode. Instead of relying upon the base ND Advisor
classes to make a time measurement of the health of the server, it overtly
returns a load number that is accepted by ND directly as a load number.

10.1.2.3 Custom Advisor Naming and Compiling
The custom Advisor filename must start with ADV_ in uppercase and the rest of the
name in lowercase. As per Java conventions, the class defined within the file
must match the name of the file, and the file must carry a .java extension.

In order to compile the custom Advisor with the Java compiler javac, the
CLASSPATH system environment variable must contain the ND base class file,
the Java class file and the directory where the custom Advisor is located. We set
the CLASSPATH as follows:

• On Windows NT:

// Range-check the load value. 9999 is ok. Otherwise limit to 1-100.
if (true == bLoadValid) {
if (9999 != iLoad) {
if (1 > iLoad) {
iLoad = 1;

}
else if (100 < iLoad) {
iLoad = 100;

}
}

}

// AD 12/22/1998 48102 - Optionally normalize the load value if desired.
iLoad = normalizeLoad(iLoad);

// System.out.println("ADV_tn3r: After range-check, iLoad=" + iLoad);
}

catch(Exception e) {
// System.out.println("ADV_tn3r: Caught exception " + e);

}

// Always try to close the socket.
try {soServer.close();} catch (Exception z) {;}

// System.out.println("ADV_tn3r: Exit. Returning " + iLoad);

return iLoad;
}

} // End - ADV_tn3r
Chapter 10. Custom Advisors 269

set CLASSPATH=C:\WSPP\IBM\nd\dispatcher\lib\ibmnd.jar;C:\jdk1.1.6\lib\classes.zip;.

• On AIX:

export CLASSPATH=/usr/lpp/nd/dispatcher/lib/ibmnd.jar:/usr/jdk_base/lib/classes.zip:.

After setting the CLASSPATH, we compiled our two Advisors:

javac ADV_sample.java
javac ADV_tn3r

10.1.2.4 Using the Custom Advisor
Once compiled, we placed the custom Advisor class files in the directory
installbase/lib/CustomAdvisor, where installbase varies by component
(Dispatcher or CBR) and operating system. See Table 1 on page 69 to determine
your installbase directory.

We started using the Advisors within the Dispatcher with these commands:

ndcontrol advisor start sample 80
ndcontrol advisor start tn3r 23

Although you cannot use the ND graphical user interface (GUI) to start your
custom Advisors, once they are started from the command line, their use can be
customized and stopped from the GUI:

Figure 219. Custom Advisor Management through the GUI
270 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

For details on how to customize the Manager component to work with the
Advisors, see 4.1.10, “Customization of the Manager for the Advisors” on page
130.

10.2 Workload Manager Advisor

The Workload Manager Advisor (WLM) is a Dispatcher Advisor that obtains
capacity information from Multiple Virtual Storage (MVS) Workload Management
software running on an OS/390 system.

There are several important differences between the WLM and the other
Dispatcher Advisors:

• Other Advisors open connections to the servers using the same port on which
normal client traffic flows. The WLM Advisor opens connections to the servers
using a port different from normal traffic. The WLM agent on each server
machine must be configured to listen on the same port on which the
Dispatcher WLM Advisor is started. The default WLM port is 10007.

• Other Advisors only assess those servers defined in the Dispatcher
cluster:port:server configuration for which the server’s port matches the
Advisor’s port. The WLM Advisor advises upon every server in the Dispatcher
cluster:port:server configuration. Therefore, you must not define any
non-WLM servers when using the WLM Advisor.

• Other Advisors place their load information in the Manager report under the
Port column. The WLM Advisor places its load information in the Manager
report under the System column.

• It is possible to use both protocol-specific Advisors along with the WLM
Advisor. The protocol-specific Advisors will poll the servers on their normal
traffic ports, and the WLM Advisor will poll the system load using the WLM
port.

10.2.1 ISS Restriction
As with ISS, the WLM Advisor reports on server systems as a whole, rather than
on individual protocol-specific services. Both ISS and WLM place their results in
the System column of the manager report. As a consequence, running both the
WLM Advisor and ISS at the same time is not supported.

Following is an example of output from the ndcontrol command:

ndcontrol manager report 9.24.104.105
Chapter 10. Custom Advisors 271

Figure 220. ndmanager Report Showing HTTP Advisor and ISS Agent Data

In this figure, the data in the Port column has been provided by an HTTP Port 80
Advisor. The data in the System column has been provided by ISS agents
running on the two TCP servers defined in the cluster.
272 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 11. Firewall Load Balancing and High Availability

WebSphere Performance Pack can be successfully integrated with other IBM
e-business offerings, such as IBM eNetwork Firewall. In particular, IBM
SecureWay Network Dispatcher (ND), the load balancing component of
WebSphere Performance Pack, can be used to achieve two goals:

• If you want to protect your site using a firewall, but at the same time you want
to grant high availability for the firewall, you can use the Dispatcher function of
ND. In this case, should the firewall machine unexpectedly fail, a backup
firewall machine is ready to take over.

The Dispatcher function should be installed on both the firewall machines, but
it is not used to load balance the traffic. The purpose of the Dispatcher
function is to provide high availability between the two firewall machines. This
solution is easy to install and configure and is much less expensive than other
products currently on the market.

• Another option is to use ND to load balance between two firewall machines.
The advantage of this solution is that the workload of each firewall is
effectively reduced.

In addition, firewall high availability is still provided. In fact the ND software
can detect if one of the two firewall machines has failed; in this case, the ND
machine will mark the firewall machine that failed as not available and will no
longer forward incoming requests to that machine.

In this chapter, we will examine both these solutions.

11.1 Firewall High Availability Using the Dispatcher

This section contains instructions on how to configure IBM eNetwork Firewall
V3.3 and the ND component of IBM WebSphere Performance Pack V2.0 to
provide a highly available firewall configuration. In this redbook, we do not
discuss installation instructions for IBM eNetwork Firewall, as these topics are
included in the product manual.

The scenario below makes use of the Dispatcher component of SecureWay
Network Dispatcher Version 2.1 to provide firewall high availability.

11.1.1 Installation
Both the firewall machines must be installed in the following installation
sequence:

1. Operating system (followed by the Service Pack 3 or greater if the operating
system is Windows NT 4.0)

2. IBM eNetwork Firewall V3.3 (fixes are necessary with Windows NT 4.0 and
Service Pack 3)

3. Dispatcher function of ND

Notice that this scenario does not require Interactive Session Support (ISS) and
Content Based Routing (CBR), the two other functions of ND. On installing ND,
you should select only the three subcomponents of ND that are associated with
Dispatcher, as shown in the following figure:
© Copyright IBM Corp. 1999 273

Figure 221. Selecting the Dispatcher Component for Installation

11.1.2 Basic Configuration Issues
The Dispatcher uses cluster addresses to identify the addresses over which it will
perform its load balancing. In the scenario we are interested in, the Dispatcher
will not be performing any load balancing, but we still need to use cluster
addresses for the highly available portion of the setup. We need to configure two
cluster addresses for this scenario: one for the secure interface and one for the
nonsecure interface. The cluster addresses are the ones that will be transferred
from one machine to the other in a failover situation. They are also the addresses
that clients will point to on the secure and nonsecure networks. The configuration
of these addresses is done in several scripts that are run by the Dispatcher.

Imagine the following scenario. There are two SecureWay Firewall machines:
FW1 and FW2. FW1 will be the primary machine, and FW2 will act as a backup
machine. Each machine also has a Dispatcher installed.

The following figure shows a graphical representation of this scenario:

In a Windows NT firewall high availability scenario, you will not need to install
the Microsoft Windows NT loopback adapter. The loopback adapter is only
necessary for the TCP servers in a configuration and not on the ND machines.
All loopback aliasing on the ND machines is taken care of in the high
availability scripts.

Cluster Address and Loopback Interface
274 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 222. Graphical Representation of the Scenario

For this example, we assume that both networks are using Ethernet and that both
machines are running AIX. The same scenario has also been successfully tested
using token-ring networks and the Windows NT Server V4.0 operating system
with Service Pack 4. Notice that the two machines must run the same operating
system is a requirement when using high availability.

However, a known problem has been discovered when IBM eNetwork Firewall
V3.3 for Windows NT and the ND component of IBM WebSphere Performance
Pack are colocated on an IBM Netfinity Server running Windows NT Server 4.0
with Service Pack 3 (in this case fixes are required for IBM SecureWay Firewall)
or Service Pack 4. The machine crashes when the ND Executor is started. The
use of Netfinity machines is therefore not recommended in this particular
scenario.1

There are three scripts that the Dispatcher uses to fail over the cluster addresses.
They are goActive, goInOp and goStandby. Let's assume the two machines are
using the following IP address scheme:

Table 18. Basic Configuration

1 The IBM WebSphere Performance Pack development team is working on a solution for the problem we have mentioned. By the time
this redbook gets published, this problem will probably have been corrected. Check the IBM SecureWay Network Dispatcher Web site at
http://www-4.ibm.com/software/network/dispatcher/.

Firewall Machine FW1 FW2

IP Address for Nonsecure Network 9.67.123.4 9.67.123.5

IP Address for Secure Network 10.0.0.4 10.0.0.5

Cluster Address for Nonsecure Network 9.67.123.8 9.67.123.8

Cluster Address for Secure Network 10.0.0.8 10.0.0.8

Subnet Mask for Nonsecure Network 255.255.248.0 255.255.248.0

Internet

en1

FW1
(primary)

en0

en1

FW2
(backup)

en0

Secure Network

Non-Secure Network

en1

FW1
(primary)

en0

en1

FW2
(backup)

en0
Chapter 11. Firewall Load Balancing and High Availability 275

If we assume the above, then the three scripts need to be configured as follows:

• goActive script

This script deletes cluster loopback aliases and adds cluster device aliases. It
will be executed when a Dispatcher machine, either the primary or backup in a
high-availability configuration, goes into active state and begins routing
packets.

Figure 223. When the goActive Script Is Invoked

The goActive script for an ND machine running AIX is shown in the following
figure:

Subnet Mask for Secure Network 255.255.255.0 255.255.255.0

Firewall Machine FW1 FW2

Firewall
Primary

Firewall
Backup

goActive

Firewall
Primary

Firewall
Backup

goActive
276 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 224. goActive Script

• goStandby script

This script deletes every cluster device alias and adds cluster loopback
aliases. It will be executed when a Dispatcher machine in a high-availability
configuration goes into standby state.

#
goActive script
#
Configure this script when using the high availability feature of
Network Dispatcher.
#
This script is executed when Network Dispatcher goes into the
'Active' state and begins routing packets.
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your non-secure network environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter.
#
NETMASK must be the netmask of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.67.123
INTERFACE=en0
NETMASK=255.255.248.0
#
echo "Adding non-secure cluster alias(es)"
for CLUSTER in 8; do

ifconfig lo0 delete $NETWORK.$CLUSTER
ifconfig $INTERFACE alias $NETWORK.$CLUSTER netmask $NETMASK

done
#
Modify SECNETWORK, SECCLUSTER, SECINTERFACE and SECNETMASK to match your secure network
environment.
#
#
SECNETWORK=10.0.0
SECINTERFACE=en1
SECNETMASK=0xffffff00
#
echo "Adding secure cluster alias(es)"
for SECCLUSTER in 8; do

ifconfig lo0 delete $SECNETWORK.$SECCLUSTER
ifconfig $SECINTERFACE alias $SECNETWORK.$SECCLUSTER netmask $SECNETMASK

done
Chapter 11. Firewall Load Balancing and High Availability 277

Figure 225. When the goStandby Script Is Invoked

The goStandBy script for an ND machine running AIX is shown in the following
figure:

Firewall
Primary

Firewall
Backup

goActive goStandby

OK

Firewall
Primary

Firewall
Backup

goStandby goActive

OK
278 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 226. goStandby Script

• goInOp script

This script deletes all cluster device and loopback aliases. This script is
executed when a Dispatcher Executor is stopped and before it is started for
the first time.

#!/bin/ksh
#
goStandby script
#
Configure this script when using the high availability feature of
eNetwork Dispatcher.
#
This script is executed when Network Dispatcher goes into the
'Standby' state. Monitoring the health of the 'Active' machine
but not routing packets.
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER, INTERFACE and NETMASK to match your non-secure environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter
#
NETMASK must be the netmask of your LAN. It may be hexadecimal or octal notation.
#
NETWORK=9.67.123
INTERFACE=en0
NETMASK=255.255.248.0
#
echo "Deleting the device aliases and adding the loopback aliases"
for CLUSTER in 8 ; do

ifconfig $INTERFACE delete $NETWORK.$CLUSTER
ifconfig lo0 alias $NETWORK.$CLUSTER netmask $NETMASK

done
#
Modify SECNETWORK, SECCLUSTER, SECINTERFACE and SECNETMASK to match your secure environment.
#
SECNETWORK=10.0.0
SECINTERFACE=en1
SECNETMASK=0xffffff00
#
echo "Deleting the device aliases and adding the loopback aliases"
for SECCLUSTER in 8 ; do

ifconfig $SECINTERFACE delete $SECNETWORK.$SECCLUSTER
ifconfig lo0 alias $SECNETWORK.$SECCLUSTER netmask $SECNETMASK

done
Chapter 11. Firewall Load Balancing and High Availability 279

Figure 227. When the goInOp Script Is Invoked

The goInOp script for a ND machine running AIX is shown in the following
figure:

Figure 228. goInOp script

Firewall
Primary

Firewall
Backup

goInOp goInOp

start/stop start/stop

#!/bin/ksh
#
goInOp script
#
Configure this script when using the high availability feature of
Network Dispatcher and optionally when using Network Dispatcher in a
standalone environment.
#
This script is executed when the Network Dispatcher executor is stopped
(and before the executor is initially started).
#
This script must be placed in Network Dispatcher's bin directory
(by default this is /usr/lpp/nd/dispatcher) and it needs to
have root execute permission.
#
Modify NETWORK, CLUSTER and INTERFACE to match your non-secure environment.
#
en0=first Ethernet adapter, tr0=first Token ring adapter, fi0=first FDDI adapter
#
NETWORK=9.67.123
INTERFACE=en0
#
echo "Removing all loopback and device aliases"
for CLUSTER in 8; do

ifconfig lo0 delete $NETWORK.$CLUSTER
ifconfig $INTERFACE delete $NETWORK.$CLUSTER

done

Modify SECNETWORK, SECCLUSTER and SECINTERFACE to match your secure environment.
#
SECNETWORK=10.0.0
SECINTERFACE=en1
#
echo "Removing all loopback and device aliases"
for SECCLUSTER in 8; do

ifconfig lo0 delete $SECNETWORK.$SECCLUSTER
ifconfig $SECINTERFACE delete $SECNETWORK.$SECCLUSTER

done
280 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Notice that sample script files on AIX are located in the directory
/usr/lpp/nd/dispatcher/samples. The sample scripts have the .sample extension.
You should edit those scripts and save them in the parent directory
/usr/lpp/nd/dispatcher without the .sample extension. The root user must have
permission to execute those scripts.

On Windows NT, the location of the sample script files by default is
C:\WSPP\IBM\nd\dispatcher\samples. On these platforms the script files must
have a .cmd extension in order to be executed. The sample scripts present an
additional .sample extension, which must be removed when the scripts are
customized and copied in the final destination directory, where they will be
executed. This directory is by default C:\WSPP\IBM\nd\dispatcher.

11.1.3 Setting the Rules for IBM eNetwork Firewall
The next step in configuration is setting the rules for eNetwork Firewall to allow
the Dispatcher to communicate with itself and the other machine.

Note: The name of the IBM eNetwork Firewall was changed to IBM SecureWay
Firewall with Version 4.0.

The Dispatcher is a client/server application. The initial program that is started is
ndserver. All the other commands are then issued using ndcontrol. When an
ndcontrol command is issued, the ndcontrol program attempts to open a socket
connection with the ndserver program. If it succeeds, the command is issued and
the results returned. The source port for these TCP/IP packets will be a random
port greater than 1023 and the destination port, by default, is 10003. This port
can be changed by the user if deemed necessary; instructions for that are located
in 2.5.4, “TCP Ports Used by the Dispatcher” on page 38. For example, if using
the default, the socket might be opened using a TCP/IP connection from port
1048 to port 10003. The Dispatcher opens this socket on the default interface,
which is where the host name of the machine is defined.

To discover the default interface, follow these simple rules:

1. Enter the hostname command on the firewall machine, as indicated in the
following session screen:

2. Issue the ping command to see on which network interface the host name of
the machine is defined, as shown:

ping FW1

The configuration scripts that we have shown in Figure 224, Figure 226, and
Figure 228 would be different on the Windows NT platform. See “Script
Modifications on Windows NT” on page 99 for more details.

Configuration Scripts on Windows NT

hostname
FW1
Chapter 11. Firewall Load Balancing and High Availability 281

The output produced by this command will tell you the IP address of the
network interface that replied to this Internet Control Message Protocol
(ICMP) echo request.

The entire socket connection is taking place along the default interface so the rule
can be explicit as to allow communication only along port 10003 from the
interface back to itself.

The Dispatcher synchronizes the primary and backup machines using TCP/IP
packets, called heartbeats. A rule has to be made to allow these heartbeats to be
transmitted from one machine to the other. Heartbeat configuration is vitally
important in order to ensure a high-availability solution. If the two Dispatcher
machines lose contact with each other they will both assume that the other
machine has failed and will assume routing duties for the cluster addresses. If
this state occurs there will be network errors because there are multiple
machines on the network answering to the same addresses. In order to prevent
this, we recommend that you have multiple heartbeats, by having one heartbeat
for each interface in the machine. If there are only two interfaces in the machine,
one secure and one nonsecure, then one of the heartbeats needs to be sent
along the nonsecure interface. Firewall administrators may not like opening up
another port on the nonsecure interface, although the risk is small.

The port used by the heartbeat is defined by the user, and the TCP/IP packet will
be constructed using this port as its source and destination. For example, if the
user defines the heartbeat port as 12345, then the TCP/IP packet will be issued
from port 12345 and to port 12345. This is convenient as it allows the rule on the
firewall to be very precise. If one does not want to open this connection along the
nonsecure interface, the solution is to have a dedicated network card on the
nonsecure network side and exchange the heartbeat along it.

The last rule that needs to be opened on the firewall is for reachability. The
Dispatcher has a feature called reachability that allows the user to define a series
of IP addresses that the Dispatcher machines will attempt to ping; these
machines are called reach targets. If the ping is successful, the Dispatcher
assumes that it can reach those machines. For example, if the backup machine

IBM eNetwork Firewall V3.3 does not allow you to define a connection having
the same object as both source and destination. For this reason, you will have
to define two network objects having different names but representing the
same network interface, that is, the default interface of the firewall. Then you
should define a new connection having those two objects as source and
destination, allowing a TCP connection to take place from a TCP port greater
than 1023 to the TCP port 10003.

Source and Destination Network Objects

The default interface may be the nonsecure interface, and some firewall
administrators may take offense at this. The risk is minimal, however, because
the socket need be allowed only to port 10003 and only along the default
interface.

One Note of Caution
282 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

can reach more of the machines than the primary, it is likely that one of the
network interfaces on the primary is no longer working and a failover will occur.

The firewall needs to be configured to allow each of these pings to reach their
destination. The reachability ping is simply a standard ICMP ping from port 8 to
port 0. Since the IP addresses are chosen by the user, the firewall configuration
can be precise about allowing pings only to those specified machines if
necessary. It is not necessary to allow inbound pings to the firewall.

Once the ports have been properly configured on the firewall, the Dispatcher can
be configured. One last decision has to be made, and that is how recovery should
be implemented. The Dispatcher has two modes, automatic and manual:

1. In automatic mode, if the primary machine fails, the backup takes over. When
the primary recovers it will automatically take over from the backup machine.

2. In manual mode, if the primary machine fails, the backup takes over. When the
primary recovers it will not take over unless the backup fails, or given an
explicit command to do so.

The decision about which mode to use will depend on the individual customer
situation.

The reasons for failover are as follows. If a machine is no longer receiving
heartbeat information, it assumes the other machine has failed, and a failover will
occur. If the backup machine is getting responses from more reach targets than
the primary, a failover will occur. In all other situations the two machines should
stay synchronized and be transparent to the firewall.

11.1.4 Scenario Implementation
We show now a sample configuration setup and give a concrete example of the
steps mentioned in this chapter.

The following table gives more details about the two firewall machines used in this
firewall high-availability scenario. In particular, it shows the IP addresses of the
two firewall machines in the secure and nonsecure network respectively, the IP
addresses of the reach target machines and the port selected for the firewall
machines to exchange the heartbeat:

Table 19. High-Availability Settings

The following list shows the configuration steps:

1. Configure FW1 and FW2 to allow communication from a port greater than 1023 to
port 10003 along the default interface.

2. Allow communication between FW1 and FW2 using port 12345 as source and
destination on the secure and nonsecure interfaces.

Firewall Machine FW1 FW2

IP Address for Nonsecure Network 9.67.123.4 9.67.123.5

IP Address for Secure Network 10.0.0.4 10.0.0.5

Heartbeat Port 12345 12345

Reach Target Nonsecure 9.67.123.6 9.67.123.6

Reach Target Secure 10.0.0.6 10.0.0.6
Chapter 11. Firewall Load Balancing and High Availability 283

3. Allow ICMP pings outbound from the nonsecure interface to 9.67.123.6 and from
the secure interface to 10.0.0.6.

4. Edit goActive, goInOp and goStandby scripts to alias the cluster addresses for the
secure and nonsecure interfaces.

5. Start the ndserver program on FW1 and configure the Dispatcher to provide
high availability.

This is the sequence of commands to issue on FW1, which is the primary
firewall machine:

ndserver start
ndcontrol executor start
ndcontrol highavailability heartbeat add 9.67.123.4 9.67.123.5
ndcontrol highavailability heartbeat add 10.0.0.4 10.0.0.5
ndcontrol highavailability backup add primary auto 12345
ndcontrol highavailability reach add 9.67.123.6
ndcontrol highavailability reach add 10.0.0.6
ndcontrol manager start
ndcontrol file save HAFirewall

6. Start the ndserver program on FW2 and configure the Dispatcher to provide
high availability.

This is the sequence of commands to issue on FW2, which is the backup
firewall machine:

ndserver start
ndcontrol executor start
ndcontrol highavailability heartbeat add 9.67.123.5 9.67.123.4
ndcontrol highavailability heartbeat add 10.0.0.5 10.0.0.4
ndcontrol highavailability backup add backup auto 12345
ndcontrol highavailability reach add 9.67.123.6
ndcontrol highavailability reach add 10.0.0.6
ndcontrol manager start
ndcontrol file save HAFirewall

7. Direct all nonsecure clients to 9.67.123.8 and all secure clients to 10.0.0.8.

Note the following:

• The following command issued in steps 5 on page 284 and 6 on page 284
would fail if Step 1 on page 283 is not executed:

ndcontrol executor start

• The following command also issued in Step 5 on page 284 and Step 6 on page
284, will allow the configuration to be reloaded quickly:

ndcontrol file save HAFirewall

As you can see, we have shown how to issue the high availability configuration
through the command line. Refer to Chapter 6, “ND High Availability Support” on
page 177 to see how to perform the same steps by using the ND Graphical User
Interface (GUI).

If either machine is stopped or rebooted, then the Dispatcher has to be
reconfigured. It does not start automatically. In order to reconfigure it perform the
following two steps, assuming you saved the configuration file as HAFirewall, as
indicated in Step 5 on page 284 and Step 6 on page 284:

ndserver start
284 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

ndcontrol file load HAFirewall

11.2 Firewall Load Balancing

In this section we will demonstrate how the Dispatcher can be used to load
balance traffic to two Firewall machines. To accomplish this, it is possible to make
use of the new wildcard cluster and wildcard port features of the Dispatcher.

The wildcard cluster can be used to load balance traffic to addresses that are not
explicitly configured on any network adapter of the Dispatcher machine. Similarly,
the wildcard port feature of the Dispatcher can be used to handle traffic that is not
destined for any explicitly configured port. Load balancing firewalls is one
practical use of these two features, since firewalls can process packets for any
destination address and any destination port.

Although in general the use of wildcard clusters requires that each cluster
address is explicitly configured on one of the network adapters on your
Dispatcher machine, this is not necessary when the wildcard cluster is used in a
firewall load-balancing scenario. In order for this to work, the Dispatcher must at
least be able to see all the traffic that it is to load balance, and for this reason the
Dispatcher must be set up as the default route for some set of traffic.2

As firewalls frequently are used to handle traffic going between secure and
non-secure networks, a typical firewall load balancing scenario would contain two
Dispatchers, one in the secure network and the other one in the nonsecure
network. For high-availability reasons, it is advisable to put a backup Dispatcher
in both the secure and nonsecure network. This configuration is the most reliable

2 This is according to the documentation. However, we found that, at least on Windows NT, the cluster address must be explicitly
configured on one of the network adapters of the Dispatcher machine. As we mention in 11.2.1.2, “Dispatcher Configuration” on page
288, it is our understanding that this problem does not arise on AIX and Solaris.

Wildcard cluster and wildcard port support is a new feature implemented for the
first time in Version 2 of IBM WebSphere Performance Pack.

A wildcard cluster is configured as having IP address 0.0.0.0. The main
application for wildcard clusters is to combine server configurations. That is, if
you have many cluster addresses to load balance requests to, and some of
them have the same port and server configurations, you can combine these
clusters into one wildcard cluster. Other clusters with unique port and server
configurations defined with actual cluster addresses can coexist with the
wildcard cluster.

You must still explicitly configure each cluster address on one of the network
adapters on your Dispatcher machine.

Wildcard ports are used when a set of servers in a specific cluster or in a
wildcard cluster must respond to multiple ports, which could be known in
advance or even unknown. Rather than adding each port in the Dispatcher
configuration, you can add a wildcard port. The wildcard port number is 0.

Firewall load balancing is one example of how wildcard clusters and wildcard

Wildcard Cluster and Wildcard Port in WebSphere Performance Pack V2
Chapter 11. Firewall Load Balancing and High Availability 285

and requires a total number of four Dispatcher machines, as seen in the following
figure:

Figure 229. Typical Firewall Load-Balancing Scenario

Dispatcher 1 load balances traffic from the secure clients to the nonsecure
servers. Dispatcher 2 load balances traffic from the nonsecure clients to the
secure servers. As we said, the two backup Dispatcher machines are part of the
architecture only for high-availability reasons, and each of them will take over only
if the corresponding primary Dispatcher should unexpectedly fail.

If your security policy allows only requests originating in the secure network, and
denies each request originating in the nonsecure network, then it is not
necessary to place any Dispatcher machine in the non-secure network.

As is the case with other Dispatcher scenarios, the load-balanced servers (the
firewalls in this case) do not send the response back to the client through the
Dispatcher. Rather, the return traffic flows directly from the server to the client.

Secure Network

Non-Secure Network

Client Server

Dispatcher 1
Primary

Dispatcher 2
Primary

Dispatcher 2
Backup

Dispatcher 1
Backup

Client Server
286 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

11.2.1 IP Filter Load-Balancing Scenario – Wildcard Cluster and Port
In our scenario we implemented the Dispatcher only on the secure side of the
firewalls. This is a common configuration that occurs if your security policy allows
only requests originating in the secure side to take place, and denies all the
requests originating in the nonsecure side.

The firewalls in this case are running IBM eNetwork Firewall V3.3 on Windows NT
4.0 and Service Pack 3 and are configured simply to filter the traffic between the
secure and the nonsecure networks. This firewall technology is known as IP
filtering. In the rest of the sections in this chapter, we will also see how to load
balance firewalls implementing other technologies.

We will use the secure client machine at IP address 192.168.10.6 to request a
Web page from the Lotus Domino Go Webserver, which is located on the nonsecure
side of the network on the Web server machine with IP address 172.16.0.1. The
communication will go through the load-balanced firewall cluster.

11.2.1.1 Network Environment
The following figure shows a graphical representation of our firewall
load-balancing network environment.

Figure 230. Firewall Load-Balancing Network Environment

The following table summarizes the machines we used in our scenario.

DNS Server
Web Client

192.168.10.6

Dispatcher

Non-Forwarding Address
192.168.10.31

Cluster Address
192.168.10.30

172.16.0.10 172.16.0.11

DNS Server
Web Server

172.16.0.1

192.168.10.1 192.168.10.2

Firewall 1 Firewall 2
DNS Server

Secure
Network

Non-Secure
Network

DNS Server
Chapter 11. Firewall Load Balancing and High Availability 287

A summary of the hardware, software, and network configuration of the systems
we used is shown in the following table:

Table 20. Basic Scenario - Hardware, Software and Network Configuration

Also note:

1. The load-balancing function was provided by the Dispatcher component of ND,
installed from the CD-ROM of IBM WebSphere Performance Pack V2.0.

2. The firewall function was provided by IBM eNetwork Firewall Version 3.3.

3. Netscape Navigator 4.5 was the Web browser running on the secure Web
client machine.

4. The Web server function on the nonsecure Web server was provided by Lotus
Domino Go Webserver 4.6.2.5.

5. Both local area networks (LANs) were implemented on token-ring.

11.2.1.2 Dispatcher Configuration
We began the Dispatcher wildcard cluster configuration by following the same
steps as shown in 4.1.4, “Dispatcher Configuration” on page 83, up to the point
where the cluster was added. To add the wildcard cluster, we right-clicked the
Executor item and in the pop-up menu, selected Add Cluster. In the Add Cluster
dialog, we entered the value 0.0.0.0 as our cluster address:

Figure 231. Entering the Wildcard Cluster

Next, we added the wildcard port. To do this we right-clicked the Cluster:0.0.0.0
item and in the pop-up menu, selected Add Port. On the Add Port dialog, we
entered a port number of 0 to represent the wildcard port.

Workstation Operating System Secure LAN IP
Address

Nonsecure LAN
IP Address

Service

IBM PC 365 Windows NT Server 4.0 192.168.10.6 Secure Web client

IBM PC 365 Windows NT Server 4.0 192.168.10.31 Secure Dispatcher
nonforwarding address

192.168.10.30 Secure Dispatcher cluster
address

IBM PC 365 Windows NT Server 4.0 192.168.10.1 172.16.0.10 Firewall 1

IBM PC 365 Windows NT Server 4.0 192.168.10.2 172.16.0.11 Firewall 2

IBM PC 365 Windows NT Server 4.0 172.16.0.1 Nonsecure Web server
288 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 232. Entering the Wildcard Port from the GUI

After adding the secure interface of our two IBM eNetwork Firewall V3.3
machines as the Port 0 servers and starting the Manager component, we could
have enabled the ping advisor. This advisor does not open a TCP connection with
the server, but instead reports whether the server responds to the ping. It is a
new advisor, specifically intended for use with wildcard ports. If this advisor is
used, the firewall machines would have to be configured to respond to pings.

The final port status from the GUI appeared as follows:

Figure 233. Wildcard Port Status

The final step on our Dispatcher machine was to alias a real cluster address (not
the wildcard cluster address) to the tr0 network interface. We did this by entering
the command:

ndconfig tr0 alias 192.168.10.30 netmask 255.255.255.0
Chapter 11. Firewall Load Balancing and High Availability 289

We found the creation of this alias necessary for load balancing to occur on the
Windows NT machine that we used as the Dispatcher in this scenario. It is our
understanding that the creation of this alias is not necessary when the Dispatcher
is running on either an AIX or Solaris system.

It is important to note that you should not use the GUI’s Cluster:0.0.0.0 menu to
configure the cluster address, as this will result in the wrong IP address being
aliased to your network interface card (0.0.0.0 instead of 192.168.10.30). The
following figure shows the ndconfig command output before and after we created
the alias:

Figure 234. ndconfig Command Output

11.2.1.3 Firewall Configuration
On each of the firewall machines, we defined one firewall connection for use in
our scenario. This connection allowed requests from our secure client destined
for HTTP port 80 to go out to Web server on the nonsecure network and the
resulting responses (all having the ACK flag) from the server on the nonsecure
network to be returned to the secure client. Consult the IBM redbook Internet
Security in the Network Computing Framework, SG24-5220, for further
information on how to configure the IBM eNetwork Firewall.

Because we allowed only port 80 traffic through the firewall, we could have used
port 80 in our wildcard cluster on the Dispatcher, rather than a wildcard port.
However, this example is useful for showing how to configure a wildcard port.

No other load-balancing specific configuration was done on either of the firewall
machines.

11.2.1.4 Secure Client Configuration
The clients need to be configured so that either they use the ND workstation as the
default gateway or their default gateway leads to a router that uses ND workstation as
its default gateway.

To accomplish this, we changed the client gateway associated with the network
interface on the machine. This step is necessary in order for the Dispatcher to
receive the network packets destined for any IP address that is not the
Dispatcher’s IP address. Before making the change, we noticed that our default
290 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

route was set to the Firewall machine, 192.168.10.1. We used the route print

command to see our default route. Following is the output showing the default
route before changing the gateway in the first row of the table:

Figure 235. Default Route Before Changing the Default Gateway Address (wildcfg03)

To change the gateway address in our default route, we changed the default
gateway for our network interface. To do this we clicked Start, then Settings, and
then Control Panel. We double-clicked the Network icon, and in the Network
window selected the Protocols tab. On the Protocols page, we double-clicked the
TCP/IP line and were presented with the Microsoft TCP/IP Properties window. In
this window we selected the IP Address tab, and changed the Default Gateway
field at the bottom of the window to contain the IP address of our cluster. This is
shown in the following figure:
Chapter 11. Firewall Load Balancing and High Availability 291

Figure 236. Changing the Default Gateway on the Secure Client

After clicking Apply or OK, we entered the route print command again:

This way we could verify that the default route was changed to the cluster
address 192.168.10.30, as shown in the following figure:

Figure 237. The New Default Route Pointing To The Cluster Address
292 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

We noticed as well that we could have used the nonforwarding address of the
Dispatcher machine (192.168.10.31) as the default gateway on the secure client
machine. As long as an alias was set up on the network interface on the
Dispatcher, the client could successfully use either 192.168.10.30 or
192.168.10.31 as its gateway.

The next step was to change the Proxies configuration on the Web client
machine’s browser, so that it would use a direct connection to the Internet without
passing through a proxy server.

To do this, we opened the Netscape Edit menu, and selected Preferences.... In
the Preferences window we selected the Advanced twisty from the Category tree
to expand the Advanced options and then we selected the Proxy item. In the
Proxies section, we selected the radio button Direct connection to the Internet
as follows:

Figure 238. Netscape Proxy Selection

The last changes we made before generating the HTTP request were the
following:

• We set to 0 the number of days after which pages in history expire. To do this
we used the same Preferences window accessed from the Edit menu, and we
clicked Navigator.

• We selected Advanced and then Cache, and set Memory Cache and Disk
Cache to 0 Kbytes.
Chapter 11. Firewall Load Balancing and High Availability 293

In this way, we did not have to clear history, memory cache, and disk cache for
the browser each time we made a request. In a real-life situation, it is not
necessary to clear history, memory cache, and disk cache. This is necessary only
in a test environment, to make sure that the Web pages are retrieved each time
from the Web servers and not from the local cache.

11.2.1.5 Scenario Results
Following this, we made a request from the secure client browser for a specific
page that we created and placed on our nonsecure Web server machine. The
page contained text that uniquely identified the server that was serving the page.
From the Netscape Navigator browser on the secure client, we obtained the page
from the nonsecure Web server as follows:

Figure 239. Nonsecure Request Results

This shows that the request was successfully transmitted through one of the
firewall machines to the Web server on the nonsecure side of the network.

Following this, we made several more Web page requests and from the
Dispatcher machine verified that the Dispatcher was load balancing these
requests between the two firewall machines. We used the ND GUI port monitor to
see these results:
294 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 240. ND GUI Wildcard Port Requests Being Distributed by the Dispatcher

11.2.2 HTTP Proxy Server Load Balancing Scenario
In order to understand how to configure a Dispatcher to load balance requests to
Firewall proxy servers, we need first to understand what a proxy server is.

11.2.2.1 Proxy Servers
Proxy servers are tools that run at the application level of the ISO/OSI network
model. For this reason they are also known as application level gateways. When a
firewall acts as a proxy server, it performs the necessary work on behalf of the
secure user. The client must send its request to the proxy server and not to the
server directly. The connection is broken at the proxy server, which sends the
client’s requests to the server without any computer on the nonsecure network
knowing that the secure client even exists. Using this firewall technology, the
client and the server do not speak directly to each other, but through the proxy
server, so that the client located on the intranet remains hidden to the rest of the
world.

Firewall high availability is an inherent feature of firewall load balancing. If one
of the firewall machines experiences a problem or needs to be removed from
service for any reason, the Dispatcher will automatically detect this and
distribute requests to the remaining Firewall machine as part of its normal
load-balancing capabilities.

Firewall High Availability when Using Firewall Load Balancing
Chapter 11. Firewall Load Balancing and High Availability 295

Proxy servers do not involve packet routing at all. The IP address of the client
machine on the intranet from which the IP session was established will never
appear on the Internet, and attackers and intruders cannot use addresses of the
protected network to gain information about the structure of the intranet.

Proxy servers also allow other security measures:

• Telnet and FTP proxy servers can be configured in order to perform
authentication and authorization checks.

• Requests for Internet sites can be logged, along with addresses of the
requesting machines.

• Requests for certain Web sites can be banned.

HTTP proxy servers support several protocols, such as FTP, HTTP, HTTPS
(which is HTTP over SSL), Gopher and WAIS.

For more information on proxy servers, see the IBM redbook Internet Security in
the Network Computing Framework, SG24-5220.

11.2.2.2 Scenario Implementation
In this scenario we implement a firewall HTTP proxy server load-balancing
architecture by using a basic nonwildcard Dispatcher cluster. In order for a client
to use a proxy server, the client must send its request to the proxy server and not
to the server that it is making the request of directly. As a result, we do not require
the use of the wildcard cluster and wildcard port for this configuration. In this
case, we have a defined proxy server address that will be used as the destination
for all of the packets coming out of the client machine. We configure this proxy
server address to be the cluster address. In this way, the Dispatcher will first
receive the requests destined to go the proxy server. The Dispatcher will then
load balance these requests by forwarding them to the Firewall machine that it
deems to be the best one to respond to the request.

11.2.2.3 Network Environment
The network environment that we used in this scenario was exactly the same as
the one used in 11.2, “Firewall Load Balancing” on page 285. In particular, notice
that also in this case the platform was completely based on Windows NT Server
4.0 with Service Pack 3. The necessary fixes for IBM eNetwork Firewall V3.3 for
Windows NT, required with Service Pack 3, were also installed. A summary of the
hardware, software and network configuration of the systems we used is shown in
the following table:

Table 21. Basic Scenario - Hardware, Software and Network Configuration

Workstation Operating System Secure LAN IP
Address

Nonsecure LAN
IP Address

Service

IBM PC 365 Windows NT Server 4.0 192.168.10.6 Secure Web client

IBM PC 365 Windows NT Server 4.0 192.168.10.31 Secure Dispatcher
nonforwarding address

192.168.10.30 Secure Dispatcher cluster
address

IBM PC 365 Windows NT Server 4.0 192.168.10.1 172.16.0.10 Firewall 1

IBM PC 365 Windows NT Server 4.0 192.168.10.2 172.16.0.11 Firewall 2
296 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Also note:

1. The load-balancing function was provided by the Dispatcher component of
SecureWay Network Dispatcher Version 2.1.

2. The firewall function was provided by IBM eNetwork Firewall Version 3.3.

3. Netscape Navigator 4.5 was the Web browser running on the secure Web
client machine.

4. The Web server function on the non-secure Web server was provided by Lotus
Domino Go Webserver 4.6.2.5.

5. Both LANs were implemented on token-ring.

11.2.2.4 Dispatcher Configuration
For this scenario, we configured the Dispatcher in a standard way. We added one
cluster with the cluster address 192.168.10.30. We added one port to this cluster
for port number 8080 (this is the port number that our firewalls were about to be
configured to receive HTTP requests on, as seen in 11.2.2.5, “Firewall Proxy
Configuration” on page 298) and the two firewall machines as servers. The
following ND GUI display shows a summary of the Dispatcher configuration:

Figure 241. Dispatcher Port Status

IBM PC 365 Windows NT Server 4.0 172.16.0.1 Nonsecure Web server

Workstation Operating System Secure LAN IP
Address

Nonsecure LAN
IP Address

Service
Chapter 11. Firewall Load Balancing and High Availability 297

The final step on our Dispatcher machine was to alias the cluster address to the
tr0 network interface. We did this by entering the command:

ndconfig tr0 alias 192.168.10.30 netmask 255.255.255.0

Other methods of configuring this alias are available, and are described in
4.1.4.8, “Methods of Aliasing the Cluster to the Network Interface” on page 94.

11.2.2.5 Firewall Proxy Configuration
Recall that the proxy server breaks the communication from the client to the
server and sends out the request to the server on the clients’ behalf. For this
reason we require two separate connections to be configured on each of our
firewall machines.

The first connection allowed requests from our secure client destined for HTTP
port 8080 to come to the secure interface on the firewall machine and go back to
the secure client again. The second connection allowed HTTP port 80 requests to
go out from the nonsecure interface of the firewall to the Web server on the
nonsecure network and the resulting returned response from the Web server on
the nonsecure network back to the nonsecure interface on the firewall. We do not
show here the details of how to configure this firewall connection. Consult the
IBM redbook Internet Security in the Network Computing Framework, SG24-5220
for further information on how to configure the FTP proxy server with IBM
eNetwork Firewall.

The next step on the firewall machines was to alias the cluster address to the
loopback interface on the machine. We followed the directions given in 4.1.5,
“TCP Servers Configuration” on page 107 on both of our firewall proxy servers.

After adding the cluster alias and rebooting the firewall machines, we needed to
make one more change on the firewalls in order for the communication to
succeed. The IBM eNetwork Firewall V3.3 software detects that a new network
interface has been added and it creates an associated firewall interface for the
newly created interface. By default this new firewall interface is marked as
belonging to the nonsecure network and it must be changed to secure. In order to
change the designation of this interface to secure, we used the IBM eNetwork
Firewall administration GUI. We double clicked the System Administration
twisty to expand its options. From the expanded list, we selected Interfaces as
follows:
298 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 242. IBM eNetwork Firewall System Administration Window

In the resulting Network Interfaces dialog window, we selected the newly added
interface and clicked Change. This changed the designation of the interface type
from Non-Secure Interface to Secure Interface as follows:
Chapter 11. Firewall Load Balancing and High Availability 299

Figure 243. Firewall Interface Administration

11.2.2.6 Secure Client Configuration
The client browser must be configured to forward each request to the HTTP proxy
server, or it will try to establish a direct connection to the Web server machine
located on the Internet. Netscape Navigator 4.5 can be configured through the
Preferences window. We opened the Edit menu, and selected Preferences.... In
the Preferences window we selected Advanced from the Category tree and then
Proxies. In the Proxies section, we selected the radio box Manual Proxy
Configuration and then clicked View.... Then, we filled in the HTTP field with the
cluster IP address 192.168.10.30 and put the port number for HTTP protocol
access that our proxy server was expecting to receive the requests on: 8080. The
final configuration is shown in the following figure:
300 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 244. The Cluster Address Is Added to the HTTP Proxy Field (proxy03)

The other fields in this window could be used to enter the IP addresses or host
names and ports of systems running proxy servers for the other protocols.
However, using other protocols was not necessary for the purposes of this
scenario.

Another change we made before generating the HTTP request was also done
from the Advanced Preferences selection. We selected the Cache item and set
the size of memory and disk cache to 0 KBytes. Finally, we clicked Navigator and
we set the expiration time of pages in the history to 0 days. By doing this, we did
not have to clear history, memory cache, and disk cache for the browser each
time we made a request. Working with no pages in the history and cache is very
important when working in a test environment, to make sure that pages are really
served by the servicing Web server and not by the local cache.

11.2.2.7 Scenario Results
Once the above configuration was complete, we were able to use the Netscape
browser on the secure client machine to request our test Web page from the
machine running Lotus Domino Go Webserver on the nonsecure side of the
firewall system through the HTTP proxy server:
Chapter 11. Firewall Load Balancing and High Availability 301

Figure 245. Nonsecure Request Results through the Proxy Firewall

Following this, we made several more Web page requests. From the Dispatcher
machine we verified that the Dispatcher was load balancing these requests to the
two Firewall machines. We used the ND GUI port monitor to see these results:

Figure 246. ND GUI Proxy Port Requests Being Distributed by the Dispatcher

Note that we could have used the wildcard port and cluster in this implementation
but it is really not necessary, as the client packets in this case are always
destined for a specific address.

Once again, firewall high availability is an inherent feature of firewall load
balancing. If one of the firewall machines experiences a problem or needs to be
removed from service for any reason, a Dispatcher advisor can automatically
detect this and distribute requests to the remaining firewall machine as part of its
normal load-balancing duties.
302 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

11.2.3 FTP Proxy Server Load-Balancing Scenario
By adding on to the scenario described in 11.2.2.2, “Scenario Implementation” on
page 296, we also implemented a firewall FTP proxy server load-balancing
architecture. The configuration required on the Dispatcher machine consisted of
simply adding another port to the already existing cluster. We added the FTP port
number 21 (the FTP control port) and then added the same two firewall secure IP
addresses that had been used for port 8080 as the servers for this port. We could
also have implemented this by using a new cluster.

Of course, both the firewalls had to be configured to act as FTP proxy servers.
Consult the IBM redbook Internet Security in the Network Computing Framework,
SG24-5220 for further information on how to configure the FTP proxy server with
IBM eNetwork Firewall.

The method we used on the secure client machine to initiate the FTP request to
the nonsecure server was to initiate the FTP request to the FTP proxy server from
the command line:

ftp 192.168.10.30

After logging into the firewall machine with a user ID that had been previously set
up, we entered the following command in response to the FTP prompt:

ftp> quote site 172.16.0.0

We were then presented with an FTP login prompt from the nonsecure server. We
logged in and were able to initiate the FTP file transfer with FTP commands.

Once again, monitoring the load-balancing activities with the ND GUI we had the
confirmation that the Dispatcher was effectively load balancing the two FTP proxy
servers, too.

11.2.4 Firewall SOCKS Server Load-Balancing Scenario
In addition to extending the scenario described in 11.2.2.2, “Scenario
Implementation” on page 296 for use with an FTP proxy server port, we also
extended the HTTP proxy server load-balancing scenario to allow our Dispatcher
to load balance requests to two SOCKS servers running on the same two firewall
machines.

11.2.4.1 SOCKS Servers
SOCKS technology involves a SOCKS server running on the firewall machine.
The client uses a TCP protocol named SOCKS to communicate with the SOCKS
server. SOCKS technology provides security by encapsulating any TCP protocol
in the SOCKS protocol. This starts on the client machine where each TCP packet

IP forwarding should be turned off on the Dispatcher machine. When IP
forwarding was turned on on the Dispatcher machine, we noticed a significant
increase in the network traffic originating from the Dispatcher. And, possibly as
a result of the increased network traffic, there appeared to be a significant
increase in the length of time required to receive the response to our Web page
request, relative to when IP forwarding was turned off.

IP Forwarding on the Dispatcher Machine
Chapter 11. Firewall Load Balancing and High Availability 303

is encapsulated within a SOCKS packet and then transmitted to the SOCKS
server on the firewall. The SOCKS server extracts the required information from
each packet, such as destination address and port number, and then sends the
data. As was also the case with proxy server technologies, the session is broken
by the firewall and once again the secure user is hidden to the Internet, so
nonsecure hosts cannot know that a secure user even exists. The source IP
address that is exposed to the Internet is that of the SOCKS server itself. The IP
address or host name of the machine from which the request originated is not
exposed to the nonsecure network. Intruders and hackers cannot access internal
information from your intranet.

When a non-secure host sends a response back to the secure client, it sends the
response back to the SOCKS server, which then encapsulates the packets in the
SOCKS protocol and sends them back to the client machine in the secure
network.

SOCKS technology has become very popular because it enables the firewall to
simply allow any TCP/IP connection (any TCP protocol and any port number)
between the firewall itself and the nonsecure network, protecting the secure
network by denying all the connections to the secure network that have been
initiated by the Internet.

Modifications are required on the client in order for the client machine to be able
to use the SOCKS protocol to communicate with the SOCKS server on the
firewall machine. There are two possible ways to do this:

1. Recompile the client software to link the network client code with the SOCKS
libraries to obtain SOCKSified client code.

This option will not work for you unless you have the client source code.
Fortunately, several client applications, such as Netscape Communicator, Sun
HotJava, and Microsoft Internet Explorer, offer built in support for
communicating with a SOCKS server using the SOCKS protocol. The client
application must be configured by specifying the SOCKS server’s IP address
(the cluster address in this case) and the TCP port used on the SOCKS server
(this is usually 1080).

2. Replace the dynamically linked libraries that implement the TCP calls with a
SOCKSified version, named SOCKSified TCP stack.

The SOCKSified TCP stack can be used with any client application, without
the need to modify the code, because the SOCKSification is performed at the
operating system level. In this case it is still necessary for the client program to
be aware of the SOCKS server’s IP address or host name.

11.2.4.2 Scenario Implementation
The scenario we implemented to demonstrate SOCKS server load balancing was
completely based on the Windows NT 4.0 platform. On all the machines, Service
Pack 3 had been applied, together with the necessary fixes on the firewall
machines.
304 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

The configuration of the machines we used in this scenario is shown in the
following table:

Table 22. Basic Scenario - Hardware, Software and Network Configuration

Implementing a SOCKS server load-balancing scenario is no different from
implementing a proxy server load-balancing scenario, because with both
technologies the firewall breaks the communication between client and server.
For this reason, you can safely repeat the same steps described in 11.2.2, “HTTP
Proxy Server Load Balancing Scenario” on page 295 or 11.2.3, “FTP Proxy
Server Load-Balancing Scenario” on page 303.

However, chances exist that after configuring the SOCKS server load-balancing
scenario, it simply does not work on the first try. To understand what is wrong in
the configuration, you should first of all enable the SOCKS server debug option,
which traces the SOCKS proxy actions. On a Windows NT 4.0 system, you
should follow these steps:

1. Run the Registry Editor, by entering the regedit command on a Command
Prompt window.

2. From the HKEY_LOCAL_MACHINE subtree, select the
\SOFTWARE\IBM\IBMFirewall\3.3\Socks\Server key.

3. From the Edit menu, select Add String Value.

4. Add a new string called:

Debug Log File

and set it to your desired file name and path, for example C:\TEMP\SOCKS.LOG.

5. Click OK.

6. Quit the Registry Editor.

The debug becomes available without any further action. However, it is advisable
to remove this registry entry as soon as you finish debugging, as the log file
grows quickly.

After another try to connect from the client via the cluster of SOCKS servers, we
checked the created log file and found the following entries:

Workstation Operating System Secure LAN IP
Address

Nonsecure LAN
IP Address

Service

IBM PC 365 Windows NT Server 4.0 9.24.104.7 Secure Web client

IBM PC 365 Windows NT Server 4.0 9.24.104.31 Secure Dispatcher
nonforwarding address

9.24.104.30 Secure Dispatcher cluster
address

IBM PC 365 Windows NT Server 4.0 9.24.104.56 150.24.104.59 Firewall 1

IBM PC 365 Windows NT Server 4.0 9.24.104.57 150.24.104.58 Firewall 2

IBM PC 365 Windows NT Server 4.0 150.24.104.5 Nonsecure Web server
Chapter 11. Firewall Load Balancing and High Availability 305

Notice that, in the output above, bracketed numbers are thread numbers.

Notice that the log files mention in particular lines 61 and 62 in the SOCKS
configuration file. A closer look at this file showed the following:

These entries are related to some kind of security check. In this case, bracketed
numbers are the line numbers. Line 61 indicates that incoming traffic for the
nonsecure network will come over 150.24.104.59, while lines 62 and 63 indicate
that incoming traffic for the secure network will come over 9.24.104.56 and
9.24.104.30 respectively. The rules will be checked from top to bottom, and
because packets in our scenario will come from 9.24.104.30 (the cluster
address), line 62 will deny our requests, and line 63 will never be reached.

We removed line 62 from the SOCKS configuration file with a text editor, and then
forced the SOCKS server to reload the configuration by entering the command:

socks5 -config

Of course, this has to be done on all of the load-balanced firewalls.

Our new try with the Web browser on the client pointing to the Web server on the
nonsecure network, was now successful. Your experience may vary since the
order can be different between lines 62 and 63.3

3 It looks like the order of these entries depends on the order of the installation of the network adapters.

[175] Accept: Dispatching thread 1 of 64...
[175] Accept: Waiting on accept or a signal
[195] Accept: Thread beginning...
[195] Check: Checking host address (00681809 == 00683596)
[195] Route: Line 61: Destination host didn’t match
[195] Check: Checking host address (00681809 == 00681809)
[195] Check: Checking port range (0 <= 3562 <= 65535)?
[195] Route: Line62: Matched
[195] Proxy: Received connection via wrong route
[195] Proxy: closing monitor handle
[195] Proxy: cleaning input io context
[195] Proxy: done cleaning up
[195] Accept: Thread exiting...

[61] route 150.24.104.0/255.255.255.0 - 150.24.104.59
[62] route 9.24.104.0/255.255.255.0 - 9.24.104.56
[63] route 9.24.104.0/255.255.255.0 - 9.24.104.30

There is actually no way to change the order of the rules with the firewall GUI
by manually editing the SOCKS5.CONF configuration file. Since regenerating
the firewall rules will also create a new SOCKS5.CONF configuration file, we
have to fix it and then tell the SOCKS server to load this new configuration.

SOCKS Server Configuration
306 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

11.2.5 DNS Proxy Server Load-Balancing Scenario
By adding to a scenario similar to the one described in 11.2.2.2, “Scenario
Implementation” on page 296, we also implemented a firewall Domain Name
System (DNS) proxy server load-balancing scenario. The configuration required
on the Dispatcher machine consisted of simply adding another port to the already
existing cluster. We added the TCP port number 53 (the DNS port) and then
added the same two firewall secure IP addresses that had been used for port
8080 as the servers for this port. We could also have implemented this by using a
new cluster.

Both the firewall machines had to be configured to permit DNS queries. Consult
the IBM redbook Internet Security in the Network Computing Framework,
SG24-5220 for further information on how to configure the proxy server with IBM
eNetwork Firewall.

In this scenario, we configured either secure client machine to use a DNS server
that was also located on the secure LAN side of the firewalls. This DNS server
was configured to forward DNS requests to the Dispatcher cluster address. The
Dispatcher then load balanced the request to one of the firewall machines. Both
firewalls had a DNS server configured and both contained the same forward rule
to route the DNS requests for addresses on the nonsecure LAN out through the
nonsecure firewall interface to a DNS server on the nonsecure network.

The client initiated the request by performing the command:

nslookup hostname

where hostname was the name of a host on the nonsecure network (served by
the nonsecure DNS server).

As DNS is TCP/UDP protocol application, and as UDP is a connectionless
protocol, each packet contains a bit (known as the FIN bit) indicating that this is
the end of the synchronization (because no further synchronization is done). The
effect of this on the Dispatcher is that it load balances each packet as if it were a
new request. Our nslookup command was successful; however, we noticed the
following pattern of server usage from our Port 53 GUI monitor:
Chapter 11. Firewall Load Balancing and High Availability 307

Figure 247. DNS UDP Load-Balancing Monitor

This visually confirms that the Dispatcher is distributing the requests to both of
the servers on an individual packet basis according to the weights of each of the
servers.
308 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 12. Automatic ND Startup on Windows NT

The benefits of being able to start the Dispatcher service along with a fully
operational cluster environment in unattended mode are many. The most notable
among these is that human intervention is not required to restart the Dispatcher
service after a hardware outage. By adding a second backup Dispatcher machine
and configuring Dispatcher high availability, you have a very robust highly
available Dispatcher environment that can operate almost entirely without having
someone immediately available to help restore service.

While on AIX and Solaris systems, the IBM SecureWay Network Dispatcher (ND)
processes start by default without the need for a user to physically log in, this is
not the case on Windows NT. On this platform, by default, a system administrator
user must log in for the ND processes to start. In this section, we demonstrate the
procedures we followed to automate on Windows NT the startup of a highly
available Dispatcher service including the configuration of the complete cluster
environment on both the Primary and Backup Dispatcher machines. With simple
modifications, the procedure described in this chapter can also be applied to a
Dispatcher scenario where high availability is not implemented.

12.1 High Availability Dispatcher Autostart Scenario

In this scenario we implement a standard Dispatcher high-availability
environment with two Dispatcher machines and two Web servers.

12.1.1 Network Environment
The network environment that we used in this scenario was very similar to the
one used in Chapter 6, “ND High Availability Support” on page 177 (see 6.1.1,
“Network Architecture” on page 178), except that in this case both of our
Dispatcher machines were running Windows NT Server. A summary of the
hardware, software, and network configuration of the systems we used is shown
in the following table:

Table 23. HA Dispatcher Autostart Scenario - Hardware, Software, and Network Configuration

As you can see from the table above, the network interface on each Dispatcher
machine is configured to respond to two IP addresses and host names: the
non-forwarding address and the cluster address respectively.

The following figure shows a graphical representation of our network
environment:

Workstation Operating System Host Name IP Address Service

IBM PC 365 Windows NT Server 4.0 WTR05331 9.24.104.245 Primary Dispatcher

clusterend 9.24.104.105

IBM PC 365 Windows NT Server 4.0 WTR05084 9.24.104.79 Backup Dispatcher

clusterend 9.24.104.105

IBM RS/6000 43P AIX 4.3.1 aixncf157 9.24.104.157 Web server

IBM RS/6000 43P AIX 4.3.1 aixafs 9.24.104.158 Web server
© Copyright IBM Corp. 1999 309

Figure 248. HA Dispatcher Autostart Scenario Environment

12.1.2 Configuration Steps
To configure the highly available cluster environment, we did not use either the
ND graphic user interface (GUI) or ndcontrol commands from the command line.
Instead we placed all of the ndcontrol commands, including the command to start
the Executor, in a file. We examined several options for launching the command
file on both our primary and backup Dispatcher machines and were successful
with the following methods:

1. Place the command file in the Startup directory of a user with Administrator
authority. This has the obvious disadvantage that the user must be present to
log in to the Windows NT machine to launch the server.

2. The second alternative was to use an automated login. The main drawback
with this option was the obvious security exposure in having an Administrator
ID logged in to an unattended machine.

3. The third and best option we found was to make use of the Microsoft Windows
NT Server Resource Kit, to launch our command file as a Windows NT service
automatically at boot.

It is the third option that we demonstrate in this scenario.

Internet

Backup Dispatcher

cluster address
9.24.104.105

clusterend.tiso.ral.ibm.com

non-forwarding address
9.24.104.79

wtr05084.itso.ral.ibm.com

cluster address
9.24.104.105

clusterend.itso.ral.ibm.com

non-forwarding address
9.24.104.245

wtr05331.itso.ral.ibm.com

9.24.104.157
aixncf157.itso.ral.ibm.com

9.24.104.158
aixncf158.itso.ral.ibm.com

Primary Dispatcher
310 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

12.1.3 The AUTOEXNT.BAT File
After installing the Microsoft Windows NT Server Resource Kit, we followed the
instructions provided with the Resource Kit for enabling the AutoExNT Service. To
enable the AutoExNT Service to launch our command file as a service at boot
time, we again followed the instructions in the Autoexnt.txt file, and placed our
commands into a file called AUTOEXNT.BAT, which we located in the directory
C:\Winnt\system32.

Our AUTOEXNT.BAT file contained the following:
Chapter 12. Automatic ND Startup on Windows NT 311

Figure 249. (Part 1 of 3). AUTOEXNT.BAT

@echo off
rem
rem file: C:\Winnt\system32\AUTOEXNT.BAT
rem by: C. Letilley and M. Pistoia March 29, 1999
rem purpose: ND High Availability configuration
rem <primary machine>
rem =======================================
rem

rem use the net utility to wait for IBM Network Dispatcher service to start
call net start "IBM Network Dispatcher"

date /t
time /t
echo "computer is" %COMPUTERNAME%

rem -- set High Availability option
rem -- "NOHA" = no High Availability, "HA" = use High Availability
rem set OPTION="NOHA"
set OPTION="HA"

rem -- set High Availability recovery mode
rem set MODE=manual
set MODE=auto

rem -- set Dispatcher operational role (Primary or Backup)
rem
rem -- set NFAs, netmask and gateway for Dispatcher machines

set WTR05331IP=9.24.104.245
set WTR05084IP=9.24.104.79
set NETMASK1=255.255.255.0
set GATEWAYADDR=9.24.104.1

rem assign role (Primary or Backup) based on computer name
GOTO %COMPUTERNAME%

:WTR05331
rem following lines for WTR05331
set ROLE=primary
set SRCNFA1=%WTR05331IP%
set DSTNFA1=%WTR05084IP%

GOTO COMMON

:WTR05084
rem following lines for WTR05084
set ROLE=backup
set SRCNFA1=%WTR05084IP%
set DSTNFA1=%WTR05331IP%
312 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 250. (Part 2 of 3). AUTOEXNT.BAT

:COMMON
rem
rem -- if role = backup, then sleep
rem until primary comes up
rem
if %ROLE% == "backup" sleep 60

rem --set cluster address
set CLUSTER=9.24.104.105

rem Optionally set servers to be monitored for outages
rem 1)web servers
rem AIXNCF157 = 9.24.104.157
rem AIXAFS = 9.24.104.158
rem 2)main frame gateways
rem
set WEBSERVER1=9.24.104.157
set WEBSERVER2=9.24.104.158

rem -- Start the executor
call ndcontrol executor start
rem sleep 4

rem Alias the SRCNFA address to the network adapter
rem if heartbeat is on alternate network, then alias it
call ndconfig tr0 alias %SRCNFA1% netmask %NETMASK1%

rem Set the non-forwarding address (NFA)
call ndcontrol executor set nfa %SRCNFA1%

rem Create the cluster
call ndcontrol cluster add %CLUSTER%

rem Add a port to the cluster. This causes ND to listen on port 80.
call ndcontrol port add %CLUSTER%:80

rem Optionally set the port sticky time for this website to 20 minutes-
rem to allow for HTTP session state management completion
rem call ndcontrol port set %CLUSTER%:80 stickytime 1200

rem Add HTTP servers to the cluster
call ndcontrol server add %CLUSTER%:80:%WEBSERVER1%+%WEBSERVER2%

rem Start the manager and log to manager.log
rem set logsize to 1 megabyte
call ndcontrol manager start manager.log
call ndcontrol manager logsize 1400000
Chapter 12. Automatic ND Startup on Windows NT 313

Figure 251. (Part 3 of 3). AUTOEXNT.BAT

As you can see from the AUTOEXNT.BAT file, we were able to use the same file
on both the primary and backup Dispatcher machines.

12.1.4 High-Availability Script Files
We also modified the three scripts goActive.cmd.sample, goStandby.cmd.sample,
and goInOp.cmd.sample, provided in the installbase/samples directory for our
cluster environment. We placed the three modified go scripts in the
installbase/bin directory. We renamed them removing the .sample extension, and
we made sure that they were executable. Then we customized them as follows:

rem Start the HTTP advisor on port 80 and log to Http_80.log
rem set advisor HTTP/HEAD request to 5 second interval
rem set logsize to 1 megabyte
call ndcontrol advisor start http 80 Http_80.log
call ndcontrol advisor interval http 80 5
call ndcontrol advisor logsize http 80 1400000

rem Set the manager's proportions such that it uses:
rem active(58) new(40) advisor(2) ISS(0)
rem to determine inactivity (or downed) webservers
call ndcontrol manager proportions 58 40 2 0

if %OPTION%=="HA" GOTO START-HA
rem Alias the cluster address to the network adapter
rem we are now ready to start accepting packets
call ndconfig tr0 alias %CLUSTER% netmask %NETMASK1%
exit

:START-HA
rem --establish heartbeat connection between dispatchers
call ndcontrol highavailability heartbeat add %SRCNFA1% %DSTNFA1%

rem --establish reach connections for advisors
call ndcontrol highavailability reach add %GATEWAYADDR%

rem -- setup highavailability role mode and port
call ndcontrol highavailability backup add %ROLE% %MODE% 12345
time /t
call ndcontrol high stat
rem executor will run goActive or goStandby batch file to activate routing
314 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 252. Modified goActive.cmd Script

@echo off
rem
rem goActive script
rem
rem Configure this script when using the high availability feature of
rem Network Dispatcher.
rem
rem This script is executed when Network Dispatcher goes into the
rem 'Active' state and begins routing packets.
rem
rem This script must be placed in Network Dispatcher's bin directory
rem (by default this is C:\Program Files\nd\dispatcher) and it
rem must have the extension .cmd in order to be executable.
rem
rem Modify CLUSTER, INTERFACE and NETMASK to match your environment.
rem
rem tr0=first Token ring adapter, en0=first Ethernet adapter
rem
rem NETMASK must be the netmask of your LAN. It may be hexadecimal or octal
notation.
rem
set CLUSTER=9.24.104.105
set INTERFACE=tr0
set NETMASK=255.255.255.0
rem
echo "Deleting loopback alias(es)
call ndconfig lo0 delete %CLUSTER%
rem
echo "Adding device alias(es)"
call ndconfig %INTERFACE% alias %CLUSTER% netmask %NETMASK%
Chapter 12. Automatic ND Startup on Windows NT 315

Figure 253. Modified goStandby.cmd Script

@echo off
rem
rem goStandby script
rem
rem Configure this script when using the high availability feature of
rem Network Dispatcher.
rem
rem This script is executed when Network Dispatcher goes into the
rem 'Standby' state. Monitoring the health of the 'Active' machine
rem but not routing packets.
rem
rem This script must be placed in Network Dispatcher's bin directory
rem (by default this is C:\Program Files\nd\dispatcher) and it
rem must have the extension .cmd in order to be executable.
rem
rem Modify CLUSTER, INTERFACE and NETMASK to match your environment.
rem
rem tr0=first Token ring adapter, en0=first Ethernet adapter
rem
set CLUSTER=9.24.104.105
set INTERFACE=tr0
set NETMASK=255.255.255.0
rem
echo "Deleting the device alias(es)"
call ndconfig %INTERFACE% delete %CLUSTER%
rem
echo "Adding loopback alias(es)"
call ndconfig lo0 alias %CLUSTER% netmask %NETMASK%
316 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 254. Modified goInOp.cmd Script

12.1.5 Testing the Configuration
After completing the above configuration, we first tested the AUTOEXNT.BAT
script by invoking it from the command line on our two machines. Following is the
output from it on the backup Dispatcher machine:

@echo off
rem
rem goInOp script
rem
rem Configure this script when using the high availability feature of
rem Network Dispatcher and optionally when using Network Dispatcher in a
rem standalone environment.
rem
rem This script is executed when the Network Dispatcher executor is stopped
rem (and before the executor is initially started).
rem
rem This script must be placed in Network Dispatcher's bin directory
rem (by default this is C:\Program Files\nd\dispatcher) and it
rem must have the extension .cmd in order to be executable.
rem
rem Modify CLUSTER and INTERFACE to match your environment.
rem
rem tr0=first Token ring adapter, en0=first Ethernet adapter
rem
set CLUSTER=9.24.104.105
set INTERFACE=tr0
rem
echo "Removing device(s)"
call ndconfig lo0 delete %CLUSTER%
rem
echo "Removing loopback alias(es)"
call ndconfig %INTERFACE% delete %CLUSTER%
Chapter 12. Automatic ND Startup on Windows NT 317

Figure 255. Script Output when Executed from the Command Line

After rebooting both machines, without logging on, we made a request from a
browser on another machine connected to the same LAN. We had placed HTML
files named cjl.html (each of them uniquely identifying the machine it was located
on) on both of our servers. After disabling local caching by the browser and

The IBM Network Dispatcher service is starting.
The IBM Network Dispatcher service was started successfully.

Mon 02/01/1999
11:36p
"computer is" WTR05084
Loaded kernel successfully.
Executor field(s) successfully set.

Cluster 9.24.104.105 has been added.

Port 80 successfully added to cluster 9.24.104.105.

Server 9.24.104.157 was added to port 80 of cluster 9.24.104.105.
Server 9.24.104.158 was added to port 80 of cluster 9.24.104.105.

The manager has been started.

The log size for the manager was set to 1,400,000.

Advisor 'http' has been started on port 80.
The interval for the advisor was set to 5.
The log size for the advisor was set to 1,400,000.
The proportions of the manager were set to: 58 40 2 0
Heartbeat information successfully added.
Reach information successfully added.
Backup information successfully added.
11:37p

High Availability Status:

Role Backup
Recovery strategy Auto
State Standby
Sub-state Synchronized
Port 12345
Preferred target 9.24.104.245

Heartbeat Status:

Count 1
Source/destination ... 9.24.104.79/9.24.104.245

Reachability Status:

Count 1
Address 9.24.104.1
318 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

selecting Direct Connection to the Internet rather than using a Proxy server, we
requested the page cjl.html at the cluster address and verified that the page was
served regularly. This verified that our cluster was operational, as we were
successful in our request for the page at the cluster address.

Following this, we physically disconnected the active primary Dispatcher machine
from the LAN, simulating a machine failure. The standby backup Dispatcher
machine immediately became active. We requested the Web page repeatedly
during the transition and did not experience a significant delay in receiving the
requested page.

Because the high availability takeover mode we specified in the AUTOEXNT.BAT
script was auto, when we reconnected the LAN token-ring cable to the standby
primary Dispatcher machine, it immediately became the active dispatcher once
again.

At this time we logged on to the two Dispatcher machines. From the Start menu,
we selected Programs, and then SecureWay Network Dispatcher. This started
the ND GUI. As soon as we connected to each of the respective hosts, we saw
the following GUI windows confirming the high availability status of both
machines:

Figure 256. Active Primary Dispatcher HA Status
Chapter 12. Automatic ND Startup on Windows NT 319

Figure 257. Standby Backup Dispatcher HA Status
320 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 13. Binary Logging and Statistics

The Dispatcher and CBR components of IBM SecureWay Network Dispatcher
(ND) Version 2.1 now provide an optional binary logging facility. The purpose of
this facility is to allow you to analyze server usage and trends. The Manager
component must be running in order for information to be logged to the binary
logs.

13.1 Starting the Logging Facility

We turned on the logging facility with the ND graphical user interface (GUI) for a
small cluster environment that was a subset of the one we used in 4.1, “Load
Balancing Basic Scenario Using the Dispatcher” on page 81. To start capturing
data to the log files, we right-clicked the Manager item and from the pop-up menu
selected Start Logging... as shown in the following figure:

Figure 258. Start the Binary Logging Facility
© Copyright IBM Corp. 1999 321

Statistics will be placed in the logs at a user-specified interval. The interval can
be changed via the GUI or the command line.

13.2 Examining the Log Files

When the logging facility is turned on, one log is created at the start of every hour
with the date and time as the name of the file. The logs are placed in the directory
installbase/logs, where installbase varies by component (Dispatcher or CBR) and
by operating system. See Table 1 on page 69 for a list of the installbase locations.

13.2.1 Using the LOG_SampleReader Sample Java Program
The data is recorded in the log in binary format and therefore users are not able
to read the raw log files directly. For this reason, a sample program is provided to
be used primarily as a reference for you to use when writing your own program to
read the binary logs. It can also be used as supplied to extract one type of log
entry. When the Dispatcher is installed, the sample program, called
LOG_SampleReader.java, is placed in the location installbase/lib/BinaryLog. A
copy of this sample code can be found in Appendix C, “LOG_SampleReader
Program” on page 407.

In this section we explain in general how the LOG_SampleReader sample Java
program extracts the data from the binary logs. We also show how to invoke
LOG_SampleReader and interpret the output from it.

13.2.1.1 Log Data Format
The installbase/lib/ibmnd.jar file for the Dispatcher component and the
installbase/lib/ibmcbr.jar file for the CBR component provide the utilities (objects
and their associated methods) that LOG_SampleReader uses to read the data
from the log. The comments embedded in LOG_SampleReader.java inform us
that the following types of records can be retrieved from the log:

• LOG_TimestampRecord
• LOG_ExecutorIDRecord
• LOG_ClusterIDRecord
• LOG_PortIDRecord
• LOG_ServerReportRecord

Each of these types has associated with it one or more methods that can be used
to determine its value from the LOG_Record object. For example, the
LOG_ServerReportRecord implements the following eight methods:

We also could have turned on logging with this command:

ndcontrol log start

Several other log commands are also available:

ndcontrol log stop
ndcontrol log status
ndcontrol log set interval seconds
ndcontrol log set retention hours

Using the Command Line
322 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

1. getIPAddress() returns the server IP address.

2. getWeight() returns the server weight of the server when the record was
written.

3. getTotalConnections() returns the total number of server connections when
the record was written.

4. getActiveConnections() returns the number of active connections.

5. getPortLoad() returns the port load of the server when the record was written.

6. getHasPortLoad() returns a Boolean value indicating whether or not port loads
were being provided for the server when the record was written to the binary
log (port loads are obtained through an advisor on the port).

7. getSystemLoad() returns system load of the server when the record was
written.

8. getHasSystemLoad() returns a Boolean value indicating whether or not
system loads were being provided for the server when the record was written
to the binary log (system loads can be provided, for example, using ISS).

LOG_SampleReader.java extracts ServerReport data from the logs by using the
LOG_Reader and LOG_Record objects and their associated methods. These
methods scan through the log records searching for a record of type
LOG_ServerReportRecord. When it finds one, it is printed.

13.2.1.2 Invoking the Sample Program
The Dispatcher and CBR components’ installbase/lib/BinaryLog directories each
contain a small shell script that serves as a wrapper for LOG_SampleReader. It
sets up the required CLASSPATH elements and location of the log directory
before invoking LOG_SampleReader through the java command.

Currently, the CBR wrapper file, cbrlogreport, contains a small mistake in the
definition of the CLASSPATH system environment variable that prevents it from
finding the installbase/lib/ibmcbr.jar file when it is executed. Until the problem is
fixed in the next update, simply change the reference from ibmnd.jar to imbcbr.jar

on the CLASSPATH definition in cbrlogreport.

Following is a copy of the Dispatcher wrapper file, ndlogreport, from our AIX
system. The file on Windows NT or Solaris is very similar.

Figure 259. ndlogreport Shell Script on AIX

We invoked this script with four arguments representing the start date and time
and end date and time of the server records we wanted to see from the log.
Following is the command as we entered on the AIX platform:

/usr/lpp/nd/dispatcher/lib/BinaryLog/ndlogreport 1999/03/08 19:05 1999/03/08 19:06

#!/bin/ksh
export CLASSPATH=\
/usr/lpp/nd/dispatcher/lib/BinaryLog:\
/usr/lpp/nd/dispatcher/lib/ibmnd.jar
java -DEND_LOG_DIRECTORY=/usr/lpp/nd/dispatcher/logs LOG_SampleReader $1 $2 $3 $4
Chapter 13. Binary Logging and Statistics 323

13.2.1.3 Interpreting LOG_SampleReader Output
The output from the above command is one or more lines with the following
format:

1999/03/08-19:05:21.072,9.24.104.128,9.24.104.105,80,9.24.104.157,10,12,0,0,false,0,false

There are 13 fields on this line:

• A – date
• B – time
• C – Dispatcher nonforwarding address
• D – cluster IP address
• E – port number
• F – server IP address
• G – server weight
• H – total connections
• I – active connections
• J – port load of the server
• K – is the Dispatcher receiving port load information?
• L – server load
• M – is the Dispatcher receiving server load information?

The following figure shows each of the fields in a graphical fashion:

Figure 260. Format of ndlogreport Output

The last eight fields on the line correspond to the values returned by the eight
methods that the LOG_ServerReportRecord implements as listed in Point 1
through Point 8 on page 323.

The following figure shows ndlogreport output for an 11-minute period:

1999/03/08 19:05:21.072 9.24.104.1059.24.104.128 80 9.24.104.157 10 12 0 0 false 0 false

A
- D

at
e

B
- T

im
e

C
- D

is
pa

tc
he

r
N

on
-F

or
w

ar
di

ng
A

dd
re

ss

D
-

C
lu

st
er

IP
A

dd
re

ss

E
-

P
or

t N
um

be
r

F
- S

er
ve

r I
P

A
dd

re
ss

G
- S

er
ve

r W
ei

gh
t

H
- T

ot
al

C
on

ne
ct

io
ns

I -
A

ct
iv

e
C

on
ne

ct
io

ns
J

- P
or

t L
oa

d
of

th
e

S
er

ve
r

K
- I

s
th

e
D

is
pa

tc
he

r R
ec

ei
vi

ng
P

or
t L

oa
d

In
fo

rm
at

io
n?

L
-

S
er

ve
r L

oa
d

M
- I

s
th

e
D

is
pa

tc
he

r R
ec

ei
vi

ng
S

er
ve

r L
oa

d
In

fo
rm

at
io

n?

5315\531511
324 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 261. LOG_SampleReader Output

We can determine from the above output that at the start of this 11-minute period,
the server with IP address 9.24.104.157 was the only port 80 server in the cluster
and one minute later another port 80 server, the one with IP address
9.24.104.239, was added to the cluster. Three minutes later, the server having IP
address 9.24.104.157 (the original server) was marked down (see -1 in the 8th
row) and at this time, the number of active connections on the other server began
to increase significantly. Two minutes later, the server with IP address
9.24.104.157 was back online (with a server weight of 14) and the two server
nodes began sharing the load once again.

This program can be modified to process the binary log information to do any kind
of analysis that you require.
Chapter 13. Binary Logging and Statistics 325

326 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Part 2. WebSphere Performance Pack Component Integration
© Copyright IBM Corp. 1999 327

328 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 14. Content Based Routing

Content Based Routing (CBR) is an entirely new component within this version of
SecureWay Network Dispatcher (ND). The purpose of CBR is to route client
requests to specific servers based on the content of the URL request.

In this chapter we will show some scenarios using CBR. See IBM WebSphere
Performance Pack - Load Balancing with IBM SecureWay Network Dispatcher,
SG24-5858 for more information on how CBR works.

14.1 Installation of the CBR Function

The CBR component of ND Version 2.1 is supported on three operating systems:
IBM AIX 4.2.1 or later, Microsoft Windows NT 4.0 and Sun Solaris 2.6 or later.
Refer to the appropriate platform section of IBM WebSphere Performance Pack -
Load Balancing with IBM SecureWay Network Dispatcher, SG24-5858 for details
on how to use the Java InstallShield on your respective platform to install ND.

When you reach the point where you choose which ND component to install,
select these three to install CBR on your machine:

• Content Based Routing Runtime
• Content Based Routing Administration
• Content Based Routing License

The following figure shows these three items as being selected:

Figure 262. Java InstallShield WebSphere Performance Pack Component Selection

When you select the Content Based Routing Runtime ND component, the
Caching and Filtering WebSphere Performance Pack Version 2 component is
automatically selected to be installed, as CBR cannot be installed without it.
© Copyright IBM Corp. 1999 329

The next screen asks if you would like to use the WTE proxy server to cache
documents. If you click on the Caching checkbox, you will be asked to fill in three
blanks:

• Cache Root Directory
• Cache Access Log
• Cache Size

The following figure shows this on the Windows NT platform:

Figure 263. CBR Install Process Asks for Caching Details

In our case, we wanted to use the caching function of the WTE proxy server, so
we checked the Caching item in the dialog window, and entered the values
shown in Figure 263 on page 330. 14.3.1, “WTE Configuration Overview” on page
332 explains how we selected these values. WTE and CBR can be installed with
caching disabled for simplicity and then caching can be enabled and configured
at a later time.

After we clicked on the Next button, CBR and WTE were installed.

14.1.1 Installation Locations
If CBR is installed from the WebSphere Performance Pack Version 2 InstallShield
as demonstrated in 14.1, “Installation of the CBR Function” on page 329, the
WTE component is also automatically installed. Alternatively, if CBR is installed
from the SecureWay Network Dispatcher InstallShield, then WTE is not
automatically installed and must be installed manually.
330 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Note that in each case, the default base install directories will be different on
Windows NT as shown in the following table:

Table 24. CBR and WTE Default Installation Base Directories

14.2 Configuration of the CBR Function

In order to perform the configuration you must be the root user on AIX and Solaris
or, if the ND server is installed on Windows NT, a member of the Administrators
group.

Configuration of CBR cannot take place until WTE has been configured to start
the CBR subprocess. We performed CBR configuration in three steps:

1. Because the CBR server is a subprocess of WTE, the first step we performed
was to confirm that the WTE server was functional. Optionally, during this
step, the WTE server can be configured with values different from the defaults
set at installation time (for example, caching can be enabled).

2. Once this is done, four lines must be added to the WTE configuration file to
enable CBR functionality. The WTE configuration file is:

• C:\WINNT\ibmproxy.conf on Windows NT
• /etc/ibmproxy.conf on AIX and Solaris

Notice that the WTE server must be stopped and restarted for the changes to
take effect.

3. Once the modifications have been made to the WTE configuration file, and the
WTE server has been restarted using the modified configuration file, only then
can CBR configuration be done. CBR configuration is very similar in style to
Dispatcher configuration, in that one or more clusters are usually configured
with their associated ports and servers. Similar to rule-based load balancing,
rules are then defined, but in the case of CBR the type of the rule is Content.
There are three methods of configuring CBR available:

• cbrcontrol commands can be issued from the command line. As well, you
can make use of the cbrcontrol persistent session. The persistent session
is a limited shell like utility that can be used to enter cbrcontrol commands.
Use the cbrcontrol command without any parameters to start the persistent
session. You will receive the

cbrcontrol >>

prompt to which you can respond by entering cbrcontrol commands
without the cbrcontrol keyword.

See SecureWay Network Dispatcher User’s Guide Version 2.1 for Solaris,
Windows NT and AIX, GC31-8496 for cbrcontrol command usage
information.

Platform WebSphere Performance Pack components

WTE CBR

AIX /usr/lpp/internet/server_root /usr/lpp/nd/cbr

Solaris /opt/internet/server_root /opt/nd/cbr

Windows NT WSPP InstallShield C:\WSPP\WWW\ C:\WSPP\IBM\nd\cbr

Windows NT WTE or CBR InstallShield C:\WWW C:\Program Files\IBM\nd\cbr
Chapter 14. Content Based Routing 331

• The cbrcontrol configuration commands can be placed in a script or
command file that can be executed as a batch job. When the file is run the
commands are executed in sequence. A CBR configuration file can be
loaded into the execution environment with the command:

cbrcontrol file load configfilename

See Figure 270 on page 344 for an example of a file containing cbrcontrol

commands.

• The ND graphical user interface (GUI) can be used to perform all of the
configuration steps that can be performed with cbrcontrol commands.

In addition, all three methods of configuration can be performed by a user on a
machine other than the one that is being configured. This new feature is
referred to as Remote Authenticated Administration and is explained further in
IBM WebSphere Performance Pack - Load Balancing with IBM SecureWay
Network Dispatcher, SG24-5858.

The three configuration steps above are described in the next section.

14.3 CBR Scenario

In this scenario, we demonstrate how to use CBR by configuring a basic
environment. In 14.3.1, “WTE Configuration Overview” on page 332 we give an
overview of how to configure WTE. In 14.3.2, “WTE Configuration File CBR
Modifications” on page 333 we give details on how to change the WTE
configuration file to enable the CBR subprocess. Then in 14.3.3, “CBR
Configuration” on page 335 we use the ND GUI to perform CBR configuration of
our cluster environment and add the Content type rules. Following this, we show
how the rules influence which server is selected to service our request.

14.3.1 WTE Configuration Overview
The WTE component of WebSphere Performance Pack Version 2 contains
functionality to work with the CBR component of ND Version 2.1. The steps
required to start the WTE server are different on AIX and Solaris than on
Windows NT. However, on all these platforms, WTE can be started with all of the
default values without making any modifications to the configuration file.

We chose to modify the installed default configuration of WTE to make two
changes. The first change was to modify the log used by the WTE proxy server
(the proxy server is the basic function of the WTE server that is started if no user
configuration is done after WTE installation) and the second change was to
enable caching. IBM WebSphere Performance Pack - Load Balancing with IBM
SecureWay Network Dispatcher, SG24-5858, contains information on WTE
including details on how to configure its different functions.

Following a summary list of tasks that we performed to configure WTE on our
server:

1. We created a WTE admin user ID and password for use in the following steps.

2. We created a separate file system or directory (/wte on UNIX or C:\wte in the
case of Windows NT) to contain the WTE cache root directory and log files.
On AIX, we found it necessary to change its ownership with the following
command:
332 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

chown nobody.nobody /wte

3. We used the WTE Configuration and Administration Forms, accessible by
directing a Web browser to the machine where WTE is installed, to change the
location of the proxy log file. The only item we changed was the proxy server
log file.

4. In the Configuration and Administration Forms, clicking Submit caused the
ibmproxy.conf file to be updated with our new log file, but Submit or even
Restart Server (the bar icon at the top of the window) did not result in these
changes being used by the server. So we had to stop and restart the WTE
server.

5. At this point, we were able to start the Netscape Navigator browser on our
client machine. We selected Preferences from the Edit menu. Then, we
clicked Advanced and Proxies and in the Proxies panel, we selected the
Manual Proxy Configuration radio button. In the HTTP field of the Manual
Proxy Configuration window, we entered the IP address of the machine where
we had installed and configured the WTE server, with the corresponding port
field set to 80.

6. We made a request for a Web page that was available in another subnet that
we had connectivity to. At this point we were presented with the Web page and
verified from the Server Activity Monitor, accessible from the WTE
Configuration and Administration Forms, that the request had been proxied by
our server.

7. The process of configuring the caching component is very similar to this and
was done by selecting the Cache Configuration item in the WTE
Configuration and Administration Forms window.

14.3.2 WTE Configuration File CBR Modifications
When WTE is installed, the WTE configuration file, ibmproxy.conf, contains many
lines of preconfigured WTE directives. It is necessary to add four lines to this
configuration file to enable WTE to start the CBR server subprocess. In the
configuration file, we searched for the word ServerInit and discovered that
ServerInit was only contained in the default ibmproxy.conf file as a comment. At
the end of the ServerInit comment section, we added the four lines.

It is important to note that the first of the four lines is very long and therefore
wraps over the right side of the line to the next line. The parameters on the first
line are as follows:

• Client keys directory
• Server key directory
• Install path
• Class path
• RMI port
• Log directory
• Save directory

The four lines are shown in the following screens. In each of the screens, it
appears that the CBR_CLIENT_KEYS_DIRECTORY item is on a new line, but this is due to
a formatting problem in this publication. In fact, the CBR_CLIENT_KEYS_DIRECTORY

item is on the same line as the ServerInit directive. On the ServerInit line there is
one space after the ServerInit keyword and one space before
Chapter 14. Content Based Routing 333

CBR_CLIENT_KEYS_DIRECTORY. Do not include the new line character or any spaces
within the parameter string on this line.

Some of the fields have variable-like names included on the line, and others do
not. The fields are comma delimited. Following are the four lines that are
necessary to configure CBR. The first figure contains the lines we used on our
Windows NT system in C:\WINNT\ibmproxy.conf:

Note that if you installed CBR with the ND InstallShield rather than the
WebSphere Performance Pack InstallShield, the path contained in these lines will
have to be changed from \WSPP\IBM to \Progra~1\IBM. You are required to type the
DOS format of the Program Files directory because there can be no spaces
within the path elements on these lines.

The changes to the WTE configuration file /etc/ibmproxy.conf on AIX are shown in
the following screen:

The changes to the WTE configuration file /etc/ibmproxy.conf on Solaris are
shown in the following screen:

After adding these lines to the WTE configuration file and saving the file, there is
another configuration issue you should take care of:

ServerInit C:\WSPP\IBM\nd\cbr\lib\libndcbr.dll:ndServerInit
CBR_CLIENT_KEYS_DIRECTORY=C:\WSPP\IBM\nd\admin\keys\cbr,CBR_SERVER_KEYS_DIRECTORY=C:\WSPP\IBM\nd\cbr\key,
END_INSTALL_PATH=C:\WSPP\IBM\nd,C:\WSPP\IBM\nd\cbr\lib;C:\WSPP\IBM\nd\cbr\lib\ibmcbr.jar;C:\WSPP\IBM\nd\a
dmin\lib\ChartRuntime.jar,11099,C:\WSPP\IBM\nd\cbr\logs\,C:\WSPP\IBM\nd\cbr\configurations\

PreExit C:\WSPP\IBM\nd\cbr\lib\libndcbr.dll:ndPreExit

PostExit C:\WSPP\IBM\nd\cbr\lib\libndcbr.dll:ndPostExit

ServerTerm C:\WSPP\IBM\nd\cbr\lib\libndcbr.dll:ndServerTerm

ServerInit /usr/lpp/nd/cbr/lib/libndcbr.so:ndServerInit
CBR_CLIENT_KEYS_DIRECTORY=/usr/lpp/nd/admin/keys/cbr,CBR_SERVER_KEYS_DIRECTORY=/usr/lpp/nd/cbr/key,END_I
NSTALL_PATH=/usr/lpp/nd,/usr/lpp/nd/cbr/lib:/usr/lpp/nd/cbr/lib/ibmcbr.jar:/usr/lpp/nd/admin/lib/ChartRun
time.jar,11099,/usr/lpp/nd/cbr/logs/,/usr/lpp/nd/cbr/configurations/

PreExit /usr/lpp/nd/cbr/lib/libndcbr.so:ndPreExit

Postexit /usr/lpp/nd/cbr/lib/libndcbr.so:ndPostExit

ServerTerm /usr/lpp/nd/cbr/lib/libndcbr.so:ndServerTerm

ServerInit /opt/nd/cbr/lib/libndcbr.so:ndServerInit
CBR_CLIENT_KEYS_DIRECTORY=/opt/nd/admin/keys/cbr,CBR_SERVER_KEYS_DIRECTORY=/opt/nd/cbr/key,END_INSTALL_PA
TH=/opt/nd,/opt/nd/cbr/lib:/opt/nd/cbr/lib/ibmcbr.jar:/opt/nd/admin/lib/ChartRuntime.jar,11099,/opt/nd/cb
r/logs/,/opt/nd/cbr/configurations/

PreExit /opt/nd/cbr/lib/libndcbr.so:ndPreExit

Postexit /opt/nd/cbr/lib/libndcbr.so:ndPostExit

ServerTerm /opt/nd/cbr/lib/libndcbr.so:ndServerTerm
334 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• On Windows NT, add the following to the Path system environment variable:

C:\jdk1.1.7\bin;C:\Program Files\nd\cbr\lib

Notice here that we are assuming that Version 1.1.7 of the Java Development
Kit (JDK) was installed in the default installation directory C:\jdk1.1.7.

• On AIX, add the following to the LIBPATH system environment variable:

/usr/jdk_base/lib:/usr/jdk_base/lib/aix/native_threads:/usr/lpp/nd/cbr/lib

• On Solaris, add the following to the LD_LIBRARY_PATH system environment
variable:

/opt/jre1.1.7/lib/sparc/native_threads:/opt/nd/cbr/lib

Now, you can restart WTE.

14.3.3 CBR Configuration
Once the ibmproxy.conf file has been modified with the four lines to enable CBR,
and the WTE proxy server has been restarted, then CBR configuration can begin.

In this scenario we defined two clusters, A and B, each with two servers. The two
servers in cluster A were AIX systems and the two servers in cluster B were
Solaris systems. Each cluster already had one rule defined by us, which load
balanced requests for a particular page to the two servers. In this section we
describe the steps necessary to define two additional CBR rules.

14.3.3.1 Network Environment
The following figure is a graphical representation of our scenario environment:

On AIX, it is advisable to use the httpd command to start the WTE server in a
CBR environment. The System Resource Control (SRC) command:

startsrc -s httpd

does not start WTE correctly in the CBR case because WTE cannot find the
library files necessary to configure and start CBR. This can be verified by
looking at the WTE error log file.

Starting the WTE Server on AIX Systems
Chapter 14. Content Based Routing 335

Figure 264. CBR Basic Scenario Environment

A summary of the software and network configuration of the environment where
we performed our test is reported in the following table:

Table 25. CBR Basic Scenario - Hardware, Software and Network Configuration

14.3.3.2 Cluster, Port, Server and Rule Configuration
Once the CBR-enabled proxy server was running, we used the ND GUI to
configure our CBR cluster. We used the ndadmin command to start the GUI and
after right-clicking the Content Based Routing component, we selected
Connect to Host from the pop-up menu. This is an effect of the new Remote
Authenticated Administration feature which enables the ND component
configuration to be done on a remote client machine. In this case, we were
performing this configuration on the Dispatcher machine itself, however the
connection still had to take place.

If, at the point where you try to connect to the host to do configuration either
through the ND GUI or with the cbrcontrol commands, you receive a key related
error message, then it is possible that there is an error in the four lines that were
added to your ibmproxy.conf file.

Service IP Address Operating System

WTE & CBR server 9.67.133.67 Windows NT Server 4.0

Cluster A
IP address
9.67.133.18

Web server 1 9.67.133.75 Solaris 2.6

Web server 2 9.67.133.77 Solaris 2.6

Cluster B
IP address
9.67.134.221

Web server 1 9.67.131.151 AIX 4.3.1

Web server 2 9.67.131.153 AIX 4.3.1

Web
Client

Internet

HTTP Cluster A
Server #2

HTTP Cluster A
Server #1

HTTP Cluster B
Server #2

HTTP Cluster B
Server #1

WTE & ND CBR
HTTP Load Balancing
336 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

We then started the Executor, added our clusters, and to each cluster a port and
two servers. As the following figure demonstrates, for our testing purposes we
had already added a rule named sunpage for cluster A and a rule named aixpage
for cluster B. Following this configuration, the ND GUI appeared as follows:

Figure 265. ND GUI Showing CBR Cluster, Port and Server Information

We will show you now details of how to add two more rules to the 9.67.133.18
cluster. To configure the content rules that CBR uses to determine which servers
to load balance the request amongst, we right-clicked the Port:80 item in the
navigation portion of the GUI and selected Add Rule... from the pop-up menu, as
shown in the following window:
Chapter 14. Content Based Routing 337

Figure 266. ND GUI Showing Add Rule Menu Item

Of course you should plan the logic that you want CBR to follow before you start
adding rules to your configuration.

Notice that the network interface card on the CBR machine must be aliased to all
the cluster addresses defined in the configuration above. This is the same thing
you would do in a Dispatcher scenario. However, unlike a Dispatcher scenario,
the loopback adapters on the TCP server machines must not be aliased to any
cluster address.
338 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Our next step was to create a content rule to direct all requests to cluster
9.67.133.18 that contained the string productx.html in the URL to server
9.67.133.75. To accomplish this, in the Add Rule dialog window, we filled in the
fields as follows:

The network interface card of the CBR machine must be aliased to all the
cluster addresses used in the configuration. However, the loopback interface
on the TCP server machines does not need to be aliased; for those who are
familiar with this kind of aliasing operations in a Dispatcher scenario, it may
seem unusual that similar aliasing is not done with CBR.

The reason for this is that when the packet is sent from the client machine, its
destination IP address is the IP address of one of the clusters. When the
packet arrives at the CBR machine, the packet is accepted because the
network interface card on the CBR machine has been aliased to that cluster
address. WTE receives the request and offers CBR the opportunity to examine
its clusters and rules for a match. If a match is found, URL name translation is
done.

If and when the proxy server sends the request to a clustered TCP server (the
selection of which was done by CBR), WTE proxies a new request to the TCP
server with the modified URL, and a destination IP address that is the IP
address of the TCP server machine. When the TCP server replies, its response
goes back to the CBR server, and is cached by WTE if caching is enabled and
if WTE caching algorithms require caching of that particular page. For this
reason, there is no requirement to alias the cluster address to the loopback
interface on the TCP server machine.

On the contrary, Dispatcher keeps the cluster address as the destination
address of the packet, and identifies the TCP servers through their Media
Access Control (MAC) addresses. For this to work, the TCP servers need to
have the cluster address aliased on their loopback interface. An advantage of
this is that the server’s response can flow directly to the client, without any
need for it to be proxied by the Dispatcher. This would not be a good solution
with CBR though, because it would not allow caching.

Another positive effect of this is that a CBR cluster does not have the same
restriction as a Dispatcher cluster with regard to the location of the TCP
servers relative to the Dispatcher or CBR server. With CBR, because WTE
proxies the request to the servers, there is no requirement for the servers to be
located on the same LAN as the CBR machine.

Cluster Aliasing Note
Chapter 14. Content Based Routing 339

Figure 267. Add Rule Dialog Window for the productpage Rule

• We assigned the name productpage to this rule.

• We selected the type of the rule to be Content. This is the new rule type
added for use by the CBR component.

• The Affinity type field contains one of two possible values: Client IP or
Cookie. Client IP affinity as used in the Dispatcher component can also be
used with CBR. The cookie affinity feature applies only to the CBR component
and provides a new way to make clients sticky to a particular server. This
function is enabled by setting the sticky time of a rule to a positive number,
and setting the affinity to Cookie.

We left the default value of Client IP in the Affinity type field. In the next rule
we demonstrate setting cookie affinity and sticky time.

• We also did not put a value in the priority field for the rule. Priorities establish
the order in which rules will be reviewed. This parameter accepts integer
values. If you do not specify the priority of the first rule you add, CBR will set it
by default to 1. When a subsequent rule is added, by default its priority is
calculated to be 10 plus the current lowest priority of any existing rule. For
example, assume you have an existing rule whose priority is 30. You add a
new rule and set its priority at 25 (which is a higher priority than 30). Then you
340 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

add a third rule without setting a priority. The priority of the third rule is
calculated to be as 30 + 10 = 40, and so on.

• The Begin range parameter and the End range parameters are not used on
Content type rules.

• The Pattern field is used to define the pattern of characters that CBR will
match against each client request.

The pattern must not contain any spaces and can make use of the special
characters listed in the following table:

Table 26. Special Characters Allowed in the Pattern Field

The reserved keywords shown in the following table must always be followed
by the equal (=) sign:

Table 27. Keywords Followed by the Equal (=) Sign

In our case, we made use of the url reserved word and the wildcard (*)
character. We specified the pattern as:

url=http://*/productx.html

This rule specifies that any URL that is a request for the page productx.html
will be a match.

Other examples of valid rule patterns are:

• url=http://*/*.gif

• client=9.32.*

• (path=index/*.gif&protocol=http)|(client=9.1.2.3)

• !(path=*.jpeg)

• The Sticky time field is used along with the Affinity type field. We demonstrate
the use of this in our next rule.

• The last item on the dialog window shown in Figure 267 on page 340 is a
scrolled list of server addresses to optionally choose from. In this case we
chose the server whose IP address was 9.67.133.75, meaning that we wanted

Character Function

* Matches 0 to x of any character

(Used for logic grouping

) Used for logic grouping

& Logical AND

| Logical OR

! Logical NOT

Keyword Value

client Client IP address

url URL in request

protocol Protocol section of URL

path Path section of URL

refer Referred URL (quality of service)

user User ID section of URL
Chapter 14. Content Based Routing 341

this server to serve the client requests containing the string productx.html in
the URL.

We then clicked the OK button in the dialog window shown in Figure 267 on page
340.

The next rule was added to send requests to both servers in the 9.67.133.18
cluster for client requests for the page purchase.html. In this case, however, we
specified an Affinity type of Cookie and a Sticky time of 30 seconds. This means
that when a client request to the cluster is made and the URL matches the rule
(that is, contains the string purchase.html), CBR would load balance the request
to the best server of the two and then all subsequent HTTP requests from that
client to this cluster address would also go to that server for a period of 30
seconds. We called this rule purchase. The dialog window in this case appeared
as follows:

Figure 268. Add Rule Dialog Window for the productpage Rule

We then clicked the OK button in the dialog window above. The GUI reported the
configuration was updated with the added rules, as shown in the following figure:
342 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 269. ND GUI Showing the Newly Added productpage Rule

14.3.4 CBR Manager and Advisors
As with the Dispatcher, starting the Manager and using the Advisors is optional.
The Manager can be activated with the command:

cbrcontrol manager start

The typical advisor that is used with CBR is the HTTP advisor, which can be
launched by entering the following command:

cbrcontrol advisor start http port

where port is the port configured for the cluster.

If you have configured any Advisors, you must change the Manager proportions
to allow the Advisor information to be included in the load balancing decisions. To
do this, you should use the command:

cbrcontrol manager proportions

For simplicity, in the scenarios described in this chapter, we did not make use of
the CBR Manager or Advisors functions.
Chapter 14. Content Based Routing 343

14.3.5 Saving the Configuration
Once we finished configuring CBR, we saved the configuration to a file. To do this
from the ND GUI, we right-clicked Host and selected Save Configuration File
As....

In the resulting pop-up window, we were prompted to enter the name of the
configuration file where we wanted to save this information. We entered the file
name landon.cfg in the Save Configuration pop-up window. By default this file is
placed in the directory configurations under installbase, where installbase is for
the CBR component and varies by operating system. See Table 24 on page 331
for a list of the installbase locations.

The configuration file is saved in ASCII format and contains the list of commands
that would be necessary to reconfigure your environment. Following is the
content of the landon.cfg file:

Figure 270. Configuration File landon.cfg

Examination of the saved configuration file is interesting because it contains each
of the cbrcontrol commands that could also be entered from the command line to
configure the same environment. If you chose to configure CBR with commands,
you can save your configured environment with the command:

cbrcontrol file save configurationfilename

You can then subsequently reload the configuration file with the command:

cbrcontrol file load configurationfilename

cbrcontrol cluster add 9.67.133.18

cbrcontrol port add 9.67.133.18:80

cbrcontrol server add 9.67.133.18:80:9.67.133.77

cbrcontrol server add 9.67.133.18:80:9.67.133.75
cbrcontrol rule add 9.67.133.18:80:sunpage type content pattern url=http://*/sunpage.html priority 1 beginrange 0
endrange 0
cbrcontrol rule useserver 9.67.133.18:80:sunpage 9.67.133.75
cbrcontrol rule useserver 9.67.133.18:80:sunpage 9.67.133.77
cbrcontrol rule set 9.67.133.18:80:sunpage stickytime 30

cbrcontrol rule add 9.67.133.18:80:productpage type content pattern url=http://*/productx.html priority 11
beginrange 0 endrange 0
cbrcontrol rule useserver 9.67.133.18:80:productpage 9.67.133.75

cbrcontrol rule add 9.67.133.18:80:purchase type content pattern url=http://*/purchase.html priority 21 beginrange 0
endrange 0
cbrcontrol rule useserver 9.67.133.18:80:purchase 9.67.133.75
cbrcontrol rule useserver 9.67.133.18:80:purchase 9.67.133.77
cbrcontrol rule set 9.67.133.18:80:purchase stickytime 30
cbrcontrol rule set 9.67.133.18:80:purchase affinity cookie

cbrcontrol cluster add 9.67.134.221

cbrcontrol port add 9.67.134.221:80

cbrcontrol server add 9.67.134.221:80:9.67.131.153

cbrcontrol server add 9.67.134.221:80:9.67.131.151

cbrcontrol rule add 9.67.134.221:80:aixpage type content pattern url=http://*/aixpage.html priority 1 beginrange 0
endrange 0
cbrcontrol rule useserver 9.67.134.221:80:aixpage 9.67.131.151
cbrcontrol rule useserver 9.67.134.221:80:aixpage 9.67.131.153
344 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

14.3.6 Scenario Results
We placed simple HTML files in the document root directories on each of our Web
servers. On the Web server with IP address 9.67.133.75 we placed a file named
productx.html and another called purchase.html. On the Web server with IP
address 9.67.133.77 we placed a different file also called productx.html. Recall
that we had defined a rule specifying that client requests containing the string
productx.html in the URL be load balanced between both of these servers. Each
of the files uniquely identified the server that it was located on and the name of
the page.

14.3.6.1 Client IP Affinity Demonstration
For our first request, with our browser we requested the productx.html page from
our cluster address and received the following page:

Figure 271. Sun Product Request

In a CBR scenario, the client machine does not need any special configuration.
In particular, client browsers must not be set to redirect all the requests to the
CBR machine. For example, in a real-life situation, it would not be appropriate
to require end users to reconfigure their Web browsers before accessing a Web
site that uses CBR. The use of CBR in a Web site is completely transparent to
end users.

Client Configuration
Chapter 14. Content Based Routing 345

To verify that our productpage rule was matched by this request, we used the
cbrcontrol persistent session command

rule rep ::

The command line version of this is:

cbrcontrol rule report cluster:port:rule

but as with other cbrcontrol commands, short forms of the keywords can be used.
In order to specify that you would like the report to include all clusters, ports and
rules, use only the two colon (::) delimiters on the command line. The command
and its output are shown in the following figure:

Figure 272. Rule Report Showing productpage Rule Fired One Time

Since the sticky time is set to 0 seconds, Web requests from the same client
should not stick to the same Web server, and subsequent requests should
normally load balance between the two Web servers defined in cluster A. If the
sticky time were set to a positive number of seconds, CBR would choose one of
the two servers the first time a client request arrives that matches the
productpage rule, and then would redirect all the client requests coming from the
same IP address to the same server until the sticky time expires.

In this case, however, we forced the CBR server to redirect all the requests to the
Web server having IP address 9.67.133.75, because this was the only server
available in the productpage rule.

14.3.6.2 Cookie Affinity Demonstration
The next test we made was to demonstrate the use of Cookie affinity.

Web cookies are simple pieces of information passed between the client Web
browser and the Web server during an HTTP transaction. Cookies do not contain
any information about the client that the server does not already know and they
cannot do anything on the client machine that the client itself cannot already do,
provided the browser is within the specifications. Cookies were introduced as an
answer to a fundamental problem of the Web's underlying HTTP 1.0 protocol: the
lack of a state, or a persistent connection.
346 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

The first time a client accesses a Web site that serves cookies, the chosen server
sends a cookie to the client browser, identifying the server and some information
about which URLs the cookie is good for. The next time the client visits one of
those URLs, the browser includes the cookie in its request. As long as the client’s
future requests contain the cookie, and each request arrives within the sticky time
interval, the client will maintain affinity with the initial server.

Prior to making a request for the purchase page that will trigger the 30 second
affinity rule, we examined the contents of the local cookie file (cookies.txt) in the
browser directory on our client machine and it was empty:

Figure 273. Empty Cookie File Before Request Was Made

Recall that we had enabled a 30 second cookie affinity on our purchase rule by
setting the sticky time to 30, and setting the affinity to Cookie when we created
the rule. This also could have been set with the command:

cbrcontrol rule set

Once a server is selected by CBR to respond to our request, subsequent
requests were also responded to by the same server.

In the 30 second period we made three requests for
http://9.67.133.18/purchase.html. Each request was responded to by the same
server:
Chapter 14. Content Based Routing 347

Figure 274. Sun Purchase Using a Cookie

We verified that the cookie was set on our browser machine by examining the
cookie.txt file:

Figure 275. Cookie File Containing one Cookie after Request Was Made
348 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Even though the contents of the cookie are not understandable by us, they are
meaningful to the Web server and browser.

After the 30 second sticky time expired, we saw that the CBR server was allowed
to choose the other Web server to satisfy the request from the client.

14.4 WTE CacheByIncomingUrl Directive

A new WTE directive has been added for use with CBR in the ibmproxy.conf
configuration file. This directive, CacheByIncomingUrl, specifies whether to use the
incoming URL or the outgoing URL as the basis for generating cache file names.
The values of this directive can be on or off:

• If CacheByIncomingUrl is set to on, the incoming URL will be used to generate
the cache file name. In other words, when this directive is set to on, WTE
keeps the original URL and uses it to cache the page that it gets back from the
ND-changed URL.

• On the other hand, if off is specified, CBR rule matching and load balancing
will be done on the incoming URL and the resulting URL will be used to
generate the cache name. In this case, WTE uses the ND-changed URL to
cache the page.

The CacheByIncomingUrl directive’s default value is off in the ibmproxy.conf file.

Notice that CacheByIncomingUrl is a hidden directive of WTE. In other words, it is
possible to alter its value only by manually editing the configuration file
ibmproxy.conf; there is no way to change the value of this directive through the
Configuration and Administration Forms.

Notice also that a Web page is cached only if WTE decides it should be. WTE
does this by looking at the Expires tag. If there is not one, it estimates an
expiration time by the Last-Modified parameter. You should keep this in mind if
you are testing CBR caching with sample pages you have just created and which
do not contain Expires header information. In this case, recently created pages
would not be cached, since they would be interpreted by WTE as frequently
changed pages, therefore resulting in an apparent failure of the CBR caching
function.
Chapter 14. Content Based Routing 349

350 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 15. Remote Cache Access

It is not uncommon for a proxy server to receive more traffic than it can handle.
One solution is to distribute the traffic between multiple, load balanced proxy
servers. However, in this situation, the content of one cache is likely to overlap
with the contents of the other caches. Besides unnecessary redundancy, this
situation also requires additional bandwidth, because each copy in each server is
fetched fresh from the origin. This problem can be minimized by chaining a
hierarchy of proxies together, but this still results in additional traffic passing
through a given server, and each additional link in the chain adds latency and
increases the possibility of a failure. Though useful, proxy chaining does not solve
the problem as it does not allow sharing the cache across multiple systems.

IBM Web Traffic Express (WTE) Version 2, the Caching and Filtering component
of IBM WebSphere Performance Pack Version 2, has a feature called Remote
Cache Access (RCA), which permits a number of WTE servers to share their
cache. Eliminating duplicate objects results in bandwidth savings because:

• Objects are not fetched multiple times.

• A larger, combined logical cache yields a higher hit rate.

RCA, which was not available in the previous release of IBM WebSphere
Performance Pack, allows multiple proxy servers to cooperate to form a cache
array. RCA uses the Cache Array Routing Protocol (CARP) to determine which
peer in the array should process the incoming request. If the requested file is not
in the proxy’s cache, it will query the other peers in the array to determine which
proxy might have the object cached. Therefore, using RCA, multiple proxy servers
can distribute the cache contents across their combined, logical cache to improve
hit rates and reduce redundancy of cached content.

To run a RCA, WTE demands a shared file system. This can be IBM AFS
Enterprise File System (AFS), DFS, NFS, the Windows NT file system, or any
other, but the cache directories must have read and write permissions for all the
cache array members.

15.1 How RCA Works

In the WTE cache array, all the machines know the existence of the others, and
all run a special hash function that maps every URL to an address in the cache.
An address in the cache is defined as the pair:

(array_member, cache_file_name)

This way, the cache space is the combination of all members (WTE servers) and
all cache directories. Each URL has a unique location in the cache, and the hash
function allows each member to compute the member that owns any given URL.

If a request is made to one proxy, this proxy will first check its local cache. If the
object is not found, then it will compute the owner of the URL and ask the owner if
it has the object already cached. If so, the first proxy will directly access the
cache space of the other proxy, retrieve the requested object and serve it to the
requesting client. If not, the requested object will be retrieved directly from the
remote content server.
© Copyright IBM Corp. 1999 351

The following diagram shows a graphical representation of an RCA flow:

Figure 276. RCA Information Flow

The information flow on RCA is as follows:

1. The client makes a URL request to one of the proxies. In our example, this
proxy is P3. Of course, the configuration of the figure above would make much
more sense if a load balancing machine were placed between the client and
the WTE proxy servers, to load balance the traffic between the proxy servers.
Although this is not a mandatory requirement, it is a very good idea to
distribute the workload between multiple WTE proxy servers using RCA by
using IBM SecureWay Network Dispatcher (ND), the Load Balancing
component of IBM WebSphere Performance Pack. In particular, ND offers the
WTE Advisor to perform peak load management, as we will see in Chapter 16,
“Peak Load Management” on page 357.

2. Using the hash function, P3 knows that this URL may be cached only in P2.

3. P3 makes an RCA request to P2 asking if it has already cached the requested
object.

4. At this point, two situations can happen:

• P2 responds that it has the URL in its cache:

1. P3 directly accesses P2’s cache to pick up the file corresponding to the
requested URL. P2 will not pass all the content of the cached object to
P3. In fact, since P3 knows that P2 owns the URL, and since P2’s cache
directory is accessible to P3 via the shared file system, P3 accesses
P2’s cache directory directly.

2. P3 returns the cached object to the requesting client

• P2 responds that it does not have the requested object in its cache:

Shared File System

Cache-P1/ Cache-P2/ Cache-P3/

Client

2. RCA Protocol

3. File in Cache

4. Response

4.
D

ire
ct

C
ac

he
Fi

le
Ac

ce
ss

1. Request

R
em

o
te

C
ache

A
rray

Internet

Web Server

P1 P2 P3
352 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

1. P3 will grab the URL in its original source, the Web or FTP server.

2. P3 will create the cache entry of the URL in P2’s cache directory and
use RCA to tell P2 about the modification.

Using this procedure, RCA is guaranteed to be an extremely fast protocol, and
provides a way to build a scalable array.

15.2 Planning for RCA

When planning to use RCA, you should remember the following:

• The participating proxy servers should be as close as possible, with
high-bandwidth connections. It is recommended that members are on the
same LAN segment, or communicate over an SP switch, if at all possible. In
addition, consider dedicating a network segment just to the inter-node
communication (the RCA messages and the shared file system).

• The same file system must be used by all members of an array. You cannot
use, for example, AFS on some nodes, NFS on others and the Windows NT
file system on others. The recommended file system is AFS.

• Membership in the RCA array should be long-term. The configuration should
be as stable as possible.

• Proxy servers should have similar capabilities (for example, CPU, memory,
size, cache size).

• Network outages between members of the array must be infrequent.

• There should be less than 100 members in any array.

• All members of the array must run WTE Version 2. You cannot share a cache
between WTE Version 2 and Distributed Web Traffic Express (DWTE) Version
1.11.

• The members of the array should be load-balanced using ND.

Conversely, RCA is not appropriate when:

• The participating proxy servers are not in close proximity.

• Frequent network outages are expected.

• Servers differ widely in capacity. For example, a PC server with a 500 MB
cache and an RS/6000 server with a 20 GB cache should not be in the same
array.

• Membership in the RCA array is short term.

15.3 RCA Scenario

Installing and configuring an RCA environment is a typical case where you can
install, configure and integrate all of the WebSphere Performance Pack
components. In fact, RCA nodes need to share the same file system, and by
using AFS you can take advantage of the powerful file sharing features of
WebSphere Performance Pack. Moreover, as we have already said, a scenario
involving multiple proxy servers sharing the same cache makes more sense if the

1 DWTE is another IBM caching and filtering proxy server. DWTE also implements RCA. Originally, IBM implemented RCA only in
DWTE. Then, the RCA feature was ported also to WTE V2.0.
Chapter 15. Remote Cache Access 353

workload is distributed between the servers. For this purpose, you can use the
ND component of IBM WebSphere Performance Pack.

In this section, we show you how we implemented an RCA scenario similar to the
one represented below:

Figure 277. Graphical Representation of the RCA Scenario

15.3.1 Scenario Implementation
1. We constructed an AFS cell called cuzcuz.itso.ibm.com following the steps

described in IBM WebSphere Performance Pack: Web Content Management
with IBM AFS Enterprise File System, SG24-5857.

One of the most useful characteristics of AFS is server ReadOnly volume
replication, which means that we can have several copies of the same volume
replicated across a number of file servers. This way, clients can access the
closest server. Another advantage is that the workload will be balanced
through all the servers. But in the case of RCA, the cache directory needs to
be updated continuously, so the volumes must be accessed through the
ReadWrite path. Even for a remote read access from another proxy, the
ReadWrite volume must be available, because a ReadOnly volume is created
and replicated manually and statically.

ND Load Balancing
Backup

ND Load Balancing
Primary

Web
Client

Web
Client

Web
Client

Gateway
or

Firewall

AFS Database Server &
File Server for

Shared Web Cache

AFS File Server for
Shared Web Cache

Gateway
or

Firewall

WTE Caching &
Filtering Proxy

AFS Client

WTE Caching &
Filtering Proxy

AFS Client

Internet
354 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

2. We created a separate volume for each proxy, but we didn’t replicate those
volumes.

3. We configured all the proxy servers as clients of the AFS cell.

4. We granted read and write permissions for all proxies when accessing any
other proxy cache directory.

We set up two proxy AIX machines, pluto.itso.ral.ibm.com and
rs600030.itso.ral.ibm.com. These machines had essentially the same
configurations.

We also configured RCA. This can be done by either accessing the Configuration
and Administration Forms or by including the following lines in the ibmproxy.conf
configuration file of both the WTE machines:

Figure 278. RCA Configuration in ibmproxy.conf

Figure 278 on page 355 shows the configuration for an array called Cake. We can
see that the cache directory for each proxy is inside the same AFS cell, and is
under the ReadWrite path, .cuzcuz.itso.ibm.com. Through these lines in the WTE
configuration file, both proxies know what the cache directories are, and can
access them directly. The RCAPort directive tells each proxy which port it should
connect to, and how to communicate with the other members.

It is very important that the RCA block of the configuration be identical in all the
array members. Even the order in which members appear in the RCA block
should not differ. One way to make this easier is to store the RCA configuration in
a separate file, located somewhere in the shared file system (even on a replicated
volume, if using AFS), and then including this configuration using the
RCAConfigFile directive in the WTE ibmproxy.conf configuration file.

After restarting the WTE servers, we accessed the WTE Configuration and
Administration Forms of both the WTE servers, and we verified that the forms
reflected the configuration we had issued:

Version RCA/1.0
ArrayName Cake
Member rs600030 {

RCAAddr rs600030.itso.ral.ibm.com
RCAPort 6969
CacheSize 100M
CacheRoot /afs/.cuzcuz.itso.ibm.com/proxy-itso/cache-rs600030
Timeout 1000 milliseconds
BindSpecific On
ReuseAddr Off

}

Member pluto {
RCAAddr pluto.itso.ral.ibm.com
RCAPort 6969
CacheSize 100M
CacheRoot /afs/.cuzcuz.itso.ibm.com/proxy-itso/cache-pluto
Timeout 1000 milliseconds
ReuseAddr Off

}

Chapter 15. Remote Cache Access 355

Figure 279. RCA Configuration in the Web Interface

A simple test permitted us to demonstrate that RCA was functioning correctly.
356 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 16. Peak Load Management

In WebSphere Performance Pack Version 2, a new Advisor, known as the WTE
Advisor for SecureWay Network Dispatcher (ND), enhances load balancing
management between multiple Web Traffic Express (WTE) nodes by preventing
the ND server from sending new requests to a WTE node that is engaged in
garbage collection or cache refresh. This is a new feature implemented for the
first time in WebSphere Performance Pack Version 2.

Using the WTE Advisor, an ND server has the ability to detect and react to
sudden increases in activity on a WTE node belonging to a cluster. The new WTE
Advisor on ND opens a connection to the WTE node, sends a WTE-specific
HTTP GET request, and interprets the response as a WTE load.

Notice that the WTE Advisor integrates the load balancing component with the
caching and filtering component of WebSphere Performance Pack. This new
feature is called peak load management and is part of the quality-of-service
enhancements offered by IBM WebSphere Performance Pack Version 2.

16.1 How Peak Load Management Works

Peak load management is a new feature implemented for the first time in IBM
WebSphere Performance Pack Version 2. You can perform peak load
management by activating the WTE Advisor on a Dispatcher machine that is load
balancing the workload between two or more WTE proxy servers.

The WTE Advisor is a process running on the Dispatcher machine, but is specific
for WTE. This process will not work if the load balanced proxy server is not WTE.
When the WTE Advisor runs on a Dispatcher machine, this machine sends a
specific HTTP request to the load balanced WTE servers, and these reply back
with four pieces of information:

• A boolean saying if the cache is reloading
• A boolean saying if garbage collection is running
• The number of active threads
• The maximum number of threads

The WTE Advisor is able to understand these pieces of information passed to it
by the WTE machines, and feeds them back to the Dispatcher Manager. The
Manager uses the data retrieved by the WTE Advisor to modify the weights
associated with the WTE proxy servers, if necessary, in proportion to the
importance given by the Dispatcher administrator to the Advisor’s input.

This way, the Dispatcher can detect when a WTE proxy server is performing
some CPU-intense activities better than it could if the WTE Advisor were not
running. The Dispatcher takes into account all these resource-intensive activities
and makes its load balancing decision appropriately, as we demonstrate in the
following section.

16.2 Peak Load Management Scenario

In this section, we show you a basic configuration for an ND machine load
balancing multiple WTE proxy server nodes. We built the network with five
© Copyright IBM Corp. 1999 357

workstations: one client, one Web server, two WTE proxy servers and one ND
machine load balancing the traffic between the two WTE servers. We installed the
components as shown in the following diagram:

Figure 280. Peak Load Management Scenario

Notice that the diagram above tries to reflect a real-life situation, where multiple
clients and multiple Web servers come into the scenario.

The following table provides more details on the WTE cluster configuration:

Table 28. WTE Cluster Configuration

All the machines above belonged to the domain itso.ral.ibm.com. Notice that
9.24.104.156 was the cluster address in this configuration. The host name
associated with this cluster address was cluster1.itso.ral.ibm.com.

All the machines shown in Figure 280 on page 358 were provided with a
token-ring interface and connected to the same LAN.

The software we used in our scenario is described in the following list:

• Netscape Navigator 4.5 was the Web browser running on the Web client
machine.

Machine Role Host Name IP Address Operating System

Dispatcher rs600030 9.24.104.97 AIX 4.3.1

cluster1 9.24.104.156

WTE proxy server 1 rs600022 9.24.104.127 AIX 4.3.1

WTE proxy server 2 wtr05178 9.24.104.167 Windows NT Server 4.0

Web Clients

Web Servers

Internet

ND Server

WTEProxy Server 1
Host name: rs600022.itso.ral.ibm.com

IP address: 9.24.104.127
Cluster address: cluster1.itso.ral.ibm.com

Operating syste: AIX 4.3.1
SOCKS configuration: socks.austin.ibm.com

Caching

Enabled

Host name: wtr05178.itso.ral.ibm.com

IP address: 9.24.104.167
Cluster address: cluster1.itso.ral.ibm.com
Operating system: Windows NT Server

SOCKS configuration: socks.austin.ibm.com

Caching

Enabled

WTE Proxy Server 2

Host name: rs600030.itso.ral.ibm.com

Non-forwarding address: 9.24.104.97
Cluster address: cluster1.itso.ral.ibm.com

Operating system: AIX 4.3.1
358 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• The load balancing function was provided by the Dispatcher component of ND
Version 2.1.

• The proxy server function was provided by WTE Version 2.0.

• The Web server function was provided by Lotus Domino Go Webserver
V4.6.2.5.

16.2.1 Dispatcher Configuration
For the installation and configuration of the ND component of IBM WebSphere
Performance Pack, refer to IBM WebSphere Performance Pack - Load Balancing
with IBM SecureWay Network Dispatcher, SG24-5858. We configured the
Dispatcher using the ND configuration graphical user interface (GUI).

The following diagram shows the Dispatcher GUI after the configuration was
completed:

Figure 281. Network Dispatcher GUI - WTE Cluster with WTE Advisors

As you can see from the figure above, we defined a cluster of two WTE proxy
servers, load balanced by an ND machine. In this cluster, we also activated the
WTE Advisor on port 80. Advisors can be activated as explained in IBM
WebSphere Performance Pack - Load Balancing with IBM SecureWay Network
Dispatcher, SG24-5858. In our configuration, you can see that the Dispatcher
was configured to load balance the traffic to the two WTE servers giving 40% of
Chapter 16. Peak Load Management 359

importance to the active connections, 40% of importance to the new connections,
and 20% of importance to the feedback coming from Advisors (in this case, from
the WTE Advisor). In this scenario, no importance was given to the input coming
from system monitoring tools, such as ISS, because no system monitoring tool
was part of the configuration.

It would not be appropriate to give a high importance to the Advisors’ inputs, but
in this case we preferred to set the importance to 20% as we wanted to see the
real effects of the WTE Advisors in the load balancing decisions made by the
Dispatcher.

16.2.2 Configuration of the WTE Proxy Servers
No special configurations other than a basic one are required on the WTE servers
when the WTE Advisor is running on the load balancing Dispatcher machine.

16.2.3 Testing the Peak Load Management Scenario
With the configuration described above, we performed some tests to verify how
the Dispatcher reacts to a sudden activity increase on one of the WTE machines.

16.2.3.1 Load Balancing Basic WTE Activities
On the Web client machine, we configured the Web browser to access the
Internet through the proxy server 9.24.104.156. This was the cluster address of
our WTE proxy server cluster (see Table 28 on page 358). Then, we requested
multiple URLs from the clients simultaneously. From the Dispatcher Server
monitor GUI, we could see that the two WTE proxy servers were in use
simultaneously as shown in the following figure:

Figure 282. Network Dispatcher GUI - WTE Proxy Servers Running
360 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

16.2.3.2 Consequences of the WTE Advisor Activation
As mentioned earlier, the WTE Advisor for the ND enhances load management
on multiple WTE servers by preventing the Dispatcher from sending new requests
to a WTE node that is currently engaged in garbage collection or cache refresh.
This function is very useful, since garbage collection and cache refresh are very
CPU-intensive activities for a WTE server, and it is very important that the
Dispatcher have a way to detect when a WTE server is using most of its
resources for these resource-consuming activities.

The following figure shows that, at the beginning of our tests, when there was no
particular activity on either of the WTE proxy servers, both WTE servers had the
same weights, as shown:

Figure 283. Network Dispatcher GUI - WTE Proxy Servers - No Load

We then activated the cache refresh process on the WTE proxy server 1 (see
Table 28 on page 358), whose hostname was rs600022. Although cache refresh
can start automatically at specific times, for this test we manually forced the WTE
proxy server 1 to run the cache refresh process. We did this with the command:

cacheagt -r /etc/ibmproxy.conf

Through the WTE Advisor, the Dispatcher immediately registered that cache
refresh was running on the WTE proxy server 1, and the Dispatcher Manager
decreased the weight of this WTE server to reduce the number of connections
that were going to be forwarded to it. The Dispatcher Server monitor immediately
registered this weight variation:
Chapter 16. Peak Load Management 361

Figure 284. Network Dispatcher GUI - WTE Proxy Servers - Cache Refresh in Progress

We can see that the weight of the WTE proxy server 1, having IP address
9.24.104.127, is now much lower than the weight of the WTE proxy server 2,
having IP address 9.24.104.167. The following diagram shows the Dispatcher
configuration GUI and the weight of each of the WTE proxy servers when the
cache refresh process was running:
362 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 285. Network Dispatcher GUI - Cache Refresh in Progress

This demonstration completes our scenario on the peak load management
feature of IBM WebSphere Performance Pack Version 2.
Chapter 16. Peak Load Management 363

364 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Chapter 17. Common Configuration

The Common Configuration utility is a new feature of IBM WebSphere
Performance Pack Version 2. In Version 2, it provides access to seven
browser-based wizards that can be used to configure specific aspects of the three
components of the product:

• IBM AFS Enterprise File System (AFS):

• Getting Started with AFS
• Add an AFS Web volume
• Replicate an AFS Web volume
• Move an AFS Web volume
• Delete an AFS Web volume

• IBM Web Traffic Express (WTE):

• Platform for Internet Content Selection (PICS) filtering wizard

• IBM SecureWay Network Dispatcher (ND):

• Add a Network Dispatcher cluster

The wizards do not provide access to all the functions of the individual
component configuration programs. Use the GUIs provided with each of the
components to perform additional product-specific configuration.

17.1 Installation

The Common Configuration utility must be installed and configured as a separate
component. The installation and configuration are supported on the three
platforms where IBM WebSphere Performance Pack itself is supported.

17.1.1 Planning for the Installation
The first step is to choose a machine that will perform the function of
configuration server for your environment. The Common Configuration utility
allows for remote configuration of the WebSphere Performance Pack
components. In other words, it is not necessary to install the Common
Configuration utility on the same ND, AFS, or WTE machine you will use the
Common Configuration utility for.

Access to the Common Configuration utility machine is Web based.

The following diagram shows how the Common Configuration utility works in
relation to all of the other WebSphere Performance Pack components:
© Copyright IBM Corp. 1999 365

Figure 286. Common Configuration Server Environment

Because the Common Configuration utility is implemented by using IBM
WebSphere Application Server and associated Java servlets (see 1.7.1, “IBM
WebSphere Application Server” on page 23), it is necessary that your chosen
configuration server machine meet these two prerequisites:

1. A Web server must be installed on the Common Configuration machine. This
Web server must be supported by WebSphere Application Server on your
platform. See 17.1.2, “Installing the Common Configuration Utility” on page
366 for a list of the supported Web servers on your platform.

You need to know the document directory and the configuration file directory
for whichever Web server you have installed.

2. The Web server must have the ability to serve files that are contained on one
of the machine’s local file systems. It cannot be set up to serve files only from
AFS.

Notice that it is not necessary to install WebSphere Application Server on the
Common Configuration server machine. If WebSphere Application Server is not
installed yet, the Common Configuration installation process installs the
WebSphere Application Server filesets transparently during the installation
routine.

Once these prerequisites are met, you can proceed to install the Common
Configuration on your Common Configuration server machine.

17.1.2 Installing the Common Configuration Utility
The process of installing the Common Configuration utility with the Java
InstallShield differs only slightly on the three platforms that it can be installed on.
We will demonstrate the installation and note where the differences are.

We performed our installation of the Common Configuration utility on a
uniprocessor IBM RS/6000 43P having 192 MB of RAM, 2.2 GB of hard disk and
one token-ring interface. This RS/6000 had AIX Version 4.3.1, Java Runtime
Environment (JRE) 1.1.6 and IBM HTTP Server Version 1.3.3 installed on it.

Web
Browser

AFS Server
AFS Server

AFS Server
WTE Server

AFS Server
ND Server

AFS Wizards

WTE PICS Filtering
Wizard

ND Add Cluster Wizard

Common Configuration Server
(WebSphere Application Server Enabled Web Server)

5315\531517
366 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

We also installed the Common Configuration utility on an IBM PC 365 running
Windows NT Server4.0. This machine had Java Development Kit (JDK) 1.1.6 and
IBM HTTP Server Version 1.3.3 installed on it.

One of the Web servers listed below that is supported by the WebSphere
Application Server must be installed on your machine:

• On the AIX platform:

• IBM HTTP Server V1.3.3
• Lotus Domino Go Webserver V4.6.2
• Netscape Enterprise V3.01
• Netscape Enterprise V3.51
• Apache HTTP Server V1.3.2

• On the Windows NT platform:

• IBM HTTP Server V1.3.3
• Lotus Domino Go Webserver V4.6.2
• Netscape Enterprise v3.01
• Netscape Enterprise v3.5
• Apache v1.3.2
• IIS 2/3.0
• IIS 4.0

• On the Solaris platform:

• IBM HTTP Server V1.3.3
• Apache Server V1.3.2
• Lotus Domino Go Webserver V4.6.2.5
• Netscape Enterprise Server V3.01 and V3.51 (recommend V3.5.1)
• Netscape FastTrack Server V3.01

The installation program for the Common Configuration utility makes use of Java
InstallShield’s setup class. For this reason you are required to pre-install the Java
Virtual Machine (JVM). On AIX, only the Java Runtime Environment (JRE) is
sufficient as it contains the JVM, the Java platform core classes, and supporting
files. On Windows NT we found it necessary to install the entire JDK to perform
the installation. We used JDK Version 1.1.6.

If Java is not installed on your machine or installed at a level lower than 1.1.6, you
can find the install image for JDK 1.1.6:

• For AIX at http://www.ibm.com/java/jdk/download/index.html or on the IBM
WebSphere Performance Pack Version 2 CD-ROM

• For Windows NT and Sun Solaris at http://www.javasoft.com or on the IBM
WebSphere Performance Pack Version 2 CD-ROM

The installation of the JDK is described in the IBM redbook Network Computing
Framework Component Guide, SG24-2119.

To prepare for the installation of the Common Configuration utility, follow the steps
listed below:

1. Insert the IBM WebSphere Performance Pack Version 2 CD-ROM in the
CD-ROM drive.

2. This step will differ on each platform:

• On AIX, from a command line, enter the following commands:
Chapter 17. Common Configuration 367

mkdir /cdrom
mount -rv cdrfs /dev/cd0 /cdrom
cd /cdrom/aix

• On Windows NT, enter:

E:
cd nt

where E is assigned to the CD-ROM drive.

• On Solaris, insert the IBM Websphere Performance Pack CD-ROM in the
CD-ROM drive. The system will automatically mount the WebSphere
Performance Pack CD-ROM as /cdrom/websphere. Then, from a command
prompt, enter the following command:

cd /cdrom/websphere/sun

3. To start the Java InstallShield installation program, enter:

java setup

The first screen you will see is the Welcome window. After clicking the Next
button, you are prompted to enter the destination location. Note that this is a
working directory for Websphere Performance Pack. The default location on
Windows NT is C:\WSPP; on Solaris /opt/WSPP; and on AIX /usr/lpp/WSPP, as
shown in the following window:

Figure 287. Choose Destination Location

In the above window, you are prompted to click Install to proceed. The button
does not exist, due to a known InstallShield for Java problem. Click the button
labeled Next to continue instead. If the destination directory does not exist on
your system, you will be presented with a question dialog asking you if you would
like the location to be created. Then, you will be presented with a window allowing
you to choose which IBM WebSphere Performance Pack V2 components you
want to install:
368 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

• File Sharing
• Load Balancing
• Caching and Filtering
• Common Configuration

This is shown in the following figure:

Figure 288. Choose the Component to Install (accinst01)

When we selected Common Configuration, a description of that component was
displayed as well as the space required to install it. This window also shows you
how much space is available in the destination location file system.

If you do not have enough free space in your destination location file system and
you click Next, you will see a warning window letting you know that there is not
enough space to perform the installation. You will then have to use the operating
system utilities to increase the size of the file system so that there is enough
space for the installation to be performed. After we had successfully increased
the size of the /usr file system, we were not able to continue with the Java
InstallShield process. In order for the available space field (as seen in Figure 288
on page 369) to be updated to reflect the new amount of available space in the
target directory, it was necessary to backup one screen by clicking the Back
button followed by the Next button. Then, with the Common Configuration
component selected, we were able to click the Next button.

In the next step, we had to provide some information to the install process. The
type of information that the user is prompted for next depends on whether or not
IBM WebSphere Application Server is already installed on the machine.
Furthermore, in both cases the information that the user is prompted for is
different for each of the supported platforms and so in the next sections we will
show all of the possibilities.
Chapter 17. Common Configuration 369

17.1.2.1 Providing Information on AIX and Solaris
The information you provide during the installation depends on whether or not
WebSphere Application Server is already installed on your system.

1. WebSphere Application Server is not already installed

When WebSphere Application Server was not preinstalled on our AIX
machine, we saw the following window:

Figure 289. Request to Supply Web Server Configuration Details

The above window will be displayed if you do not have WebSphere Application
Server already installed. In order for the correct Web server plug-in to be
installed, you will need to select one of the radio buttons to inform the
installation process which Web server is installed on the machine.

In addition, you are asked to provide two directories:

1. The first piece of information the installation process asks you for is the
Web server document directory. The installation process requires this
information as it places some files in this directory that are used when the
Common Configuration utility is launched.

2. The second piece of information the installation process asks you for is the
Web server configuration file directory. Because the installation in this case
is going to install WebSphere Application Server, it must make
modifications to the Web server configuration file so that the Web server
will be able to work together with WebSphere Application Server.

You will receive warning messages if you try to continue without filling in either
of the two fields or if you set the location for the Web server configuration file
incorrectly. As we were using the IBM HTTP Server, we selected the radio
button for it and filled in the associated directory information.

2. WebSphere Application Server is already installed
370 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

When WebSphere Application Server was already installed on our AIX
machine, we saw the following window:

Figure 290. Request to Supply Web Server and Servlet Configuration Details

In this case, you are again asked to supply two directory locations to the install
process:

1. The first piece of information it asks you for is the same as in Point 1 on
page 370: that is, the Web server document directory. The installation
process requires this information as it places some files in this directory
that are used when the Common Configuration utility is launched. We
supplied the default document directory for IBM HTTP Server as that was
the Web server we had preinstalled.

2. The second piece of information is different from Point 2 on page 370. In
this case, it asks where the Web server servlet directory is. This directory
is where the Common Configuration servlets will be placed during the
installation process. We supplied the default servlet directory for
WebSphere Application Server on AIX in the second field.

What we have just seen for AIX is very similar in the Solaris platform.

17.1.2.2 Providing Information on Windows NT
The information you provide during the installation depends on whether or not
WebSphere Application Server is already installed on your system.

1. WebSphere Application Server is not already installed

When WebSphere Application Server was not preinstalled on our Windows NT
machine, we saw the following window:
Chapter 17. Common Configuration 371

Figure 291. Request to Supply Web Server Configuration Details

The above window will be displayed if you do not have WebSphere Application
Server already installed. In order for the correct Web server plug-in to be
installed, you will need to select one of the radio buttons to inform the
installation process which Web server is installed on the machine.

In addition, you are asked to provide two directories:

1. The first piece of information the installation process asks you for is the
Web server document directory. The installation process requires this
information as it places some files in this directory that are used when the
Common Configuration utility is launched.

2. The second piece of information the installation process asks you for is the
Web server configuration file directory. Because the installation in this case
is going to install WebSphere Application Server, it must make
modifications to the Web server configuration file so that the Web server
will work together with WebSphere Application Server.

You will receive warning messages if you try to continue without filling in either
of the two fields or if you set the location for the Web server configuration file
incorrectly. As we were using the IBM HTTP Server, we selected the radio
button for it and filled in the associated directory information.

2. WebSphere Application Server is already installed

When WebSphere Application Server was already installed on our Windows NT
machine, we saw the following window:
372 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 292. Request to Supply Web Server and Servlet Configuration Details

In this case, you are again asked to supply two directory locations to the install
process:

1. The first piece of information the installation process asks you for is the same
as in Point 1 on page 371: the Web server document directory. The installation
process requires this information as it places in this directory some files that
are used when the Common Configuration utility is launched. We supplied the
default document directory for IBM HTTP Server as that was the Web server
we had preinstalled.

2. The second piece of information is different from Point 2 on page 372. Now, in
fact, the installation process asks you where the Web server servlet directory
is. This directory is where the Common Configuration servlets will be placed
during the installation process. We supplied the default servlet directory for
WebSphere Application Server on Windows NT in the second field.

17.1.3 Remaining Installation Steps
After clicking Next we saw a window asking if we wanted the installation
program to replace other programs already installed. We selected No in this
case, since we had not installed any programs on our system yet:
Chapter 17. Common Configuration 373

Figure 293. Choose to Replace Version

After clicking Install, the Common Configuration servlets were installed. When
WebSphere Application Server was not already installed on our system, we first
saw the following screen displayed, showing the installation progress for
WebSphere Application Server:

Figure 294. WebSphere Application Server Installation Progress Indicator
374 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

The following screen is always displayed during the installation of the Common
Configuration utility, showing the installation progress for the Common
Configuration utility itself:

Figure 295. Common Configuration Installation Progress Indicator

Then, you will be informed that the installation completed successfully:

Figure 296. Successful Completion Indication
Chapter 17. Common Configuration 375

We clicked on Finish to dismiss the installation process.

At this point, we could verify that the installation of the Common Configuration
utility transparently installs WebSphere Application Server on the Common
Configuration server. For example, on our AIX system, we saw that the filesets
shown in the following figure were the only ones that were installed on our system
as a result of the Common Configuration installation:

Figure 297. Installing the Common Configuration Utility Installs WebSphere Application Server

17.2 Preparing for the Common Configuration Utility

Communication between the Common Configuration server machine and the
WebSphere Performance Pack Version 2 machine that the Common
Configuration server is configuring is done via Remote Method Invocation (RMI).

A machine where WebSphere Performance Pack has been installed, and that
needs to be configured through the Common Configuration utility, is also known
as WebSphere Performance Pack server machine. On a WebSphere
Performance Pack server machine, the installation program creates a file that
must be executed before you can use the Common Configuration to configure
WebSphere Performance Pack on this machine. The file is called wsppserver on
AIX and Solaris, and wsppserver.cmd on Windows NT. It is located in the rmi
subdirectory of the installation directory that you instructed the installation
program to use at installation time.

Notice that the wsppserver file must not be executed on the Common
Configuration server machine, but on the WebSphere Performance Pack server
machine that is going to be the target of the Common Configuration utility. In
other words, the wsppserver script must be executed on the machine where one
of the three components (AFS, ND, and WTE) of WebSphere Performance Pack
has been installed, and needs to be configured (typically remotely) through the
Common Configuration utility.

On AIX, we followed these steps to execute the wsppserver file:

cd /usr/lpp/WSPP/rmi
chmod +x wsppserver
./wsppserver

We confirmed the success of the wsppserver execution by looking at the
wsppcc.log file that is also present in the same directory as wsppserver:
376 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 298. Confirming the Success of the wsppserver Execution

If you would like wsppserver to be run each time the WebSphere Performance
Pack machine is rebooted, you could add it to an rc file on AIX or Solaris; on a
Windows NT machine, add wsppserver to the Startup folder or registry.

To summarize, the steps that must be done before using the Common
Configuration utility are:

1. Identify a Websphere Performance Pack server machine to be the target of the
Common Configuration utility and on this machine execute the wsppserver
script file. This file carries a .cmd extension on Windows NT.

2. Identify a configuration server machine and on this machine:

• Install the Common Configuration utility.

• Start the WebSphere Application Server-compliant Web server if it is not
already running.

The next step that you must perform is dependent upon which WebSphere
Performance Pack component you plan to configure with the Common
Configuration utility.

17.3 Launching the Common Configuration Utility

To launch the Common Configuration utility from a Web browser, go to
http://common.configuration.server.name/wspp/startServer.html, where
common.configuration.server.name is the host name of the Common
Configuration server machine. Following is the Common Configuration home
page:
Chapter 17. Common Configuration 377

Figure 299. Common Configuration Main Page

From the server selection list on the page, you can either click Add New Server
or select a server from the list (if the list is not empty) and then click Configure
Server or Remove Server.

The first time we accessed the Common Configuration utility, we selected Add
New Server and in the subsequent Server Addition Request flield, entered the
name of our WebSphere Performance Pack server machine:
378 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 300. Server Addition Request

As you can see from the figure above, in this example, the Common Configuration
server machine (see the host name in the URL) is the same as the WebSphere
Performance Pack server machine (see the host name in the Server Addition
Request field). However, there is no need for this to happen. The WebSphere
Performance Pack server machines that a Common Configuration server can
administer can be either remote or local.

After clicking the Next button, we saw a refreshed version of the Common
Configuration main page, showing the name of the WebSphere Performance
Pack server machine. The Common Configuration utility can immediately detect
the WebSphere Performance Pack components that are installed on a
WebSphere Performance Pack server and that, therefore, are subject to be
configured through the Common Configuration utility. The following figure shows
how the Common Configuration utility immediately detected the presence of WTE
in the WebSphere Performance Pack server machine whose host name has been
added in the Server Addition Request field:
Chapter 17. Common Configuration 379

Figure 301. One Performance Pack Server Added to the Common Configuration Page

Multiple WebSphere Performance Pack server machines (the local machine as
well as remote machines) can be added to the list. The Common Configuration
server can automatically detect the WebSphere Performance Pack components
that are installed on all the WebSphere Performance Pack server machines, so
that these can be configured through the Common Configuration utility. The
following figure shows an example of this:
380 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 302. Common Configuration with Multiple WebSphere Performance Pack Servers

With a server selected, click Configure Server to begin the configuration. Once
activated, the Common Configuration does not differ too much from the graphical
user interface (GUI) tools that can be used to configure AFS, ND and WTE
respectively. The advantage of the Common Configuration utility is that it allows
centralized, remote, and secure administration of entire WebSphere Performance
Pack sites. Only authenticated users can administer a WebSphere Performance
Pack server through a Common Configuration server.
Chapter 17. Common Configuration 381

382 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Appendix A. ADV_sample Custom Advisor

This appendix shows the code of the HTTP sample advisor ADV_sample.java,
shipped with the IBM SecureWay Network Dispatcher V2.1, the Load Balancing
component of IBM WebSphere Performance Pack Version 2.

This sample code is located in the directory
installbase/lib/CustomAdvisor/ADV_sample.java, where installbase varies by
component (Dispatcher or CBR) and operating system. See Table 1 on page 69
for a list of the installbase locations.

The code is shown in the following figures:
© Copyright IBM Corp. 1999 383

Figure 303. (Part 1 of 5). ADV_Sample.java

/**
* ADV_sample: The Network Dispatcher HTTP advisor
*
*
* This class defines a sample custom advisor for Network Dispatcher. Like all
* advisors, this custom advisor extends the function of the advisor base, called ADV_Base.
* It is the advisor base that actually performs most of the advisor's functions,
* such as reporting loads back to the Network Dispatcher for use in the
* Network Dispatcher's weight algorithm. The advisor base also performs socket connect
* and close operations and provides send and receive
* methods for use by the advisor. The advisor itself is used only for
* sending and receiving data to and from the port on the server being advised.
* The TCP methods within the advisor base
* are timed to calculate the load. A flag within the constructor in the ADV_base
* overwrites the existing load with the new load returned from the advisor if desired.
*
* Note: Based on a value set in the constructor, the advisor base supplies
* the load to the weight algorithm at specified intervals. If the actual
* advisor has not completed so that it can return a valid load, the advisor base uses
* the previous load.
*
* NAMING
*
* The naming convention is as follows:
*
* - The file must be located in the Network Dispatcher base directory. The defaults for this
* directory vary by operating system:
*
* - NT - \Program Files\nd\dispatcher
* - AIX - /usr/lpp/nd/dispatcher
* - Solaris - /opt/nd/dispatcher
* within the subdirectory of lib\CustomAdvisors.
*
* - The Advisor name must be preceded with "ADV_". The advisor can
* be started with only the name, however; for instance, the "ADV_sample"
* advisor can be started with "sample".
*
* - The advisor name must be in lowercase.
*
* With these rules in mind, therefore, this sample is referred to as:
*
* <base directory>/lib/CustomAdvisors/ADV_sample.class.
*
*
* Advisors, as with the rest of Network Dispatcher, must be compiled with Java 1.1.5.
* To ensure access to Network Dispatcher classes, make sure that the ibmnd.jar
* file (located in the lib subdirectory of the base directory) is included in the system's
CLASSPATH.
*
*
* Methods provided by ADV_Base:
*
* - ADV_Base (Constructor):
*

384 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 304. (Part 2 of 5). ADV_Sample.java

* - Parms
* - String sName = Name of the advisor
* - String sVersion = Version of the advisor
* - int iDefaultPort = Default port number to advise on
* - int iInterval = Interval on which to advise on the servers
* - String sDefaultLogFileName = Unused. Must be passed in as "".
* - boolean replace = True - replace the load value being calculated by the advisor base
* False - add to the load value being calculated by the advisor base
* - Return
* - Constructors do not have return values.
*
* Because the advisor base is thread based, it has several other methods available
* for use by an advisor. These methods can be referenced using the CALLER parameter passed in
* getLoad().
*
* These methods are as follows:
*
* - send - Send a packet of information on the established socket connection to the server on
* the specified port.
* - Parms
* - String sDataString - The data to be sent is sent in the form of a string
* - Return
* - int RC - Whether the data was sucessfully sent or not: zero indicates data was
* sent; a negative integer indicates an error.
*
* - receive - Receive information from the socket connection.
* - Parms
* - StringBuffer sbDataBuffer - The data received during the receive call
* - Return
* - int RC - Whether the data was successfully received or not; zero indicates data was
* sent; a negative integer indicates an error.
*
* If the function provided by the advisor base is
* not sufficient, you can create the appropriate function within the advisor and
* the methods provided by the advisor base will then be ignored.
*
* An important question regarding
* the load returned is whether to apply it to the load being generated
* within the advisor base, or to replace it; there are valid instances of both situations.
*
* This sample is essentially the Network Dispatcher HTTP advisor. It functions very simply:
* a send request--an http head request--is issued. Once a response is received, the
* getLoad method terminates, flagging the advisor base to stop timing the request. The method
* is then complete. The information returned is not parsed; the load is based on the time
required
* to perform the send and receive operations.
*/

package CustomAdvisors;
import com.ibm.internet.nd.advisors.*;

public class ADV_sample extends ADV_Base implements ADV_MethodInterface
{
String COPYRIGHT = "(C) Copyright IBM Corporation 1997, All Rights Reserved.\n";
Appendix A. ADV_sample Custom Advisor 385

Figure 305. (Part 3 of 5). ADV_Sample.java

static final String ADV_NAME = "Sample";
static final int ADV_DEF_ADV_ON_PORT = 80;
static final int ADV_DEF_INTERVAL = 7;

// Note: Most server protocols require a carriage return ("\r") and line feed ("\n")
// at the end of messages. If so, include them in your string here.
static final String ADV_SEND_REQUEST =
"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_Network_Dispatcher_HTTP_Advisor\r\n\r\n";

/**
* Constructor.
*
* Parms: None; but the constructor for ADV_Base has several parameters that must be passed to

it.
*
*/
public ADV_sample()
{
super(ADV_NAME,

"2.0.0.0-03.27.98",
ADV_DEF_ADV_ON_PORT,
ADV_DEF_INTERVAL,
"", // not used
false);

super.setAdvisor(this);
}

/**
* ADV_AdvisorInitialize
*
* Any Advisor-specific initialization that must take place after the advisor base is started.
* This method is called only once and is typically not used.
*/
public void ADV_AdvisorInitialize()
{
return;

}

/**
* getLoad()
*
* This method is called by the advisor base to complete the advisor's operation, based
* on details specific to the protocol. In this sample advisor, only a single send and receive

are
* necessary; if more complex logic is necessary, multiple sends and receives
* can be issued. For example, a response might be received and parsed. Based on the

information
* learned thereby, another send and receive could be issued.
*
* Parameters:
*

386 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 306. (Part 4 of 5). ADV_Sample.java

* - iConnectTime - The current load as it refers to the length of time it took to
* complete the connection to the server through the specified port.
*
* - caller - A reference to the advisor base class where the Network Dispatcher-supplied
* methods are to perform simple TCP requests, mainly send and receive.
*
* Results:
*
* - The load - A value, expressed in milliseconds, that can either be added to the existing
* load, or that can replace the existing load, as determined by the constructor's "replace"
* flag.
*
* The larger the load, the longer it took the server to respond; therefore, the higher
* the weight will be within Network Dispatcher regarding load balancing.
*
* If the value is negative, an error is assumed. An error from an advisor indicates that
* the server the advisor is trying to reach is not accessible and has been identified as being
* down.
* Network Dispatcher will not attempt to load balance to a server that is down.
* Network Dispatcher will resume load balancing to the server when a positive value is
* received.
*
* A value of zero is typically not returned; Network Dispatcher handles a load of zero in a
* special way.
* Zero is assumed to indicate an unknown status, and Network Dispatcher gives the server a
* high weight in
* response.
*/
public int getLoad(int iConnectTime, ADV_Thread caller)
{
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1

// Send tcp request
iRc = caller.send(ADV_SEND_REQUEST);
if (iRc >= 0)
{

// Perform a receive
StringBuffer sbReceiveData = new StringBuffer("");
iRc = caller.receive(sbReceiveData);

// If the receive is successful, a load of zero is returned. This is because the "replace"
// flag is set to false, indicating that the load built within the base advisor is to be
// used.
// Since nothing was done with the returned data, additional load is not necessary.

// Note: it is known that the advisor base load will not be zero, therefore a zero load will
// not be returned for use in calculating the weight.
if (iRc >= 0)
{

iLoad = 0;
}

}
return iLoad;
Appendix A. ADV_sample Custom Advisor 387

Figure 307. (Part 5 of 5). ADV_Sample.java

}

} // End - ADV_sample
388 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Appendix B. SDA_SampleAgent Code

In this appendix, we show the sample code SDA_SampleAgent.java, shipped with
the IBM SecureWay Network Dispatcher (ND), the Load Balancing component of
IBM WebSphere Performance Pack Version 2.

The sample SDA client code is distributed as a Java source program in this
directory installbase/lib/SDA, where installbase is the Dispatcher component and
varies by operating system (see Table 1 on page 69 for a list of installbase
locations).

As explained in 9.1.5, “Modifying the Sample SDA Client Code” on page 256, this
Java program implements a Server Directory Affinity (SDA) client, and is used to
create entries in the Dispatcher affinity table to bind a specific client IP address to
a specific server IP address in the cluster, so that subsequent requests from the
same client will be bound to the same server.
© Copyright IBM Corp. 1999 389

Figure 308. (Part 1 of 16). SDA_SampleAgent.java

//===
// SDA_SampleAgent
//
// Used to simulate an intelligent agent which provides affinity information
// to Network Dispatcher's 'Server Directed Affinity' feature.
//
// Three classes are defined herein:
// SDA_SampleAgent - main program which communicates with ND.
// SDA_Info - holds affinity information in the format for transfer to ND.
// SDA_Utils - miscellaneous utility routines to communicate with ND.
// These classes were designed so that you could use SDA_Info and SDA_Utils
// unchanged and intact, while replacing SDA_SampleAgent with your own code.
//
// This program opens a TCP connection with Network Dispatcher.
// It sends affinity records to ND, queries them, and deletes them.
//
// Message Flows
// ---------------------------
// ND <- connect - Agent
// <- Auth ----
// <- CIB -----
// -- Auth --->
//
// <- Auth ----
// <- Affin----
// -- Auth --->
// -- Resp --->
//
// <- Auth ----
// <- Affin----
// -- Auth --->
// -- Resp --->
//
// <- Auth ----
// <- Affin----
// -- Auth --->
// -- Resp --->
//
// etc...
//
//
// AD 03/14/1998 - for Java 1.1.4 (and above)
//===
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;

//---
// SDA_SampleAgent - A class to implement a simple SDA agent.
//---
class SDA_SampleAgent
{

390 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 309. (Part 2 of 16). SDA_SampleAgent.java

//---
// Version of this agent.
//---
public static String sVersion = "Program SDA_SampleAgent, version 1.0, March 14, 1998.";

//---
// Object variables.
//---
// Variables used to communicate with ND.
InetAddress inaNetworkDispatcher; // The IP address of ND.
int iNetworkDispatcherPort; // Port number to connect to ND.
Socket soNetworkDispatcher; // Socket to talk to ND.
DataInputStream disIn = null; // Input stream from ND.
DataOutputStream dosOut = null; // Output stream to ND.

// Variables used to define entries in the ND affinity table.
InetAddress inaSdaCluster; // Cluster address under test.
int iSdaPort; // Port number under test.
InetAddress inaSdaClient; // Client address under test.
InetAddress inaSdaServer; // Server address under test.

//---
// Function - Display the contents of this object (for debug only).
//---
public String toString() {
String sRc = "SDA_SampleAgent object:\n" +

"--\n" +
"inaNetworkDispatcher " + inaNetworkDispatcher + "\n" +
"iNetworkDispatcherPort ... " + iNetworkDispatcherPort + "\n" +
"soNetworkDispatcher " + soNetworkDispatcher + "\n" +
"disIn " + disIn + "\n" +
"dosOut " + dosOut + "\n" +
"inaSdaCluster " + inaSdaCluster + "\n" +
"iSdaPort " + iSdaPort + "\n" +
"inaSdaClient " + inaSdaClient + "\n" +
"inaSdaServer " + inaSdaServer + "\n" ;

return sRc;
}

//---
// Constructor.
//---
public SDA_SampleAgent() throws Exception {

// Note: These values are samples only.
// You must modify them to work in your environment.

// Define the address and port to communicate with ND.
inaNetworkDispatcher = InetAddress.getByName("9.37.52.219");
// inaNetworkDispatcher = InetAddress.getByName("10.0.0.3");
iNetworkDispatcherPort = 10005;
Appendix B. SDA_SampleAgent Code 391

Figure 310. (Part 3 of 16). SDA_SampleAgent.java

// Define variables used as entries in the ND affinity table.
inaSdaCluster = InetAddress.getByName("9.37.61.44");
iSdaPort = 80;
inaSdaClient = InetAddress.getByName("9.37.52.219");
// inaSdaClient = InetAddress.getByName("10.0.0.3");
inaSdaServer = InetAddress.getByName("9.37.52.114");

}

//---
// Function - Open an authorized connection with ND and identify ourself.
//---
public void openND() throws Exception {

// Open the socket.
openSocket();

// Send an auth string.
SDA_Utils.sendAuth(dosOut);

// Send our CIB string.
SDA_Utils.sendCIB(dosOut);

// Wait for an auth string.
SDA_Utils.recvAuth(disIn);

}

//---
// Function - Open a socket to ND on its SDA listen port.
//---
public void openSocket() throws Exception {

// Tell the user...
System.out.println("SDA_Sample> Opening connection with Network Dispatcher:\n" +

" Address " + inaNetworkDispatcher + "\n" +
" Port " + iNetworkDispatcherPort);

try
{
// Open the socket.
soNetworkDispatcher = new Socket(inaNetworkDispatcher, iNetworkDispatcherPort);

// "Cast" the socket into streams for use reading and writing data.
disIn = new DataInputStream(soNetworkDispatcher.getInputStream());
dosOut = new DataOutputStream(soNetworkDispatcher.getOutputStream());

// Set the socket receive timeout (arbitrarily) in milliseconds.
soNetworkDispatcher.setSoTimeout(20000);

// Tell the user...
System.out.println("SDA_Sample> Opened connection successfully.");

}

catch(Exception e)
392 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 311. (Part 4 of 16). SDA_SampleAgent.java

{
// Tell the user...
System.out.println("SDA_Sample> Error: Caught a java exception while opening socket to

ND:\n" + e);
System.out.println("SDA_Sample> Perhaps the ND's hostname is invalid?...");
System.out.println("SDA_Sample> Perhaps the ND's SDA listen port is invalid?...");
throw e;

}
}

//---
// Function - Query the contents of the ND affinity table.
//---
public void queryTable() throws Exception {

// Create a java object for use communicating with ND and define the command.
SDA_Info sdai = new SDA_Info();
sdai.iMessageVersion = 1;
sdai.iCommand = SDA_Info.SDA_CMD_QUERY;
sdai.iResponse = SDA_Info.SDA_RSP_SUCCESS;
sdai.iClusterAddr = SDA_Utils.inaToInt(inaSdaCluster);
sdai.iPort = iSdaPort;
sdai.iNumAffinities = 0;

// Tell the user...
System.out.println("SDA_Sample> About to query the contents of the ND affinity table:");
System.out.println(sdai);

try {
// Send the command to ND and get a response.
SDA_Utils.talkToNd(sdai,disIn,dosOut);

}
catch(Exception e) {
throw e;

}

// Bomb on error.
if (SDA_Info.SDA_RSP_SUCCESS != sdai.iResponse) {
throw new Exception("Error from ND querying the contents of the ND affinity table...");

}
}

//---
// Function - Query the contents of the ND affinity table for one client.
//---
public void queryOneClient() throws Exception {

// Create a java object for use communicating with ND and define the command.
SDA_Info sdai = new SDA_Info();
sdai.iMessageVersion = 1;
sdai.iCommand = SDA_Info.SDA_CMD_QUERY;
sdai.iResponse = SDA_Info.SDA_RSP_SUCCESS;
Appendix B. SDA_SampleAgent Code 393

Figure 312. (Part 5 of 16). SDA_SampleAgent.java

sdai.iClusterAddr = SDA_Utils.inaToInt(inaSdaCluster);
sdai.iPort = iSdaPort;
sdai.iNumAffinities = 1;

sdai.aiClientAddr[0] = SDA_Utils.inaToInt(inaSdaClient);
sdai.aiServerAddr[0] = 0;
sdai.aiResponse[0] = SDA_Info.SDA_RSP_SUCCESS;

// Tell the user...
System.out.println("SDA_Sample> About to query the table for one client:");
System.out.println(sdai);

try {
// Send the command to ND and get a response.
SDA_Utils.talkToNd(sdai,disIn,dosOut);

}
catch(Exception e) {
throw e;

}

// Bomb on error.
if (SDA_Info.SDA_RSP_SUCCESS != sdai.iResponse) {
throw new Exception("Error from ND querying one client in the ND affinity table...");

}
}

//---
// Function - Query the contents of the ND affinity table for one server.
//---
public void queryOneServer() throws Exception {

// Create a java object for use communicating with ND and define the command.
SDA_Info sdai = new SDA_Info();
sdai.iMessageVersion = 1;
sdai.iCommand = SDA_Info.SDA_CMD_QUERY;
sdai.iResponse = SDA_Info.SDA_RSP_SUCCESS;
sdai.iClusterAddr = SDA_Utils.inaToInt(inaSdaCluster);
sdai.iPort = iSdaPort;
sdai.iNumAffinities = 1;

sdai.aiClientAddr[0] = 0;
sdai.aiServerAddr[0] = SDA_Utils.inaToInt(inaSdaServer);
sdai.aiResponse[0] = SDA_Info.SDA_RSP_SUCCESS;

// Tell the user...
System.out.println("SDA_Sample> About to query the table for one server:");
System.out.println(sdai);

try {
// Send the command to ND and get a response.
SDA_Utils.talkToNd(sdai,disIn,dosOut);
394 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Table 29. (Part 6 of 16). SDA_SampleAgent.java

}
catch(Exception e) {
throw e;

}

// Bomb on error.
if (SDA_Info.SDA_RSP_SUCCESS != sdai.iResponse) {
throw new Exception("Error from ND querying one server in the ND affinity table...");

}
}

//---
// Function - Add a record to the ND affinity table.
//---
public void addRecord() throws Exception {

// Create a java object for use communicating with ND and define the command.
SDA_Info sdai = new SDA_Info();
sdai.iMessageVersion = 1;
sdai.iCommand = SDA_Info.SDA_CMD_ADD;
sdai.iResponse = SDA_Info.SDA_RSP_SUCCESS;
sdai.iClusterAddr = SDA_Utils.inaToInt(inaSdaCluster);
sdai.iPort = iSdaPort;
sdai.iNumAffinities = 1;

sdai.aiClientAddr[0] = SDA_Utils.inaToInt(inaSdaClient);
sdai.aiServerAddr[0] = SDA_Utils.inaToInt(inaSdaServer);
sdai.aiResponse[0] = SDA_Info.SDA_RSP_SUCCESS;

// Tell the user...
System.out.println("SDA_Sample> About to add a record to the ND affinity table:");
System.out.println(sdai);

try {
// Send the command to ND and get a response.
SDA_Utils.talkToNd(sdai,disIn,dosOut);

}
catch(Exception e) {
throw e;

}

// Bomb on error.
if ((SDA_Info.SDA_RSP_SUCCESS != sdai.iResponse) ||

(1 > sdai.iNumAffinities) ||
(SDA_Info.SDA_RSP_SUCCESS != sdai.aiResponse[0])) {

throw new Exception("Error from ND adding record to the ND affinity table...");
}

}

//---
// Function - Delete a record from the ND affinity table.
//---
Appendix B. SDA_SampleAgent Code 395

Figure 313. (Part 7 of 16). SDA_SampleAgent.java

public void deleteRecord() throws Exception {

// Create a java object for use communicating with ND and define the command.
SDA_Info sdai = new SDA_Info();
sdai.iMessageVersion = 1;
sdai.iCommand = SDA_Info.SDA_CMD_DELETE;
sdai.iResponse = SDA_Info.SDA_RSP_SUCCESS;
sdai.iClusterAddr = SDA_Utils.inaToInt(inaSdaCluster);
sdai.iPort = iSdaPort;
sdai.iNumAffinities = 1;

sdai.aiClientAddr[0] = SDA_Utils.inaToInt(inaSdaClient);
sdai.aiServerAddr[0] = SDA_Utils.inaToInt(inaSdaServer);
sdai.aiResponse[0] = SDA_Info.SDA_RSP_SUCCESS;

// Tell the user...
System.out.println("SDA_Sample> About to delete a record from the ND affinity table:");
System.out.println(sdai);

try {
// Send the command to ND and get a response.
SDA_Utils.talkToNd(sdai,disIn,dosOut);

}
catch(Exception e) {
throw e;

}

// Bomb on error.
if ((SDA_Info.SDA_RSP_SUCCESS != sdai.iResponse) ||

(1 > sdai.iNumAffinities) ||
(SDA_Info.SDA_RSP_SUCCESS != sdai.aiResponse[0])) {

throw new Exception("Error from ND deleting record from the ND affinity table...");
}

}

//---
// Function - Delete all records from the ND affinity table.
//---
public void deleteAllRecords() throws Exception {

// Create a java object for use communicating with ND and define the command.
SDA_Info sdai = new SDA_Info();
sdai.iMessageVersion = 1;
sdai.iCommand = SDA_Info.SDA_CMD_DELETE_ALL;
sdai.iResponse = SDA_Info.SDA_RSP_SUCCESS;
sdai.iClusterAddr = SDA_Utils.inaToInt(inaSdaCluster);
sdai.iPort = iSdaPort;
sdai.iNumAffinities = 0;

// Tell the user...
System.out.println("SDA_Sample> About to delete all records from the ND affinity table:");
System.out.println(sdai);
396 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 314. (Part 8 of 16). SDA_SampleAgent.java

try {
// Send the command to ND and get a response.
SDA_Utils.talkToNd(sdai,disIn,dosOut);

}
catch(Exception e) {
throw e;

}

// Bomb on error.
if (SDA_Info.SDA_RSP_SUCCESS != sdai.iResponse) {
throw new Exception("Error from ND deleting all records from the ND affinity table...");

}
}

//---
// Function - Main.
//---
public static void main(String[] sArgs)
{
SDA_SampleAgent sa = null;

// Tell the user our version.
System.out.println("SDA_Sample> " + sVersion);

try {
// Define the addresses and ports specifically for this sample program.
sa = new SDA_SampleAgent();

// Open a connection with ND and identify ourself.
sa.openND();

// Query the contents of the ND affinity table.
sa.queryTable();

// Delete all affinity records.
sa.deleteAllRecords();

// Query the contents of the ND affinity table.
sa.queryTable();

// Add a new affinity record.
sa.addRecord();

// Query the contents of the ND affinity table.
sa.queryTable();

// Query one client in the ND affinity table.
sa.queryOneClient();

// Query one server in the ND affinity table.
sa.queryOneServer();

// Delete the new affinity record.
Appendix B. SDA_SampleAgent Code 397

Figure 315. (Part 9 of 16). SDA_SampleAgent.java

sa.deleteRecord();

// Query the contents of the ND affinity table.
sa.queryTable();

}

// Error handling.
catch(Exception e) {
// Tell the user.
System.out.println("SDA_Sample> Caught exception in routine main: " + e);

}

// Close socket.
finally {
if (null != sa.soNetworkDispatcher) {
System.out.println("SDA_Sample> Closing socket in routine main.");
try { sa.soNetworkDispatcher.close(); } catch(Exception x){;}

}
}

}

} // End - class SDA_SampleAgent.

//---
// SDA_Utils - Miscellaneous utility routines to communicate with ND.
//---
class SDA_Utils
{
//---
// Definition of the auth string.
//---
public static final byte[] abAuth = {
// "MANAGER Copyright (C) International Business Machines 1996"
0x4d, 0x41, 0x4e, 0x41, 0x47, 0x45, 0x52, 0x20,
0x43, 0x6f, 0x70, 0x79, 0x72, 0x69, 0x67, 0x68,
0x74, 0x20, 0x28, 0x43, 0x29, 0x20, 0x49, 0x6e,
0x74, 0x65, 0x72, 0x6e, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x61, 0x6c, 0x20, 0x42, 0x75, 0x73, 0x69,
0x6e, 0x65, 0x73, 0x73, 0x20, 0x4d, 0x61, 0x63,
0x68, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x31, 0x39,
0x39, 0x36

};

//---
// Definition of the ConnectionInitBlock (CIB) for this agent.
//---
public static final byte[] abCIB = {
398 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 316. (Part 10 of 16). SDA_SampleAgent.java

// Interface protocol version number "01.00.00.00"
0x30, 0x31, 0x2e, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x00,
// Name of this agent "SDA_Sample"
0x53, 0x44, 0x41, 0x5F, 0x53, 0x61, 0x6d, 0x70, 0x6c, 0x65,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Reserved for future use. Must be zero.
0x00, 0x00, 0x00, 0x00

};

//---
// Function - Send an "Auth" string to ND.
//---
public static void sendAuth(DataOutputStream dosOut) throws Exception {

// Tell the user...
System.out.println("SDA_Sample> About to send an auth string to ND...");

try {
// Send the "auth" string as an array of bytes.
dosOut.write(abAuth, 0, abAuth.length);
dosOut.flush();

}

catch(Exception e) {
// Tell the user...
System.out.println("SDA_Sample> Error 2 sending auth string to ND.");
throw e;

}
}

//---
// Function - Receive an "Auth" string from ND.
// This blocks until data is received or the socket timeout expires.
//---
public static void recvAuth(DataInputStream disIn) throws Exception {
byte[] ab = new byte[abAuth.length];
int iBytesRead = 0;

// Tell the user...
System.out.println("SDA_Sample> Waiting for an auth string from ND...");

try {
// Read into temporary array ab.
iBytesRead = disIn.read(ab);
Appendix B. SDA_SampleAgent Code 399

Figure 317. (Part 11 of 16). SDA_SampleAgent.java

// Verify we received an auth. Check the number of bytes.
if (abAuth.length == iBytesRead) {
// Check each byte.
for (int i=0; i<iBytesRead; i++) {
if (ab[i] != abAuth[i]) {
// Tell the user.
System.out.println("SDA_Sample> Error in content of auth string received from ND.");
throw new Exception("invalid content auth");

}
}

}
else {
// Tell the user.
System.out.println("SDA_Sample> Error in length of auth string received from ND.");
throw new Exception("invalid length auth");

}

// Tell the user...
System.out.println("SDA_Sample> Successfully received an auth string from ND...");

}

catch(Exception e) {
System.out.println("SDA_Sample> Error waiting for auth string from ND.");
throw e;

}
}

//---
// Function - Send a "CIB" (ConnectionInitBlock) string to ND.
//---
public static void sendCIB(DataOutputStream dosOut) throws Exception {

// Tell the user...
System.out.println("SDA_Sample> About to send a CIB string to ND...");

try {
// Send the "CIB" string as an array of bytes.
dosOut.write(abCIB, 0, abCIB.length);
dosOut.flush();

}

catch(Exception e) {
// Tell the user...
System.out.println("SDA_Sample> Error sending CIB string to ND.");
throw e;

}
}

//---
// Function - Send an SDA_Info command to ND and get a response.
//---
public static void talkToNd(SDA_Info sdai,
400 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 318. (Part 12 of 16). SDA_SampleAgent.java

DataInputStream disIn,
DataOutputStream dosOut) throws Exception {

try {
// Send an Authorization string to ND.
SDA_Utils.sendAuth(dosOut);

// Send the affinity information command.
sdai.sendCommand(dosOut);

}
catch(Exception e) {
System.out.println("SDA_Sample> Error sending command to ND.");
throw e;

}

try {
// Wait for an auth string.
SDA_Utils.recvAuth(disIn);

// Receive the response.
sdai.recvResponse(disIn);

// Tell the user.
System.out.println("SDA_Sample> Received response from ND:");
System.out.println(sdai);

}
catch(Exception e) {
System.out.println("SDA_Sample> Error receiving response from ND.");
throw e;

}
}

//---
// Function - Convert a java InetAddress to an int.
//---
public static int inaToInt(InetAddress ina) {
int i;
int iRc;

// Extract the address into an array of bytes.
byte[] ab = ina.getAddress();

// Move the bytes into an int.
i = (ab[0] << 24) & 0xFF000000; iRc = i;
i = (ab[1] << 16) & 0x00FF0000; iRc += i;
i = (ab[2] << 8) & 0x0000FF00; iRc += i;
i = (ab[3]) & 0x000000FF; iRc += i;
return iRc;

}

} // End - class SDA_Utils.
Appendix B. SDA_SampleAgent Code 401

Figure 319. (Part 13 of 16). SDA_SampleAgent.java

//---
// SDA_Info - A class to hold affinity information for transfer to and from ND
//---
class SDA_Info extends Thread // Extends thread only to use the sleep method.
{
//---
// Command and response constants.
//---
public static final int SDA_CMD_ADD = 1;
public static final int SDA_CMD_DELETE = 2;
public static final int SDA_CMD_DELETE_ALL = 3;
public static final int SDA_CMD_QUERY = 4;

public static final int SDA_RSP_SUCCESS = 0;
public static final int SDA_RSP_NO_SUCH_SERVER = -11;
public static final int SDA_RSP_NO_SUCH_RECORD = -26;
public static final int SDA_RSP_NO_MEMORY_FOR_RECORD = -27;
public static final int SDA_RSP_RECORD_ALREADY_EXISTS = -28;
public static final int SDA_RSP_TOO_MANY_RECORDS = -101;
public static final int SDA_RSP_NO_MEMORY_FOR_REQUEST = -102;
public static final int SDA_RSP_NO_SUCH_CLUSTER = -103;
public static final int SDA_RSP_NO_SUCH_PORT = -104;
public static final int SDA_RSP_PORT_NOT_STICKY = -105;
public static final int SDA_RSP_IS_NULL = -106;
public static final int SDA_RSP_NO_SUCH_COMMAND = -107;
public static final int SDA_RSP_STICKYTIME_INVALID_FOR_SDA = -108;
public static final int SDA_RSP_EXECUTOR_NOT_RUNNING = -109;

//---
// Misc Constants.
//---
public static final int SDA_MAX_AFFINITIES = 3000;
public static final int SDA_MESSAGE_VERSION = 1;

//---
// Object Variables.
//---
public int iMessageVersion;
public int iCommand;
public int iResponse;
public int iClusterAddr;
public int iPort;
public int iNumAffinities;
public int[] aiClientAddr = new int[SDA_MAX_AFFINITIES];
public int[] aiServerAddr = new int[SDA_MAX_AFFINITIES];
public int[] aiResponse = new int[SDA_MAX_AFFINITIES];

//---
// Constructor.
//---
public SDA_Info() {
402 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 320. (Part 14 of 16). SDA_SampleAgent.java

iMessageVersion = SDA_MESSAGE_VERSION;
iResponse = SDA_RSP_SUCCESS;

}

//---
// Function - Send an affinity message to an output stream.
//---
public void sendCommand(DataOutputStream dosOut) throws IOException
{
// Give ND a little time to do some other work.
try { sleep(250); } catch(Exception e) {;}

// Write single values.
dosOut.writeInt(iMessageVersion);
dosOut.writeInt(iCommand);
dosOut.writeInt(iResponse);
dosOut.writeInt(iClusterAddr);
dosOut.writeInt(iPort);
dosOut.writeInt(iNumAffinities);

// Write all Affinities.
for (int i=0; i<iNumAffinities; i++) {
// Get the values.
dosOut.writeInt(aiResponse[i]);
dosOut.writeInt(aiClientAddr[i]);
dosOut.writeInt(aiServerAddr[i]);

}
}

//---
// Function - Read an affinity message from an input stream.
//---
public void recvResponse(DataInputStream disIn) throws IOException
{
// Read the message version.
iMessageVersion = disIn.readInt();

// Check the message version.
if (SDA_MESSAGE_VERSION != iMessageVersion) {
// We do not know how to interpret the received data.
throw new IOException();

}

// Read single values from the message.
iCommand = disIn.readInt();
iResponse = disIn.readInt();
iClusterAddr = disIn.readInt();
iPort = disIn.readInt();
iNumAffinities = disIn.readInt();

// Read all Affinities.
for (int i=0; i<iNumAffinities; i++) {
Appendix B. SDA_SampleAgent Code 403

Figure 321. (Part 15 of 16). SDA_SampleAgent.java

// Get the values.
aiResponse[i] = disIn.readInt();
aiClientAddr[i] = disIn.readInt();
aiServerAddr[i] = disIn.readInt();

}
}

//---
// Function - Display the contents of this object (for debug only).
//---
public String toString() {
String sRc = "SDA_Info object:\n" +

"--\n" +
"MessageVersion " + iMessageVersion + "\n" +
"Command " + iCommand + " (" + printSdaCommand(iCommand) + ")\n" +
"Response " + iResponse + " (" + printSdaResponse(iResponse) + ")\n" +
"ClusterAddr " + printAddress(iClusterAddr) + "\n" +
"Port " + iPort + "\n" +
"NumAffinities " + iNumAffinities + "\n";

for (int i=0; i<iNumAffinities; i++) {
sRc += "Record " + i + ":\n" +

" Response " + aiResponse[i] + " (" + printSdaResponse(aiResponse[i]) + ")\n" +
" ClientAddr " + printAddress(aiClientAddr[i]) + "\n" +
" ServerAddr " + printAddress(aiServerAddr[i]) + "\n" ;

}
return sRc;

}

//---
// Function - convert address from an int to a dotted "a.b.c.d" string.
//---
public static String printAddress(int i) {
String sRc = "";
sRc += ((i >>> 24) & 0xFF) + "." +

((i >>> 16) & 0xFF) + "." +
((i >>> 8) & 0xFF) + "." +
((i >>> 0) & 0xFF);

return sRc;
}

//---
// Function - Convert a command number into a string.
//---
public static String printSdaCommand(int i) {
String sRc;
switch (i) {
case SDA_CMD_ADD : sRc = "SDA_CMD_ADD" ; break;
case SDA_CMD_DELETE : sRc = "SDA_CMD_DELETE" ; break;
case SDA_CMD_DELETE_ALL : sRc = "SDA_CMD_DELETE_ALL" ; break;
case SDA_CMD_QUERY : sRc = "SDA_CMD_QUERY" ; break;
default : sRc = "Unknown" ; break;
404 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 322. (Part 16 of 16). SDA_SampleAgent.java

}
return sRc;

}

//---
// Function - Convert a response number into a string.
//---
public static String printSdaResponse(int i) {
String sRc;
switch (i) {
case SDA_RSP_SUCCESS : sRc = "SDA_RSP_SUCCESS" ; break;
case SDA_RSP_NO_SUCH_SERVER : sRc = "SDA_RSP_NO_SUCH_SERVER" ; break;
case SDA_RSP_NO_SUCH_RECORD : sRc = "SDA_RSP_NO_SUCH_RECORD" ; break;
case SDA_RSP_NO_MEMORY_FOR_RECORD : sRc = "SDA_RSP_NO_MEMORY_FOR_RECORD" ; break;
case SDA_RSP_RECORD_ALREADY_EXISTS : sRc = "SDA_RSP_RECORD_ALREADY_EXISTS" ; break;
case SDA_RSP_TOO_MANY_RECORDS : sRc = "SDA_RSP_TOO_MANY_RECORDS" ; break;
case SDA_RSP_NO_MEMORY_FOR_REQUEST : sRc = "SDA_RSP_NO_MEMORY_FOR_REQUEST" ; break;
case SDA_RSP_NO_SUCH_CLUSTER : sRc = "SDA_RSP_NO_SUCH_CLUSTER" ; break;
case SDA_RSP_NO_SUCH_PORT : sRc = "SDA_RSP_NO_SUCH_PORT" ; break;
case SDA_RSP_PORT_NOT_STICKY : sRc = "SDA_RSP_PORT_NOT_STICKY" ; break;
case SDA_RSP_IS_NULL : sRc = "SDA_RSP_IS_NULL" ; break;
case SDA_RSP_NO_SUCH_COMMAND : sRc = "SDA_RSP_NO_SUCH_COMMAND" ; break;
case SDA_RSP_STICKYTIME_INVALID_FOR_SDA : sRc = "SDA_RSP_STICKYTIME_INVALID_FOR_SDA"; break;
case SDA_RSP_EXECUTOR_NOT_RUNNING : sRc = "SDA_RSP_EXECUTOR_NOT_RUNNING" ; break;
default : sRc = "Unknown" ; break;

}
return sRc;

}

} // End - class SDA_Info.
Appendix B. SDA_SampleAgent Code 405

406 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Appendix C. LOG_SampleReader Program

This appendix shows the code of the program LOG_SampleReader.java. After the
default installation of IBM SecureWay Network Dispatcher (ND) V2.1, the Load
Balancing component of IBM WebSphere Performance Pack Version 2, the file
LOG_SampleReader.java is located in the directory installbase/lib/BinaryLog,
where installbase varies by component (Dispatcher or CBR) and by operating
system. See Table 1 on page 69 for a list of the installbase locations.

Once compiled to a class file, this program can be used to examine binary
logging and statistics, as explained in 13.2.1, “Using the LOG_SampleReader
Sample Java Program” on page 322.

The code of this file is shown in the following figures:
© Copyright IBM Corp. 1999 407

Figure 323. (Part 1 of 5). LOG_SampleReader.java

// ==
// LOG_SampleReader.java
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
//
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// PURPOSE
// Sample program to read log records from the binary log files
// ==
import com.ibm.internet.nd.log.*;

import java.io.*;
import java.util.*;
import java.text.*;

/**
* The LOG_SampleReader class is an example of a main program to extract
* information from an eNetwork Dispatcher component's binary log files.
*
* The program accepts two times as input arguments; and retrieves all
* available log records that were logged between the two times.
*
* <p>The directory where the log files are stored is provided to the
* program in the java environment variable "END_LOG_DIRECTORY", using
* the -D flag of the java or jre command.
*
* <p>An example use of this class would be
* <xmp>
* jre -cp <classpath> -D<log_directory> LOG_SampleReader 1999/02/26 8:00 1999/02/26 17:00
* </xmp>
* The above command would display all the server information logged between
* 8:00 AM and 5:00 PM on February 2nd, 1999.
* <p>The < classpath> argument must point first to the directory containing the class
* file for LOG_SampleReader.java, then to the ibmnd.jar file.
* A sample command to invoke the logreader is provided in the lib/BinaryLog directory.
*/

public class LOG_SampleReader
{
// ----------------------
// Public Class variables
// ======================

/**
* The SimpleDateFormat used to read dates from the command line.
*
* <p>This format is used to parse the dates entered on the command line.
* Its value is "yyyy/MM/dd HH:mm". This means that the two
* dates provided on the command line would look like:
* <xmp>
* 1999/02/26 8:00 1999/02/26 17:00
408 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 324. (Part 2 of 5). LOG_SampleReader.java

* </xmp>
* You must edit the source code to change the format used.
* <p>Since the format contains spaces between the date and time fields,
* the main program reads them as args[0] through args[3] of the input
* arguments. If you modify the format to contain fewer tokens or
* more tokens, you must modify the main program to read your arguments
* from the correct input arg.
*/
// Declared public so javadoc will print it by default
public static SimpleDateFormat sdfInput = new SimpleDateFormat("yyyy/MM/dd HH:mm");

// -----------
// Constructor
// ===========
/**
* The object is never actually constructed, since all the work is done
* in the main program.
*/
LOG_SampleReader(){}

// --------------------
// Main Program
// ====================

/**
* The main program takes input form the command line and writes out the
* requested log records from the specified log directory's binary log files.
*
* <p>The program instantiates a LOG_Reader object, initializes it with the
* start and end times, then retrieves LOG_Record objects from the LOG_Reader
* until a null record is returned. The LOG_Record objects retrieved are cast
* to the appropriate type, and the information from the LOG_Record is either
* stored for later output, or written to the screen.
*
* <p>The LOG_Reader object's constructor takes as input the directory where
* the log files are stored.
* <p>The LOG_Reader object's initialize function takes as input two long values
* that represent the start and end times for the records to be retrieved. These
* times are in Coordinated Universal Time (CUT).
* The input arguments from the command line have been converted from strings to
* the appropriate longs using the java.text.SimpleDateFormat and java.util.Date
* classes.
* <p>The LOG_Reader object's initialize method returns the first record in the
* logs that falls within the time range specified. If no records exist between
* the times specified, null is returned.
* <p>The main program then starts a loop which processes the current LOG_Record,
* then calls the LOG_Reader object's readRecord method to get the next LOG_Record.
* This loop will continue until the LOG_Record retrieved is null.
* <p>The following are the types of LOG_Record objects that can be retrieved:
*
* LOG_TimeStampRecord
*
The LOG_TimeStampRecord contains the following methods:
*
* getTimestamp() - returns a long value representing the time in CUT when
Appendix C. LOG_SampleReader Program 409

Figure 325. (Part 3 of 5). LOG_SampleReader.java

* the record was written to the binary log.
*
* LOG_ExecutorIDRecord
*
The LOG_ExecutorIDRecord contains the following methods:
*
* getNFA() - returns a string representing the Non-Forwarding address
* of the executor.
* getNumClusters() - returns an int representing the number of clusters defined
* in the executor.
*
* LOG_ClusterIDRecord
*
The LOG_ClusterIDRecord contains the following methods:
*
* getIPAddress() - returns a string representing the cluster address.
* getNumPorts() - returns an int representing the number of ports defined
* for this cluster.
*
* LOG_PortIDRecord
*
Each LOG_PortIDRecord describes a port that has been defined under the cluster
* address that was returned by the most recently retrieved LOG_ClusterIDRecord.
*
The LOG_PortIDRecord contains the following methods:
*
* getPortNumber() - returns an int representing the port number.
* getNumServers() - returns an int representing the number of servers defined
* for this port.
*
* LOG_ServerReportRecord
*
Each LOG_ServerReportRecord describes a server that has been defined under
* the port number that was returned by the most recently retrieved LOG_PortIDRecord.
*
The LOG_ServerReportRecord contains the following methods:
*
* getIPAddress() - returns a string representing the server address.
* getWeight() - returns an int representing the weight
* of the server when the record was written to the binary log
* getTotalConnections() - returns an int representing the total connections
* of the server when the record was written to the binary log
* getActiveConnections() - returns an int representing the active connections
* of the server when the record was written to the binary log
* getPortLoad() - returns an int representing the port load
* of the server when the record was written to the binary log
* getSystemLoad() - returns an int representing the system load
* of the server when the record was written to the binary log
* getHasPortLoad() - returns a boolean specifying whether port loads were
* being provided for the server when the record was written to the binary log
* getHasSystemLoad() - returns a boolean specifying whether system loads were
* being provided for the server when the record was written to the binary log
*
*
* <p>LOG_Record objects of each type will be retrieved from the binary logs in
* the following order.
*
* LOG_TimeStampRecord
* LOG_ExecutorIDRecord
* LOG_ClusterIDRecord (if any clusters exist)
410 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Figure 326. (Part 4 of 5). LOG_SampleReader.java

* LOG_PortIDRecord (if any ports exist for the previously read cluster)
* LOG_ServerReportRecord (one for each server defined on the previously read port)
* Additional LOG_PortIDRecords and their LOG_ServerReportRecords for other ports
* defined on the previously read cluster
* Additional LOG_ClusterIDRecords and their LOG_PortIDRecords and their

LOG_ServerReportRecords
* for other defined clusters.
* Next sequence in same order, starting with a LOG_TimeStampRecord.
*
*/
public static void main(String[] args) throws ParseException {
// The directory where the logs are kept is communicated through a java environment variable.
// This allows the main class to be called with just the times to report. If the directory
// name doesn't end with a path separator, add one on.
String sLogDirectory = System.getProperty("END_LOG_DIRECTORY");
if (!sLogDirectory.endsWith(File.separator)) sLogDirectory = sLogDirectory+File.separator;

// Get the start and end time from the command line and convert to longs.
Date date;
date = sdfInput.parse(args[0]+" "+args[1]);
long lStartTime = date.getTime();
date = sdfInput.parse(args[2]+" "+args[3]);
long lEndTime = date.getTime();

// Initialize all the fields we will be retrieving and writing out
SimpleDateFormat sdfTimestamp = new SimpleDateFormat("yyyy/MM/dd-HH:mm:ss.SSS");
long lTimeStamp = 0;
String sNFA = null;
int iNumClusters =0;
String sClusterIPAddress = null;
int iNumPorts = 0;
int iPortNumber = 0;
int iNumServers = 0;
String sServerIPAddress = null;
int iWeight = 0;
int iTotalConnections = 0;
int iActiveConnections = 0;
int iPortLoad = 0;
int iSystemLoad = 0;
boolean bHasPortLoad = false;
boolean bHasSystemLoad = false;

// Instantiate a LOG_Reader and get the first LOG_Record
LOG_Reader logReader = new LOG_Reader(sLogDirectory);
LOG_Record logRecord = logReader.initialize(lStartTime,lEndTime);

// Process each LOG_Record, accumulate information until we get a
// LOG_ServerReportRecord, then write out everything.
while (null != logRecord) {
if (logRecord instanceof LOG_TimeStampRecord) {
// Got a TimeStamp
lTimeStamp = ((LOG_TimeStampRecord)logRecord).getTimeStamp();

}
else if (logRecord instanceof LOG_ExecutorIDRecord) {
Appendix C. LOG_SampleReader Program 411

Figure 327. (Part 5 of 5). LOG_SampleReader.java

// Got an Executor ID
sNFA = ((LOG_ExecutorIDRecord)logRecord).getNFA();
iNumClusters = ((LOG_ExecutorIDRecord)logRecord).getNumClusters();

}
else if (logRecord instanceof LOG_ClusterIDRecord) {
// Got a Cluster ID
sClusterIPAddress = ((LOG_ClusterIDRecord)logRecord).getIPAddress();
iNumPorts = ((LOG_ClusterIDRecord)logRecord).getNumPorts();

}
else if (logRecord instanceof LOG_PortIDRecord) {
// Got a Port ID
iPortNumber = ((LOG_PortIDRecord)logRecord).getPortNumber();
iNumServers = ((LOG_PortIDRecord)logRecord).getNumServers();

}
else if (logRecord instanceof LOG_ServerReportRecord) {
// Got a Server Report
sServerIPAddress = ((LOG_ServerReportRecord)logRecord).getIPAddress();
iWeight = ((LOG_ServerReportRecord)logRecord).getWeight();
iTotalConnections = ((LOG_ServerReportRecord)logRecord).getTotalConnections();
iActiveConnections = ((LOG_ServerReportRecord)logRecord).getActiveConnections();
iPortLoad = ((LOG_ServerReportRecord)logRecord).getPortLoad();
iSystemLoad = ((LOG_ServerReportRecord)logRecord).getSystemLoad();
bHasPortLoad = ((LOG_ServerReportRecord)logRecord).getHasPortLoad();
bHasSystemLoad = ((LOG_ServerReportRecord)logRecord).getHasSystemLoad();
System.out.println(sdfTimestamp.format(new Date(lTimeStamp))+","+

sNFA+","+
sClusterIPAddress+","+
iPortNumber+","+
sServerIPAddress+","+
iWeight+","+
iTotalConnections+","+
iActiveConnections+","+
iPortLoad+","+
bHasPortLoad+","+
iSystemLoad+","+
bHasSystemLoad);

}
else {
// Got some other kind of LOG_Record (there are none yet)

}
logRecord = logReader.readRecord();

}
}

}

412 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Appendix D. Special Notices

This publication is intended to help you to plan for, install, configure, use, tune
and troubleshoot IBM SecureWay Network Dispatcher, the Load Balancing
component of IBM WebSphere Performance Pack. The information in this
publication is not intended as the specification of any programming interfaces that
are provided by IBM WebSphere Performance Pack. See the PUBLICATIONS
section of the IBM Programming Announcement for IBM WebSphere
Performance Pack for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
© Copyright IBM Corp. 1999 413

environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

Advanced Peer-to-Peer Networking AIX
APPN AS/400
Deep Blue eNetwork
IBM Netfinity
NetView Operating System/2
OS/2 OS/390
OS/400 RS/6000
S/390 SecureWay
SP System/390
TXSeries VisualAge
WebSphere
414 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 417.

• IBM WebSphere Performance Pack: Web Content Management with IBM AFS
Enterprise File System, SG24-5857

• IBM WebSphere Performance Pack: Caching and Filtering with IBM Web
Traffic Express, SG24-5859

• Internet Security in the Network Computing Framework, SG24-5220

• IBM WebSphere Performance Pack Usage and Administration, SG24-5233

• Network Computing Framework Component Guide, SG24-2119

• TCP/IP Tutorial and Technical Overview, GG24-3376

E.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

E.3 Other Publications

The following publication is also relevant as a further information source:

• SecureWay Network Dispatcher User’s Guide Version 2.1 for Solaris, Windows
NT and AIX, GC31-8496

E.4 Referenced Web Sites

• http://www.redbooks.ibm.com

• http://www.javasoft.com

• http://www.software.ibm.com/webservers/appserv

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 415

• http://www.ibm.com

• http://www.ibm.com/software

• http://www.ibm.com/java/jdk/download/index.html

• http://info.internet.isi.edu/in-notes/rfc/files/rfc1700.txt

• http://w3.itso.ibm.com

• http://w3.ibm.com

• http://www.elink.ibmlink.ibm.com/pbl/pbl
416 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 417

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
418 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

List of Abbreviations

ACL access control list

AFS Enterprise File System

AIX advanced interactive
executive

ATM Asynchronous Transfer Mode

API application programming
interface

APPN Advanced Peer-to-Peer
Network

ARP Address Protocol Request

CB Component Broker

CBR Content Based Routing

CORBA Common Object Request
Broker Architecture

DMZ demilitarized zone

DNS Domain Name System

EJB Enterprise JavaBeans

EJS Enterprise Java Services

FDDI Fiber Distributed Data
Interface

FTP File Transfer Protocol

GC garbage collector

GEM Global Enterprise Manager

GUI graphical user interface

HACMP High Availability Cluster
Multiprocessing

HP-UX Hewlett-Packard UNIX

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IP Internet Protocol

ISP Internet Service Provider

ISS Interactive Session Support

ITSO International Technical
Support Organization

JDK Java Development Kit

JRE Java Runtime Environment

JSP JavaServer Pages

JVM Java Virtual Machine

LAN local area network

LDAP Lightweight Directory Access
Protocol
© Copyright IBM Corp. 1999
MAC Media Access Control

Mbps megabits per second

MBps megabytes per second

MIB management information
base

MVS multiple virtual storage

NAP network access points

NCSA National Center for
Supercomputing Applications

ND Network Dispatcher

NNTP NetNews transfer protocol

OS/2 Operating System/2

PICS Platform for Internet Content
Selection

POP points of presence

POP3 Post Office Protocol 3

RCA Remote Cache Access

RMI Remote Method Invocation

RPC remote procedure call

SDA Server Directed Affinity

SSL Secure Sockets Layer

SMTP Simple Mail Transfer Protocol

TCP/IP Transmission Control
Protocol/Internet Protocol

TEC Tivoli Enterprise Console

UDP User Datagram Protocol

URL Universal Resource Locator,
Uniform Resource Locator

WAN wide area network

WAND Wide Area Network
Dispatcher

WTE Web Traffic Express

WLM workload manager

WWW World Wide Web

XML Extensible Markup Language
419

420 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

Index

A
access ISPs 22, 23
active state 177
Address Protocol Request (ARP) 116
ADV_sample Custom Advisor 383
Advisors 35, 37, 106, 126, 130, 131
AFS 3, 4

Client 4
Control Center 15
server for Windows NT 15
servers 4

Apache Web server 26
ARP requests 116
authenticated administration 11
automatic ND startup on Windows NT 309
automatic proxy configuration

WTE 12

B
backbone ISPs 21
backup machine 177
BeanBuilder 26
Best selection method 50
binary logging and statistics 11, 31, 321, 407

C
CacheByIncomingUrl

WTE directive 349
caching and filtering component 3, 5
callback 5
CBR 28, 30, 32, 33, 51, 58
Client affinity 52
Client IP affinity 32, 53, 345
cluster 92, 336

address 83, 274
addresses and network interfaces 96
aliasing 339

colocated servers 91
colocation 34
colocation option 34
combining components 15
Common Configuration 3, 365
Common Object Request Broker Architecture (CORBA)
25
Component Broker (CB) 25
compression 14
configuration enhancements 15
configuration scripts on Windows NT 281
content aggregators 18
Content Based Routing (CBR) 6, 7, 15, 16, 329

Manager and Advisors 343
content hosting ISPs 17
Cookie affinity 32, 53, 346
corporate headquarter buildings 21
corporate Web sites 18
custom Advisors 263
© Copyright IBM Corp. 1999
customization exits 13

D
demilitarized zone (DMZ) 19
Dispatcher 6, 7, 27, 28, 34, 49, 114, 137

colocation 203
Configuration Wizard 75
default installation directories 69
documentation 58, 65
entry machine 211
function 28, 29
high availability 7, 29, 177
ports used 38

DNS
load balancing 40

E
enhancements, configuration 15
Enterprise File System 3, 4
Enterprise Java

Enterprise Java Services (EJS) 24
Enterprise JavaBeans (EJB) 25

entry Dispatcher machine 211
error message personalization 15
Executor 35, 37, 88, 90, 106
eXtensible Markup Language (XML) 24
extra route 108, 113

F
file sharing component 3
firewall

high availability 273
load balancing 273, 285
SOCKS server load balancing 303

FTP
control port 101
protocol 101
proxy 12
proxy server load balancing 303

G
garbage collection (GC) 13
GC Advisor 14
goActive script 190, 233, 276, 315
goInOp script 190, 192, 235, 279, 317
goStandby script 190, 191, 234, 277, 316

H
Head Office to Branch Office 20
heartbeat 177, 282
hierarchical caching 20
high availability 33
high-availability

Dispatcher autostart 309
script files 314
421

HP-UX 107
HTTP 1.1-compliant proxy server 13
HTTP proxy server load-balancing scenario 295
HTTP sample advisor 383

I
IBM AFS Enterprise File System 3
IBM SecureWay Network Dispatcher (ND)See Dispatcher
IBM WebSphere Application Server 23
information flow 37
integrated configuration assistance 15, 16
Interactive Session Support (ISS) 6, 27
IP filter load-balancing scenario 287
ISP

access 22
backbone 21

ISS 28, 29, 38, 137
cell 7, 39, 44
configuration methods 141
daemon 142
function 7, 28
high availability 7, 30, 45, 140, 147
monitor 45
observers 48
selection method 50
service 39

ISSNameServer 49

J
JavaBeans 24
JavaServer Pages (JSP) 24
JDBC 24

K
Kerberos 5
key pairs 76

L
large campuses 21
Lightweight Directory Access Protocol (LDAP) 24
load-balancing component 3

IBM WebSphere Performance Pack 27
local Dispatcher configuration 213
log data format 322
LOG_SampleReader 322
LOG_SampleReader program 407
loopback device 107, 109

AIX 107
Windows NT 109

loopback interface 274

M
Manager 35, 37, 106, 124, 130
Managing ISS 158
Media Access Control (MAC) address 115
metrics 46
MIB support 13

MS Loopback Adapter 112

N
NameServer 48
National Center for Supercomputing Applications (NCSA)
24
ND

See Dispatcher
NetObjects BeanBuilder 26
NetObjects Fusion 26
NetObjects ScriptBuilder 26
network access points (NAPs) 18
Network Dispatcher

See Dispatcher
node 39
nonforwarding address 83, 91
normal mode 263
NotISSAgent 32, 45

O
OS/2 107

P
peak load management 15, 16, 357
ping triangulation 41
Platform for Internet Content Selection (PICS) 6
points of presence (POPs) 18
port 101
ports used by ISS 51
ports used by the Dispatcher 38
primary machine 177
proportions of importance 35, 130
proxy autoconfiguration 12
proxy server load balancing 307
purging 14

R
reachability criteria 186
recovery strategy 185, 197
Recreational Software Advisory Council on the Internet
(RSACi) 6
remote administration 11
remote Advisors 223
remote authenticated administration 31, 75, 78
Remote Cache Access (RCA) 6, 15, 16, 20, 351
remote configuration 78
remote Dispatcher 233

configuration 216
high availability 224

replace mode 263
resource types 149
resources 46
RoundRobin 50

selection method 50
round-robin 27

load balancing 118
rules-based load balancing 163
422 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

S
sample SDA client code 256
script modifications 236
ScriptBuilder 26
SDA client code 389
SDA_SampleAgent code 389
secure request filtering 15
SecureWay Network Dispatcher (ND)See Dispatcher
server affinity 33
Server Directed Affinity (SDA) API 10, 31, 243
Server Directory Affinity 389
service classes 10
services 39, 151
Simple Network Management Protocol (SNMP) 13
smoothing index 131
SNMP management information base (MIB) 13
SNMP subagent 13
standby mode 177
Statistical RoundRobin 32, 50
subscriber home page hosting 23

T
TCP ports used by the Dispatcher 38
TCP servers configuration 107
Tivoli environment 24
Tivoli Ready 14
TN3270E 264
transmogrifier 13
transparent proxy 11
TXSeries 25

U
user classes 10

V
variant caching 14
VisualAge for Java 26

W
Web Traffic Express (WTE) 3, 5

Advisor 31
WebSphere Studio 25
weighted round-robin 106
wide area network Dispatcher 211
wildcard cluster 11, 31, 285
wildcard port 11, 31, 285
WLM 271
Workload Manager (WLM) Advisor 31, 271

X
XML 24
423

424 IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher

© Copyright IBM Corp. 1999 425

ITSO Redbook Evaluation

IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay Network Dispatcher
SG24-5858-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5858-00

Printed in the U.S.A.

IB
M

W
ebSphere

P
erform

ance
P

ack:
L

oad
B

alancing
w

ith
IB

M
SecureW

ay
N

etw
ork

D
ispatcher

SG
24-5858-00

	Contents
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Part 1. SecureWay Network Dispatcher Usage and Administration
	Chapter 1. IBM WebSphere Performance Pack Concepts
	1.1 AFS Enterprise File System in Distributed Computing Environments
	1.2 Caching and Filtering to Manage Internet Traffic and Bandwidth Demand
	1.3 Load Balancing and Server Monitoring Capabilities
	1.4 Building Record-Breaking Web Sites
	1.5 What Is New in Version 2
	1.5.1 Quality of Service Enhancements
	1.5.2 New ND Functions
	1.5.3 New WTE Functions
	1.5.4 New AFS Enterprise File System Function
	1.5.5 New Functions Available by Combining Components

	1.6 Who Can Benefit
	1.6.1 Content Hosting Internet Service Providers
	1.6.2 Corporate Web Sites and Content Aggregators
	1.6.3 Corporate Headquarters Buildings or Large Campuses
	1.6.4 Backbone Internet Service Providers
	1.6.5 Access Internet Service Providers
	1.6.6 Access ISPs with Subscriber Home Page Hosting

	1.7 Other IBM WebSphere Offerings
	1.7.1 IBM WebSphere Application Server
	1.7.2 IBM WebSphere Studio

	Chapter 2. IBM SecureWay Network Dispatcher Concepts
	2.1 Load Balancing Technologies
	2.2 Functions of the ND Component
	2.2.1 Dispatcher
	2.2.2 Interactive Session Support
	2.2.3 Content-Based Routing

	2.3 What Is New in This Version?
	2.3.1 ISS
	2.3.2 CBR

	2.4 Why Do I Need IBM SecureWay Network Dispatcher?
	2.5 How the Dispatcher Function Works
	2.5.1 Dispatcher Components
	2.5.2 Proportions of Importance
	2.5.3 Information Flow
	2.5.4 TCP Ports Used by the Dispatcher

	2.6 How the ISS Function Works
	2.6.1 ISS Cells and Services
	2.6.2 ISS Configuration
	2.6.3 ISS Cell and Its Attributes
	2.6.4 Configuring Nodes
	2.6.5 Services
	2.6.6 Resources
	2.6.7 Metrics
	2.6.8 ISS Observers
	2.6.9 ISS Selection Methods
	2.6.10 Ports used by ISS

	2.7 How the CBR Function Works
	2.7.1 Why Do I Need CBR?
	2.7.2 Client Affinity with CBR

	Chapter 3. ND Installation and Basic Configuration Issues
	3.1 Installation of ND
	3.1.1 Installation on UNIX Systems
	3.1.2 Installation on Windows NT
	3.1.3 SecureWay Network Dispatcher Default Installation Directories

	3.2 Deinstallation of IBM SecureWay Network Dispatcher
	3.2.1 Deinstallation on UNIX Systems
	3.2.2 Deinstallation on Windows NT

	3.3 Configuration Methods
	3.3.1 Remote Authenticated Administration

	Chapter 4. ND Basic Scenarios
	4.1 Load Balancing Basic Scenario Using the Dispatcher
	4.1.1 Installation of Dispatcher
	4.1.2 Network Environment
	4.1.3 Cluster Address and Nonforwarding Address
	4.1.4 Dispatcher Configuration
	4.1.5 TCP Servers Configuration
	4.1.6 How the Dispatcher Works – The Flow of the IP Packets
	4.1.7 RoundRobin Load Balancing Scenario
	4.1.8 Analyzing the Flow with a Network Monitoring Tool
	4.1.9 Activating the Managers and the Advisors
	4.1.10 Customization of the Manager for the Advisors
	4.1.11 Saving the Configuration
	4.1.12 Saving the Host Connections
	4.1.13 Stopping the Executor and the GUI

	4.2 Load Balancing Scenario Using the Dispatcher and ISS
	4.2.1 Installation of ISS
	4.2.2 Scenario Configuration
	4.2.3 Network Environment
	4.2.4 ISS Configuration
	4.2.5 Managing ISS

	Chapter 5. Rules-Based Load Balancing
	5.1 Types of Rules
	5.2 How Rules Are Evaluated
	5.3 Rules-Based Load Balancing Scenario
	5.3.1 Network Environment
	5.3.2 Rules Configuration

	Chapter 6. ND High Availability Support
	6.1 Dispatcher High-Availability Scenario
	6.1.1 Network Architecture
	6.1.2 Configuration Steps Common on Both the Machines
	6.1.3 Configuration Steps for High Availability
	6.1.4 Experimenting with High Availability
	6.1.5 Experimenting with the Recovery Strategy

	Chapter 7. Dispatcher Colocation Option
	7.1 Dispatcher Colocation Scenario
	7.1.1 Network Environment
	7.1.2 Setting up the Aliases
	7.1.3 Access From the Client’s Perspective
	7.1.4 Packet Flow

	Chapter 8. Wide Area Network Dispatcher Support
	8.1 Wide Area Network Dispatcher Scenario
	8.1.1 Network Architecture
	8.1.2 Local Dispatcher Configuration Steps
	8.1.3 Remote Dispatcher Configuration Steps
	8.1.4 Wide Area Load Balancing Scenario Results
	8.1.5 How WAN Dispatcher Support Works – The Packet Flow

	8.2 Using Remote Advisors with WAN Dispatcher Support
	8.3 WAN Dispatcher Support and ISS
	8.4 WAN Dispatcher Support with Remote Dispatcher High Availability
	8.4.1 Scenario

	Chapter 9. Server Directed Affinity API
	9.1 Server Directed Affinity Scenario
	9.1.1 Servlet Client Counter Example
	9.1.2 Experimenting with the Servlet
	9.1.3 Using the Servlet on a Cluster of Web Servers
	9.1.4 Enabling SDA
	9.1.5 Modifying the Sample SDA Client Code
	9.1.6 A Different Scenario Implementation

	Chapter 10. Custom Advisors
	10.1 Custom Advisor Scenarios
	10.1.1 Normal Mode Custom Advisor
	10.1.2 Replace Mode Custom Advisor

	10.2 Workload Manager Advisor
	10.2.1 ISS Restriction

	Chapter 11. Firewall Load Balancing and High Availability
	11.1 Firewall High Availability Using the Dispatcher
	11.1.1 Installation
	11.1.2 Basic Configuration Issues
	11.1.3 Setting the Rules for IBM eNetwork Firewall
	11.1.4 Scenario Implementation

	11.2 Firewall Load Balancing
	11.2.1 IP Filter Load-Balancing Scenario – Wildcard Cluster and Port
	11.2.2 HTTP Proxy Server Load Balancing Scenario
	11.2.3 FTP Proxy Server Load-Balancing Scenario
	11.2.4 Firewall SOCKS Server Load-Balancing Scenario
	11.2.5 DNS Proxy Server Load-Balancing Scenario

	Chapter 12. Automatic ND Startup on Windows NT
	12.1 High Availability Dispatcher Autostart Scenario
	12.1.1 Network Environment
	12.1.2 Configuration Steps
	12.1.3 The AUTOEXNT.BAT File
	12.1.4 High-Availability Script Files
	12.1.5 Testing the Configuration

	Chapter 13. Binary Logging and Statistics
	13.1 Starting the Logging Facility
	13.2 Examining the Log Files
	13.2.1 Using the LOG_SampleReader Sample Java Program

	Part 2. WebSphere Performance Pack Component Integration
	Chapter 14. Content Based Routing
	14.1 Installation of the CBR Function
	14.1.1 Installation Locations

	14.2 Configuration of the CBR Function
	14.3 CBR Scenario
	14.3.1 WTE Configuration Overview
	14.3.2 WTE Configuration File CBR Modifications
	14.3.3 CBR Configuration
	14.3.4 CBR Manager and Advisors
	14.3.5 Saving the Configuration
	14.3.6 Scenario Results

	14.4 WTE CacheByIncomingUrl Directive

	Chapter 15. Remote Cache Access
	15.1 How RCA Works
	15.2 Planning for RCA
	15.3 RCA Scenario
	15.3.1 Scenario Implementation

	Chapter 16. Peak Load Management
	16.1 How Peak Load Management Works
	16.2 Peak Load Management Scenario
	16.2.1 Dispatcher Configuration
	16.2.2 Configuration of the WTE Proxy Servers
	16.2.3 Testing the Peak Load Management Scenario

	Chapter 17. Common Configuration
	17.1 Installation
	17.1.1 Planning for the Installation
	17.1.2 Installing the Common Configuration Utility
	17.1.3 Remaining Installation Steps

	17.2 Preparing for the Common Configuration Utility
	17.3 Launching the Common Configuration Utility

	Appendix A. ADV_sample Custom Advisor
	Appendix B. SDA_SampleAgent Code
	Appendix C. LOG_SampleReader Program
	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications
	E.4 Referenced Web Sites

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

