
SG24-5610-00

International Technical Support Organization

www.redbooks.ibm.com

Sizing and Tuning GPFS

Marcelo Barrios, Terry Jones, Scott Kinnane, Mathis Landzettel
Safran Al-Safran, Jerry Stevens, Christopher Stone, Chris Thomas, Ulf Troppens

Sizing and Tuning GPFS

September 1999

SG24-5610-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 1999)

This edition applies to GPFS Version 1, Release 2 (5765-B95) for use with the AIX Operating System
Version 4, Release 3 Modification 2 and to Version 3 Release 1 of ADSTAR Distributed Storage
Manager for AIX (5765-C43).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
522 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special notices” on page 277.

Take Note!

Contents

Figures .ix

Tables. xiii

Preface . xv
The team that wrote this redbook. xv
Comments welcome. xvii

Chapter 1. GPFS architecture . 1
1.1 General concepts . 1

1.1.1 Architecture overview . 2
1.2 Data flow and potential bottelnecks . 4

1.2.1 Write data flow . 4
1.2.2 Read data flow . 12
1.2.3 Potential bottlenecks on writes and reads. 15

1.3 GPFS software structure and required services 17
1.3.1 Internal data structures. 17
1.3.2 Configuration Manager . 19
1.3.3 Stripe Group Manager . 19
1.3.4 Metanode . 20
1.3.5 Token Manager Server . 20
1.3.6 VSD . 20
1.3.7 Recoverable Virtual Shared Disks . 23
1.3.8 SP Switch. 25
1.3.9 Clustering subsystems . 35
1.3.10 System Data Repository . 37

1.4 GPFS operation . 38
1.4.1 User interfaces . 38
1.4.2 Security . 39
1.4.3 Consistency . 39
1.4.4 Failure and recovery. 39

1.5 Positioning GPFS and other file systems . 45
1.5.1 Comparison of GPFS with other file systems 45
1.5.2 GPFS advantages . 51
1.5.3 GPFS limitations. 54

Chapter 2. Application considerations . 57
2.1 GPFS application block Size . 57
2.2 GPFS application performance. 58
2.3 GPFS application I/O . 58

2.3.1 Sequential and random application I/O . 58
© Copyright IBM Corp. 1999 iii

2.3.2 Serial and parallel file system I/O . 59
2.3.3 Application I/O patterns and GPFS . 60
2.3.4 Exploiting GPFS read prefetch and write behind 61

2.4 Data partitioning . 61
2.4.1 Round-robin or segmented? . 61
2.4.2 One file or multiple files? . 62
2.4.3 Using files larger than two gigabytes . 63

2.5 MPI-IO and GPFS . 64
2.5.1 About MPI-IO . 64
2.5.2 Local to global transformations . 66
2.5.3 Application buffering . 66
2.5.4 Hints support . 66

2.6 On designing other I/O libraries with GPFS . 66
2.6.1 Portability concerns . 67
2.6.2 Exposing GPFS internals . 67
2.6.3 Threads, signals, and communication issues 68

2.7 Analyzing an applications I/O . 69
2.7.1 AIX trace . 69
2.7.2 Pablo . 69
2.7.3 Monitoring file system activity . 69

Chapter 3. Sizing GPFS . 71
3.1 Sizing concepts . 71

3.1.1 Data . 72
3.1.2 Metadata . 76
3.1.3 Servers. 80

3.2 Sizing methodology . 85
3.2.1 Step 1 - Find file system requirements . 86
3.2.2 Step 2 - Recoverability considerations . 88
3.2.3 Step 3 - Determine minimum number and type of disks 89
3.2.4 Step 4 - Check and adjust for file system capacity 90
3.2.5 Step 5 - Determine number of VSD servers required 90
3.2.6 Step 6 - Determine VSD server configuration 93
3.2.7 Sizing example 1 . 94
3.2.8 Sizing example 2 . 97

Chapter 4. Tuning GPFS. 101
4.1 Isolating and identifying problems and bottlenecks 102

4.1.1 Working from the dataflow diagram . 103
4.1.2 High impact issues . 103
4.1.3 Medium impact issues . 120
4.1.4 Low impact issues . 128

4.2 Tuning verification . 134
iv Sizing and Tuning GPFS

4.2.1 Monitoring at the server . 135
4.2.2 Monitoring at the client . 144
4.2.3 Interpreting the numbers. 148

4.3 Tuning case studies . 150
4.3.1 Hardware, software, and GPFS configuration 151

Chapter 5. Implementing and tuning ADSM for GPFS 165
5.1 ADSM relevant differences between JFS and GPFS 165

5.1.1 Functional differences . 166
5.1.2 Impact of the delayed update of mtime 167
5.1.3 Performance differences. 168
5.1.4 Data volumes . 168

5.2 Resource requirements . 169
5.2.1 Resource requirements for VSD . 170
5.2.2 Resource requirements for GPFS. 170
5.2.3 Resource requirements for ADSM . 171

5.3 Case studies . 171
5.3.1 Test system configuration. 172
5.3.2 Test methodology . 173
5.3.3 ADSM and TCP/IP configuration. 174
5.3.4 Configuration 1: ADSM client on single VSD client node. 175
5.3.5 Configuration 2: ADSM client and server on same SP node . . . 180
5.3.6 Configuration 3: Using multiple ADSM client nodes 183
5.3.7 Configuration 4: ADSM clients on VSD server nodes 187
5.3.8 Impact of tuning maxFilesToCache. 189
5.3.9 Comparison of ADSM performance between JFS and GPFS . . 191
5.3.10 Full Incremental versus selective backup 192
5.3.11 Restore versus replace. 193

5.4 Recommendations . 195
5.4.1 Which SP Node to use as an ADSM server 195
5.4.2 Which SP node to use as an ADSM client 196
5.4.3 Is there any advantage on running multiple client sessions?. . . 197
5.4.4 How many SP Nodes be used as an ADSM clients? 197

Chapter 6. Test results . 199
6.1 Base run tests . 199

6.1.1 Serial tests . 200
6.1.2 Parallel tests. 200
6.1.3 Random tests . 200
6.1.4 Configurations . 200
6.1.5 Applications . 204
6.1.6 Measurement tools . 205
6.1.7 Measurements . 206
v

6.2 RAID-5 array size tests . 206
6.2.1 Measurements . 206

6.3 Metadata tests . 207
6.3.1 Measurements . 207

6.4 Client max throughput tests . 208
6.4.1 Measurements . 208

6.5 Analysis . 208
6.5.1 Compare RAID-5, mirroring, replication, and JBOD 208
6.5.2 Compare SSA disk and loop combinations 210
6.5.3 Compare serial parallel and random application performance. . 212
6.5.4 Compare RAID-5 with different array sizes 214
6.5.5 Compare RAID-5 with/without metadata on RAID-5 215
6.5.6 Investigation of maximum client data throughput 215
6.5.7 Analysis of CPU usage with regard to dedicated VSD servers . 216
6.5.8 How the number of VSD servers affects performance. 218
6.5.9 Validating sizing . 220

6.6 Conclusions . 221
6.6.1 File system options. 221
6.6.2 SSA disk subsystems . 221
6.6.3 Sequential I/O versus random . 222
6.6.4 Metadata and RAID-5 . 222
6.6.5 Dedicated VSD servers . 222
6.6.6 General conclusions . 222

Appendix A. Measurements . 225
A.1 Base runs . 225

A.1.1 Serial. 225
A.1.2 Parallel . 246
A.1.3 Random . 266

A.2 RAID-5 array size tests . 271
A.2.1 7+P RAID-5 S2_C1_Tests3 . 271
A.2.2 15+P RAID-5 S2_C1_Tests3 . 272

A.3 Metadata tests . 273
A.3.1 4+P RAID-5 combined data and metadata S2_C1_Tests3 273

A.4 Client max throughput tests . 275

Appendix B. Special notices . 277

Appendix C. Related publications . 281
C.1 International Technical Support Organization publications. 281
C.2 Redbooks on CD-ROMs . 281
C.3 Other publications. 281
vi Sizing and Tuning GPFS

How to get ITSO redbooks . 283
IBM Redbook fax order form . 284

List of abbreviations . 285

Glossary . 289

Index . 295

ITSO Redbook evaluation . 301
vii

viii Sizing and Tuning GPFS

Figures

1. GPFS architecture . 3
2. Control and data flow for a write operation . 5
3. Control and data flow for a read operation. 13
4. Potential bottlenecks to GPFS data flow.. 16
5. VSD states and associated commands . 22
6. VSD architecture . 23
7. Recoverable VSD . 24
8. VSD take over . 25
9. Switch initialization process . 26
10. IP to switch interaction . 33
11. Kernel structures for IP over switch communications 34
12. State transistions for RVSD recovery . 43
13. JFS offers local access to data only . 46
14. The complexity of NFS mount points . 48
15. The DFS server bottleneck . 50
16. The scalability of GPFS . 52
17. Comparing sequential and random I/O . 59
18. Comparing serial and parallel I/O . 59
19. Parallel file system I/O . 60
20. Segmented and round-robin file layouts . 62
21. MPI-IO file types . 65
22. How an entire MPI-IO view is formed with file types 65
23. Diagram showing I/O library layers . 67
24. Adapter communication windows . 68
25. Performance of GPFS reads with block size . 87
26. Performance of GPFS writes with block size . 88
27. Example 1 SSA loop disk layout for a pair of connected nodes 96
28. Example 2 SSA loop disk layout for a pair of connected nodes 100
29. Worker thread performance example . 148
30. Flow of symptoms within a GPFS architecture . 149
31. Hardware configuration for GPFS . 152
32. Bandwidth versus block size . 164
33. Example implementation for ADSM on GPFS . 170
34. Cabling and volumes of ADSM Server . 172
35. Cabling of VSD servers . 173
36. Multiple ADSM Client Sessions on single VSD Client Node 176
37. Backup data throughput. 178
38. Reference Configuration: ADSM Server CPU Utilization - Backup 178
39. Restore data throughput . 179
40. ADSM server CPU utilization - Restore . 179
© Copyright IBM Corp. 1999 ix

41. Configuration 2: Multiple ADSM client sessions on ADSM server node . 180
42. Rel. backup data throughput: 256 MB files (IP and shared memory) . . . 182
43. Rel. backup data throughput: 10 KB files (IP and shared memory). 182
44. ADSM server CPU utilization — Backup (shared memory to IP). 183
45. Configuration 3: Multiple ADSM/VSD client sessions and nodes 184
46. Rel. backup data throughput: ADSM client running on four SP Nodes . . 185
47. Rel. restore data throughput: ADSM client running on four SP Nodes . . 185
48. Rel. backup data throughput: ADSM client running on two SP Nodes . . 186
49. Rel. restore data throughput: ADSM client running on two SP Nodes. . . 186
50. Conf. 4: Multiple ADSM client sessions on multiple VSD server nodes. . 187
51. Rel. backup data throughput: ADSM client on one VSD server. 188
52. Rel. backup data throughput: ADSM client on two VSD servers 188
53. Backup data throughput: Ratio of maxFilesToCache 10,000 to 200 190
54. Restore data throughput: Ratio of maxFilesToCache 10,000 to 200. . . . 190
55. Backup data throughput: Ratio of JFS to GPFS 191
56. Backup data throughput: JFS/GPFS — Increased maxFilesToCache . . 192
57. Backup data throughput: Ratio of selective to full Incremental 193
58. Restore data throughput: Ratio of replace to restore: Single SP node . . 194
59. Restore data throughput: Ratio Replace/Restore: Multiple SP nodes . . . 195
60. SSA disk layout 1 — One SSA drawer per node 203
61. SSA disk layout 2 — Two SSA drawers per node 204
62. Client comparison: GPFS file system types — 4 VSD / 4 GPFS nodes . 209
63. Server comparison: GPFS file system types — 4 VSD / 4 GPFS nodes. 210
64. Server performance with 4 GPFS clients and 2 Servers JBOD. 211
65. Server performance: 1 loop per adapter — 4 clients / 2 Servers JBOD . 212
66. Performance graph s1.c4.t3 — Client View: Sequential 213
67. Performance graph s1.c4.t3 — Client View: Parallel 213
68. Performance graph s1.c4.t3 — Client View: Random 214
69. RAID-5 server view performance with different arrays sizes — s2.c1.t3 . 215
70. Results for two-client performance of S1_C4_T1 and S1_C4_T2 219
71. Server-constrained and client-constrained imbalances 220
72. Performance graph s1.c4.t1 — Client view . 226
73. Performance graph s1.c4.t1 — Server view . 226
74. Performance graph s1.c4.t2 — Client view . 227
75. Performance graph s1.c4.t2 — Server view . 227
76. Performance graph s1.c4.t3 — Client view . 228
77. Performance graph s1.c4.t3 — Server view . 228
78. Performance graph s1.c4.t4 — Client view . 229
79. Performance graph s1.c4.t4 — Server view . 229
80. Performance graph s1.c4.t5 — Client view . 230
81. Performance graph s1.c4.t5 — Server view . 230
82. Performance graph s1.c2.t1 — Client view . 231
83. Performance graph s1.c2.t1 — Server view . 231
x Sizing and Tuning GPFS

84. Performance graph s1.c2.t2 — Client view . 232
85. Performance graph s1.c2.t2 — Server view . 232
86. Performance graph s1.c2.t3 — Client view . 233
87. Performance graph s1.c2.t3 — Server view . 233
88. Performance graph s1.c2.t4 — Client view . 234
89. Performance graph s1.c2.t4 — Server view . 234
90. Performance graph s1.c2.t5 — Client view . 235
91. Performance graph s1.c2.t5 — Server view . 235
92. Performance graph s1.c3.t1 — Client view . 236
93. Performance graph s1.c3.t1 — Server view . 236
94. Performance graph s1.c3.t2 — Client view . 237
95. Performance graph s1.c3.t2 — Server view . 237
96. Performance graph s1.c3.t3 — Client view . 238
97. Performance graph s1.c3.t3 — Server view . 238
98. Performance graph s1.c3.t4 — Client view . 239
99. Performance graph s1.c3.t4 — Server view . 239
100.Performance graph s1.c3.t5 — Client view . 240
101.Performance graph s1.c3.t5 — Server view . 240
102.Performance graph s2.c1.t1 — Client view . 241
103.Performance graph s2.c1.t1 — Server view . 241
104.Performance graph s2.c1.t2 — Client view . 242
105.Performance graph s2.c1.t2 — Server view . 242
106.Performance graph s2.c1.t3 — Client view . 243
107.Performance graph s2.c1.t3 — Server view . 243
108.Performance graph s2.c1.t4 — Client view . 244
109.Performance graph s2.c1.t4 — Server view . 244
110.Performance graph s2.c1.t5 — Client view . 245
111.Performance graph s2.c1.t5 — Server view . 245
112.Performance graph s1.c4.t1 — Client view . 246
113.Performance graph s1.c4.t1 — Server view . 246
114.Performance graph s1.c4.t2 — Client view . 247
115.Performance graph s1.c4.t2 — Server view . 247
116.Performance graph s1.c4.t3 — Client view . 248
117.Performance graph s1.c4.t3 — Server view . 248
118.Performance graph s1.c4.t4 — Client view . 249
119.Performance graph s1.c4.t4 — Server view . 249
120.Performance graph s1.c4.t5 — Client view . 250
121.Performance graph s1.c4.t5 — Server view . 250
122.Performance graph s1.c2.t1 — Client view . 251
123.Performance graph s1.c2.t1 — Server view . 251
124.Performance graph s1.c2.t2 — Client view . 252
125.Performance graph s1.c2.t2 — Server view . 252
126.Performance graph s1.c2.t3 — Client view . 253
xi

127.Performance graph s1.c2.t3 — Server view . 253
128.Performance graph s1.c2.t4 — Client view . 254
129.Performance graph s1.c2.t4 — Server view . 254
130.Performance graph s1.c2.t5 — Client view . 255
131.Performance graph s1.c2.t5 — Server view . 255
132.Performance graph s1.c3.t1 — Client view . 256
133.Performance graph s1.c3.t1 — Server view . 256
134.Performance graph s1.c3.t2 — Client view . 257
135.Performance graph s1.c3.t2 — Server view . 257
136.Performance graph s1.c3.t3 — Client view . 258
137.Performance graph s1.c3.t3 — Server view . 258
138.Performance graph s1.c3.t4 — Client view . 259
139.Performance graph s1.c3.t4 — Server view . 259
140.Performance graph s1.c3.t5 — Client view . 260
141.Performance graph s1.c3.t5 — Server view . 260
142.Performance graph s2.c1.t1 — Client view . 261
143.Performance graph s2.c1.t1 — Server view . 261
144.Performance graph s2.c1.t2 — Client view . 262
145.Performance graph s2.c1.t2 — Server view . 262
146.Performance graph s2.c1.t3 — Client view . 263
147.Performance graph s2.c1.t3 — Server view . 263
148.Performance graph s2.c1.t4 — Client view . 264
149.Performance graph s2.c1.t4 — Server view . 264
150.Performance graph s2.c1.t5 — Client view . 265
151.Performance graph s2.c1.t5 — Server view . 265
152.Performance graph s1.c4.t1 — Client view . 266
153.Performance graph s1.c4.t1 — Server view . 266
154.Performance graph s1.c4.t2 — Client view . 267
155.Performance graph s1.c4.t2 — Server view . 267
156.Performance graph s1.c4.t3 — Client view . 268
157.Performance graph s1.c4.t3 — Server view . 268
158.Performance graph s1.c4.t4 — Client view . 269
159.Performance graph s1.c4.t4 — Server view . 269
160.Performance graph s1.c4.t5 — Client view . 270
161.Performance graph s1.c4.t5 — Server view . 270
162.RAID-5 15+P performance graph s2.c1.t2 — Server view 272
163.Combined metadata and data RAID-5 4+P s2.c1.t3 — 4 Clients view . . 273
164.Separated metadata and data RAID-5 4+P s2.c1.t3 — 4 Clients view . . 273
165.Separated metadata and data RAID-5 4+P s2.c1.t3 — 1 Client view . . . 274
166.Combined metadata and data JBOD s2.c1.t2 — 1 Client view 274
167.Single node multi application s2.c1.t2 —1 Node client view 275
xii Sizing and Tuning GPFS

Tables

1. Internal and external components to GPFS. 4
2. Switch adapter type and corresponding firmware information. 27
3. Comparison of file system features . 51
4. Disk performance. 80
5. Performance of SSA adapters . 81
6. SP Switch and GPFS throughput. 82
7. SSA disk identification . 90
8. GPFS throughput performance of SSA adapters. 91
9. Table of default sizing parameters to use for GPFS 93
10. Table of size dependent initial parameters to use for GPFS 94
11. Table showing send bucket size to buffer size . 137
12. Tuning verification parameters for the Switch adapter. 139
13. Tuning verification parameters for the IBM Virtual Shared Disk server . . 142
14. Tuning verification parameters for the disk sub-system. 144
15. Worker thread performance example . 146
16. Initial parameter of the system. 152
17. Tuning Results . 163
18. ADSM relevant functional differences between JFS and GPFS 166
19. Resource requirements for GPFS and ADSM components. 169
20. Sizing of test data . 173
21. ADSM server options . 174
22. ADSM client options. 174
23. TCP/IP parameters for all SP Nodes . 175
24. GPFS file system parameters . 175
25. Backup and restore throughput for reference configuration. 176
26. Relative data throughput using TCP/IP and shared memory. 181
27. Effect of maxFilesToCache on full incremental backups 189
28. Test environment — Setups . 202
29. Test environment — Configurations . 202
30. Test environment — Tests. 202
© Copyright IBM Corp. 1999 xiii

xiv Sizing and Tuning GPFS

Preface

This redbook provides in-depth information about General Parallel File
System (GPFS) Version 1.2. It is written for RS/6000 professionals looking for
help in planning, installing, configuring, and tuning GPFS-based solutions.

The book discusses architecture and application considerations that will help
you understand the performance impact that GPFS components may have on
applications and how applications may avoid such pitfalls and take
advantage of GPFS’s parallel features. Included is a step-by-step guide for
sizing a GPFS configuration and a tuning section that lists and explains
parameters and software components sorted by their impact on performance
and availability.

This redbook also provides recommendations and considerations for back up
and recovery of GPFS using Adstar Distributed Storage Management
(ADSM).

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Marcelo Barrios is a project leader at the International Technical Support
Organization, Poughkeepsie Center. He has been with IBM since 1993
working in different areas related to RS/6000. Currently, he focuses on
RS/6000 SP technology by writing redbooks and teaching IBM classes
worldwide.

Terry Jones is a computer scientist at Lawrence Livermore National
Laboratory in Livermore, California. He has over 10 years of experience in the
high performance computing field and is currently working in the area of
parallel file systems. He holds a M.S. degree in Computer Science from
Stanford University and a B.S. degree in Physics from SWOSU.

Scott Kinnane is a system engineer at Petroleum Geo Services (PGS) in
Perth, Australia. He has over five years experience with numerous UNIX
operating systems and architectures including systems from Sun, IBM, SGI
and DEC, and Linux. He has experience in designing, implementing, and
tuning TCP/IP, ATM LANE, Ethernet, and ATM networks, and over twelve
years of programming with numerous languages. He holds a B.S. degree in
Computer Science from Curtin University, Perth, Australia.
© Copyright IBM Corp. 1999 xv

Mathis Landzettel is a project leader at the International Technical Support
Organization, San Jose Center. He joined IBM in 1994 after completing his
degree in mathematics at the Technical University of Darmstadt. He writes
extensively and teaches IBM classes worldwide on all areas of ADSM. Before
joining the ITSO in 1998, Mathis worked in the ADSM development
department in Mainz, Germany, as a software test team leader.

Safran Al-Safran is a system analyst at Saudi ARAMCO in Saudi Arabia
where he has worked for eight years. He has over seven years of experience
in AIX, IRIX, and Solaris field. His areas of expertise include SP planning,
installation, and support. He holds B.S and M.S degrees in Computer Science
from King Fahad University of Petrolume and Minerals, Saudi Arabia.

Jerry Stevens has a BSc degree in Mathematics from Exeter University and
over 20 years of IT experience. He is currently an IT specialist working in an
RS/6000 and SP consultancy practice in IBM, UK. Before joining IBM in 1997,
Jerry worked for Shell for eight years as a systems engineer performing a
range of technical consultancy and development roles and working with a
variety of Open Systems platforms and architectures.

Chris Stone works for IBM in the UK providing customer services in the field
of high performance computing and storage solutions. He has three years
experience working with AIX and the SP. He has been with IBM since 1981
and has a wide range of experience including both analogue and digital
circuit design for displays and weapons systems, software design and
development in retail and communications fields, and also education delivery
and systems support in many different countries. He is a chartered engineer,
a member of the IEE, and holds a BSc degree in Electrical and Electronic
Engineering from Bristol University.

Christopher Thomas is a Senior IT Specialist in the UK. He joined IBM in
1984 after completing his degree in Electronic Engineering at University
College, London. He has been working with ADSM and other IBM storage
products for the last five years and has experience with large-scale data
backup and archive systems. Before that, he worked in the storage
development group at IBMs Hursley Laboratory developing real-time software
for use in the development and manufacture of disk drive products.

Ulf Troppens is working in ADSM development and test for IBM in Mainz,
Germany. He has over ten years of experience with different UNIX systems
and distributed systems. His areas of expertise include DCE, Computer
Supported Cooperative Work, and real-time multimedia applications. He
holds a M.S. degree in Computer Science from the University of Karlsruhe,
Germany.
xvi Sizing and Tuning GPFS

Thanks to the following people for their invaluable contributions to this project:

IBM Poughkeepsie
Lyle Gayne
Bob Curran
Kevin Gildea
Frank Mangione
Brian Herr
Surya Panigrahy

IBM San Jose
Nancy Young

IBM Almaden
Dan McNabb
Roger Askin

IBM Germany
Christian Bolik

We would also like to express our gratitude toward the people of the
benchmark center in Poughkeepsie, in special to Bob Davis, who helped us
on getting the proper equipment to run most of the performance tests.

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 323
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an internet note to redbook@us.ibm.com
xvii

xviii Sizing and Tuning GPFS

Chapter 1. GPFS architecture

The General Parallel File System (GPFS) is a scalable file system developed
at IBM for general-purpose usage on RS/6000 SP servers. In this chapter, we
describe the architecture of GPFS and how it works. We conclude with a
comparison of GPFS to other file systems.

1.1 General concepts

GPFS is the successor to the PIOFS file system. It is a high performance file
system designed for the needs of sophisticated parallel programs.

Perhaps the most prominent feature of GPFS is the degree of its scalability.
By scalable, we mean that incremental improvements, such as increased
writing and reading performance, may be made to the file system by adding
additional hardware of the same, or even lesser, capability. A truly scalable
file system should provide high capacity and high throughput. GPFS file
systems may be multiple Terabytes in capacity and provide throughput of
multiple GB/sec to and from one file. As an AIX file system, GPFS inherently
supports large files that exceed two gigabytes in size.

It is general-purpose in that it is suitable for many kinds of workloads
including commercial and technical tasks.

It provides global access (or uniform access) to files. That is, it is possible to
mount a GPFS file system from every node on an SP system making
applications much easier to write.

Most users prefer solutions that offer portability. That is, a solution that is
widely accepted and implemented by multiple vendors. Solutions that are
limited to a specific hardware type or a specific software environment are
generally considered much less desirable than portable solutions. The
application programming interface (API) to GPFS is a portable solution based
on the POSIX standard; no GPFS-specific system calls are needed or
provided. This means that applications using standard POSIX functions will
run on GPFS without modification or re-compilation1. Furthermore, AIX
utilities work with GPFS.

One final consequence of a POSIX interface is ease of use. Since POSIX is
well known, initial use is easier for most developers.

1 Several common non-POSIX functions are not provided with GPFS 1.2: mmap, munmap, and msync. In addition, since
the atime/mtime/ctime information is maintained in a distributed manner (for performance reasons), some time is required
before the most up-to-date information on an actively changing file is available to all nodes.
© Copyright IBM Corp. 1999 1

GPFS incorporates several techniques to enhance reliability. GPFS has
extensive recovery mechanisms. For example, the file system keeps track of
which nodes are available and dynamically adjusts to migrate file system
tasks away from non-responding nodes.

In the parallel programming environments common to SP systems, multiple
tasks of a parallel job frequently need to write or read from a single file from
multiple nodes. Unfortunately, the UNIX file system does not support this
activity well: The mechanisms that it provides for file consistency (file locking)
are performed at the entire file level. GPFS addresses this key issue by
providing byte-range locking. That is, one task may be granted write or read
access to a portion of a file, and other tasks may be granted write or read
access to other portions of the same file. This permits writes and reads to
occur concurrently without serialization because of consistency.

The importance of effective caching to file system performance cannot be
overstated. GPFS provides extensive read-ahead (prefetch) and write-behind
caching. When reading, GPFS analyzes the read access pattern and
attempts to bring in data that is speculated to be needed in the future prior to
the actual read call. Similarly, small sequential writes are buffered in a
write-behind cache until an efficient writing size is collected. Caching is
performed at the application nodes. The analysis is performed on a per file
handle basis. If one process opens the same file twice, GPFS can use
different caching strategies for each instance.

1.1.1 Architecture overview
GPFS is implemented as a number of separate software subsystems, each of
which may be distributed across multiple nodes within an SP system. Figure 1
on page 3 shows two nodes from a typical GPFS configuration as dark-filled
boxes. The right node is an application node. That is, a node which has
mounted a GPFS file system and running a user application that accesses
that file system. The left node is a VSD server node. A VSD server node is
one that physically has a number of disk drives attached that may be shared
with other nodes in the same partition.
2 Sizing and Tuning GPFS

Figure 1. GPFS architecture

In contrast to the dark-filled boxes in Figure 1, which represent different
nodes, the light-filled boxes represent the different software subsystems and
services utilized in GPFS. The figure shows that several software subsystems
utilized by GPFS must be present on the application node(s); other software
subsystems may be on a node other than the application.

These subsystems are described in more detail in 1.3, “GPFS software
structure and required services” on page 17. At this point, we merely call your
attention to the fact that some of the subsystems are internal to GPFS, while
other subsystems are provided as external services utilized by GPFS.
Internal services are provided by the GPFS daemon, mmfsd, while external
services are provided by other daemons and subsystems. For example,
GPFS utilizes the SP Switch subsystem to perform communications. The SP
Switch subsystem is a general subsystem used for many services; it is not

Metanodes

mmfsd

Worker
Thread

kernel
mmfsd kernel extension

css

JFS NFS
Client

user

Application

VFS interface

vsd

ip

Application Node

VSD Server

Other
metanodes

Token
server

Configuration
manager

Stripe Group
Manager

VSD

ip

Disk driver css

LVM

Switch
comm
GPFS architecture 3

part of GPFS. Table 1 lists those services that are internal to GPFS as well as
the external subsystems and services utilized by GPFS.

Table 1. Internal and external components to GPFS

1.2 Data flow and potential bottelnecks

One informative way to study file systems is to do an analysis of data flow for
reads and writes. This is particularly true of file systems with distributed
components. What follows is such an analysis plus some information on
potential bottlenecks.

1.2.1 Write data flow
Figure 2 on page 5 shows how GPFS interacts with other system components
during write operations. We will consider a write of 256 KB that we assume is
the size of one full GPFS block. If the write is smaller than a GPFS block,
GPFS may utilize a write-behind strategy for better performance.

Software subsystems and services
internal to GPFS daemon (mmfsd)

Software subsystems and services
external to GPFS

Configuration Manager Virtual Shared Disk (VSD)

Stripe Group Manager Recoverable Virtual Shared Disk (RVSD)

Metanode SP switch subsystem

Token Manager Server Group Services

System Data Repository (SDR)
4 Sizing and Tuning GPFS

Figure 2. Control and data flow for a write operation

The following steps explain the write flow on the system:

1. The application makes a write call with a pointer to a buffer in its space.

2. The mmfsd on the application node checks to see if it holds an Exclusive
lock for the file. That is, it checks to see if it has the right to modify the file.
If this is the first write for this node and for this file, a write token must be
acquired; otherwise, (if an Exclusive token is already held) skip to step 5.

If the file already open is local, the GPFS daemon (mmfsd) checks if this
file is already granted to another application, either local or remote. If not,
mmfsd gets a lock and then informs the Token Manager Server about the
request. If the file has already been granted to other nodes, mmfsd will
negotiate with those nodes in order to get the requested token on the first
read or write.

If the file already open is remote, mmfsd contacts the Token Manager
Server for the file system to request a token. If other nodes already have
the token for this file, the Token Manager Server will send back the list of

User Space

Application Node

Legend Kernel Space buffer fifo
control flow
data flow

Switch

I/O Node (VSD Server)

cpu
copy

iprouter

ipqmaxlen

VSD

pbuf reqbuf buddybuff

Logical
Volume Mgr

disk driver
rpool

spool

css0 device
driver

rquestq

App

mmfsd
kernel ext.

VSD

reqbuf buddybuffpbuf

Logical
Volume Mgr

iprouter

ipqmaxlen

disk driver
rpool

spool

css0 device
driver

rquestq

mmfsd

Worker
Thread

cpu
copy

256K
DMA

cpu
copy

Disk

pagepool
[dedicated & pinned]
GPFS architecture 5

nodes having the token. It is the responsibility of the requesting mmfsd to
negotiate with the nodes in that list to obtain a token. This technique is
employed for scalability reasons: Distributing this task to the mmfsd
reduces serialization at the Token Manager Server.

The request is for an Exclusive access token. The Exclusive request
contains both a required-byte- range and a desired-byte-range for the file.
The optimistic algorithm used by GPFS usually requests all subsequent
bytes in the file for the desired-byte-range.

3. The Token Manager Server determines if any conflicts exist for the
required-byte-range Exclusive request. Assuming there is no Exclusive
access token currently held for the required-byte-range, the Token
Manager Server will grant an Exclusive access token for the
required-byte- range and as much as possible of the desired-byte-range. If
future tasks require write access to a different non-overlapping section of
the file, an exclusive token with a byte range qualifier is always granted if
there is not a conflict (see 1.4.3, “Consistency” on page 39).

4. The mmfsd receives the Token Manager Server response containing the
Exclusive token and a specified byte range.

5. The mmfsd on the application node acquires some of the metadata that it
will need to update when the file increases in size. Specifically, it gets
some unused disk-address-pointers in either the file’s inode, or if all
disk-address-pointers have been used in the inode, some unused
disk-address-pointers in the file’s next indirect block. These metadata
structures are then sent to the file’s metanode if this is remote.

6. GPFS acquires a location on disk for the data to be written. At mount time,
each GPFS node is given an allocation segment, which is a cluster of
available disk blocks. Each allocation segment contains blocks from every
disk. To reduce hot spots, the blocks are ordered such that they address
disks in a round-robin order. When all of the disk blocks in an allocation
segment are in use, the mmfsd daemon requests another allocation
segment from the Stripe Group Manager. Until the file system is 95
percent in use, the allocation service of the Stripe Group Manager
employs an exhaustive search algorithm to find available space. Since this
algorithm becomes too expensive as the file system becomes full, a
different, less exhaustive but quicker algorithm is employed at 95 percent
full. Once the file system reaches 99 percent full, a third algorithm is
employed. The third algorithm is not exhaustive; if it does not find a block
quickly, it returns ENOSPC.

The next unused disk-address-pointer in the inode (or indirect block) is
updated with the disk location from the allocation segment. The metanode
will be informed of the allocation assignments for the
6 Sizing and Tuning GPFS

disk-address-pointers at sync time (every few minutes). All updates are
done in a safe order: After the data is committed to disk, the new indirect
blocks with pointers to the data may be committed to disk, then the inodes
with pointers to the new indirect blocks may be committed to disk.

7. GPFS acquires a buffer from the pagepool. If there is no buffer available, a
buffer is made available by writing the oldest dirty buffer out to disk.

8. The data is moved from the application’s data buffer to the GPFS
pagepool buffer.

9. GPFS schedules a worker thread to continue the write if this is a full block
write or somebody else needs this block. At this point, the data is in the
GPFS buffer, and the application has completed the write system call.

10.The GPFS thread makes a call to the VSD strategy routine requesting the
data be written to disk in chunks the size of the GPFS blocksize. If the disk
configuration is RAID, and the RAID stripe width is greater than the GPFS
block size, a read-modify-write cycle at the RAID controller will be required
later when the data is actually committed to rotating storage. That is, in
order to write the data and the new RAID parity to disk, the unmodified

The pagepool is used to cache user data and indirect blocks. The default
value is 20MB. It is the GPFS pagepool mechanism that allows GPFS to
implement read and write requests asynchronously via read ahead and
write behind mechanisms. Increasing pagepool will increase the amount of
cached data available to applications. This will provide performance
benefits in applications that do large amounts of I/O quickly and in
applications where re-use of data is high. Its setting can also be particularly
critical for applications that do random I/O.

pagepool

The worker1Threads parameter controls the maximum number of threads
used for controlling sequential write behind. The minimum value for
worker1Threads is 1 and the maximum 72. The default is 48.

The worker2Threads parameter controls the maximum number of threads
used for controlling other operations, primarily those involving directories.
The minimum value for worker2Threads is 1 and the maximum is 12. The
default is the maximum, 12.

worker1Threads
GPFS architecture 7

data within the stripe must be read first to recompute parity. For a
discussion on RAID, see 1.4.4, “Failure and recovery” on page 39.

11.The 256 KB write is broken into packets at the VSD layer (if
max_IP_msg_size=60KB, four 60 KB packets and one 16 KB packet will
result). When the GPFS makes read or write requests, the requests are
sent to a server that owns the physical connection to the disk. This is done
with the IP layer of AIX in the same way as transport protocols.
Fragmentation and reassembly functions are required when read and write
request sizes are greater than the size of a single IP packet.

12.Five 256-byte mbufs are acquired to contain VSD and IP headers (3). The
mbuf management facility controls two pools of buffers: A pool of small
buffers, which are simply called mbufs, and a pool of large buffers (which
are usually called mbuf clusters or just clusters). The pools are created
from system memory by making an allocation request to the Virtual
memory Manager (VMM). The pools consist of pinned pieces of virtual
memories. This means that they always reside in physical memory and
are never paged out.

The GPFS block size determines the minimum preferred increment for
writing and reading files. It is also a contributing factor to the maximum
size of a file.

GPFS block size

This parameter defines the largest size of the packets that the IBM Virtual
Shared Disk software will send between the client and the server. Its
values can vary between 512 and 65024 bytes (63.5 KB).

max_IP_msg_size

An mbuf is a kernel data structure used in processing IP packets. Each 256
byte mbuf consists of a 28 byte header and a 228 byte data area. If more
than one mbuf is required for an IP datagram, the mbuf header can contain
a pointer to an mbuf cluster (also known as mcluster), which is usually
4096 bytes, or the datagram can be put into a linked list of mbufs, each
pointing to its own mbuf cluster.

mbufs
8 Sizing and Tuning GPFS

13.A CSS send pool(spool) buffer equal to the data of each packet is
acquired. Five additional 256-byte mbufs are acquired to keep track of the
buffer. In total, the 256 KB write uses 256 KB of GPFS page pool space,
10 256-byte mbufs, and 256 KB of CSS send pool space.

14.VSD copies data from the GPFS page pool buffer into the send pool
buffers. At this point, the application’s data has been copied twice, once
into a GPFS page pool buffer and a second time from the page pool to the
CSS send pool.

15.The VSD client sends the five IP packets it created to the VSD server via
the IP switch.

16.The mbufs and CSS send pool space are held only until the data is
transferred onto the switch; however, the request buffer and pagepool
buffer are held until the write is completed by the server and an
acknowledgment is received.

17.Once the transferred data is received by the VSD server CSS receive
pool, the CSS driver forward each packet to the VSD through the IP layer
of AIX.

The spool, short for CSS0 send pool, is an allocation of memory that is
effectively a staging area for information to be sent over the switch.
Likewise, the rpool is the CSS0 receive pool for receiving information sent
over the switch.

Both GPFS and VSD have hard dependency on a high-speed interconnect
between all SP nodes (SP Switch). The effective functioning of the switch
requires that the rpool and spool settings for the switch be set to their
maximum values of 16 MB each.

spool

This parameter limits the number of virtual shared disk requests from a
specific client node that can be pending at a given time. This includes
requests to both local and remote devices.

Request blocks
GPFS architecture 9

18.CSS allocates two mbufs and one receive pool buffer (64 KB) for each
VSD packet that makes up a single request.

19.Once all packets of a request have been received by the VSD server, a
buddy buffer is allocated if it is available, and data is reassembled into it. If
the buddy buffer is not immediately available, the request is queued and
the data remains in the CSS receive pool.

Ipqmaxlen controls the number of incoming packets that can exist on the IP
interrupt queue. Since both GPFS and the Virtual Shared Disk use IP, the
default of 128 is often insufficient.

ipqmaxlen

The rpool is the CSS0 receive pool for receiving information sent over the
switch.

Both GPFS and VSD have hard dependency on a high-speed interconnect
between all SP nodes (SP Switch). The effective functioning of the switch
requires that the rpool and spool settings for the switch be set to their
maximum values of 16 MB each.

rpool
10 Sizing and Tuning GPFS

20.The VSD server releases all mbufs and CSS receive pool space
associated with the request if the buddy buffer is allocated.

VSD calls the Logical Volume Manager (LVM) strategy routing to schedule
the disk write through the device driver.

Every Virtual Shared Disk device has a logical volume defined and
configured in the system. Thus, every VSD I/O request eventually
becomes an I/O request to the associated logical volume. The VSD
software layer transparently handles the mapping of VSD device I/O
requests to the associated logical volume I/O requests.

21.The device driver performs the write. The driver waits momentarily in an
attempt to write a data block of size max_coalesce or larger. On RAID
systems, the max_coalesce should equal the RAID stripe size.

The buddy buffer is used by the IBM Virtual Shared Disk on the server to
handle disk I/Os. The VSD server uses buddy buffers for temporarily
storing data for I/O operations originating at a client node and to handle
requests that are greater than the ip_message_size. Buddy buffer can be
tuned by changing the minimum and the maximum buffer size allocated to
a single request. These values can be set by VSD perspective or with the
vsdnode command.

The SP Switch adapter is always used for interfacing Virtual Shared Disks.
It is, therefore, recommended that settings of 4096 (4 KB) and the
maximum file system block size the VSD node is serving are chosen for
minimum and maximum buddy buffer sizes.

A buddy buffer is the buffer used by the IBM Virtual Shared Disk on the
server to handle disk I/Os. The VSD server uses buddy buffers for
temporarily storing data for I/O operations originating at a client node and
to handle requests that are greater than the ip_message_size.

buddy buffer

max_coalesce is a parameter of the SSA device driver, which can be
critical when using RAID. It allows the device driver to coalesce requests
that have been broken up to satisfy LVM requirements. This is required for
effective RAID performance for writes. max_coalesce is the maximum
number of bytes that the SSA disk device driver attempts to transfer to or
from an SSA logical disk in one operation.

max_coalesce
GPFS architecture 11

22.VSD releases both the buddy buffer and the write request buffer after the
completion of the write by the Logical Volume Manager (LVM) drivers.

23.VSD acquires a mbuf header to send a completion respond to the VSD
client.

24.The VSD client releases the request block and drives GPFS completion
processing.

25.GPFS completion make the page pool buffer available for use by another
application call.

1.2.2 Read data flow
Figure 3 on page 13 shows the flow of a read system call. The read
processing flows through the same points as GPFS write processing, but the
data movement is opposite, and the stress points (such as rpoolsize,
spoolsize, request blocks, buddy buffers) are different. For simplicity, we
made the assumption that this is the first read of a one block file.

We define only those tuneables that are specific to reads only. Please refer to
1.2.1, “Write data flow” on page 4 for a description of the various tuneables
that are pertinent to both writes and reads (such as rpool size, spool size,
request blocks, buddy buffers).

The read flow begins with a read system call issued by the application. The
following steps explain the read flow on GPFS.

This parameter specifies the maximum number of commands that the SSA
disk device driver dispatches for a single drive for an hdisk.

queue_depth
12 Sizing and Tuning GPFS

Figure 3. Control and data flow for a read operation

1. The application makes a read call with a pointer to a buffer in its space.

2. GPFS checks if the required data is already in the GPFS page pool or not.
If so, GPFS will move the data from the pagepool into the application
buffer and returns control to the application. If not, continue with the next
step.

3. A buffer for the data to be read is first acquired with the necessary tokens
required to preserve the consistency of the data. If there is no buffer
available, a buffer is made available by writing the oldest buffer out to disk.

4. A GPFS daemon checks the necessary locks. If a read token is already
held, skip to step 7. The mmfsd requests a read access token from the
Token Manager Server. The request contains the required-byte-range and
the desired-byte-range for the read.

5. The Token Manager Server determines if any conflicts exist for the read
request. Assuming there is no exclusive access token currently held for
the file, the Token Manager Server will grant a read token for a byte range

User Space

Application Node

Legend Kernel Space buffer fifo
control flow
data flow

I/O Node (VSD Server)

cpu
copy

iprouter

ipqmaxlen

VSD

pbuf reqbuf buddybuff

Logical
Volume Mgr

disk driver
rpool

spool

css0 device
driver

rquestq

App

mmfsd
kernel ext.

VSD

reqbuf buddybuffpbuf

Logical
Volume Mgr

iprouter

ipqmaxlen

disk driver
rpool

spool

css0 device
driver

rquestq

mmfsd

Worker
Thread

cpu
copy

256K
DMA

cpu
copy

Disk

pagepool
[dedicated & pinned]

Switch
GPFS architecture 13

determined by the Token Manager Server (see 1.4.3, “Consistency” on
page 39).

6. The mmfsd receives the Token Manager Server response containing the
read token.

7. GPFS schedules a prefetchThread. The prefetchThread calls VSD
strategy routine, which obtains an mbuf used to construct a request packet
containing the VSD and IP headers.

8. IP is called to send the request over the switch to the VSD server since the
amount of space required is much smaller than the write case.

9. Read request arrives at the VSD server.

10.CSS programs forward the request packet through the IP layer of AIX to
VSD.

11.CSS allocates an mbuf to hold the VSD packet.

12.The VSD request is copied into a VSD request buffer.

13.The mbuf header is freed.

14.The VSD server allocates a buddy buffer and a read request buffer.

15.The VSD server constructs a disk read request in the pbuf.

16.The LVM strategy routine is invoked to schedule the read through the disk
driver.

The prefetchThreads parameter controls the maximum possible number of
threads dedicated to prefetching data for files that are read sequentially.
The actual degree of parallelism for prefetching is determined dynamically
by the daemon.

prefetchThreads

The pbufs are control structures used at the VSD server to describe each
read or write request that is pending. Each IBM Virtual shared disk,
regardless of its activity and regardless of whether the node is a client or
server, will be allocated the same number of pbufs on a node.

Each puf is 128 bytes long. The pbuf shortage affects overall performance
by causing physical disk operations. However, it does not imply that
increasing the number of pbufs will improve performance because requests
will be queued at other parts of the system.

pbufs
14 Sizing and Tuning GPFS

17.Disk data read into buddy buffer.

18.VSD takes control after the read is completed.

19.The VSD server sends the data to the client through the IP layer across
the switch. As in the case of clients sending large requests to the server
on write requests, the VSD server fragments the read data into multiple
packets that get sent to the client.

20.VSD allocates ten mbufs and 256 KB of CSS send pool space.

21.VSD copies data from the buddy buffer to the CSS send pool buffers.

22.The VSD server forwards five packets through the IP layer to be sent
across the switch to the client.

23.The VSD client node CSS driver receives an interrupt as the data arrives
at the receive pool and forwards the packets to the VSD client. One rpool
64 K buffer and two 256 byte mbufs are used for each arriving packet.

24.The VSD server buddy buffer, read/write request buffer, and request buffer
are released at this point.

25.On the completion path, the requested data flows back to the client into
the receive pool from the switch.

26.After receiving the data, the VSD completion process is invoked, which
copies the data to the GPFS buffer.

27.Return control to GPFS.

28.The GPFS thread moves the required data to the application buffer and
returns control to the application.

1.2.3 Potential bottlenecks on writes and reads
Several factors may significantly hinder GPFS write and/or read performance.
We discuss these items with the help of Figure 4 on page 16.
GPFS architecture 15

Figure 4. Potential bottlenecks to GPFS data flow.

As the diagram shows, a number of potential bottlenecks are involved in
reads and writes. Incorrect settings for these key items will strongly affect
performance.

• Insufficient pagepool capacity

If the mmfsd daemon is unable to allocate buffers from the pagepool,
GPFS may begin thrashing as it attempts to free up space.

• CPU Available on Token Manager Server

If the Token Manager Server is unable to respond to token requests in a
speedy manner, the read will be blocked.

• Insufficient mbuf capacity on VSD Client

If the IP layer is unable to allocate mbufs, all GPFS and other IP
communications will be blocked.

• Insufficient buddy buffer capacity on VSD server

IP
window

SP Switch
Adapter

FIFO

DMA

RPOOL SPOOL
MBUFS

max_ipqlen

BUDDY BUFFERS

PBUFS

LVM

SCSI SSA

IP
window

SP Switch
Adapter

FIFO

DMA

RPOOLSPOOL
MBUFS

max_ipqlen

BUDDY BUFFERS

PAGEPOOL MALLOCSIZE

VSD Server Application (GPFS node)

VSD Layer

IP Layer

GPFS Kernel
Extension

VSD Layer

GPFS
Daemon
(mmfsd)

PrefetchThreads

Worker1Threads

Worker2Threads

APPLICATION

BUFFER

Device
Driver

Device
Driver

Kernel

User

IP Layer
16 Sizing and Tuning GPFS

If the VSD server is unable to allocate buddy buffers, the server will not be
able to respond to VSD client requests. After two seconds, the VSD client
will assume a failure and retransmit the write or read request.

• Insufficient mbuf capacity on VSD Server

If the IP layer is unable to allocate mbufs, the server will not be able to
respond to VSD client requests. After two seconds, the VSD client will
assume a failure and retransmit the write or read request.

1.3 GPFS software structure and required services

This section describes both those software subsystems that are included
within GPFS and any external software subsystem on which GPFS depends.

Internal subsystems and components

We begin by introducing the file system metadata components and five
internal subsystems: (1) internal data structures; (2) the configuration
manager, (3) the stripe group manager, (4) the metanode, (5) and the
token manager server. The last four functions are implemented within the
GPFS daemon, mmfsd, as different services or personalities. A single
GPFS daemon may provide more than one service. Every node that is part
of the GPFS domain runs mmfsd.

External subsystems

In understanding the operation of a GPFS environment, it is important to
have at least a basic understanding of the external infrastructure that
supports the GPFS architecture. We conclude this section with an
examination of some external subsystems utilized by GPFS. This can be
broken down into four different but dependent areas: (1) the IBM Virtual
Shared Disks and IBM Recoverable Virtual Shared Disks, (2) the SP
Switch environment, (3) the High Availability Subsystem or RS/6000
Cluster Technology, (4) the System Data Repository (SDR).

1.3.1 Internal data structures
Internally, GPFS is implemented by striping user data across multiple disks
on multiple storage nodes. Distributed protocols coordinate metadata
updates from multiple nodes.

The metadata architecture utilized by GPFS has similarities to the BSD fast
file system2.

2 McKusick, Marshall K., William N. Joy, Samuel J. Leffler, and Robert S. Fabry, A Fast File System for UNIX, 1983
GPFS architecture 17

Inodes

Structures called inodes contain an array of disk addresses of data blocks
for the file as well as owner, striping, and replication status information.

Indirect blocks

Indirect blocks contain additional disk addresses for data blocks for files
too large to be represented in a single inode.

Directories

Directories are files with information on how the file namespace is
organized. The namespace is a tree: Each directory is a file whose
contents map file names with inodes. GPFS directories are sparse files;
their contents may be addressed in units called directory blocks. A
hashing scheme is used to find the directory block for a given file name.
The capacity sizing of a GPFS file system must take into account the
space needed for metadata structures, such as directories, inodes, and
indirect inodes.

Data allocation map

The data allocation map keeps track of which disk blocks are in use and
which blocks are available for data.

Inode allocation map

The inode allocation map keeps track of which disk blocks are in use and
which blocks are available for inodes.

Stripe group descriptor

Similar to a BSD superblock, a stripe group descriptor holds a concise
description of the file system. It contains the current information about
about a stripe group and its components including the release of the file
system under which it was created, read and write quorum sizes, striping
and replication flags, and so on. Each of these structures are kept on disk
and some are also cached to improve performance for metadata
operations.

ACL file

GPFS supports access control lists (ACLs). ACLs are used to provide finer
grain access control than ordinary UNIX file permissions. All ACL
information is stored in an ACL file.
18 Sizing and Tuning GPFS

1.3.2 Configuration Manager
The Configuration Manager has overall responsibility for the correct operation
for the nodes that impact GPFS in some way. In particular, it selects which
node is to act as the Stripe Group Manager for each file system and appoints
a successor node should one of those nodes fail. It also determines whether
a quorum exists, which, in turn, is the number of application nodes necessary
for file system usage to continue. This prevents separate uncoordinated
updates of critical metadata, and their consequences, in the event of a
machine network partition. For GPFS file systems, a quorum is 50 percent
plus 1.

If the node fails whether the Configuration Manager itself is running, it will be
replaced by another Configuration Manager with the aid of the Group
Services subsystem. The node selected for the Configuration Manager is the
first one listed in the mmfs group, which is dependent on the order in which
the nodes came up. Group Services is discussed in 1.4.4, “Failure and
recovery” on page 39. The CPU consumption of the configuration manager is
minimum.

1.3.3 Stripe Group Manager
Each GPFS file system will have one and only one Stripe Group Manager at a
time. The Stripe Group Manager, sometimes called the File System Manager,
is responsible for maintaining availability information for the various disks that
make up the file system. It processes various changes, such as adding or
removing disks, changing disk availability, and repairing the file system.
When data migration is warranted, the Stripe Group Manager initiates and
coordinates the data migration. Mount and unmount processing of file
systems is performed on both the stripe group manager and the node
requesting the service.

A stripe group is related to a file system. A stripe group is a collection of disks
that make up physical storage. For instance, one may speak of a particular
stripe group’s block size. A file system is an administrative resource that may
be mounted. For instance, one may speak of accessing the /gpfs1 file
system.

The Stripe Group Manager plays an important part in write performance: It
controls which regions of disks are allocated to each node, therefore,
allowing effective parallel allocation of space for all nodes using the file
system. Application nodes request allocation of space in accordance with the
application’s needs. The Stripe Group Manager allocates more than the
immediate requirement so that each new write will not require a message
from the Stripe Group Manager.
GPFS architecture 19

In order for the Stripe Group Manager to perform recovery, handling of node
failures, and online configuration of disks, a set of special purpose log files
are maintained. The Stripe Group Manager determines which nodes are
assigned which log files. With the use of log files, the Stripe Group Manager
is able to clean up after a failure of a node on which the stripe group was
mounted.

1.3.4 Metanode
When an application requests read or write access to a file, GPFS first
determines if the file is already open. If it does, the node that opened the file
will have certain pertinent metadata cached in a Metanode including the
original access (read-only, write-only, read and write access). The Metanode
may be thought of as a metadata manager; it manages all directory block
updates.

The location for the metanode may change. For example, if a node gets
access to a file, it may become the metanode.

1.3.5 Token Manager Server
The Token Manager Server synchronizes concurrent access to files and
ensures consistency among caches. The granularity of locking may be whole
files or portions of files. In addition, the Token Manager Server also performs
some synchronization for GPFS internal data structures associated with
allocation and file metadata. The item being accessed (for example, a file) is
termed a lock object. The per-object lock information is termed a token.
Locking is implemented as a single Token Manager Server per file system,
plus one or more Token Managers, which behave as clients to the Token
Manager Server.

A token needs to be invalidated when another node requests a lock that
conflicts with the existing token. The token manager mediates the migration
of tokens. This process is termed token stealing.

There is one Token Manager Server per file system located at the Stripe
Group Manager node. If the Stripe Group Manager is moved to another node,
the Token Manager Server moves with it.

1.3.6 VSD
IBM Virtual Shared Disk (VSD) is a subsystem that enables nodes in one SP
system partition to share disks with the other nodes in the same system
partition. It is also known as a logical volume that can be accessed not only
20 Sizing and Tuning GPFS

from the node it belongs to, but also from any other node in the system
partition.

A VSD node can be a VSD server or a VSD client. A VSD server is a node
that owns a number of VSDs. It reads and writes data to VSDs as requested
by other nodes. However, VSD clients are nodes that request remote access
to VSDs. It should be noted that a node can be both a VSD server and a VSD
client node at the same time.

VSDs can be managed by the graphical user interface of PSSP that helps to
perform shred disk management tasks without having to remember the
commands. You can also run virtual shared disk commands from the SMIT
panels.

IBM Virtual Shared Disk states can also be changed from the command lines.
Figure 5 on page 22 shows the command that moves Virtual Shared Disks
from one state to another.

All the VSDs information is stored in the SDR in the SP control workstation,
and they can be viewed and changed by using the Virtual Shared Disk
Perspective graphical user interface, SMIT interface, or the command line
interface.
GPFS architecture 21

Figure 5. VSD states and associated commands

VSD architecture
Figure 6 on page 23 shows how VSD gains access to remote disks within the
SP system.

Each disk in an SP is actively served by only one node and can only be
accessed directly by that node. Furthermore, remote node disks are
accessed through the switch network.

The routing is done by the IBM Virtual Shared Disk device driver that interacts
with the AIX logical Volume Manager (LVM). The device driver is loaded as a
kernel extension on each node. Thus, raw logical volumes can be made
globally accessible.

Undefined

Defined

Stopped

Suspended

Active

defvsd undefvsd

cfgvsd ucfgvsd

preparevsd stopvsd

resumevsd suspendvsd

startvsd

IBM Virtual Shared
Disk information
is available in the SDR

Open/close and
I/O requests fail

I/O requests queued and
open/close request serviced

Open/close and
I/O requests serviced
22 Sizing and Tuning GPFS

Figure 6. VSD architecture

The following four figures show the progression for write and read flow
through the VSD layer. The steps are indicated by arrows with numbers. The
first step is an application call into the GPFS daemon (mmfsd).

1.3.7 Recoverable Virtual Shared Disks
Recoverable Virtual Shared Disk is a program that is used with VSDs to
provide high availability for Virtual Shared Disks (VSD) against node failure
by subscribing to Group Services. When a node fails, RVSD is informed by
Group Services.

Recoverable Virtual Shared Disk (RVSD) recovery subsystems, rvsd and hc,
respond to changes in the status of the system by running recovery scripts
and notifying client applications. The subsystems operate as daemons
named rvsdd and hcd. They use the Group Services component of PSSP.

The rvsd subsystem
The rvsd subsystem controls recovery for the RVSD component of PSSP. It
invokes the recovery scripts whenever there is a change in the group
membership. The ha.vsd command controls the rvsd subsystem. When a
node goes down, a disk, a disk adapter, switch adapter, or cable fails (in
general, anything that is in the path to the disk or node), the rvsd subsystem
notifies all surviving processes in the remaining virtual shared disk nodes so
that they can begin recovery. If a node fails, recovery involves switching the

IP Network
(SP Switch)

Node X

VSD

Application

IPLVM

Disk DD Net DD

Cache

Node Y

VSD

Application

IP LVM

Disk DDNet DD

Cache

lv_X lv_Y
GPFS architecture 23

ownership of any disk served by this node to a secondary node. If a disk
adapter or cable fails, recovery involves switching the server node for a
volume group to the secondary node.

When the failed component comes back up, recovery involves switching
resource ownership back to the primary node.

The rvsd subsystem uses the notion of quorum, the majority of the Virtual
Shared Disk nodes, to cope with communication failures. If the nodes in a
system partition are divided by a network failure, so that the nodes in one
group cannot communicate with the nodes in the other group, rvsd uses
quorum to decide which group continues operating and which group is
deactivated.

Figure 7 shows a simple system with one twin-tailed recoverable virtual
shared disk configuration. RVSD is being used to protect both VSD servers.

Figure 7. Recoverable VSD

In case node X fails, RVSD will have the VSD secondary server, node Y, take
over the disk subsystems from the primary node and become the server for
those VSDs while the primary node is unavailable as shown in Figure 8.

Node YNode X Node Z

VSD VSD VSD

VSD Server VSD Server VSD Client

rvsd_X
rvsd_Y

rvsd_X
(lv_X)

rvsd_Y
(lv_Y)

Fast IP Network
24 Sizing and Tuning GPFS

Figure 8. VSD take over

The RVSD concept is to allow not only one node (VSD server primary) to
have access to a set of VSDs, but also a second node (VSD server
secondary) in case one of the following fails:

• VSD server primary node
• Switch adapter
• Disk adapter
• Disk or network cable

Recovery is transparent to applications that have been enabled for recovery.
There is no disruption of service. However, the amount of time required to
failover to a secondary server depends on the number of volume groups that
must be varied online.

In 1.4.4, “Failure and recovery” on page 39, we describe how Recoverable
Virtual Shared Disk (RVSD) interacts with GPFS.

1.3.8 SP Switch
The correct planning and installation of switch hardware and its associated
environment is beyond the scope of this book, yet its complexity and
importance should not be overlooked. For information relating to this, you can
refer to Understanding and Using the SP Switch, SG24-5161.

Node YNode X Node Z

VSD VSD VSD

VSD Server VSD Server VSD Client

rvsd_X
rvsd_Y

rvsd_X
(lv_X)

rvsd_Y
(lv_Y)

Fast IP Network
GPFS architecture 25

This section, however, provides an overview to other areas that are important
in the operation of an SP Switch environment and the architecture that is set
up to interact with other RS/6000 SP subsystems.

The configuration of the SP Switch can best be summarized in Figure 9. Note
the similarity in initialization processes for both the primary and non-primary
nodes. It is not until the switch is started from the control workstation that a
node begins performing primary node functions.

Figure 9. Switch initialization process

Configuration of the SP Switch adapter
For the most part, the configuration of the SP Switch adapter occurs during a
node’s boot process. The first part is performed by AIX in detecting the
hardware adapter. Having successfully detected the new device, the program
cfgmgr continues the process by creating and configuring the device through
the execution of the command cfgtb3. The configuration process performs the
following steps:

configure
the switch
adapter

start the
fault service

daemon

start the
switch

configure
the switch
adapter

start the
fault service

daemon

join the
switch

fault service daemon fault service daemonEstart

init

cfgmgr

boot

init

cfgmgr

boot

CWS
Primary Non-Primary

Nodes

tim
e

26 Sizing and Tuning GPFS

• Removes any conflicting definitions then defining the css0 device within
ODM.

• Confirm the physical location of the adapter and rectifies any bus conflicts.
Note that conflict resolution is not applicable to nodes that use SP Switch
MX adapters or SP Switch PCI adapters.

• Creates the special file, that is, the device, /dev/css0.

• Loads the cssdd3 device driver and sets the device to being available. In a
correctly operating system, this can be confirmed on all nodes by using
the lsdev command as shown in the following example:

• Loads the adapter firmware. This is, of course, dependent on the adapter
type. From the previous lsdev output, the Type information indicates the
adapter type versus the firmware loaded as shown in Table 2. You can also
execute lsdev -P -c adapter | grep Switch to see a list of supported switch
types. Note that the 6-F type is applicable for only the IBM S-70 systems
and not RS/6000 SP systems.

Table 2. Switch adapter type and corresponding firmware information.

• Sets the device as being available in the ODM.

• Loads and starts the CSS kernel extension called fault_service_SP.

• Executes the adapter’s POST diagnostics. This puts the Trail Blazer
Interface Chip (TBIC) in reset after the diagnostics are complete, thereby,
disabling the adapter. The TBIC is the part of the SP Switch adapter that
manages the connection to the switch board from the node.

If the SP Switch adapter initialization process completes correctly, the
adapter’s adapter_status in the ODM is set to css_ready as demonstrated in
the following screen:

Type (from lsdev
command)

Adapter Type Firmware file loaded

6-9 MCA xilinx_file3

6-A MX xilinx_file3mx

6-F PCI xilinx_file3pci

[serv6:/]# dsh -av 'lsdev -C -l css0' | dshbak -c
HOSTS ---
v06n01i v06n03 v06n05 v06n07
v06n09 v06n11 v06n13 v06n15

css0 Available 00-f1000000 SP Switch Communications Adapter (Type 6-A)
GPFS architecture 27

Starting the SP Switch daemon
The next phase of the SP Switch initialization process is to start the fault
service daemons on each node in the RS/6000 SP system. This daemon is
responsible for initializing and monitoring the switch and, in fact, operates
slightly different depending on the role of the nodes it is on. First, these roles
will be discussed; and second, the process the daemon goes through will be
explained.

In an RS/6000 SP environment, a node can have one of three roles in relation
to managing the SP Switch: Primary, primary backup, or secondary. By
default, most nodes are defined as secondary nodes if they are not the
primary or primary backup node. This means they have no special role in
managing the switch.

Alternatively, one node in an SP partition will be nominated the primary, and a
different node will become the primary backup. The primary node is
responsible for starting, managing, and monitoring the SP Switch’s operation.
This includes managing recovery from node, link, and chip failures.

The primary backup node, as the name would suggest, monitors the primary
node for its failure. If the primary backup node determines that the primary is
no longer reachable, then it will perform a primary node takeover and start
performing the primary’s tasks.

With respect to these roles, the fault service daemon,
fault_service_Worm_RTG_SP, performs three main services:

• During the daemon’s initialization, or whenever SP Switch network
topology changes, it calculates the routes between nodes using the Route
Table Generation code. This part of the daemon is performed by all nodes.

[serv6:/]# dsh -a 'odmget -q"name=css0 AND attribute=adapter_status" CuAt' | dshbak -c
HOSTS ---
v06n01i v06n03 v06n05 v06n07
v06n09 v06n11 v06n13 v06n15

CuAt:
name = "css0"
attribute = "adapter_status"
value = "css_ready"
type = "R"
generic = "D"
rep = "s"
nls_index = 10
28 Sizing and Tuning GPFS

• The daemon, during switch initialization, runs the Worm code, which
determines the current usable switch topology. Unlike the route
calculations, this daemon service is performed only on the primary node.

• The daemon is also responsible for reporting and servicing Error/Status
packets to and from the switch fabric. It also implements relevant recovery
procedures for node, chip, and link failures. Again, only the primary node
receives the service packets from the switch fabric; however, all nodes will
deal with adapter faults and communication with the primary node.

With the functionality of the daemon now explained, the next step is to
explain its operation during its start up. This is handled by the
/usr/lpp/ssp/css/rc.switch script. This script is executed by the init process
during the nodes boot phase. The script will actually perform the following
steps:

• Back up old log files.

• Kill any fault service daemons already running.

• Set the switch_responds attribute for the switch_responds class for that
node to zero.

• Extracts from the ODM the type of adapter used and creates symbolic
links to the relevant libraries for that adapter type.

• From the Switch_partition class, it checks if the node is a primary or
primary backup node. If it is one of these, then it updates the SDR to
indicate that there is no longer a primary or primary backup node.

• Retrieve the ODM attribute adapter_status and updates it to the node’s
adapter_config_status in the switch_responds class in the SDR. If this
attribute is not set in the ODM, or is no set to css_ready, the script exits
with an error.

• The adapters’ IP address, netmask, whether it uses ARP, switch node
number, switch number, and switch chip are all extracted from the ODM
using different attributes associated with the css object. This is shown in
the following screen capture:
GPFS architecture 29

• The attributes shown previously are then used to configure the css0
interface, leaving the interface in a down state, and then the fault service
daemon is started with arguments of the extracted switch parameters
given.

• Finally, just prior to exiting the script, a program called usconfig is run.
This utility predefines some User Space window parameters.

At the time that fault service daemon is executed, a number of things are
performed by it before normal activity starts. It starts the adapter’s microcode,
and it takes the TBIC out of reset. This enables the adapter.

After this, the fault service daemon starts its waiting phase. It waits for
activities, such as:

• Service packets from the primary node.

• Service packets from the switch fabric if it is the primary node.

• Interrupts from the adapter.

• Management requests from E-commands, such as Estart.

• Locally occurring errors, which each node handles itself.

At this point, the fault service daemon is now prepared for the SP Switch to
be started.

Starting the SP Switch
The third and final phase of initializing the SP Switch is the execution of the
Estart command. This command is executed on the control workstation,
however, most of the startup processes actually occurs on the primary node.

[serv6:/]# dsh -w v06n01i 'odmget -q"name=css" CuAt | egrep "attrib|value"'
v06n01i: attribute = "switch_node_num"
v06n01i: value = "0"
v06n01i: attribute = "switch_number"
v06n01i: value = "1"
v06n01i: attribute = "switch_chip"
v06n01i: value = "5"
v06n01i: attribute = "switch_chip_por"
v06n01i: value = "3"
v06n01i: attribute = "arp_enabled"
v06n01i: value = "yes"
v06n01i: attribute = "netaddr"
v06n01i: value = "129.40.32.81"
v06n01i: attribute = "netmask"
v06n01i: value = "255.255.255.0"
v06n01i: attribute = "state"
v06n01i: value = "up"
30 Sizing and Tuning GPFS

Before this occurs, the issued Estart command performs a handful of tests
from the control workstation to check that the system is correctly configure.

• It checks if the switch fabric has lost its clock source. This is done by
performing a SDRGetObjects on the clock_change attribute in the switch
class. This is set to yes whenever there is a change in clock-related
hardware variables. This can be reset using the Eclock command;
however, a typical Estart error is shown in the following screen capture:

• It verifies that both the oncoming primary and oncoming backup node are
up.

• On these two nodes, it also checks if the fault service daemon is running
on them.

• It checks that the oncoming primary node is not isolated. If the oncoming
primary backup is isolated, however, a warning message is displayed, and
another node will be selected as the primary backup.

• If all four checks are passed, then the Estart program starts the Estart_sw
script on the oncoming primary node.

Now that the Estart process on the control workstation has transferred control
to the Estart_sw program on the system’s oncoming primary node, the points
that follow will explain what occurs during the remainder of this phase.

• The first step is the distribution of the partition’s topology file from the
oncoming primary node. These are found in
/spdata/sys1/syspar_configs/topologies. The file expected.top, if it exists,
will be used for debugging switch problems and should not exist after
switch testing is complete. The name of the file that is used can be
extracted from the SDR.

The oncoming primary node then checks how many nodes have switch
adapters against the number of successful topology file distributions in the
previous attempt. This value is stored in the SDR as the attribute
num_nodes_success as shown in the following screen output. If these do
not match, then the file is sent to all nodes.

[serv6:/]# SDRGetObjects Switch clock_change
clock_change
yes
[serv6:/]# Estart
Estart: 0028-070 Cannot Estart, the clock source for one or more
of the switch boards has changed. Eclock needs to be run to re-establish the
clock distribution of the switch clock network.
GPFS architecture 31

• The next step is to verify that the oncoming primary node is not already
the primary node. If it is, the Estart_sw changes the state of the fault
service daemon to make it a secondary node (described in “Starting the
SP Switch daemon” on page 28). This change also occurs to the node
acting as the primary backup node to avoid conflicts problems between a
primary node takeover and the current Estart script.

• After performing the primary node check, the fault service daemon on the
oncoming primary node is signalled so that it can start the switch. The
Estart_sw script will then wait for the daemon to finish switch initialization
before continuing. This is considered complete when a file called
act.top.pid exists in /var/adm/SPlogs/css, where pid is the process ID
number of Estart_sw. Note that this file eventually becomes topology.data
within the same directory

From this log file (sample shown in following screen capture), the
Estart_sw script updates the SDR with information about the primary node
name and the primary backup node name also shown in the following
screen capture.

[serv6:/]# SDRGetObjects Switch_partition topology_filename
topology_filename
expected.top.annotated.1
[serv6:/]# SDRGetObjects Switch_partition num_nodes_success
num_nodes_success

8

[v06n09:/]# cat /var/adm/SPlogs/css/topology.data
Number of active node(s) seen by the Worm:
8
Number_of_linksbad: 0
The primary backup node is:
14
The following switch node(s) are active:
8
14
12
10
6
4
2
0
The topology file used by the Worm:
/etc/SP/expected.top.annotated.1
[v06n09:/]# SDRGetObjects Switch_partition primary_name primary_backup_name
primary_name primary_backup_name
v06n09 v06n15
32 Sizing and Tuning GPFS

• Finally, unless Estart_sw encounters an error through the fault service
daemon not initializing the switch, the SP Switch environment is ready for
normal operation. This includes updating the SDR switch_responds class
by setting the switch_responds and autojoin attributes to one for each
node that successfully joined.

At the same time, all the fault service daemons enable both the IP and
User Space protocols for their nodes. For further information about how IP
integrates with the switch, please refer to“IP interface to the SP Switch
adapter” on page 33

IP interface to the SP Switch adapter
The initial development of the SP Switch adapter did not use IP to provide
communications over the SP Switch. This situation changed as more and
more applications that already used TCP/IP or UDP/IP to communicate
began operating in an RS/6000 SP environment. By making IP and its
associated protocols available on the SP Switch adapter, the nodes could
also communicate with machines not in the RS/6000 SP system.

For an RS/6000 SP, the IP protocol is managed by an AIX kernel extension,
which interacts with various adapters on the node. In particular, for the SP
Switch adapter, the if_ls interface layer is responsible for communications
with the adapter hardware. This is shown in Figure 10.

Figure 10. IP to switch interaction

As you can also see from this figure, as well as the traditional support for TCP
and UDP, nodes use a variant of UDP to implement the communications of
the IBM Virtual Shared Disk subsystem. The sending and receiving of data
through IP and the switch adapter is performed using a similar processes. In
both instances, the processes varies slightly for different packet sizes. For
sending packets, if the packet is small enough (less than 228 bytes), a single

TCP UDP

if_ls . . .

Switch adapter

if_trARP

IP

if_en

. . .VSD
GPFS architecture 33

kernel mbuf is allocated, and the data is copied to it. For larger packets, one
or more data structures called mclusters are also allocated. For IP
communications, the kernel allocates the mclusters directly from the switch
adapter’s send pool space. The mcluster sizes can be 4, 8, 16, 32, or 64 KB,
and is allocated based on availability and size. That is, the smallest block that
can hold all the data is allocated. The mbuf that is still allocated now
references the mcluster, or for even larger data requirements, multiple
mbuf/mcluster combinations are allocated with the original mbuf referencing
the first mbuf/mcluster pair in a linked list fashion as shown in Figure 11.

Figure 11. Kernel structures for IP over switch communications

Once prepared, the interface layer receives an mbuf structure indicating
where all, if any, the mclusters containing data are. It then creates an entry in
the send FIFO queue. Because the send FIFO is a shared memory queue,
the switch adapter is able to read and update the queue. From the FIFO
record, it detects if there is more data in the send pool and starts transmitting
the data into the switch. Once complete, the send pool space is freed for
other packets.

For reading, effectively the reverse occurs. For both small (less than 228
bytes) and large IP packets, an entry is made in the receive FIFO when a
packet is received from the switch. For small packets, this also contains the
data. For large packets, relevantly sized mclusters are allocated from the
receive pool in the same size and manner as the send pool as mentioned
earlier. When the last packet is received, the shared receive FIFO is updated
with information that points to the new receive pool data.

Following that, the interface layer is notified via an interrupt. Once
interrupted, the interface layer processes requests on the receive FIFO and
then passes the recreated mbuf information to the IP layer for normal
processing.

mcluster

DATA

DATADATA DATA

mbuf

mbuf
header

mbuf
header

mbuf
header

mbuf
header

mbuf
header
34 Sizing and Tuning GPFS

This is a simple explanation of how the SP Switch adapter interacts with the
IP network protocol. For more detailed information relating to the
management of pool space and the emulation of broadcast packets for IP
over the switch adapter, please refer to Understanding and Using the SP
Switch, SG24-5161.

1.3.9 Clustering subsystems
The RS/6000 Cluster Technology (RSCT) is a set of dependent technologies,
which currently include Topology Services, Group Services, and Event
Management.

• Topology Services is the building block for RSCT. It is a subsystem that is
distributed across all nodes in a SP environment. It maintains availability
information for all the nodes and adapters, which is used to provide the
Network Connectivity Table. The Network Connectivity Table is applicable
for both the Ethernet and SP Switch adapters for that SP domain. This
information is then utilized by Group Services’ Reliable Messaging library.

• The Group Services subsystem is a fault tolerant, highly available, and
partition-sensitive service that provides a means for monitoring and
coordinating changes to the situation of another subsystem operating on a
RS/6000 SP partition. Group Services achieves this through a number of
sub-modules.

• Client Control Module - This module accepts, manages, and handles
requests from Group Services clients, such as IBM Recoverable Virtual
Shared Disk and Event Management.

• Meta Group Control Module - Meta groups are collections of Group
Services daemons that support various user groups. This modules
manages the behavior of the daemons.

• Name Server Module - This module manages the Group Services
namespace.

• Reliable Messaging Module - By utilizing this module and the Network
Connectivity Table, Group Services is able to provide reliable,
sequenced delivery of messages to Group Services daemons.

• Topology Services Client Module - Group Services utilizes this module
to access the services offered by Topology Services.

Through these modules, Group Services provides services grouped by
node partitions. The Group Services daemon operates on each node
within a partition and once on the control workstation for each partition.
For IBM Virtual Shared Disk servers and GPFS nodes, Group Services
GPFS architecture 35

maintains membership information that can be viewed for any node as the
following example demonstrates:

As you can see from the final three lines, there are three group services
that this IBM Virtual Shared Disk server has subscribed to along with
seven or eight others. In order, the services are the switch adapter group,
the Event Management group, and the IBM Virtual Shared Disk group.
Also, the process IDs of the daemons that contribute to these groups are
listed.

Similarly, a GPFS node subscribes to these groups as well as two other
GPFS-only groups.

Note the two extra GPFS services, of which, only four nodes have joined.
This is as the system was configured. Also, note the extra processed ID is
listed, which is for the GPFS daemon, mmfsd.

[serv6:/]# dsh -w v06n01i 'lssrc -ls hags' | dshbak
HOST: v06n01i

Subsystem Group PID Status
hags hags 17574 active
4 locally-connected clients. Their PIDs:
18586 14208 25192 26960
HA Group Services domain information:
Domain established by node 0.
Number of groups known locally: 3

Number of Number of local
Group name providers providers/subscribers
cssMembership 8 1 1
ha_em_peers 9 1 0
ha.vsd 8 1 0

[serv6:/]# dsh -w v06n09 'lssrc -ls hags' | dshbak
HOST: v06n09

Subsystem Group PID Status
hags hags 17838 active
5 locally-connected clients. Their PIDs:
17582 15054 18962 17214 23340
HA Group Services domain information:
Domain established by node 0.
Number of groups known locally: 5

Number of Number of local
Group name providers providers/subscribers
Gpfs.1 4 1 0
GpfsRec.1 4 1 0
cssMembership 8 1 2
ha_em_peers 9 1 0
ha.vsd 8 1 0
36 Sizing and Tuning GPFS

• The third subsystem, Event Management, provides information to the
other subsystems by monitoring various software and hardware resources
within the system. This includes resources, such as: Disks, filesystems,
CPUs, and processes. Like Group Services, it achieves this through the
use of three sub-components. These are:

• Event Manager daemon - This ties the Event Management subsystem
together. It handles the collection of resource information as they are
reported by resource monitors, registers event requests from clients
and notifies them when a relevant event occurs.

• Resource Monitors - These are programs that monitor specific system
resources and report the results to the Event Management daemon.

• Event Management Clients - These are also programs that can perform
three tasks. First, they can register an event expression with the Event
Management daemon (for example, when the CPU is seventy percent
busy), receive information when the event occurs (for example, the
current CPU usage), and query resources that the Event Manager
stores (for example, the top ten CPU using processes).

1.3.10 System Data Repository
The System Data Repository (SDR) is the location where SP configuration
data is stored. It is stored in one of two ways: As a class, which is made up of
attributes and objects, or as a file. There are two main areas where the GPFS
architecture interacts with the SDR.

• The first is GPFS itself. It stores two text files in the SDR, which are
accessed by GPFS nodes upon their startup. These two files are mmsdrfs
and mmsdrcfg1. To view their contents at any time, you can extract copies
by using the SDRRetrieveFile command.

The mmsdrfs stores GPFS cluster and file system information. The cluster
information is used to determine which nodes are available to be part of
the GPFS quorum. Locally, this information is also stored in
/etc/cluster.nodes. The file system information is transposed into the
nodes local filesystem file. An interesting note here is the vsddisk entries.
These are used by GPFS for internal processing and are not part of the
file system stanza. They are made of up to five records on a line with each
record describing the IBM Virtual Shared Disk name, its size, and failure
group.

The mmsdrcfg1 file holds information pertaining to the operation of GPFS.
This includes settings for items such as, pagepool, mallocsize, priority,
and so on. When the GPFS daemon on a node starts, this file is retrieved
from the SDR and is stored locally as /var/mmfs/etc/mmfs.cfg.
GPFS architecture 37

• The second use of the SDR is for IBM Virtual Shared Disk information. It
stores VSD operational parameters in the SDR object node. These are
best extracted using the vsdatalst command with the -n option. Actual
VSD configuration information is also stored in the SDR in the VSD_Table
and VSD_Global_Volume_Group objects. You can again use the vsdatalst

command with the -v and -g options to see these details, respectively.

The screen output that follows is a sample of each command. It has been
edited to show only the first few lines for conciseness.

Of course the SDR is used elsewhere by the RS/6000 SP system. However,
in relation to the operation of GPFS, the above two areas store information
relevant to the architecture of GPFS.

1.4 GPFS operation

This section describes how various tasks are performed by GPFS. Special
attention is paid to those aspects that permit GPFS to run on multiple nodes
and multiple disks concurrently.

1.4.1 User interfaces
All file systems provide a number of data management services, such as the
ability to duplicate files, remove files, rename files, and so forth. As a POSIX
file system, GPFS appears the same as any other POSIX file system but with
exceptional capacity and read (or write) performance. The user performs
ordinary file system operations, such as copying a file, and so forth, on GPFS
in the same manner as they would on other standard file systems, such as a
Journaled File System (JFS) or Network File System (NFS).

[serv6:/]# vsdatalst -n
VSD Node Information

Initial Maximum VSD rw Buddy Buffer
node VSD IP packet cache cache request request minimum maximum size: #

number host_name adapter size buffers buffers count count size size maxbufs
------ ------------- -------- --------- ------- ------- ------- ------- ------- ------- -------

1 v06n01i css0 61440 64 256 256 48 4096 262144 33

[serv6:/]# vsdatalst -v
VSD Table

VSD name logical volume Global Volume Group minor# option size_in_MB
---------------------- --------------- ---------------------------- ------ --------- ----------
gpfs10n3 lvgpfs10n3 gpfs77n3 11 nocache 8672

[serv6:/]# vsdatalst -g
VSD Global Volume Group Information

Server Node Numbers
Global Volume Group name Local VG name primary backup eio_recovery recovery
------------------------------- --------------- ------- ------ ------------ --------
gpfs10n5 gpfs10 5 0 0 0
38 Sizing and Tuning GPFS

1.4.2 Security
File permissions utilize standard AIX user and group security mechanisms.
GPFS implements standard AIX file access controls through its use of
directories.

GPFS and VSD use sysctl commands. Such commands are made secure
through Kerberos and ACL files.

1.4.3 Consistency
Since all nodes have access to all disks, there must be coordination of which
node has control of which data. GPFS consistency is managed by a
centralized Token Server Manager for each file system. Tokens may be
viewed as locks that may be passed around among nodes in an SP.
Whenever a GPFS component desires access to a lockable object, it
requests access from the Token Server Manager for that file system. Objects
that are controlled by tokens include portions of files, inodes, allocation maps,
and other metadata. GPFS supports the following lock modes for byte-range
lockable objects (files):

• Not-Locked

• Read-Only

• Exclusive-Write (conflicts with all other locks)

When multiple nodes of a parallel job open a file with write access, the first
task is given a Exclusive lock for bytes 0 to infinity. When the second task
requests write access, both will be granted a Exclusive lock, but the
associated byte range will be split among the two tasks. For instance, if the
first task is writing bytes 0-1023, and the second task is writing bytes
1024-2047, the first task will be granted a write token for bytes 0-1023, and
the second task will be granted a token for bytes 1024 to infinity when it first
accesses byte 1024.

Shared resources in multi-threaded parts of GPFS use locks to insure proper
synchronization.

Token management can be CPU and memory intensive. An appropriate node
should be selected to be the Token Manager Server. The Token Manager
Server is always located on the same node as the Stripe Group Manager.

1.4.4 Failure and recovery
Normal operation of GPFS depends on several factors:

• All nodes must be accessible via the switch.
GPFS architecture 39

The requirement that all nodes must be accessible via the switch comes
from token management and metanode requirements. If communications
across the switch fail from a node, mmfsd terminates normally on the node
so that it will not degrade the system.

GPFS utilizes Group Services, RS/6000 Cluster Technology, to report the
failure of nodes or the switch. If Group Services reports that the switch or
network has failed, applications performing file operations will fail, and the
error will be set to ENOTREADY or ESTALE.

It is also possible for TCP/IP to report an error. When this happens, GPFS
waits five minutes for Group Services to report the error. If Group Services
does report the problem, processing proceeds as described in the
preceding paragraph. If Group Services does not report an error, the error
is presumed to be on this node, and mmfsd does a cleanup and a forced
exit.

• The mmfsd is operating on every node.

When the mmfsd daemon fails, it is fenced off from using GPFS to insure
that a consistent state is reached within the file system. If the failure was
software, the SRC (mmfsd is started by the SRC) reaps the SIGCHLD and
immediately restarts the mmfsd daemon.

Whenever a node boots, it retrieves configuration information from the
SDR. The mmfsd daemon goes through a four phase process where votes
take place to ensure all nodes are recovering in step and correctly. If a
second failure occurs while recovery is proceeding, the voting cannot
continue. When this happens, the mmfsrec process will take action based
on the second failure.

• A retry protocol makes the VSD transport layer reliable.

The VSD transport layer is built on an unreliable IP datagram transport
protocol. The VSD layer recovers from lost or corrupted packets by an
exponential back off retry algorithm. A request may be tried multiple times.
Each time, the client waits twice as long as it did before the previous try.

• All disks make up the file systems are accessible.

Loss of access will cause the file system to be forcibly unmounted.

GPFS is able to utilize logging, Group Services, RVSD, and high availability
media technologies (disk mirroring, replication, and RAID) for recoverability
and availability. These are described in the following sections.
40 Sizing and Tuning GPFS

1.4.4.1 Logging and GPFS
When a GPFS node (non VSD server node) fails, GPFS automatically tries to
recover through the use of logs. Two copies of logs are kept in separate
failure groups to assist with recovery. Although data that is in memory will be
lost, the built-in recovery features ensure that data integrity is maintained
within the file systems.

1.4.4.2 Group Services and GPFS
As previously mentioned, GPFS is designed to utilize Group Services part of
the RS/6000 Cluster Technology (RSCT). Each GPFS node is a member in
the high availability infrastructure. Each node runs the hcd daemon, and a
membership list is maintained with the status of all nodes. These subsystems
utilize a heartbeat to detect failures. User tunable values (interval, sensitivity)
adjust the allowable time before a node is considered to have failed.

1.4.4.3 RVSD and GPFS
RVSD is normally used in conjunction with twin-tailed or loop cabling of the
SSA disk subsystem between nodes to give high availability for volume
groups and the associated VSDs. A twin-tailed configuration is one in which
each disk is connected to two nodes: A primary and a secondary. In the event
that the primary node fails, the secondary node takes ownership of the disks.
It provides an alternate path to the disk subsystems from the VSD server
nodes as shown in Figure 7 on page 24.

If the server node P fails, access to the data on all VSDs that it owns is lost.
In order to avoid this situation, Recoverable Virtual Shared Disk (RVSD) and
twin-tailed or loop cabling are implemented between Node P and Node S.

If you do not implement RVSD, and also do not have replicas, some disks in
the stripe group will not be available when a node is down. In this case, GPFS
will find that continuing the operation may compromise the integrity of the file
system, and it will force the unmount of the file system so that no one can use
it.

Normally, the VSD secondary node S does nothing with those VSDs that
belongs to node P. In fact, it cannot access them since they are being held in
use by the VSD node P, which is the primary.

RVSD provides protection against node failure by subscribing to Group
Services. When node P fails, RVSD will be informed by Group Services.
RVSD will have the VSD secondary server node S for each VSD perform the
necessary functions to ensure all VSDs on the failed Node P can still be
accessed by the clients.
GPFS architecture 41

This is achieved by having the VSD secondary server node S take over the
ownership of the disk subsystem, vary-on the volume group containing
rvsd_P, and make the VSD server node S become the server for those VSDs
while the primary Node P is unavailable as shown in Figure 12 on page 43.
Node S serves both rvsd_P and rvsd_S. Any I/O operation that was in
progress, and new I/O operations against rvsd_P from GPFS, are suspended
until failover is complete.

Thus, with RVSD, the disk subsystem becomes highly available since you
can have continuous access to the VSDs even when the VSD primary server
node P is down.

When node P is repaired and rebooted, RVSD switches the rvsd_P back to its
primary, node P.

RVSD is a prerequisite for GPFS even when you do not care about the high
availability of your file systems or do not plan to use any external disk
subsystem. This is because GPFS needs some command in RVSD, for
example, fencevsd and unfencevsd, that are necessary to ensure that the
integrity of the GPFS file system will not be compromised.

A two-phased protocol, which uses several scripts (vsd.UP1, vsd.UP2,
vsd.DOWN1, and vsd.DOWN2), is performed by the RVSD during failover
(see Figure 12 on page 43).
42 Sizing and Tuning GPFS

Figure 12. State transistions for RVSD recovery

1.4.4.4 Disk mirroring, replication, and RAID on GPFS
GPFS is able to utilize combinations of disk technologies designed to improve
reliability.

Disk mirroring

The highest performance for increased availability is through AIX disk
mirroring. This provides two or three copies of a logical volume. In the
event of a failure, the other copy is used. Mirroring is performed at the
lower layers of the I/O stack. Data is only sent through the switch once,
but mirroring requires three times as many I/Os as non-mirrored disks for
two-copy mirroring. If one VSD server goes down, availability to both
mirrored copies is lost if not twin-tailed. Mirroring also includes additional
cost for the added disk drives (100 percent additional cost for two-copy
mirroring).

P's VSD stopped
S's VSD stopped

P's VSD suspd
S's VSD stopped P's VSD active

S's VSD stopped

P does "vsd.UP1 P" P does "vsd.UP2 P"
P becomes primary

P's VSD active
S's VSD suspd

P does "vsd.UP2 S"
S does "vsd.UP2 S"
S becomes secondary

P fails
S becomes primary
S does "vsd.DOWN1 P"

P's VSD suspd
S's VSD active

P's VSD active
S's VSD active

P does "vsd.UP1 S"
S does "vsd.UP1 S"

P's VSD stopped
S's VSD active

S does "vsd.DOWN2 P"
S takes over P's VSDs

State Transistions
P is Primary Server, S is Secondary Server

P's VSD suspd
S's VSD active

P restarts
P does "vsd.UP1 P"
S does "vsd.UP1 P"

P does "vsd.UP2 P"
S does "vsd.UP2 P"
P resumes P's VSDs

Start Here
Assume:

P stopped
S stopped
GPFS architecture 43

Disk replication

GPFS permits two copies of objects marked for replication. The copies
may be established on a per file or per file system level (100 percent
additional cost for only those files that are replicated). With replication,
one copy is sent to one VSD server, and the other copy is sent to a second
VSD server (assuming that the failure group is defined with a different
VSD server). Therefore, communications is increased (travels over the
switch twice), but the workload is easier on the VSD server (only one I/O
performed per request). Replication is able to continue in the presence of
a single VSD server failure.

RAID

The lowest performance disk availability enhancement, but probably the
most inexpensive, is Redundant Arrays of Inexpensive Disks (RAID). A
typical GPFS RAID configuration uses four data disks and one parity disk
in a RAID-5 configuration. This means that each 256 KB write is spread
evenly among the five disks along with 64 KB of parity information, which
is also spread among the five disks (20 percent additional cost). If any
single disk fails, the missing data can be reconstructed from the parity
information spread out over the remaining disks. The parity information is
automatically generated by the SSA adapter, but there is a performance
penalty for writes. For instance, 6215 adapters (Campbell adapters) can
normally stream at 35 MB/sec, but they slow to around 20 MB/sec when
streaming to RAIDs. When one disk in a RAID set fails, the RAID set is
said to be in degraded mode. Writes and reads to a degraded RAID set
will incur an extra penalty. Finally, RAIDs are subject to Read-Modify-Write
cycles. If a write is smaller than the RAID stripe-width (typically 256 KB),
the adapter must calculate the parity for the entire stripe. To do this, it
must read the unmodified portion of the stripe, calculate a parity based on
the entire modified stripe, and write out the new portion of the block as
well as the new parity. Read-Modify-Write cycles, therefore, perform
several additional I/Os. For example, let us assume that we are using a
256 K GPFS blocksize and 7+p RAID. The RAID stripe width is 7 * 64K, or
448 K. The GPFS blocksize determines that GPFS will write information in
increments of 256 K. Since the RAID stripe width is 182 K larger than the
GPFS block size, this 182 K must be read in so that parity can be
computed on the modified raid stripe. Then, the modified parity and the
new data are written out. Read-modify-write cycles typically degrade
performance in the range of two to three times slower.
44 Sizing and Tuning GPFS

1.5 Positioning GPFS and other file systems

This section gives a high level view of how GPFS compares against other
popular types of file system. A summary is first given of several different file
system types. The key advantages and limitations of GPFS, as compared to
those file systems, is then drawn up in sections 1.5.2 and 1.5.3.

1.5.1 Comparison of GPFS with other file systems
There are several other file system types that are useful to compare GPFS
against. These are:

• The AIX Journaled File System (JFS)

• Sun’s Networked File System (NFS)

• The Open Software Foundations Distributed File system (DFS)

• The Andrew File System (AFS)

• IBMs Parallel I/O File System (PIOFS).

1.5.1.1 JFS
JFS is the default local file system used on IBM RS/6000 systems. JFS was
developed according to the BSD model but with the addition of a JFS log
used to track metadata changes. This log can significantly reduce the time
needed to verify or repair a file system.

JFS is not a distributed file system. Without NFS, JFS file systems can only
be accessed on the local nodes on which they have been configured.
Because JFS is a local file system only, it cannot be directly used for parallel
access from multiple nodes. Figure 13 demonstrates that, even in a
networked environment, a JFS file system data can only be accessed serially.

Perhaps the main advantage that JFS offers over distributed file systems is
that, because JFS operates on a local node only, it requires, by comparison,
only a few system resources.
GPFS architecture 45

Figure 13. JFS offers local access to data only

1.5.1.2 NFS
NFS was initially developed by Sun Microsystems in 1984 and has been
made available to other UNIX implementations. Today, it is undoubtedly the
most frequently used method for making local UNIX file systems available to
other nodes networked over TCP/IP. Remote nodes can access NFS served
file systems for either read or write access according to how the servers have
been configured.

NFS is the oldest distributed file system considered in this section. It is
extremely convenient to utilize, as NFS support is integrated into most UNIX
operating systems. NFS is very simple to set up when compared to the other
distributed file systems.

NFS V2 was made available in 1985, and the NFS V3 protocol was published
in 1995. Some of the advantages of NFS V3 over earlier releases are:

• Improved client write throughput
• Reduced server loading resulting in improved scalability and performance
• Increased support for ACLS
• NFS server support for large multi-gigabyte files

AIX V4.3 supports NFS V3. AIX also provides an NFS Version 2 client and
server and is, therefore, backward compatible with an existing install base of
NFS clients and servers.

Some of the drawbacks associated with NFS are:

Application
nodes

Application
nodes

LAN
46 Sizing and Tuning GPFS

Weak security
Historically, NFS is regarded as notoriously insecure. Although, today NFS
file systems can be configured to use a simple Unix-style authentication
mechanism, based on a list of trusted hosts, there is no built-in encrypted
user authentication mechanism. However, NFS can be configured to use
some of the securer authentication mechanisms, such as Kerberos or
Diffie-Hellman. NFS authorization facilities include Unix style authorization,
based on standard permission bits, or Access Control Lists. (ACLs). The
implementation of ACLS on an NFS server requires the client to also support
ACLs; otherwise, authorization falls back to the standard Unix style. Both
NFS Version 2 and NFS Version 3 servers support ACLs by virtue of
extensions that have been made outside of the NFS protocol.

Stale mount points
NFS has a tendency for client mount points to become stale. Frequently, this
results in commands, such as df, hanging when they attempt to access
remotely served file systems. Stale mount points are caused by the lack of
synchronization between server and client. The most common scenario is for
file systems to be unmounted on their server node, or for the server node to
be rebooted without a prior dismount of the file-systems by their respective
clients. Stale mount points can usually only be resolved by rebooting
individual client systems.

Stale metadata
NFS clients view of file system metadata is prone to being stale. This is due
to various inconsistencies that can develop between different clients’ view of
the file system.

Administration complexity
The ease with which NFS file systems can be served across the network
means that it is all to easy for NFS file systems to become nested across
multiple systems. The worst scenario is for application file system hierarchies
to evolve into a complex chain of NFS file systems exported from multiple
servers. The main reasons for this situation arising are lack of management
discipline and/or poor application design. This type of chaining can soon
become very difficult to manage and equally difficult to back track. NFS is
best constrained so that served file trees are not straddled across multiple
servers. This restriction does not apply to other distributed file systems.

Poor scalability
NFS does not scale very well for two reasons. First is the fact that when NFS
mount points are nested, the number of mount points increases according to
a square rule. This is illustrated in Figure 14.
GPFS architecture 47

Figure 14. The complexity of NFS mount points

The second reason why NFS file systems do not scale very well is due to the
reliability issues when NFS file systems are nested.

1.5.1.3 PIOFS
The IBM AIX Parallel I/O File System (PIOFS) was a predecessor to GPFS.
Like GPFS, PIOFS was IBM proprietary software directed at the SP market
only.

PIOFS was developed by IBM to provide fast and parallel access to large
temporary files on an IBM RS/6000 SP over the SP Switch. Although GPFS is
designed for the same operational environment, its use is not limited to
temporary files only. PIOFS was directed primarily towards scientific and
technical computing applications generating large amounts of temporary
data. The maximum supported file size under PIOFS was a theoretical 128
TB, which was considerably larger than the maximum currently supported by
GPFS.

PIOFS supports physical and logical partitioning of files. A file can be divided
physically over multiple disks and servers and logically into multiple subfiles.
These multiple subfiles enable data within a file to be viewed in different
ways. These ways of viewing the files’ data are termed subviews.
Applications can use this facility via PIOFS API calls within C and FORTRAN
environments. One limitation of PIOFS is that it does not support byte range
locking.

NFS client
Application

nodes

NFS Server nodes

LAN

Partitioned data
48 Sizing and Tuning GPFS

PIOFS offered a good level of performance, and it was recommended for
scratch storage. It was not designed to survive component failures. The
product was withdrawn from marketing in December 1998.

1.5.1.4 DFS
DFS was developed as part of the Open Software Foundation’s (OSF)
Distributed Computing environment (DCE). DFS is the DCE component, or
more correctly, the DCE application, that offers a distributed file system within
the context of the DCE infrastructure. DFS has evolved to a large extent from
the AFS file system.

DFS configuration is an order of magnitude more complex than any of the
other alternative file systems described in this section because it requires the
design and construction of a DCE cell and all of the associated DCE services.

DFS is a heterogeneous solution. It is not proprietary software and, hence, it
is not an SP only solution. Unlike GPFS, DFS has not been specifically tuned
to sequential access on large files. On the other hand, because GPFS has
been tuned this way and integrated with IBM SP PSSP and VSD software,
GPFS performance will be far better than DFS on the types of file and I/O
patterns it has been specifically designed for.

DFS is really not comparable to GPFS although it has some of the key
availability features of GPFS, such as replication. DFS is a distributed file
system designed for read-mostly applications.

In DFS, any nominated file can be served by its own individual server. This is
unlike NFS where servers operate at the file system or directory level only.
DFS, therefore, makes it possible to optimize performance where accesses to
specific individual files present an I/O bottleneck. On the other hand, it is not
possible to stripe a single DFS server across multiple nodes. This is one of
the key differences between DFS and GPFS. A GPFS file system can be
striped across multiple disks and multiple nodes. It is easy to see, therefore,
that a DFS server may soon become a performance and capacity bottleneck.
GPFS architecture 49

Figure 15. The DFS server bottleneck

1.5.1.5 Andrew File System
The Andrew File System (AFS) was initially developed at Carnegie Mellon
University and is directed towards centralized management of a distributed
file system across a campus type infrastructure.

One important advantage AFS has over NFS is that files can be accessed
with transparency of their location. Clients access a file by name and do not
need to know the address details of the node owning the disk on which the
file data is physically stored.

AFS overcomes the main security problems posed by NFS in that it uses
Kerberos for user authentication.

AFS supports advisory locking of an entire file but does not support byte
range locking within a file. This limitation may impact both the portability of an
application and the ease with which the applications data can be partitioned.

AFS and DFS are similar in architecture and offer many of the same benefits.
As one component of DCE, DFS is the logical file system of choice requiring a
tightly integrated DCE infrastructure for their applications. AFS represents a
convenient stepping stone to organizations requiring a heterogeneous
distributed file system without having to make a more profound commitment
to a complete DCE infrastructure.

DFS
Application

nodes

LAN

DFS
Server
nodes
50 Sizing and Tuning GPFS

1.5.1.6 File system comparison summary
Table 3 summarizes the features of the various file systems discussed in this
section.

Table 3. Comparison of file system features

* Read via replicas

1.5.2 GPFS advantages
This section summarizes the key advantages of GPFS as compared to the file
systems considered in 1.5.1.

1.5.2.1 Scalability
One of the prime advantages GPFS offers over other file system types is its
scalability.

GPFS file systems can be striped across multiple disks on multiple storage
nodes. This makes it very easy to scale GPFS file systems in terms of both
capacity and performance by adding additional nodes as VSD servers and
additional disk adapters and disks on VSD server nodes. This is in contrast to
NFS and DFS, which can only serve a file system from the viewpoint of a
single server.

VSD servers do not have to be dedicated but can, in fact, be a GPFS node
themselves. This means that client applications can take advantage of spare
CPU time on VSD servers. The merits of doing this will, of course, depend on
the application and its predicted resource requirements.

Feature JFS NFS AFS DFS PIOFS GPFS

Scalability N N N Y* Y Y

Parallelism N N N N Y Y

Cross-platform N Y Y Y N N

Replication N N Y Y* N Y

Large files/file-systems N By partitioning only Y Y

Security Y N Y Y Y Y

Failure Recovery N/A N Y Y N Y

Centralized administration N/A N N N Y Y

Byte range locking Y Y N Y N Y

Physical file system Y N N N N Y
GPFS architecture 51

GPFS grants a transparent access to all the data contained in a GPFS file
system. Once a GPFS node has mounted the file system, the entire data is
visible regardless of how many VSD servers have been configured to store
the data. This is in contrast to NFS, where each client node must mount
served file systems to form an aggregate whole.

With GPFS, it is possible for disks and nodes to be added or deleted from a
file system while the file system is mounted.

Figure 16. The scalability of GPFS

1.5.2.2 Performance
In terms of individual GPFS node to VSD server throughput, overall I/O
performance for one node will, of course, not be as great as would I/O to a
local JFS file system. Bigger block size will be better for GPFS performance.
However, the first area where GPFS really scores in terms of performance is
that the total aggregate I/O throughput for a multiple client application will
normally be far in excess of other solutions, such as NFS and DFS. This is
because the I/O bandwidth can be scaled across multiple VSD servers in
order to satisfy the aggregate performance that is required.

The second performance advantage of GPFS is that, because it is a parallel
file system, it allows multiple processes to access the same file
simultaneously for read and/or write access from different nodes. PIOFS is
the only other file system considered in this section that allows parallelism of
applications in this way. Applications need to be specifically developed to
take advantage of this parallelism, for example, by utilizing the MPI-I/O API.
However, please note that while GPFS fully supports advisory byte range
locking, PIOFS does not.

GPFS
Application

nodes

disk pool

SP-2
switch

VSD
servers
52 Sizing and Tuning GPFS

Another important performance consideration is that the write I/O of new data
blocks is automatically balanced across all disks within the file system. This is
due to GPFS’ striping algorithm that functions transparently with use of the
file system. Traditional local or distributed file systems are far more localized
in terms of data placement, which greatly increases the risks of loading
imbalances or performance bottlenecks.

Where it is efficient to do so, GPFS automatically invokes read prefetch and
write behind algorithms. The algorithms are automatically invoked when
GPFS detects that sequential I/O to a file is being performed. This greatly
improves performance for applications that do intensive sequential read and
write operations.

1.5.2.3 Capacity
GPFS permits file systems to be configured with much larger sizes than
traditional file systems, such as JFS. As discussed in this section, these file
systems are usually configured transparently across multiple disks and VSD
servers. The precise maximum file system limits depend on a number of
factors that the file system is configured with. For example, with a file system
block size of 64 KB, an indirect block size of 16 KB and i-node size of 1 KB,
the maximum file system size would be just under 70 GB. For the same file
system, the maximum permitted file size would be 26.1 GB with replication.

There is an effective supported limit of 5 TB on the maximum file system for
GPFS 1.2. File systems greater than 5 TB in size are not supported by IBM
service. Note: This limit was 1 TB in GPFS V1.1.

For more information on the maximum permitted size for GPFS file systems,
please refer to Chapter 2 of GPFS: A Parallel File System, SG24-5165.

1.5.2.4 Availability
GPFS supports three methods of extended data availability that should be
considered according to individual requirements and cost restraints. These
are:

• AIX LVM mirroring

• RAID-1 or RAID-5 disk arrays

• GPFS replication

GPFS replication facility permits multiple copies of a file or file system to be
maintained automatically. The file system replication factor determines the
number of copies it is required to store and may be set for individual files or
for the entire file system. Replication is the simplest of the three options to
GPFS architecture 53

configure but has the greatest performance impact. Refer to 1.4.4, “Failure
and recovery” on page 39 for details.

Like JFS, GPFS is also a logging file system. Logs are maintained for each
GPFS node, which permit the fast recovery of data in the event of node
failure. GPFS uses a token mechanism as an internal mechanism for insuring
that data and metadata are consistent and correct.

GPFS supports an automount facility, which means that file systems can be
configured to be mounted automatically when the GPFS daemons are
successfully started. This increases the overall availability of the GPFS
environment.

1.5.2.5 Simplified administration
GPFS administration is distributed in that a single administration command
can be executed on one particular node so that it is also effective on all other
GPFS nodes.

With GPFS, a single mount command makes it possible to gain access to the
entire file system, no matter how many VSD servers it is configured over and
whatever its size is. This makes it very easy to move the execution of
applications to different nodes. This is in contrast to file systems, such as
NFS, where a very large file system may be partitioned across several
different server nodes. If there are n GPFS nodes in an application
environment, then it takes only n mounts to make the GPFS file system
available to all nodes no matter how many VSD servers support the file
system. By contrast, if there are m NFS servers supporting a partitioned file
system, it would take n*m NFS mounts to make the aggregate data available
to all nodes.

1.5.3 GPFS limitations

1.5.3.1 Hardware environment
Today, GPFS is only supported within an IBM SP environment. File system
communications between GPFS nodes and VSD servers functions are limited
to the SP Switch only. This is because only the switch can deliver the
bandwidth needed for a scalable parallel file system. Although it is possible to
export GPFS file systems over NFS, GPFS is not a heterogeneous solution.
This is in contrast to the NFS, DFS, and AFS file systems considered in this
chapter.

1.5.3.2 Reliability issues
There are currently no flow control facilities in GPFS. An application issues its
write requests to GPFS asynchronously, meaning that once the write has
54 Sizing and Tuning GPFS

copied the data to the GPFS pagepool, the application will continue
processing as if the write had completed. In a sense, this is analogous to
most UNIX file system I/O, as modified file system data is typically buffered in
free memory until such time that it is physically flushed out to disk by the
system’s update daemon. However, the additional dependencies on the
layers of VSD software increase the risk of reliability problems.

During the course of writing this redbook, it was discovered that if certain
disks out perform others on a VSD server, the I/O requests to the slower
disks may queue back up the VSD subsystem. Because these requests are
normally issued on a round-robin or balanced random algorithm, a backlog is
likely to form whenever there is a performance imbalance such as this and
there is heavy application I/O. As the requests to the slower disk continue to
queue up, a point may be reached where the VSD client attempts a repeat of
the complete I/O request even though that request is still pending in the
queue. This can result in an eventual time-out of the VSD sub-system and a
device not ready error for the entire GPFS file system. (In the situation quoted
above, the disks were, in fact, all compatible in terms of their specification but
were different models of the same drive.) We recommend to configure GPFS
file systems with disks of similar performance to avoid this problem.

1.5.3.3 Installation issues
An installation of VSD and GPFS software is not a turnkey process. The initial
installation and configuration of VSD servers can be complex, as can an
initial installation of GPFS. One particular trouble spot that often causes
problems is the fact that it is necessary to set up a dummy IBM Virtual Shared
Disk before a virgin GPFS configuration will complete successfully.

1.5.3.4 Performance constraints
The performance of GPFS depends greatly on specific application I/O
patterns. Random access applications will, in general, require more overhead
than sequential access because GPFS can not predict the access pattern
and do prefetch. The application block size is also another issue. Applications
performing intense small rewrites will not work efficiently under GPFS
because updates require a read of the existing state of the remainder of the
block.

Please refer to Chapter 2, “Application considerations” on page 57 for more
details on GPFS and application considerations.

1.5.3.5 Memory mapped files
Memory mapped files are not currently supported on GPFS file systems.
GPFS architecture 55

1.5.3.6 File system primitives
The stat() function is not fully supported, and mtime, atime and ctime returned
from the stat() system call may be updated slowly if the file has recently been
updated on another node.
56 Sizing and Tuning GPFS

Chapter 2. Application considerations

Before GPFS can be properly sized or tuned for a specific environment, it is
essential that the I/O behavior for the applications that make up that
environment are fully understood. This chapter highlights the key application
I/O issues for the GPFS implementor.

The degree to which the I/O behavior of applications can be analyzed and/or
customized towards GPFS will depend on a quality set of documentation
and/or access to source code or resource to a specific support department.
When assessing the suitability of applications for which there is no source
code, or legacy applications for which there is no sufficient technical
documentation, it may be necessary to first undertake a detailed performance
analysis to assess the applications key I/O characteristics.

2.1 GPFS application block Size

GPFS originated from a file system designed for multi-media,
video-streaming applications. By its very nature, GPFS is, therefore,
particularly appropriate for sequential file access within large files.

In GPFS 1.2, GPFS file systems can be configured with one of three block
sizes. These are 16 KB, 64 KB, and 256 KB. Selection of an optimal block
size for a GPFS file system depends on other factors than the application
block size itself. However, it is easy to see that:

• Applications that have I/O buffers the same size as the GPFS block size
will have an optimal block size in respect of its interface to GPFS.

• Applications and file systems that are both configured for 256 KB block
sizes will outperform those configured for 16 KB and 64 KB block sizes.

Applications rewriting in buffer sizes smaller than the file system block size
will incur an additional overhead than if they had written an entire file system
block. This is because the new data must be merged into an existing file
system block, therefore, requiring that entire block to first be retrieved from
disk. Subsequent writes of the same block will not cause the block to be
again reread from disk unless it has, in the interim, been modified by another
node. This is true for rewrites that are not sector aligned. If the rewrite is
sector aligned, then the data is written to the block, and the rest is mark as
invalid.

Applications reading in buffer sizes smaller than the file system block size
will, in fact, exhibit similar performance as if they had read an entire file
© Copyright IBM Corp. 1999 57

system block because of the read ahead performed by GPFS. In fact,
performance will be slightly worse than this because of the CPU incurred in
extracting and returning the smaller buffer to the application.

Many applications that are being considered for GPFS will be well suited to
25 KB application buffers. These are the type of applications based around
large data file accessed with sequential read and writes. Some applications,
however, may not be well suited to such large buffering. For these, there is
the option of either 16 KB or 64 KB buffering. 16 KB might typically be used
for random and small I/O buffering or for applications requiring access to a
large number of relatively small files. A 16 KB setting optimizes the use of
disk storage at the expense of data transfers while 64 KB offers a
compromise between file system efficiency and speed of access. Whatever
the final decision is from the application point of view, performance will be
optimized if the GPFS file system block size is set to match the application
buffer size.

2.2 GPFS application performance

It is recommended that, wherever possible, applications take advantage of
the st_blksize member of the POSIX stat structure. This item returns the size
of the file system. Applications can use this item to scale the size of their read
and write buffers to match that of the host file system, thereby, ensuring
portability if the application data is moved between different GPFS file
systems. This argument is equally valid in the situation that portability is also
required between JFS and GPFS file systems.

2.3 GPFS application I/O

This section reviews basic file and file system I/O patterns and how these can
be exploited within GPFS.

2.3.1 Sequential and random application I/O
Application I/O may either be primarily sequential or random in nature.
Sequential I/O involves the reading and writing of consecutive logical blocks,
where the individual block size may either be fixed or variable. Random I/O
involves the reading and writing of blocks from random points within a file.
Again, the block size may either be fixed or variable. This is illustrated in
Figure 17.
58 Sizing and Tuning GPFS

Figure 17. Comparing sequential and random I/O

There are important differences in the performance characteristics of
sequential and random GPFS applications, which are considered in section
2.3.3.

2.3.2 Serial and parallel file system I/O
As well as the specific file access methods an application uses, I/O access
can also be considered at the system level to be serial or parallel. Serial I/O
relates to multiple nodes reading or writing to logically distinct sections of the
same file or physically distinct files. This is a typical JFS type scenario. With
parallel I/O, multiple nodes can access the same file, or the same regions of a
file, simultaneously. This is a typical GPFS scenario. Figure 18 and Figure 19
illustrate the differences between serial and parallel I/O.

Figure 18. Comparing serial and parallel I/O

File

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

3

1

7

5

0

4

2

6

Random
retrieval

Sequential
retrieval

Disk1 Disk2 Disk3 Disk4
Application considerations 59

Figure 19. Parallel file system I/O

On a parallel file system, I/O can be further subdivided into different access
patterns. These are parallel sequential, parallel random, and parallel strided.
Refer to 2.4, “Data partitioning” on page 61 for further details on data
partitioning.

2.3.3 Application I/O patterns and GPFS
Applications whose I/O is primarily random are not as well suited to the GPFS
file system as those that do sequential I/O. Random reads on a file will
function much slower than sequential because GPFS cannot know how to
prefetch the data. This requires that the read I/O has to be synchronous,
meaning the read cannot commence until the application specifically requests
it.

Random writes to a file in buffers the size of the GPFS file system block size
will see a performance similar to sequential writes as long as sufficient
pagepool has been allocated. As with sequential writes of short buffers, short
random writes will incur the same overhead in terms of the requirement to
fetch an original file system block and merge into it the modified buffer.

In the tests that were performed during the course of writing this redbook,
applications performing intense random I/O were seen to be extremely slow
on the GPFS file system. GPFS may not be the best choice of file system for
such applications. Refer to Chapter 6, “Test results” on page 199 for further
details.

VSD
Servers

Disk1 Disk2 Disk3 Disk4

Application
Nodes
60 Sizing and Tuning GPFS

2.3.4 Exploiting GPFS read prefetch and write behind
GPFS has an internal prefetch algorithm that recognizes sequential I/O read
patterns. Applications that make sequential accesses and, therefore, avoid
seeks, get the best performance from GPFS. For strided I/O patterns, the use
of MPI-I/O should be considered. This permits separate logical views of a file
to be created and allows the separate logical views of the data to be
separated from the physical disk access to retrieve the data. In this way,
MPI-I/O can utilize parallel read operations to read along the logical views,
thereby, taking advantage of the GPFS read prefetch buffering.

If the use of MPI-I/O is not desired, but it is required to perform a striding I/O
pattern, there is another option. This is to open the file multiple times and to
perform sequential reads from each file handle. The downside to this is that it
is then up to the application to handle the coordination of read request to the
separate file handles. Since the read ahead algorithm is based on file
descriptors, having the same file opened multiple times makes GPFS think
that the reads on each file descriptor are sequential; so, it turn on read
prefetch.

Exactly the same considerations apply to sequential writes.

2.4 Data partitioning

For many parallel applications, data must be written from multiple tasks that
are potentially on multiple nodes to secondary storage. Data partitioning
refers to the mapping of bytes from memory to one or more files. The two
primary questions that the application programmer faces when doing data
partitioning are how to define the intra-file mapping and whether or not
multiple files should be used. In this section, we discuss these issues with
respect to GPFS.

2.4.1 Round-robin or segmented?
The two most prevalent ways of doing intra-file mapping are Round-Robin
and Segmented data partitioning. Let us assume that we have an application
with four tasks, and each task is performing a calculation that results in one
GB of state that is to be committed to secondary storage, and that the
application runs until the state is refined four times. The information written
from each task is 4 GB (one GB four times), and the aggregate information for
all four tasks is 16 GB. Round-Robin partitioning (also known as strided
partitioning) would write the information in the following way: task0_firstGB,
task1_firstGB, task2_firstGB, task3_firstGB, task0_secondGB,
task1_second_GB, task3_fourthGB. On the other hand, a Segmented
Application considerations 61

partitioning would partition the file as follows: task0_firstGB,
task0_secondGB, task0_thirdGB, task0_fourthGB, task1_firstGB,
task1_secondGB, task3_fourthGB. The following figures illustrates both
patterns.

Figure 20. Segmented and round-robin file layouts

GPFS prefers segmented partitioning. This is because it results in sequential
access for each task, therefore, permitting read-ahead (prefetch) strategies
on reads and write-behind strategies on writing. For reads and writes much
smaller than the GPFS blocksize (usually 256 KB), the performance
difference can be significant especially for Round-Robin partitioning. For
reads and writes much larger than the GPFS blocksize, the performance
difference will be negligible (see also 2.5.2, “Local to global transformations”
on page 66).

2.4.2 One file or multiple files?
A second data partitioning issue is how many files should be utilized. The
primary GPFS factor involved here is the metadata updates to the directory
block. When a new file is opened, GPFS updates the metadata in the
directory block. Like other disk objects, a node must acquire a write token to
update this metadata. Therefore, if the application has 1024 tasks that all
wish to open a file in the same directory at the same time, a significant
overhead for token acquisition will result.

node 0 node 1 node 2 node 3

round-robin file layout

segmented file layout
62 Sizing and Tuning GPFS

If multiple files within the same directory are desired, one process should
create all the files and then close them. Then, after one node has made all
the changes to the directory block, other nodes can open the files for
updates.

A second way to avoid the directory block contention problem is by using only
one file. In this scheme, the application programmer must decide on an
intra-file data partitioning scheme (see 2.4.1, “Round-robin or segmented?”
on page 61).

Another factor that should be considered when choosing between one file
and many files is convenience. If the files are to be post-processed, can the
post-processing software work with a portion of the data? Will the user be
required to keep track of thousands of files? Convenience issues may
ultimately decide which partitioning scheme is used.

2.4.3 Using files larger than two gigabytes
Beginning in AIX Version 4.2, the operating system allows files that are larger
than 2 gigabytes (2 GB). The AIX file system programming interfaces
generally revolve around the off_t data type. In AIX Version 4.1, the off_t data
type was defined as a signed 32-bit integer. As a result, the maximum file size
that these interfaces would allow was 2 gigabytes minus 1. Beginning with
AIX Version 4.2, the operating system provides two different ways for
applications to be enabled for large-file access. Application programmers
must decide which approach best suits their needs.

The first approach is to define _LARGE_FILES, which carefully redefines all
of the relevant data types, structures, and subroutine names to their large-file
enabled counterparts. Defining _LARGE_FILES has the advantage of
maximizing application portability to other platforms since the application is
still written to the normal POSIX and XPG interfaces. It has the disadvantage
of creating some ambiguity in the code since the size of the various data
items is not obvious from looking at the code. You can use sizeof(off_t) to
determine the size of the datatype.

The second approach is to recode the application to call the large-file enabled
subroutines explicitly. For instance, instead of using lseek(), one would use
lseek64(). Recoding the application has the obvious disadvantages of
requiring more effort and reducing application portability. It can be used when
the redefinition effect of _LARGE_FILES would have a considerable negative
impact on the program or when it is desirable to convert only a very small
portion of the program.
Application considerations 63

It is very important to understand that, in either case, the application program
MUST be carefully audited to ensure correct behavior in the new
environment.

2.5 MPI-IO and GPFS

Message Passing Interface (MPI) libraries are a popular way of designing
parallel applications. MPI is a standard for a message passing programming
paradigm (contrast shared memory programming paradigm). As a standard, it
should not be confused with any particular implementation. In fact, IBM has a
supported MPI library designed and optimized for the SP series of machines.

Recently, the MPI standard was expanded at the request of the MPI user
community. Among the new features of the revised MPI standard is a new
chapter for parallel I/O commonly called MPI-IO. This version of the standard
is called MPI2.

A full description of the capabilities of MPI-IO is beyond the scope of this
section. What follows is a brief introduction to MPI-IO.

2.5.1 About MPI-IO
Any parallel I/O library requires several capabilities: (1) the capability to
define the group of tasks that will take part in a collective operation. (In
message passing parlance, an operation is said to be collective if more than
one task participates in it and independent if only one task participates in it.)
(2) synchronization primitives, such as barriers, (3) the capability to define
derived datatypes, (4) the capability to transfer information between tasks on
possibly remote nodes. People designing parallel I/O libraries immediately
noticed that MPI already had all of this machinery. Furthermore, writing some
bytes to a file is similar to sending a message, and reading some bytes from a
file is similar to receiving a message. With this in mind, MPI was expanded to
include MPI-IO in MPI2.

The basic unit within any MPI file is a file type. It is simply the template of
where data will be placed for each read and write (file type should not be
confused with the familiar concept of a document type, such as a text
document or a binary document, and so on). The file type may consists of
some number of atomic types (for example, floats or integers) or more
complicated derived types built up from combinations of derived types. Each
task has its own file type definition. A typical file type definition for a four-task
application would define 1/4th the file type as in use and 3/4ths as void. This
way, the file types of all four tasks, when merged, completely define all of the
64 Sizing and Tuning GPFS

bytes within the file type. The void portion of a file type is termed a hole in
MPI-IO terms.

Figure 21. MPI-IO file types

An MPI file consists of an initial offset and then an infinite tiling of file types.
Together, the initial offset and the file type define the file view for each task.

Figure 22. How an entire MPI-IO view is formed with file types

After a file is opened and a view is set, parallel I/O libraries can avoid much of
the overhead of managing consistency conflicts. The view is able to specify
that, although multiple nodes are writing to the same file, they never write to
the same location.

Filetypes consist of:
LB (lower bound)
One or more datatypes (int, float, ...)
May have unused areas
UB (upper bound)

LB UBUnused
Area

Data

float int int

Unused
Area

A View is a displacement followed by filetypes.
Unused areas prevent conflicts among tasks:

task 0:

task 1:

task 2:

task 3:

displacement filetype (repeats to end of file)
Application considerations 65

2.5.2 Local to global transformations
File systems perform better with large reads and large writes. Many
applications coalesce data to form structures that are contiguous and large.
MPI-IO also has the ability to coalesce data and optimize writes. The
question then becomes: At what layer should local to global transformations
occur?

Unfortunately, there is no clear cut answer for this important question.
Factors to consider are the maturity of the MPI-IO implementation, how
efficiently coalescing can be performed at layers above MPI-IO, and how
small the un-coalesced objects are.

As a rule of thumb, it is better to let lower layers perform as much work as
possible because they have more knowledge of the actual workings of the file
system. This assumes that adequate semantic knowledge of the problem can
be propagated down to MPI-IO or lower libraries. That is, the view should
define a contiguous item if all file types are present.

2.5.3 Application buffering
Many older applications that are I/O intensive have their own caching scheme
implemented at the application level. However, since GPFS is also
performing caching, any work done at the application level may actually be
detrimental. For this reason, application or library caching above the GPFS
level is deceptively tricky and should be avoided without a thorough analysis.

2.5.4 Hints support
MPI-IO defines a mechanism for specifying optimization parameters in a
portable way. For instance, if the application is able to supply information to
the file system that will enable it to be more effective with its prefetch
algorithm, or when to release old blocks, better performance can result.

At present, GPFS ignores all hints. However, it is a good idea to provide hint
information anyway since they will not hurt performance, and future versions
of GPFS and IBM MPI may be able to make use of them.

2.6 On designing other I/O libraries with GPFS

Just as software libraries have been developed to export functionality in
mathematics, message passing, and so on, a number of libraries have been
developed for I/O. This section provides guidance for the I/O library
developer.
66 Sizing and Tuning GPFS

2.6.1 Portability concerns
The application programming interface (API) to GPFS is POSIX; no
GPFS-specific system calls are needed or provided. This means that
applications using standard POSIX functions will run on GPFS without
modification or recompilation. Several common non-POSIX functions are not
provided with GPFS 1.2: mmap, munmap, and msync. In addition, since the
atime/mtime/ctime information is maintained in a distributed manner (for
performance reasons), some time is required before the most up-to-date
information on an actively changing file is available to all nodes.

I/O libraries intended for use on parallel machines may wish to consider
writing to the MPI-IO library (see Figure 23). As a parallel I/O standard,
MPI-IO is expected to provide portability and high performance.

Figure 23. Diagram showing I/O library layers

2.6.2 Exposing GPFS internals
GPFS exports only one special ioctl system call for preallocation, which is
documented in General Parallel File System for AIX: Installation and
Administration Guide, SA22-7278. In this respect, it is different than PIOFS.
All file system tunables (see Chapter 4, “Tuning GPFS” on page 101) are
adjusted through system administrator utilities.

Likewise, GPFS does not export any non-POSIX internal data structures.

Application layer

Custom I/O Library layer

MPI-IO layer

GPFS layer
Application considerations 67

2.6.3 Threads, signals, and communication issues
GPFS is a thread-safe AIX threads implementation. That is, library
developers do not need to be concerned with thread conflicts or scheduling
problems when running on GPFS.

GPFS does not capture any additional signals. In particular, SIGUSR1 and
SIGUSR2 are available for upper libraries. Signals are not recommended for
message passing or shared memory programs and libraries.

Communications over the SP Switch adapter occur over one of six windows.
One window is used for IP communications; one window is used by AIX for
internal system communications; and four additional communication windows
are available for applications using User Space (US) protocols, (see Figure
24).

Figure 24. Adapter communication windows

Since IP permits multiple sessions over the same window, multiple
applications can concurrently use the IP window. GPFS uses IP over the
switch for data management and synchronization, which means that the IP
window and all four the US adapter windows are available to applications
when GPFS is used.

Real UID

Job ID

SW Port Window
ID

SW Port Window
ID

SW Port Window
IDSW Port Window
ID

Real UID

Job ID

SW Port Window ID

SW Port Window ID

SW Port Window ID

SW Port Window ID

Real UID

Job ID

SW Port Window ID

SW Port Window ID

SW Port Window ID

SW Port Window ID

Real UID

Job ID

SW Port Window
ID

SW Port Window
ID

SW Port Window
IDSW Port Window
ID

Socket Layer

0 1 2 3
Adapter Windows

IP Serv

User Space

IP

TCP UDP VSD

IF_LS Interface
(Device Driver)

MBUF

DMA
FIFO

Switch Window Tables
(Microcode)

Process Address Space

Load/Unload
Switch Table API

Job Switch Resource Tables (JSRT)

DMA
FIFO

User Data

Window
IDs

R eal U ID

Jo bI D

SWP or t Wi ndow
I D

SWP or t Wi ndow
I D

SWP or t Wi ndow
I D

SWP or t Wi ndow
I D

R eal U ID

Job ID

SW Po rt Windo w
ID

SW Po rt Windo w
ID

SW Po rt Windo w
ID

SW Po rt Windo w
ID

R eal U ID

Jo bI D

SW Por t Wi ndow
I D

SW Por t Wi ndow
I D

SW Por t Wi ndow
I D

SW Por t Wi ndow
I D

R eal U ID

Job ID

SW Por t Wi ndo w
ID

SW Por t Wi ndo w
ID

SW Por t Wi ndo w
ID

SW Por t Wi ndo w
ID

User Space

Kernel Space
68 Sizing and Tuning GPFS

2.7 Analyzing an applications I/O

Several tools are available for monitoring and analyzing application I/O
patterns.

2.7.1 AIX trace
AIX provides a tracing mechanism that is capable of providing extensive
information on a specific application’s I/O patterns. The utility is turned on a
given node by a privileged user. Immediately, it begins capturing user
specified information into memory.

2.7.2 Pablo
The Pablo research group at the University of Illinois at Urbana-Champaign
has developed a variety of software tools for performance analysis and
optimization of parallel and distributed systems. The resulting software
distributions are intended primarily for academic and government research
sites. Included in the tools are libraries that produce I/O traces and post-
mortem tools that analyze the traces. You may freely retrieve, use, and
modify the Pablo software as long as it is not for commercial gain. For more
information, see:
http://www-pablo.cs.uiuc.edu

2.7.3 Monitoring file system activity
A number of tools exist for analyzing all activity on the file system. Care must
be exercised when using this approach to assess a single application since
the results of all applications running on the file system are reported. Still, this
can be an effective technique. See 4.2.1, “Monitoring at the server” on page
135, and section 4.2.2, “Monitoring at the client” on page 144 for further
details on this approach.
Application considerations 69

70 Sizing and Tuning GPFS

Chapter 3. Sizing GPFS

This chapter considers both the concepts and the recommended steps in
planning and sizing a GPFS file system. This chapter approaches the subject
from the point of view of someone who already has a specific performance
requirement. Therefore, this chapter will guide the reader through the
important decisions that have to be considered on the road to achieving a
detailed GPFS configuration.

This chapter also focuses on these steps necessary to transform a known file
system specification into a practical GPFS configuration.

3.1 Sizing concepts

Sizing, in concept, is very simple. Through sizing, you want to know what
configuration will best fit your application requirements. Performance and
efficiency are a given since most people would want to have the best
performance at the lowest cost possible. But what about availability? Are you
considering this when designing your GPFS configuration?

If availability and recoverability are issues in your application requirements,
they have to be consider in the sizing exercise, and there is eventually a
trade-off between performance, cost, availability, and recoverability.

There are two scenarios where sizing will most likely be executed. The first
scenario is when sizing is done at the planning phase of an implementation.
In this phase, there is some freedom to choose from different hardware
configurations given a predetermine cost range and hardware limitations.

The second scenario is an existing configuration where GPFS is to be
implemented. This scenario is quite common among RS/6000 SP
installations since GPFS offers many benefits that existing customers would
like to take advantage of.

Although both scenarios are perfectly valid, we will concentrate on the first
one, when sizing is done at the planning phase, since this gives us more
room and flexibility for theory and examples. If you are interested in the
second scenario, you can always modify and adjust the assumptions made in
this section to fit your own environment.

There are different approaches to the sizing problem if you consider sizing
during the planning phase instead of sizing for an existing system. On an
existing system, the most important question to answer is: How much can one
© Copyright IBM Corp. 1999 71

get from GPFS in my current configuration? This means that, given the
amount of resources that you can allocate to GPFS, you would like to know
how much data can be driven by GPFS. For this scenario, you may be
restricted in terms of additional hardware and changes in the configuration
itself; so, you would probably benefit more from a tuning methodology than
from sizing concepts. However, sizing an existing configuration will give you
the opportunity to check your current implementation against a configuration
calculated in terms of your application’s requirements.

If you are planning to implement GPFS for a given application, and you are
wondering how much resources you will need in order to meet your
application’s requirements, then sizing should give you a good set of
parameters so that you can balance between performance, cost, availability,
and recoverability.

Any sizing exercise for a GPFS implementation should consider at least three
important components:

• Data

• Metadata

• Disk servers

These three components of a GPFS implementation should be evaluated and
configured considering the following factors:

• Performance

• Cost

• Availability

• Recoverability

The following sections provide in-depth discussions of the trade-off and
considerations against these factors when sizing GPFS.

3.1.1 Data
Applications have different requirements about how data should be made
available. GPFS and the underlying VSD technology and AIX provide several
alternatives for data management. To select an alternative, you need to first
address several issues.

The first requirement for data access you should consider is size. This is:
How much data does my application have or produce? This will give you an
initial pointer to other questions, such as: How many disk should I use? Or:
How many servers do I need?
72 Sizing and Tuning GPFS

The data size will influence the decision for availability and recoverability as
well as performance. Cost will probably be your limiting factor; so, let us
consider space requirements first.

3.1.1.1 Space considerations for data storage
You should get a fairly good estimate in terms of data size from your
application. Consider the amount of data required for your application and
also the importance of this data. For example, determine if the data will be
produced by the application, and the file system will be used as a dump area
(stage area), or if the data will be downloaded to GPFS so that the application
will just require access to it.

Will GPFS be a working file system? Or, is it going to be a repository for
data?

The answer to these two questions will give you an idea about how much
space your application will need. If GPFS will be a working file system, then
you may have to double the amount of data required by the application
assuming that temporary data will be placed in GPFS.

Assuming that, somehow, you have determined the amount of data you will
put into GPFS, the next question is: Should I put that data in a single GPFS
file system? Or, should I create several file systems?

Single file system versus multiple file systems
Although GPFS gives you the ability to create multiple file systems, you
should not use the same logic as you do when creating local (JFS) file
systems. Keeping multiple smaller file systems may seem to be a better
choice when it comes to recovering a file system (think how much time would
it take to run a file system check over a 5 TB file system); however, the
rationale for GPFS is different than for other file systems.

A GPFS file system has a Stripe Group Manager (SGM) and a Token
Manager (TM) assigned by the Configuration Manager (CM) when the file
system is created. The file system is created over a set of VSD disks, which,
instead, are served by VSD server nodes.

When an application on a node writes to a file within the file system, and
assuming that the write will required additional data blocks to be appended to
that file, the GPFS daemon running on that node will use the allocation maps
(locally available) and communicate with the SGM to allocate the required
blocks. In a single file system, this implies that the requirements over the
SGM will be higher than having multiple file systems, thus, multiple SGM, to
manage the same number of requirements.
Sizing GPFS 73

Token management is another factor to consider. Since all requirements for
access to a file within a file system are handled by the Token Manager;
multiple requirements, even non-overlapping file requests, will impose a
higher demand over the Token Manager compared to the situation where
multiple file systems, meaning multiple Token Managers, could manage those
requirements.

However, multiple file systems have a shortcoming that needs to be
addressed too. Given that there probably is a fixed number of disks allocated
to data (physical disks), and assuming that each physical disk contains a
single VSD disk (GPFS will configure one VSD disk per physical disk. If more
than one VSD disk per physical disk is required, it has to be done manually),
multiple file systems imply less number of disks per file system, which
translates into less raw bandwidth available for I/O operations.

So, the answer to single file system versus multiple file systems should
consider all these factors. Recoverability implies that you should create
smaller file systems, therefore, reducing the time needed to recover a single
file system. Performance implications tell you to maximize the number of
disks (total I/O bandwidth), which implies bigger file systems, thus, less
numbers of them. For methodology and examples on sizing factors, refer to
3.2, “Sizing methodology” on page 85.

Storage options
Once you have determined the amount of disk that your application requires,
you need to select the appropriated storage option. GPFS, along with VSD
and AIX, offers several alternatives for storing data. These alternatives are:

• Plain (JBOD)

• Replication

• Mirroring

• RAID-5

Each one of these alternatives offer a trade-off between performance, cost,
availability, and recoverability. The selection of one over the others will
depend on performance and your cost limitations. Let us analyze the
alternatives.

Plain (JBOD) — This alternative is the cheapest and simplest of all others. It
offers the best performance and disk utilization. However, it does not offer
data protection. If one of the disks fails, then some data will be lost with no
possibility of recovery. Use this alternative when the data stored in GPFS can
74 Sizing and Tuning GPFS

be regenerated; so, GPFS is just a working area (or stage area). If your data
is unique and critical, then this option is not recommended.

Replication — This alternative gives you some degree of recoverability since
GPFS makes additional copies of your data and metadata and stores them in
different disks and servers (known as Failure Groups). GPFS allows you to
use replication at file level; so, there is not need to replicate an entire file
system (doubling the disk space required) but only those files that contain
critical data. Although the cost of implementing this alternative may be the
lowest of all other alternatives that offer some degree of data protection, the
performance penalties must be considered. Since replication is done at
GPFS level, each write will be translated into two writes to the VSD servers.
This implies that traffic coming out from the GPFS node towards the VSD
servers will double, therefore, increasing the total bandwidth required on the
node as well as on the SP Switch. If an application writes 20 MB/sec over a
file that is replicated, then the I/O bandwidth requirements on that node will
be double (40 MB/sec) since the GPFS daemon on that node will have to
copy the data and metadata twice on different failures groups.

Mirroring — This is an excellent alternative if cost is not your limiting factor.
Mirroring offers the easiest way to provide a good degree of recoverability at
an extremely high cost. You will need to double the space requirements in
order to implement this alternative. Since mirroring is done at the Logical
Volume (LV) level, you need to mirror each VSD disk. Performance is also
affected by mirroring. Although, mirroring is transparent to GPFS and VSD,
the I/O requirements at the VSD server side are higher since one write on a
particular VSD disk will involve two writes over the same I/O bus. Let us say
that a VSD server receives a constant stream of data (10 MB/sec) for VSD
disks that are mirrored. Assuming the best case, where each mirror copy is
connected to a different adapter, then the I/O requirements will be 10 MB/sec
in each adapter, which implies 20 MB/sec that the server has to handle for
that particular stream of data.

RAID-5 — This is probably the alternative that offers the best mix between
performance, recoverability, and cost. RAID-5 is done at the adapter level; so,
the I/O requirements for a particular VSD server are not higher than the
JBOD alternative. However, there are disk utilization and performance issues
that need to be considered. Since RAID-5 is based on parity, not all the disk
space will be available for data. Considering the popular 4+P (four data disks
plus one parity disk), 20 percent of the disks have to be dedicated to store
the parity. Performance in RAID-5 is worse than JBOD since the adapter has
to calculate the parity before writing the data to disk. Besides, data block size
is key to good RAID-5 performance. Since the adapter stripes the data across
all data disks (four disks in case of 4+P), it uses a fix stripe size of 64 KB,
Sizing GPFS 75

which implies that in a 4+P configuration, 256 KB block size for a write is the
best choice. Not having the block size aligned with the full stripe size will
cause the adapter to execute a Read-Modify-Write cycle, which means that
two I/O operations are required to write the data to disk.

3.1.2 Metadata
Metadata is the name given to the disk blocks dedicated to store GPFS
control structures, such as i-nodes and indirect blocks. Metadata activity will
be largely influenced by the application’s access pattern and the overall
activity on the GPFS file system.

In terms of sizing, metadata does not play a very important role, but it is
necessary to consider some aspects, such as placement, accessibility, and
availability, where metadata may become a key factor to GPFS performance
and recoverability.

3.1.2.1 Space considerations for metadata storage
Space requirements for metadata depend on some file system parameters
and file system utilization. The parameters are as follows:

I-node size — The i-node size can vary from 512 bytes up to 4 KB.

Indirect block size — This number has to be a multiple of one subblock
(BlockSize/32) and cannot exceed 32 KB or BlockSize, whichever is smaller.

Replication — Can be set for data and metadata. GPFS allows a maximum
of two copies of data and metadata.

To calculate the amount of metadata that a given file system will require, you
need to get some estimates in terms of the maximum number of files and the
average file size.

The following are the metadata components:

• File system logs — These are 128 KB each and always replicated. This
means that if metadata is replicated then there will be four copies of each
log. Logs are per node that has the file system mounted. For example, if
there are ten nodes that have the file system mounted, and replication is
being used, then there will be 128x2x2x10 (5,1 MB of space used in log
files).

• Disk allocation maps — These are always replicated. There 16 bytes
allocated per block. For example, if you configure a file system of 200 GB
of space, with a block size of 256 KB, then you have 819,200 blocks,
which means that the disk allocation maps will use 25.6 MB.
76 Sizing and Tuning GPFS

• Inode allocation maps — These are always replicated and use 2 bits per
i-node. For a 200 GB file system, you will probably configure 50,000
inodes, which means 25 KB of space.

• Inodes — These are replicated according to the file system parameter -m.
For 50,000 i-nodes and a size of 512 bytes, the space required for i-nodes
is 25 MB.

• Indirect blocks — These are replicated according to the file system
parameter -m. The total amount of space used by indirect blocks will
depend on the number of files and the average size. The space require for
indirect blocks in a file will be the number of data blocks required
multiplied by the size of each block pointer (6 bytes):

The result must be rounded to the next multiple of the indirect block size.

This formula is valid only for files whose size exceeds the i-node’s capacity
for direct block pointers. Each i-node has header information that occupies
104 bytes (it contains file size, ownership, dates, replication, permissions
and several other administrative information), which leaves the rest of the
i-node space for block pointers. For example, for an i-node size of 512
bytes, the remaining portion of the i-node is 408 bytes, which allows 68
block pointers. If the file is small enough to fit within 68 data blocks (17 MB
for a BlockSize of 256 KB), then there will not be any indirect block used
by the file. If the file does require more than 68 data blocks, then there will
be a number of indirect blocks allocated to the file until the required space
is satisfied.

• Directories — These are replicated according to the file system parameter
-m. Directories are allocated in blocks of 8 KB. For example, for a file
system with 512 directories, there will be 4 MB or 8 MB replicated used by
directory blocks.

Let us assume there is an average file size of 20 MB and a maximum number
of files of 10,000, which implies that the file system size has to be at least of
200 GB. Using Table 1 on page 12 from GPFS for AIX: Installation and
Administration Guide, SA22-7278, we get the following values for the file
system:

• In case of no replication

• Block size = 16 KB

6 FileSize×
BlockSize

Sizing GPFS 77

• Indirect Block Size = 4 KB

• I-node Size = 512 bytes

• Replication (M,R) = 1

• Maximum file size = 717.5 MB

• Maximum file system size = 478.4 GB

With these values, the amount of disk required for metadata is:

• File System logs — 128 KB x 2 x 10 (assuming 10 nodes mounting the
file system). Total 2.56 MB

• Disk allocation maps — 819,200 blocks. Total 25,6 MB

• Inode allocation maps — Assuming 50,000 i-nodes. Total 25 KB.

• I-nodes — Assuming 50,000 inodes. Total 25 MB.

• Indirect blocks — Since the average file size is 20 MB, this means that
there will be two indirect blocks allocated per file. Total 78 MB.

• Directories — Assuming 512 files (20 files per directory in average), it
requires 4 MB of space.

The total amount of space for a non-replicated file system of 200 GB and
the specifications previously given is 136 MB.

• In case of replication, the space needed is doubled to 272 MB.

As you can see from the calculations, the amount of disk required for
metadata is less than 1 percent for a non-replicated file system and about 1.4
percent for a replicated file system. So, disk space requirements for metadata
should not make any difference when it comes to size a GPFS configuration.
However, metadata placement and accessibility may be an issue for systems
with heavy metadata utilization, such as ADSM or file searching tools.

3.1.2.2 Performance considerations for metadata management
Metadata may have a strong impact on GPFS performance if the file systems
have a heavy utilization, such as number of open files, directory listing, file
searches, and file movements. Heavy metadata usage will impact
performance. For example, if you list a directory (using the ls command) with
thousand of files, GPFS will be extremely slow the first time compared to a
local file system. This is because GPFS has to read many small blocks of
data (i-node information) in order to provide the ls command with the
required information for displaying the directory contents. The second time,
GPFS will probably outperform the local file systems, and this is because the
data may be already present in the mallocsize buffer on the client node.
78 Sizing and Tuning GPFS

Metadata management is done by the Metadata Manager (MM), which is the
GPFS daemon running on the node that first opened or created the file. It will
continue to be the MM until all nodes have closed the file.

Metadata activity consists in small blocks being read and written by the GPFS
daemons. Each GPFS node will cache metadata, and each modification to a
file will involve making the cache metadata invalid for that file. When
multiples nodes open and work on the same file, there are two components
that affect performance: Metadata activity and token management.

Since metadata activity consists of small blocks being transferred, scenarios,
such as RAID-5 for metadata storage, need some additional configuration.

In previous sections, we stated that one of the best possible scenarios for
GPFS, in terms of costs, performance and recoverability, is RAID-5. In that
case, GPFS and applications should make their block size multiple of the full
stride for optimum performance. For metadata, it is not possible to comply
with this requirement; so, metadata management on RAID-5 has a penalty on
performance. However, the performance impact needs to be analyze in
several perspectives.

From a theoretical point of view, it seems to make sense to separate
metadata from data when RAID-5 is being used with metadata intensive
applications. This would allow to dedicate some raw disks for metadata
exclusively, therefore, avoiding the inefficiency of transferring small blocks in
and out of RAID-5 devices.

Although this make some sense, it is necessary to consider other factors that
will influence the overall performance, and, in most cases, will demonstrate
that separating metadata from data in a RAID-5 configuration may even
impact performance negatively instead of improving it.

Let us make the following example. Assume that you need a file system of at
least 200 GB. For this file system, considering 4.5 GB disks, you will need 45
disks to store 200 GB of data. But, because RAID-5 is implemented, then you
need to add 12 additional disks (45 divided by 4) for a 4+P implementation.
This gives you a total of 60 disks to implement 12 RAID-5 devices (12
multiplied by 5).

The metadata size for a 200 GB file would be around 10 MB (without
replication). Refer to 3.1.2.1, “Space considerations for metadata storage” on
page 76 for details. For this amount of metadata, you just need one disk.
Although it is a waste of space, we could dedicate one 4.5 GB disk to store
Sizing GPFS 79

metadata. Actually, with just one 4.5 GB disk, we could store all the metadata
that GPFS could ever handle.

Now, let us analyze what happens when GPFS handles metadata
requirements. In a multi-disk configuration, metadata requirements can be
handled by different disks on different adapters and on different VSD servers.
GPFS can issue multiple metadata requests, and all of them can go in parallel
to the VSD servers and physical disks. The I/O bandwidth provided by the
multiple data disks is by far bigger than the bandwidth provided by the single
disk connected to the single adapter that is served by a single VSD server.
Refer to Chapter 6, “Test results” on page 199 for test results on metadata
management.

The only way to get a similar performance, in a case like the one previously
described, is to add an equivalent number of disks and adapters to handle
metadata. In conclusion, if you are not willing to dedicate the same number of
disks, adapters, and servers to metadata as you do with data, then it is much
better to have data and metadata intermix and striped across all your disks.
You may not get the optimum RAID-5 performance for your metadata
operations, but it will be far better than dedicating a reduced number of disks
to metadata.

3.1.3 Servers
Servers in GPFS are VSD servers. Since GPFS uses VSD as the underlying
technology for disk access, a VSD server is consider a node that contributes
with physical disks to a GPFS file system.

Determining the number of VSD servers needed for a GPFS file system is
something that heavily depends on the I/O bandwidth required by the
applications running on top of GPFS and the number of disks and adapters
required to provide that bandwidth. See Table 4 for disk performance and
Table 5 on page 81 for adapter performance numbers.

Table 4. Disk performance

Name Capacity
GB

Sustained
Transfer

Rate
MB/s

Random
256 KB
JBOD

Transfer
Rate
MB/s

Estimated
GPFS

Throughput
for JBOD

MB/s

Estimated
GPFS

Throughput for
full strided

RAID-5
MB/s

Estimate
GPFS

Throughput
for

non-strided
RAID disks

MB/s

Starfire 1.1, 2.2, 4 7.2 5.46 3.82 2.21 1.11

Scorfire 2.2, 4.5 10.1 6.97 4.88 2.53 1.27

Scorpion 9.1 10.1 6.97 4.88 2.53 1.27
80 Sizing and Tuning GPFS

For example, if a 200 GB file system required 57 4.5 GB disks for RAID-5 (as
the example in 3.1.2.2, “Performance considerations for metadata
management” on page 78), and we consider that 12 RAID-5 devices can drive
up to 14 MB/sec (assuming 3.5 MB/sec per disk in 4+P RAID-5), we require
168 MB/sec if we want to fully utilize disk I/O bandwidth. This bandwidth
clearly cannot be provided by a single server much less a single adapter. If
we consider SSA technology (which is strongly recommended for GPFS
implementations), we can divide the total bandwidth required by the
bandwidth of a single adapter.

The capacity of a single SSA adapter will vary depending on factors, such as
type, bus technology, and memory options. However, for sizing, we can rely
on some rough numbers available for that purpose.

Table 5. Performance of SSA adapters

Sailfire 4.5 15.4 9.15 6.40 2.89 1.44

Sailion 9.1 15.4 9.15 6.40 2.89 1.44

Sailfin Jr. 4.5 15.4 9.15 6.40 2.89 1.44

Sailfin 9.1 15.4 9.15 6.40 2.89 1.44

Marlin 18.2 15.4 9.15 6.40 2.89 1.44

Swordfish 36.4 20 10.59 7.42 3.08 1.54

Adapter
Feature
Code

Bus
Type

Adapter
Name

Max. Throughput
JBOD

MB/sec

Max. Full Stride
Throughput

RAID-5
MB/sec

Max. Non-Full
Stride

Throughput
RAID-5
MB/sec

WRITE READ WRITE READ WRITE READ

6215 PCI IBM
Enhanced
RAID

31 42 21 30 7 30

6225 IBM
Advanced
Serial RAID

85 90 75 90 21 86

Name Capacity
GB

Sustained
Transfer

Rate
MB/s

Random
256 KB
JBOD

Transfer
Rate
MB/s

Estimated
GPFS

Throughput
for JBOD

MB/s

Estimated
GPFS

Throughput for
full strided

RAID-5
MB/s

Estimate
GPFS

Throughput
for

non-strided
RAID disks

MB/s
Sizing GPFS 81

A 6215 PCI adapter is capable of driving a maximum of 21 MB/sec in RAID-5
configurations (considering write case), but GPFS will see only a fraction of
this. A safe estimate is considering 70 percent of the maximum throughput,
which gives us 14.7 MB/sec per adapter. This means that for a 168 MB/sec
requirement, we need at least twelve adapters (total 176.4 MB/sec).
Obviously, we cannot put all the adapters in a single server; so, we need to
balance the load across multiple adapters on multiple servers. Refer to Table
6 for node performance on GPFS.

Table 6. SP Switch and GPFS throughput

(*) = 50 MB/sec effective due to MCA limitations.

Another alternative is to use the 6225 adapters that provide higher
throughput. From Table 5 on page 81, we see that a 6225 SSA adapter can
provide a maximum of 75 MB/sec for a full stride. However, the estimate
GPFS throughput is a fraction of this maximum. A safe estimate is 70 percent
of the maximum throughput, which gives us 52.5 MB/sec. This means that we

6216 MCA IBM
Enhanced

35 35 N/A N/A N/A N/A

6219 IBM
Enhanced
RAID

35 35 22 32 7 33

Node Type Processor Type Procs per
node

Bus Type TCP/IP max
bandwidth

Uni-di
MB/sec

GPFS
Throughput

MB/sec

120MHz Thin POWER2SC 1 MCA 87 60.9 (*)

135MHz Wide POWER2SC 1 MCA 86 60.2 (*)

160MHz Thin POWER2SC 1 MCA 104 72.8 (*)

112MHz SMP High PowerPC 604e 2, 4, 6 or 8 PCI 33 23.1

200MHz SMP High PowerPC 604e 2, 4, 6 or 8 PCI 46 32.2

332MHz SMP Thin PowerPC 604e 2 or 4 PCI 109 76.3

332MHz SMP Wide PowerPC 604e 2 or 4 PCI 109 76.3

200MHz P3 SMP Thin POWER3 1 or 2 PCI 135 94.5

200MHz P3 SMP Wide POWER3 1 or 2 PCI 135 94.5

Adapter
Feature
Code

Bus
Type

Adapter
Name

Max. Throughput
JBOD

MB/sec

Max. Full Stride
Throughput

RAID-5
MB/sec

Max. Non-Full
Stride

Throughput
RAID-5
MB/sec

WRITE READ WRITE READ WRITE READ
82 Sizing and Tuning GPFS

would only need three adapters (168 MB/sec divided by 52.5 MB/sec) to get
the required bandwidth.

The number of servers required for the three adapters will depend on the type
of nodes you choose. If you decide on 332 MHz SMP nodes, then you would
need three servers (see Table 6 on page 82 for GPFS throughput) since these
nodes will not give you enough throughput for more than one 6225 SSA
adapter. If you decide to use POWER3 SMP nodes, then you may be able to
put two adapters in one server and the third one in a second server, thus,
reducing the number of servers required to two. However, three servers and
three adapters seems to be a more balanced solution.

This rough calculation gives you an idea about the bandwidth required and
provided by your configuration. It does not mean that you have to go ahead
and install the required number of VSD servers and adapters. What it means
is that given your initial requirements of a 200 GB file system, the number of
disks and adapters required for maximum performance is the one calculated.
But, there are other factors that you need to consider before you decide on a
particular configuration.

3.1.3.1 Client considerations
Calculating the number of VSD servers required for a specific configuration
only gives you half of the picture: The server’s half. GPFS is not a
client/server type of file system; however, the relationship between GPFS and
VSD is client/server. Nodes running GPFS behave as VSD clients when they
access data and metadata.

By calculating the number of VSD servers, you have determined the
maximum bandwidth that your disks (from GPFS viewpoint) can give you.
However, the number and quality of clients will determine how much data you
can get out of those disks.

There are four factors that are going to limit client throughput. These are:

• CPU
• Pagepool buffer
• Worker threads
• SP Switch throughput

CPU — The GPFS daemon (mmfsd) and the GPFS kernel extension will
consume a certain percentage of CPU per MB/sec transferred. This
percentage of CPU needs to be evaluated in order to get an estimate of how
much CPU would be left for the application to produce the data to be
transferred. For example, if we assume that 1 percent of CPU is used by
Sizing GPFS 83

GPFS per MB/sec transferred, then to get the maximum throughput per node
(considering POWER3 SMP nodes from Table 6 on page 82), GPFS would
utilize almost all CPU for data management, which means that the application
will have little time to produce it. Refer to 6.5.7, “Analysis of CPU usage with
regard to dedicated VSD servers” on page 216 for estimated numbers of CPU
utilization.

Pagepool buffer — The amount of memory available to GPFS for
write-behind and read-ahead algorithms will affect the overall performance of
GPFS. Reducing the pagepool size will reduce GPFS throughput, which will
lower the I/O bandwidth required from the VSD servers.

Worker threads — These are threads from the mmfsd daemon allocated to
do data and metadata management. The number of worker threads can be
increased or decrease to adjust the overall throughput per node. This may be
a good technique to throttle down clients when VSD servers are being
overrun.

SP Switch throughput — When VSD servers are located in nodes other
than GPFS nodes, the SP Switch network is used to transfer data to and from
the server. The maximum SP Switch throughput per node, listed in Table 6 on
page 82, will limit the maximum amount of data that a client can drive in and
out of VSD servers located remotely.

Considering the factors previously mentioned, you can estimate the number
of clients required to drive all the data throughput provided by the VSD
servers. It could also allow you to estimate the I/O bandwidth required on the
server side, given a configuration on the client side.

3.1.3.2 Server performance considerations
There are at least two factors that limit the throughput of a VSD server. The
I/O subsystem, which limits the capacity of the server to deliver or receive
data, and the CPU, which limits the capacity of the server to process data and
control.

From the test results in A.1, “Base runs” on page 225, we can see that the
CPU percentage to MB/sec ratio is about 0.6 to 1 on a VSD server and 1 to 1
on a GPFS client. These number are valid for non-replicated file systems with
a sequential access pattern.

For more information, refer to 6.5.7, “Analysis of CPU usage with regard to
dedicated VSD servers” on page 216.
84 Sizing and Tuning GPFS

3.2 Sizing methodology

This section will cover the recommended steps for transforming an initial file
system specification into a practical GPFS configuration. This methodology is
aimed at those users who require good performance from a single large file
system rather than those users who are using GPFS mainly for its ability to be
mounted on any node and, therefore, may be more interested in having
multiple, smaller file systems.

It is important to size your GPFS system with an adequate throughput to cope
with all of its clients requirements. If the GPFS file system is overloaded by
the total of the GPFS client node demands, it can become unavailable, and
the accessing GPFS client node applications may fail.

Sizing then becomes mainly concerned with ensuring that the capacity of the
VSD server nodes for data throughput is adequate to meet the demands of all
the GPFS client nodes. An aspect of sizing that is not covered here is the
sizing of the capacity of an individual GPFS client node given a known VSD
Server capacity.

Here we will not consider the metadata separately, as we will assume that the
metadata is always mixed in with the data, and this will spread the metadata
on the most disks and make administration of the file system much easier.
The space taken by the metadata for large files is so small in comparison with
the data space that its effect on the total file system capacity is negligible.

We will also assume here that each VSD is on a single disk and no two VSDs
share a disk. This is the default action if you let the mmcrfs command create
the GPFS file system. It is possible to create multiple VSDs per disk as may
be desired if constructing many smaller file systems on a few disks. This,
however, makes the job of predicting performance almost impossible due to
the contention for I/O resource by the VSDs on the one disk caused, perhaps
by activity on different file systems, this. Therefore, this is not considered
here.

Another assumption made here, for the purposes of sizing, is that all GPFS
client node applications are using sequential I/O access and are not random.

In this section, we provide tables whose aim is to help with estimating
practical performance and, hence, sizing issues. The tables incorporate a
common theme. That is, they try and identify, for a key component that GPFS
relies upon, the maximum bandwidth that components can sustain. The
GPFS throughput rate, for this component, is then shown to be 70 percent of
the maximum. This rule of thumb reflects the fact that because of the nature
Sizing GPFS 85

of the job that GPFS is doing, it is unable to use any particular component to
its optimum extent and also allows some margin of error in assuring that a
sized GPFS system can accommodate the performance required.

Here are the basic steps involved in sizing:

1. Find out the requirements of the file system

2. Recoverability considerations.

3. Determine minimum number and type of disks to give the required
performance.

4. Check and adjust for File System Capacity.

5. Determine the number of VSD servers required.

6. Determine the detail of the VSD server configuration.

First, we will cover the theory of each step. Following that, we will illustrate
the steps using worked examples.

3.2.1 Step 1 - Find file system requirements
This is the most important step. You need to be clear about the requirements
for data throughput that you are trying to satisfy.

Find the following for your file system:

• File system capacity

• Number of clients requiring access to the file system.

• The workload requirements of each client. This is in terms of the following:

• Total Read performance in MB/sec

• Application’s request block size for reads - (large block > 64 KB for best
performance)

• Type of read access - (full block sequential is best)

• Total Write performance in MB/sec

• Application’s request block size for writes - (large block > 64 KB for best
performance)

• Type of write access - (sequential is best)

In order to achieve the best performance that a GPFS file system can give,
you have to use sequential access using large block size. Using either
random access patterns or block sizes less than 32 KB, you will be limited to
a fraction of the performance that is possible.
86 Sizing and Tuning GPFS

When formulating the individual client requirements, be careful not to over
estimate the throughput available to a client. From measurements taken in
the results section, it would seem that the maximum throughput for a single
client is about 70 percent of the estimated GPFS Switch throughput for that
node type quoted in tableTable 6 on page 82.

Having collected this data, use these figures to work out the maximum
aggregate bandwidth seen by the file system for all the clients. Do this for
both the writes and the reads. The highest of the two we will call the max file
system bandwidth.

This figure will have to be increased if the block size being used for either
reads or writes is other than 256 KB. The factor to use can be approximated
using the GPFS performance figures in Figure 25, shown below, or Figure 26
on page 88.

For example, if your application uses 32 KB read blocks, then increase the
max file system bandwidth figure by a factor of 1/0.9 = 1.11

Figure 25. Performance of GPFS reads with block size

4K
8K

16K
32K

64K
128K

256K
512K

1MB
2MB

4MB

Application Block Size in Bytes

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
om

al
is

ed
pe

rf
or

m
an

ce

Read

Read performance vs application block
Sizing GPFS 87

Figure 26. Performance of GPFS writes with block size

3.2.2 Step 2 - Recoverability considerations
It is important to decide on the type of file system. The options are

• JBOD

• RAID-5

• Mirroring

• Replication

The advantages and disadvantages are discussed in “Data” on page 72.

If you decide on either a Mirroring or Replication file system, then you have to
adjust the figure for max file system bandwidth and the figure used for File
system capacity.

In the case of Replication, the max file system bandwidth figure is simply
doubled for use in the subsequent steps. This is because each read or write
required by the GPFS client node will be doubled from the client node. The
figure for File system capacity must also be doubled to allow for the extra
disks space required.

4K
8K

16K
32K

64K
128K

256K
512K

1MB
2MB

4MB

Application Block Size in Bytes

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
om

al
is

ed
pe

rf
or

m
an

ce

Write

Write performance vs application block
88 Sizing and Tuning GPFS

In the case of Mirroring the max file system bandwidth, the figure is doubled
for use in the all subsequent steps apart from step 5, where we are choosing
the number of servers. This is because for each read or write required by the
GPFS client node, a single request will be sent over the switch, but double the
requests will go through the SSA adapters to the disks. The figure for File
system capacity must be doubled to allow for the extra disks space required.

3.2.3 Step 3 - Determine minimum number and type of disks
To determine minimum number and type of disks, we must do the following:

• Decide on the disk type.

• Estimate the throughput rate for the chosen disk when running with GPFS.

To calculate this for any disk, you need to know the sustained throughput rate
in MB/sec for sequential 256 KB block access-R, the seek time in
milliseconds-s, and the rotational speed-rpm of the disk. First, calculate the
throughput rate for randomized 256 KB block access, which is what GPFS will
effectively use at the server, even for sequential client access. This is:

0.256/(256/(1000*R)+(s/1000)+(30/rpm) MB/sec

where:

s/1000 is seek time in seconds.

30/rpm is average latency in seconds.

256/1000*R is transfer time of a 256 KB block.

This is the fastest access, in theory, but because GPFS has to allow multi-
client access and must also deal with metadata and token management we
have to allow for the fact that GPFS does not use every single disk to its
optimum extent all the time. We, therefore, use 70 percent of this calculated
figure as the maximum expected rate that GPFS can achieve with a single
disk. For SSA disks, the data and the calculations have been set out for your
convenience in Table 4 on page 80. Note that for 4+P RAID-5 arrays, the
performance per data disk (not parity) is given separately for these and are
quoted in the column entitled Estimated GPFS Throughput for single RAID-5
data disks - MB/s. This is calculated using the following formula:

(0.256/(64/(1000*B4)+(C4/1000)+(30/D4)))*.7/4

Note that here we again applied the 70 percent utilization GPFS factor for this
calculation.
Sizing GPFS 89

To help you identify SSA, “Disk performance” on page 80 is provided.

Table 7. SSA disk identification

So, using the SSA Disk Throughput for GPFS in Table 4 on page 80 or a table
you have constructed for your own disks, pick the throughput rate for the disks
you are going to use. Unless you have chosen a RAID-5 file system, you must
use the JBOD figures shown in the table.

Using this figure for throughput rate, we can simply divide the max file system
bandwidth figure generated from the last step by the throughput rate and
calculate the minimum number of disks that are required for performance.

3.2.4 Step 4 - Check and adjust for file system capacity
Having determined the minimum number of disks for performance, now divide
the figure for File system capacity by the minimum number of disks. The
actual size of the disk will have to be equal or greater than this figure. If they
do not make disks that big, then you will have to further increase the total
number of disks for the file system, which will improve performance.

3.2.5 Step 5 - Determine number of VSD servers required
This step can be further subdivided into the following steps:

• Choosing the number and type of SSA adapter cards

Name FRU Number Capacity
/GB

Type/Model Device Specific
(Z2)

Starfire 88G6195,
88G6196,
88G6198

1.1, 2.2,
4.5

DFHCCxB1 x is
capacity

RAMST077

Scorfire 88G6197,
88G6199

2.2, 4.5 DFHCCxB1 RAMSC081

Scorpion 88G6200 9.1 DCHC09B1 RAMSC095

Sailfire 09L2273 4.5 DFHCC4x1 x is
B or C

CUSMA903

Sailion 09L2274 9.1 DCHC09x1 x is
B or C

CUSMA903

Sailfin Jr. 09L4294 4.5 DGHC04B CUSMA903

Sailfin 09L4295 9.1 DGHC09B CUSMA903

Marlin 09L4296 18.2 DGHC18B CUSMA903
90 Sizing and Tuning GPFS

• Choosing the number and type of Servers

Choosing the number and type of SSA adapter cards

For particular SSA adapter, there is a maximum bandwidth that the adapter
card will support. From Table 5 on page 81, you can see that for the 6215
SSA adapter, for example, the maximum read bandwidth is 42 MB/sec.

Table 8. GPFS throughput performance of SSA adapters

Table 5, “Performance of SSA adapters” on page 81, reflects again a 30
percent reduction of the maximum rates and gives the different rates for use if
using both RAID-5 and JBOD disks. It also shows the how much slower doing
a non - full strided write to RAID is. To achieve a full stride write with RAID 5,
the RAID arrays must be configured for 4+P, the file system block size must
be 256 KB as well as the application write block size.

To be able to choose an adapter, you should have some idea of the node type
that you will want to use. This is because a specific type of SSA adapter card
will be compatible with only one bus type, PCI or MCA. Using Table 5,
“Performance of SSA adapters” on page 81, pick an adapter of the
appropriate bus type and note the adapter throughput rate that applies to your
particular file system. For example, RAID-5 or Non RAID (JBOD). Note that
this involves picking an adapter and bus type.

Divide the max file system bandwidth by the adapter throughput rate to
determine the number of adapters you require.

The figure for number of adapters is only correct if you can equally divide the
total number of disks by the number of adapter cards. For RAID-5, especially
if you are using 4+P RAID-5 groups, the constraints imposed by the RAID-5
groupings may require a further increase in the number of disks.

Feat
Code

Bus
Type

Adapter Name Max. Estimated
GPFSThroughput

JBOD - MB/sec

Max. Full Stride
Estimated GPFS

Throughput
RAID-5 - MB/sec

Max. Non-Full
Stride Estimated

GPFSThroughput
RAID-5 - MB/sec

WRITE READ WRITE READ WRITE READ

6215 PCI IBM Enhanced
RAID

21.7 29.4 14.7 21 4.9 21

6225 IBM Advanced
Serial RAID

59.5 63 52.5 63 14.7 60.2

6216 MCA IBM Enhanced 24.5 24.5 N/A N/A N/A N/A

6219 IBM Enhanced
RAID

24.5 24.5 15.4 22.4 4.9 23.1
Sizing GPFS 91

Choosing the number and type of Servers

The nominal, uni-directional bandwidth of the currently available SP Switch is
stated as 150 MB/sec. This bandwidth does not take into account the
transmission protocol. The TCP/IP maximum uni-directional bandwidth in
MB/sec at which data can be shipped from one node to another is shown in
Table 6 on page 82. This throughput is not achievable by GPFS due to the
way in which it operates. The same table also shows that the expected GPFS
data throughput using the switch is 70 percent of the maximum figure. The
highest GPFS throughput figure achieved for any node type is 94.5 MB/sec.

Having chosen the number of adapters required, use Table 6 on page 82 to
pick a VSD node server type that is compatible with your adapter card. Now
check how many adapter cards can be used in this node type. This
information for PCI bus nodes can be checked using the RS/6000 SP PCI
Adapter Placement Information Version 1.1. available on the Web at:
http://cs2.austin.ibm.com/ibmsm/ibmsm.nsf/mainframeset?readform

If you intend to use more than one adapter card per node, check, using Table
6 on page 82, that the aggregate GPFS data throughput available from both
adapter cards is less than the GPFS throughput available over the switch.

Check that there is both sufficient aggregate switch throughput available and
that the node type you have chosen can accommodate the number of
adapters you need.

The Read GPFS throughput rate for the SSA adapter feature code 6215 is
shown to be 29.4 MB/sec. This, therefore, means that we can use a maximum
of two of these adapter cards per node before we hit the throughput limit
imposed by the switch. This is the case for 332 MHz SMP wide nodes where
they have two separate PCI buses, but it is not possible for a 332 MHz SMP
thin nodes. Although we could physically install two SSA adapter cards in a
332MHz SMP thin node, the rules given in the RS/6000 SP PCI Adapter
Placement Information Version 1.1. would prevent it as the bandwidth of each
adapter would be constrained to less than its maximum due to I/O contention
on the single PCI bus. The 332 MHz SMP wide node, having two buses, does
not suffer this same problem and is allowed to have a maximum of two 6215
adapters.

If you are using RAID-5, you may be able to use two adapter cards per PCI
bus, but, in general, you are limited to one per bus. Some nodes have more
than 1 bus; so, if you choose these nodes, you may be able to have 2 SSA
adapters in one node.
92 Sizing and Tuning GPFS

You should now know the total number of SSA adapter cards you need, the
type of node to use, along with the number of adapter cards per node.
Dividing the total number of adapter cards by the number of adapter cards per
node will give you the number of Server nodes required.

3.2.6 Step 6 - Determine VSD server configuration
We now have sizings of the basic building blocks of a GPFS system, but there
are still a few more sizing issues to be considered before being able to
perform the initial configuration, fire up the file system, and hand it over to the
tuning team. These issues are:

• Correct placement of adapter and disks.

• Ensure that the SSA disks are positioned to cause the least contention for
SSA loop bandwidth.

• Set initial configuration parameters for the IP Network, the switch, SSA
control, VSD servers, and GPFS nodes.

There are strict guidelines to following placement of SSA adapters. The rules
found in the following Web site must be followed:
http://cs2.austin.ibm.com/ibmsm/ibmsm.nsf/mainframeset?readform

Disks should be shared out evenly amongst all the available SSA loops.
Within a loop, the disks that are being served by a node must be on the
shortest loop path to that node and not have their path obstructed by a disk
on the loop that is being served by another node and could, therefore, be
competing for loop bandwidth.

For the most part, the default parameters will suffice and are unrelated to size
issues. There are, however, a few parameters that are size related.

First, we will list in the Table 9 the default parameters that are unrelated to
size.

Table 9. Table of default sizing parameters to use for GPFS

Parameter Setting Comments

thewall 65536 Network

ipqmaxlen 512 Network

rpoolsize 16777216 Switch

rpoolsize 16777216 Switch

max_coalesce 256 SSA
Sizing GPFS 93

Now, we will list in Table 10 the parameters that are size dependent.

Table 10. Table of size dependent initial parameters to use for GPFS

3.2.7 Sizing example 1
Step 1.Find file system requirements

These are the specification for our worked example:

• 140 GB file system

• Single client access with 20 MB/sec sustained write and 50 MB/sec
sustained read performance. This is due to the nature of our
application that has been written with GPFS performance in mind and
uses 256 KB blocks to both read and write.

• Max number of concurrent clients is five clients

• Total bandwidth requirement is, therefore, 100 MB/sec write and 250
MB/sec read. Let us say that this cannot occur together, but we have to
cope with maximum capacity of both read and write

init_cache_buffer_count 64 VSD

max_cache_buffer_count 256 VSD

vsd_request_count 256 VSD

rw_request_count 48 VSD. Also referred to a pbuf

min_buddy_buffer_size 4096 VSD

max_buddy_buffers 1-GPFS Clients VSD One required for all GPFS
Nodes

vsd_max_ip_msg_size 61440 VSD

pagepool 40M GPFS - default

mallocsize 4M GPFS - default

Parameter Dependency Comments

max_buddy_buffer_size Max GPFS File
system block size

This is set to the same as the
maximum GPFS block size used to
build the file system

max_buddy_buffers VSD disks per
Server

For each VSD Server node this
should be 4 times the number of
VSDs served by that node.

Parameter Setting Comments
94 Sizing and Tuning GPFS

This gives us a figure for max file system bandwidth is 250 MB/sec READ.

Step 2.Recoverability Considerations

The first thing is to decide if we are going to use RAID-5 for this file
system. We will say no, as we keep regular backups of the data and would
take no great hit if we lost all the data on this file system occasionally. We
would rather get great read performance for the smallest cost.

Step 3.Determine minimum number and type of disks

We know that we can either buy some new disks, say 9.1GB disks, or we
could use some old ones we already have that are 4.5 BG. Table 4 on
page 80 shows that for the Sailfin 9.1 GB disks, we can use a GPFS disk
throughput rate of 6.4 MB/sec. The calculation for Sailfin shows that we,
therefore, would need 250/6.4 = 39 disks.

From looking at the identification on our old disks, we know that they are
Scorefires, and for these we can use a GPFS disk throughput rate of 4.9
MB/sec. The calculation for Scorefire shows that we, therefore, would
need 250/4.9 = 51 disks.

Step 4.Check and adjust for file system capacity

Using 39 Sailfins would give us 39x9.1GB=819GB of file space, which is
much larger than our requirement.

Using Scorefires would give us 51x4.5GB=229.5GB of file space, again
larger than our requirement but perhaps not so costly. We will choose this
option.

Step 5.Determine number of VSD servers required

From Table 5 “Performance of SSA adapters” on page 81, we can see that
the GPFS Throughput rate for the 6225 adapter is 63 MB/sec. We would,
therefore, require about 250/63 = 4 of these 6225 adapter cards. If we
chose the 6215 adapter cards, we would require 250/29.4 = 8.5, or 9
cards. We will go with the four 6225 adapter cards.

Now let us look at the server options. We could fit two 6225 cards per
server so that we could just use two VSD Servers nodes. This option
would give us a required single server GPFS throughput on the switch of
250/2 = 12 5MB/sec. Looking at Table 6 on page 82, there is no server
listed that can support this throughput rate on the switch. The nearest we
can get is 76.3 MB/sec using a 33 2MHz SMP wide node. So, it looks as if
we will have to look to use four VSD Server nodes each with one 6225
card. These nodes would have to be able to provide a GPFS switch
throughput rate of 250/4 = 62.5 MB/sec. From Table 6 on page 82, we can
see that there are only three such nodes listed. The 160 MHz thin node is
a micro channel (MCA) node and will not, therefore, accept the 6225 card.
Sizing GPFS 95

As we only need one card per node, we can use a thin node. We choose
the 332 MHz SMP thin node.

Step 6.Determine VSD server configuration

We now have decided on four 332 MHz SMP thin nodes each with one
6225 adapter card each. Using the 51 Scorefire disks we have would give
us 12.5 disks per node. To make it symmetrical we could use 13 disks per
node giving us a total of 56, but, unfortunately, SSA demands that the
number of SSA disks on a loop is divisible by four. We could, therefore,
have 14 disks per node using both loops of the Santa Cruz adapter card
with one loop having 12 disk connecting two Santa Cruz cards on a pair of
nodes and 16 disks on the other loop connecting the nodes (see “Example
1 SSA loop disk layout for a pair of connected nodes” on page 96). This
gives a total of 28 disk connected between a pair of nodes. This
configuration allows the use of the recoverability feature of the RVSD
software, such that if one node of the pair fails, the remaining node can be
set up to take over serving the VSDs owned by the failed node albeit at a
reduced data throughput rate as both the single nodes switch and single
SSA adapter throughput would considerably constrain the performance.

For such a configurations where SSA loops are connected between node
A and Node B, it is very important to ensure that the disks used by each
node have the shortest physical path to the owning node.

Figure 27. Example 1 SSA loop disk layout for a pair of connected nodes

Example 1 SSA disk layout per node pair

N
od

e
A

N
od

e
B

Disks served by node A Disks served by node B
96 Sizing and Tuning GPFS

3.2.8 Sizing example 2
Step 1.Find file system requirements

These are the specifications for our worked example

• 1.2 TB file system

• Max number of concurrent clients is 50 clients

• Read performance required per client - 10.8 MB/sec.

• Read block size - 16 KB

• Type of read access - sequential

• Write performance required per client - 8.7 MB/sec.

• Write block size - 16 KB

• Type of write access - sequential

Total bandwidth requirement is, therefore, 436 MB/sec write and 543
MB/sec read. Let us say that this cannot occur together, but we have to
cope with maximum capacity of both read and write

Due to the read and write block size being less than 256 KB, we must
increase this max file system bandwidth by a given factor different for read
and write.

Using Figure 25 “Performance of GPFS reads with block size” on page 87
for reads, we use the factor 1/0.88 to get a read max file system bandwidth
of 617 MB/sec. Using Figure 26 “Performance of GPFS writes with block
size” on page 88 for writes, we use the factor 1/0.82 to get a read max file
system bandwidth of 532 MB/sec.

The figure for max file system bandwidth that we must use for the sizing is
now 617 MB/sec read.

Step 2.Recoverability considerations

The first thing is to decide if we are going to use RAID-5 for this file
system. We will say yes, as the application runs are so long that we would
incur too high a cost if any of the data was lost.

Step 3.Determine minimum number and type of disks

Now we have to decide what disk type. As the file system size is so big, let
us first try the large 18.2 GB Marlin drives. Table 4 on page 80 shows that
for the Marlin 18.2 GB disks, when used in RAD5 arrays we can use a
GPFS disk throughput rate of 2.89 MB/sec for the full stride RAID write.
But 1.44 MB/sec oafish we are doing, we are using the 16 KB non-full
stride RAID write. The calculation for Sailfin shows that we, therefore,
would need 617/1.44 = 429 data disks. If we use 15+P RAID arrays,
Sizing GPFS 97

429/15 = 28.6, we need 29 x15+P RAID-5 arrays, therefore, a total of 29 x
16 = 464 Marlin disks.

Step 4.Check and adjust for file system capacity

Using 29 15+P RAID-5 arrays gives us 29 x 15 x 18.2GB = 7.92 TB of file
space, much larger than our requirement.

At this point, we should probably go back and use smaller disks or rewrite
the application to use 256 KB block writes that will make the RAID-5
arrays perform much faster. If we change to the smaller 4.5 GB Sailfire
disks, we can assume the same throughput calculations and end up with a
fraction of the file system capacity of 29 x 15 x 4.5 = 1.96 TB of file space.

This is more than we require, but we cannot find smaller disks that are
available; so, we will work with this.

Step 5.Determine number of VSD servers required

From Table 5 “Performance of SSA adapters” on page 81, we can see that
the GPFS Throughput rate for the 6225 SSA adapter is 60.2 MB/sec for a
non-strided read and 14.7 MB/sec for a non-strided write. This now causes
our write requirement to become a more stringent requirement.

We would, therefore, require about 532/14.7 = 36 SSA 6225 cards. This
gives us a limit of 464/36 = 12.9 disks per adapter before we are adapter
bandwidth constrained on the non strided RAID-5 write.

To utilize the maximum bandwidth through the SSA adapter card, we must
share equally the disks across the two adapter loops. So, we need to have
two RAID-5 arrays, one per loop, as arrays cannot span loops. We also
need to try and have the number of SSA disks on one loop divisible by
four.

Let us, therefore, try two 5+P RAID-5 arrays per adapter card. You may
say that six is not divisible by four, and, of course, you would be right, but
by having the loops on one adapter card connected in series with the
loops on an adapter card of another node, we can double the number of
disks on a loop without increasing the throughput through any one card.

From the previous sections, we know we need at least 429 data disks; so,
we would need 429/5 = 85.8 (86)RAID arrays and, therefore, 43 adapter
cards. This would mean a total of 43 x 12 = 516 disks. This uses both two
loops of each SSA adapter card; so, utilizing the maximum bandwidth from
the card.

Now, let us look at the server options. If we choose the POWER3 SMP
Wide nodes we can have up to three adapter cards per node. With three
cards the total GPFS data throughput on write for the node would be 3 x
14.7 = 44.1MB/sec. From Table 6 on page 82, we can see that for this
98 Sizing and Tuning GPFS

node we have a GPFS Switch throughput limit of 94.5 MB/sec; so, this limit
is not exceeded.

The number of servers we need is 43/3 = 14.3; so, let us call it 14 servers
for the sake of symmetry. This options would give us a required single
server GPFS throughput on the switch of 532/14 = 38 MB/sec for write and
617/14 = 44.1 MB/sec for read.

Step 6.Determine VSD server configuration

We now have decided on 14 Power 3 wide nodes each with three 6225
adapter cards each with 12 disks. The total amount of disks is 12 x 3 x 14
= 504. Using the 504 Sailfire disks we have would give us 504/14=36 disks
per node or two 5+P RAID-5 arrays per adapter.

We have 36 disks per node using both loops of every 6225 adapter card
with each loop having 12 disk connecting two SSA adapters between a
pair of nodes (see “Example 2 SSA loop disk layout for a pair of connected
nodes” on page 100 for the disk/loop layout). With three adapter cards per
node, this gives a total of 36 disks connected between a pair of nodes.
This configuration allows the use of the recoverability feature of the RVSD
software such that if one node of the pair fails, the remaining node can be
set up to take over serving the VSDs owned by the failed node albeit at a
reduced data throughput rate as the single SSA adapter throughput would
considerably constrain the performance.

For such configurations, where SSA loops are connected between node A
and Node B, it is very important to ensure that the disks used by each
node have the shortest physical path to the owning node.
Sizing GPFS 99

Figure 28. Example 2 SSA loop disk layout for a pair of connected nodes

Example 2 SSA disk layout per node pair

N
od

e
A

N
od

e
B

Disks served by node A Disks served by node B

S
S

A
A

da
pt

er

S
S

A
A

da
pt

er

Loop A

Loop B
Loop B

Loop ARAID5
array group

RAID5
array group

RAID5
array group

RAID5
array group
100 Sizing and Tuning GPFS

Chapter 4. Tuning GPFS

GPFS performance depends on the correct specification of its parameters as
well as the correct tuning of the function that it uses. Although you can modify
your GPFS configuration after it has been set, a little consideration before
installation and initial setup will reward you with a more efficient and tuned
GPFS file system.

General Parallel File System (GPFS) provides shared access to files across
all SP nodes. To achieve this, GPFS exploits a number of facilities provided
by the SP, such as Virtual Shared Disk, Group Services, Switch subsystem,
and the other components of the AIX operating system.

To achieve optimal performance from GPFS, you must consider the following
areas:

Applications

The I/O patterns, block size, files access type, and file size used by the
application set are major factors in the determination of GPFS
performance. Refer to Chapter 2, “Application considerations” on page 57
for more detailed information.

Network parameters

Tuning the network is critical to maintain peak throughput for network
traffic. When tuning an SP network, there are several components to tune.
They are the SP switch buffer pools and TCP/IP tunables. Each is
described in 4.1.2, “High impact issues” on page 103 for network tuning.

VSD configurations

The main Virtual shared Disk tunable parameters are as follows:

• Virtual Shared Disk cache buffer

• Buddy buffer

• Maximum I/O request size

• Request blocks

• Number of pbufs

These parameters are discussed, along with relevant tuning consideration,
in the next sections.

GPFS configurations

When planning for a GPFS system, you must consider a number of
general GPFS configuration issues and parameters that affect your GPFS
© Copyright IBM Corp. 1999 101

performance. These parameters include file system block size, the amount
of memory allocated for GPFS, possible striping method, I-nodes size, the
number of files to cache, and other parameters as discussed in Section
4.2.3.

The first step involves tuning the GPFS. Before thinking about further steps,
you need to review the data collected and analyze it. Organize which data you
are collecting and when you are collecting it, log the changes you have made,
and then repeat the process to be sure you have achieved your goals. These
steps should be performed on every node in your environment. Keeping a
detailed log of your system before and after any configuration changes could
save hours of distress later. Any changes to the environment, whether you
are adding more VSD nodes or changing your GPFS configuration, requires a
full review of all your system and GPFS parameters.

Tuning the GPFS is a very difficult task. We highly recommend that a change
control system be used to track and monitor any changes to the tunables on
any part of GPFS including the control workstation.

4.1 Isolating and identifying problems and bottlenecks

This section considers the various performance stress points that can affect
the performance of a GPFS file system. The discussion outlines why each
stress point is significant and what the effects can be if the tuning parameters
affecting these areas are not set appropriately. For each of these parameters,
recommendations are given on:

• How to ascertain the current value of the parameter
• What an appropriate setting might be
• How to change the parameter

This section does not provide guidance on how to verify whether or not a
given configuration is performing efficiently. For this, the reader is referred to
Section 4.3, "Tuning case studies".

It is assumed, in this section, that the GPFS hardware itself has been
correctly sized in accordance with the advice given in Chapter 3, “Sizing
GPFS” on page 71. It is also assumed that the GPFS, VSD, and AIX software
have been properly installed and configured as recommended in the
appropriate manuals. We also assume the SP Switch and other IP networks
have been given a basic health check. We strongly recommend checking that
these areas are configured and functioning correctly before focussing on
GPFS specific bottleneck issues.
102 Sizing and Tuning GPFS

4.1.1 Working from the dataflow diagram
We refer to the dataflow diagrams presented in 1.2.3, “Potential bottlenecks
on writes and reads” on page 15, which summarize the data flow movements
for GPFS read and write requests. In consideration of these diagrams, it is
possible to identify high, medium, and low performance impact areas in the
data flow. We identify these areas in sections 4.1.2, 4.1.3, and 4.1.4
respectively. An assessment is made of the key configuration and tuning
parameters that affect each area and what the implications can be if there are
performance bottlenecks in the area. For each of the parameters identified,
guidance is given on what an appropriate setting for the parameter might be
and how to inspect and modify the setting.

Bottleneck areas are considered high, medium, or low impact according to
the following guidelines:

• An area is high impact if it can result in data integrity problems or in loss of
access to the file system. It is also considered high impact if performance
issues in the area can affect GPFS file system performance by more than
a factor of two.

• An area is considered medium impact if performance issues in the area
can affect GPFS file system performance by more than 25 percent.

• An area is considered low impact if performance issues in the area have
negligible affect on GPFS file system performance.

4.1.2 High impact issues
The high impact tuning issues we consider in this section are:

• File system block size
• Number of IBM Virtual Shared Disks per physical disk
• Buddy Buffer considerations
• pbuf considerations
• Request block limit
• Pagepool size
• Switch receive pool and send pool settings
• prefetchThreads setting
• worker1Threads setting
• max_coalesce setting

4.1.2.1 File system block size
As described in Chapter 2, “Application considerations” on page 57, the file
system block size should be sized in consideration of the primary I/O
application being hosted. A severe mismatch between the two is likely to
Tuning GPFS 103

result in a performance degradation due to the overheads of performing large
numbers of merged write operations.

The current file system block size can be ascertained by executing the mmlsfs

command. For example:

[serv6:/]# dsh -w v06n09 /usr/lpp/mmfs/bin/mmlsfs /dev/adsm -B
v06n09: flag value description
v06n09: ---- -------------- ---
v06n09: -B 262144 Block size
[serv6:/]#

Currently, only three values of GPFS file system block size are supported.
These are 16 KB, 64 KB, and 256 KB.

GPFS is optimized towards sequential access of large files. For applications
executing I/O in this manner, the maximum value of 256 KB will be optimal.
For other I/O patterns, one of the other options may be more appropriate.
Knowledge of the I/O patterns of the target application(s) is needed to make
an informed decision.

Another factor in the selection of an appropriate file system block size is the
number and size of the applications’ data files. The 16 KB setting is
recommended for large numbers of small files and 256 KB for fewer numbers
of large files. Where applications use both small and large files, a value of 64
KB might prove the best compromise.

File system block size is a parameter that may not be dynamically
reconfigured. To change it means rebuilding the file system. It is, therefore,
worth considering this parameter carefully before making an initial
configuration.

Please refer to Chapter 2, “Application considerations” on page 57 for more
information regarding the interfaces between GPFS and applications.

4.1.2.2 Number of IBM Virtual Shared Disks per physical disk
Having too few VSDs configured for the number of physical disks connected
to a system can seriously impact performance. This is because the degree of
parallelism within the file system will also be reduced. On the other hand,
having multiple VSDs per physical disk can also seriously impact
performance because of the increased access contention on each disk.
Multiple VSDs per physical disk will also make the environment far more
complex to manage.

The lsvsd -l command can be used to ascertain what VSDs have been
configured on a specific node.
104 Sizing and Tuning GPFS

As a general guideline, we recommend that one, and only one, physical disk
is associated with each IBM Virtual Shared Disk. Configuring one VSD per
hard disk in this way optimizes GPFS performance. The mmcrfs command for
creating GPFS file systems by default creates one IBM Virtual Shared Disk
for each physical disk specified for the file system.

It is possible to override the mmcrfs default, but only by manually creating the
VSD and then passing the name of the VSD that was created to the mmcrfs

command. This will obviously complicate the overall configuration process.
Creating the VSDs manually with the createvsd command will allow specific
VSDs to be created and assigned to individual hard disks on each node. So,
for example, it would be possible to create one VSD per node for the entire
bank of local disks that are physically connected to that node.

In the event that you do decided to implement a non default hdisk and VSD
configuration, please refer to Managing Shared Disks, SC23-4839, for more
information.

Please note that changing the number of VSDs per physical disk for an
existing GPFS file system requires a complete rebuild of the file system.

4.1.2.3 Buddy buffer considerations
In terms of tuning buddy buffers for GPFS performance, there are two main
considerations:

• The maximum size of a buddy buffer

• The maximum number of buddy buffers

The current setting for these parameters can be determined by executing the
vsdatalst -n command, for example:
Tuning GPFS 105

The command returns virtual shared disk node information for all nodes in the
current SP partition. From the above table, we can see the maximum buddy
buffer size is 262144 for all nodes. The number of maximally sized buddy
buffers is 33 on v06n01, v06n03, v06n05, and v06n07. In this example, these
are the VSD server nodes. On the remaining nodes, which are GPFS nodes,
the maximum number of buddy buffers is set to 2.

Both the minimum and maximum buddy buffer sizes should be specified as a
power of 2 because buddy buffers are allocated in powers of 2. The default
values are 4 KB and 64 KB, respectively. For a given I/O request, a buffer will
be sized to the first power of 2 that is larger than the request. For this reason,
there is no sense making the minimum value lower than 4 KB, as only one I/O
request can be pending for a page. The total amount of memory that is
available for buddy buffers is specified by the number of maximum sized
buddy buffers multiplied by the maximum buddy buffer size.

The maximum buddy buffer size should be set to the block size of the largest
GPFS file system served in the SP partition. Having the maximum size set
lower than this will result in extra overhead in acquiring the additional buddy
buffers required to contain a file system block size of data. Having the
maximum size greater than the file system block size may result in over
allocating memory to buddy buffer space. We recommend setting the
minimum and maximum buddy buffer sizes the same on VSD servers and
clients.

On VSD clients, we recommend setting the maximum number of buddy
buffers to one. For servers, a guideline minimum setting for this parameter is
four times the number of disks attached to an individual VSD server. Higher

vsdatalst -n
VSD Node Information

Initial Maximum VSD rw Buddy Buffer
node VSD IP packet cache cache request request minimum maximum size: #

number host_name adapter size buffers buffers count count size size maxbufs
------ --------------- -------- --------- ------- ------- ------- ------- ------- -------

1 v06n01i css0 61440 64 256 256 48 4096 262144 33
3 v06n03 css0 61440 64 256 256 48 4096 262144 33
5 v06n05 css0 61440 64 256 256 48 4096 262144 33
7 v06n07 css0 61440 64 256 256 48 4096 262144 33
9 v06n09 css0 61440 64 256 256 48 4096 262144 2
11 v06n11 css0 61440 64 256 256 48 4096 262144 2
13 v06n13 css0 61440 64 256 256 48 4096 262144 2
15 v06n15 css0 61440 64 256 256 48 4096 262144 2
106 Sizing and Tuning GPFS

values than this may be required if the application I/O patterns are not
uniform. Four times the number of disks attached to a VSD server will be
more effective in most situations. Having an insufficient value can seriously
degrade performance because requests for buddy buffers will become
queued. A more precise way of estimating this parameter can be used if you
know the remote I/O throughput on the VSD server and the average turn
around time of an individual request. For example, if the throughput is 10
MB/s and, the turn around time is 60 ms, a minimum 0.6 MB of buddy buffer
storage would be required. This value should then be at least tripled to
provide an adequate safety margin. Always monitor for retries using the
statvsd command as shown in 4.2.1.2, “Analyzing IBM Virtual Shared Disks”
on page 139.

If the virtual shared disk statistics consistently show requests queued waiting
for buddy buffers, do not consider buddy buffers in isolation. Consider also
increasing the size of the switch send pool or spreading the data over disks
attached to other nodes. However, increasing the switch pools size will not
solve the problem if this is caused by slow disks.

The values of the parameters discussed in this section can be set either by
using the IBM Virtual Shared Disk Perspective graphical user interface or by
use of the updatevsdnode command. To change the maximum number of buddy
buffers, for example:

updatevsdnode -n 1 -s 33

To change the maximum size of a buddy buffer:

updatevsdnode -n 1 -x 262144

In this example, the maximum buddy buffer size on node 1 would be set to
256 Kb.

Please note that these changes are not dynamic. The updatevsdnode

command itself only updates the affected parameters in the SDR. To make
the configuration changes active, the GPFS file system must be unmounted,
the gpfs daemons stopped and the ha_vsd reset command issued before
bringing the file system back on line.

4.1.2.4 pbuf considerations
The number of configured pbufs can have a critical affect on GPFS and
overall system performance. Pbufs provide a means of controlling the number
of pending logical volume requests for each VSD device at its server node.
Pbufs are also known as read/write request control blocks. Too few pbufs
could impair performance. Bear in mind, however, that every VSD device is
Tuning GPFS 107

allocated a pbuf at its server and at every client. Because pbufs are allocated
out of pinned kernel memory, it is easy to see that configuring too many of
them could seriously impact overall system performance of VSD servers and
clients and could lead to eventual exhaustion of the kernel heap with a
resulting system crash.

Each pbuf consumes 128 bytes of kernel memory, and this memory is
pre-allocated and dedicated for each VSD device until the VSD is
unconfigured. Current levels of AIX limit the total kernel heap space to one
segment of 256 MB; so, caution is recommended to not set this parameter too
high although in AIX 4.3.1 and later the network memory has been moved to
a separate segment. The default setting is 48 per device.

The current number of pbufs for each VSD device on a node can be identified
across the whole SP partition from the vsdatalst -n command output under
the rw request count column. For example:

In this instance, we can see that there are 48 pbufs allocated for each VSD
device in all nodes of the partition. This means that if one of these nodes was
a server for 64 VSD devices, then on that node there would be 48 * 64 pbufs
allocated for this purpose. This would constitute just over 3 MB of pinned
kernel memory.

As a guideline, we recommend that the number of pbufs is set to
approximately 16 per VSD device. This will allow the queuing of reads at the
VSD server. In the situation that there is evidence of a pbuf shortage,
increasing the number of pbufs above this parameter does not imply

[v06n05:/]# vsdatalst -n
VSD Node Information

Initial Maximum VSD rw Buddy Buffer
node VSD IP packet cache cache request request minimum maximum size: #

number host_name adapter size buffers buffers count count size size maxbufs
------ --------------- -------- --------- ------- ------- ------- ------- ------- ------- -------

1 v06n01i css0 61440 64 256 256 48 4096 262144 33
3 v06n03 css0 61440 64 256 256 48 4096 262144 33
5 v06n05 css0 61440 64 256 256 48 4096 262144 33
7 v06n07 css0 61440 64 256 256 48 4096 262144 33
9 v06n09 css0 61440 64 256 256 48 4096 262144 2
11 v06n11 css0 61440 64 256 256 48 4096 262144 2
13 v06n13 css0 61440 64 256 256 48 4096 262144 2
15 v06n15 css0 61440 64 256 256 48 4096 262144 2

[v06n05:/]#
108 Sizing and Tuning GPFS

performance will be improved. It is more likely the bottleneck will be moved to
other parts of the system.

Before resetting the number of pbufs, we strongly recommend reviewing the
memory demands this will impose on the kernel. The following formula
determines how much of the kernel heap is dedicated to pbuf storage:

memory_allocated = num_vsds * num_pbufs * 128

where:

• num_vsds is the number of IBM Virtual Shared Disks configured
• num_pbufs is the rw_request_count.

A good way to check the planned number of pbufs is within range is to assess
the amount of available kernel memory and then subtract from it the
memory_allocated value determined above. The amount of available kernel
heap space can be assessed from the xmalloc -u subcommand of the crash

utility. For example:

In this example, we can see that the amount of available kernel heap is
(268169216 - 58849440 - 14654080) / (1024*1024) bytes, which is
approximately 185 MB.

An an example, if we wished to limit 16 MB of the kernel heap for pbufs, and
1300 IBM VSDs are configured, nreq should not be greater than 100.

[v06n05:/]# crash
WARNING: Using crash on a live system can potentially

cause a system crash and/or data corruption.
> xmalloc -u
Kernel heap usage

Storage area: 0x50000000..0x5ffbefff (268169216 bytes, 65471 pages)
Primary heap allocated size: 58849440 (57470k)
Alternate heap allocated size: (14310k)

Overflow heap usage
Storage area: 0x11b5f48..0xffc3f47 (249618432 bytes, 60942 pages)
Primary heap allocated size: 67584896 (66000k)
Alternate heap allocated size: 0 (0k)

> q
[v06n05:/]#
Tuning GPFS 109

The number of pbufs to be allocated per virtual shared disk can be modified
by the rw_request_count parameter of the updatevsdnode command or through
the SMIT vsdnode_dialog fast path.

For example, to set the number of pbufs on node 1 to 48:

updatevsdnode -n 1 -p 48

This change is not dynamic. The updatevsd command itself only updates the
affected parameters in the SDR. To make the configuration changes active,
the GPFS file system must be unmounted, the gpfs daemons stopped, and
the ha_vsd reset command issued before bringing the file system back on
line.

4.1.2.5 Request block limit
The maximum number of request blocks limits the number of possible
outstanding VSD requests at a particular node. It is a high impact VSD
parameter as it limits in particular the number of VSD requests that can be
pending from individual VSD clients. Specifying an inordinately high value
could have a serious performance impact. A large number of request blocks
could result in flooding of the network, resulting in servers running out of
mbufs and having unnecessary retransmissions. What constitutes a large
number of requests depends on how large the average request size is and
how many nodes there are in the system. If the number is too small, local
requests can queue up waiting for a request block to become available.
Please note that this parameter is a per node limitation, unlike the pbufs
parameter, which is a per VSD limitation.

The current setting for the number of request blocks can be ascertained with
the smitty fast path:

smitty vsd_mgmt

and then following the menu items Set/Show VSD Device Driver Optional
Parameters and Show VSD Device Driver Optional Parameters. Alternatively,
use the command vsdatalst -n and check the "VSD request count" column. In
this example, we can see the number of request blocks is 256 for all nodes in
the partition:
110 Sizing and Tuning GPFS

The default setting for the number of request blocks is 256. (The size of each
request block is approximately 76 bytes.)

Because large requests may be broken up into smaller sub-requests, the
number of outstanding VSD requests may be several times greater than the
total number of pending read/write requests.

Although the statvsd command reports the number of times there is no
request block available, queueing for request blocks does not necessarily
imply a performance bottleneck. If you increased the number or request
blocks infinitely, queueing would occur elsewhere in the operating system.

As a general guideline, we recommend setting this parameter to 128. A more
accurate estimate can be derived by considering:

• Average rate of issue of I/O operations
• Average number of sub-requests
• Average I/O request response time

If these values on a particular node were, 1000 I/Os per sec, 3 and 50mS
respectively, then a minimum of 150 (1000 * 3 * 0.05) request blocks would be
required. In practice, the parameter would be set over this level to allow for a
degree of contingency. When allowing for this contingency, consider the
frequency, severity, and duration of I/O bursts from the application.

The number of request blocks can be set and changed with the IBM Virtual
Shared Disk Perspective graphical user interface or the vsdnode and

[v06n05:/]# vsdatalst -n
VSD Node Information

Initial Maximum VSD rw Buddy Buffer
node VSD IP packet cache cache request request minimum maximum size: #

number host_name adapter size buffers buffers count count size size maxbufs
------ --------------- -------- --------- ------- ------- ------- ------- ------- ------- -------

1 v06n01i css0 61440 64 256 256 48 4096 262144 33
3 v06n03 css0 61440 64 256 256 48 4096 262144 33
5 v06n05 css0 61440 64 256 256 48 4096 262144 33
7 v06n07 css0 61440 64 256 256 48 4096 262144 33
9 v06n09 css0 61440 64 256 256 48 4096 262144 2
11 v06n11 css0 61440 64 256 256 48 4096 262144 2
13 v06n13 css0 61440 64 256 256 48 4096 262144 2
15 v06n15 css0 61440 64 256 256 48 4096 262144 2

[v06n05:/]#
Tuning GPFS 111

updatevsdnode commands, respectively. For example, to change the number of
request blocks to 128 on node 1, the following would be used:

updatevsdnode -n 1 -r 128

This change is not dynamic. The updatevsd command itself only updates the
affected parameters in the SDR. To make the configuration changes active,
the gpfs file system must be unmounted and the gpfs daemons stopped.
Once the GPFS daemons are stopped, you must also explicitly stop RVSD
with the ha.vsd stop command. Then you must explicitly unload the VSD
device driver by issuing ucfgvsd -a. Then, you can finally issue ha_vsd reset.

4.1.2.6 Pagepool size
The GPFS pagepool is a high impact performance area because it is the
pagepool mechanism that allows GPFS to implement read and write requests
asynchronously via read ahead and write behind mechanisms. It also allows
re-use of current data already present in the pagepool area analogous to the
JFS buffer cache. However, unlike JFS, the GPFS pagepool is pinned
memory; so, care needs to be taken with sizing it. Setting pagepool too high
could impact overall systems performance because of the reduced real
memory available to applications. Pagepool memory is allocated within the
mmfs daemon’s address space. The mmfs daemon itself will fail on start-up
with an Abnormal exit error if it cannot successfully pin the specified amount
of pagepool memory. On the other hand, setting pagepool too low could
seriously degrade the performance of certain types of GPFS applications.

The pagepool parameter can be set to between 4 MB and 512 MB per node.
The default setting is 20 MB. The current setting of the pagepool parameter
can be determined by inspecting the file /var/mmfs/etc/mmfs.cfg. For
example:

#[v06n01i:/]# grep "^pagepool" /var/mmfs/etc/mmfs.cfg
pagepool 20M
[v06n01i:/]#

If GPFS itself determines the pagepool to be very insufficient, error
messages will be written to the mmfsd log file /var/adm/ras/mmfs.date. If such
messages are being written, and the problem is not addressed, the eventual
result would be a major slowdown but not a loss of file system integrity. These
messages are generated when it becomes necessary to steal more than a
pre-defined percentage of buffers from the pagepool area for re-use
consistently over a set number of sync periods. More precise information on
the rate of pagepool buffer stealing can be ascertained from the mmfsadm

command. For example:

mmfsadm dump pgalloc
112 Sizing and Tuning GPFS

Statistics:
Total number of buffer allocations: 39
Number of calls to steal a buffer: 1 = 3% of allocations
Number buffers searched: 0 = 0.0 searches per steal
Total number of buffers: 17
Number of calls to assign buffers: 2
Number of times initial agg > 0: 0 = 0% of steals

The optimum setting for pagepool depends on the rate at which the file
system is servicing I/O requests and the I/O pattern of the applications
driving those requests. Increasing pagepool will increase the amount of
cached data available to applications. This will provide performance benefits
in applications that do large amounts of I/O quickly and in applications where
reuse of data is high. A sufficiently large pagepool is also important to allow
an efficient read prefetch and deferred write. For applications that are doing
large amounts of sequential read or write, or are frequently re-reading various
large sections of a file, increasing pagepool from the default value may
significantly improve performance. The setting of pagepool can also be
particularly critical for applications that do random I/O. For random read I/O,
the benefits of a larger pagepool are significant because the chances a block
is already available for read in the pagepool is increased. Similarly, the
performance of random writes will also benefit if pagepool space is not
constricted. This is because applications might otherwise have to wait for
pagepool space to be freed while dirty buffers are flushed out to disk.

Consider an example where an application periodically performs high and
intense levels of I/O. For simplicity, we assume that this is the only application
driving the file system on the particular GPFS node. It is important to have an
assessment of:

• The rate of bursts of I/O from the application
• The amount of data to be transferred in one burst
• The rate at which the application can deliver data for read/write I/O
• The rate at which data can be written from the pagepool out to disk

Let us assume that the application writes bursts of data where each burst is
800 MB. Also, let us assume the application can deliver this for writing at the
rate of 40 MB/sec. In a real situation, data would be flowing over the SP
Switch into a VSD server from which it would be reassembled into a buddy
buffer and flushed out to disk. We assume that the disks are the bottleneck in
this process. Assume that each disk can deliver data at 5 MB/sec and there
are four disks configured in the file system.

Assuming an even distribution of data, this implies an aggregate throughput
of 20 MB/sec. For the application to execute unheeded for the first complete
Tuning GPFS 113

burst, that is, without having to wait for any pagepool space to be freed, a
pagepool of 800 MB would be required. This would allow the whole set of
data being written to be buffered. It would take 20 seconds for this buffer to fill
(800 MB at 40 MB/sec) and a further 20 seconds for it to empty once it has
become full (400 MB at 20 MB/sec). However, the buffer starts emptying as
soon as the block fills so the total timearound for the applications is 20 + n
sec, where n is a function of the disk speed and the exact application pattern;
so, the application cannot generate data faster than the disks can accept it on
a sustained basis.

The pagepool size may be reconfigured dynamically with the mmchconfig -i

command. For example:

mmchconfig -l pagepool=60M v06n09 -i

Please note the value must be suffixed with the character M.

The -i flag was introduced with GPFS V1.2. On earlier revisions of GPFS, the
command should be entered without -i flag and the GPFS daemons restarted
on the target nodes for the change to take effect.

Because the setting of the pagepool parameter is so specific to the amount of
I/O requests being generated from a node and the application I/O pattern, this
is one parameter that it is worthwhile assessing on a per node basis. Further,
because it can be modified dynamically from GPFS V1.2 onwards, changes
to pagepool could be implemented around GPFS applications. For example, a
run of a specific application sequence that would benefit from an increased
pagepool could have commands to increase the pagepool and reset it again
wrapped around the main application command script.

Another point to be bear in mind is that because this is a dynamic parameter,
it would be relatively easy to repeat consecutive runs of an application with a
gradually incrementing pagepool to ascertain the minimum level of pagepool
necessary to deliver the optimum I/O throughput.

4.1.2.7 Switch receive pool and send pool settings
Both of these parameters are high impact because, if they are not set
correctly, GPFS performance can be severely impacted.

The lsattr command can be used to check the current settings of send pool
and receive pool buffer space on a specific node. For example:

[v06n01i:/]# lsattr -E -l css0
kernel_memory 0xf1000000 TB3MX kernel memory address False
user_memory 0xf2000000 TB3MX user memory address False
int_priority 3 Interrupt priority False
114 Sizing and Tuning GPFS

int_level 14 Bus interrupt level False
spoolsize 16777216 Size of IP send buffer True
rpoolsize 16777216 Size of IP receive buffer True
adapter_status css_ready Configuration status False
[v06n01i:/]#

It is critical that the receive pool parameter is set to the maximum of 16 MB on
virtual shared disk servers. If it is not set to the maximum on VSD servers, it
is very likely the result will be dropped packets and retries at higher protocol
levels. As a guideline, we also recommend setting the receive pool to the
maximum on GPFS nodes unless there is a particular shortage of memory,
and there are no VSD servers configured on the GPFS nodes.

Similar arguments hold true for the send pool parameter. It is critical that the
send pool is set to the maximum of 16 MB on VSD servers. If it is not set to
the maximum on VSD servers, the outcome may be a shortage of send pool
space with buddy buffers consequently being tied up with the data. This could
result in the situation where disks become idle despite a backlog of pending
requests. We also recommend setting the send pool to the maximum on
GPFS nodes unless there is a particular shortage of memory. In such
situations, consideration could be given to reducing it providing either the I/O
rates are low, or the read to write ratio is very high.

The settings of send pool and receive pool can be changed by use of the
chugs command. For example:

/usr/lpp/ssp/css/chgcss -l css0 -a rpoolsize=16777216 -a spoolsize=16777216

Please note that these messages that are returned from the chgcss command
can be ignored:

There was customized rpoolsize, and new value !=default
There was customized spoolsize, and new value !=default

The affected nodes must be rebooted for these changes to take effect.

4.1.2.8 prefetchThreads parameter
We consider prefetchThreads to be a high impact parameter because it
exercises direct control over the number of threads used for sequential read
I/O.

The minimum value for prefetchThreads is 1, and the maximum, which is the
default, is 48. The current setting of the prefetchThreads can be determined
by inspecting the file /var/mmfs/etc/mmfs.cfg. For example:

#[v06n01i:/]# grep "^prefetchThreads" /var/mmfs/etc/mmfs.cfg
prefetchThreads 48
Tuning GPFS 115

[v06n01i:/]#

This parameter is specific to a GPFS node; so, there is no reason why it
cannot be set to different values on different nodes if this is found to be
appropriate to the application environment. Remember though, that GPFS
will only activate read ahead processing if it determines from the I/O pattern
of the application that it would be beneficial to do so.

The arguments for setting this parameter relate closely to those for
worker1Threads. Increasing the setting can increase the degree to which
threads can retrieve data for the same request concurrently. It should not be
assumed that the maximum value will always optimize performance as the
various I/O sub-systems may not be able to deliver sufficiently fast to the
individual threads. In fact, setting prefetchThreads too high could result in the
I/O sub-systems being over stressed with the consequent failure of the GPFS
file system and a device unavailable error.

The best way to assess the optimum number for prefetchThreads is to
consider the total available VSD server bandwidth for read I/O and to
compare this against a realized value for the rate at which a single thread can
retrieve data from the VSD sub-system. To assess the bandwidth of a single
thread, one could set prefetchThreads very low, say to 2, and compare a run
for this setting to a run with prefetchThreads increased by one to a total value
of 3.

Consider, for example, that four disks are configured on the VSD server and
each has a sustainable I/O read throughput of 5 MB/s. We would then
conclude that an evenly striped read could be read off the disks at the rate of
20 MB/s. If we determined from our thread test that an individual read thread
can process data at the rate of 3 MB/s, then an optimum number of pre-fetch
threads for this process would be seven.

The value of prefetchThreads applies to all read requests being performed on
the GPFS node for all GPFS file systems being accessed from that node. The
number determined, therefore, needs to be scaled according to the number of
concurrent applications accessing GPFS file systems from that node.

During the tests that were performed during the course of writing this
redbook, it was noticed that the mmfs daemons, which control the allocation
of read ahead threads, exercise a further degree of control over thread
allocation over and above the setting of prefetchThreads. So, even if an
application is making a very high number of read requests, mmfsd will not
necessarily initialize prefetchThread number of threads.
116 Sizing and Tuning GPFS

The prefetchThreads parameter cannot be modified dynamically or with the
mmchconfig command. The mmfs configuration file mmsdrcfg1 must be
manually retrieved from the SDR and edited to update the parameter. The file
should then be returned to the SDR, and GPFS should be restarted on the
affected nodes. Here is an example of the sequence:

cd /tmp
SDRRetrieveFile mmsdrcfg1 mmsdrcfg1
... Edit the file to change worker1Threads as required
SDRReplaceFile /tmp/mmsdrcfg1 mmsdrcfg1
stopsrc -c -s mmfs
startsrc -s mmfs

4.1.2.9 worker1Threads setting
This parameter is high impact because it exerts direct control over the
number of threads used by the mmfs daemon to exercise sequential write
behind. Setting this parameter too low may impair the ability of GPFS to
implement write behind sufficiently fast for the application and thus deprive it
of write I/O bandwidth. On the other hand, setting it too high could in some
situations over stress the I/O sub-systems and cause I/O requests to stall,
which could possibly eventually result in device access errors to the file
system. The optimum setting for this parameter will depend both on the I/O
pattern of the target application and the I/O sub-systems used in the SP
partition.

The minimum value for worker1Threads is 1 and the maximum, which is the
default, is 72. The current setting of worker1Threads parameter can be
determined by inspecting the file /var/mmfs/etc/mmfs.cfg. For example:

#[v06n01i:/]# grep "^worker1Threads" /var/mmfs/etc/mmfs.cfg
worker1Threads 72
[v06n01i:/]#

The worker1Threads parameter is node specific, so can be set to different
values on different nodes if appropriate to the application environment.

The comments in the mmfs configuration file recommend setting
worker1Threads according to the prefetchThreads parameter:

worker1Threads = 1.5 * prefetchThreads

Whilst this is a reasonable general guideline, we would also recommend that
the total available VSD server bandwidth for write I/O is compared against a
realized value for the rate at which a single thread can place data into the
VSD sub-system. The argument is identical to that for prefetchThreads.
Tuning GPFS 117

Increasing worker1Threads from a low value increases the degree to which
threads can write data for the same I/O request concurrently. This does not
imply that the maximum value will always optimize performance as the
various I/O sub-systems may not be able to process data sufficiently fast from
the individual threads. As with prefetchThreads, setting worker1Threads too
high may over-stress the VSD server I/O sub-systems with the risk of loss of
file system availability.

In the situation that I/O sub-systems are severely over-stretched by write I/O
requests, I/O requests may stall with a potential for the file system to go off
line. In this situation, lowering the worker1Threads parameter is an effective
means to bringing the write I/O levels back down to a manageable level. The
other options here might be to reduce the setting of the pagepool parameter
or the VSD request blocks parameter, but neither of these two options are
ideal. Reducing pagepool increases the risk of the system thrashing, while
reducing the request blocks parameter would impact metadata traffic as well,
which could, in turn, lead to deadlock situations.

As with the prefetchThreads parameter, it should be noted that the mmfs
daemon exercises its own control on the number of write behind threads over
and above the setting of worker1Threads. This means that even after you
have sized worker1Threads correctly, the daemon may limit the active number
of threads well below the maximum you have specified.

The worker1Threads parameter is modified by extracting the mmsdrcfg1
configuration file from the SDR and editing it. The file should then be returned
to the SDR, and GPFS should be restarted on the affected nodes. Please
note that this parameter cannot be modified dynamically with the mmchconfig

command. Please refer to 4.1.2.8 on page 115 for more details of the
procedure.

4.1.2.10 max_coalesce setting
This is a high impact parameter for sites that are using SSA RAID 5 disk
arrays in certain RAID configurations. If the value is set too low, then write
performance can be seriously impacted.

The current value of max_coalesce can be ascertained via the lsattr

command or the smitty fastpath smitty chgssardsk. For example:
118 Sizing and Tuning GPFS

The default value of max_coalesce for an SSA logical disk is 0x20000
(128KB) for each data disk configured into the array. So for a 4+P array, the
default setting of max_coalesce would be 0x80000 (512 KB).

In general, increasing max_coalesce increases the chance that composite I/O
operations for contiguous data are physically executed as single operations.
This can clearly give performance benefits where the parameter can be set
so as to maximize full stride write operations.

To this end, it is recommended that, where possible, the setting of
max_coalesce matches with the array stripe size and the GPFS file system
block size. For a GPFS file system configured with a 256 KB block size, a
recommended setting for max_coalesce on a 4+P raid array would, therefore,
be 0x40000, that is, 256 KB. Setting max_coalesce so that it is smaller than
the GPFS file system block size means that I/O operations will always have to
initiate several I/Os across the array to read or write a single file system
block. On the other hand, setting max_coalesce greater than the GPFS file
system block size may also result in degraded write performance. This is
because the SSA adapter will incur additional overhead as it will have to
perform modified writes for a single I/O operation in order to compute parity.

For other RAID configurations, the options are not so straight forward. For a
7+P configuration, for example, a full stride RAID write would comprise 448
KB of data, which does not match onto any of the supported GPFS file
system sizes. So, in this situation, it would not be possible to set
max_coalesce as optimally for GPFS file systems as is possible for 4+P. This
was stressed out by the tuning tests where it was observed that tuning

[v06n05:/]# lsattr -El hdisk4
pvid 00008655ca50d3bf0000000000000000 Physical volume identifier False
queue_depth 48 Queue depth True
write_queue_mod 0 Write queue depth modifier True
adapter_a ssa0 Adapter connection False
adapter_b none Adapter connection False
primary_adapter adapter_a Primary adapter True
reserve_lock yes RESERVE device on open True
connwhere_shad 8681374B12BE4CK SSA Connection Location False
max_coalesce 0x1e0000 Maximum coalesced operation True
size_in_mb 67683 Size in Megabytes False
location Location Label True
[v06n05:/]#
Tuning GPFS 119

max_coalesce on 15+P raid configurations, for example, had little effect
whatever the setting. On the other hand, setting max_coalesce to 256 KB on
a 4+P RAID-5 array with an application writing at 256 KB buffers, we found
write performance was approximately twice than when max_coalesce was set
to 128 KB. Interestingly, write performance did not degrade noticeably from
the 256 KB setting if max_coalesce was further increased to 1020 KB. In this
situation, we would, nevertheless, recommend sticking to the full stride RAID
value of 256 KB.

Note that the value for max_coalesce should not currently exceed 0xFF000
(1020 KB) even though the SSA device driver itself allows values up to 2 MB.
Values in excess of 0xFF000 may result in I/O operations being rejected. This
should be remembered when configuring 15+P RAID-5 arrays as the default
setting will be greater than 1020 KB.

The max_coalesce can be modified by use of the chdev command or the SMIT
fastpath chgssardsk. It is first necessary to unmount the gpfs file system. The
gpfs volume group must be varied off, and the logical device removed before
making the change. For example:

varyoffvg gpfs4
rmdev -l hdisk4
chdev -l hdisk4 -a max_coalesce=262144
mkdev -l hdisk4
varyonvg gpfs4

One final point to make here is that if a RAID 5 configuration is being
considered for the first time alongside a new GPFS file system, then it is a
very good idea to carefully consider the application I/O pattern against the
possible settings of the file system block size and the potential RAID stripe
width. If a suitable match can be found so that max_coalesce balances with
the application buffer size and the file system block size, and it can also be
set so that it equates to a full stride of the RAID array, then write performance
will be significantly enhanced.

4.1.3 Medium impact issues
This section considers medium impact tuning issues. These are issues that
can generally affect GPFS file system performance by more than 25 percent.
The areas we look at are:

• Dedicating VSD servers
• Splitting data and metadata across VSDs
• max_IP_msg_size setting
• ipqmaxlen setting
• Number of GPFS nodes
120 Sizing and Tuning GPFS

• maxFilesToCache setting
• mallocsize setting
• worker2Threads setting
• thewall
• Other TCP/IP parameters

4.1.3.1 Dedicating VSD servers
The issue of whether or not to dedicate VSD servers is of medium impact in
respect to tuning GPFS. VSD servers do not have to be dedicated. GPFS
applications can run on the same nodes as the VSD servers themselves. In
the situation where there is no shortage of node capacity, we would
recommend dedicating the servers. Where this is not practical, a local
decision will have to be made as to how the application nodes and VSD
servers are partitioned.

There are two factors to bear in mind:

• Dedicated VSD servers reduce the risk of potential CPU and I/O
bottlenecks that could otherwise be incurred by time sharing with other
applications. It will also minimizes the risk of critical GPFS file system
bottlenecks that could arise from one or more particular VSD servers
being more heavily loaded than others.

• In situations where it is not possible to dedicate VSD servers, it is
recommended that only applications that are not time critical are run on
those nodes.

4.1.3.2 Splitting data and metadata across VSDs
It is possible to nominate individual VSDs within a particular GPFS file system
to contain data only, metadata only, or a combination of both. The default is to
split data and metadata across all VSDs.

It might be considered that there are situations where this default behavior
could be changed to an advantage. Metadata traffic tends to consist of
relatively small random reads and writes, and, therefore, is quite different to
the large sequential I/O of the typical GPFS application. Further, splitting data
from metadata might also be considered advantageous when storing
application data on a raid array. In these situations, one might think at first to
store metadata on different VSDs. But one has also to think of the total I/O
bandwidth considerations. If metadata is isolated on a few separate VSDs,
then that could mean access to those VSDs rapidly becomes a performance
bottleneck itself. We believe that separating data from metadata is only likely
to improve performance in the situation where the same number of disks are
used for metadata as data. This is clearly impractical for most installations.
Tuning GPFS 121

Availability considerations also strengthen the argument for interspersed data
and metadata. For example, isolating metadata on non-RAID disks means
that, if those disks fail, there will be little hope of repairing file system
consistency unless replicated (we recommend you always replicate
metadata). The advantages of storing data on RAID arrays configured with
hot-spare standbys will be compromised if they rely on non-RAID disks for
storing metadata.

In light of these considerations, we recommend adopting a general guideline
of interspersing data and metadata across VSDs and always replicate
metadata.

For more information on metadata management performance, refer to 6.3,
“Metadata tests” on page 207.

4.1.3.3 max_IP_msg_size setting
This is a medium impact parameter. It defines the largest size of the packets
that the virtual shared disk software will send between the client and the
server. Its value can vary between 512 bytes and 65024 bytes (63.5 KB). The
default setting is 61440 bytes. The current setting of the parameter can be
ascertained from the vsdatalst -n command and inspecting the column IP
packet size. For example:

Larger values of max_IP_msg_size will result in fewer packets being required
to transfer the same amount of data. In the context of using GPFS with VSDs
configured over the SP Switch, we recommend setting max_IP_msg_size to
the maximum value, 65024 bytes.

[v06n01i:/]# vsdatalst -n
VSD Node Information

Initial Maximum VSD rw Buddy Buffer
node VSD IP packet cache cache request request minimum maximum size: #

number host_name adapter size buffers buffers count count size size maxbufs
------ --------------- -------- --------- ------- ------- ------- ------- ------- ------- -------

1 v06n01i css0 61440 64 256 256 48 4096 262144 33
3 v06n03 css0 61440 64 256 256 48 4096 262144 33
5 v06n05 css0 61440 64 256 256 48 4096 262144 33
7 v06n07 css0 61440 64 256 256 48 4096 262144 33
9 v06n09 css0 61440 64 256 256 48 4096 262144 2
11 v06n11 css0 61440 64 256 256 48 4096 262144 2
13 v06n13 css0 61440 64 256 256 48 4096 262144 2
15 v06n15 css0 61440 64 256 256 48 4096 262144 2

You have mail in /usr/spool/mail/root
[v06n01i:/]#
122 Sizing and Tuning GPFS

The max_IP_msg_size parameter can be modified by use of the ctlvsd

command. For example:

ctlvsd -r 1 -M 61440

This would set max_IP_msg_size to 60 KB on node 1.

4.1.3.4 ipqmaxlen setting
This parameter is medium impact. If it is set too low, the result can be
dropped IP packets and consequent performance degradation. Because both
GPFS and VSD software make extensive use of the IP protocol, the default
setting of 128 is often insufficient. Setting ipqmaxlen too high will not result in
a loss of memory but may result in a CPU overhead because of the additional
processing required for the extended number of IP packets.

The current setting of the ipqmaxlen parameter can be displayed by use of
the no command. For example:

[v06n01i:/]# no -o ipqmaxlen
ipqmaxlen = 100
[v06n01i:/]#

We recommend, as a general guideline, that ipqmaxlen should be increased
to 512 on both VSD servers and GPFS nodes. Increases above this size
should be made experimentally in relatively small steps, such as 128.

The value of the ipqmaxlen can also be modified by use of the no command.
For example:

/usr/sbin/no -o ipqmaxlen=newvalue

Please note that this parameter can be changed dynamically and is effective
until the next reboot of the node. The change should also be incorporated into
the /etc/rc.net start-up file to make it last across reboots.

Please refer to Section 4.1.3.9 “thewall” on page 127 and Section 4.1.3.10
“Other TCP/IP parameters” on page 127 for information on other network
related parameters.

4.1.3.5 Number of GPFS nodes
In a large SP system, there may be spare nodes available that could be used
to increase the number of nodes on which the GPFS application runs.
However, it does not follow automatically that increasing the number of nodes
will guarantee an improvement in overall performance. In addition, there may
be other constraints which fix the number of nodes on which the application
can run.
Tuning GPFS 123

Increasing the number of GPFS nodes will increase overall availability
because it will be easier to meet GPFS quorum requirements. For example,
an environment of two GPFS nodes necessitates, by default, that both
systems are up and running before GPFS can start. An environment with
eight GPFS nodes requires five, meaning that the application can still be
made available even if three nodes fail to start up properly.

Whether or not increasing the number of nodes improves performance of the
GPFS application will depend on the following:

1. Whether the execution of the application is locally bottlenecked on the
GPFS nodes. If it is the GPFS or VSD sub-system, which is the primary
bottleneck, then clearly these should be addressed first.

2. Whether the application architecture readily permits segmentation of the
non-GPFS part of a single execution to run in serial on multiple machines
or in parallel on multiple machines.

Increasing the number of nodes may be worthwhile where the application is
locally bottle-necked, but the GPFS and VSD sub-systems are not, and where
the non-GPFS processing can be distributed across multiple nodes.

Please also refer to Section 3.2.4 on page 90 for information regarding sizing
the number of gpfs nodes to the number of VSD servers.

4.1.3.6 maxFilesToCache
The maxFilesToCache is considered a medium impact parameter. Setting it
too high may not improve application performance but actually degrade it. On
the other hand, setting it too low could result in performance penalties for
applications that make use of a large number of files. This parameter is
closely related to the mallocsize parameter, and we recommend changes to
the two are made in tandem. The default setting for maxFilesToCache is 200.
The current setting of maxFilesToCache on an individual node can be
determined by inspecting the file /var/mmfs/etc/mmfs.cfg. For example:

[v06n09:/var/mmfs]# grep "^max" /var/mmfs/etc/mmfs.cfg
maxFilesToCache 200
[v06n09:/var/mmfs]#

This parameter should be set on each node to the maximum number of files
that will be accessed concurrently in the GPFS file system from the particular
node. If a specific node is expected to open more than 200 files, then
consideration should be given to increasing the parameter accordingly. When
only a few files need to be accessed concurrently, the value of
maxFilesToCache can be reduced so that the overhead of maintaining
unrequired internal memory buffers is minimized.
124 Sizing and Tuning GPFS

Please note that whatever the setting of maxFilesToCache, GPFS will not use
more than 50 percent of the mallocpool for caching i-nodes. We recommend
maxFilesToCache and mallocsize are both set on a per node basis as
required.

The maxFilesToCache can be modified with the mmchconfig command. For
example:

mmchconfig maxFilesToCache=300 v06n01i

This would change the maxFilesToCache parameter to 300 on node v06n01i.
Please note that this change is not dynamic. The GPFS file system must be
unmounted, the mmfs daemon restarted and the file system re-mounted on
the target nodes for the change to take effect. Nevertheless, for applications
that make dedicated use of the GPFS file system, commands to reset
maxFilesToCache could be wrapped around an application execution script.

Version 1.1 of GPFS imposes a default limit of 100 on maxFilesToCache. We
recommend this value not be increased if the GPFS node is running under
AIX 4.2.1 because this may cause a kernel heap problem.

4.1.3.7 mallocsize setting
The mallocsize parameter specifies the size of the mallocpool buffer. Like the
pagepool buffer, the mallocpool buffer is pinned memory and, therefore, care
needs to be taken with setting it to an appropriate value. The mallocpool
buffer can vary from 2 MB to 128 MB in size with the default setting being 4
MB. Because of the sensitivity of this parameter, we recommend its setting is
considered individually for each GPFS application node.

The current setting of mallocsize on an individual node can be determined by
inspecting the file, /var/mmfs/etc/mmfs.cfg. For example:

[v06n09:/var/mmfs]# grep "^mallocsize" /var/mmfs/etc/mmfs.cfg
mallocsize 4M
[v06n09:/var/mmfs]#

The correct setting of this parameter is closely related to the
maxFilesToCache parameter. Setting the parameter too low could seriously
degrade the performance of applications that use and/or re-use a large
number of files. It might also cause ENOMEM type read errors when
attempting to access a large number of files from the file system. On the other
hand, setting it too high could seriously impact systems performance and also
may not have any beneficial affect where applications are not making use of a
large number of files.

The following rule of thumb can be used for setting a value for mallocsize:
Tuning GPFS 125

mallocsize = 2 * (maximum I-node size for the file system + 800)
*maxFilesToCache

On memory constrained systems, it may not be realistic to set this parameter
to the value stipulated by the rule. In this case, a balanced decision must be
made as to the maximum setting that is not going to reduce pageable virtual
memory below an acceptable value.

This parameter can be modified with the mmchconfig command. For example:

mmchconfig mallocsize=8M v06n09

This would change the mallocsize parameter to 8 Mb on node v06n09. Please
note that this change is not dynamic. The GPFS file system must be
unmounted, the mmfs daemon restarted and the file system remounted on
the target nodes for the change to take effect. Nevertheless, for applications
that make dedicated use of the GPFS file system, commands to resize the
malloc buffer could be wrapped around an application execution script.

The mmfsadm dump malloc command may be helpful in determining whether the
mallocpool is running out of memory.

4.1.3.8 worker2Threads setting
This parameter is considered medium impact because it controls the number
of threads used by the mmfs daemon to exercise control over directory
access and other miscellaneous I/O operations. It is not as high impact as
worker1Threads but may be worthy of attention for applications that make use
of large numbers of directories or files.

The minimum value for worker2Threads is 1 and the maximum 12. The
default is the maximum, 12. The current setting of worker2Threads can be
determined by inspecting the file, /var/mmfs/etc/mmfs.cfg. For example:

#[v06n01i:/]# grep "^worker2Threads" /var/mmfs/etc/mmfs.cfg
worker2Threads 24
[v06n01i:/]#

A guideline is to set worker2Threads according to the prefetchThreads
parameter:

worker2Threads = 0.5 * prefetchThreads

Like the worker1Threads parameter, worker2threads is node specific; so, it
can be set to different values on different nodes if this is appropriate to the
application.
126 Sizing and Tuning GPFS

For applications that are performing very large numbers of directory
operations, it would be worth increasing the setting over the default to see if
there is any tangible improvement in performance. As with prefetchThreads
and worker1Threads, care is cautioned not to set the parameter too high.

The worker2Threads parameter cannot be modified dynamically or with the
mmchconfig command. The mmfs configuration file, mmsdrcfg1, must be
retrieved from the SDR and edited to update the parameter(s). The file should
then be returned to the SDR, and GPFS should be restarted on the affected
nodes. Please refer to 4.1.2.8 on page 115 for more details of the procedure.

4.1.3.9 thewall
This parameter is normally tuned for SP configurations, but it is mentioned
here as a medium impact parameter because if it is not set sufficiently high,
GPFS performance can be seriously impacted. This is because it would not
be possible to allocated a sufficient number of mbufs used for network
communications.

The current value of thewall can be displayed with the no command. For
example:

[v06n01i:/etc]# /usr/sbin/no -o thewall
thewall = 65536
[v06n01i:/etc]#

We recommend that this parameter is set to 65536, which equates to an
upper bound real memory allocation for network buffers to 64 MB.

The parameter can also be set with the no command. For example:

/usr/sbin/no -o thewall=65536

This change can be made dynamically and will survive until the next system
reboot. To make the change permanent, the no command should be added to
the file, /etc/rc.net.

4.1.3.10 Other TCP/IP parameters
There are a collection of TCP/IP parameters not specifically covered in this
section that need to be set, not so much for GPFS, but the SP environment in
general. These include:

• thewall
• sb_max
• udp_sendspace
• udp_recvspace
• tcp_sendpace
Tuning GPFS 127

• tcp_recvspace
• rfc1323

These parameters are generic to SP installations and are discussed in detail
in the redbook RS/6000 SP System Performance Tuning, SG24-5340.

4.1.4 Low impact issues
This section considers tuning issues that can have a minor effect GPFS file
system performance. The areas we look at are:

• VSD cache
• queue_depth setting
• The stripe group manager node
• The striping algorithm
• GPFS daemon priority
• The metadata manager node
• File system parameters

4.1.4.1 VSD cache
It is recommended that IBM Virtual Shared Disk caching is turned off. This is
because it is considered overall to be better for performance if the memory
that would have been pinned for VSD caching to instead be available as
system pageable memory.

Whether or not caching is enabled can be ascertained by executing the lsvsd

-l command on the VSD server. For example

[v06n01i:/]# lsvsd -l gpfs1n1
minor state server lv_major lv_minor vsd-name option size(MB)
2 ACT 1 39 1 gpfs1n1 nocache 8672

[v06n01i:/]#

4.1.4.2 queue_depth setting
This parameter is only relevant to GPFS file systems configured over RAID 5
arrays. Changes to it should be considered alongside changes to the
max_coalesce parameter. This is a low impact parameter because it is not so
critical to GPFS performance over RAID 5 arrays as the max_coalesce
parameter and, in our tests, varying queue_depth did not have a significant
effect. Nevertheless, having a less then optimum value of queue_depth may
mean some of the total I/O bandwidth of the RAID array is wasted.

The queue_depth parameter can be inspected via the lsattr command or the
smitty fastpath smitty chgssardsk. For example:
128 Sizing and Tuning GPFS

The default value of queue_depth for an SSA logical disk is 3 for each
member disk configured into the array. So, for a 4+P array, the default setting
of queue_depth would be 15.

A guideline recommendation is to verify that queue_depth is set to 2*(N+P) or
3*(N+P) for a N+P array. This maximizes the chance of reading data from
each component of the array in parallel. Higher values may improve
performance further.

The queue_depth can be modified by use of the chdev command or the SMIT
fastpath chgssardsk. The file system must first be unmounted. The volume
group for the GPFS file system must then be varied off and the logical device
removed before making the change. For example:

varyoffvg hdisk4
rmdev -l hdisk4
chdev -l hdisk5 -a queue_depth=48
mkdev -l hdisk4
varyonvg gpfs4

It is recommended the VSD servers are rebooted after making this change.

In our tests with a 4+P RAID-5 array, it has to be said that no discernible
difference in read or write performance was noticed when queue depth was
varied between 5, 15, and 25.

[v06n05:/]# lsattr -El hdisk4
pvid 00008655ca50d3bf0000000000000000 Physical volume identifier False
queue_depth 48 Queue depth True
write_queue_mod 0 Write queue depth modifier True
adapter_a ssa0 Adapter connection False
adapter_b none Adapter connection False
primary_adapter adapter_a Primary adapter True
reserve_lock yes RESERVE device on open True
connwhere_shad 8681374B12BE4CK SSA Connection Location False
max_coalesce 0x1e0000 Maximum coalesced operation True
size_in_mb 67683 Size in Megabytes False
location Location Label True
[v06n05:/]#
Tuning GPFS 129

4.1.4.3 The stripe group manager node
One GPFS node for every GPFS file system has the responsibility for
performing Stripe Group manager services. The Stripe Group manager is
responsible for:

• Administering changes to the state of the file system

• Repairing the file system

• Administering file system allocation requests

• Administering file system token requests

One or more specific nodes can be nominated as potential stripe group
manager by listing them in the file /var/mmfs/etc/cluster.preferences. If the
stripe group manager is not defined in this file, any node may be chosen by
the GPFS configuration manager when the file system is created. The
configuration manger attempts to balance Stripe Group Managers by
selecting a node that is not currently a Stripe Group Manager for any other
file system.

If you are not sure which node is acting as stripe group manager, this can be
ascertained from the mmfsadm dump command. For example:
130 Sizing and Tuning GPFS

The Stripe Group Manager can be configured either on a nominated GPFS
node or on a VSD server node. If the specific node is particularly heavily CPU
bound, you might consider moving the Strip Group Manager to another node.
We recommend that the Stripe Group Manager should not be run on the
same node as a VSD server even though doing so may not visibly affect the
VSD server performance.

The way to change the Stripe Group Manager node is to edit the file
/var/mmfs/etc/cluster.preferences on all nodes and specify the new node.
Multiple nodes can be listed in this file, but which node is chosen does not
depend on its order in the list. After this file has been edited, stop and restart
the mmfs daemon on the node currently running the stripe group manager to
force it to change to a new node from the list.

/usr/lpp/mmfs/bin/mmfsadm dump cfgmgr
Cluster Configuration:
Domain , 6 nodes in this cluster
ip address index admin node SG’s managed status failures/panics SDR node
129.40.32.89 2 y 1 up 0 / 0 9
129.40.32.81 4 n 0 down 0 / 0 1
129.40.32.93 3 n 0 up 0 / 0 13
129.40.32.83 5 n 0 down 0 / 0 3
129.40.32.95 7 n 0 up 0 / 0 15
129.40.32.91 6 n 0 up 0 / 0 11

Cluster configuration manager is 129.40.32.89 (this node)
Assigned stripe group managers:
"gpfsmd" SG mgr 129.40.32.89
Appointed at 928181342.914665022; done recovery=true

Stripe groups managed by this node:
"gpfsmd" id 812811C9:3752E52C: status recovered, fsck not active

mgrTakeover noTakeover
tmBlocked 0, asyncRecoveryInProgress 0, onetimeRecoveryDone 1
mgrOperationInProgress 0, logFileAssignmentInProgress 0
FenceDone 0, aclGarbageCollectInProgress 0
mounts: 4 nodes: 129.40.32.89:2 129.40.32.93:2 129.40.32.95:2 129.40.32.91:2
panics: 0 nodes
unfenced: 4 nodes: 129.40.32.89:0 129.40.32.93:0 129.40.32.95:0 129.40.32.91:0

log group 1, status in use, index 0, replicas 2, user 129.40.32.89
log group 2, status in use, index -1, replicas 2, user 129.40.32.93
log group 3, status in use, index -1, replicas 2, user 129.40.32.95
log group 4, status in use, index -1, replicas 2, user 129.40.32.91
log group -1, status available, index 7, replicas 1, user (none)
log group -1, status available, index 9, replicas 1, user (none)
log group -1, status available, index 10, replicas 1, user (none)
log group -1, status available, index 11, replicas 1, user (none)

Phoenix Group Names:Gpfs.1, GpfsRec.1; Group State:Active; Quorum:4 Version:(2:2)
Tuning GPFS 131

4.1.4.4 The striping algorithm
The file system stripe group is the set of physical disks that are used to store
data contained in the GPFS file system. Data may be striped across these
disks according to three algorithms:

1. roundRobin

2. balancedRandom

3. Random

The roundRobin is the default and generally preferred method as it optimizes
performance. There would normally be little merit in altering this option. The
roundRobin method is, however, the slowest algorithm when you want to
restripe the file system after adding or removing a disk.

The mmlsfs command can be used to ascertain which striping algorithm is
currently in effect. For example:

[sp6n10:/]# mmlsfs /dev/fs1 -s
flag value description
---- -------------- ---
-s roundRobin Stripe method
[sp6n10:/]#

The striping algorithm can be modified by use of the mmchfs command. For
example:

mmchfs -s balancedRandom /dev/fs1

All files created on the gpfs file system after this command is executed will
have data striped across the file system’s disks with the new stripe method.
The mmrestripefs command can be used to rebalance the file system if
necessary, but this command does not necessarily enforce a restripe of all
existing data just because the stripe method has changed.

4.1.4.5 GPFS daemon priority
By default, GPFS daemons run at a system priority of 40. It is possible to
modify this default although, as a general guideline, we recommend not to. In
situations where I/O operations are particularly time critical, consideration
could be given to increasing the priority. Caution is recommended when
considering changes to the priority of GPFS daemons. Setting them to an
inappropriate value could seriously impact system performance. We
specifically recommend that the GPFS daemon runs at a higher priority than
the VSD daemons and a lower priority than Topology Services (hats). (To
ascertain the priority of the VSD daemons, use the command lssrc -g vsd
132 Sizing and Tuning GPFS

and then ps -p <pid> -l on each of the two processes identified by the lssrc

command.)

In the situation where GPFS applications are running on the same nodes as
CPU intensive applications, which are bottle-necking the processor, we
recommend reducing the priority of the applications with the nice command
rather than increasing the priority of the GPFS daemon.

The current GPFS daemon priority on a node can be determined by use of
the following command on that node:

grep "^priority" /var/mmfs/etc/mmfs.cfg

The GPFS daemon priority can be modified with the mmchconfig command.
The change will not take affect immediately but will when the daemon is
restarted. The following example will reset the daemon priority:

mmchconfig priority=42 v06n01i
stopsrc -s -c -s mmfs
startsrc -s mmfs

This would change the GPFS daemon priority to 42 on node v06n01i.

4.1.4.6 The metadata manager node
There is one metadata manager for every file open in the GPFS file system. It
is not possible to define a specific node to always act as metadata manager
for a file system or a specific file. Rather, the GPFS node that first opens a file
acts as metadata manager for that file. The node remains the metadata
manager until there is no other node with the file open. Where the file is
accessed by multiple nodes, and some of these nodes are particularly heavily
stressed, there may be some merit in considering opening the file first from a
relatively quiet node.

4.1.4.7 File System parameters
There are a couple of file system parameters that are important to set
correctly in order to support the required maximum file system size and
number of files. These are the file system indirect size and the I-node size.
These are both low impact parameters in that they relate more to the file
system configuration option than a performance tuning parameter.

A table of options for these parameters is presented in Appendix B of the
redbook GPFS: A Parallel File System, SG24-5165.

Please note that changing these parameters necessitates a complete rebuild
of the file system.
Tuning GPFS 133

4.2 Tuning verification

Tuning verification in a client-server architecture traditionally comes down to
one perspective: Make sure your server performs optimally then add as many
clients to the system until client performance is at a minimally acceptable
level. This holds true for GPFS, for the most part, but a second more
important, but less obvious perspective also applies: Throttle the client’s
performance so as to not overload the servers. This perspective will be
explained in one of the following verification considerations:

• An obvious aspect of verifying how well tuned your system is in relation to
GPFS is knowing what your RS/6000 SP system is capable of. As you
would expect, hardware product and release differences, system software
configuration differences, and application architecture go along way to
make similar systems perform worlds apart.

For each of these areas, it is recommended that you:

1. First, follow the discussed example systems described in Chapter 3,
“Sizing GPFS” on page 71 to gain an insight of what your RS/6000 SP
hardware environment is capable of.

2. In terms of system software configuration for GPFS and related
software subsystems, your configuration has probably started with
something close to the default settings as recommended in your
installation guide.

3. Finally, your application will constrain your tuning capability to a certain
extent, and issues relating to this must be considered as seen in
Chapter 2, “Application considerations” on page 57.

• With an understanding of the capability of your system, the next task to
perform is a measure of performance and system errors. Measuring tools
for both of these are discussed in latter subsections. However, performing
these measurement tasks before and after system tuning changes is also
recommended. This allows you to verify the improvements or losses in
performance or errors that your adjustments have caused.

• Perhaps the most important factor in verifying your systems tuning is not
to over-tune your client nodes such that server nodes are over-run with
handling client requests. This may seem obvious, but the architecture of
GPFS at Version 1.2 and earlier require this. This is because the GPFS
architecture does not allow for an elegant way of automatically throttling
the client nodes. For this reason, it is possible that enough clients, or
reciprocally, not enough servers, could cause file system unavailability
problems.
134 Sizing and Tuning GPFS

With these points in mind, the following sections will discuss where to look for
problem areas and how to measure them. With GPFS, performance problems
can occur at any of the layers in the path from the client system application to
the servers disk system, as shown in Figure 2 on page 5, and all layers
should be considered when trying to verify system tuning.

4.2.1 Monitoring at the server
At the IBM Virtual Shared Disk server, on a dedicated server, tuning problems
are not GPFS related. Typically, problems are seen within statistics related to
IBM Virtual Shared Disk software; however, monitoring that alone doesn’t
provide the solution.

The areas that need to be monitored on the server include:

• Switch adapter statistics

• IBM Virtual Shared Disk statistics

• Disk sub-system statistics

4.2.1.1 Analyzing the SP Switch and SP Switch adapter
Switch adapter performance issues on the server can be categorized into one
of two problems: The switch fabric is congested, or there are a lack of buffers
available in the IBM Virtual Shared Disk architecture. In either case, problems
will show up as dropped packets related from the switch adapter. This can be
easily seen by using the netstat command as shown:
Tuning GPFS 135

The five columns listed in the previous output show device name, css_if0 for
the switch adapter, packets received, packets sent, dropped input packets,
and dropped output packets. The last two columns are obviously the
important ones as they indicate that nodes five and seven are having trouble
handling the incoming packet rate. To determine which problem type this is,
further analysis is necessary.

Because the previous screen capture also shows little or no output packet
drops, switch congestion is not the issue. If it were, the switch should be
analyzed and checked. However, the main errors seen here are input packet
drops which indicate a buffer related problem. That is, the server is
attempting to send or receive a packet, but either the relevant switch memory
pool is full, or there are no mbufs available. A third scenario, the IP interrupt
queue, is also a possible place for investigation; however, this will not show
up as dropped input packets problem.

• A send pool problem can be checked in a straightforward manner by using
either the vdidl3 or vdidl3mx command, depending on your switch adapter.
By running it with the -i option, as the following output shows, you can
check for failures in block allocations.

Note that this output has been edited to only show send pool statistics.

[serv6:/]# dsh -av 'netstat -D | grep css' | dshbak
HOST: v06n01i

css_if0 3917592 3086871 0 5
HOST: v06n03

css_if0 3924400 3056409 0 13
HOST: v06n05

css_if0 395328 237445 1284 0
HOST: v06n07

css_if0 3932729 3062942 515 6
HOST: v06n09

css_if0 2250197 5341963 0 2
HOST: v06n11

css_if0 2150492 4942095 0 2
HOST: v06n13

css_if0 989943 2779461 0 4
HOST: v06n15

css_if0 1256402 4336476 0 4
136 Sizing and Tuning GPFS

The fail column indicates whether there were any failures in allocating
space in the send pool. That is, there isn’t enough switch send pool
memory to allocate a required buffer size, the split column shows how
many times a larger buffer size was split to allocate space for smaller
buffer requests. The buffer size can be calculated from the send bkt
column as Table 11 shows.

Table 11. Table showing send bucket size to buffer size

As you can see from the previous example, both nodes five and seven are
not having any buffer allocation failures; so, the problem experienced in
this example is not send pool related.

Unlike the send pool, the receive pool is checked through the AIX error
logs by running the command:

errpt -a | grep ENOBUF

Send Bucket Size Actual Buffer Size (kB)

12 4

13 8

14 16

15 32

16 64

[serv6:/]# dsh -w v06n05,v06n07 'vdidl3 -i' | dshbak
HOST: v06n05

get ifbp info...

send pool: size=16777216 anchor@=0x50018600 start@=0x52550000 tags@=0x524f5000
bkt allocd free success fail split comb freed
12 0 0 343 0 1094 0 0
13 0 0 131 0 131 0 0
14 1 1 4914 0 7349 0 0
15 0 1 0 0 0 0 0
16 4 251 49308 0 0 0 0
HOST: v06n07

get ifbp info...

send pool: size=16777216 anchor@=0x50018600 start@=0x52550000 tags@=0x524fd000
bkt allocd free success fail split comb freed
12 0 0 314 0 1075 0 0
13 0 0 128 0 128 0 0
14 0 0 4887 0 7397 0 0
15 0 0 0 0 0 0 0
16 0 256 49282 0 0 0 0
Tuning GPFS 137

An error report of this type indicates that the system is running out of
receive pool space. Error reports that show mbuf pool threshold exceeded
are indicative of receive pool related problems but, more specifically, are
mbuf problems.

• As packets continually require mbufs, you should also perform a netstat

-m to see if there were any failed allocations for small (256 byte) packets.
Adjusting the value of thewall in the no options can solve mbuf allocation
problems. A typical mbuf problem is shown in the following netstat output
for node 5.

• In a similar fashion to mbuf allocation, the IP interrupt queue also needs
monitoring for overruns. This is important as a problem here can not only
affect GPFS performance but also other IP using applications.

The IP interrupt queue can be checked with a netstat -p IP | grep ipintrq

as the following example shows.

[serv6:/]# dsh -w v06n05 'netstat -m' | dshbak
HOST: v06n05

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 114 7162 0 14 640 0
64 79 5030 0 49 320 0
128 40 16379 0 24 160 0
256 326 1178266 972 362 384 3
512 50 9093 0 14 40 0
1024 10 2316 0 18 100 0
2048 0 935 9 100 100 142
4096 1 584 0 104 120 22
16384 0 1309 0 24 24 32
32768 1 1 0 0 2047 0

[serv6:/]# dsh -a netstat -p IP | grep ipintrq
v06n01i: 0 ipintrq overflows
v06n03: 0 ipintrq overflows
v06n05: 0 ipintrq overflows
v06n07: 0 ipintrq overflows
v06n09: 0 ipintrq overflows
v06n11: 0 ipintrq overflows
v06n13: 0 ipintrq overflows
v06n15: 0 ipintrq overflows
138 Sizing and Tuning GPFS

As you can see from the previous output, this situation did not suffer from
IP overruns. Had there been any problems, it would be necessary to
examine the value for ipqmaxlen.

Once the problem is located, it is then a matter of resolving it. Typically, if the
server to client ratio is sized such that the servers are not being overloaded
by the clients, then it is likely a switch tuning parameter on the server has
been mis-tuned. For information on tuning areas relating to the SP Switch
adapter, refer to Table 12.

Table 12. Tuning verification parameters for the Switch adapter.

4.2.1.2 Analyzing IBM Virtual Shared Disks
As noted earlier, IBM Virtual Shared Disk server statistics usually indicate
problems with the server especially for an overloaded system with a lot of
write activity. Ironically, this is easily detected on GPFS nodes by checking for
retries and rejected responses. This is performed using the statvsd command
as demonstrated:

Symptom Relevant Tuning
Parameter or
Impact Area

Reference

Congested switch fabric N/A Understanding and Using the SP
Switch, SG24-5161

Send pool failures spoolsize 4.1.2.7, “Switch receive pool and
send pool settings” on page 114

Receive pool failures rpoolsize 4.1.2.7, “Switch receive pool and
send pool settings” on page 114

Memory buffer failures thewall 4.1.3.9, “thewall” on page 127

IP Interrupt queue
overrun

ipqmaxlen 4.1.3.4, “ipqmaxlen setting” on page
123
Tuning GPFS 139

The retry values are indications of how many requests failed to be serviced by
a virtual shared disk server. The first number in the retries list is the number
of failures after waiting two seconds. Thereafter, the client waits twice as long
as the previous interval until it succeeds. Similarly, the rejected responses
indicate that a server sent a response back to the client after it had performed
a retry for the packet as shown in the previous screen capture.

Reciprocally, servers collect errors, such as rejected requests, which happen
when a server receives a request that has already been processed and
rejected merge time-outs, which occur when the server has waited too long
for a packet to arrive for a data block to be written. This is shown in the
following screen capture:

[serv6:/]# dsh -N gpfsnodes 'statvsd | egrep “retries|rejected responses"' | dshbak
HOST: v06n09

237 rejected responses
retries: 1922 859 297 106 33 8 2 0 0

3227 total retries

HOST: v06n11

264 rejected responses
retries: 2162 869 277 101 36 13 3 0 0

3461 total retries

HOST: v06n13

238 rejected responses
retries: 2028 865 303 113 52 13 1 0 0

3375 total retries

HOST: v06n15

230 rejected responses
retries: 2289 858 235 76 17 3 0 0 0

3478 total retries
140 Sizing and Tuning GPFS

The two previous screen captures, therefore, show a typical example of a
server, v06n05 in this case, being overrun. A lot of retries on the GPFS nodes
and many rejected requests/merge time-outs on the server. This is either
because the GPFS node to IBM Virtual Shared Disk server ratio is too high
and, therefore, the servers are kept too busy, or the server is mis-tuned and is
not performing well.

But what caused the rejections from the server? By examining further
statistics from statvsd, we can see from the following example that buddy
buffers were high on demand, and occasionally pbufs, also known as
read/write request, were also unavailable when needed. Request blocks
queuing statistics are also list here; however, in this case, buddy buffer
shortage is by under much higher demand than any other buffer.

[serv6:/]# dsh -N vsdservers 'statvsd | grep “rejected"' | dshbak
HOST: v06n01i

6 rejected requests
0 rejected responses
0 rejected no buddy buffer
4 rejected merge timeout.

HOST: v06n03

12 rejected requests
0 rejected responses
0 rejected no buddy buffer
8 rejected merge timeout.

HOST: v06n05

553 rejected requests
0 rejected responses
0 rejected no buddy buffer

1701 rejected merge timeout.

HOST: v06n07

9 rejected requests
0 rejected responses
0 rejected no buddy buffer
5 rejected merge timeout.
Tuning GPFS 141

If the buffers indicated previously are configured as suggested in 4.1.2.3,
“Buddy buffer considerations” on page 105 and 4.1.2.4, “pbuf considerations”
on page 107, then following the flow of control through GPFS and data
through internal buffers as shown in Chapter 1, “GPFS architecture” on page
1 would lead you to see that a write request at that point can only be slowed
by AIX’s Logical Volume Management or related server hardware, such as the
IBM Virtual Shared Disk server’s bus, SSA adapter, or disk performance.

Like the SP Switch adapter analysis in “Analyzing the SP Switch and SP
Switch adapter” on page 135, Table 13 lists the various impact areas that
should be investigated to verify correct tuning of the IBM Virtual Shared Disk
server.

Table 13. Tuning verification parameters for the IBM Virtual Shared Disk server

4.2.1.3 Analyzing the disk subsystem
In general, disk activity problems will fall into three categories: All disks are
being utilized at close to one hundred percent of the time, and the disks are
transferring as best they can; all disks are still highly utilized, but performance
is a little down on their rating; or one disk or all disks on a loop are still
extremely busy, but read and write performance is very poor, perhaps as low
as fifty percent of normal throughput.

Symptom Relevant Tuning
Parameter/Impact
Area

Reference

Retries (client)/
Rejections (server)/
Buddy buffer queued/
Pbuf queued/
Request block queued

buddy buffers 4.1.2.3, “Buddy buffer
considerations” on page 105

pbuf 4.1.2.4, “pbuf considerations” on
page 107

request block 4.1.2.5, “Request block limit” on
page 110

Disk Subsystem

[serv6:/]# dsh -w v06n05 ’statvsd | grep "queue"’ | dshbak
HOST: v06n05

0 requests queued waiting for a request block
12 requests queued waiting for a pbuf
0 requests queued waiting for a cache block

589345 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size
142 Sizing and Tuning GPFS

1. The first situation is a typical instance where there simply are not enough
physical disks being used in the file system to provide enough throughput.
Typically, the command iostat will display something like the following
output if this scenario occurs:

If this does occur, and it is combined with the IBM Virtual Shared Disk
problems as outlined in the previous section, then two solutions are
possible: Either reduce the clients ability to overload the server by
throttling their IO ability, or increase disk resource performance on the
servers through using a higher performance IO subsystem. The throttling
of clients can be achieved through the adjustment of worker1 and worker2
threads.

2. The second situation is a harder to define as all users perceive their disk
systems to never operate at optimal performance levels. However, the
purpose of this point is to draw attention to tuning SSA or verifying that
various tuning options are enabled and set to correct values. There are
three items that are worth checking:

1. Queue Depth

2. Maximum Coalesce

3. Fast Write Cache (for RAID 5 only)

There is no way to monitor the direct impact of these SSA disk attributes;
however, it is possible to at least verify settings as recommended in earlier
sections.

[v06n05:/]# lsvg
rootvg
gpfs15
gpfs10
[v06n05:/]# lsvg -p gpfs10 gpfs15
gpfs10:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk10 active 537 0 00..00..00..00..00
hdisk40 active 537 0 00..00..00..00..00
gpfs15:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk15 active 537 0 00..00..00..00..00
hdisk48 active 537 0 00..00..00..00..00
[sp6n01:/]# iostat -d hdisk10 hdisk40 hdisk15 hdisk48 5
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk10 99.6 5019.6 41.6 0 25098
hdisk15 99.2 4815.0 41.4 0 24075
hdisk40 99.2 5019.6 41.6 0 25098
hdisk48 98.6 4815.0 41.4 0 24075
Tuning GPFS 143

3. In the third situation, as you can see in the next iostat output, the disks
still have high utilization rates; however, throughput has dropped off
significantly.

This situation would suggest that either the disk is damaged and is
continually attempting internal recovery procedures, or the disk
attachment path is very busy. For a damaged disk, the obvious solution is
to investigate relevant error reports, and then the failing disk or SSA
adapter device should replaced as per normal maintenance procedures.

For a congested data path problem, the server environment should be
redesigned to reduce congestion. Among other things, this could be done
by migrating some disks to either a quieter loop or a new loop altogether.
For further information regarding sizing of disks per SSA loop, refer to
3.1.3, “Servers” on page 80.

In any of these situations, the disk subsystem performance needs to be tuned
or reviewed to address sizing issues. Direct software tuning is possible but
limited. This is summarized in Table 14.

Table 14. Tuning verification parameters for the disk sub-system

4.2.2 Monitoring at the client
The GPFS client verification is obviously a lot different from the IBM Virtual
Shared Disk servers verification because of the operational requirement that
the client has. That is, the client, in terms of performance, is only limited to

Symptom Relevant Tuning
Aspect or
Parameter

Reference

High utilization, high
throughput

Server sizing Chapter 3, “Sizing GPFS” on page
71

High utilization,
moderate throughput

Maximum
Coalesce and
Queue Depth

4.1.2.10, “max_coalesce setting” on
page 118 and 4.1.4.2,
“queue_depth setting” on page 128.

High utilization, low
throughput

[v06n05:/]# iostat -d hdisk10 hdisk40 hdisk15 hdisk48 5
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk10 81.2 1851.2 37.4 0 9256
hdisk15 84.0 1849.8 37.4 0 9249
hdisk40 80.2 1851.2 37.4 0 9256
hdisk48 83.4 1849.8 37.4 0 9249
144 Sizing and Tuning GPFS

how well it can issue I/O requests through GPFS. System latency is always a
factor; however, SP Switch congestion may also be a factor. Unlike latency,
switch congestion is possible to monitor and tune.

But, this is still answering the question as if there is a bottleneck between the
client and server. At this point in the tuning verification, you may still have
your clients out performing your IBM Virtual Shared Disk servers. As an
alternative to the question of verifying that a particular server setup is tuned,
this section will also attempt to address the question: How do you tune a
system that already has the servers well tuned but still has the clients
overrunning them?

4.2.2.1 SP Switch analysis
There is only one area worth investigating for client node tuning, and that is
switch congestion. As with the server switch analysis performed in section
4.2.1.1, “Analyzing the SP Switch and SP Switch adapter” on page 135, the
testing is again performed by using the netstat -D command. There is not
likely to be many input packet drop errors unless the GPFS node is also
performing another server like function that causes it to not be able to receive
packets.

The following screen capture demonstrates that all of the GPFS nodes are
not suffering from too much switch congestion. This is shown by only a few
output packets being dropped.

Given the proportion of dropped output packets here, congestion is not
hindering the performance of the clients.

4.2.2.2 Measuring the client
Emphasis to this point has been that some hardware constraint within the
IBM Virtual Shared Disk server, or the SP Switch itself, is the item or items

[serv6:/]# dsh -N gpfsnodes 'netstat -D | grep css' | dshbak
HOST: v06n09

css_if0 2250197 5341963 0 2
HOST: v06n11

css_if0 2150492 4942095 0 2
HOST: v06n13

css_if0 989943 2779461 0 4
HOST: v06n15

css_if0 1256402 4336476 0 4
Tuning GPFS 145

that hinder the throughput from GPFS clients to IBM Virtual Shared Disk
servers. It should be obvious then that an over-sized server environment can
lead to the situation where the servers are, in effect, idling. This then leads to
the question of how to know how many clients can be added until the server is
busy but not overrun?

In an existing environment, this should be a straightforward process:

1. Measure how much throughput your IBM Virtual Shared Disk servers can
provide.

2. Measure how much throughput your existing GPFS nodes create.

3. Calculate both the available server throughput and the throughput rate per
GPFS node.

4. The amount of times the GPFS node rate can go into the available
throughput is approximately the number of clients that can be added.

But what if your GPFS nodes already overrun your servers, and you can not
resize your server environment? The alternative is to reduce the throughput
capability of the GPFS node. As with GPFS Version 1.2, the mechanism for
controlling this is a manual one in adjusting the number of worker and
prefetch threads. For information on setting these parameters, refer to
4.1.2.9, “worker1Threads setting” on page 117, 4.1.2.8, “prefetchThreads
parameter” on page 115, and 4.1.3.8, “worker2Threads setting” on page 126.

So what is best for your RS/6000 SP? The first step is to gauge what a worker
thread is worth for your application. By setting your worker thread values to
an unrealistically low value and then increasing the value, you can see
performance, and possibly problems, increase and decrease. The following
example demonstrates the results of a simple, two IBM Virtual Shared Disk
server environment with four GPFS nodes. The application was a single write
dd command on each GPFS node with increasing worker one threads. Each
test was repeated four times to produce an average and standard deviation
result. The results are shown in Table 15., “Worker thread performance
example” on page 146, and for visual representation, are also shown in
Figure 29., “Worker thread performance example” on page 148.

Table 15. Worker thread performance example

Worker
Threads
per Client

Average
Time
(secs.)

Standard
Deviation

Dropped
Packets

Other Information

1 259.29 0.23 0 Disk Utilization was low -
approximately 20% on average
146 Sizing and Tuning GPFS

This environment was chosen because it was a simple task to over run the
servers with a low number of worker1 threads on the GPFS nodes. The
results show that, at approximately six worker1 threads per client, the
application maximized the capability of the servers without causing any
errors.

2 138.94 0.33 0

4 125.78 0.62 0

6 125.24 0.81 0 Disk utilization seemed to peek
here at around 50-55%, with
nearly 100% CPU wait time.

9 126.25 1.28 0

12 130.01 0.72 0

15 129.55 1.00 10 Dropped Packets occurred late in
the tests, and gradually
increased.

20 153.65 5.41 200 Dropped packets started early
and came fast. I/O wait time was
also reduced noticeably on other
servers.

Worker
Threads
per Client

Average
Time
(secs.)

Standard
Deviation

Dropped
Packets

Other Information
Tuning GPFS 147

Figure 29. Worker thread performance example

It is also interesting to note that, in this example, there is little difference in the
performance between approximately four and nine worker threads per node,
that is, a system wide thread total of between sixteen and thirty six threads.
This indicates that there is some flexibility in threads per node in a small
environment. Should the RS/6000 SP system grow without increasing the
collective server performance, the total number of worker threads should be
evenly redistributed. For example, to go to an eight GPFS node system, each
node should have between two and four worker threads.

Once above this total level, packets begin to be dropped at increasing rates,
and then the variation in the run time increases indicating that the servers are
now becoming swamped and are no longer behaving deterministically.

With this as a template for measuring GPFS node performance, it should now
be possible to apply this simple, although effective, technique to other similar
server bound systems.

4.2.3 Interpreting the numbers
Having resolved where the problem symptoms are occurring within the GPFS
architecture of your RS/6000 SP system, the final part in verifying your
system is to put all the testing together to determine what the problem is.
What you have seen so far is that the server is very heavily tuned and tested
and is nearly always the constraining factor in the system. But because the

1 2 4 6 9 12 15 20

Worker Threads/Client

0

50

100

150

200

250

300

T
im

e
(s

ec
on

ds
)

0

50

100

150

200

250

300

D
ro

pp
ed

P
ac

ke
ts

Average Time Dropped Packets

Worker Thread Variation Test
148 Sizing and Tuning GPFS

server uses a number of interacting subsystems to achieve its goal of GPFS
disk serving, a single symptom in one area may not necessarily indicate the
true or only problem with the system. In fact, it is possible with a well tuned
server environment that a tuning problem in one area is likely to be the result
of a tuning problem in an adjoining subsystem.

In some situations, such as with the IBM Virtual Shared Disk server’s disks,
the measurements alone of that subsystem can indicate the problem. In
others, such as the IBM Virtual Shared Disk subsystem, retries can indicate
either a mis-tuned IBM Virtual Shared Disk subsystem, or disk subsystem
problems, or both.

A good way to visualize the flow of possible symptoms and subsystem
interaction is shown in Figure 30 on page 149, which shows that if symptoms
are measured in one of the subsystems discussed earlier, the tuning problem
may, in fact, be occurring elsewhere and, in general, be heading back towards
the IBM Virtual Shared Disk server’s disk subsystem.

Figure 30. Flow of symptoms within a GPFS architecture

The first area to begin analyzing the system is at the IBM Virtual Shared Disk
server. The check for retries as described in section 4.2.1.2, “Analyzing IBM
Virtual Shared Disks” on page 139 should be performed because this is the
prime indicator for server overruns caused by any of the subsystems. System
checks can then be further analyzed by using the following points as a guide:

VSD Servers

GPFS Nodes

VSD
SubsystemDisk

Subsystem

VSD
Subsystem

Switch
Adapter

Subsystem

GPFS
Subsystem

Switch
Subsystem
Tuning GPFS 149

• If outgoing packets are being dropped by the SP Switch adapter on either
the server or the GPFS node, then there is a switch or adapter congestion
problem.

• If client requests are being queued at the server, then either the IBM
Virtual Shared Disk resources are under configured, or there is a disk
subsystem problem.

• Otherwise, incoming packets are being dropped by the switch or the IP
interface because of switch pool shortages, mbuf shortages, or IP
interrupt queue shortages.

Tuning should then occur in the relevant areas to try to alleviate problems.
Hardware problems, such as congestion or errors, should be checked and
corrected. If the server is tuned according to the guidelines of this chapter,
and server overruns are still occurring, then the two remaining options are:

• Increase the number of servers or performance of servers

• Throttle the clients IO activity

These should be tried until a balance is achieved. Verification procedures
should also be repeated regularly to confirm that the GPFS architecture is
operating correctly. The following changes should at least provide a quick
analysis of the IBM Virtual Shared Disk servers and GPFS nodes to confirm
the absence of tuning problems.

• Application IO operation profile, for example, changing from a mainly
sequential access application to a random access application,

• RS/6000 SP’s hardware, for example, replacement of hard disks with the
same volume but faster performance characteristics, and

• RS/6000 SP’s system software, for example, applying a set of program
temporary fixes (PTFs)

4.3 Tuning case studies

This section describes an experiment we carried out to explore the impact of
tuning GPFS parameters on the GPFS performance by running parallel and
random I/O-intensive applications.

The objectives of the case study are:
150 Sizing and Tuning GPFS

• To provide you with the optimal values for all GPFS parameters so that
you can achieve the best results when running any application on
GPFS.

• To extract as much useful information as possible from the case study.

4.3.1 Hardware, software, and GPFS configuration
This section lists the hardware and software configuration used for the test
case study.

Hardware configuration

1. One SP Frame

2. Two VSD server nodes:

• Four POWER2 processor (332 MHz) each, PCI bus
• 256 MB RAM
• One SSA adapter for each server
• One loop of five 4.5 SSA disk on each server node
• CSS switch network

3. Five thin GPFS nodes

• MCA BUS nodes
• One POWER processor (62 MHz) each
• 256 MB RAM
• CSS switch network

Software configuration

Each node is loaded with the following software:

• AIX 4.3.2.0 with Jan,1999 PTF set

• PSSP 3.1.0.4

• RVSD 3.1.0.3

• GPFS 1.2.0.2

GPFS configuration

The GPFS configuration has two VSD servers configured as a dedicated
VSDs, with one SSA loop for each VSD server, having five 4.5 GB disks in
each loop. Figure 31 on page 152 shows the hardware configuration of
GPFS.
Tuning GPFS 151

Figure 31. Hardware configuration for GPFS

The initial tunable parameters and buffers of GPFS and SP are configured as
shown Table 16.

Table 16. Initial parameter of the system

Parameter Value

Switch rpoolsize and rpoolsize 16 MB

thewall 64 MB

ipqmaxlen 512

Buddy buffer on VSD servers 33

Buddy buffer on GPFS nodes 2

pagepoolsize on GPFS nodes 20

pbuf 48

max_IP_msg_size 60 KB

maxFilesToCache on GPFS nodes 200

mallocsize on GPFS nodes 4 M

prefetchThreads 48

worker1Threads 72

worker2Threads 24

priority 40

sp6n01

sp6n03

sp6n10

sp6n11

sp6n13

sp6n12

sp6n14

sp6n05

sp6n07

sp6n09

SSA
4.5 GB

SSA
4.5 GB

SSA
4.5 GB

SSA
4.5 GB

SSA
4.5 GB SSA

4.5 GB

SSA
4.5 GB

SSA
4.5 GB

SSA
4.5 GB

SSA
4.5 GB 1 SSA loop

1 SSA loop

sp6n15 sp6n16
152 Sizing and Tuning GPFS

The Virutal Shared Disk (VSD) parameters for each node are entered into the
SDR as shown in the following screens.

The GPFS file system is created with the following stanza and configuration
as shown in the following screen.

sp6en0>> /usr/lpp/csd/bin/vsdatalst -n

VSD Node Information
Initial Maximum VSD rw Buddy Buffer

node VSD IP packet cache cache request request minimum maximum size: #
number host_name adapter size buffers buffers count count size size maxbufs

------ ---------------- ------- ------- ------- ------- ------- ------- -------
1 sp6n01.msc.itso css0 61440 64 256 256 48 4096 262144 33
3 sp6n03.msc.itso css0 61440 64 256 256 48 4096 262144 33
10 sp6n10.msc.itso css0 61440 64 256 256 48 4096 262144 2
11 sp6n11.msc.itso css0 61440 64 256 256 48 4096 262144 2
12 sp6n12.msc.itso css0 61440 64 256 256 48 4096 262144 2
13 sp6n13.msc.itso css0 61440 64 256 256 48 4096 262144 2
14 sp6n14.msc.itso css0 61440 64 256 256 48 4096 262144 2

sp6n10>> /usr/lpp/csd/bin/lsvsd -l

minor state server lv_major lv_minor vsd-name option size(MB)
2 ACT 1 0 0 gpfs1n1 nocache 4296
3 ACT 1 0 0 gpfs2n1 nocache 4296
4 ACT 1 0 0 gpfs3n1 nocache 4296
5 ACT 1 0 0 gpfs4n1 nocache 4296
6 ACT 1 0 0 gpfs5n1 nocache 4296
7 ACT 3 0 0 gpfs6n3 nocache 4296
8 ACT 3 0 0 gpfs7n3 nocache 4296
9 ACT 3 0 0 gpfs8n3 nocache 4296
10 ACT 3 0 0 gpfs9n3 nocache 4296
11 ACT 3 0 0 gpfs10n3 nocache 4296
Tuning GPFS 153

The following screens show a snapshot of the GPFS file system
configuration.

/gpfs:
dev = /dev/fs1
vfs = mmfs
nodename = -
mount = mmfs
type = mmfs
options =

rw,disks=gpfs1n1;gpfs6n3;gpfs2n1;gpfs7n3;gpfs3n1;gpfs8n3;gpfs4n1;gpfs9n3;gpfs5n1;gpfs10n3
account = false

sp6n10>> /usr/lpp/mmfs/bin/mmdf fs1

free KB free KB
disk disk size failure holds holds in full in
name in KB group metadata data blocks fragments
--------------- --------- -------- -------- ------ --------- ---------
gpfs1n1 4399104 4001 yes yes 4393216 592
gpfs2n1 4399104 4001 yes yes 4392960 592
gpfs3n1 4399104 4001 yes yes 4393216 584
gpfs4n1 4399104 4001 yes yes 4393216 584
gpfs5n1 4399104 4001 yes yes 4393216 592
gpfs6n3 4399104 4003 yes yes 4393216 584
gpfs7n3 4399104 4003 yes yes 4392960 584
gpfs8n3 4399104 4003 yes yes 4393216 592
gpfs9n3 4399104 4003 yes yes 4393216 592
gpfs10n3 4399104 4003 yes yes 4393216 576

--------- --------- ---------
(total) 43991040 43931648 5872
nInodes: 46080
free inodes: 46054
154 Sizing and Tuning GPFS

The above screens show the basic GPFS configuration on our SP system
without performing any tuning on any side. This configuration will be used as
a base configuration for the following scenarios.

The following sections demonstrate the performance impact in tunning GPFS
parameters for different scenarios.

4.3.1.1 Running a parallel test on a JBOD GPFS
In this scenario, we over run the VSD servers by adding more GPFS nodes,
and then we tune the system to a balance state.

sp6n10>> /usr/lpp/mmfs/bin/mmlsfs fs1

flag value description
---- -------------- ---
-s roundRobin Stripe method
-f 8192 Minimum fragment size in bytes
-i 512 Inode size in bytes
-I 16384 Indirect block size in bytes
-m 1 Default number of metadata replicas
-M 1 Maximum number of metadata replicas
-r 1 Default number of data replicas
-R 1 Maximum number of data replicas
-a 1048576 Estimated average file size
-n 8 Estimated number of nodes that will mount file system
-B 262144 Block size
-Q none Quotas enforced
-F 46080 Maximum number of inodes
-V 2 File system version. Highest supported version: 2
-d gpfs1n1;gpfs2n1;gpfs3n1;gpfs4n1;gpfs5n1;gpfs6n3;gpfs7n3;gpfs8n3;gpfs9n3;gpfs10n3 Disks in file system
-C 1 Configuration identifier

sp6n10>> /usr/lpp/mmfs/bin/mmlsdisk fs1

disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfs1n1 disk 512 4001 yes yes ready up
gpfs2n1 disk 512 4001 yes yes ready up
gpfs3n1 disk 512 4001 yes yes ready up
gpfs4n1 disk 512 4001 yes yes ready up
gpfs5n1 disk 512 4001 yes yes ready up
gpfs6n3 disk 512 4003 yes yes ready up
gpfs7n3 disk 512 4003 yes yes ready up
gpfs8n3 disk 512 4003 yes yes ready up
gpfs9n3 disk 512 4003 yes yes ready up
gpfs10n3 disk 512 4003 yes yes ready up
Tuning GPFS 155

Initially, GPFS is configured as shown earlier, and we ran the parallel
application on five GPFS nodes. The parallel tests were comprised of writing
and reading 8 GB files to the GPFS file system. This was done from five client
nodes simultaneously. The application block size was always 256 KB, and the
data partitioning file layout was always segmented. All tests utilized the ior
program.

After running the program, the program aborted complaining about Device
/gpfs not available. By looking at the following screen capture, we noticed that
the last two columns indicate that VSD server sp6n01 is having trouble
handling the incoming packet rate through the switch. To determine which
problem type it is, we did further analysis by looking at the statvsd command
output.

Because the previous screen capture also shows little or no output packet
drops, switch congestion is not the issue. However, the main errors seen are
input packet drops, which indicate a buffer related problem. That is, the server
is attempting to send or receive a packet, but either the switch memory pool is
full, or there are not enough mbufs available.

In most cases, when the buddy buffer on the VSD server is full, the switch
buffer keeps the packets, and this will fill up the switch buffers.

This might happen if the GPFS node to VSD server ratio is too high and,
therefore, the servers are kept too busy, or the VSD server is mis-tuned.

By examining statvsd output, we can see from the following screen that buddy
buffers are high on demand and, occasionally, pbuf buffers are unavailable
when they are needed. Request blocks queuing statistics are also list here;
however, in this case, buddy buffer shortage is in much higher demand than
any other buffer.

[sp6en0:/]# dsh -N vsdservers 'netstat -D | grep css' | dshbak
HOST: sp6n01

css_if0 1557788 1814354 56 0
HOST: sp6n03

css_if0 1520250 1701828 0 4
156 Sizing and Tuning GPFS

To solve this problem, we increase the maximum number of buddy buffers on
the VSD servers to 66 by issuing the following command:

sp6en0>> updatevsdnode -n 1,3 -s 66

Then we restart the rvsd and mmfs daemons on the cluster machine.

By increasing the buddy buffers on the VSD servers, we allow the VSD server
to queue more requests and, therefore, are able to free up the switch rpool
buffer.

We ran the program again, and it is completed successfully. Both VSD
servers were giving 46 MB/S write and 43 MB/S read, which seem to be
reasonable values for the configuration we have.

Also, the switch on the VSD servers did not show any dropped In/Out
packets.

Since we are configuring five disks in each loop per server, which means
each server will give around 20 to 25 MB/S. This means a total of two servers
will give 45 to 49 MB/S, which we accomplished through this test. See Table
17 on page 163 for the final results.

4.3.1.2 Running a random access test on a JBOD GPFS
In this scenario, we run a random application on a non-tuned system, and
then we tune the GPFS to provide us with better results.

Initially, the GPFS is configured as shown previously, and we run the random
application on five GPFS nodes. The random test was comprised of writing
and reading a 256 MB file to the GPFS file system. This was done from five
clients nodes simultaneously. The application block size varies between 400
and 40,000 bytes. The offset into the file varies as well. The test utilizes the
ior program.

[sp6en0:/]# dsh -w sp6n01 ’statvsd | grep "queue"’ | dshbak
HOST: sp6en0

0 requests queued waiting for a request block
2908 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
168277 requests queued waiting for a buddy buffer

0.0 average buddy buffer wait_queue size.
Tuning GPFS 157

By running the program, we get the following results for read and write I/O
operations:

• 0.77 MB/sec for Write operation
• 2.27 MB/sec for Read operation

Most likely, the I/O performance in this situation is not related to the VSD
servers because the VSD servers are not highly utilized, which is indicated by
looking at the iostat and netstat output. However, its more related to GPFS
and the application program. The following steps are done to improve the I/O
performance:

1. Reduce the blocksize of the GPFS file system

We know, for a fact, that the program write’s block size varies between 400
and 40,000 bytes, and our GPFS is configured for 256 KB blocks. In this
case, we reconfigure the GPFS file system with 64 KB blocks and run the
program again. We get the following results:

• 0.96 MB/sec for Write operation
• 2.86 MB/sec for Read operation

This shows an improvement in the performance of the I/O bandwidth by 25
percent of write and 26 percent of read. More tunning can be done by
changing the pagepool buffer size. The next step describes the pagepool
sizing.

2. Increase the pagepool size in the GPFS nodes

As it is mentioned in Section 4.2.2, the pagepool buffer is critical for
applications that do random write/read; therefore, we increase the
pagepool buffer from 20 MB the default to 45MB. The following command
is used to increase the pagepool buffer:

/usr/lpp/mmfs/bin/mmchconfig pagepool=45M -i

After increasing the pagepool buffer, we run the application, and we get
the following results:

• 1.033 MB/sec for write I/O.
• 2.97 MB/sec for read I/O.

As can be seen, the I/O write operation is improved by 34 percent and the
read is improved by 30 percent from the default results.

4.3.1.3 Running a parallel test on a replicated GPFS
The GPFS file system is configured as mentioned earlier, except it is
replicated. The application used is the same application that has been used
for the earlier tests.
158 Sizing and Tuning GPFS

We run the parallel application on five GPFS nodes with a 256 KB block size.
The data partitioning file layout is always segmented.

By running the program, we get the following results for read and write I/O
operations:

• 20.71 MB/sec Write operation
• 43.49 MB/sec Read Operation

By looking at the output of statvsd, we find that there are number of requests
queued waiting for a pbuf and a number of requests queued waiting for a
buddy buffer at both VSD servers. The following screen shows the output of
the statvsd command.

The above screen shows that the buddy buffer is high on demand, and the
pbuf buffers, also known as read/write request buffers, are also unavailable
when needed. In this case, the buddy buffer is in much higher demand than
any other buffer.

To solve this problem, we use the following steps:

1. Increased the pbuf and the buddy buffer as recommended in Section
4.2.1.

The pbuf is set to 80 for each server. Also the buddy buffer is increased to
66 per VSD server as shown in the following command:

•sp6en0>> updatevsdnode -n 1,3 -s 66
•sp6en0>> updatevsdnode -n 1,3 -p 80

[sp6en0:/]# dsh -w sp6n01 ’statvsd | grep "queue"’ | dshbak
HOST: sp6n01

0 requests queued waiting for a request block
19533 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
38876 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size

[sp6en0:/]# dsh -w sp6n03 ’statvsd | grep "queue"’ | dshbak
HOST: sp6n03

0 requests queued waiting for a request block
9803 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
9611 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size
Tuning GPFS 159

The following screen shows the output of the vsdatalst after changing the
pubuf and the buddy buffer.

We run the application and monitor the output of the statvsd. The output of
the statvsd command still shows an increase in the requests waiting for
pbuf and buddy buffers on both servers.

The application completed successfully with increase in the requests
queuing for the pbuf and buddy buffer. Both VSD servers were giving
almost 20 MB/S write and 43 MB/S read, which seems to be reasonable
values for replicated file systems.

sp6en0>> /usr/lpp/csd/bin/vsdatalst -n

VSD Node Information
Initial Maximum VSD rw Buddy Buffer

node VSD IP packet cache cache request request minimum maximum size: #
number host_name adapter size buffers buffers count count size size maxbufs

------ ---------------- ------- ------- ------- ------- ------- ------- -------
1 sp6n01.msc.itso css0 61440 64 256 256 80 4096 262144 66
3 sp6n03.msc.itso css0 61440 64 256 256 80 4096 262144 66
10 sp6n10.msc.itso css0 61440 64 256 256 48 4096 262144 2
11 sp6n11.msc.itso css0 61440 64 256 256 48 4096 262144 2
12 sp6n12.msc.itso css0 61440 64 256 256 48 4096 262144 2
13 sp6n13.msc.itso css0 61440 64 256 256 48 4096 262144 2
14 sp6n14.msc.itso css0 61440 64 256 256 48 4096 262144 2

[sp6en0:/]# dsh -w sp6n01 ’statvsd | grep "queue"’ | dshbak
HOST: sp6n01

0 requests queued waiting for a request block
36091 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
28410 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size

[sp6en0:/]# dsh -w sp6n03 ’statvsd | grep "queue"’ | dshbak
HOST: sp6n03

0 requests queued waiting for a request block
18510 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
23305 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size
160 Sizing and Tuning GPFS

Further investigation needs to be done to pin point the problem. While the
application was running we took a snapshot of iostat on one of the VSD
servers as shown in the following screen:

The above screen shows that the bottleneck are the disks. As we can see, the
disks are almost 100 percent utilized and that the requests queued are
waiting for the buddy buffer and pbuf.

For further solutions, we perform the following:

• Reduce the worker1Threads and the prefetchThreads at GPFS nodes

In this situation, we notice that the I/O sub-system is severely
over-streached by write I/O requests. I/O requests may stall with a
potential for the file system to go off line. To solve this problem, we lower
the worker1Threads and the prefetchThreads parameters to bring the
write I/O levels back down to a manageable level.

The worker1Threads and prefetchThreads are set to 9 and 6, respectively.
See Section 4.3.2.8 page 92 for more details on how to set those values.

By running the application and monitoring the statvsd command output,
we can see that there is no increase in the number of request queues
waiting for buddy buffer or pbufs as before. The following screen shows the
output of the statvsd command on both VSD servers.

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 309.8 0.4 11.4 0.0 88.3

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 2.7 15.0 3.7 0 60
hdisk1 0.0 0.0 0.0 0 0
hdisk2 0.0 0.0 0.0 0 0
hdisk3 0.0 0.0 0.0 0 0
hdisk4 99.9 4541.2 38.0 0 18176
hdisk5 0.0 0.0 0.0 0 0
hdisk6 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk10 99.9 4349.3 32.2 0 17408
hdisk11 0.0 0.0 0.0 0 0
hdisk12 0.0 0.0 0.0 0 0
hdisk13 99.9 4614.6 38.2 0 18470
hdisk14 99.9 4606.4 38.5 0 18437
hdisk15 93.9 4736.3 37.5 0 18957
.

Tuning GPFS 161

After running the program, we get the following results for read and write
I/O operations:

• 20.71 MB/sec Write operation
• 42.71 MB/sec Read Operation

At this stage, the system is in stable state. No requests queued are waiting for
pbufs or buddy buffers. Further solutions can be done by increasing the
number of disks attached to each VSD server.

4.3.1.4 Running a random test on a replicated GPFS
In this scenario, we run a random application on a non-tuned system, and
then we will tune the GPFS to provide us with better results.

Initially, the GPFS is configured, as shown earlier, with replicating data and
metadata, and we run the random application on five GPFS nodes. The
random test is comprised of writing and reading a 256 MB file to the GPFS
file system. This was done from five clients nodes simultaneously. The
application block size varied between 400 and 40,000 bytes. The offset into
the file was varied as well. The test utilized the ior program.

When we ran the program, we got the following initial results for read and
write I/O operations:

• 0.46 MB/sec Write operation
• 2.30 MB/sec Read Operation

Most likely, the I/O performance in this situation is not related to the VSD
servers because the VSD servers are not highly utilized, which is indicated by

[sp6en0:/]# dsh -w sp6n01 ’statvsd | grep "queue"’ | dshbak
HOST: sp6n01

0 requests queued waiting for a request block
36171 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
28410 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size

[sp6en0:/]# dsh -w sp6n03 ’statvsd | grep "queue"’ | dshbak
HOST: sp6n03

0 requests queued waiting for a request block
18610 requests queued waiting for a pbuf

0 requests queued waiting for a cache block
23305 requests queued waiting for a buddy buffer
0.0 average buddy buffer wait_queue size
162 Sizing and Tuning GPFS

looking at the iostat and netstat output. However, its more related to GPFS
and the application program. The following steps were taken to improve the
I/O performance:

1. Increase the pagepool size in the GPFS nodes

As it is mentioned in Section 4.2.2, the pagepool buffer is critical for
applications that do random write/read. We increased the pagepool buffer
from 20 MB, the default, to 45 MB. The following command is used to
increase the pagepool buffer:

/usr/lpp/mmfs/bin/mmchconfig pagepool=45M -i

After increasing the pagepool buffer, we ran the application and got the
following results:

• 0.47 MB/sec for write I/O.
• 2.35 MB/sec for read I/O.

As can be seen, increasing the pagepool on the GPFS nodes did not have
a big affect in the GPFS performance for this situation. The only
improvement we get is 0.02 percent on write and read operations.

2. Reduce the blocksize of the GPFS file system

We know, for a fact, that the program writes block size varied between 400
and 40,000 bytes and that our GPFS is configured for 256 KB blocks. In
this case, we reconfigure the GPFS file system with 64KB blocks and run
the program. We get the following results:

• 0.68 MB/sec for Write operation
• 3.01 MB/sec for Read operation

This shows an improvement in the performance of the I/O bandwidth by 50
percent on write and 26 percent on read operation.

Table 17 shows a summary of the test that have been done and the results
that we got before and after the tuning.

Table 17. Tuning Results

No Test Desc Write/Read I/O
Before Tuning

Write/Read I/O
After Tuning

%
Improv.

1 Parallel Access
file with JBOD

Failed: Device
/gpfs not ready

46.36 MB/s Write
43.17 MB/s Read

Fixed
Problem

2 Random Access
file with JBOD

0.77 MB/s Write
2.27 MB/s Read

1.03 MB/s Write
2.97 MB/s Read

34% Write
30% Read

3 Parallel Access
files with Replica

20.71 MB/s Write
43.49 MB/s Read

20.71 MB/s Write
42.71 MB/s Read

Fixed
Problem
Tuning GPFS 163

4.3.1.5 Serial application with a variable block size on GPFS
In this scenario, we run a serial application on a SP system to measure the
write and read I/O behavior on a variable block size.

The GPFS is configured as mentioned earlier, and we run the serial
application on one GPFS node. The serial tests were comprised of writing
and reading an 8 GB file to the GPFS file system. The application block size
is varying between 4 K to 4 MB each time. All tests utilize the iopm program.

Figure 32 on page 164 shows that the performance improves until a 256 KB
block size and then remains fairly constant above 256 KB. This is to be
expected since the GPFS file system is configured with a 256 KB block size.

Figure 32. Bandwidth versus block size

4 Random Access
files with Replica

0.46 MB/s Write
2.38 MB/s Read

0.69 MB/s Write
3.01 MB/s Read

50% Write
26% Read

No Test Desc Write/Read I/O
Before Tuning

Write/Read I/O
After Tuning

%
Improv.
164 Sizing and Tuning GPFS

Chapter 5. Implementing and tuning ADSM for GPFS

This chapter deals with implementation and tuning considerations for back up
and restore of GPFS file systems using ADSTAR Distributed Storage
Manager (ADSM). The ADSM Version 3.1 backup-archive client on AIX
Version 4.2.1 and higher provides backup and archive functions for supported
releases of GPFS. This support is introduced with client modification level 0.6
(PTF 6) of Version 3.1.

First, we describe differences between GPFS and JFS with respect to ADSM.
Then, we discuss various resource requirements of ADSM for GPFS, which
then lead to various configuration case studies. Finally, we summarize the
results and our experience with different implementation configurations.

The goal of this chapter is to find answers to the following typical
implementation questions:

• Which SP node should be used for the ADSM server? Does it matter if one
runs the ADSM server and a VSD server on the same node?

• Which SP node should be used for the ADSM client? Is there any
advantage of running the ADSM server and client on the same node?

• Is there any advantage to running multiple ADSM clients?

• How fast is a back up from GPFS? How fast can one restore to GPFS?
How does it compare to JFS data?

• Can ADSM handle large file systems and large files in GPFS?

5.1 ADSM relevant differences between JFS and GPFS

Data streaming was the target for the design of Tiger Shark, the ancestor of
GPFS. Since then, many modifications have been made to the file system
structure to integrate this distributed file system into the parallel environment
of the RS/6000 SP. As a result, there are some differences between JFS and

Tivoli has announced Tivoli Storage Management, formerly IBMs ADSTAR
Distributed Storage Manager (ADSM). For the purpose of this redbook, we
refer to the product as ADSM. For more information about Tivoli Storage
Management, please visit the Tivoli ADSM Website at:
http://www.tivoli.com/storage

Note:
© Copyright IBM Corp. 1999 165

GPFS in terms of function, performance, and data volumes. This section
describes the impact of these differences to ADSM.

5.1.1 Functional differences
GPFS and JFS are implemented as standard AIX Virtual File Systems.
Although GPFS is a POSIX-compliant file system, some exceptions apply to
GPFS. Table 18 summarizes functional differences between GPFS and JFS.

Table 18. ADSM relevant functional differences between JFS and GPFS

One obvious difference between JFS and GPFS is the location of access and
data. On JFS (no NFS), files can only be accessed from one machine; whereas,
on GPFS, files can be accessed from all SP nodes where the GPFS file system
is mounted. On JFS, files are located on local disks; whereas, on GPFS, files are
spread across several disks on different VSD servers.

In GPFS, locks are advisory, which is the POSIX standard for locking files.
Applications must explicitly check whether a file in GPFS is locked. The
current release of the ADSM backup-archive client (V3.1.0.7), however, does
not check for locks on files. As a result of this, ADSM will back up a file even
when it is locked by another application. The same applies to the ADSM
restore of a file that already exists in the GPFS file system and is locked by an
application. ADSM will not check whether this file is locked.

The missing support for memory mapped files on GPFS has no impact to
ADSM.

Function JFS GPFS 1.2

data location single node multiple nodes

locks mandatory advisory

memory mapped files yes no

atime, mtime, ctime accurate update delayed

AIX and GPFS have a different, even though related, implementation of
access control lists (ACLs). The current ADSM client (Version 3.1.0.7)
appears to back up GPFS ACLs as long as the user has restricted his or
her usage of GPFS ACLs to the JFS subset of the standard, which is the
vast majority of the function. It is planned to provide full ACLs support for
GPFS in a future release of ADSM.

ACL Support:
166 Sizing and Tuning GPFS

In GPFS, the change of a file’s content and the change of its size are
immediately propagated to all other SP nodes. However, there is a delay in
the update of the atime, mtime, and ctime time stamps. When a file is
accessed or changed on one node, it then can take GPFS up to five minutes
to update the corresponding time stamps on different nodes. The delayed
update of mtime has several impacts to ADSM which we discuss in more
detail in the following section.

5.1.2 Impact of the delayed update of mtime
The delayed update of mtime may impact ADSM backup modes, its handling
of files, which are modified during backup operation (serialization), and
ADSM restore. This can easily be avoided by scheduling the ADSM
operations appropriately. We recommend to allow sufficient time between
user activity and scheduled ADSM backups and to discourage users from
being active while ADSM operations are running. This would help to avoid or
limit the following scenarios.

Backup operation
If a file has changed on one SP node and is backed up on a different node
before mtime is updated on that node, then:

• Selective backup backs up the new content of the file, but it also backs up
the old mtime.

• Incremental-by-date backup does not back up the file.

• Full incremental backup only backs up the file when either its size or its
permissions have changed. If the backup occurs, ADSM backs up the new
content of the file, however, it also backs up the old mtime. This is
especially critical for the backup of databases since databases often
change the content of their data files without changing their size or
permissions.

• If the wrong mtime is backed up along with the file data to the ADSM
server a succeeding full incremental backup will again back up this file,
this time with the updated mtime, regardless as to whether the file
contents have been changed.

Serialization
All ADSM backup modes use mtime and the size of files for serialization.
When ADSM backs up a file, and at the same time the file is modified on a
different node without changing its size, then ADSM will not try to send the file
again when the backup of the file is finished before its mtime is updated. This
means that, for such files, ADSM makes fuzzy backups even when
Implementing and tuning ADSM for GPFS 167

serialization is set to static. If a file is restored that contains a fuzzy backup,
the file might not be usable depending on the file’s application.

Restore operation
The delayed update of mtime can have three impacts to ADSM restore:

• If a file was backed up with the wrong mtime, ADSM will restore this mtime
along with the data during a restore operation.

• Point-in-time restore of a file may fail when its backup copy is associated
with an old mtime on the ADSM server.

• The restore operation of a file using the IFNEWER option may fail if the file
is changed shortly before the restore operation occurs. For example, when
a user restores a file and modifies it on a different node, then a second
restore with the IFNEWER option will replace the changed file if the mtime
on the local node is not yet updated.

5.1.3 Performance differences
GPFS is a shared disk file system that is optimized for the sequential access
of large files. In comparison to JFS, the maximum I/O rate of GPFS is not
limited by the maximum local I/O rate of a single file server. As a result, the
maximum I/O rate of GPFS is much higher than the I/O rate of ADSM, which
is also limited by the maximum local I/O rate of the ADSM server machine.

The GPFS metadata (inodes) is distributed over several SP nodes. Since
GPFS must synchronize concurrent access from different nodes to the
distributed metadata, the performance of accessing GPFS metadata is slower
than the performance of JFS where the metadata is kept and accessed on a
single machine. The slower performance of GPFS metadata access
downgrades the performance of ADSM operations which access metadata of
many files, such as incremental backup or restore of complete file systems.

As GPFS is originally designed for accessing large files, the performance for
the access of a large number of small files is much worse than on JFS. For
large files, GPFS can compensate the additional overhead of opening a file in
a shared disk file system by striping large files over several VSD servers.
Unfortunately, GPFS cannot benefit from striping several small files over
different VSD servers.

5.1.4 Data volumes
The data volumes on GPFS file systems are often much higher than on JFS.
GPFS currently supports file systems up to 5 TB with a maximum file size of
885 GB. ADSM can handle these data volumes; however, you must plan your
168 Sizing and Tuning GPFS

ADSM implementation carefully to be able to back up and restore those huge
data volumes in a reasonable amount of time.

5.2 Resource requirements

A well tuned ADSM implementation for GPFS must take care of the resource
requirements of all components of ADSM and GPFS. To plan an
implementation of ADSM for GPFS, resource requirements in terms of CPU
capacity, memory capacity, device I/O rate, and network bandwidth must be
taken into account. Table 19 summarizes the resource requirements of the
various components of GPFS and ADSM.

Table 19. Resource requirements for GPFS and ADSM components

In the following, we give reasons for the resource requirements shown in
Table 19 by the means of the example configuration shown in Figure 33 on
page 170. It shows a GPFS cluster running on four SP nodes. Two VSD
servers, which are connected via twin-tailed cabling, provide the storage for
GPFS. Two ADSM clients back up the GPFS file systems to a single ADSM
server.

CPU Usage Memory
Usage

Disk I/O Network I/O

VSD server low to medium high high medium to high

VSD client on ADSM
client node

medium low none medium to high

Configuration Manager very low very low none very low

Stripe Group Manager/
Token Manager server

medium to high high none medium to high

Metadata Manager and
Token Manager on
ADSM client node

low to medium low none low to medium

ADSM server medium to high high high medium to high

ADSM client low high none low to medium
Implementing and tuning ADSM for GPFS 169

Figure 33. Example implementation for ADSM on GPFS

5.2.1 Resource requirements for VSD
Independent of ADSM, VSD server for large GPFS file systems require usual
end user activity to be low to medium CPU power and have a high usage of all
other resources. Due to the immense resource requirements, it is generally
recommended to have dedicated VSD server nodes for large GPFS file
systems. For example, the node on the right in Figure 33 does not even run
the GPFS daemon.

VSD clients require medium CPU power and medium to high network
bandwidth depending on the GPFS file system activity generated on this
node. Of course, ADSM backup and restore operations generate high file
system activity on SP nodes where the ADSM client is running. Notice that
VSD clients do not require I/O bandwidth. They only consume I/O bandwidth
on their associated VSD server nodes.

5.2.2 Resource requirements for GPFS
In our example, the GPFS daemon is running on four SP nodes. Each node’s
GPFS daemon can assume different personalities. The resource

VSD
Server

VSD
Client

GPFS GPFS

VSD
Server

VSD
Client

VSD
Client

GPFS GPFS

ADSM
Client

ADSM
Client

ADSM
Server

Network (Switch)

Device I/O

Memory
170 Sizing and Tuning GPFS

requirements of a GPFS daemon depend on its taken personalties. Only the
GPFS Configuration Manager personality requires nearly no resources.

Each GPFS file system has a Stripe Group Manager and Token Manager
Server, where both services must run on the same SP node. For large GPFS
file systems, both personalities require medium to high CPU capacity, high
memory capacity, and medium to high network I/O bandwidth. Therefore, we
recommend running the Stripe Group Manager and ADSM backup sessions
of large GPFS file systems on dedicated nodes.

Each access to a file requires interaction with the node’s GPFS Token
Manager (which interacts with the corresponding GPFS Token Manager
Server) and with the file’s Metadata Manager. In almost all cases, the node
that has opened a certain file for the longest period of continuous time, is the
file’s Metadata Manager. Since the ADSM client accesses a lot of files for
back up and restore, it increases the resource requirements of its local GPFS
daemon by low to medium CPU capacity and by low to medium network
bandwidth.

5.2.3 Resource requirements for ADSM
The ADSM client itself requires high memory capacity and low to medium
network bandwidth for back up to, or restore from, the ADSM server. In
addition to this, ADSM client activity also increases the resource
requirements of its node’s VSD client and the GPFS daemon as described
above. Therefore, the total resource requirement of the SP node running the
ADSM client is medium to high for CPU capacity and network bandwidth and
high for memory capacity.

The ADSM server’s memory and the device I/O bandwidth required is high.
The required network I/O bandwidth is medium to high depending on the
number of concurrent ADSM client sessions. The ADSM server requires
medium CPU power for back up and restore, but for ADSM internal
processes, for example, the expiration of the inventory, the CPU usage is
high.

5.3 Case studies

In this section, we first describe the hardware and the software of our test
environment, define our test methodology, and document the settings for
ADSM, TCPIP, and GPFS used throughout the testing.

We then describe our experience with four different example configurations.
All configurations share the same setup for the ADSM server and the VSD
Implementing and tuning ADSM for GPFS 171

servers. The configurations differ by the location and number of the ADSM
clients only.

We then depict the impact of tuning maxFileToCache on the data throughput
and compare JFS and GPFS performance data.

Finally, we document functional tests and their results to compare ADSM
operations. We compare the performance results of incremental backup
against selective backup, and also restore against restore, using the replace
option.

5.3.1 Test system configuration
The different configurations were tested on a RS/6000 SP with eight Silver
Wide nodes running AIX 4.3.1, each with four 332 MHz 640e CPUs and 3 GB
memory. The tests ran on ADSM server 3.1.2.20, ADSM client 3.1.0.7, GPFS
1.2, and PSSP 3.1.1.3.

The ADSM server ran on a dedicated SP node. The ADSM server’s recovery
log and database volumes were stored on internal disks. The ADSM server’s
storage pool volumes were located on four 7133-D40 disks of size 9.1 GB
connected to an IBM Advanced Serial SSA RAID adapter (feature code
6225). Figure 34 shows the cabling of the disks. On each disk, a JFS file
system with one storage pool volume was created.

Figure 34. Cabling and volumes of ADSM Server

The storage for the GPFS test file system was provided by two pairs of
twin-cabled VSD server nodes, each equipped with one SSA 6225 adapter.
Each pair of VSD servers was cabled as shown in Figure 35 on page 173. In
total we had twenty-four SSA disks, each of size 9.1 GB. The location of the
GPFS daemons and the ADSM clients varied for the different configurations.

DBADSM
Server Log

Vol1Vol1

Vol4

Vol3

Vol2
172 Sizing and Tuning GPFS

Figure 35. Cabling of VSD servers

The performance was measured for backup and restore with different file
sizes and up to four concurrent ADSM client sessions. Each ADSM client
session had its own directory with test files as given in Table 20.

Table 20. Sizing of test data

5.3.2 Test methodology
The results for these tests were obtained by running one or more ADSM
client sessions on one or more of the SP nodes.

Each ADSM client session operated on a separate subdirectory tree within
the same JFS or GPFS file system. The structure of the directory tree
containing the test data and the number of files are described in Table 20.

The following operations were performed for each test:

1. Full incremental backup

2. Restore to an alternative directory within the same file system

3. Restore to the same alternate directory within the same file system. The
REPLACE=YES option was specified.

The contents of the alternative restore directory were deleted before the first
restore operation but not before the second restore operation.

File Size Number of
Directories

Number of Files
per Directory

256 M 1 4

10 M 3 25

1 M 10 125

100 K 20 150

10 K 10 150

1 K 10 135

VSD
Server

VSD
Server
Implementing and tuning ADSM for GPFS 173

All client file spaces were deleted on the ADSM server between successive
runs to ensure that there was no effect on performance over time due to the
contents of the ADSM database or log.

The ADSM server was restarted, and the JFS file systems containing the disk
storage pool volumes were unmounted and re-mounted before performing
each restore operation. This ensured that all data being restored was actually
read from disk and not just cached from memory.

5.3.3 ADSM and TCP/IP configuration
This section documents the TCP/IP and ADSM client and server options used
during the running of the tests.

ADSM server options
The ADSM server options used during all tests are shown in Table 21.

Table 21. ADSM server options

ADSM client options
The ADSM client options used for all ADSM client nodes on all tests are
shown in Table 22.

Table 22. ADSM client options

Parameter Value

TCPWindowsize 256

TCPBufsize 32

TCPNodelay yes

TXNGroupmax 256

Parameter Value

LARGECOMmbuffers yes

TCPWindowsize 256

TCPBufsize 32

TCPNodelay yes

TXNBytelimit 25600
174 Sizing and Tuning GPFS

TCP/IP options
The TCP/IP options used on all SP nodes are shown in Table 23.

Table 23. TCP/IP parameters for all SP Nodes

GPFS file system options
The GPFS file system option used during the testing are shown in Table 24.
Some tests were also done to measure the effect of increasing
maxFilesToCache.

Table 24. GPFS file system parameters

5.3.4 Configuration 1: ADSM client on single VSD client node
Configuration 1 is called Reference Configuration for two reasons: First, this
configuration is similar to the configuration for local file systems, such as JFS,
where the ADSM clients cannot be distributed on several nodes. Second, in
the following subsections, performance of the other three configuration is
shown in comparison to the performance of Configuration 1.

Configuration description
Figure 36 on page 176 shows Configuration 1, the Reference Configuration.
The ADSM client runs on a VSD client, which is separate from the ADSM

Parameter Value

thewall 65536

sb_max 1310720

tcp_sendspace 327680

tcp_recvspace 327680

tcp_mssdflt 32768

rfc1323 1

Parameter Value

mallocsize 20 MB

maxFilesToCache 200

Block Size 256 KB

I-node Size 512

Indirect Block Size 16 KB

Stripe Method Round Robin
Implementing and tuning ADSM for GPFS 175

server. When running multiple concurrent ADSM client sessions, all sessions
are started on the same SP node.

Figure 36. Multiple ADSM Client Sessions on single VSD Client Node

Test results
The results for this configuration are used in the following sections to
compare and contrast the performance differences between the various
configurations. Table 25 lists the throughput numbers for backup and restore
which are also illustrated in Figure 37 on page 178 and Figure 39 on page
179. Figure 38 on page 178 and Figure 40 on page 179 show the ADSM
server CPU utilization during the corresponding ADSM operations.

Table 25. Backup and restore throughput for reference configuration

File Size # of Client Data Rate (KB/s)

Sessions Backup Restore

256 MB 1 8,852.73 13,291.99

2 16,036.87 25,922.52

4 25,761.17 36,442.80

10 MB 1 8,385.9 11,566.57

2 15,664.07 22,087.69

4 23,270.83 30,256.15

AD SM
C lient

G PFS G PFS

VSD
C lie nt

ADSM
Server

VSD
Serve r

VSD
Server

VSD
C lie nt

VSD
Server

VSD
Server

VSD
C lient

G PFS

AD SM
C lient
176 Sizing and Tuning GPFS

The following are reference configurations.

1 MB 1 4,217.10 4,555.00

2 7,349.75 8,605.39

4 10,938.46 14,713.25

100 KB 1 901.12 786.80

2 1,241.59 1,381.30

4 1,714.36 2,159.85

10 KB 1 99.27 83.42

2 115.65 158.56

4 169.09 231.61

1 KB 1 10.25 8.49

2 11.32 16.23

4 16.90 23.31

File Size # of Client Data Rate (KB/s)

Sessions Backup Restore
Implementing and tuning ADSM for GPFS 177

Figure 37. Backup data throughput

Figure 38. Reference Configuration: ADSM Server CPU Utilization - Backup

1 2 4

Number of Client Sessions

0

5000

10000

15000

20000

25000

30000

D
at

a
R

at
e

(K
B

/s
)

256m

10m

1m

100k

10k

1k

ref-bkup-data

1 2 4

Number of Client Sessions

0

10

20

30

40

50

C
P

U
U

til
iz

at
io

n
(%

)

256m

10m

1m

100k

10k

1k

ref-bkup-cpu
178 Sizing and Tuning GPFS

Figure 39. Restore data throughput

Figure 40. ADSM server CPU utilization - Restore

1 2 4

Number of Client Sessions

0

10000

20000

30000

40000

D
at

a
R

at
e

(K
B

/s
)

256m

10m

1m

100k

10k

1k

ref_rest-data

1 2 4

Number of Client Sessions

0

10

20

30

40

50

C
P

U
U

til
iz

at
io

n
(%

)

256m

10m

1m

100k

10k

1k

ref-rest-cpu
Implementing and tuning ADSM for GPFS 179

5.3.5 Configuration 2: ADSM client and server on same SP node
This test was performed to determine whether or not shared memory
communication between the ADSM server and client would improve
performance.

Configuration description
In Configuration 2, as illustrated in Figure 41, up to four ADSM client sessions
run on the ADSM server node. Configuration 2 checks whether ADSM can
benefit from using shared-memory communication between ADSM server
and ADSM client.

Figure 41. Configuration 2: Multiple ADSM client sessions on ADSM server node

Test results
The data transfer rates for full incremental backup and restore are shown in
Table 26. The data transfer rates are expressed relative to the measurements
made on the Reference Configuration. The measurements for 256 MB files
and 10 KB files are also shown in Figure 42 on page 182 and Figure 43 on
page 182. Figure 44 on page 183 illustrates the comparison of ADSM server
CPU utilization using shared memory and TCP/IP communication.

The results show that there is little benefit for large files in running the ADSM
server and client on the same SP node. For smaller files, there is some
benefit in running the ADSM server and client on the same node but only
when running one or two client sessions. When running three or more
sessions, the CPU utilization becomes a limiting factor.

VSD
Client

ADSM
Client

G PFS

ADSM
Server

VSD
Serve r

VSD
Server

VSD
Client

VSD
Server

VSD
Server

VSD
Client

G PFS G PFS G PFS

VSD
Client

ADSM
Client
180 Sizing and Tuning GPFS

Table 26. Relative data throughput using TCP/IP and shared memory

File Size # of Client Backup Restore

Sessions TCP/IP ShMem TCP/IP ShMem

256 MB 1 1.0267 0.984 0.992 0.992

2 0.940 0.936 0.902 0.930

4 0.917 0.913 1.076 0.752

10 MB 1 0.977 0.975 0.999 0.990

2 0.925 0.942 0.959 0.963

4 0.913 0.900 0.857 0.849

1 MB 1 1.004 1.004 0.995 1.000

2 1.054 1.057 0.986 0.982

4 0.878 0.907 0.965 0.948

100 KB 1 1.125 1.021 1.029 0.983

2 1.069 0.968 1.054 1.006

4 1.023 0.887 0.994 0.957

10 KB 1 1.180 1.091 1.049 0.999

2 1.156 1.038 1.052 0.992

4 0.986 0.875 1.035 0.974

1 KB 1 1.150 1.033 1.066 0.998

2 1.180 1.045 1.051 0.994

4 1.054 0.934 1.005 0.969
Implementing and tuning ADSM for GPFS 181

Figure 42. Rel. backup data throughput: 256 MB files (IP and shared memory)

Figure 43. Rel. backup data throughput: 10 KB files (IP and shared memory)

1 2 4

Number of Client Sessions

0.9

0.95

1

1.05

1.1

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

Reference

TCP/IP

SHMEM

cfg1/cfg2/cfg6-256M

1 2 4

Number of Client Sessions

0.8

0.9

1

1.1

1.2

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

Reference

TCP/IP

SHMEM

cfg1/cfg2/cfg6-10K
182 Sizing and Tuning GPFS

Figure 44. ADSM server CPU utilization — Backup (shared memory to IP)

5.3.6 Configuration 3: Using multiple ADSM client nodes
These tests were performed to determine what benefit could be obtained by
using multiple SP nodes for the ADSM client sessions. The first test used four
separate SP nodes to run one, two, and four client sessions. The second test
used two SP nodes for the same number of client sessions.

Configuration description
Configuration 3, as illustrated in Figure 45, tests whether ADSM can benefit
from the infrastructure of the parallel RS/6000 SP environment. Like in
Configuration 1, the ADSM clients are running on VSD client nodes that are
not the ADSM server, but now the ADSM clients are running on different SP
nodes. For running four ADSM client sessions, we have tested two variations.
In variation 3a, all ADSM clients are running on separate SP nodes. In
variation 3b, the ADSM clients are running on two SP nodes with up to two
ADSM client sessions on each node.

1 2 4

Number of Client Sessions

1

2

3

4

5

6

7

8

R
el

at
iv

e
C

P
U

U
til

iz
at

io
n

256m

10m

1m

100k

10k

1k

shmem-tcp-cpu
Implementing and tuning ADSM for GPFS 183

Figure 45. Configuration 3: Multiple ADSM/VSD client sessions and nodes

Test results
The first test (3a) was running ADSM clients on three VSD client nodes and
one VSD server node (our system setup was limited to three VSD client
nodes). The data throughput measurements for full incremental backup
relative to the Reference Configuration are shown in Figure 46 on page 185,
and for restore in Figure 47 on page 185.

The second test (3b) was running ADSM clients on two VSD client nodes.
The data throughput measurements for full incremental backup relative to the
Reference Configuration are shown in Figure 48 on page 186, and for restore
in Figure 49 on page 186.

The results show that there is little improvement for large files in running the
ADSM client on more than one SP node. This indicates that the ADSM client
software and the SP node itself are not the limiting factors when transferring
large volumes of data. The improvement for small files, however, is
significant.

For restore operations, there is a similar benefit in using multiple ADSM client
nodes but only for very small files.

When the number of ADSM client nodes is limited to two, we see a similar
improvement in performance for backing up small files. This effect is reduced
when we run more than one client session on the same SP node.

The performance for restore operations on two SP nodes is also reduced
when more than one client is run on the node.

G PFS G PFS

V SD
C lien t

AD S M
S erver

V SD
S erver

VS D
Server

VSD
C lien t

V SD
Server

VSD
Se rve r

V SD
C lie nt

G PFS

AD SM
C lient

AD SM
C lient
184 Sizing and Tuning GPFS

Figure 46. Rel. backup data throughput: ADSM client running on four SP Nodes

Figure 47. Rel. restore data throughput: ADSM client running on four SP Nodes

1 2 4

Number of Client Sessions

0.5

1

1.5

2

2.5

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

256m

10m

1m

100k

10k

1k

1/124-backup-dat

1 2 4

Number of Client Sessions

1

1.25

1.5

1.75

2

2.25

2.5

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

256m

10m

1m

100k

10k

1k

1/124-restore-data
Implementing and tuning ADSM for GPFS 185

Figure 48. Rel. backup data throughput: ADSM client running on two SP Nodes

Figure 49. Rel. restore data throughput: ADSM client running on two SP Nodes

1 2 4

Number of Client Sessions

1

1.25

1.5

1.75

2

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

256m

10m

1m

100k

10k

1k

1/12-backup-data

1 2 4

Number of Client Sessions

1

1.25

1.5

1.75

2

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

256m

10m

1m

100k

10k

1k

1/12-restore-data
186 Sizing and Tuning GPFS

5.3.7 Configuration 4: ADSM clients on VSD server nodes
The purpose of this test was to determine whether there would be any benefit
in running the ADSM client local to some of the data and to see whether there
would be any contention for resources between the ADSM client and the VSD
server.

Configuration description
Configuration 4, as illustrated in Figure 50, tests whether there is a benefit or
a disadvantage of running the ADSM clients on VSD server nodes. We have
retested Configuration 1 and Configuration 3b, but this time with the ADSM
client sessions running on VSD server nodes.

Figure 50. Conf. 4: Multiple ADSM client sessions on multiple VSD server nodes

Test results
The full incremental backup performance relative to the Reference
Configuration for a single ADSM client on a VSD server is shown in Figure 51
on page 188. Figure 52 on page 188 shows the same performance
information for two ADSM clients on two VSD servers.

The results show that while there is no significant benefit in running the
ADSM client on the VSD server node, there is also little interference.

When two ADSM clients are run on separate VSD servers, the result is very
similar.

G PFS

V SD
C lien t

AD S M
S erver

V SD
S erver

VS D
Server

VSD
C lien t

V SD
Server

VSD
Se rve r

V SD
C lie nt

G PFSG PFS G PFSG PFS

AD SM
C lient

AD SM
C lien t
Implementing and tuning ADSM for GPFS 187

Figure 51. Rel. backup data throughput: ADSM client on one VSD server

Figure 52. Rel. backup data throughput: ADSM client on two VSD servers

1 2 4

Number of Client Sessions

0.8

0.9

1

1.1

1.2

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t 256m

10m

100k

10k

1k

vsd1-back-data

1 2 4

Number of Client Sessions

0.8

0.9

1

1.1

1.2

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t 256m

10m

100k

10k

1k

vsd2-back-data
188 Sizing and Tuning GPFS

5.3.8 Impact of tuning maxFilesToCache
ADSM performance is closely linked to the speed at which file metadata and
inodes can be accessed. The value of maxFilesToCache was increased to
see whether any improvement in performance would be obtained.

In the first test, no data was sent from the ADSM client to the ADSM server. It
involved performing a full incremental backup on a subdirectory containing
20,000 files, which had already been backed up and not changed since. The
ADSM client sessions were started from one single SP node.

The time taken to traverse the subdirectory tree for various settings of
maxFilesToCache and mallocsize is shown in Table 27. The time taken to
perform the same operation on a JFS file system is also shown for
comparison.

The effect of increasing maxFilesToCache during a full incremental backup
and a restore operation is shown in Figure 53 on page 190 and Figure 54 on
page 190.The results shown are relative to the Reference Configuration
which used the default maxFilesToCache value of 200. The test was
performed with maxFilesToCache set to 10,000.

Note that only half of the mallocpool can be used for cached inodes, and each
inode caching takes up about 5.5 KB. Thus, with 40 MB mallocsize,
maxFilesToCache is limited internally, and its effective value would be 3800 (the
number of files cached is limited to one half of the mallocsize divided by 5.5 KB).
The same adjustment applies to a mallocsize of 60 MB. Even with
maxFilesToCache set to 21,000, the effective value would be 5600.

Table 27. Effect of maxFilesToCache on full incremental backups

File System Type maxFilesToCache mallocsize Time to Perform
Full Incremental

JFS n/a n/a 00:00:14

GPFS 200 20 MB 00:05:08

10,000 40 MB 00:03:26

21,000 60 MB 00:02:51
Implementing and tuning ADSM for GPFS 189

Figure 53. Backup data throughput: Ratio of maxFilesToCache 10,000 to 200

Figure 54. Restore data throughput: Ratio of maxFilesToCache 10,000 to 200

1 2 4

Number of Client Sessions

2.5

3

3.5

4

4.5

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

100k

10k

1k

maxFiles-back-data

1 2 4

Number of Client Sessions

0.9

1

1.1

1.2

1.3

1.4

1.5

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

100k

10k

1k

maxFiles-rest-data
190 Sizing and Tuning GPFS

5.3.9 Comparison of ADSM performance between JFS and GPFS
In this section, we compare some of the results we obtained during the
previous case studies on GPFS with results from similar tests where the data
resides on JFS.

The results illustrated in Figure 55 show that, for small files, backup
operations are significantly faster from JFS than GPFS.

Increasing the GPFS parameter maxFilesToCache reduces the differential
between the two file systems. The default value for maxFileToCache is 200.
The improvement obtained in increasing this value to 10,000 is shown in
Figure 56 on page 192.

Figure 55. Backup data throughput: Ratio of JFS to GPFS

1 2 4

Number of Client Sessions

0

5

10

15

20

25

30

35

40

45

50

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

256m

10m

100k

10k

1k

jfs/gpfs-1-back-data
Implementing and tuning ADSM for GPFS 191

Figure 56. Backup data throughput: JFS/GPFS — Increased maxFilesToCache

5.3.10 Full Incremental versus selective backup
We know that accessing metadata in GPFS is slower than in JFS; so, the
purpose of this test was to determine what effect this would have on full
incremental backup performance compared to selective backup. Both backup
operations were performed on the same data.

The results in Figure 57 show that selective backup is faster than full
incremental backup and that the difference increases as the files get smaller.

1 2 4

Number of Client Sessions

0
1
2

3
4

5
6

7
8

9
10
11

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

100k

10k

1k

jfs/gpfs-2-back-data
192 Sizing and Tuning GPFS

Figure 57. Backup data throughput: Ratio of selective to full Incremental

5.3.11 Restore versus replace
The purpose of this test was to determine whether there was any difference in
behavior of GPFS when the file being restored already existed in the file
system.

As was described in 5.3.2, “Test methodology” on page 173, each test
involved restoring the files to an empty directory and then repeating the
restore operation with the REPLACE=YES. Figure 58 on page 194 shows the
comparison between restore and replace for the Reference Configuration.
The graph shows the data throughput rate for a replace operation relative to
the same operation performed with no replace.

For large files, there is little difference between the behavior of the restore
and replace operations. But, as the size of the file decreases, the replace
operation becomes increasingly faster. This effect is reduced as the number
of ADSM client sessions running on the same SP node is increased.

The same comparison has been done when the multiple ADSM client
sessions are running on separate SP nodes. The results for this test are
shown in Figure 59 on page 195.

1 2 4

Number of Client Sessions

0.95

1

1.05

1.1

1.15

1.2

R
el

at
iv

e
D

at
a

T
hr

ou
gh

pu
t

1m

100k

10k

1k

incr-sel-backup-data
Implementing and tuning ADSM for GPFS 193

As can be seen, the results are quite different for the case where two and four
client sessions are running. The improvement in performance seen with one
client session is maintained across all sessions.

Figure 58. Restore data throughput: Ratio of replace to restore: Single SP node

1 2 4

Number of Client Sessions

0.75

1

1.25

1.5

1.75

2

R
el

at
iv

e
D

at
a

R
at

e

256m

10m

1m

100k

10k

1k

rest/repl-data
194 Sizing and Tuning GPFS

Figure 59. Restore data throughput: Ratio Replace/Restore: Multiple SP nodes

5.4 Recommendations

The following summarizes the results and our experience with different
implementation configurations. The results obtained certainly are limited to
our system environment and testing during the residency. Our answers and
recommendations cannot satisfy the questions for all possible configurations.
However, we think that at least they may help you, as discussion, during the
implementation planning steps.

5.4.1 Which SP Node to use as an ADSM server
When looking for a location for the ADSM server, you first have to decide
whether to put the ADSM server inside or outside the RS/6000 SP. Of course,
there is no choice if you have to back up a new GPFS file system to an
already established ADSM server. But, the bandwidth of the network between
the ADSM server and the ADSM client may become a critical resource
bottleneck.

Therefore, when setting up a new ADSM server for GPFS, you should locate
the ADSM server on a RS/6000 SP node. Because of the high performance
requirements of the ADSM server, you should consider having a dedicated

1 2 4

Number of Clients

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

R
el

at
iv

e
D

at
a

R
at

e

256m

10m

1m

100k

10k

1k

rest/repl-124-data
Implementing and tuning ADSM for GPFS 195

SP node for the ADSM server, which does not run any other resource
intensive tasks, for example, ADSM client sessions or VSD server processes.

There is no real benefit from locating the ADSM server on a VSD server node
because the data of a GPFS file system is spread over all VSD server nodes.
We did not specifically test this constellation because we felt that there would
be too many conflicts in resources to make this a worthwhile configuration.
There are also likely to be problems in connecting large volumes of disk
storage for GPFS and tape drives for ADSM on the same SP node.

5.4.2 Which SP node to use as an ADSM client
When the ADSM server is located inside the RS/6000 SP, then you have
three options for the location of the ADSM client:

• An SP node only running GPFS but not the VSD server

• A VSD server node

• The ADSM server node.

Due to the resource requirements of all components, you may consider to run
the ADSM client on an SP node that is neither the ADSM server node nor a
VSD server node.

The results illustrated in Figure 42 on page 182 and Figure 43 on page 182
show that there is also no real benefit from shared-memory communication
when ADSM client and ADSM server run on the same SP node. Inside the
RS/6000 SP, the network bandwidth between ADSM server and ADSM client
is no performance bottleneck because of the good network performance
provided by the SP Switch.

However, collocating ADSM server and client may make sense because you
then have dedicated one single SP node to ADSM instead of two or more.
This gives you additional CPU and hardware on the other nodes to run your
applications.

The results illustrated in Figure 51 on page 188 and Figure 52 on page 188
show that there is no significant advantage in running the ADSM client on a
VSD server node, especially when using multiple client sessions, because
the data of a GPFS file system is spread over all VSD server nodes. From the
point of view of minimizing resource conflicts, it would be best to run the
ADSM client on an SP node that is neither a VSD server nor a Stripe Group
Manager.
196 Sizing and Tuning GPFS

5.4.3 Is there any advantage on running multiple client sessions?
The GPFS file system is capable of supplying data to a client application at
very high data rates. In order to capitalize on this performance, it is necessary
to run multiple ADSM client sessions from separate GPFS file systems or the
same GPFS file system. This allows the ADSM server to use multiple storage
pool devices to receive the data.

Using multiple ADSM client sessions within the same file system currently
requires each session to target a specific subdirectory tree within the file
system. Care should be taken to balance the volume of data between each
client session.

If your backup data is sent directly to tape media, then care must be taken
during the restore process to avoid client sessions requesting the same tape.
This can be achieved by splitting the restore sessions across the same
subdirectory arrangement used during the backup operation. If your directory
structure is likely to change on a frequent basis, then this may not be feasible.

5.4.4 How many SP Nodes be used as an ADSM clients?
The results illustrated in Table 46 on page 185, Table 47 on page 185, Table
48 on page 186, and Table 49 on page 186 show that, for large files, there is
little benefit in running the ADSM client on more than one SP node.

For small files, a worthwhile performance improvement was measured when
running the ADSM client on two and four SP nodes.

Since there was no significant disadvantage for large files in using multiple
SP nodes for the ADSM client, you should base your decision on the volume
of small files that you need to back up.

There was no benefit in running the ADSM client and server on the same SP
node, and resource constraint affected the overall throughput for large files.
Implementing and tuning ADSM for GPFS 197

198 Sizing and Tuning GPFS

Chapter 6. Test results

This chapter contains the results of all the tests. The tests outlined were
created out of the desire to answer the following questions:

1. How does the choice of file system type (JBOD), replicated, mirrored, or
RAID-5 affect performance?

2. How does the number of SSA loops and disks on the loop affect
performance of GPFS?

3. How does the applications I/O access method affect performance?

4. For RAID-5 file systems, how does the choice of 4+P, 7+P, and 15+P array
sizes affect performance?

5. By how much will the performance of a GPFS file system using a RAID-5
disk change by putting the metadata on a non-RAID disk?

6. Should the VSD Servers be dedicated, or can they be used to run other
jobs?

7. How many VSD servers is it best to have for a given GPFS file system?

8. How does GPFS performance vary with VSD server node type?

9. What are the constraints on GPFS client node data throughput?

The Base Run tests were constructed to cover a lot of these questions using
a stable set of hardware that could be easily configured.

RAID-5 Array size tests and Metadata tests were also performed in an
attempt to cover those remaining unanswered questions

6.1 Base run tests

For the Base Runs, the following types of test are carried out on a number of
different GPFS file system configurations.

• Serial

• Parallel

• Random

Each Run usually covers all the above mentioned tests on a particular
configuration.
© Copyright IBM Corp. 1999 199

6.1.1 Serial tests
Serial tests are comprised of writing and reading a large file to the GPFS file
system. This was done from 1 then,2 and then 4 client nodes simultaneously.
The application on each GPFS client node writes and reads to a separate file
at the same time. The application block size was always 256KB and the file
size was at least 1 MB. All tests utilized the iopm program described later.

6.1.2 Parallel tests
Parallel tests were comprised of writing and reading a single 16 GB file to the
GPFS file system. This was done from one, then two, and then four client
nodes simultaneously. The applications on each GPFS client node writes and
reads to the same file at the same time. The application block size was
always 256 KB, and the data partitioning file layout was always segmented,
which means that in the 4 client case, for example, each node reads and
writes to a continuous 4 MB section of the file. All tests utilized the ior
program described later.

6.1.3 Random tests
Random tests were comprised of writing and reading a 512 MB file to the
GPFS file system. This was done from one, then two, and then four client
nodes simultaneously. The applications on each GPFS client node writes and
reads to the same file at the same time. The application block size varied
between 400 and 40,000 bytes (equivalent to 100 integers to 10,000
integers). The offset into the file was varied as well. All tests utilized the ior
program described later. These test were only performed on the S1.C4 test
environment.

6.1.4 Configurations
Hardware - For the Base Runs, we had a frame of eight 332 MHz SMP wide
nodes each with 3 GB of memory two IBM Enhanced RAID adapter
cards(feat:6215). We had eight SSA drawers of 4.5 GB Scorefire disks
available.

Software - Each node was loaded with the following software:

• AIX 4.3.2

• PSSP 3.1.0.6

• RVSD 3.1.0.3

• VSD 3.1.0.4

• GPFS 1.2.0.3
200 Sizing and Tuning GPFS

GPFS setup

There were either two or four dedicated VSD Server Nodes used. There were
four nodes dedicated for GPFS Client Nodes. GPFS file system block size
was kept at 256 KB and all GPFS parameters were as recommended in
installation section of the GPFS Installation and Administration Guide,
SA22-7278, apart from the following:

• Buddy Buffers - 33 for VSD servers and 2 for GPFS Nodes

Switch parameters were set to the following on all nodes

• thewall - 65536

• sb_max = 1310720

• tcp_sendspace = 327680

• tcp_recvspace = 327680

• udp_sendspace = 65536

• udp_recvspace = 655360

• rfc1323 = 1

• tcp_mssdflt = 1448

• ipforwarding = 1
Test results 201

For the Basic Runs, we ran tests on the test environment described by three
parameters: Setups, Configurations, and Tests as shown in Tables 28 through
30.

Table 28. Test environment — Setups

Table 29. Test environment — Configurations

Table 30. Test environment — Tests

This enables s1.c4.t5 to define the configuration for a particular run of tests.

The s1.c4.t5, for example, describes Setup 1 (eight disks per SSA loop),
configuration 4 (one adapter card with one SSA loop), and test 5 (using four
VSD server nodes and the GPFS file system built with replication across the
four VSD servers).

The SSA drawers were wired symmetrically between pairs of nodes. To give
eight disks per loop, layout 1 was used such that an SSA drawers was wired
between a pair of adapter cards in the following node pairs: 1-3, 5-7, 9-11,
13-15. Each node has two SSA adapter cards, therefore, using all eight
drawers.

Setups Description

S1 defines 8 disks per SSA loop.

S2 defines 16 disks per SSA loop

Configurations Description per VSD Server Node

C1 1 SSA loops/adapter, 2 SSA Adapter cards

C2 1 SSA loop/adapter, 2 SSA Adapter cards

C3 2 SSA loops/adapter, 2 SSA Adapter cards

C4 1 SSA loop/adapter, 1 SSA Adapter card

Tests Description

T1 2 VSD Server nodes, JBOD file system

T2 4 VSD Server nodes, JBOD file system

T3 4 VSD Server nodes, RAID-5 file system

T4 4 VSD Server nodes, LVM Mirrored file system

T5 4 VSD Server nodes, GPFS Replicated file system
202 Sizing and Tuning GPFS

To give 16 disks per loop, the wiring was then changed to layout 2 giving two
SSA drawers wired between a pair of adapter cards in the following node
pairs: 1-3, 5-7.

For setup 1, with configurations 4 and configuration 2, we used nodes
1,3,5,and 7 as the VSD server nodes using the layout 1 disk configuration.

Figure 60. SSA disk layout 1 — One SSA drawer per node

For setup 1, with configuration 3, we had to use nodes 1,5,9 and 13 so that
we could use all the disks connected to those nodes.

For setup 2, with configuration 1, we used nodes 1,3,5 and 7 with the disks
rewired in to layout 2 format.

SSA disk layout 1 for Base Run Tests

Node 1,5,9 or 13 Node 3,7,11 or 15

S
S

A
0

S
S

A
0

S
S

A
2

S
S

A
2

A1 A1

A1 A1

A2

A2

A2

A2

B2B2

B2 B2

B1

B1

B1

B1
Test results 203

Figure 61. SSA disk layout 2 — Two SSA drawers per node

6.1.5 Applications
In collecting our tests results, we used the following applications:

• ior. This application performs parallel reads or writes to the same file from
multiple nodes. It has data partitioning capabilities for mapping the parallel
tasks to a single global byte stream in a round-robin file layout or a
segmented file layout. Furthermore, it is able to write random xfer sizes to
random locations in the file. The application logic is: (1) barrier; (2) collect
start time stamps; (3) open file; (4) perform multiple reads (or writes) until
the entire file is processed; (5) close file; (6) collect end time stamps; (7)
compute elapsed time as latest end time stamp minus earliest start time
stamp; (8) report MB/sec; (9) sleep for 15 seconds and repeat. Note that
the times for open and close are included in calculating bandwidth results.
All results are reported as aggregate rates. It is an MPI application written
in the C language. The author for ior is Robert Kim Yates.

• iopm. This application performs one or more serial reads or writes. It has
the capability of writing and/or reading multiple files, each as an
independent serial process, and reporting the aggregate performance.
When performing tests with multiple files, children processes are created
via the fork system call. The application logic is: (1) open separate file for

SSA disk layout 2 for Base Run Tests

Node 1 or 5 Node 3 or 7

S
S

A
0

S
S

A
0

A1 A1

A2A2

B2 B2

B1 B1

S
S

A
2

S
S

A
2

A1 A1

A2A2

B2 B2

B1 B1
204 Sizing and Tuning GPFS

each write or read process; (2) collect start time stamp; (3) if more than
one reader or writer, fork processes for read or write; (4) each process
performs read or write; (5) each process closes file; (6) wait for processes
to complete; (7) collect end time; (8) calculate elapsed time and report
aggregate results. Unlike ior, iopm does not include the time to perform file
opens in the bandwidth results. It is written in the C language.

• ADSM application: ADSM is capable of reporting its performance. This
feature was employed for all ADSM numbers.

6.1.6 Measurement tools
The measurement tools used in this section are all from the Performance
Toolbox Version 1.2 and 2 for AIX: Guide and Reference, SC23-2625

These tools were used to monitor the activity on all nodes. The activity
information used in the analysis is:

• CPU information

• IP packet drop information on VSD server nodes

• VSD retries up to level 3 for GPFS client nodes

On each node in our system, a daemon called xservd is running and collects
statistics about that node every 30 seconds. This data is saved in the
/etc/perf directory on that node in a file named azizo.<date>. The variables
that are monitored are set up in the file /etc/perf/xmservd.cf. This is the same
for all nodes.

At the end of each separate test, these files on each node are copied to the
control workstation to be saved, and the name is changed to incorporate the
node.

These files now contain the measurements taken during each test, and the
following tools can be used to filter the information for graphing.

• ptxtab — Used to create tables that are acceptable for spreadsheet
analysis.

• ptxsplit — Used to split the recording file into multiple files containing
particular variable observation sets.

• ptxmerge — Used to recombine split files into one that perhaps contains
multiple node information for a particular variable observation set.
Test results 205

6.1.7 Measurements
The measurements taken are set out in Appendix A, “Measurements” on
page 225. Measurements are split into Serial, Parallel, and Random test
sections. Within each section, each graph has a label (Server View -
s1.c4.t3.s) that confirms the view, either Client or Server, the setup,
configuration, and test environment.

The data has been filtered to give both a Client view, which is the average of
all the GPFS nodes operating, and also a Server view, which is the average
of all the VSD Servers.

The information displayed by the graphs is the data throughput rates for both
read and write operations along with the CPU usage.

The Read or Write CPU percentage given is the addition of User and System
time. The Read or Write CPU Wait percentage given is just the Wait time.
Client Views do not have Wait time because they are not using local disks,
and this, therefore, is not considered relevant.

6.2 RAID-5 array size tests

The purpose of these tests was to investigate what the effect of varying the
RAID-5 arrays’ size has on performance. For this test, the hardware and
software setup was the same as for the Base Run tests.

The tests for 4+P RAID-5 array size was done as part of the Base Runs and
was done for all the various test environments.

Here, we chose setup 2, configuration 1, and performed the same tests as for
the Base Run tests on s2.c1 configuration with only the size of the RAID-5
array changed to 7+P and then 15+P.

The parallel tests were used as described in Section 6.1.2 “Parallel tests” on
page 200

6.2.1 Measurements
The measurements taken are set out in A.2, “RAID-5 array size tests” on
page 271.
206 Sizing and Tuning GPFS

6.3 Metadata tests

The purpose of these tests was to investigate the effect of a metadata
intensive application with GPFS. We also want to see, for a GPFS RAID-5 file
system, the difference in performance between having the metadata on the
RAID-5 arrays versus having it separated on a separate JBOD disk.

For this test, the hardware and software setup was the same as for the Base
Run tests.

The application used is the SPEC SDM Version 1.1 application running the
057.SDET Benchmark. This benchmark is sponsored by the AT&T Computer
Systems Division of the AT&T Bell laboratories. It consists of a number of
scripts running concurrently that each emulate various typical AIX commands
being run by multiple users. For example:

• Changing directories - cd

• Editing a file - ed

• Moving a file - mv

• Copying a file - cp

• Removing a file - rm

• Listing a directory - ls

Different multiples of scripts were run on each node to simulate varying
numbers of user activity. The benchmark application was run on the following
GPFS file system setups:

• Setup 2 configuration 1, 3 x 4+P RAID-5 arrays per server. Both data and
metadata combined.

• Setup 2 configuration 1, 3 x 4+P RAID-5 arrays per server with data only.
One JBOD disks per server for the metadata.

• Setup 2 configuration 1, JBOD file system with 16 disks per server all with
data and metadata.

• Setup 2 configuration 1, JBOD file system with 16 disks per server. 15 with
data and 1 with metadata.

Some of these tests were carried out on four GPFS client nodes concurrently
active, and some were done on only one GPFS client node.

6.3.1 Measurements
The measurements taken are set out in A.3, “Metadata tests” on page 273.
Test results 207

6.4 Client max throughput tests

The purpose of these tests was to investigate why, in the base run tests, the
maximum throughput a client sees is about 50MB/sec.

The Serial test were used as described in Section 6.1.1 “Serial tests” on
page 200. One GPFS client node was used, and the application was
configured to be able to run multiple threads on this node.

The test environment chosen for this test was setup 2, configuration1, test 2,
which is a 4 VSD Server node configuration running a JBOD file system. This
was chosen to have the least likelihood of experiencing server bandwidth
constraints.

6.4.1 Measurements
The measurements taken are set out in A.4, “Client max throughput tests” on
page 275.

6.5 Analysis

In this section, we attempt to answer most of the questions posed at the start
of this chapter. The analysis uses the test results in Appendix A,
“Measurements” on page 225 to demonstrate the reasoning behind the
answer presented.

6.5.1 Compare RAID-5, mirroring, replication, and JBOD
Both Figure 62 on page 209 and Figure 63 on page 210 show the
performance of a 4 VSD server GPFS configuration that uses setup 1,
configuration 3, and four clients. This has the fewest bottlenecks identifiable
using dropped packets. Only the Replicated file system displays any dropped
packets.

For writes, the JBOD file system records the highest data throughput followed
by RAID-5, mirrored, and then replicated. Even with replicated being the
slowest, it was still the only one to cause IP packets to be dropped. This is
probably due to the increased switch traffic caused by GPFS writing the data
twice.

For both the mirrored and replicated case, it is worth pointing out the
bandwidth required of the SSA adapter and the disks is twice that for JBOD
for the same client load. The bandwidth required of the switch in the
replicated case is double that for JBOD; whereas, for the mirrored case, it is
208 Sizing and Tuning GPFS

the same as for JBOD, as it is only when the client data reaches the VSD
servers that AIX steps in and does the mirroring.

For read, all the file systems have very similar performance, with JBOD and
Mirroring being slightly faster.

It is notable that, from the clients view, the MB/sec written per CPU cycle is
about one for all but the replicated file system whose value is about half that.

Figure 62. Client comparison: GPFS file system types — 4 VSD / 4 GPFS nodes

JBOD
RAID5

Mirror
Replicate

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.s
Test results 209

Figure 63. Server comparison: GPFS file system types — 4 VSD / 4 GPFS nodes

6.5.2 Compare SSA disk and loop combinations
First, we compare how varying the number of SSA loops affects performance.
We have fixed on eight disks per loop, four GPFS client nodes, and two VSD
servers running with a JBOD file system. This equates to Setup 1 Test1.3.s.

Figure 64, “Server performance with 4 GPFS clients and 2 Servers JBOD” on
page 211, shows that, for two VSD servers, increasing the number of loops
from two to four for each VSD server has no effect on overall performance.
This is probably because the data throughput per server is being limited by
the SSA adapter cards. From Table 8 on page 91, we see that, theoretically,
two 6215 adapter cards can supply 43.5 MB/sec write and 59 MB/sec read. In
practice, we recorded slightly higher figures for the write and slightly lower
figures for the read.

JBOD
RAID5

Mirror
Replicate

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.s
210 Sizing and Tuning GPFS

Figure 64. Server performance with 4 GPFS clients and 2 Servers JBOD

Now, we examine how varying the number of disks per loop affects
performance. For this, we have fixed on one loop per adapter, four GPFS
client nodes, and two VSD servers running a JBOD file system.

Figure 65, “Server performance: 1 loop per adapter — 4 clients / 2 Servers
JBOD” on page 212, shows the same throughput increase from eight to 16
disks as Figure 64. This is because they are the same data points.

The main difference between Figure 65 and Figure 64 is for the 32 disk case.
For the SSA disks graph, the 32 disks are spread across two SSA loops, one
on each of two SSA adapters; whereas, for the SSA loops graph, the 32 disks
are spread across the four available loops of the two SSA adapter cards

We can see that the maximum data throughput rate in both graphs is limited
by adapter cards and not disks. The fall in the write throughput at 32 disks is
probably caused by the extra contention of the 16 disks per SSA loop as
opposed to having eight disks per loop.

1 Loop- C4
2 Loops- C2

4 Loops -C3

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1
Test results 211

Figure 65. Server performance: 1 loop per adapter — 4 clients / 2 Servers JBOD

6.5.3 Compare serial parallel and random application performance
Comparing the Serial and Parallel tests for any particular test environment
shows that the performance figures correspond very closely.

For example, let us compare using the Client view for test 3, setup1,
configuration 4. Comparing Figure 66 and Figure 67, we can see this.

8
d

is
ks

-1
A

d

16
d

is
ks

-2
A

d

32
d

is
ks

-2
A

d

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s
212 Sizing and Tuning GPFS

Figure 66. Performance graph s1.c4.t3 — Client View: Sequential

Figure 67. Performance graph s1.c4.t3 — Client View: Parallel

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t3.s

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100
%

C
P

U
pe

r
C

lie
nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t3.p
Test results 213

From Figure 68, we can see that the performance of random I/O is far below
that for Serial or Parallel tests. While the read and write performance for
sequential access for two clients is about 25 MB/sec the performance when
using random access is shown to be 2 MB/sec for read and less than 1
MB/sec for write.

Figure 68. Performance graph s1.c4.t3 — Client View: Random

6.5.4 Compare RAID-5 with different array sizes
From Figure 69, we can see that the write performance is much better for the
4+P arrays size. This is because, in this case, the application is writing with
256 KB block sizes to the GPFS file system, which is created with a 256 KB
block size. This means that the write is a strided write such that it can be
done in one operation to all 4+P disks. For the other array sizes, the write is
non-strided, and because the block being written does not fit exactly into the
four 64 KB strides on each of the data disks, after the first write of the 256 KB
data block, the complete stride has to be read, parity calculated, and the
entire stride written back. In this instance, we can see that the write
performance for a non-strided write is 38 percent of that on the strided write.

The read does not suffer from the same problem, and the read performance
only shows a small decrease from 7+P to the 15+P case. This is probably due
to I/O contention of the 16 disks on one loop.

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

C
lie

nt

0

10

20

30

40

50

%
C

P
U

pe
r

C
lie

nt Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t3.r
214 Sizing and Tuning GPFS

Figure 69. RAID-5 server view performance with different arrays sizes — s2.c1.t3

6.5.5 Compare RAID-5 with/without metadata on RAID-5
Comparing Figure 163 on page 273 with Figure 67 on page 213, we can
easily see that, in this case, where a metadata intensive application is being
run concurrently on a four GPFS nodes, that the performance is generally
higher for the case when the metadata is combined with data on the RAID-5
arrays.

This is due to the fact that there are 12 data disks per VSD server over which
to spread the metadata when it is combined with the data, and only one
JBOD disk is used for the metadata when it is separated from the data.

So although writing and reading from a single RAID-5 disk is much slower
than for a JBOD disk, in this case, this is more than compensated for by gains
in performance caused by having 12 disks to use for metadata when on
RAID-5.

6.5.6 Investigation of maximum client data throughput
From A.1.1.17, “S2_C1_Tests2” on page 242, we can see two interesting
points:

4+P 7+P 15+P

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t3.p
Test results 215

1. The performance of a single node increases until we have four application
threads operating on that node.

2. The write performance is higher than the read.

Point 1 is explained by the fact that the GPFS client node, in this case, has
four processors and that each thread is constrained by the memory
bandwidth of the node type.

Point 2 is explained by the fact that the read performance of the client node is
constrained by that fact that it is driven by interrupt processing waiting on
packets arriving and further hampered by locks that occur on the read
threads. The write performance is not constrained by the same interrupt
driven process and is only constrained by the bandwidth of the memory
movement of the node.

6.5.7 Analysis of CPU usage with regard to dedicated VSD servers
In an attempt to address the question of whether or not to have dedicated
Servers, let us first look at the CPU usage profile from the tests carried out.
We will then be able to consider how to calculate the spare CPU capacity that
the VSD servers may have available to dedicate to other tasks.

6.5.7.1 Clients (application nodes)
By inspection of the Client View performance graphs in the Serial section of
A.1, “Base runs” on page 225, it can be seen that the ratio of CPU percentage
to MB/sec data throughput for both read and writes is about 1:1. That is to say
that, for a GPFS client node to write and read, 1 MB/sec sequentially
consumes about 1 percent of CPU. The only exception to this is for the
replicated file system where the write takes twice this; so, the ratio of CPU
percentage to MB/sec written in the replicated case increases to about 1.8:1.

This makes sense because it is only in the in the replicated case that the
client is responsible for issuing both the replicated writes.

We propose the following guidelines for estimating the maximum CPU
utilization for GPFS client nodes where the application I/O patterns are large
block and sequential:

• Begin by assuming 1 percent of CPU for each MB/sec from the client.

• For GPFS replication, assume 1.8 percent of CPU for each MB/sec written
by the client.

By inspection of the Client View performance graphs in the Random section
of A.1, “Base runs” on page 225, it can be seen that the ratio of CPU
216 Sizing and Tuning GPFS

percentage to MB/sec data throughput for writes is about 6:1. That is to say
that, for a GPFS client node to write and read, 1MB/sec randomly consumes
about 6 percent of CPU. The ratio of CPU percentage to MB/sec data
throughput for read is about 1.8:1.The only exception to this is for the
replicated file system where the write takes twice this; so, the ratio of CPU
percentage to MB/sec written in the replicated case is 12:1.

Again, this is because it is only in the replicated case that the client is
responsible for issuing both the replicated writes.

For random access, the limiting factor appears to be the single disk
bandwidth for reads and writes larger than the GPFS blocksize (or around
3.82 to 7.42 MB/sec, see column four of Table 4 on page 80), and the single
disk sector bandwidth for reads and writes is smaller than the GPFS blocksize
(or around 0.2 MB/sec). We propose the following guidelines for estimating
the maximum CPU utilization for GPFS client nodes where the application I/O
patterns are small block (400 -40000 bytes) and random:

• Begin by assuming 6 percent of CPU for each MB/sec written by the client.

• Assume 1.8 percent of CPU for each MB/sec read by the client.

• For GPFS replication, assume 12 percent of CPU for each MB/sec written
by the client.

6.5.7.2 Servers (VSD server nodes)
By inspection of the Server View performance graphs in the Serial section of
A.1, “Base runs” on page 225, it can be seen that the ratio of CPU percentage
to MB/sec data throughput for both read and writes is about 0.6:1. That is to
say that, for a GPFS client node to write and read, 1MB/sec sequentially
consumes about 0.6 percent of CPU. The only exception to this is for the
replicated file system where the write takes twice this; so, the ratio of CPU
percentage to MB/sec written in the replicated case is 1.1:1.

We propose the following guidelines for estimating the maximum CPU
utilization for VSD Server nodes where the application I/O patterns are large
block and sequential:

• Begin by assuming 0.6 percent of CPU for each MB/sec from the VSD
Server.

• For GPFS replication assume 1.2 percent of CPU for each MB/sec from
the VSD server.

By inspection of the Server View performance graphs in the Random section
of A.1, “Base runs” on page 225, it can be seen that the ratio of CPU
percentage to MB/sec data throughput for writes is about 10:1. That is to say
Test results 217

that, for a GPFS client node to write, 1MB/sec randomly consumes about 10
percent of CPU. The ratio of CPU percentage to MB/sec data throughput for
read is about 3:1.The only exception to this is for the replicated file system
where the write takes only slightly more than the normal write ratio CPU
percentage to MB/sec of 12:1.

We propose the following guidelines for estimating the maximum CPU
utilization for VSD Server nodes where the application I/O patterns are small
block (400 -40000 bytes) and random:

• Begin by assuming 10 percent of CPU for each MB/sec written by the
server.

• Assuming 1.8 percent of CPU for each MB/sec read by the server.

• For GPFS replication, assume 12 percent of CPU for each MB/sec written
by the server.

6.5.7.3 To dedicate a server
If the requirements of a server are known, then, with the aid of the above
figures, it is possible to estimate the likely CPU required of the server.

If this CPU figure is greater than 70 percent then is recommended that this
VSD server should be dedicated to being a VSD server. To avoid the
possibility of the GPFS file system becoming unavailable, it seems wise to
only consider using the VSD Server node for other tasks if the expected
GPFS related CPU usage is to be below 50 percent, and the other tasks are
unlikely to cause the CPU to become 100 percent busy.

If the VSD server is expected to be less than 70 percent busy while serving
GPFS, you may wish to consider placing other useful work on the VSD server.
In such cases, a CPU-intensive task with little or no I/O and little or no switch
communication is ideal. That is, the non-VSD workload should require
minimal I/Os and minimal communication because these resources will be
needed by VSD.

6.5.8 How the number of VSD servers affects performance
In general, performance is expected to linearly increase with additional VSD
servers. This is what you would expect from a truly scalable file system. We,
therefore, anticipate that a doubling in the number of servers would double
write and read performance. This is observed in the two-client performance
numbers for S1_C4_T1 and S1_C4_T2 in Figure 70 on page 219 (recall that
the Sx_Cy_Tz nomenclature is defined in 6.1.4, “Configurations” on page
200). Four-client results would be preferable, but they were not available.
218 Sizing and Tuning GPFS

Figure 70. Results for two-client performance of S1_C4_T1 and S1_C4_T2

The following imbalances may negatively affect the GPFS scaling potential:

• Client constrained (too few clients): VSD server capacity goes untapped
when there are not enough clients to drive them.

• Server constrained (too many clients): When clients are making requests
faster than the VSD servers can process them, VSD server performance
decreases. Depending upon the amount of demand, this decrease can be
dramatic.

Unbalanced scenarios are shown in Figure 71 on page 220. On the left, we
expect to double our performance when we add an additional VSD server
going from the S1_C4_T1 configuration to the S1_C4_T2 configuration, but
the results remain essentially constant due to client constraints. On the right,
we expect to double our performance when we go from one client to four
clients in configuration S1_C4_T1, but the results remain essentially constant
because we are server constrained.

1 2
Number of VSD servers

20

25

30

35

40

45

50

55

B
an

dw
id

th
(M

B
/s

ec
)

read

write

VSD Scaling
Test results 219

Figure 71. Server-constrained and client-constrained imbalances

6.5.9 Validating sizing

6.5.9.1 Sample 1: Setup S1_C4_T1
As an exercise in validating our sizing methodology, we construct an estimate
of what each client is able to achieve. Then, we will perform a similar
calculation of the aggregate VSD server bandwidth. We then compare our
estimates with the actual performance recorded in A.1.1.1, “S1_C4_Tests1”
on page 226.

By inspecting Table 28 on page 202 for the configuration of experiment
S1_C4_T1, we have:

• Eight disks per SSA loop.

• One SSA loop and one Campbell SSA adapter per server.

• Two VSD servers with JBOD (no RAID, no mirroring) disks.

• Up to six Clients.

• All eight nodes are 332 Mhz 604e Silver nodes.

Following the guidelines set forth in Chapter 3, “Sizing GPFS” on page 71, we
anticipate that the client bandwidth for a 332 Mhz SMP wide will be confined
by the Switch throughput limit of around 76.3 MB/sec. We can also estimate
the VSD server bandwidth using the following:

• Eight scorefire disks - 4.88 x 8 = 39 MB/sec max GPFS throughput (for
disk performance, consult column four of Table 4 on page 80).

• SSA adapter card - 29.4 MB/sec read and 21.7 write max GPFS
throughput (for SSA adapter performance, consult Table 8 on page 91).

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Server Constrained
(adding clients to S1-C4-t1)

2 VSDs 4 VSDs
0

10

20

30

40

50

60

B
an

dw
id

th
(M

B
/s

ec
)

writes

reads

Server Constrained
(adding servers S1_C4_T2)
220 Sizing and Tuning GPFS

• Each VSD Server should be able to provide a maximum GPFS throughput
rate of about 30 MB/sec read and about 22 MB/sec write.

By looking at the Sequential Server view graph in Figure 73 on page 226, we
see that using the 4 client case, the maximum measured figure for write was
about 28 MB/sec and the maximum measured figure for read was about 26
MB/sec.

If we check the same measurements taken for the parallel test in Figure 73 on
page 226, we also see very similar figures.

We see that the estimated throughput figures for the SSA adapter are
perhaps too low for the write case and a little too high for the read case.

6.6 Conclusions

The following conclusions are for this chapter alone and are drawn entirely
from the results of the experiments conducted.

6.6.1 File system options
Out of the file system options considered in this chapter, the JBOD file
system provides the highest data throughput. If recoverability is also an issue,
then the following file systems can be considered in their order of
performance. Highest is given first.

1. RAID-5

2. Mirrored

3. Replicated

If using RAID-5, file systems use strided writes if at all possible. This requires
256 KB file system block size, 256 KB application block writes, and 4+P
RAID-5 arrays. By comparison, non-strided writes are more than twice as
slow.

6.6.2 SSA disk subsystems
To get access to the full bandwidth of SSA disks used, the following rules
should be followed:

• Spread the disks evenly over all the available loops and adapter cards.

• Do not overload an SSA adapter card with too many disks. This turns out
to be between eight to 12 disks depending on file system type, adapter
card, and disk type.
Test results 221

6.6.3 Sequential I/O versus random
Sequential I/O for both read and write gives, by far, the best performance with
GPFS file systems. By comparison, Random I/O is poor.

6.6.4 Metadata and RAID-5
Although putting metadata on RAID-5 arrays may seem a bad idea, as this
will cause slow non-strided writes, in practise, it is better, in terms of
performance, than using a smaller number of dedicated metadata JBOD
disks.

6.6.5 Dedicated VSD servers
Although it may be possible for VSD servers to support other tasks, care
should be taken that these tasks do not cause the CPU usage of the VSD
node to become fully utilized.

6.6.6 General conclusions
• For best performance, GPFS requires site-specific tuning.

Since GPFS is designed to be a general purpose file system, it must
provide capabilities to be tuned to widely varying needs. In 4.1.2, “High
impact issues” on page 103, we identify a number of high impact tunables
that can have large impacts on important file system attributes, such as
read and write performance. Our tests conducted for 4.3.1.3, “Running a
parallel test on a replicated GPFS” on page 158 demonstrated a 34
percent improvement on random read rates, and tests conducted for
4.3.1.4, “Running a random test on a replicated GPFS” on page 162
demonstrated a 50 percent improvement on random writes. Depending on
your sites needs, you may have to significantly change the default values.
Therefore, some care must be given to adjusting GPFS for optimal
performance.

• GPFS provides highest read/write bandwidth with sequential access
patterns.

Our results indicate that while sequential access patterns scale with the
available hardware, random access patterns are limited to around 0.2 to
5.0 MB/sec. Parallel applications should use file layouts that provide
sequential access for each node. In some cases, it may be beneficial to
open a file multiple times to associate a sequential access with a particular
file handle instance. See Chapter 2, “Application considerations” on page
57 for a discussion on GPFS programming techniques.

• GPFS is easy to use for application programmers.
222 Sizing and Tuning GPFS

The API for GPFS is POSIX. This makes GPFS easy to use for application
programmers. None of the applications used to gather data for this book
were modified for use with GPFS.

• GPFS provides scalable performance.

Our results in 6.5.8, “How the number of VSD servers affects
performance” on page 218 show that GPFS is able to utilize the available
hardware. Furthermore, the section also demonstrates that GPFS is
extensible should additional hardware become available.

• GPFS is built on an infrastructure of distributed services.

The architecture of GPFS is discussed in Chapter 1, “GPFS architecture”
on page 1. The GPFS daemon, mmfsd, runs on all nodes within a GPFS
domain. Furthermore, GPFS depends on other subsystems, such as VSD
servers, Group Services, the System Data Repository, and so on, which
may also be distributed among any number of nodes. As a truly scalable
system, GPFS distributes tasks among the available resources. Proper
operation requires remote services running on nodes other than the
application nodes. Our results demonstrate GPFS performance for the
hardware at our disposal (parallel applications of up to four nodes and
VSD server configurations with up to two servers).

• System administrators can expect a learning curve.

During our results collection, we encountered several challenges in
configuring and understanding the behavior our system. One such incident
involved different classes of disk drives in the VSD storage devices. The
slower drives caused unanticipated disparities between otherwise similar
VSD servers. The cause was not immediately apparent.
Test results 223

224 Sizing and Tuning GPFS

Appendix A. Measurements

This appendix sets out the raw data for the following sets of tests.

• Base Runs

• RAID-5 Arrays size test

• Metadata tests

• Client max throughput tests.

A.1 Base runs

The base run test results are split into Serial Parallel and Random results
sections.

Within each of these sections, there are subsections labelled, such as
S1_C4_Test4, which, in order, signifies the Setup, Configuration, Test, all of
which were described earlier. These subsections contain two graphs and
some text. The graphs give both the Client view, giving the CPU and data
throughput figures for the average single GPFS node, and the Server view,
giving the CPU and data throughput figures for the average VSD Server node.
The text gives additional information about the runs that is relevant. For
example, if IP packet drops were detected for VSD server nodes, or if VSD
retries were detected for GPFS nodes, then this information is given.

A.1.1 Serial

Presented below is the raw data from the Serial Base run tests using the iopm
application.
© Copyright IBM Corp. 1999 225

A.1.1.1 S1_C4_Tests1

Figure 72. Performance graph s1.c4.t1 — Client view

Figure 73. Performance graph s1.c4.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t1.s

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t1.s
226 Sizing and Tuning GPFS

A.1.1.2 S1_C4_Tests2
The data for four clients was not collected because the file system became
unavailable. For the four clients run, server v06n07 was dropping IP packets
causing VSD retries and eventually the application to fail.

Figure 74. Performance graph s1.c4.t2 — Client view

Figure 75. Performance graph s1.c4.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t2.s

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t2.s
Measurements 227

A.1.1.3 S1_C4_Tests3

Figure 76. Performance graph s1.c4.t3 — Client view

Figure 77. Performance graph s1.c4.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t3.s

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t3.s
228 Sizing and Tuning GPFS

A.1.1.4 S1_C4_Tests4

Figure 78. Performance graph s1.c4.t4 — Client view

Figure 79. Performance graph s1.c4.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t4.s

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t4.s
Measurements 229

A.1.1.5 S1_C4_Tests5
For the four clients run, the VSD servers are dropping IP packets causing
VSD retries up to level 2, but the application does not fail.

Figure 80. Performance graph s1.c4.t5 — Client view

Figure 81. Performance graph s1.c4.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t5.s

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t5.s
230 Sizing and Tuning GPFS

A.1.1.6 S1_C2_Tests1
For the four clients run, VSD servers drop IP packets causing VSD retries up
to level 2, but the application does not fail. Client v06n13 has one VSD retry
level 3 recorded. The application does seem to temporarily stall during run4.

Figure 82. Performance graph s1.c2.t1 — Client view

Figure 83. Performance graph s1.c2.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t1

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t1
Measurements 231

A.1.1.7 S1_C2_Tests2

Figure 84. Performance graph s1.c2.t2 — Client view

Figure 85. Performance graph s1.c2.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t2

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t2
232 Sizing and Tuning GPFS

A.1.1.8 S1_C2_Tests3

Figure 86. Performance graph s1.c2.t3 — Client view

Figure 87. Performance graph s1.c2.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t3

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t3
Measurements 233

A.1.1.9 S1_C2_Tests4

Figure 88. Performance graph s1.c2.t4 — Client view

Figure 89. Performance graph s1.c2.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t4.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t4.s
234 Sizing and Tuning GPFS

A.1.1.10 S1_C2_Tests5
For the four clients run, the VSD servers are dropping IP packets causing
VSD retries up to level 2, but the application does not fail.

Figure 90. Performance graph s1.c2.t5 — Client view

Figure 91. Performance graph s1.c2.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t5.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t5.s
Measurements 235

A.1.1.11 S1_C3_Tests1
For the four clients tested, we got information for two runs. This may be
because the file system became unavailable. Also, VSD servers dropped IP
packets causing VSD retries up to level 2. The application fails at run 3.

Figure 92. Performance graph s1.c3.t1 — Client view

Figure 93. Performance graph s1.c3.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t1.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t1.s
236 Sizing and Tuning GPFS

A.1.1.12 S1_C3_Tests2

Figure 94. Performance graph s1.c3.t2 — Client view

Figure 95. Performance graph s1.c3.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t2.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t2.s
Measurements 237

A.1.1.13 S1_C3_Tests3

Figure 96. Performance graph s1.c3.t3 — Client view

Figure 97. Performance graph s1.c3.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t3.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t3.s
238 Sizing and Tuning GPFS

A.1.1.14 S1_C3_Tests4
For the four clients run, the VSD servers are dropping IP packets causing
VSD write retries on run 1 to go up to level 2, but the application does not fail.

Figure 98. Performance graph s1.c3.t4 — Client view

Figure 99. Performance graph s1.c3.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t4.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t4.s
Measurements 239

A.1.1.15 S1_C3_Tests5
For the four clients run, the VSD servers are dropping IP packets causing
VSD retries on most runs up to level 2, but the application does not fail.

Figure 100. Performance graph s1.c3.t5 — Client view

Figure 101. Performance graph s1.c3.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t5.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t5.s
240 Sizing and Tuning GPFS

A.1.1.16 S2_C1_Tests1
For this test, we did not get any azizo files for the client nodes. For the four
clients run, both server v06n01i and v06n03 showed IP drops for most runs.

Figure 102. Performance graph s2.c1.t1 — Client view

Figure 103. Performance graph s2.c1.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t1.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t1.s
Measurements 241

A.1.1.17 S2_C1_Tests2
For this test, we did not get any azizo files for the client nodes. For the four
clients run, server v06n01i showed IP drops for run 3.

Figure 104. Performance graph s2.c1.t2 — Client view

Figure 105. Performance graph s2.c1.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t2.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t2.s
242 Sizing and Tuning GPFS

A.1.1.18 S2_C1_Tests3
For this test, we did not get any azizo files for the client nodes.

Figure 106. Performance graph s2.c1.t3 — Client view

Figure 107. Performance graph s2.c1.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t3.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t3.s
Measurements 243

A.1.1.19 S2_C1_Tests4
For this test, we did not get any azizo files for the client nodes. For the four
clients run, server v06n01i showed IP drops for run 3.

Figure 108. Performance graph s2.c1.t4 — Client view

Figure 109. Performance graph s2.c1.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t4.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t4.s
244 Sizing and Tuning GPFS

A.1.1.20 S2_C1_Tests5
For this test, we did not get any azizo files for the client nodes. For the four
clients run, all four servers showed IP drops for most runs.

Figure 110. Performance graph s2.c1.t5 — Client view

Figure 111. Performance graph s2.c1.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t5.s

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t5.s
Measurements 245

A.1.2 Parallel

Presented below is the raw data from the Parallel Base run tests using the ior
application.

A.1.2.1 S1_C4_Tests1

Figure 112. Performance graph s1.c4.t1 — Client view

Figure 113. Performance graph s1.c4.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t1.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t1.p
246 Sizing and Tuning GPFS

A.1.2.2 S1_C4_Tests2
For the four client case, the application failed during run 1 due to VSD retries
caused by IP packet drops mainly from VSD server v06n03.

Figure 114. Performance graph s1.c4.t2 — Client view

Figure 115. Performance graph s1.c4.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s1.c4.t2.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Server View - s1.c4.t2.p
Measurements 247

A.1.2.3 S1_C4_Tests3
For the two client case, no azizo files were captured; so, no CPU information
is available.

Figure 116. Performance graph s1.c4.t3 — Client view

Figure 117. Performance graph s1.c4.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t3.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t3.p
248 Sizing and Tuning GPFS

A.1.2.4 S1_C4_Tests4

Figure 118. Performance graph s1.c4.t4 — Client view

Figure 119. Performance graph s1.c4.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t4.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t4.p
Measurements 249

A.1.2.5 S1_C4_Tests5
For the four client case, the application failed during run 3 due to VSD retries
caused by IP packet drops mainly from VSD servers v06n05 and v06n07.

Figure 120. Performance graph s1.c4.t5 — Client view

Figure 121. Performance graph s1.c4.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t5.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t5.p
250 Sizing and Tuning GPFS

A.1.2.6 S1_C2_Tests1

Figure 122. Performance graph s1.c2.t1 — Client view

Figure 123. Performance graph s1.c2.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t1.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t1.p
Measurements 251

A.1.2.7 S1_C2_Tests2

Figure 124. Performance graph s1.c2.t2 — Client view

Figure 125. Performance graph s1.c2.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t2.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t2.p
252 Sizing and Tuning GPFS

A.1.2.8 S1_C2_Tests3
For the two clients run, one VSD retry was recorded for both GPFS clients
v06n09 and v06n11.

Figure 126. Performance graph s1.c2.t3 — Client view

Figure 127. Performance graph s1.c2.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t3.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t3.p
Measurements 253

A.1.2.9 S1_C2_Tests4

Figure 128. Performance graph s1.c2.t4 — Client view

Figure 129. Performance graph s1.c2.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t4.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t4.p
254 Sizing and Tuning GPFS

A.1.2.10 S1_C2_Tests5
For the four client case, the VSD servers are dropping IP packets mainly on
the writes. VSD retries were recorded up to level 2 for all the GPFS clients on
most read and write runs. However, the application did not fail.

Figure 130. Performance graph s1.c2.t5 — Client view

Figure 131. Performance graph s1.c2.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c2.t5.p

1 2 4

Clients

0

10

20

30

40

50

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c2.t5.p
Measurements 255

A.1.2.11 S1_C3_Tests1

Figure 132. Performance graph s1.c3.t1 — Client view

Figure 133. Performance graph s1.c3.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t1.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t1.p
256 Sizing and Tuning GPFS

A.1.2.12 S1_C3_Tests2

Figure 134. Performance graph s1.c3.t2 — Client view

Figure 135. Performance graph s1.c3.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t2.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t2.p
Measurements 257

A.1.2.13 S1_C3_Tests3
For the two clients run, one VSD retry level 1 was recorded on write run 5 for
both GPFS clients v06n03 and v06n07. For the four clients run, one VSD
retry level 1was recorded on read run 1 for GPFS client v06n03.

Figure 136. Performance graph s1.c3.t3 — Client view

Figure 137. Performance graph s1.c3.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t3.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t3.p
258 Sizing and Tuning GPFS

A.1.2.14 S1_C3_Tests4
For the four client case, VSD retries up to level 1 were recorded on all GPFS
client nodes for read run 2. IP packet drops were recorded for VSD server
v06n05 for write run 2.

Figure 138. Performance graph s1.c3.t4 — Client view

Figure 139. Performance graph s1.c3.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t4.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t4.p
Measurements 259

A.1.2.15 S1_C3_Tests5
For the four client case, the application failed during run 1. VSD retries were
recorded up to level 1 for all GPFS client nodes during write run 1.

Figure 140. Performance graph s1.c3.t5 — Client view

Figure 141. Performance graph s1.c3.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c3.t5.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c3.t5.p
260 Sizing and Tuning GPFS

A.1.2.16 S2_C1_Tests1
For this test, we did not get azizo files for client nodes. For the two clients run,
IP drops were experienced by v06n01i on write run 1. For the four clients run,
IP drops occurred during writes. Only one read and write run was completed.

Figure 142. Performance graph s2.c1.t1 — Client view

Figure 143. Performance graph s2.c1.t1 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t1.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t1.p
Measurements 261

A.1.2.17 S2_C1_Tests2
For this test, we did not get any azizo files for the client nodes and, hence, no
CPU information.

Figure 144. Performance graph s2.c1.t2 — Client view

Figure 145. Performance graph s2.c1.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t2.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t2.p
262 Sizing and Tuning GPFS

A.1.2.18 S2_C1_Tests3
For this test, we did not get any azizo files for the client nodes and, hence, no
CPU information. For the four clients run, IP drops were recorded during write
run 1, but the application did not fail.

Figure 146. Performance graph s2.c1.t3 — Client view

Figure 147. Performance graph s2.c1.t3 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t3.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t3.p
Measurements 263

A.1.2.19 S2_C1_Tests4
For this test we did not get any azizo files for the client nodes and, hence, no
CPU information. For the four clients run, IP drops were recorded during write
run 4, but the application did not fail.

Figure 148. Performance graph s2.c1.t4 — Client view

Figure 149. Performance graph s2.c1.t4 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t4.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t4.p
264 Sizing and Tuning GPFS

A.1.2.20 S2_C1_Tests5
For this test we did not get any azizo files for the client nodes and, hence, no
CPU information. For the four clients run, IP drops were recorded during all
write runs and some read runs, yet the application did not fail.

Figure 150. Performance graph s2.c1.t5 — Client view

Figure 151. Performance graph s2.c1.t5 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Client View - s2.c1.t5.p

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s2.c1.t5.p
Measurements 265

A.1.3 Random

A.1.3.1 S1_C4_Tests1
The write CPU figures were much higher on v06n09. The stripe group
manager was v06n13 throughout these runs.

Figure 152. Performance graph s1.c4.t1 — Client view

Figure 153. Performance graph s1.c4.t1 — Server view

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

C
lie

nt

0

10

20

30

40

50

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t1.r

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t1.r
266 Sizing and Tuning GPFS

A.1.3.2 S1_C4_Tests2
The client write CPU figures were much higher on v06n09 for some reason.
The stripe group manager was v06n13 throughout these runs.

Figure 154. Performance graph s1.c4.t2 — Client view

Figure 155. Performance graph s1.c4.t2 — Server view

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

C
lie

nt

0

10

20

30

40

50

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t2.r

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t2.r
Measurements 267

A.1.3.3 S1_C4_Tests3
The client write CPU figures were much higher on v06n09 for some reason.
The stripe group manager was v06n13 throughout these runs.

Figure 156. Performance graph s1.c4.t3 — Client view

Figure 157. Performance graph s1.c4.t3 — Server view

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

C
lie

nt

0

10

20

30

40

50

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t3.r

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t3.r
268 Sizing and Tuning GPFS

A.1.3.4 S1_C4_Tests4
The client write CPU figures were much higher on v06n09 for some reason.
The stripe group manager was v06n13 throughout these runs.

Figure 158. Performance graph s1.c4.t4 — Client view

Figure 159. Performance graph s1.c4.t4 — Server view

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

C
lie

nt

0

10

20

30

40

50

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t4.r

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t4.r
Measurements 269

A.1.3.5 S1_C4_Tests5
The client write CPU figures were much higher on v06n09 for some reason.
The stripe group manager was v06n13 throughout these runs.

Figure 160. Performance graph s1.c4.t5 — Client view

Figure 161. Performance graph s1.c4.t5 — Server view

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

C
lie

nt

0

10

20

30

40

50

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - s1.c4.t5.r

1 2 4

Clients

0

1

2

3

4

5

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - s1.c4.t5.r
270 Sizing and Tuning GPFS

A.2 RAID-5 array size tests

A.2.1 7+P RAID-5 S2_C1_Tests3

RAID-5 7+P performance graph s2.c1.t2 — Client view

RAID-5 7+P performance graph s2.c1.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - Rd7+P.s2.c1.t4

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100
%

C
P

U
pe

r
S

er
ve

r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - Rd7+P.s2.c1.t3.p
Measurements 271

A.2.2 15+P RAID-5 S2_C1_Tests3

RAID-5 15+P performance graph s2.c1.t2 — Client view

Figure 162. RAID-5 15+P performance graph s2.c1.t2 — Server view

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

C
lie

nt

0

20

40

60

80

100

%
C

P
U

pe
r

C
lie

nt

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Client View - Rd15+P.s2.c1.t

1 2 4

Clients

0

10

20

30

40

50

60

M
B

/s
ec

pe
r

S
er

ve
r

0

20

40

60

80

100

%
C

P
U

pe
r

S
er

ve
r

Write Perf - MB/s

Read Perf - MB/s

Write CPU - %

Read CPU - %

Write CPU Wait- %

Read CPU Wait- %

Server View - Rd15+P.s2.c1.t3.
272 Sizing and Tuning GPFS

A.3 Metadata tests

A.3.1 4+P RAID-5 combined data and metadata S2_C1_Tests3

Figure 163. Combined metadata and data RAID-5 4+P s2.c1.t3 — 4 Clients view

Figure 164. Separated metadata and data RAID-5 4+P s2.c1.t3 — 4 Clients view

1 10 20 30 40 50

Concurrent scripts

0

100

200

300

C
lie

nt
S

cr
ip

ts
/h

ou
r v06n09:

v06n11:

v06n13:

v06n15:

4 Clients View -s2.c1.t3
Metadata App with 4+P RAID5 Arrays

Combined data and metadata

1 10 20 30 40 50

Concurrent scripts

0

100

200

300

C
lie

nt
S

cr
ip

ts
/h

ou
r v06n09:

v06n11:

v06n13:

v06n15:

4 Clients View -s2.c1.t3
Metadata App with 4+P RAID5 - Arrays

Separated data and metadata
Measurements 273

Figure 165. Separated metadata and data RAID-5 4+P s2.c1.t3 — 1 Client view

Figure 166. Combined metadata and data JBOD s2.c1.t2 — 1 Client view

1 10 20 30 40 50

Concurrent scripts

0

100

200

300

C
lie

nt
S

cr
ip

ts
/h

ou
r

v06n15:

1 Client View -s2.c1.t3
Metadata App with 4+P RAID5 - Arrays

Separated data and metadata

1 10 20 30 40 50

Concurrent scripts

0

100

200

300

400

C
lie

nt
S

cr
ip

ts
/h

ou
r

v06n15:

1 Client View -s2.c1.t2
Metadata App with JBOD

Combined data and metadata
274 Sizing and Tuning GPFS

A.4 Client max throughput tests

Presented below is the raw data from the Client max throughput tests.

Figure 167. Single node multi application s2.c1.t2 —1 Node client view

1 App 2 App 4 App 6 App

Application threads

0

10

20

30

40

50

60

70

80

M
B

/s
ec

pe
r

C
lie

nt
Write Perf - MB/s

Read Perf - MB/s

1 Node Client View - s2.c1.t2.s
pagepool - 253MB (2,4 and 6 app)

pagepool - 20MB (1 app)
Measurements 275

276 Sizing and Tuning GPFS

Appendix B. Special notices

This publication is intended to help IBM Customers, Business Partners, IBM
System Engineers, and other RS/6000 SP specialists who are involved in
General Parallel File System, Version 1, Release 2 projects, including the
education of RS/6000 SP professionals responsible for installing, configuring,
and administering GPFS Version 1, Release 2. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by General Parallel File System. See the PUBLICATIONS
section of the IBM Programming Announcement for GPFS Version 1, Release
2 for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, Northe Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
© Copyright IBM Corp. 1999 277

information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

IBM AIX
BookManager Global Network
ESCON HACMP/6000
LoadLeveler OS/390
POWERparallel RS/6000
S/390 SP
278 Sizing and Tuning GPFS

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

SET and the SET logo are trademarks owned by SET Electronic Transaction
LLC.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.
Special notices 279

280 Sizing and Tuning GPFS

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization publications

For information on ordering these ITSO publications see “How to get ITSO
redbooks” on page 283.

• GPFS: A Parallel File System, SG24-5165

• Understanding and Using the SP Switch, SG24-5161

• PSSP 3.1 Announcement, SG24-5332

• RS/6000 SP System Performance Tuning, SG24-5340

C.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

C.3 Other publications

These publications are also relevant as further information sources:

• General Parallel File System for AIX: Installation and Administration
Guide, SA22-7278

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 281

• IBM Parallel System Support Programs for AIX: Managing Shared Disks,
SA22-7349

• IBM Parallel System Support Programs for AIX: Performance Monitoring
Guide and Reference, SA22-7353

• AIX Performance Toolbox User’s Guide Version 1.2 and Version 2 for AIX:
Guide and Reference, SC23-2625

The following Web sites are also relevant as further information sources:

• http://www.redbooks.ibm.com

• http://cs2.austin.ibm.com/ibmsm/ibmsm.nsf/mainframeset?readform

• http://www.tivoli.com

• http://www.elink.ibmlink.ibm.com/pbl/pbl

• http://w3.itso.ibm.com

• http://inews.ibm.com
282 Sizing and Tuning GPFS

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook, residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 283

IBM Redbook fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
284 Sizing and Tuning GPFS

List of abbreviations

AFS Andrew File System

AIX Advanced Interactive
Executive

AMG Adapter Membership
Group

ANS Abstract Notation
Syntax

API Application
Programming Interface

ARP Address Resolution
Protocol

ATM Asynchronous Transfer
Mode

BIS Boot/Install Server

BOS Base Operating System

BSD Berkeley Software
Distribution

BUMP Bring-Up
Microprocessor

CDE Common Desktop
Environment

CMI Centralized
Management Interface

CP Crown Prince

CPU Central Processing Unit

CSS Communication
Subsystem

CWS Control Workstation

DASD Direct Access Storage
Devices

DB Database

DCE Distributed Computing
Environment

DFS Distributed File System

DNS Domain Name Service

EM Event Management
© Copyright IBM Corp. 1999
EMAPI Event Management
Application
Programming Interface

EMCDB Event Management
Configuration Database

EMD Event Manager
Daemon

EPROM Erasable
Programmable
Read-Only Memory

ESCON Enterprise Systems
Connection

FDDI Fiber Distributed Data
Interface

FIFO First-in First-out

FTP File Transfer Protocol

FS File System

GB Gigabytes

GL Group Leader

GPFS General Parallel File
System

GS Group Services

GSAPI Group Services
Application
Programming Interface

GVG Global Volume Group

HACMP High Availability Cluster
Multiprocessing

HACMP/ES High Availability Cluster
Multiprocessing
Enhanced Scalability

HACWS High Availability
Control Workstation

hb Heart Beat

HiPS High Performance
Switch

hrd Host Respond Daemon
285

HSD Hashed Shared Disk

IBM International Business
Machines Corporation

IP Internet Protocol

ISB Intermediate Switch
Board

ISC Intermediate Switch
Chip

ITSO International Technical
Support Organization

JFS Journaled File System

JBOD Just a Bunch of Disk

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitter Diode

LP Logical Partition

LRU Last Recently Used

LSC Link Switch Chip

LV Logical Volume

LVM Logical Volume
Manager

MB Megabytes

MIB Management
Information Base

MPI Message Passing
Interface

MPL Message Passing
Library

MPP Massive Parallel
Processors

NFS Network File System

NIM Network Installation
Management

NSB Node Switch Board

NSC Node Switch Chip

OID Object ID

ODM Object Data Manager

PAIDE Performance Aide for
AIX

PE Parallel Environment

PID pRocess ID

POE Parallel Operating
Environment

PP Physical Partition

PSSP Parallel System
Support Programs

PTC Prepare to Commit

PTPE Performance Toolbox
Parallel Extensions

PTX Performance Toolbox
for AIX

PV Physical Volume

RAM Random Access
Memory

RCP Remote Copy Protocol

RM Resource Monitor

RMAPI Resource Monitor
Application
Programming Interface

RPQ Request For Product
Quotation

RSCT RS/6000 Cluster
Technology

RSI Remote Statistics
Interface

RVSD Recoverable Virtual
Shared Disk

SBS Structured Byte String

SCSI Small Computer
System Interface

SDR System Data
Repository

SGM Stripe Group Manager

SMIT System Management
Interface Tool
286 Sizing and Tuning GPFS

SSA Serial Storage
Architecture

VG Volume Group

VSD Virtual Shared Disk
287

288 Sizing and Tuning GPFS

Glossary

A

Adapter. An adapter is a mechanism for
attaching parts. For example, an adapter could
be a part that electrically or physically connects
a device to a computer or to another device. In
the SP system, network connectivity is supplied
by various adapters, some optional, that can
provide connection to I/O devices, networks of
workstations, and mainframe networks.
Ethernet, FDDI, token ring, HiPPI, SCSI, SSA,
FCS, and ATM are examples of adapters that
can be used as part of an SP system.

Address. A character or group of characters
that identifies a register, a device, a particular
part of storage, or some other data source or
destination.

AFS. A distributed file system that provides
authentication services as part of its file system
creation.

AIX. Abbreviation for Advanced Interactive
Executive, IBMs licensed version of the UNIX
operating system. AIX is particularly suited to
support technical computing applications
including high function graphics and floating
point computations.

API. Application Programming Interface. A set
of programming functions and routines that
provide access between the application layer of
the OSI seven-layer model and applications that
want to use the network. It is a software
interface.

Application. The use to which a data
processing system is put, for example, a payroll
application, an airline reservation application,
and so on.

Application Data. The data that is produced
using an application program.

Authentication. The process of validating the
identity of a user or server.

Authorization. The process of obtaining
permission to perform specific actions.
© Copyright IBM Corp. 1999
B

Batch Processing. (1) The processing of data
or the accomplishment of jobs accumulated in
advance in such a manner that each
accumulation, thus formed, is processed or
accomplished in the same run. (2) The
processing of data accumulating over a period
of time. (3) Loosely, the execution of computer
programs serially. (4) Computer programs
executed in the background.

C

Client. (1) A function that requests services
from a server and makes them available to the
user. (2) A term used in an environment to
identify a machine that uses the resources of
the network.

CMI. Centralized Management Interface.
provides a series of SMIT menus and dialogues
used for defining and querying the SP system
configuration.

Connectionless Network. A network in which
the sending logical node must have the address
of the receiving logical node before information
interchange can begin. The packet is routed
through nodes in the network based on the
destination address in the packet. The
originating source does not receive an
acknowledgment that the packet was received
at the destination.

Control Workstation. A single point of control
allowing the administrator or operator to monitor
and manage the SP system using the IBM AIX
Parallel System Support Programs.

css. Communication subsystem.

D

Daemon. A process, not associated with a
particular user, that performs system-wide
functions, such as administration and control of
networks, execution of time-dependent
activities, line printer spooling, and so forth.

DASD. Direct Access Storage Device. Storage
for input/output data.
289

DFS. Distributed File System. A subset of the
IBM Distributed Computing Environment.

E

Ethernet. (1) Ethernet is the standard hardware
for TCP/IP local area networks in the UNIX
marketplace. It is a 10-megabit per second
baseband type LAN that allows multiple stations
to access the transmission medium at will without
prior coordination, avoids contention by using
carrier sense and deference, and resolves
contention by collision detection (CSMA/CD). (2)
A passive coaxial cable whose interconnections
contain devices or components, or both, that are
all active. It uses CSMA/CD technology to
provide a best-effort delivery system.

F

Failover. The assuming of server responsibilities
by the node designated as backup server when
the primary server fails.

Failure Group. A collection of disks that share
common access paths or adaptor connection and
could all become unavailable through a single
hardware failure.

Fall Back. Also called fallback, the sequence of
events when a primary or server machine takes
back control of its workload from a secondary or
backup machine.

Fiber Distributed Data Interface (FDDI). An
American National Standards Institute (ANSI)
standard for 100-megabit-per-second LAN using
optical fiber cables. An FDDI local area network
(LAN) can be up to 100 km (62 miles) and can
include up to 500 system units. There can be up
to 2 km (1.24 miles) between system units and/or
concentrators.

File Transfer Protocol (FTP). The Internet
protocol (and program) used to transfer files
between hosts. It is an application layer protocol
in TCP/IP that uses TELNET and TCP protocols
to transfer bulk-data files between machines or
hosts.

File. A set of related records treated as a unit.
For example, in stock control, a file could consist
of a set of invoices.

File Name. A CMS file identifier in the form of
'filename filetype filemode (such as TEXT DATA
A).

File Server. A centrally located computer that
acts as a storehouse of data and applications for
numerous users of a local area network.

Fragment. The space allocated an amount of
data (usually the end of a file) too small to require
a full block consisting of one or more subblocks
(one thirty-second of block size).

G

Gateway. An intelligent electronic device
interconnecting dissimilar networks and providing
protocol conversion for network compatibility. A
gateway provides transparent access to
dissimilar networks for nodes on either network. It
operates at the session presentation and
application layers.

H

HACWS. High Availability Control Workstation
function, based on HACMP, provides for a backup
control workstation for the SP system.

Hashed Shared Disk (HSD). The data striping
device for the IBM Virtual Shared Disk. The
device driver lets application programs stripe
data across physical disks in multiple IBM Virtual
Shared Disks, thus, reducing I/O bottlenecks.

High Availability Cluster Multi-Processing. An
IBM facility to cluster nodes or components to
provide high availability by eliminating single
points of failure.

Host. A computer connected to a network,
providing an access method to that network. A
host provides end-user services.

I

IBM Virtual Shared Disk. A subsystem that
allows application programs executing on
different nodes access to a raw logical volume as
if it were local at each node.

i-node. The internal structure that describes an
individual file to AIX. An i-node contains file size
and update information as well as the addresses
of data blocks, or in the case of large files,
290 Sizing and Tuning GPFS

indirect blocks that, in turn, point to data blocks.
One i-node is required for each file.

Internet. A specific inter-network consisting of
large national backbone networks, such as
APARANET, MILNET, and NSFnet, and a myriad
of regional and campus networks all over the
world. The network uses the TCP/IP protocol
suite.

Internet Protocol (IP). (1) A protocol that routes
data through a network or interconnected
networks. IP acts as an interface between the
higher logical layers and the physical network.
This protocol, however, does not provide error
recovery, flow control, or guarantee the reliability
of the physical network. IP is a connectionless
protocol. (2) A protocol used to route data from its
source to it destination in an Internet
environment.

IP Address. A 32-bit address assigned to
devices or hosts in an IP Internet that maps to a
physical address. The IP address is composed of
a network and host portion.

J

Journaled File System. The local file system
within a single instance of AIX.

K

Kerberos. A service for authenticating users in a
network environment.

Kernel. The core portion of the UNIX operating
system which controls the resources of the CPU
and allocates them to the users. The kernel is
memory-resident, is said to run in kernel mode,
and is protected by the hardware from user
tampering.

L

LAN. (1) Acronym for Local Area Network, a
data network located on the user's premises in
which serial transmission is used for direct data
communication among data stations. (2) Physical
network technology that transfers data a high
speed over short distances. (3) A network in
which a set of devices is connected to another for
communication and that can be connected to a
larger network.

Local Host. The computer to which a user's
terminal is directly connected.

Logical Volume Manager. Manages disk space
at a logical level. It controls fixed-disk resources
by mapping data between logical and physical
storage allowing data to be discontiguous, span
multiple disks, replicated, and dynamically
expanded.

M

Metadata. Data structures that contain access
information about file data. These might include
i-nodes, indirect blocks, and directories. These
data structures are used by GPFS but are not
accessible to user applications.

Mirroring. The creation of a mirror image of data
to be preserved in the event of disk failure.

N

Network. An interconnected group of nodes,
lines, and terminals. A network provides the
ability to transmit data to and receive data from
other systems and users.

NFS. Network File System. NFS allows different
systems (UNIX or non-UNIX), different
architectures, or vendors connected to the same
network to access remote files in a LAN
environment as though they were local files.

O

ODM. Object Data Manager. In AIX, a
hierarchical object-oriented database for
configuration data.

P

Parallel Environment. A system environment
where message passing or SP resource manager
services are used by the application.

Parallel Environment. A licensed IBM program
used for message passing applications on the SP
or RS/6000 platforms.

Parallel Processing. A multiprocessor
architecture that allows processes to be allocated
to tightly coupled multiple processors in a
cooperative processing environment allowing
concurrent execution of tasks.
291

Parameter. (1) A variable that is given a constant
value for a specified application and that may
denote the application. (2) An item in a menu for
which the operator specifies a value or for which
the system provides a value when the menu is
interpreted. (3) A name in a procedure that is
used to refer to an argument that is passed to the
procedure. (4) A particular piece of information
that a system or application program needs to
process a request.

Primary node or machine. (1) A device that
runs a workload and has a standby device ready
to assume the primary workload if that primary
node fails or is taken out of service. (2) A node on
the SP Switch that initializes, provides diagnosis
and recovery services, and performs other
operations to the switch network. (3) In IBM
Virtual Shared Disk function, when physical disks
are connected to two nodes (twin-tailed), one
node is designated as the primary node for each
disk, and the other is designated the secondary,
or backup, node. The primary node is the server
node for IBM Virtual Shared Disks defined on the
physical disks under normal conditions. The
secondary node can become the server node for
the disks if the primary node is unavailable
(off-line or down).

Primary Server. When physical disks are
connected to two nodes (twin-tailed), this is the
node that normally maintains and controls local
access to the disk.

Process. (1) A unique, finite course of events
defined by its purpose or by its effect, achieved
under defined conditions. (2) Any operation or
combination of operations on data. (3) A function
being performed or waiting to be performed. (4) A
program in operation. For example, a daemon is
a system process that is always running on the
system.

Protocol. A set of semantic and syntactic rules
that defines the behavior of functional units in
achieving communication.

Q

Quorum. The minimum number of nodes that
must be running in order for the GPFS daemon to

start. This is one plus half of the number of nodes
in the GPFS configuration.

Quota. The amount of disk space and number of
i-nodes assigned as upper limits for a specified
user or group of users.

R

RAID. Redundant Array of Independent Disks. A
set of physical disks that act as a single physical
volume and use parity checking to protect against
disk failure.

Recovery. The process of restoring access to
file system data when a failure has occurred. This
may involve reconstructing data or providing
alternative routing through a different server.

Replication. The practice of creating and
maintaining multiple file copies to ensure
availability in the event of hardware failure.

RISC. Reduced Instruction Set Computing
(RISC), the technology for today's high
performance personal computers and
workstations, was invented in 1975. Uses a small
simplified set of frequently used instructions for
rapid execution.

rlogin (remote LOGIN). A service offered by
Berkeley UNIX systems that allows authorized
users of one machine to connect to other UNIX
systems across a network and interact as if their
terminals were connected directly. The rlogin
software passes information about the user's
environment (for example, terminal type) to the
remote machine.

RPC. Acronym for Remote Procedure Call, a
facility that a client uses to have a server execute
a procedure call. This facility is composed of a
library of procedures plus an XDR.

RSH. A variant of RLOGIN command that invokes
a command interpreter on a remote UNIX
machine and passes the command line
arguments to the command interpreter, thus,
skipping the LOGIN step completely. See also
rlogin.

S

292 Sizing and Tuning GPFS

SCSI. Small Computer Systems Interface. An
adapter supporting attachment of various
direct-access storage devices.

Secondary Node. In IBM Virtual Shared Disk
function, when physical disks are connected to
two nodes (twin-tailed), one node is designated
as the primary node for each disk and the other is
designated as the secondary, or backup, node.
The secondary node acts as the server node for
the IBM Virtual Shared disks defined on the
physical disks if the primary node is unavailable
(off-line or down).

Secondary Server. The second node connected
to a twin-tailed disk. This node assumes control
of local access if the primary server fails.

Server. (1) A function that provides services for
users. A machine may run client and server
processes at the same time. (2) A machine that
provides resources to the network. It provides a
network service, such as disk storage and file
transfer, or a program that uses such a service.
(3) A device, program, or code module on a
network dedicated to providing a specific service
to a network. (4) On a LAN, a data station that
provides facilities to other data stations.
Examples are file server, print server, and mail
server.

Shell. The shell is the primary user interface for
the UNIX operating system. It serves as
command language interpreter, programming
language, and allows foreground and background
processing. There are three different
implementations of the shell concept: Bourne, C,
and Korn.

SMIT. The System Management Interface Toolkit
is a set of menu driven utilities for AIX that
provides functions, such as transaction login,
shell script creation, automatic updates of object
database, and so forth.

SNMP. Simple Network Management Protocol.
(1) An IP network management protocol that is
used to monitor attached networks and routers.
(2) A TCP/IP-based protocol for exchanging
network management information and outlining
the structure for communications among network
devices.

Socket. (1) An abstraction used by Berkeley
UNIX that allows an application to access TCP/IP
protocol functions. (2) An IP address and port
number pairing. (3) In TCP/IP, the Internet
address of the host computer on which the
application runs and the port number it uses. A
TCP/IP application is identified by its socket.

SSA. Serial Storage Architecture. An expanded
storage adapter for multi-processor data sharing
in UNIX-based computing allowing disk
connection in a high-speed loop.

Standby Node or Machine. A device that waits
for a failure of a primary node in order to assume
the identity of the primary node. The standby
machine then runs the primary's workload until
the primary is back in service.

Stripe Group. A file system written across many
disks, which are connected to multiple nodes.

Striping. A method of writing a file system, in
parallel, to multiple disks instead of to single
disks in a serial operation.

Sub-block. The smallest unit of data accessible
in an I/O operation equal to one thirty-second of a
data block.

Subnet. Shortened form of subnetwork.

Subnet Mask. A bit template that identifies to
the TCP/IP protocol code the bits of the host
address that are to be used for routing for specific
subnetworks.

Subnetwork. Any group of nodes that have a set
of common characteristics, such as the same
network ID.

Subsystem. A software component that is not
usually associated with a user command. It is
usually a daemon process. A subsystem will
perform work or provide services on behalf of a
user request or operating system request.

Sysctl. Secure System Command Execution
Tool. An authenticated client/server system for
running commands remotely and in parallel.

System Partition. A group of non-overlapping
nodes on a switch chip boundary that act as a
logical SP system.
293

T

tar. Tape ARchive, is a standard UNIX data
archive utility for storing data on tape media.

TCP. Acronym for Transmission Control Protocol,
a stream communication protocol that includes
error recovery and flow control.

TCP/IP. Acronym for Transmission Control
Protocol/Internet Protocol, a suite of protocols
designed to allow communication between
networks regardless of the technologies
implemented in each network. TCP provides a
reliable host-to-host protocol between hosts in
packet-switched communications networks and in
interconnected systems of such networks. It
assumes that the underlying protocol is the
Internet Protocol.

Telnet. Terminal Emulation Protocol, a TCP/IP
application protocol that allows interactive access
to foreign hosts.

Token Management. A system for controlling file
access in which each application performing a
read or write operation is granted exclusive
access to a specific block of file data. This
ensures data consistency and controls conflicts.

Token Ring. (1) Network technology that
controls media access by passing a token
(special packet or frame) between
media-attached machines. (2) A network with a
ring topology that passes tokens from one
attaching device (node) to another. (3) The IBM
Token Ring LAN connection allows the RS/6000
system unit to participate in a LAN adhering to
the IEEE 802.5 Token Passing Ring standard or
the ECMA standard 89 for Token Ring, baseband
LANs.

Transaction. An exchange between the user
and the system. Each activity the system
performs for the user is considered a transaction.

U

UNIX Operating System. An operating system
developed by Bell Laboratories that features
multiprogramming in a multiuser environment.
The UNIX operating system was originally
developed for use on minicomputers but has
been adapted for mainframes and

microcomputers. Note: The AIX operating system
is IBMs implementation of the UNIX operating
system.

User. Anyone who requires the services of a
computing system.

User Datagram Protocol (UDP). (1) In TCP/IP,
a packet-level protocol built directly on the
Internet Protocol layer. UDP is used for
application-to-application programs between
TCP/IP host systems. (2) A transport protocol in
the Internet suite of protocols that provides
unreliable, connectionless datagram service. (3)
The Internet Protocol that enables an application
programmer on one machine or process to send
a datagram to an application program on another
machine or process.

User ID. A non-negative integer, contained in an
object of type uid_t, that is used to uniquely
identify a system user.

V

Virtual Shared Disk, IBM. The function that
allows application programs executing at different
nodes of a system partition to access a raw
logical volume as if it were local at each of the
nodes. In actuality, the logical volume is local at
only one of the nodes (the server node).

W

Workstation. (1) A configuration of input/output
equipment at which an operator works. (2) A
terminal or microcomputer, usually one that is
connected to a mainframe or to a network, at
which a user can perform applications.

X

X Window System. A graphical user interface
product.
294 Sizing and Tuning GPFS

Index

Numerics
15+P 199
4+P 199
6215 SSA Adapter 91
7+P 199

A
Access Control Lists 18

ADSM support 166
ACLs

See Access Control Lists 166
adapter loops 98
adapters 91
ADSM

See ADSTAR Distributed Storage Manager
165

ADSTAR Distributed Storage Manager
accessing GPFS metadata 168
ADSM client on single VSD client node 175
ADSM clients on VSD server nodes 187
backing up to and restoring from tape 197
backup-archive support of GPFS 165
client and server on one SP node 180
client options 174
comparing full incrementalwith selective backup
192
comparing JFS with GPFS 191
comparing restore with replace 193
full incremental backup 167
good network performance due to SP Switch
196
handling of large file systems and files on GPFS
168
I/O rate of server 168
impact of delayed update 167
impact of tuning maxFilesToCache on perfor-
mance 189
incremental-by-date 167
LARGECOMMBUFFERS option 174
locating ADSM clients within SP environment
196
locating ADSM server within SP environment
196
point-in-time restore 168
Reference Configuration 175
© Copyright IBM Corp. 1999
resource requirements for implementation on
GPFS 171
restore 168
restore IFNEWER 168
restore REPLACE 173, 193
running ADSM client on multiple SP nodes 183,
197
running multiple ADSM client sessions 197
selective backup 167
serialization 167
server options 174
shared memory communication 180
storage pool volumes of server setup 172
support of GPFS ACLs 166
TCPBUFSIZE option 174
TCPNODELAY option 174
TCPWINDOWSIZE option 174
test data 173
test methodology 173
test system configuration for testing 172
Tivoli Storage Management 165
tuning maxFilesToCache for ADSM perfor-
mence 191
TXNBYTELIMIT option 174
TXNGROUPMAX option 174

allocation segment 6
Andrew File System 50
Application

Block Size 57
I/O patterns 58
Parallel I/O 59
Portability 58
Random I/O 58
Sequential I/O 58
Serial I/O 59

application block size 87, 88
application programming interface 1
applications I/O access method 199

B
Base Run tests 199
block size 87
byte-range locking 2

C
caching 2
295

case study
GPFS Configuration 151
GPFS file system configuration 154
Hardware Configuration 151
Parallel Test on a JBOD GPFS 155
Parallel Test on a Replicated GPFS 158
Random Test on a JBOD GPFS 157
Random Test on a Replicated GPFS 162
Software Configuration 151
tunable parameters 152
Variable Block Size on GPFS 164

client throughput 87
collective 64
Commands

cfgtb3 26
dd 146
Eclock 31
errpt 137
Estart 30
full incremental backup 167
incremental-by-date 167
iostat 143, 144
lsdev 27
lsvg 143
netstat 135, 138, 145
no 138
point-in-time restore 168
restore 168
restore IFNEWER 168
restore REPLACE 173, 193
SDRGetObjects 31
SDRRetrieveFile 37
selective backup 167
statvsd 139, 141
vdidl3 136
vdidl3mx 136
VSD commands 21
vsdatalst 38

Configuration Manager 19
configurations 199

D
Daemons

fault service daemon 28, 30
fault_service_Worm_RTG_SP 28
hags 36
mmfsd 36

data allocation map 18

Data partitioning 61
data throughput 199
dedicated 199
default parameters 93
Default sizing parameters 93
degraded mode 44
DFS 49
directories 18
directory blocks 18
disk/loop layout 99
disks 91, 93, 95, 96, 199
disks per node 99

E
ease of use 1
Example Sizing 94, 97

F
File System

Andrew File System 50
Comparison summary 51
DFS 49
JFS 45
NFS 46
PIOFS 48

File system capacity 88, 90
File System Manager 19
file system type 199
Files

act.top.pid 32
cluster.nodes 37
expected.top 31
filesystem 37
mmfs.cfg 37
mmsdrcfg1 37
mmsdrfs 37
topologies 31

G
General Parallel File System

Advantages 51
Availability 53
Block Size 57
block size parameter 175
Capacity 53
comparing ADSM performance with JFS 191
Comparison with other file systems 45
296 Sizing and Tuning GPFS

daemon resource requirements for ADSM im-
plementation 171
File System Primitives 56
functional differences to JFS 166
inode size parameter 175
Limitations 54
mallocsize parameter 175
maxFilesToCache parameter 175
maximum file size 168
maximum file system size 168
Memory Mapped Files 55
metadata distributed over several SP nodes
168
Performance 52
Prefetch 61
read data flow 12
Reliability Issues 54
Scalability 51
Simplified Administration 54
Write Behind 61
write data flow 4

global access 1
GPFS

performance 86, 199
GPFS file system 199
GPFS Switch thoughput 99
Group Services 41

I
I/O contention 92
IBM Virtual Shared Disk 33
independent 64
indirect blocks 18
init_cache_buffer_count 94
initial configuration 93
initial parameters 94
inode allocation map 18
inodes 18

J
JBOD 88
Journalled File System 38

L
locking

advisory, POSIX standard 166
mandatory on JFS 166

Logging 41
loop bandwidth. 93

M
mallocsize 94
max file system bandwidth 87, 88, 97
Max GPFS File system block size 94
max_buddy_buffer_size 94
max_buddy_buffers 94
max_cache_buffer_count 94
max_coalesce 93
maximum aggregate bandwidth 87
maximum bandwidth through the SSA Adapter card
98
memory mapped files 166
Message Passing Interface 64
metadata 89, 199
Metadata Manager 20, 171
Metadata tests 199
min_buddy_buffer_size 94
minimum number of disks 90
Mirroring 43, 88
mmfsd 3, 17
mtime

delay of update 167
impact of delayed update on ADSM 167

N
Network File System 38
NFS 46
non full strided RAID-5 98
non-RAID 199
non-strided write 98
number and type of disks 97
number of adapter cards per node 93
number of servers 99
number of VSD Servers 90, 95

P
Pablo 69
pagepool 94
Parallel 199
performance 94, 96
performance per data disk 89
personalities 17
PIOFS 48
placement of Adapter 93
297

placement of SSA Adapters 93
portability 1
POWER3 98

Q
questions 199
quorum 19

R
RAID 43, 44
RAID-5 88, 97, 199
RAID-5 Array size tests 199
RAID-5 arrays 98
Random 199
random access 86
Read-Modify-Write 44
Recoverability 88, 95
reliability 2
Replication 43, 88
results 199
Round-Robin partitioning 61
rpoolsize 93
RVSD 41, 99
rw_request_count 94

S
scalable 1
Segmented partionining 61
sequential access 86
Serial 199
serialization 167
Sizing

requirements 86
steps 86

SP Switch 92, 93
css device 27
cssdd3 device driver 27
fault service daemon 30
fault_service_SP kernel extension 27
good network performance between ADSM cli-
ent and server 196
if_ls interface layer 33
initialization 30
IP interface 33

mbuf 34
mcluster 34
receive FIFO 34

receive pool 34
send FIFO 34
send pool 34

MX adapters 27
PCI adapters 27
Start up process 29
throughput 92
throughput rate 95

SSA adapter 90, 92, 93, 99
SSA adapter cards 91
SSA Adapter throughput 99
SSA Adapters 91, 92
SSA Disk Identification 90
SSA disks 96, 98
SSA loop bandwidth 93
SSA loop disk layout 96, 100
SSA loops 96, 199
stripe group 19
stripe group descriptor 18
Stripe Group Manager 19, 171
Subsystems

RS/6000 Cluster Technology 35
Event Management 37
Group Services 35
hags 36
Network Connectivity Table 35
Topology Services 35

RSCT (see RS/6000 Cluster Technology)
System Data Repository 37

IBM Virtual Shared Disk 38
mmfs.cfg 37
mmsdrcfg1 37
mmsdrfs 37

sustained throughput rate 89
Switch

throughput 92

T
TCPIP

rfc1323 parameter 175
sb_max parameter 175
tcp_mssdflt parameter 175
tcp_recvspace parameter 175
tcp_sendspace parameter 175
thewall parameter 175

tests 199
thewall 127
time stamps of files 167
298 Sizing and Tuning GPFS

token 20
token management 89
Token Manager Server 20, 171
token stealing 20
total number of adapter cards 93
Tuning

Applications 101
buddy buffer 141
Buddy Buffer considerations 105
controlling a GPFS node 146
Dedicating VSD servers 121
disk activity problems 142
Disk subsystem

congested data path 144
damaged disk 144
Maximum Coalesce 143
Queue Depth 143

dropped packets 136
failed requests 140
File system block size 103
File System parameters 133
GPFS Configurations 101
GPFS daemon priority 132
High Impact issues 103
IBM Virtual Shared Disk 135, 139
IP interrupt queue 136, 138
ipqmaxlen 123, 139
Low impact issues 128
mallocpool for ADSM performance 189
mallocsize 125
max_IP_msg_size 122
maxFilesToCache 124, 191
maxFileToCache for ADSM performance 189
mbuf 138
Medium impact issues 120
metadata 121
Network Parameters 101
Number of GPFS nodes 123
Number of IBM Virtual Shared Disks 104
over-sized server environment 146
Pagepool size 112
pbuf considerations 107
pbufs 141
queue_depth 128
receive pool 137
rejected merge timeouts 141
rejected requests 140, 141
rejected responses 140
Request block limit 110

request blocks 141
send pool 136
statvsd 141
Stripe group manager node 130
switch 135, 136, 139
switch adapter 135, 136
switch congestion 145
Switch receive pool and send pool settings 114
The metadata manager node 133
The striping algorithm 132
thewall 138
VSD cache 128
VSD Configurations 101
worker threads 146
worker2Threads 126

tuning
TCP/IP Parameters 127

twin-tailed 41
type of disks 89

U
ull strided write 91
uning 93

V
Virtual Shared Disk 20

architecture 22
client resource requirements for ADSM imple-
mentation 170
command lines 21
read data flow 23
server resource requirements for ADSM imple-
mentation 170
write data flow 23

VSD disks per Server 94
VSD Server configuration 93
VSD Servers 199
VSD servers 93, 199
vsd_max_ip_msg_size 94
vsd_request_count 94
299

300 Sizing and Tuning GPFS

© Copyright IBM Corp. 1999 301

ITSO Redbook evaluation

Sizing and Tuning GPFS
SG24-5610-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5610-00

Sizing
and

T
uning

G
P

F
S

S
G

24-5610-00

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. GPFS architecture
	1.1 General concepts
	1.1.1 Architecture overview

	1.2 Data flow and potential bottelnecks
	1.2.1 Write data flow
	1.2.2 Read data flow
	1.2.3 Potential bottlenecks on writes and reads

	1.3 GPFS software structure and required services
	1.3.1 Internal data structures
	1.3.2 Configuration Manager
	1.3.3 Stripe Group Manager
	1.3.4 Metanode
	1.3.5 Token Manager Server
	1.3.6 VSD
	1.3.7 Recoverable Virtual Shared Disks
	1.3.8 SP Switch
	1.3.9 Clustering subsystems
	1.3.10 System Data Repository

	1.4 GPFS operation
	1.4.1 User interfaces
	1.4.2 Security
	1.4.3 Consistency
	1.4.4 Failure and recovery

	1.5 Positioning GPFS and other file systems
	1.5.1 Comparison of GPFS with other file systems
	1.5.2 GPFS advantages
	1.5.3 GPFS limitations

	Chapter 2. Application considerations
	2.1 GPFS application block Size
	2.2 GPFS application performance
	2.3 GPFS application I/O
	2.3.1 Sequential and random application I/O
	2.3.2 Serial and parallel file system I/O
	2.3.3 Application I/O patterns and GPFS
	2.3.4 Exploiting GPFS read prefetch and write behind

	2.4 Data partitioning
	2.4.1 Round-robin or segmented?
	2.4.2 One file or multiple files?
	2.4.3 Using files larger than two gigabytes

	2.5 MPI-IO and GPFS
	2.5.1 About MPI-IO
	2.5.2 Local to global transformations
	2.5.3 Application buffering
	2.5.4 Hints support

	2.6 On designing other I/O libraries with GPFS
	2.6.1 Portability concerns
	2.6.2 Exposing GPFS internals
	2.6.3 Threads, signals, and communication issues

	2.7 Analyzing an applications I/O
	2.7.1 AIX trace
	2.7.2 Pablo
	2.7.3 Monitoring file system activity

	Chapter 3. Sizing GPFS
	3.1 Sizing concepts
	3.1.1 Data
	3.1.2 Metadata
	3.1.3 Servers

	3.2 Sizing methodology
	3.2.1 Step 1 - Find file system requirements
	3.2.2 Step 2 - Recoverability considerations
	3.2.3 Step 3 - Determine minimum number and type of disks
	3.2.4 Step 4 - Check and adjust for file system capacity
	3.2.5 Step 5 - Determine number of VSD servers required
	3.2.6 Step 6 - Determine VSD server configuration
	3.2.7 Sizing example 1
	3.2.8 Sizing example 2

	Chapter 4. Tuning GPFS
	4.1 Isolating and identifying problems and bottlenecks
	4.1.1 Working from the dataflow diagram
	4.1.2 High impact issues
	4.1.3 Medium impact issues
	4.1.4 Low impact issues

	4.2 Tuning verification
	4.2.1 Monitoring at the server
	4.2.2 Monitoring at the client
	4.2.3 Interpreting the numbers

	4.3 Tuning case studies
	4.3.1 Hardware, software, and GPFS configuration

	Chapter 5. Implementing and tuning ADSM for GPFS
	5.1 ADSM relevant differences between JFS and GPFS
	5.1.1 Functional differences
	5.1.2 Impact of the delayed update of mtime
	5.1.3 Performance differences
	5.1.4 Data volumes

	5.2 Resource requirements
	5.2.1 Resource requirements for VSD
	5.2.2 Resource requirements for GPFS
	5.2.3 Resource requirements for ADSM

	5.3 Case studies
	5.3.1 Test system configuration
	5.3.2 Test methodology
	5.3.3 ADSM and TCP/IP configuration
	5.3.4 Configuration 1: ADSM client on single VSD client node
	5.3.5 Configuration 2: ADSM client and server on same SP node
	5.3.6 Configuration 3: Using multiple ADSM client nodes
	5.3.7 Configuration 4: ADSM clients on VSD server nodes
	5.3.8 Impact of tuning maxFilesToCache
	5.3.9 Comparison of ADSM performance between JFS and GPFS
	5.3.10 Full Incremental versus selective backup
	5.3.11 Restore versus replace

	5.4 Recommendations
	5.4.1 Which SP Node to use as an ADSM server
	5.4.2 Which SP node to use as an ADSM client
	5.4.3 Is there any advantage on running multiple client sessions?
	5.4.4 How many SP Nodes be used as an ADSM clients?

	Chapter 6. Test results
	6.1 Base run tests
	6.1.1 Serial tests
	6.1.2 Parallel tests
	6.1.3 Random tests
	6.1.4 Configurations
	6.1.5 Applications
	6.1.6 Measurement tools
	6.1.7 Measurements

	6.2 RAID-5 array size tests
	6.2.1 Measurements

	6.3 Metadata tests
	6.3.1 Measurements

	6.4 Client max throughput tests
	6.4.1 Measurements

	6.5 Analysis
	6.5.1 Compare RAID-5, mirroring, replication, and JBOD
	6.5.2 Compare SSA disk and loop combinations
	6.5.3 Compare serial parallel and random application performance
	6.5.4 Compare RAID-5 with different array sizes
	6.5.5 Compare RAID-5 with/without metadata on RAID-5
	6.5.6 Investigation of maximum client data throughput
	6.5.7 Analysis of CPU usage with regard to dedicated VSD servers
	6.5.8 How the number of VSD servers affects performance
	6.5.9 Validating sizing

	6.6 Conclusions
	6.6.1 File system options
	6.6.2 SSA disk subsystems
	6.6.3 Sequential I/O versus random
	6.6.4 Metadata and RAID-5
	6.6.5 Dedicated VSD servers
	6.6.6 General conclusions

	Appendix A. Measurements
	A.1 Base runs
	A.1.1 Serial
	A.1.2 Parallel
	A.1.3 Random

	A.2 RAID-5 array size tests
	A.2.1 7+P RAID-5 S2_C1_Tests3
	A.2.2 15+P RAID-5 S2_C1_Tests3

	A.3 Metadata tests
	A.3.1 4+P RAID-5 combined data and metadata S2_C1_Tests3

	A.4 Client max throughput tests

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 International Technical Support Organization publications
	C.2 Redbooks on CD-ROMs
	C.3 Other publications

	How to get ITSO redbooks
	IBM Redbook fax order form

	List of abbreviations
	Glossary
	Index
	ITSO Redbook evaluation

