
SG24-5523-00

International Technical Support Organization

www.redbooks.ibm.com

RSCT Group Services:
Programming Cluster Applications

Yoshimichi Kosuge, Christoph Krafft

http://www.redbooks.ibm.com/

RSCT Group Services:
Programming Cluster Applications

April 2000

SG24-5523-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 2000)

This edition applies to Version 3 Release 1 of the IBM Parallel System Support Programs for AIX
(PSSP) Licensed Program, program number 5765-D51, and to all subsequent releases and
modifications, until otherwise indicated in new editions, and The Enhanced Scalability feature of Version
4 Release 3 of the IBM High Availability Cluster Multi-Processing for AIX (HACMP) Licensed Program,
program number 5765-D28, and to all subsequent releases and modifications.

This document created or updated on April 27, 2000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix E, “Special notices” on page 281.

Take Note!

Contents

Figures .ix

Tables. xv

Preface . xvii
The team that wrote this redbook. xvii
Comments welcome. xviii

Part 1. Group Services concepts . 1

Chapter 1. Introduction . 3
1.1 What Group Services provides . 3
1.2 Solutions . 4

Chapter 2. Boundaries and components . 5
2.1 Boundaries . 5

2.1.1 Node . 5
2.1.2 Domain. 5

2.2 Components . 6
2.2.1 Group Services subsystem . 6
2.2.2 Groups . 6
2.2.3 Group Services client . 12
2.2.4 Providers . 14
2.2.5 Subscriber . 15

2.3 Relationship between boundaries and components 15
2.3.1 Domains, nodes, and Group Services daemons 16
2.3.2 Domains and groups. 17
2.3.3 Groups and GS clients . 17

Chapter 3. Protocols and facilities . 19
3.1 Protocols . 19

3.1.1 Proposal phase . 19
3.1.2 Voting phase . 20
3.1.3 Commit phase . 22
3.1.4 Protocol flows . 23
3.1.5 Serializing protocols . 27
3.1.6 Batching protocols . 28
3.1.7 Submitting changes with voting . 30

3.2 Responsiveness check facility . 31
3.2.1 Responsiveness check types . 31
3.2.2 Utilizing a facility. 32
© Copyright IBM Corp. 2000 iii

3.3 Deactivate-on-failure facility . 33
3.3.1 Utilizing a facility. 34
3.3.2 Deactivate scripts . 34

3.4 Source-target facility . 36
3.4.1 Configurations . 37
3.4.2 Membership list changes . 37
3.4.3 Group state value changes . 41

3.5 Sundered namespaces. 41

Part 2. Group Services design . 43

Chapter 4. Initializing with Group Services . 45
4.1 Choosing a domain . 45

4.1.1 Group Services PSSP domains . 45
4.1.2 Group Services HACMP/ES domains . 45

4.2 Initializing with Group Services. 46
4.2.1 Subroutine call . 46
4.2.2 Programming hints . 47

4.3 Quit using Group Services . 48
4.3.1 Subroutine call . 48
4.3.2 Programming hints . 49

Chapter 5. Proposing protocols . 51
5.1 Protocol proposal . 51

5.1.1 Protocols . 51
5.1.2 Subroutines . 52

5.2 Join protocol. 55
5.2.1 Subroutine call . 56
5.2.2 Protocol flow. 57
5.2.3 Programming hints . 60

5.3 Failure leave protocol . 60
5.3.1 Protocol proposal . 60
5.3.2 Protocol flow. 61
5.3.3 Programming hints . 68

5.4 State value change protocol . 69
5.4.1 Subroutine call . 69
5.4.2 Protocol flow. 69
5.4.3 Programming hints . 72

5.5 Provider-broadcast message protocol . 72
5.5.1 Subroutine call . 72
5.5.2 Protocol flow. 73
5.5.3 Programming hints . 75

5.6 Voluntary leave protocol . 75
iv RSCT Group Services: Programming Cluster Applications

5.6.1 Subroutine call . 75
5.6.2 Protocol flow. 76
5.6.3 Programming hints . 79

5.7 Goodbye protocol . 80
5.7.1 Subroutine call . 80
5.7.2 Protocol flow. 80
5.7.3 Programming hints . 80

5.8 Expel protocol . 81
5.8.1 Subroutine call . 81
5.8.2 Protocol flow. 82
5.8.3 Programming hints . 90

5.9 Change-attributes protocol . 91
5.9.1 Subroutine call . 91
5.9.2 Protocol flow. 92
5.9.3 Programming hints . 95

5.10 Cast-out protocol . 95
5.10.1 Protocol proposal . 96
5.10.2 Protocol flow. 97
5.10.3 Programming hints . 103

5.11 Source-state reflection protocol . 103
5.11.1 Protocol proposal . 103
5.11.2 Protocol flow. 104
5.11.3 Programming hints . 106

5.12 Voting on proposed protocol . 106
5.12.1 Subroutine call . 107
5.12.2 Proposing a group state value . 108
5.12.3 Sending a provider-broadcast message 110
5.12.4 Programming hints . 112

Chapter 6. Subscribing to a group . 115
6.1 Subscribe to a group . 115

6.1.1 Subroutine call . 115
6.1.2 Programming hints . 118

6.2 Unsubscribe from a group . 118
6.2.1 Subroutine call . 118
6.2.2 Programming hints . 118

Chapter 7. Getting notifications . 119
7.1 Overview . 119

7.1.1 Notifications and callback subroutines 119
7.1.2 Executing callback subroutines. 121
7.1.3 Programming hints . 123

7.2 Common design . 124
v

7.2.1 Callback subroutine prototypes. 124
7.2.2 Notification blocks and their fields . 125

7.3 Responsiveness notification . 139
7.3.1 Subroutine call . 140
7.3.2 Programming hints . 140

7.4 Delayed error notification . 141
7.4.1 Subroutine call . 141

7.5 N-phase notification . 142
7.5.1 Subroutine call . 142

7.6 Protocol approved notification . 143
7.6.1 Subroutine call . 144

7.7 Protocol rejected notification . 145
7.7.1 Subroutine call . 145

7.8 Announcement notification . 146
7.8.1 Subroutine call . 146

7.9 Subscription notification . 147
7.9.1 Subroutine call . 148

7.10 Dispatching notifications. 150
7.10.1 Subroutine call . 151

Chapter 8. Error handling . 153
8.1 Synchronous/asynchronous errors . 153
8.2 Error code . 154

Part 3. Group Services programming . 159

Chapter 9. Recoverable Network File System 161
9.1 Mechanism. 161
9.2 rnfs program overview . 163

9.2.1 Program state. 164
9.2.2 Utilizing Group Services . 168

9.3 rnfs program in details . 170
9.3.1 main routine . 170
9.3.2 Checking responsiveness . 174
9.3.3 Creating the group . 175
9.3.4 Adding a node . 180
9.3.5 Replicating a file system. 183
9.3.6 Server node shutdown . 186
9.3.7 Client node shutdown . 194
9.3.8 Server node failure . 196
9.3.9 Client node failure . 200
9.3.10 Receiving an announcement. 202
9.3.11 Receiving error . 206
vi RSCT Group Services: Programming Cluster Applications

9.4 Shell script, Perl script, and log file. 208
9.4.1 rnfs_deact.ksh shell script . 208
9.4.2 rnfs_deact.perl Perl script . 209
9.4.3 rnfs_mount shell script . 209
9.4.4 rnfs_replicate . 210
9.4.5 rnfs_umount . 210

9.5 rnfsm program . 210
9.5.1 main routine . 211
9.5.2 Subscribing the group. 213
9.5.3 Unsubscribing the group. 217

9.6 Operation example . 218
9.6.1 Events summary. 222
9.6.2 rnfs execution output . 223
9.6.3 rnfs log file . 225
9.6.4 rnfsm execution output . 227

Chapter 10. Checking your program . 229
10.1 Command usage . 229
10.2 Command examples. 230

10.2.1 Checking the group, providers, and subscribers 230
10.2.2 Checking the group attributes . 232
10.2.3 Checking the group state value . 236
10.2.4 Checking providers and subscribers in detail 237
10.2.5 Checking a deactivate script . 238
10.2.6 Checking responsiveness check . 241
10.2.7 Checking the protocol currently executing 242

Part 4. Appendices . 245

Appendix A. Programming environment . 247
A.1 The Group Services shared libraries . 247
A.2 Link and compile options . 247
A.3 The man pages . 248

Appendix B. ha_gs.h . 249
B.1 ha_gs.h . 249

Appendix C. Recoverable Network File System programs 261
C.1 rnfs.c . 261
C.2 rnfs_deact.ksh . 271
C.3 rnfs_deact.perl . 272
C.4 rnfs_mount . 272
C.5 rnfs_replicate . 273
vii

C.6 rnfs_umount . 273
C.7 rnfsm.c . 273
C.8 makefile . 277

Appendix D. Using the additional material . 279
D.1 Downloading the additional material on the Internet. 279
D.2 Using the Web material . 279

Appendix E. Special notices . 281

Appendix F. Related publications . 285
F.1 IBM Redbooks. 285
F.2 IBM Redbooks collections. 285
F.3 Other resources . 285

How to get IBM Redbooks . 287
IBM Redbooks fax order form . 288

Glossary . 289

Index . 293

IBM Redbooks review . 301
viii RSCT Group Services: Programming Cluster Applications

Figures

1. The group attributes block . 8
2. The membership information block . 10
3. The group state value information block . 11
4. The provider-broadcast message block. 11
5. GS client, provider, and subscriber . 13
6. Descriptor. 13
7. The provider token . 14
8. The provider information block. 14
9. Boundaries and components . 16
10. The ha_gs_num_phases_t type. 20
11. The ha_gs_vote_value_t type . 21
12. The ha_gs_time_limit_t type . 22
13. One-phase protocol proposed by a provider . 24
14. N-phase protocol proposed by a provider . 25
15. One-phase protocol proposed by Group Services. 26
16. N-phase protocol proposed by Group Services . 27
17. Protocol serialization . 28
18. The ha_gs_batch_ctrl_t type . 29
19. The ha_gs_responsiveness_type_t type . 31
20. The responsiveness control block . 32
21. Multiple source-group and/or target-group providers. 37
22. Joining to a target-group . 38
23. Leaving from a source-group . 39
24. Node failure . 40
25. The syntax of ha_gs_init subroutine . 46
26. The syntax of ha_gs_quit subroutine . 48
27. The protocol proposal subroutine prototypes. 53
28. The proposal information block . 54
29. The join request block . 56
30. The one-phase join protocol . 58
31. The approved n-phase join protocol . 59
32. The rejected n-phase join protocol. 60
33. The one-phase failure leave protocol without deactivate-on-failure. 62
34. The one-phase failure leave protocol with deactivate-on-failure 63
35. The n-phase failure leave protocol without deactivate-on-failure. 63
36. The n-phase failure leave protocol with deactivate-on-failure 65
37. The approved n-phase failure leave protocol. 66
38. The rejected n-phase failure leave protocol with a special condition. 67
39. The rejected n-phase failure leave protocol without a special condition . . 68
40. The state change request block. 69
© Copyright IBM Corp. 2000 ix

41. The one-phase state value change protocol . 70
42. The approved n-phase state value change protocol 71
43. The rejected n-phase state value change protocol 71
44. The message request block. 72
45. The one-phase provider-broadcast message protocol 73
46. The approved provider-broadcast message protocol 74
47. The rejected provider-broadcast message protocol. 75
48. The leave request block. 76
49. The one-phase voluntary leave protocol . 77
50. The approved n-phase voluntary leave protocol . 78
51. The rejected n-phase voluntary leave protocol . 79
52. The expel request block. 81
53. The one-phase expel protocol without deactivate-on-failure 83
54. The one-phase expel protocol with deactivate-on-failure 84
55. The approved n-phase expel protocol without deactivate-on-failure 85
56. The rejected n-phase expel protocol without deactivate-on-failure 86
57. The n-phase expel protocol with deactivate-on-failure 87
58. The deactivate script execution phase. 89
59. The approved n-phase expel protocol with deactivate-on-failure 90
60. The rejected n-phase expel protocol with deactivate-on-failure. 90
61. The attribute change request block . 92
62. The one-phase change-attributes protocol . 93
63. The approved n-phase change-attributes protocol 94
64. The rejected n-phase change-attributes protocol 94
65. The one-phase cast-out protocol without deactivate-on-failure 98
66. The one-phase cast-out protocol with deactivate-on-failure 99
67. The beginning of protocol without deactivate-on-failure 100
68. The beginning of protocol with deactivate-on-failure 101
69. The ending of approved n-phase cast-out protocol 102
70. The ending of rejected n-phase cast-out protocol 103
71. The one-phase source-state reflection protocol. 104
72. The approved n-phase source-state reflection protocol. 105
73. The rejected n-phase source-state reflection protocol. 106
74. The syntax of ha_gs_vote subroutine . 107
75. Proposing a group state value during voting phases and approved 109
76. Proposing a group state value during voting phases and rejected 110
77. Sending a message in the middle of voting phases. 111
78. Sending an approved message in the last voting phase 112
79. Sending a rejected message in the last voting phase 112
80. The ha_gs_subscribe subroutine prototype. 115
81. The subscribe request block . 116
82. The ha_gs_subscription_ctrl_t type . 116
83. The prototype for the ha_gs_subscribe subroutine 118
x RSCT Group Services: Programming Cluster Applications

84. Notification and callback subroutine . 121
85. ha_gs_dispatch subroutine and callback subroutines 123
86. The callback subroutine prototypes . 125
87. The ha_gs_notification_type_t type . 127
88. The ha_gs_request_t type . 128
89. The ha_gs_summary_code_t type. 130
90. The proposal block. 133
91. The ha_gs_phase_info_t type . 133
92. The ha_gs_updates_t type . 134
93. The ha_gs_leave_array_t type . 136
94. The ha_gs_leave_info_t type. 136
95. The ha_gs_leave_reasons_t type . 137
96. The expel information block . 138
97. The responsiveness notification block . 140
98. The ha_gs_callback_rc_t type . 141
99. The delayed error notification block . 141
100.The n-phase notification block. 143
101.The protocol approved notification block. 144
102.The protocol rejected notification block . 145
103.The announcement notification block . 147
104.The subscription notification block . 148
105.The ha_gs_subscription_type_t type. 149
106.The syntax of ha_gs_dispatch subroutine. 151
107.The ha_gs_rc_t type . 155
108.Program mechanism . 163
109.Program state diagram . 167
110.main routine (the first half). 171
111.Initialization subroutine . 172
112.main routine (the last half) . 173
113.Suspension subroutine . 174
114.Checking responsiveness . 175
115.Responsiveness notification . 175
116.Creating the group. 177
117.Join protocol proposal . 178
118.N-phase notification (HA_GS_JOIN) . 179
119.Voting subroutine . 179
120.Protocol approved notification (HA_GS_JOIN) . 180
121.Adding a node . 181
122.Protocol rejected notification . 183
123.Replicating file system. 184
124.Provider-broadcast message protocol proposal 185
125.N-phase notification (HA_GS_PROVIDER_MESSAGE) 186
126.Protocol approved notification (HA_GS_PROVIDER_MESSAGE). 186
xi

127.Server node shutdown . 188
128.Voluntary leave protocol proposal . 189
129.N-phase notification (HA_GS_LEAVE) . 190
130.Quit subroutine . 190
131.Protocol approved notification (HA_GS_LEAVE) 191
132.Registering hostname . 192
133.Change state value protocol proposal . 193
134.N-phase notification (HA_GS_STATE_VALUE_CHANGE) 194
135.Protocol approved notification (HA_GS_STATE_VALUE_CHANGE). . . 194
136.Client node shutdown . 195
137.Server node failure . 198
138.N-phase notification (HA_GS_FAILURE_LEAVE) 199
139.Protocol approved notification (HA_GS_FAILURE_LEAVE). 200
140.Client node failure . 201
141.Receiving an announcement . 204
142.Announcement notification . 205
143.Print nodes subroutine . 206
144.Delayed error notification . 207
145.The rnfs_deact.ksh shell script . 208
146.The rnfs_deact.perl Perl script . 209
147.The rnfs_mount shell script . 210
148.The rnfs_mount shell script . 210
149.The rnfs_mount shell script . 210
150.Main routine. 212
151.Initialization subroutine . 213
152.Subscription subroutine. 214
153.Delayed error notification . 215
154.Quit subroutine . 215
155.Subscriber notification . 216
156.Print members subroutine . 217
157.Suspension subroutine . 218
158.Unsubscription subroutine. 218
159.rnfs execution on node1 . 224
160.rnfs execution on node3 . 224
161.rnfs execution on node5 . 225
162.rnfs.log on node1. 226
163.rnfs.log on node3. 226
164.rnfs.log on node5. 227
165.rnfsm execution . 228
166.Checking the group, providers, and subscribers on node 1 230
167.Checking the group, providers, and subscribers on node 3 231
168.Checking the group, providers, & subscribers with the lssrc command . 231
169.Checking the group attributes (1 of 3) . 233
xii RSCT Group Services: Programming Cluster Applications

170.Checking the group attributes (2 of 3) . 234
171.Checking the group attributes (3 of 3) . 235
172.Checking a deactivate script and responsiveness check 240
173.Checking the protocol currently executing . 242
174.Checking a provider-broadcast message protocol on node 3 243
175.Checking a provider-broadcast message protocol on node 5 243
176.Checking a join protocol on node 5 . 244
177.Checking a join protocol on node 3 . 244
xiii

xiv RSCT Group Services: Programming Cluster Applications

Tables

1. Required fields for each responsiveness check type. 48
2. Protocol request blocks and their fields . 54
3. Notification and GS clients. 119
4. Callback subroutine and the subroutine that registers it 120
5. Notification blocks and their fields . 126
6. Notification and its possible summary codes . 132
7. Subroutines and synchronous/asynchronous error 153
8. Program state change for creating the group . 177
9. Program state change for adding a node. 181
10. Program state change for server node shutdown 188
11. Program state for registering hostname. 192
12. Program state for client node shutdown . 195
13. Program state for server node failure . 198
14. Program state for having NFS client failure . 201
15. Event number and the event on nodes . 222
© Copyright IBM Corp. 2000 xv

xvi RSCT Group Services: Programming Cluster Applications

Preface

Group Services is a distributed subsystem of the IBM Reliable Scalable
Cluster Technology (RSCT) on the RS/6000 system. If you are writing a new
application or considering updating an existing application, Group Services
may help your application improve its availability in a number of ways.

Group Services encapsulates a collection of software abstractions that are
commonly used in the design of highly-available systems. By using Group
Services abstractions through the Group Services shared library, you do not
have to develop your own mechanism for a highly-available application. This
is important because such mechanisms tend to be complex, error-prone, and
expensive to duplicate.

This redbook provides a sample application program to help you understand
how to program Group Services applications.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Yoshimichi Kosuge is an IBM RS/6000 SP project leader at the International
Technical Support Organization, Poughkeepsie Center. Since joining the
ITSO in 1998, he has been involved in writing redbooks and teaching IBM
classes on all areas of the RS/6000 SP system.

Christoph Krafft is an SP specialist at the IBM Global Services division in
Germany. He has four years of experience working with the SP system.
Christoph holds a degree in Technical Computer Science from the
Berufsakademie in Stuttgart, Germany.

Special thanks to the following people for their invaluable contributions to this
project:

Peter Badovinatz, Myung Bae, Marcos Novaes, Ji-Fang Zhang
IBM Poughkeepsie

Milos Radosavljevic
IBM ITSO, Austin Center
© Copyright IBM Corp. 2000 xvii

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 301 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xviii RSCT Group Services: Programming Cluster Applications

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Part 1. Group Services concepts
© Copyright IBM Corp. 2000 1

2 RSCT Group Services: Programming Cluster Applications

Chapter 1. Introduction

If you are writing a new application or are considering updating an existing
application, Group Services may help the application improve its availability in
a number of ways. Group Services provides the following services:

• Coordinate among peer processes.

• Create a message board to display the state of your application to other
applications.

• Exchange a message among applications.

• Subscribe to changes in the state of other applications.

1.1 What Group Services provides

There are several advantages to using Group Services with your applications.

Peer process synchronization
An application can be considered distributed when it deploys multiple
processes that may run in more than one computer and that share some level
of cooperation. Usually, it is very difficult to write such applications due to the
high level of complexity in carrying out synchronizations among distributed
applications. This complexity is increased because, at any given time,
synchronization among the applications can be interrupted, or some
applications could become unavailable leaving the synchronization process in
an inconsistent state. The recovery associated with this type of situation is
typically very complex.

The Group Services provides distributed applications with a facility with which
the application can execute atomic actions. An action is considered atomic if
the action is done through a coordination mechanism provided by the Group
Services.

Message board
Another complexity is sharing information. Distributed applications must
share information to cooperate with one another. The information must be
identical for all the applications and can be changed at any time.

The Group Services provides distributed applications with a general purpose
message board facility for coordinating information of an application. All the
distributed applications can change the contents and share the identical
contents.
© Copyright IBM Corp. 2000 3

Message broadcast
The message board is non-volatile information, that is, the information can be
retrieved later. However, there can be information that must be shared but
does not necessarily have to be stored somewhere. This also becomes one of
the complexities because it is not just a matter of sending messages. An
application needs to check other applications that are currently running. It
also needs their destination address.

The Group Services provides broadcast capability. It automatically
broadcasts messages to all the applications currently running. Therefore, it
becomes possible to write a distributed application without using any other
communications protocol, such as TCP/IP. An application can be developed
relying only on the Group Services communications facility.

Monitoring application
The Group Services offers very powerful synchronization, message board,
and message broadcast mechanisms among distributed applications.
However, some applications may not need these mechanisms. Instead, they
want to monitor ongoing activities among distributed applications.

If this is the case, Group Services provides a monitoring mechanism. Using
this mechanism, an application can easily implement its monitoring facility
without complexity.

1.2 Solutions

Group Services encapsulates a collection of software abstractions that are
commonly used in the design of highly-available systems.

By using the Group Services abstractions through the Group Services shared
library, application developers do not have to develop their own
synchronization, message board, or message broadcast mechanisms. This is
important because such mechanisms tend to be complex, error-prone, and
expensive to duplicate.

The Group Services facility greatly simplifies the writing of a distributed
application. The utilization of the Group Services facility has cut months of
development work, which would otherwise be spent reinventing the facilities
that Group Services has.
4 RSCT Group Services: Programming Cluster Applications

Chapter 2. Boundaries and components

When your application uses the services provided by the Group Services, you
need to consider boundaries and components of the Group Services.
Services are available within boundaries. Components are required to
conform to the Group Services environment.

2.1 Boundaries

Group Services provides applications with its services for a certain scope. An
application may consist of multiple processes that run on multiple RS/6000
hardware. Therefore, when the application uses the services provided by the
Group Services, it must consider boundaries in which the application can use
them.

2.1.1 Node
A node is a piece of RS/6000 hardware on which the AIX operating system
executes exclusively. For example, a control workstation or each SP node in
an RS/6000 SP system is considered a node.

2.1.2 Domain
A domain is the collection of nodes on which the RS/6000 Cluster Technology
is executing. A domain may not be exclusive. A node may be contained in
multiple domains.

There are two types of domains for the Group Services: Group Services
PSSP domains and Group Services HACMP/ES domains.

2.1.2.1 Group Services PSSP domain
A Group Services PSSP domain includes a control workstation and the set of
SP nodes defined to be within an SP partition. This means that a control
workstation can be within multiple Group Services PSSP domains. An
application wishing to use Group Services on the control workstation or on an
SP node must set (or not set) the following environment variables to ensure
that it can initialize with the proper Group Services domain:

• HA_DOMAIN_NAME

• HA_GS_SUBSYS

This must be done on an SP node (which can only be in one Group Services
PSSP domain) as well as on the control workstation (which will be in multiple
Group Services PSSP domains if there are multiple defined SP partitions).
© Copyright IBM Corp. 2000 5

2.1.2.2 Group Services HACMP/ES domain
If HACMP/ES is installed on a node, that node will be part of a Group
Services HACMP/ES domain. The Group Services HACMP/ES domain
consists of all nodes that are part of the HACMP/ES cluster. An application
wishing to use the Group Services must set the following environment
variables to ensure that it can initialize with the proper Group Services
domain:

• HA_DOMAIN_NAME

• HA_GS_SUBSYS

This must be done on all nodes of the HACMP/ES cluster.

For more information about setting the environment variables, refer to Section
4.1, “Choosing a domain” on page 45.

2.2 Components

An application that utilizes the Group Services subsystem shares groups.
Each group that is maintained by the Group Services subsystem is uniquely
named.

Any authorized process in a Group Services domain may create a new group
or ask to become a member of a group. This request is called a join request
or joining the group. If the join request is successful, the process becomes a
provider for the group.

Any authorized process in a Group Services domain can ask to monitor a
group. This request is called a subscribe request or subscribing the group. If
the subscribe request is successful, the process becomes a subscriber for
the group.

2.2.1 Group Services subsystem
The Group Services subsystem consists of the Group Services daemons.
Each node requires at least one Group Services daemon executing. If a node
is contained in multiple domains, the same number of Group Services
daemons must be executing on a node.

2.2.2 Groups
A Group Services application defines one or more group names that are
known to all of the processes that are part of the application. During
initialization of the application, as each process in the application starts up, it
6 RSCT Group Services: Programming Cluster Applications

asks to join the group. On receipt of the first join request, the Group Services
creates the group. The subsequent join requests result in new providers
joining the group.

A group has the following information that is unique to the group:

• The group attributes

• The membership list

• The group state value

In addition to these three piece of information, a group can share volatile
information, such as the provider-broadcast message.

When the last provider in a group leaves the group voluntarily or involuntarily,
the Group Services deletes the group. If a group is deleted, the group
attributes, the membership list, and the group state value are lost.

For more information on joining or leaving a group, refer to Chapter 5,
“Proposing protocols” on page 51.

2.2.2.1 The group attributes
The first join request creates a group and defines its group attributes. All
subsequent requests to join this group also include the group attribute, and
their group attributes must match the group’s established attributes.
Otherwise, the subsequent join request is rejected.

The group attributes represent characteristics and control behaviors of a
group as follows:

• The Group Services library version

• The application-specified group name and version

• The source group name for the group

• The number of voting phases

• The voting time limit

• The default voting value

• The batching protocols control

• The deactivate-on-failure control

All of the attributes can be changed dynamically except the following two
attributes:

• The application-specified group name
Chapter 2. Boundaries and components 7

• The source group name for the group

If an application needs to change one or both of these two attributes, it must
dissolve the group and create the group with new attributes.

The group attributes are maintained by the group attributes block, which has
the definition shown in Figure 1.

Figure 1. The group attributes block

Each field contains the following information:

gs_version
This field contains the version level of the Group Services shared
library. It is set by the Group Services subsystem.

gs_sizeof_group_attributes
This field contains the size of the group attributes block.

gs_client_version
This field contains a user-defined version code.

gs_batch_control
This field controls the batching of multiple join, failure leave, or
cast-out protocols. In addition, this field controls a
deactivate-on-failure facility.
For more information on batching protocols, refer to Section 3.1.6,
“Batching protocols” on page 28. For more information about the
deactivate-on-failure facility, refer to Section 3.3,
“Deactivate-on-failure facility” on page 33.

gs_num_phases
This field specifies whether join, failure leave, and cast-out
protocols are to be one-phase or n-phase protocols.

typedef struct {
short gs_version;
short gs_sizeof_group_attributes;
short gs_client_version;
ha_gs_batch_ctrl_t gs_batch_control;
ha_gs_num_phases_t gs_num_phases;
ha_gs_num_phases_t gs_source_reflection_num_phases;
ha_gs_vote_value_t gs_group_default_vote;
ha_gs_merge_ctrl_t gs_merge_control;
ha_gs_time_limit_t gs_time_limit;
ha_gs_time_limit_t gs_source_reflection_time_limit;
ha_gs_group_name_t gs_group_name;
ha_gs_group_name_t gs_source_group_name;

} ha_gs_group_attributes_t;
8 RSCT Group Services: Programming Cluster Applications

For more information on the number of phases, refer to Section
3.1.1, “Proposal phase” on page 19.

gs_source_reflection_num_phases
This field specifies whether the source-state reflection protocol is
to be a one-phase or n-phase protocol. If no
gs_source_group_name is given, this field is ignored.
For more information on the number of phases, refer to Section
3.1.1, “Proposal phase” on page 19. For the source-state
reflection protocol, refer to Section 5.11, “Source-state reflection
protocol” on page 103.

gs_group_default_vote
This field contains the default vote value to be used for the
providers in this group. It can take on a value of
HA_GS_VOTE_APPROVE to approve or HA_GS_VOTE_REJECT
to reject.
For more information on the default vote value, refer to Section
3.1.2.3, “Default vote value” on page 22.

gs_merge_control
This field must be set to a value of HA_GS_DISSOLVE_MERGE.

gs_time_limit
This field contains the voting time limit in seconds. This is the
number of seconds within which each provider must register its
vote for each voting phase of an n-phase join, failure leave, and
cast-out protocol. If the field is set to a value of 0, no limit is
enforced.
For more information on the voting time limit, refer to Section
3.1.2.2, “Voting time limit” on page 21.

gs_source_reflection_time_limit
This field contains the voting time limit in seconds. This is the
number of seconds within which each provider must register its
vote for each voting phase of an n-phase source-state reflection
protocol. If no gs_source_group_name is specified, or if it is
specified and the gs_source_reflection_phases field contains a
value of HA_GS_1_PHASE, this field is ignored.
For more information on the voting time limit, refer to Section
3.1.2.2, “Voting time limit” on page 21. For information about the
source-state reflection protocol, refer to Section 5.11,
“Source-state reflection protocol” on page 103.

gs_group_name
This field points to a string that contains the name of the group. Its
Chapter 2. Boundaries and components 9

maximum length is 32 bytes, as defined by the
HA_GS_MAX_GROUP_NAME_LENGTH constant.

gs_source_group_name
This field points to a string that contains the name of the
source-group for this group. If there is no source-group, this field
should be null.
For more information on source-target facility, refer to Section 3.4,
“Source-target facility” on page 36.

2.2.2.2 The membership list
The membership list of a group is the list of providers in the group. Each
provider is identified by a provider identifier. The Group Services subsystem
maintains the list in the following order: The oldest provider is at the head of
the list, and the youngest is at the end. All of the group’s providers and
subscribers see the same ordering of the list.

The Group Services subsystem updates the membership list when a provider
joins or leaves a group.

The membership list is maintained by the membership information block. It
has the definition shown in Figure 2.

Figure 2. The membership information block

Each field contains the following information:

gs_count
This field contains the number of providers in the list.

gs_providers
This field contains a pointer to the first provider in the membership
list. Each provider is described by a provider information block. For
the provider information block, refer to Figure 8 on page 14.

2.2.2.3 The group state value
The group state value is defined by the application that is using the Group
Services and is controlled by the providers in a way that is meaningful to the
application. It is a byte field whose length may vary between 1 and 256 bytes.
The state value is not interpreted by the Group Services subsystem.

typedef struct {
unsigned int gs_count;
ha_gs_provider_t *gs_providers;

} ha_gs_membership_t;
10 RSCT Group Services: Programming Cluster Applications

The group state value is maintained by the group state value information
block. It has the definition shown in Figure 3 on page 11.

Figure 3. The group state value information block

Each field contains the following information:

gs_length
This field contains the length, in bytes, of the group state value. It
must be a value between 1 and 256.

gs_state
This field points to a buffer that contains the actual group state
value bytes.

2.2.2.4 Provider-broadcast message
The Group Services provides currently joining providers with a volatile
message as shared information. Providers in a group are allowed to send a
message to all the providers in the group. This information is not stored in any
place; therefore, it is a responsibility of an application to store it for later
reference.

Provider-broadcast messages are defined by the application that is using the
Group Services and are controlled by the providers in a way that is
meaningful to the application. Provider-broadcast messages are not
interpreted by the Group Services.

The provider-broadcast message is maintained by the provider-broadcast
message block. It has the definition shown in Figure 4.

Figure 4. The provider-broadcast message block

Each field contains the following information:

typedef struct {
int gs_length;
char *gs_state;

} ha_gs_state_value_t;

typedef struct {
int gs_length;
char *gs_message;

} ha_gs_provider_message_t;
Chapter 2. Boundaries and components 11

gs_length
This field contains the length, in bytes, of the message to be
broadcast to providers. It must be a value between 1 and 2048.

gs_message
This field points to a buffer that contains the message.

2.2.3 Group Services client
When an AIX process initializes itself with the Group Services, it becomes a
Group Services client (GS client). When a GS client joins a group, a GS client
becomes a provider. When a GS client wishes to stop being a provider, it
leaves a group. When a GS client subscribes a group, a GS client becomes a
subscriber. When a GS client wishes to stop being a subscriber, it
unsubscribes a group.

The term GS client is used to refer to both providers and subscribers. A
process that has initialized with the Group Services but has not yet become a
provider or subscriber is also referred to as a GS client.

There is not just one choice - between provider or subscriber; a GS client can
become a group’s provider or subscriber, and a GS client can also become
multiple groups’ provider or subscriber. These relationships are illustrated in
Figure 5 on page 13.
12 RSCT Group Services: Programming Cluster Applications

Figure 5. GS client, provider, and subscriber

2.2.3.1 Descriptor
When a process initializes itself with the Group Services, it receives a
descriptor that is a socket file descriptor to communicate with the Group
Services daemon. The descriptor is defined as shown in Figure 6.

Figure 6. Descriptor

AIX process

GS client

GS client
provider

GS client
subscriber

GS client
provider/subscriber

initialize quit

join

leave subscribe

unsubscribe

unsubscribe join

subscribe leave

join
leave

subscribe
unsubscribe

join
leave
subscribe
unsubscribe

not initialized

initialized

typedef int ha_gs_descriptor_t;
Chapter 2. Boundaries and components 13

2.2.4 Providers
A provider has the following information to identify itself:

• Provider token

• Provider ID

The provider ID includes the following information:

• An application-defined instance number

• The node number of the node on which the provider is executing

2.2.4.1 Provider token
When a GS client joins a group, it receives a token that identifies the
membership of the GS client in the group as a provider. The provider token is
defined as shown in Figure 7.

Figure 7. The provider token

2.2.4.2 Provider information block
The provider information block identifies each provider to the other providers
in a group. It contains an application-defined instance number and the
number of the node on which the provider is executing. The provider
information block is defined as shown in Figure 8.

Figure 8. The provider information block

Each field contains the following information:

_gs_instance_number
This field contains the instance number of the provider. This
instance number is specified by the provider when it joins a group
and must be unique for each provider on a single node within the
group.

When Group Services itself acts as a provider, this field contains a
value of HA_GS_instance_number. Its value is -1.

typedef int ha_gs_token_t

typedef union {
struct {

short _gs_instance_number;
short _gs_node_number;

} _gs_provider_info;
int gs_provider_id;

} ha_gs_provider_t;
14 RSCT Group Services: Programming Cluster Applications

_gs_node_number
This field contains the node number of the provider. This value is
assigned by Group Services.

In the case of Group Services PSSP domain, 0 is assigned to a
control workstation, 1 is assigned to node 1, and so on.

In the case of Group Services HACMP/ES domain, a node
number is assigned during cluster configuration. The value is
assigned automatically in alphanumeric order during cluster
configuration. If you add a node to an existing running cluster, it
gets the lowest free node number. You cannot assign a specific
value. HACMP/ES calls this node number the handle value and
stores it in the handle attribute of the HACMPcluster GODM class.
For more information, refer to Chapter 3, “Component Design”, of
the HACMP Enhanced Scalability Handbook, SG24-5328.

When the Group Services subsystem itself is acting as a provider,
this field contains a value of HA_GS_node_number. Its value is -1.

gs_provider_id
This field contains the _gs_instance_number and the
_gs_node_number in a single word.

2.2.5 Subscriber
A subscriber has only a subscriber token to identify itself.

2.2.5.1 Subscriber token
When a GS client subscribes a group, it receives a token that identifies the
membership of the GS client in the group as a subscriber. The subscriber
token is defined as the same as the provider token shown in Figure 7 on page
14.

2.3 Relationship between boundaries and components

The previous sections introduced the boundaries and components of Group
Services. The following sections describe their relationship by using a sample
Group Services configuration shown in Figure 9 on page 16.

The following definitions are available for convenience of programming:

#define gs_node_number _gs_provider_info._gs_node_number
#define gs_instance_number _gs_provider_info._gs_instance_number

Note
Chapter 2. Boundaries and components 15

Figure 9. Boundaries and components

2.3.1 Domains, nodes, and Group Services daemons
The following relationship exists between domains, nodes, and Group
Services daemons:

• One domain can contain multiple nodes. For example, domain A contains
nodes A and B; similarly, domain B contains nodes B and C.

• One node can be contained in multiple domains. For example, node B is
contained in domains A and B.

• The number of Group Services daemons running on a node must be the
same as the number of domains in which the node is contained. For

node A

Group
Services
daemon

node C

Group
Services
daemon

node B

Group
Services
daemon

Group
Services
daemon

domain A domain B

GS
client 6

GS
client 5

GS
client 3

GS
client 4

GS
client 1

GS
client 2

group 2

group 1

GS
client10

GS
client 9

GS
client 7

GS
client 8

group 4

group 3
16 RSCT Group Services: Programming Cluster Applications

example, node B is contained in two domains: A and B. Therefore, it
requires two Group Services daemons running on node B.

2.3.2 Domains and groups
The following relationship exists between domains and groups:

• One domain can contain multiple groups. For example, domain A contains
the groups 1 and 2; similarly, domain B contains groups 3 and 4.

• One group cannot be contained in multiple domains. For example, groups
1 or 2 cannot be contained in domain B; similarly, groups 3 or 4 cannot be
contained in domain A.

2.3.3 Groups and GS clients
There is the following relationship between groups and GS clients:

• One GS client can be contained in multiple groups if all of them are
contained in the same domain. For example, the GS client 3 or 4 is
contained in both group 1 and group 2 because both group 1 and group 2
are contained in one domain domain A. However, clients 1 through 6
cannot be contained in groups 3 or 4 because groups 3 and 4 are
contained in another domain, domain B.

• One GS client can be contained in multiple groups as a provider. For
example, GS client 3 or 4 can be contained in group 1 as a provider and in
group 2 as a provider also.

• One GS client can be contained in multiple groups as a subscriber. For
example, GS clients 3 or 4 can be contained in group 1 as subscribers and
in group 2 as a subscriber also.

• One GS client can be contained in some multiple groups as a provider and
in other multiple groups as a subscriber. For example, GS clients 3 or 4
can be contained in group 1 as providers and in group 2 as subscribers.
Chapter 2. Boundaries and components 17

18 RSCT Group Services: Programming Cluster Applications

Chapter 3. Protocols and facilities

A group is formed by the Group Services subsystem and providers. In
addition, if necessary, subscribers are included. As long as Group Services
itself and providers do not want to change the group attributes, the
membership list, or the group state value or broadcast messages, there is no
activity in a group.

However, when they do, Group Services provides a mechanism that
coordinates these activities between them. This mechanism is called a
protocol.

To make a protocol more powerful and flexible, the Group Services provides
some additional facilities.

3.1 Protocols

A protocol has one or more phases, and each phase is categorized as one or
two of the following phase types:

• Proposal phase

• Voting phase

• Commit phase

A protocol starts its first phase as a proposal phase to propose a protocol.
Then, it may or may not have voting phases to approve or reject the proposed
protocol. Finally, the protocol ends its last phase as a commit phase to report
the result of the proposed protocol.

3.1.1 Proposal phase
In a proposal phase, a protocol is proposed by either one of the following:

• The Group Services

• A provider including a GS client that is being initialized with the Group
Services; however, it has not been a provider yet.

Each protocol proposal indicates whether it is one of the following protocols:

• A one-phase protocol

• An n-phase protocol

A one-phase protocol is approved automatically, and a result of the protocol is
notified immediately. Therefore, both the proposal phase and the commit
© Copyright IBM Corp. 2000 19

phase are handled by the same phase. Voting phases are not included for this
protocol.

An n-phase protocol has one or more voting phases. A result of the protocol
is notified in the last voting phase. Therefore, both the voting phase and the
commit phase are handled by the same phase.

The number of phases is defined by the ha_gs_num_phases_t type as shown
in Figure 10.

Figure 10. The ha_gs_num_phases_t type

Each value indicates the following meanings:

HA_GS_1_PHASE
This value indicates that the protocols are to be one-phase
protocols.

HA_GS_N_PHASE
This value indicates that the protocols are to be n-phase protocols.

3.1.2 Voting phase
If a protocol is an n-phase protocol, it has voting phases. The providers in the
group are required to vote on one of the following values:

Approve The provider approves the proposed protocol.

Continue The provider neither approves nor rejects the proposed protocol
at this time; however it wants to continue to another voting
phase.

Reject The provider rejects the proposed protocol.

The Group Services itself could be involved in voting the proposed protocol, if
necessary.

The voting values are defined by the ha_gs_vote_value_t type as shown in
Figure 11 on page 21.

typedef enum {
HA_GS_1_PHASE = 0x0001,
HA_GS_N_PHASE = 0x0002

} ha_gs_num_phases_t;
20 RSCT Group Services: Programming Cluster Applications

Figure 11. The ha_gs_vote_value_t type

The values have the following meanings:

HA_GS_NULL_VOTE
This value indicates a null vote. It keeps the default vote at its
previous value. For more information, refer to Section 5.12,
“Voting on proposed protocol” on page 106.

HA_GS_VOTE_APPROVE
This value approves the proposal.

HA_GS_VOTE_CONTINUE
This value continues to another voting phase.

HA_GS_VOTE_REJECT
This value rejects the proposal.

Each voting phase can have one of the following outcomes:

• The proposed protocol is approved if every provider votes to approve the
proposal. This approval terminates the protocol.

• The proposed protocol is rejected if at least one provider votes to reject
the proposal. This rejection terminates the protocol.

• The protocol continues for another round if no provider votes to reject, and
at least one provider votes to continue.

3.1.2.1 Barrier synchronization
An n-phase protocol is a mechanism that allows barrier synchronization. All
providers in the group involved in the protocol proposal must arrive at the
barrier (that is, they must submit a vote) before the protocol can proceed to
the next phase. This guarantees that the group remains synchronized during
the protocol. A provider’s arrival at a barrier is signalled by its submission of a
vote to approve, continue, or reject the proposal.

3.1.2.2 Voting time limit
The voting phase has a voting time limit. All the providers are required to vote
until this time limit expires. This allows the providers to determine if their
providers are not responding quickly enough during voting phases.

typedef enum {
HA_GS_NULL_VOTE,
HA_GS_VOTE_APPROVE,
HA_GS_VOTE_CONTINUE,
HA_GS_VOTE_REJECT

} ha_gs_vote_value_t;
Chapter 3. Protocols and facilities 21

When the Group Services has sent a notification to providers for a vote, it
sets a timer. If the Group Services has not received a voting response from
the provider by the time the time limit expires, it assumes that the provider is
not going to respond and applies the group’s default vote for this provider.
The default vote applies only to the currently-running protocol. If the provider
votes later, the vote is ignored, and the provider is given an error code that
indicates that the time limit was exceeded.

The Group Services notifies the providers that a default vote was applied
because the time limit was exceeded; however, it does not, at this moment,
notify them which providers exceeded the time limit. If the default vote value
causes the protocol to be approved or rejected, the Group Services delivers
an announcement notification to the providers that lists the providers that
exceeded the time limit. Group Services takes no further action. However, a
provider may propose a protocol to remove any providers that exceeded the
time limit if appropriate.

The voting time limit is also used to time the execution of deactivate scripts
during failure leave, expel, or cast-out protocols. For more information on
these protocols, refer to Section 5.3, “Failure leave protocol” on page 60,
Section 5.8, “Expel protocol” on page 81, or Section 5.10, “Cast-out protocol”
on page 95.

The voting time limit is defined in seconds by the ha_gs_time_limit_t type as
shown in Figure 12.

Figure 12. The ha_gs_time_limit_t type

3.1.2.3 Default vote value
By default, the default vote value is reject. However, a provider can set the
default vote value to approve when it creates a group or after creating the
group. The Group Services does not permit a default vote value to continue,
because it could lead to a non-terminating protocol.

The default vote value is registered to the gs_group_default_vote field in the
group attributes block as shown in Figure 1 on page 8. The default vote value
is defined by the ha_gs_vote_value_t type shown in Figure 11 on page 21.

3.1.3 Commit phase
For the last phase, a protocol has the commit phase. In this phase, GS clients
receive one of the following notifications:

typedef unsigned short ha_gs_time_limit_t;
22 RSCT Group Services: Programming Cluster Applications

Protocol approved notification
This notification is sent to the providers of a group to indicate that
a proposed protocol has been approved. It is also sent to the
subscribers of the group.
Note that a protocol approved notification is sent as the first and
only notification for a one-phase protocol.

Protocol rejected notification
This notification is sent to the providers of a group to indicate that
a proposed protocol has been rejected. Subscribers are not
notified when proposed protocols are rejected.

For more information on these notifications, refer to Section 7.6, “Protocol
approved notification” on page 143 or Section 7.7, “Protocol rejected
notification” on page 145.

In addition to these notifications, a GS client might receive the following
notification:

Announcement notification
This notification is sent to the providers of a group to announce an
item of interest within the group. They include warnings that
individual providers have not voted within the time limit or
responded to a responsiveness check.

For more information on an announcement notification, refer to Section 7.8,
“Announcement notification” on page 146.

3.1.4 Protocol flows
This section provides general protocol flows. They are categorized by the
number of protocol phases and by what a protocol is proposed. To be precise,
protocol flows depend on each case and condition. For more detailed
information on each protocol flow, refer to Chapter 5, “Proposing protocols”
on page 51.

3.1.4.1 One-phase protocol proposed by a provider
The protocol flow of a one-phase protocol proposed by a provider is
illustrated in Figure 13 on page 24.

When a provider wants to take an action to the group, it proposes a protocol
to the Group Services (➀). The protocol proposal includes information about
how it wants to take an action to the group. The protocol is approved
automatically. Then, the Group Services submits a notification to providers
Chapter 3. Protocols and facilities 23

and subscribers (➁). The notification contains information about the approved
protocol.

Figure 13. One-phase protocol proposed by a provider

3.1.4.2 N-phase protocol proposed by a provider
The protocol flow of an n-phase protocol proposed by a provider is illustrated
in Figure 14 on page 25.

In the case of a one-phase protocol, a proposed protocol is approved
automatically. This may not be appropriate for some situations. There could
be a provider that does not want to approve the proposed protocol or wants to
delay the decision. If this is the case, a provider can propose a protocol as an
n-phase protocol (➀).

When the Group Services subsystem receives the protocol proposal, it
submits a notification to providers (➁). Upon receiving this notification,
providers are required to vote to approve, reject, or continue the proposed
protocol (➂). Subscribers do not receive this notification.

The Group Services does not proceed with the protocol until all providers
have complete their voting or the voting time limit expires. This phase is
called a barrier synchronization voting phase.

The voting phase will be repeated until the proposed protocol is approved or
rejected.

➁➁

subscriberproviderprovider

Group Services

➁

➀

➀ protocol proposal

➁ notification (approved)
24 RSCT Group Services: Programming Cluster Applications

If the proposed protocol is approved, the Group Services submits a
notification to providers and subscribers (➃). This notification contains
information about the approved protocol. If the proposed protocol is rejected,
the Group Services submits a notification to providers only (➄). This
notification contains information about the rejected protocol.

Figure 14. N-phase protocol proposed by a provider

3.1.4.3 One-phase protocol proposed by the Group Services
It is not only providers that can propose protocols; Group Services can
propose protocols also.

The protocol flow of a one-phase protocol proposed by Group Services is
illustrated in Figure 15 on page 26.

When the Group Services wants to take an action to the group, it proposes a
protocol to itself and the protocol is approved automatically. Then, the Group
Services submits a notification to providers and subscribers (➀). The
notification contains information about the approved protocol.

➃,➄

➀

➁

➂

➃➃,➄➁

➂

subscriberproviderprovider

Group Services

➁ notification (n-phase)

➂ voting

➃ notification (approve)

➀ protocol proposal

barrier synchronization

➄ notification (reject)
Chapter 3. Protocols and facilities 25

Figure 15. One-phase protocol proposed by Group Services

3.1.4.4 N-phase protocol proposed by the Group Services
The protocol flow of an n-phase protocol proposed by Group Services is
illustrated in Figure 16 on page 27.

When Group Services wants to take an action to the group, it proposes a
protocol as an n-phase protocol and submits a notification to providers (➀).
Upon receiving this notification, providers are required to vote to approve,
reject, or continue on the proposed protocol (➁). Subscribers do not receive
this notification.

Group Services does not proceed with the protocol until all providers have
completed their voting or the voting time limit has expired.

The voting phase will be repeated until the proposed protocol is approved or
rejected.

If the proposed protocol is approved, Group Services submits a notification to
providers and subscribers (➂). This notification contains the information
about the approved protocol. If the proposed protocol is rejected, the Group
Services submits a notification to providers only (➃). This notification
contains information about the rejected protocol.

➀➀

subscriberproviderprovider

Group Services

➀

➀ notification (approve)
26 RSCT Group Services: Programming Cluster Applications

Figure 16. N-phase protocol proposed by Group Services

3.1.5 Serializing protocols
It is possible for a protocol to be proposed while another protocol is being
executed or for multiple providers to propose protocols at the same time. In
either case, protocol proposals are serialized, and only one proposal is
allowed to be executed for a group. The other protocol proposals are returned
with synchronous or asynchronous errors to the providers that proposed the
protocols. It is the responsibility of a provider that receives a returned
proposal to resubmit it for execution if appropriate. For more information on
synchronous or asynchronous errors, refer to Section 8.1,
“Synchronous/asynchronous errors” on page 153.

As an exception, the following protocols are queued to be proposed later
when the running protocol completes:

• A join protocol

• A protocol proposed by the Group Services (a failure leave protocol, a
cast-out protocol, and a source-state reflection protocol)

A protocol serialization is illustrated in Figure 17 on page 28. If no protocol is
currently running, a proposed protocol is executed immediately (➀). If another
protocol is currently running, a protocol proposal is returned (➁). However,
exceptional protocol proposals are queued to be proposed later (➂). If these

➂➂,➃➀

➁

subscriberproviderprovider

Group Services

➂,➃➀

➁

➁ voting

➀ notification

➂ notification (approve)barrier synchronization

➃ notification (reject)
Chapter 3. Protocols and facilities 27

protocol proposals are queued, even if a currently-running protocol has
completed, another protocol proposal is returned (➃).

Figure 17. Protocol serialization

3.1.6 Batching protocols
During group initialization, when all of the providers are joining their groups,
each join proposal requires the execution of a separate protocol. Similarly,
during system shutdown, when all of the providers are leaving their groups,
each leave proposal requires the execution of a separate protocol. To
decrease the load on the system, Group Services provides a mechanism for
batching protocols.

proposal phase

commit phase

protocol

protocol
proposal

protocol
proposal
(join,
failure leave,
cast-out, or
source-state
reflection)

✖

✖

➀

➁

➂

➃

protocol
proposal

protocol
proposal

voting phase

proposal phase

commit phase

protocol

voting phase
28 RSCT Group Services: Programming Cluster Applications

There is always a lag time between a protocol proposal and the actual
execution of that proposed protocol. The lag time allows Group Services to
batch multiple failure leave protocol proposals. In this case, Group Services
collects all of the failure leave protocol proposals and issues a single failure
leave protocol proposal that handles multiple providers. Similarly, the Group
Services batches together multiple cast-out or join protocol proposals into a
single protocol proposal. In all other cases, it deals with proposals one at a
time.

To control batching protocols, an application needs to set the
gs_batch_control field in the group attributes block shown in Figure 1 on page
8. The field can take one of the values defined by the ha_gs_batch_ctrl_t type
shown in Figure 18 (except HA_GS_DEACTIVATE_ON_FAILURE, which is
used by a deactivate-on-failure facility).

Figure 18. The ha_gs_batch_ctrl_t type

Each value has the following meanings:

HA_GS_NO_BATCHING
This value indicates no batching is allowed. Failure leave, cast-out,
and join protocol proposals are serialized and presented to the
group one at a time.

HA_GS_BATCH_JOINS
This value indicates that any number of join protocol proposals
may be batched with other join protocol proposals. Failure leave
and cast-out protocol proposals are not batched.

HA_GS_BATCH_FAILURES
This value indicates any number of failure leave or cast-out
protocol proposals may be batched with other failure leave or
cast-out protocol proposals respectively. Join protocol proposals
are not batched.

HA_GS_BATCH_BOTH
This value indicates that any number of failure leave, cast-out or
join protocol proposals may be batched with other failure leave,
cast-out, or join protocol proposals respectively.

typedef enum {
HA_GS_NO_BATCHING = 0x0000,
HA_GS_BATCH_JOINS = 0x0001,
HA_GS_BATCH_LEAVES = 0x0002,
HA_GS_BATCH_BOTH = 0x0003,
HA_GS_DEACTIVATE_ON_FAILURE = 0x0004

} ha_gs_batch_ctrl_t;
Chapter 3. Protocols and facilities 29

HA_GS_DEACTIVATE_ON_FAILURE
Enables the execution of a deactivate script when the provider is
failing. This value is used by a deactivate-on-failure facility.
For more information on the facility, refer to Section 3.3,
“Deactivate-on-failure facility” on page 33.

3.1.7 Submitting changes with voting
The voting response to each voting phase of an n-phase protocol may contain
any of the following:

• A new group state value proposal

• A provider-broadcast message

• A new default vote value for the group proposal

These choices give providers quite a bit of flexibility in managing their actions
during an n-phase protocol. When one or more of these items is submitted
with a voting response, Group Services sends it to all providers as part of the
next notification of the protocol.

Changing the group state value during the voting phases of a protocol can be
very useful. As an example, it would allow a group to update the group state
value during membership change protocols, which may be very important in
determining group quorum or active/inactive status.

Similarly, by submitting a provider-broadcast message with voting response,
instead of or along with an updated group state value, the providers can pass
data among themselves during the protocol without having to actually
manipulate the group state value field.

Because each provider can submit its vote with these items, these items can
be submitted with different values by providers. In this case, Group Services
chooses only one value for each of the items to propagate to the providers for
the next notification. Because the providers cannot control which value is
chosen, they should guarantee one of the following rules:

• Only one provider submits a group state value and/or provider-broadcast
message and/or new default vote value during each phase.

• All providers submit the same new group state value and/or
provider-broadcast message and/or new default vote value during each
phase.

If these rules are not followed, it is unpredictable which value will be chosen
by the Group Services.
30 RSCT Group Services: Programming Cluster Applications

3.2 Responsiveness check facility

The responsiveness check facility allows the Group Services to inspect the
state of the GS client periodically when there are no ongoing group activities.
Group Services always monitors the GS client for an exit. A responsiveness
check allows Group Services to query the actual responsiveness of the GS
client. When the group is active, that is, when a protocol is running, Group
Services can determine the responsiveness of the GS client by the client’s
response to the running protocol. Accordingly, Group Services suspends
responsiveness checking during ongoing protocols.

3.2.1 Responsiveness check types
There are two responsiveness check types provided by Group Services. GS
clients can specify one of the following responsiveness check types:

No responsiveness check
For this type, Group Services acts only if the GS client process
exits.

Ping-like responsiveness check
For this type, Group Services periodically sends a responsiveness
notification to the GS client and expects a response. The
notification calls the responsiveness callback subroutine specified
by the GS client. Group Services expects the responsiveness
callback routine to return a code that indicates whether the GS
client is operational or has detected an internal problem that
prevents its correct operation.

The responsiveness check type is defined by the
ha_gs_responsiveness_type_t type shown in Figure 19.

Figure 19. The ha_gs_responsiveness_type_t type

The values have the following meanings:

HA_GS_NO_RESPONSIVENESS
This value indicates that Group Services should not perform a
responsiveness check.

typedef enum {
HA_GS_NO_RESPONSIVENESS,
HA_GS_PING_RESPONSIVENESS,
HA_GS_COUNTER_RESPONSIVENESS

} ha_gs_responsiveness_type_t;
Chapter 3. Protocols and facilities 31

HA_GS_PING_RESPONSIVENESS
This value indicates that Group Services should perform a
ping-like responsiveness check.

HA_GS_COUNTER_RESPONSIVENESS
This value is reserved for IBM use.

3.2.2 Utilizing a facility
To utilize a responsiveness check facility, a GS client is required to provide
the responsiveness check control block when it initializes itself with Group
Services. The responsiveness control block is defined as shown in Figure 20.

Figure 20. The responsiveness control block

Each field contains the following information:

gs_responsiveness_type
This field contains the type of responsiveness check that is to be
performed for this GS client. It may take one of the values defined
by the ha_gs_responsiveness_type_t type shown in Figure 19 on
page 31.

gs_responsiveness_interval
This field contains the number of seconds that Group Services
should wait between executions of the specified responsiveness
check.

gs_responsiveness_response_time_limit
This field contains the number of seconds that Group Services
should wait for a return from the responsiveness callback
subroutine. If the subroutine fails to return, Group Services
assumes that the GS client has no responsiveness.

gs_counter_location
This field is reserved for IBM use.

gs_counter_length
This field is reserved for IBM use.

typedef struct {
ha_gs_responsiveness_type_t gs_responsiveness_type;
unsigned int gs_responsiveness_interval;
ha_gs_time_limit_t gs_responsiveness_response_time_limit;
void *gs_counter_location;
unsigned int gs_counter_length;

} ha_gs_responsiveness_t;
32 RSCT Group Services: Programming Cluster Applications

There is one more thing required to utilize a responsiveness check facility. If a
GS client chooses a ping-like responsiveness check type, it must provide a
responsiveness callback subroutine. For more information, refer to Section
4.2, “Initializing with Group Services” on page 46.

3.3 Deactivate-on-failure facility

Group Services provides a deactivate-on-failure facility. If a provider fails, this
facility automatically executes a deactivate script that is provided by an
application. The script could process some recovery/clean-up actions on the
failed provider’s node. This facility is useful when a provider’s process fails to
hold some resources and these resources must be released for the other
providers. If an application provides a deactivate script that releases the
resources, they are automatically released when a provider fails.

Usually, a deactivate script has the same name and directory for a group.
However, it is possible to provide different deactivate scripts for each node in
a group. In either case, providers on a node in a group must specify the same
deactivate script.

A deactivate script is executed with the following rules:

• If Group Services needs to execute a deactivate script against multiple
targeted-providers on one node in one protocol, the deactivate script will
be executed once. A multiple targeted-providers list is passed to the script.

• If Group Services needs to execute a deactivate script against multiple
targeted-providers on one node in separate protocols, the deactivate script
is executed once per protocol.

• If there is no targeted-provider on a node, a deactivate script is not
executed on the node, while a deactivate script is executed on other nodes
that have targeted-providers.

The deactivate-on-failure facility is used by the following protocols:

• Failure leave protocol

• Goodbye protocol

• Expel protocol

• Cast-out protocol

For more information on using these protocols, refer to Section 5.3, “Failure
leave protocol” on page 60, Section 5.7, “Goodbye protocol” on page 80,
Section 5.8, “Expel protocol” on page 81, or Section 5.10, “Cast-out protocol”
on page 95.
Chapter 3. Protocols and facilities 33

3.3.1 Utilizing a facility
To utilize a deactivate-on-failure facility, a GS client is required to set the
gs_batch_control field in the group attributes block shown in Figure 1 on page
8. To enable deactivate-on-failure, this field needs to be set to a value of
HA_GS_DEACTIVATE_ON_FAILURE. This value is defined by
ha_gs_batch_ctrl_t type as shown in Figure 18 on page 29.

There is one more requirement to utilize a deactivate-on-failure facility: A GS
client must provide a deactivate script. For more information, refer to Section
4.2, “Initializing with Group Services” on page 46.

3.3.2 Deactivate scripts
This section provides information about the execution environment, input
parameters, and exit codes of deactivate scripts.

3.3.2.1 Execution environment
The script may be a shell script or any kind of executable file that conforms to
the input and output rules that are specified later in this section.

Group Services does not verify that a deactivate script actually exists on a
node or that it is executable until it is to be executed. If the specified
deactivate script is not found or is not executable, Group Services applies the
group’s default vote value for the phase in which the deactivate script should
have been executed and for each subsequent voting phase if there are any.

A valid deactivate script is executed as follows: Using the following
environments, the Group Services daemon on the targeted-provider’s node
forks a child process that tries to execute the deactivate script:

Effective user ID (UID) and group ID (GID)
The forked process executes with the effective UID and GID of the
targeted provider that the provider had when it initialized with
Group Services. If the provider changed its UID or GID after
initialization, the deactivate script still uses the effective UID and
GID from the time it initialized. A deactivate script with a set UID
bit in its file permissions executes with those values.

Working directory
The forked process begins execution in the current working
directory of the targeted provider that the provider had when it
initialized with Group Services. If the provider changed its current
working directory after initialization, the deactivate script still uses
the current working directory that existed when it initialized. A
34 RSCT Group Services: Programming Cluster Applications

deactivate script that wants to execute in another directory must
change to that directory.

Environment variables
The forked process inherits the environment variables from the
Group Services daemon’s environment. Therefore, the deactivate
script must not make any assumptions about the environment
variables (for example, the path) or access to specific directories
or file systems except for those that are normally accessible to the
provider’s effective UID and gid.

STDIN, STDOUT, and STDERR file descriptors
On input, the STDIN, STDOUT, and STDERR file descriptors are
closed (not associated with any files). To perform input or output,
the deactivate script must explicitly open any input or output file
that it wants to use.

3.3.2.2 Input parameters
On input, Group Services supplies the following five parameters to a
deactivate script:

Process ID parameter
This parameter is always zero.

Voting time limit
This parameter contains the voting time limit in seconds as an int
type (4 bytes). The deactivate script must complete and exit within
this time limit.

Name of the group
This parameter contains the name of targeted-provider’s group
name as a null-terminated string.

Deactivate flag
This parameter is the null-terminated string specified by a provider
when it proposes an expel protocol. In the case of other protocols,
a failure leave, goodbye, or cast-out, this parameter is the
null-terminated string providerdied. The deactivate script can
distinguish when it is called by checking this deactivate flag.

Comma(,)-delimited list of targeted provider’s instance numbers
When batching of failure leave protocols is enabled, the deactivate
script can be executed once for the multiple failed-providers. This
fifth parameter will indicate which providers were failing. Note that
each provider instance number does not contain the node number.
Chapter 3. Protocols and facilities 35

3.3.2.3 Exit codes
On output, a deactivate script must supply an exit code of 0 for a successful
completion. Any other exit code indicates an unsuccessful completion. It is up
to the deactivate script to decide what constitutes a successful completion.

Upon receipt of an exit code indicating a successful completion within the
time limit, Group Services votes approve for this voting phase of the protocol.

Upon receipt of an exit code indicating an unsuccessful completion before the
time limit expires or if the deactivate script does not exit before the time limit
expires, Group Services applies the group’s default vote for this voting phase
of the protocol, and each subsequent voting phase of the protocol if there are
any.

3.4 Source-target facility

It is sometimes convenient to associate several groups with a single
application and to allow a process to be a member of multiple groups. Such
relationships are not normally tracked by Group Services except when the
source-target facility is used. To understand this facility, consider the following
scenario.

If a node crashes, all of the groups with providers on that node are sent a
notification simultaneously. The notification causes each group to begin
reacting independently to the membership change. However, it may be better
for some applications to wait until another group has completed processing
this change. Such a relationship might exist, for example, between a disk
recovery subsystem and a distributed database application. If the database is
on a disk on the failed node, the database application must wait for the disk
recovery subsystem to recover from the node failure before it can begin its
recovery.

Although it is possible to deal with such relationships using subscriptions,
subscriptions are loosely synchronized and may not provide the degree of
timing control that is required. Instead, the source-target facility can be used.

The source-target facility allows a target group to tie itself to a source group
as follows: If a failure leads to the failure of a provider in both the source and
target groups, the source group completes its protocol for changing the
membership list before the target group begins its protocol for changing the
membership list. Thus, the providers in the target group can execute with the
knowledge that the providers in the source group have already handled the
36 RSCT Group Services: Programming Cluster Applications

failure. This knowledge is particularly useful when the recovery of the target
group depends on the completion of recovery by the source group.

In the recovery scenario just described, the disk recovery subsystem is
defined as the source group, and the database application is defined as the
target group.

3.4.1 Configurations
When an application uses a source-target facility, it needs to pay attention to
the following configuration rules:

• A group defines itself as a target-group by listing a source-group name in
the group attributes block by each target-group provider. A source-group is
not notified that it has been “sourced” by any groups. For the group
attributes block, refer to Figure 1 on page 8.

• There may be multiple source-group and/or target-group providers on a
node. A source-group may have any number of target-groups. A
target-group may source only one group as illustrated in Figure 21 on
page 37.

Figure 21. Multiple source-group and/or target-group providers

3.4.2 Membership list changes
With source-target groups, joins and leaves operate somewhat differently
than with other groups. Here are some key differences:

• For every node on which a target-group provider wants to run, there must
exist a source-group provider.

If there is no source-group provider on a node, a potential target-group
provider is not allowed to join the target group, and no membership
change is proposed. The GS client attempting to join the target-group

source-group

target-grouptarget-grouptarget-group

source-groupsource-group
Chapter 3. Protocols and facilities 37

receives an asynchronous return code that indicates that there is no
source-group provider active on this node.

If there is a source-group provider on a node, a potential target-group
provider is allowed to join the target-group.

Figure 22 on page 38 illustrates that a target-group’s provider on Node 3
cannot join the target-group. On the other hand, a target-group’s provider
on Node 2 can join the target-group.

Figure 22. Joining to a target-group

• If the last remaining source-group provider on a node leaves the
source-group voluntarily or involuntarily, all of the target-group providers
on that node must leave the target-group.

The source-group processes the leave(s) as a normal protocol for
changing the membership list.

Once the source-group has completed the changing membership list, a
membership list change is proposed to the target-group as a cast-out of
the affected providers(s) from the target-group. This proposal is called a
cast-out protocol. If there is no target-group provider on that node, no
cast-out protocol is proposed to the target-group providers.

The provider(s) that are being cast out receive a notification that they have
been cast out of the group. They do not otherwise participate in the
cast-out protocol. For more information on a cast-out protocol, refer to
Section 5.10, “Cast-out protocol” on page 95.

Figure 23 on page 39 illustrates that when a source-group’s provider on
Node 2 leaves the source-group, it forces a target-group’s provider on

provider

providerprovider
source-group

target-group
provider

Node 3Node 2Node 1
38 RSCT Group Services: Programming Cluster Applications

node 2 to leave the target-group. When the source-group has completed a
normal protocol for changing the membership list, the target-group starts a
cast-out protocol that targets the provider on node 2.

Figure 23. Leaving from a source-group

• If a node fails, the source-group starts a failure leave protocol for its
leaving provider(s) on the node. When the protocol has completed, the
target-group starts a cast-out protocol (instead of a failure leave protocol)
for its leaving provider(s) on the node. This assumes that there are
source-group and target-group providers running on a node or nodes other
than the failed node.

Figure 24 illustrates a scenario in which Node 2 has crashed. When a
source-group has completed a normal protocol for changing the
membership list, the target-group starts a cast-out protocol that targets the
provider on Node 2 even it does not exist.

provider
source-group

target-group
provider

Node 3Node 2Node 1

provider

providerprovider

cast-out protocol
Chapter 3. Protocols and facilities 39

Figure 24. Node failure

• If a target-group is running a protocol and a source-group provider
process fails on a node that also contains a target-group provider, the
source-group runs a failure leave protocol.

In this case, only the process of the source-group provider has failed, not
the node on which it is running. Because the target-group provider
process still exists, the target-group protocol can continue. However, once
the source-group completes its leave protocol, the target-group provider
may no longer validly belong to the target-group.

Therefore, the Group Services subsystem considers the target-group
provider(s) that will be cast-out as having failed during the protocol and
treats them accordingly:

• If the target-group’s default vote is reject, the protocol is rejected, and
the Group Services proposes a cast-out protocol.

• If the default vote is approve, the protocol is approved or, if a provider
votes continue, the protocol continues.

• If the protocol continues, the failed target-group provider(s) are no
longer allowed to participate. Instead, the default vote (approve in this
case) is registered for them for each voting phase.

Whatever the outcome of the target-group’s running protocol, once it ends,
Group Services immediately proposes a cast-out protocol for the
target-group.

provider
source-group

target-group
provider

Node 3Node 2Node 1

provider

provider

cast-out protocol
40 RSCT Group Services: Programming Cluster Applications

When a source-group leave prevents the last target-group provider(s) from
executing protocols, those providers are given a cast-out final notification
and the target-group is, in effect, dissolved.

• As part of any cast-out protocol in a target group, it will receive the
source-group’s current state value in the notification.

3.4.3 Group state value changes
Other than a change in the membership list, a change of the group state
value is also handled by a source-target facility.

• If a source-group changes its group state value during protocols that do
not result in a cast-out protocol, its associated target-group(s) receive(s) a
notification.

The notification appears to the target-group as a source-state reflection
protocol. For more information about a source-state reflection protocol,
refer to Section 5.11, “Source-state reflection protocol” on page 103.

• If the target-group is running a protocol when a source-group’s group state
value change is ready to be reflected, the running protocol continues
normally, and the source-state reflection protocol is queued to be
proposed later when the running protocol completes.

• If a subsequent source-group state value change appears, only the most
recent one is reflected to the target-group, and the earlier change is simply
dropped. In addition, if a cast-out is necessary and a source-state
reflection protocol is queued, the queued protocol is dropped because the
cast-out protocol reflects the most recent source-group state value.

Because a source-state reflection protocol is proposed by Group Services, it
is always proposed before any pending provider-proposed protocols for the
group. In addition, there is no interface for a provider to request this protocol.
It is automatically proposed as a consequence of a source-group’s group
state value change.

3.5 Sundered namespaces

The Group Services provides a single group namespace within each domain.
Given the right set of multiple network failures, a domain with multiple
networks can become split. In the case of a sundered namespace, the nodes
become split in such a way that they can no longer communicate with any
nodes on the other side of the split. However, it is possible for each sundered
portion to maintain enough information to reconstruct the groups that were in
Chapter 3. Protocols and facilities 41

existence previously - at least those groups that still have members within any
particular portion.

When a namespace is sundered, it is possible to get two instances of what
should be one group. For example, in a sundered network, two nodes that
own the two tails of a twin-tailed disk could end up on separate sides of the
split. Because the processes of the subsystem coordinating the disk on each
node would believe that the other process had disappeared, the process
might want to activate its tail, which could lead to data corruption. As this
example shows, it is important that each group determine whether it needs a
form of quorum and use it to guide when a group is ready to perform its
services.

Although the Group Services does not provide a quorum mechanism, it does
provide some assistance to groups when a network is sundered. When a
domain is sundered, the providers receive membership protocol proposals
from Group Services that all of the providers on the “other side” of the split
have failed. The providers can then execute those protocols as they normally
would taking into account such factors as quorum to protect resources as
necessary.

If a sundered network becomes healed and Group Services discovers
separate domains, it dissolves the smaller domain, which is defined as the
domain with the smaller number of nodes. Group Services sends an
announcement notification that it has “died horribly” to the clients on the
smaller domain. Upon receipt of the notification, the clients on the smaller
domain can join the larger domain or perform any other appropriate recovery
action.
42 RSCT Group Services: Programming Cluster Applications

Part 2. Group Services design
© Copyright IBM Corp. 2000 43

44 RSCT Group Services: Programming Cluster Applications

Chapter 4. Initializing with Group Services

To start using the services provided by Group Services, a GS client requires
some preparation.

This chapter describes how a GS client chooses a domain, how it initializes
with the Group Services, and how it quit using the services provided by the
Group Services.

4.1 Choosing a domain

A GS client communicates with a Group Services daemon that is running on
the same node as the GS client. A GS client communicates with the Group
Services daemon through the Group Services Application Program Interface
(GSAPI), using a Unix domain socket. Before a GS client initializes itself with
the Group Services daemon, the GS client must choose a domain to which
the Group Services daemon belongs.

4.1.1 Group Services PSSP domains
To choose a domain from Group Services PSSP domains, a GS client must
set the following environment variable:

HA_DOMAIN_NAME
This environment variable must be set to the name of the SP
system partition in which the GS client is executing.

HA_GS_SUBSYS
This environment variable must be set to hags, or it must not be
defined.

4.1.2 Group Services HACMP/ES domains
To choose a domain from Group Services HACMP/ES domains, a GS client
must set the following environment variables:

Before PSSP 3.1, the GS clients needed to set the environment variable
HA_SYSPAR_NAME. Since PSSP 3.1, you can set either environment
variable to support compatibility of older clients. However, all new GS
clients should use the environment variable, HA_DOMAIN_NAME,
because the environment variable, HA_SYSPAR_NAME, may eventually be
unsupported.

Note
© Copyright IBM Corp. 2000 45

HA_DOMAIN_NAME
This environment variable must be set to the name of the
HACMP/ES cluster in which the GS client is executing.

HA_GS_SUBSYS
This environment variable must be set to grpsvcs.

4.2 Initializing with Group Services

If a GS client has chosen a domain, it can initialize itself with the Group
Services daemon, that is, the Group Services subsystem.

4.2.1 Subroutine call
To initialize with the Group Services subsystem, a GS client must call the
ha_gs_init subroutine. After initialization with the Group Services subsystem,
a GS client is allowed to join or subscribe to a group.

The syntax of the ha_gs_init subroutine is shown in Figure 25.

Figure 25. The syntax of ha_gs_init subroutine

Each parameter requires the following information:

ha_gs_descriptor
This parameter requires a pointer to a buffer in which the Group
Services subsystem will return the file descriptor that the process
will use to communicate with the Group Services. The process
itself must not read or write directly on this file descriptor.

socket_options
This parameter requires the value of
HA_GS_SOCKET_NO_SIGNAL.

responsiveness_control
This parameter requires a pointer to a responsiveness control
block. The block specifies the type, if any, that will be used to
perform responsiveness checks for the process. The

ha_gs_rc_t ha_gs_init(
ha_gs_descriptor_t *ha_gs_descriptor,
const ha_gs_socket_ctrl_t socket_options,
const ha_gs_responsiveness_t *responsiveness_control,
const char *deactivate_script,
ha_gs_responsiveness_cb_t *responsiveness_callback,
ha_gs_delayed_error_cb_t *delayed_error_callback,
ha_gs_query_cb_t *query_callback)
46 RSCT Group Services: Programming Cluster Applications

responsiveness control block is defined as shown in Figure 20 on
page 32.

deactivate_script
This parameter requires a pointer to the path name to a deactivate
script if a deactivate-on-failure is used. If not, a NULL pointer must
be specified.

responsiveness_callback
This parameter requires a pointer to a responsiveness callback
subroutine if a responsiveness check is required. If not, a NULL
pointer must be specified. For a responsiveness notification, refer
to Section 7.3, “Responsiveness notification” on page 139.

delayed_error_callback
This parameter requires a pointer to a delayed error callback
subroutine. For a delayed error notification, refer to Section 7.4,
“Delayed error notification” on page 141.

query_callback
This parameter should contain a NULL pointer.

4.2.2 Programming hints
This section provides programming hints.

4.2.2.1 A responsiveness check facility
When a GS client has initialized with Group Services, Group Services starts a
responsiveness check as specified by the responsiveness control block. It
does not matter if a GS client has been a provider and/or a subscriber or
neither.

If a GS client does not use a responsiveness check facility, set it up as
follows:

• The gs_responsiveness_type field in the responsiveness control block
must be a value of HA_GS_NO_RESPONSIVENESS, and the
responsiveness_callback parameter in the ha_gs_init subroutine can be a
NULL pointer.
Chapter 4. Initializing with Group Services 47

The required fields for each responsiveness check type are summarized in
Table 1.

Table 1. Required fields for each responsiveness check type

4.2.2.2 A deactivate-on-failure facility
If a GS client does not use a deactivate-on-failure facility, set it up as follows:

The gs_batch_control field in the group attributes block must not have a value
of HA_GS_DEACTIVATE_ON_FAILURE, and the deactivate_script parameter
in the ha_gs_init subroutine can be a NULL pointer.

4.3 Quit using Group Services

When a GS client no longer needs to use the Group Services subsystem, it
should call the ha_gs_quit subroutine to quit using the Group Services
subsystem. This allows Group Services to release the resources associated
with the GS client.

4.3.1 Subroutine call
No parameter is required to call the ha_gs_quit subroutine. The syntax of the
ha_gs_quit subroutine is shown in Figure 26 on page 48.

Figure 26. The syntax of ha_gs_quit subroutine

gs_responsiveness_type

H
A

_G
S

_N
O

_R
E

S
P

O
N

S
IV

E
N

E
S

S

H
A

_G
S

_P
IN

G
_R

E
S

P
O

N
S

IV
E

N
E

S
S

gs_responsiveness_interval ignored required

gs_responsiveness_response_time_limit ignored required

void ha_gs_quit(void)
48 RSCT Group Services: Programming Cluster Applications

4.3.2 Programming hints
If a GS client calls the ha_gs_quit subroutine while still joined as a provider to
any groups, the Group Services subsystem will notify the groups that the
provider has failed, and the groups will execute a failure leave protocol. If the
GS client wants to leave a group without a failure leave protocol, it should call
the ha_gs_leave subroutine before calling the ha_gs_quit subroutine.
Chapter 4. Initializing with Group Services 49

50 RSCT Group Services: Programming Cluster Applications

Chapter 5. Proposing protocols

Once a GS client is initialized with the Group Services, it is allowed to use the
subroutines provided by the Group Services shared library, that is, the Group
Services Application Programming Interfaces (GSAPIs). To propose a
protocol to a group, the GS client must become a provider of the group. Group
Services itself also proposes a protocol to a group.

This chapter describes how a protocol is proposed to a group and how it is
handled in the group.

5.1 Protocol proposal

This section provides a brief explanation of all the protocols and the
information on subroutines commonly used for all the protocol proposals.

5.1.1 Protocols
The Group Services provides ten protocols. The protocols are proposed by
either a GS client that has been initialized with the Group Services or the
Group Services subsystem itself.

The following protocol is proposed by a GS client that is not a provider for a
group that is proposed a protocol:

Join protocol
A GS client proposes this protocol when it wants to join a group as
a provider. It calls the ha_gs_join subroutine to propose the
protocol.

The following six protocols are proposed by a provider in a group:

State value change protocol
A provider proposes this protocol when it wants to change a group
state value. It calls the ha_gs_change_state_value subroutine to
propose the protocol.

Provider-broadcast message protocol
A provider proposes this protocol when it wants to send a
provider-broadcast message to all the providers in the group. It
calls the ha_gs_send_message subroutine to propose the
protocol.

Voluntary leave protocol
A provider proposes this protocol when it wants to leave the group
© Copyright IBM Corp. 2000 51

voluntarily. It calls the ha_gs_leave subroutine to propose the
protocol.

Goodbye protocol
A provider proposes this protocol when it wants to leave the group
immediately. It calls the ha_gs_goodbye subroutine to propose the
protocol.

Expel protocol
A provider proposes this protocol when it wants to expel one or
more providers from the group. It calls the ha_gs_expel subroutine
to propose the protocol.

Change-attributes protocol
A provider proposes this protocol when it wants to change the
group attributes. It calls the ha_gs_change_attributes subroutine
to propose the protocol.

The following three protocols are proposed by the Group Services subsystem
itself:

Failure leave protocol
The Group Services subsystem proposes this protocol when it
wants to change the membership list due to one or more provider
failures.

Cast-out protocol
The Group Services subsystem proposes this protocol when it
wants to change the membership list due to one or more providers
being cast out by the source-target facility.

Source-state reflection protocol
The Group Services subsystem proposes this protocol when it
wants to reflect to a target-group that its source-group has
changed its group state value without changing the membership
list.

5.1.2 Subroutines
When a GS client proposes a protocol, it is simply a matter of calling the
proper subroutine. The Group Services subsystem takes care of notifying the
other providers in the group that a protocol has been proposed and proceeds
with it based on the number of phases and the nature of the protocol.

Most of the subroutines require a token and a pointer to a proposal
information block. The token identifies the caller as a provider of the group. A
52 RSCT Group Services: Programming Cluster Applications

proposal information block describes the information on the proposed
protocol.

The ha_gs_join subroutine provides a pointer to a token instead of a value of
the token. Because the subroutine needs to get a token from the Group
Services subsystem. The rest of the subroutines require this token when they
are called. The ha_gs_goodbye subroutine provides only a token. It does not
require a pointer to a proposal information block.

The prototypes for the protocol proposal subroutines are shown in Figure 27.

Figure 27. The protocol proposal subroutine prototypes

The token is also referred to as the provider token and is defined as the
ha_gs_token_t type shown in Figure 7 on page 14.

The content of a proposal information block depends on each protocol. The
proposal information block is defined as a ha_gs_proposal_info_t type, and it
is redefined as each proposal request block using union as shown in Figure
28 on page 54.

ha_gs_rc_t ha_gs_join(
ha_gs_token_t *,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_change_state_value(
ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_send_message(
ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_leave(
ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_goodbye(
ha_gs_token_t);

ha_gs_rc_t ha_gs_expel(
ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_change_attributes(
ha_gs_token_t,
const ha_gs_proposal_info_t *);
Chapter 5. Proposing protocols 53

Figure 28. The proposal information block

Proposal request blocks and their fields are summarized in Table 2. An
asterisk (*) indicates that the field is a pointer.

Table 2. Protocol request blocks and their fields

fields

h
a_

g
s_

jo
in

_r
eq

u
es

t_
t

h
a_

g
s_

st
at

e_
ch

an
g

e_
re

q
u

es
t_

t

h
a_

g
s_

m
es

sa
g

e_
re

q
u

es
t_

t

h
a_

g
s_

le
av

e_
re

q
u

es
t_

t

h
a_

g
s_

ex
p

el
_r

eq
u

es
t_

t

h
a_

g
s_

at
tr

ib
u

te
_c

h
an

g
e_

re
q

u
es

t_
t

*gs_group_attributes O O

gs_provider_instance O

*gs_provider_local_name O

typedef struct {
union {

ha_gs_join_request_t _gs_join_request;
ha_gs_state_change_request_t _gs_state_change_request;
ha_gs_message_request_t _gs_message_request;
ha_gs_leave_request_t _gs_leave_request;
ha_gs_expel_request_t _gs_expel_request;
ha_gs_subscribe_request_t _gs_subscribe_request;
ha_gs_attribute_change_request_t _gs_attribute_change_request;

} _gs_protocol_info;
} ha_gs_proposal_info_t;

The following definitions are available for programming convenience:

#definegs_join_request _gs_protocol_info._gs_join_request
#definegs_state_change_request _gs_protocol_info._gs_state_change_request
#definegs_message_request _gs_protocol_info._gs_message_request
#definegs_leave_request _gs_protocol_info._gs_leave_request
#definegs_expel_request _gs_protocol_info._gs_expel_request
#definegs_attribute_change_request _gs_protocol_info._gs_attribute_change_request

Note
54 RSCT Group Services: Programming Cluster Applications

5.2 Join protocol

Once a GS client has initialized with the Group Services, it can join a group.
To join a group, it needs to propose a join protocol. A GS client is not yet a
member of a group; however, it can propose a join protocol, participate in the
protocol voting phases (if the protocol is n-phase), and receive the protocol
proposal result.

*gs_n_phase_protocol_callback O

*gs_protocol_approved_callback O

*gs_protocol_rejected_callback O

*gs_announcement_callback O

gs_num_phases O O O O O

gs_time_limit O O O O O

gs_new_state O

gs_message O

gs_leave_code O

gs_expel_list O

gs_deactivate_phase O

*gs_deactivate_flag O

*gs_backlevel_providers O

fields

h
a_

g
s_

jo
in

_r
eq

u
es

t_
t

h
a_

g
s_

st
at

e_
ch

an
g

e_
re

q
u

es
t_

t

h
a_

g
s_

m
es

sa
g

e_
re

q
u

es
t_

t

h
a_

g
s_

le
av

e_
re

q
u

es
t_

t

h
a_

g
s_

ex
p

el
_r

eq
u

es
t_

t

h
a_

g
s_

at
tr

ib
u

te
_c

h
an

g
e_

re
q

u
es

t_
t

Chapter 5. Proposing protocols 55

5.2.1 Subroutine call
A GS client calls the ha_gs_join subroutine to propose a join protocol. A
subroutine prototype is shown in Figure 27 on page 53. On input, the GS
client provides the join request block shown in Figure 29.

Figure 29. The join request block

Each field requires the following information:

gs_group_attributes
This field requires a pointer to the group attributes block shown in
Figure 1 on page 8.

gs_provider_instance
This field requires an instance number to be used by this provider.
This value must be unique on this node for this group.

gs_provider_local_name
This field requires a pointer to an optional byte string that contains
a local name for the provider.

gs_n_phase_protocol_callback
This field requires a pointer to the callback subroutine that is to be
called by an n-phase notification. For an n-phase notification, refer
to Section 7.5, “N-phase notification” on page 142.

gs_protocol_approved_callback
This field requires a pointer to the callback subroutine that is to be
called by a protocol approved notification. For information about
the protocol approved notification, refer to Section 7.6, “Protocol
approved notification” on page 143.

gs_protocol_rejected_callback
This field requires a pointer to the callback subroutine that is to be
called by a protocol-rejected notification. For a protocol-rejected
notification, refer to Section 7.7, “Protocol rejected notification” on
page 145.

typedef struct {
ha_gs_group_attributes_t *gs_group_attributes;
short gs_provider_instance;
char *gs_provider_local_name;
ha_gs_n_phase_cb_t *gs_n_phase_protocol_callback;
ha_gs_approved_cb_t *gs_protocol_approved_callback;
ha_gs_rejected_cb_t *gs_protocol_rejected_callback;
ha_gs_announcement_cb_t *gs_announcement_callback;
ha_gs_merge_cb_t *gs_merge_callback;

} ha_gs_join_request_t;
56 RSCT Group Services: Programming Cluster Applications

gs_announcement_callback
This field requires a pointer to the callback subroutine that is to be
called by an announcement notification. For an announcement
notification, refer to Section 7.8, “Announcement notification” on
page 146.

gs_merge_callback
This field is reserved for IBM use. It must be a NULL pointer.

5.2.2 Protocol flow
The number of phases and the voting time limit depend on a GS client that
proposes a join protocol. If it is the first GS client that proposes a join protocol
to a group (in other words, if the group does not exist currently), Group
Services uses the group attributes block specified in a join request block that
is provided by the GS client. If not, the Group Services uses the group
attributes block that is already registered for the group. In either case, the
gs_num_phases field in the group attributes block is used for the number of
phases, and the gs_time_limit field is used for the voting time limit.

5.2.2.1 One-phase protocol
If the protocol is a one-phase, the protocol is approved automatically.

The GS clients are added to the membership list. All the providers including
the GS clients that proposed the protocol receive a protocol approved
notification (ha_gs_protocol_approved_callback) with the updated
membership list. The subscribers also receive the notification if they
subscribed for it.

The protocol flow of the one-phase join protocol is illustrated in Figure 30 on
page 58.

If batching join protocols is enabled, one join protocol handles one or more
joining GS clients. If not, one join protocol handles only one joining GS
client. This section assumes that batching join protocols is enabled.
Therefore, joining GS clients are treated as plural. If this is not the case,
read it as singular.

Batching join protocols
Chapter 5. Proposing protocols 57

Figure 30. The one-phase join protocol

5.2.2.2 N-phase protocol
If the protocol is an n-phase, the protocol has voting phases. All the providers
including the GS clients that proposed the protocol participate in voting
phases.

If the protocol is approved, the GS clients are added to the membership list.
All the providers including the GS clients that proposed the protocol receive a
protocol approved notification (ha_gs_protocol_approved_callback) with the
updated membership list. If a new group state value was proposed during the
voting phases of the protocol, a group state value is updated, and the
protocol approved notification includes the updated group state value. The
subscribers also receive the notification if they subscribed for it.

The protocol flow of the approved n-phase join protocol is illustrated in Figure
31 on page 59.

Group
Services

providers

subscribers

ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback

ha_gs_joinGS clients
58 RSCT Group Services: Programming Cluster Applications

Figure 31. The approved n-phase join protocol

If the protocol is rejected, the membership list and the group state value
remain unchanged. All the providers including the GS clients that proposed
the protocol receive a protocol-rejected notification
(ha_gs_protocol_rejected_callback). The subscribers do not receive any
notification.

The protocol flow of the rejected n-phase join protocol is illustrated in Figure
32 on page 60.

ha_gs_join

providers

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

GS clients
Chapter 5. Proposing protocols 59

Figure 32. The rejected n-phase join protocol

5.2.3 Programming hints
Unlike the other protocols, the gs_proposed_by field in the proposal block
contains the provider information block for the GS client that is executing the
callback subroutine rather than the provider that initiated the join protocol.

For more information, refer to Section 7.2.2.6, “gs_proposal field” on page
132.

5.3 Failure leave protocol

Group Services proposes a failure leave protocol when it wants to remove
one or more providers from the membership list when the providers’ sockets
associated with the Group Services are broken.

5.3.1 Protocol proposal
The Group Services subsystem uses the following fields of the group
attributes block to propose and execute a protocol:

• The gs_num_phases field is used for the number of phases.

• The gs_time_limit field is used for the voting time limit.

• The gs_batch_control field is used to enable/disable batching failure leave
protocols.

ha_gs_join

providers

ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

GS clients
60 RSCT Group Services: Programming Cluster Applications

• The gs_batch_control field is also used to enable/disable a
deactivate-on-failure facility. A deactivate script has already been
registered by the ha_gs_init subroutine.

5.3.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified in
the group attributes block already registered.

Because the failed providers have lost their connection to Group Services,
they cannot participate in any activities of the protocol.

5.3.2.1 One-phase protocol without deactivate-on-failure
If the protocol is one-phase and deactivate-on-failure is disabled, the protocol
is approved automatically, and a deactivate script is not executed.

The failed providers are removed from the membership list. All the remaining
providers receive a protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list. The
subscribers also receive the notification if they subscribed for it.

The protocol flow of the one-phase failure leave protocol without
deactivate-on-failure is illustrated in Figure 33.

If batching failure leave protocols is enabled, one failure leave protocol
handles one or more failed providers. If not, one failure leave protocol
handles only one failed provider. This section assumes that batching failure
leave protocols is enabled. Therefore, failed providers are treated as plural.
If this is not the case, read it as singular.

Note
Chapter 5. Proposing protocols 61

Figure 33. The one-phase failure leave protocol without deactivate-on-failure

5.3.2.2 One-phase protocol with deactivate-on-failure
If deactivate-on-failure is enabled, the protocol is approved automatically, and
a deactivate script is executed against the failed providers immediately after
the protocol begins execution. The Group Services subsystem does not wait
for the script to complete execution. The exit code of the script is not
inspected.

The failed providers are removed from the membership list. All the remaining
providers receive a protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list. The
subscribers also receive the notification if they subscribed for it.

The protocol flow of the one-phase failure leave protocol with
deactivate-on-failure is illustrated in Figure 34.

providers Group
Servicespropose

subscribers

ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback
62 RSCT Group Services: Programming Cluster Applications

Figure 34. The one-phase failure leave protocol with deactivate-on-failure

5.3.2.3 N-phase protocol without deactivate-on-failure
If a failure leave protocol is n-phase and deactivate-on-failure is disabled, the
protocol has voting phases, and a deactivate script is not executed.

The protocol flow of the beginning of an n-phase failure leave protocol without
deactivate-on-failure is illustrated in Figure 35 on page 63.

Figure 35. The n-phase failure leave protocol without deactivate-on-failure

5.3.2.4 N-phase protocol with deactivate-on-failure
If deactivate-on-failure is enabled, a deactivate script is executed against the
failed providers immediately after the protocol begins execution. The Group

failed
providers

providers

ha_gs_protocol_approved_callback

Group
Servicespropose

subscribers
ha_gs_protocol_approved_callback

deactivate script

ha_gs_n_phase_callback

ha_gs_vote

Group
Services

propose

providers
Chapter 5. Proposing protocols 63

Services waits for the script to complete execution within the voting time limit.
The exit code of the script is inspected.

According to the exit code, Group Services votes as the failed providers’ vote
for the phase. If the protocol requires more voting phases, Group Services
continues to vote as the failed providers’ vote for each subsequent voting
phase. The voting value is determined by the following rule:

• The Group Services votes to approve if the exit code is 0.

• The Group Services votes current default vote value in the following
cases:

• If the exit code is not 0.

• If the protocol has specified a voting time limit, and the script does not
complete its execution within voting time limit.

• If the script is not specified or it is not executable.

The protocol flow of the beginning of an n-phase failure leave protocol with
deactivate-on-failure is illustrated in Figure 36 on page 65.
64 RSCT Group Services: Programming Cluster Applications

Figure 36. The n-phase failure leave protocol with deactivate-on-failure

5.3.2.5 The ending of n-phase protocol
If the protocol is approved, the failed providers are removed from the
membership list. All the remaining providers receive a protocol approved
notification (ha_gs_protocol_approved_callback) with the updated
membership list. If a new group state value was proposed during the voting
phases of the protocol, a group state value is updated, and the protocol
approved notification includes the updated group state value. The subscribers
also receive the notification if they subscribed for it.

The protocol flow of the ending of an approved n-phase failure leave protocol
is illustrated in Figure 37 on page 66.

failed
providers

ha_gs_n_phase_callback

Group
Services

ha_gs_vote

vote

ha_gs_n_phase_callback

ha_gs_vote

vote

deactivate script

propose

providers
Chapter 5. Proposing protocols 65

Figure 37. The approved n-phase failure leave protocol

If the protocol is rejected, the Group Services checks the following special
condition that requires special handling: If batching failure leave protocols is
enabled and the rejection is caused by a default reject vote.

If this is the case, the execution of the protocol stops; however, the failed
providers are not removed from the membership list, and the group state
value remains unchanged. The group will be immediately put into a new
failure leave protocol with any newly-failed providers added to the list of
already-failed providers from the previous protocol.

A deactivate script will be executed only once against any single failed
provider instance. Thus, during the subsequent failure protocol(s), the
deactivate script will be executed only against the newly-failed providers, not
against the already-failed providers.

During any subsequent failure protocols, the Group Services subsystem will
vote to approve on behalf of the already-failed providers. This avoids the
group being put in an infinite loop.

The protocol flow of the ending of the rejected n-phase failure leave protocol
with the special condition is illustrated in Figure 38 on page 67.

providers

ha_gs_protocol_approved_callback

Group
Services

subscribers
ha_gs_protocol_approved_callback
66 RSCT Group Services: Programming Cluster Applications

Figure 38. The rejected n-phase failure leave protocol with a special condition

If the protocol is rejected and the previous condition is not applied, the
execution of the protocol stops. All the failed providers are removed from the
membership list, and the group state value remains unchanged. The
remaining providers receive the protocol rejected notification

providers

ha_gs_n_phase_callback

Group
Services

ha_gs_vote

vote

ha_gs_n_phase_callback

ha_gs_vote

vote

deactivate script

vote

ha_gs_n_phase_callback

ha_gs_vote

newly-
failed
providers
Chapter 5. Proposing protocols 67

(ha_gs_protocol_rejected_callback) with updated membership list. The
subscribers also receive the notification, if they subscribed for it.

The protocol flow of the ending of a rejected n-phase failure leave protocol
without a special condition is illustrated in Figure 39.

Figure 39. The rejected n-phase failure leave protocol without a special condition

5.3.3 Programming hints
The following sections contain programming hints.

5.3.3.1 Targeted or not targeted
Whether a failed provider is targeted or not targeted is controlled by the fifth
input parameter to a deactivate script. Therefore, it is the responsibility of a
deactivate script to handle this parameter properly, if necessary.

For more information on deactivate scripts, refer to Section 3.3.2, “Deactivate
scripts” on page 34.

5.3.3.2 Being multiple providers
When a failed provider has been joined as a provider to multiple groups, each
group continues to execute independent failure protocols.

• If multiple groups enable deactivate-on-failure, the deactivate script will be
executed during each group’s failure protocol.

• Group Services does not define the order in which the deactivate scripts
will be executed by each group because the order in which the individual
groups will execute the failure protocols is not defined.

providers

ha_gs_protocol_rejected_callback

Group
Services

subscribers
ha_gs_protocol_rejected_callback
68 RSCT Group Services: Programming Cluster Applications

5.4 State value change protocol

The group state value is unique to a group, and all the providers and
subscribers can share this information. A Group Services application could
utilize this value for this purpose. If the value needs to be changed, a provider
can change it by proposing a state value change protocol.

5.4.1 Subroutine call
A provider calls the ha_gs_change_state_value subroutine to propose a state
value change protocol. A subroutine prototype is shown in Figure 27 on page
53. On input, the provider provides the state change request block as shown
in Figure 40.

Figure 40. The state change request block

Each field requires the following information:

gs_num_phases
This field requires the number of phases for the protocol. For the
ha_gs_num_phases_t type, refer to Figure 10 on page 20.

gs_time_limit
This field requires the voting time limit for the protocol. For the
ha_gs_time_limit_t type, refer to Figure 12 on page 22.

gs_new_state
This field requires the group state value information block that
contains the new value for the group state value. For the group
state value information block, refer to Figure 3 on page 11.

5.4.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified by
the provider that proposed the protocol.

5.4.2.1 One-phase protocol
If the state value change protocol is a one-phase protocol, it is approved
automatically.

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_state_value_t gs_new_state;

} ha_gs_state_change_request_t;
Chapter 5. Proposing protocols 69

All the providers, including the provider that proposed the protocol, receive
the protocol approved notification (ha_gs_protocol_approved_callback) with
the updated group state value. The subscribers also receive the notification if
they subscribed for it.

The protocol flow of the one-phase state value change protocol is illustrated
in Figure 41.

Figure 41. The one-phase state value change protocol

5.4.2.2 N-phase protocol
If the state value change protocol is an n-phase, the protocol has voting
phases. All the providers, including the provider that proposed the protocol,
participate in voting phases.

If the protocol is approved, the proposed value replaces the current group
state value. If other values are proposed during the voting phases of the
protocol, the last proposed value replaces the current group state value.

All the providers, including the provider that proposed the protocl, receive a
protocol approved notification (ha_gs_protocol_approved_callback) with the
updated group state value. The subscribers also receive the notification if
they subscribed for it.

The protocol flow of the approved n-phase state value change protocol is
illustrated in Figure 42 on page 71.

provider

providers

ha_gs_change_state_value

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services
70 RSCT Group Services: Programming Cluster Applications

Figure 42. The approved n-phase state value change protocol

If the protocol is rejected, the group state value remains unchanged. All the
providers, including the provider that proposed the protocol, receive a
protocol rejected notification (ha_gs_protocol_rejected_callback). The
subscribers do not receive any notification.

The protocol flow of the rejected n-phase state value change protocol is
illustrated in Figure 43.

Figure 43. The rejected n-phase state value change protocol

provider

providers

ha_gs_change_state_value

ha_gs_protocol_approved_callback

subscribers ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

provider

providers

ha_gs_change_state_value

ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
Chapter 5. Proposing protocols 71

5.4.3 Programming hints
The following sections contain programming hints.

5.4.3.1 Proposing a new group state value on voting
A new group state value can be proposed during the voting phase by a
ha_gs_vote subroutine.

For more information, refer to Section 5.12.2, “Proposing a group state value”
on page 108.

5.4.3.2 Source-state reflection protocol
If the protocol is approved, it changes the group sate value; therefore, if the
group is assigned as a source-group, a source-state reflection protocol is
proposed to its target groups.

For more information on the source-state reflection protocol, refer to Section
5.11, “Source-state reflection protocol” on page 103.

5.5 Provider-broadcast message protocol

When a provider wants to send a message to the other providers in a group, it
can send a provider broadcast message. To do this, it needs to propose a
provider broadcast message protocol.

5.5.1 Subroutine call
A provider calls the ha_gs_send_message subroutine to propose a provider
broadcast message protocol. A subroutine prototype is shown in Figure 27 on
page 53. At input, the provider provides the message request block as shown
in Figure 44.

Figure 44. The message request block

Each field requires the following information:

gs_num_phases
This field requires the number of phases for the protocol. For the
ha_gs_num_phases_t type, refer to Figure 10 on page 20.

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_provider_message_t gs_message;

} ha_gs_message_request_t;
72 RSCT Group Services: Programming Cluster Applications

gs_time_limit
This field requires the voting time limit for the protocol. For the
ha_gs_time_limit_t type, refer to Figure 12 on page 22.

gs_message
This field requires a provider broadcast message block that is to
be broadcast to providers. For a provider-broadcast message
block, refer to Figure 4 on page 11.

5.5.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified by
the provider that proposed the protocol.

5.5.2.1 One-phase protocol
If the provider-broadcast message protocol is a one-phase, the protocol is
approved automatically.

All the providers, including the provider that proposed the protocol, receive
the protocol approved notification (ha_gs_protocol_approved_callback) with
the provider-broadcast message. The subscribers do not receive any
notification.

The protocol flow of the one-phase provider-broadcast message protocol is
illustrated in Figure 45.

Figure 45. The one-phase provider-broadcast message protocol

5.5.2.2 N-phase protocol
If the provider-broadcast message protocol is an n-phase, the protocol has
voting phases. All the providers, including the provider that proposed the
protocol, participate in voting phases.

If the protocol is approved, all the providers, including the provider that
proposed the protocol, receive a protocol approved notification
(ha_gs_protocol_approved_callback). The subscribers do not receive any
notification.

provider

providers

ha_gs_send_message

ha_gs_protocol_approved_callback

Group
Services
Chapter 5. Proposing protocols 73

If the protocol is approved and a new group state value is proposed during the
voting phases of the protocol, a group state value is updated. All the
providers, including the provider that proposed the protocol, receive a
protocol approved notification with the updated group state value. The
subscribers also receive the notification if they subscribed for it.

The protocol flow of the approved n-phase provider-broadcast message
protocol is illustrated in Figure 46. The flow assumes that the group state
value was updated. If not, the subscribers do not receive any notification.

Figure 46. The approved provider-broadcast message protocol

If the protocol is rejected, the group state value remains unchanged. All the
providers, including the provider that proposed the protocol, receive a
protocol rejected notification (ha_gs_protocol_rejected_callback). The
subscribers do not receive any notification.

The protocol flow of the rejected provider-broadcast message protocol is
illustrated in Figure 47 on page 75.

provider

providers

ha_gs_send_message

ha_gs_protocol_approved_callback

subscribers ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
74 RSCT Group Services: Programming Cluster Applications

Figure 47. The rejected provider-broadcast message protocol

5.5.3 Programming hints
The following sections contain programming hints.

5.5.3.1 Only once
Unlike the group state value, a provider-broadcast message is presented only
once in the proposal block provided by the next n-phase, protocol approved,
or protocol rejected notification. It is the responsibility of an application to
keep the message for later reference.

5.5.3.2 Sending a provider-broadcast message on voting
A provider-broadcast message can be sent during the voting phase by a
ha_gs_vote subroutine.

For more information, refer to Section 5.12.3, “Sending a provider-broadcast
message” on page 110.

5.6 Voluntary leave protocol

A provider uses this protocol to leave the group.

5.6.1 Subroutine call
A provider calls the ha_gs_leave subroutine to propose a voluntary leave
protocol. A subroutine prototype is shown in Figure 27 on page 53. At input,
the provider provides the leave request block as shown in Figure 48 on page
76.

provider

providers

ha_gs_send_message

ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
Chapter 5. Proposing protocols 75

Figure 48. The leave request block

Each field requires the following information:

gs_num_phases
This field requires the number of phases for the protocol. For the
ha_gs_num_phases_t type, refer to Figure 10 on page 20.

gs_time_limit
This field requires the voting time limit for the protocol. For the
ha_gs_time_limit_t type, refer to Figure 12 on page 22.

gs_leave_code
This field requires a four-byte value that is defined by the Group
Services application and is controlled by the providers in a way
that is meaningful to the application. When a provider leaves a
group, the leave code is passed to the other providers with the
n-phase, protocol approved, or protocol rejected notification.
Leave codes are not interpreted by the Group Services
subsystem.
The leave code will be stored in the gs_voluntary_leave_code field
defined by the ha_gs_leave_info_t type shown in Figure 94 on
page 136. For more information, refer to Section 7.2.2,
“Notification blocks and their fields” on page 125.

5.6.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified by
the provider that proposed the protocol.

5.6.2.1 One-phase protocol
If the voluntary leave protocol is a one-phase protocol, the protocol is
approved automatically.

All the providers, including the provider that proposed the protocol, receive
the protocol approved notification (ha_gs_protocol_approved_callback) with
the updated membership list. The subscribers also receive the notification if
they subscribed for it.

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
unsigned int gs_leave_code;

} ha_gs_leave_request_t;
76 RSCT Group Services: Programming Cluster Applications

The protocol flow of the one-phase voluntary leave protocol is illustrated in
Figure 49 on page 77.

Figure 49. The one-phase voluntary leave protocol

5.6.2.2 N-phase protocol
If the voluntary leave protocol is an n-phase, the protocol has voting phases.
All the providers, except the provider that proposed the protocol, participate
in voting phases.

The leaving provider receives an n-phase notification
(ha_gs_n_phase_callback) as an initial notification. At this point, the leaving
provider has been removed from the membership list. The other providers
proceed voting phases.

If the protocol is approved, all the remaining providers receive a protocol
approved notification (ha_gs_protocol_approved_callback) with the updated
membership list. If a new group state value was proposed during the voting
phases, the notification includes the updated group state value as well. The
subscribers also receive the notification if they subscribed for it.

The protocol flow of the approved voluntary leave protocol is illustrated in
Figure 50 on page 78.

provider

providers

ha_gs_leave

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services
Chapter 5. Proposing protocols 77

Figure 50. The approved n-phase voluntary leave protocol

If the protocol is rejected, the group state value remains unchanged; however,
the provider that proposed the protocol has been removed from the
membership list. All the remaining providers receive a protocol rejected
notification (ha_gs_protocol_rejected_callback) with the updated membership
list. The subscribers also receive the notification if they subscribed for it.

The protocol flow of the rejected voluntary leave protocol is illustrated in
Figure 51 on page 79.

provider

providers

ha_gs_leave

ha_gs_protocol_approved_callback

subscribers ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
78 RSCT Group Services: Programming Cluster Applications

Figure 51. The rejected n-phase voluntary leave protocol

5.6.3 Programming hints
The following sections contain programming hints.

5.6.3.1 A leaving provider
After calling the ha_gs_leave subroutine, the leaving provider will receive one
of the following notifications:

• Delayed error notification

There are some reasons that a leaving provider receives this notification:

- The given parameters or fields are not valid.

- The connection to the Group Services is lost.

- The provider’s group is already executing another protocol.

• N-phase notification

Regardless of whether the protocol is approved or rejected, the leaving
provider has been removed from the membership list when the provider
receives this notification; therefore, the provider (actually, it is not a

provider

providers

ha_gs_leave

ha_gs_protocol_rejected_callback

subscribers ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
Chapter 5. Proposing protocols 79

provider at this point) should not vote for this notification. If it does, it
receives a delayed error notification.

5.7 Goodbye protocol

In normal situations, a provider uses a voluntary leave protocol to leave a
group. However, a provider must receive a notification to leave a group. Also,
a voluntary leave protocol does not involve a deactivate-on-failure facility. If a
provider wants to leave a group very quickly and wants the Group Services to
do the cleanup procedure, in other words, if the provider executes a
deactivate script, they have a choice to propose a goodbye protocol.

5.7.1 Subroutine call
A provider calls the ha_gs_goodbye subroutine to propose a goodbye
protocol. A subroutine prototype is shown in Figure 27 on page 53. At input,
the provider specifies only the provider token. This is different from the other
protocols that are proposed by providers.

5.7.2 Protocol flow
The protocol flow of a goodbye protocol is exactly the same as the failure
leave protocol described in Section 5.3.2, “Protocol flow” on page 61. The
only difference between them is that a goodbye protocol is proposed by a
provider while a failure leave protocol is proposed by the Group Services
subsystem.

If the ha_gs_goodbye subroutine returns with an HA_GS_OK return code, the
calling provider has been removed from the membership list. The provider will
not receive any asynchronous errors.

5.7.3 Programming hints
The following sections contain programming hints.

5.7.3.1 Voluntary leave or goodbye
When a leaving provider proposes a goodbye protocol, the remaining
providers receive an n-phase, protocol approved, or protocol rejected
notification. The gs_protocol_type filed in these notifications’ notification
block has the value of HA_GS_FAILURE_LEAVE shown in Figure 88 on page
128. In other words, a goodbye protocol is treated as a part of the failure
leave protocol.
80 RSCT Group Services: Programming Cluster Applications

To determine whether it is a failure leave protocol or a goodbye protocol,
check the gs_leave_info field in the proposal block. If the
gs_voluntary_or_failure has a value of
HA_GS_PROVIDER_SAID_GOODBYE as shown in Figure 95 on page 137, it
is a goodbye protocol. If it has a value of HA_GS_PROVIDER_FAILURE, it is
a failure leave protocol.

For more information, refer to Section 7.2.2, “Notification blocks and their
fields” on page 125.

5.8 Expel protocol

The expel protocol allows providers to propose the removal of one or more
providers from the group. This protocol could be useful in the following
situations:

• A provider has received an announcement notification that another
provider is not responsive or has detected an internal error.

• A provider has received an announcement notification that another
provider failed to submit a vote within the specified time limit during a
previously completed n-phase protocol.

• A provider has detected, through some other means, that another provider
is not behaving as expected in the context of the application the group is
running.

5.8.1 Subroutine call
A provider calls the ha_gs_expel subroutine to propose an expel protocol. A
subroutine prototype is shown in Figure 27 on page 53. At input, the provider
provides the expel request block as shown in Figure 52.

Figure 52. The expel request block

Each field requires the following information:

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_membership_t gs_expel_list;
int gs_deactivate_phase;
char *gs_deactivate_flag;

} ha_gs_expel_request_t;
Chapter 5. Proposing protocols 81

gs_num_phases
This field requires the number of phases for the protocol. For the
ha_gs_num_phases_t type, refer to Figure 10 on page 20.

gs_time_limit
This field requires the voting time limit for the protocol. For the
ha_gs_time_limit_t type, refer to Figure 12 on page 22.

gs_expel_list
This field requires a list of providers that are targeted to be
expelled. The list uses the same type as the membership
information block shown in Figure 2 on page 10.

gs_deactivate_phase
This field requires the phase number in which a deactivate script
should be executed against the providers that are being expelled.
If this field contains 0, no deactivate script will be executed.

gs_deactivate_flag
This field requires a pointer to a flag that is to be passed to the
deactivate script. A flag is a null-terminated string with a maximum
length of 256 bytes. If you specify a string that is longer than 256
bytes, it will be truncated. If the pointer is NULL, no flag will be
passed to the deactivate script. For a deactivate script, refer to
Section 3.3, “Deactivate-on-failure facility” on page 33.

5.8.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified by
the provider that proposed the protocol.

5.8.2.1 One-phase protocol without deactivate-on-failure
If the expel protocol is a one-phase protocol, and the value of the
gs_deactivate_phase field in the expel request block is 0. The protocol is
approved automatically, and no deactivate script is executed during the
protocol.

All the providers, including the providers that are targeted for expulsion, and
subscribers receive the protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list.

The providers that are targeted for expulsion are removed from the
membership list. However, their processes are still up and running. It is the
responsibility of an application to deal with these processes.
82 RSCT Group Services: Programming Cluster Applications

The flow of the one-phase expel protocol without deactivate-on-failure is
illustrated in Figure 53 on page 83.

Figure 53. The one-phase expel protocol without deactivate-on-failure

5.8.2.2 One-phase protocol with deactivate-on-failure
If the expel protocol is a one-phase protocol and the value of the
gs_deactivate_phase field in the expel request block is 1 (notice that a
one-phase protocol has only one phase), the protocol is approved
automatically, and the deactivate script is executed immediately after the
protocol begins execution.

The Group Services has forked a child process to execute a deactivate script;
then, it sends the protocol approval notification
(ha_gs_protocol_approved_callback) to the providers that are targeted for
expulsion. However, it is unpredictable whether the provider will receive the
notification before or after the script executes. Group Services does not wait
for the script to complete execution before it sends the notification. The exit
code of the script is not inspected.

The providers that are targeted for expulsion are removed from the
membership list. However, their process may or may not be terminated
successfully by the deactivate script. It is the responsibility of an application
to deal with these processes.

The remaining providers receive the protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list. The
subscribers also receive the notification if they subscribed for it.

provider

providers

ha_gs_expel

targeted
providers

ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services
Chapter 5. Proposing protocols 83

The protocol flow of the one-phase expel protocol with deactivate-on-failure is
illustrated in Figure 54.

Figure 54. The one-phase expel protocol with deactivate-on-failure

5.8.2.3 N-phase protocol without deactivate-on-failure
If the expel protocol is an n-phase and the value of the gs_deactivate_phase
field in the expel request block is 0, the protocol has voting phases, and no
deactivate script is executed during the protocol.

The providers that are targeted for expulsion do not participate in voting
phases.

If the protocol is approved, the providers that are targeted for expulsion are
removed from the membership list. All the providers, including the providers
that are targeted for expulsion, receive the protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list. If a
new group state value was proposed during the voting phases, the notification
contains the updated group state value as well. The subscribers also receive
the notification if they subscribed for it.

The providers that are targeted for expulsion are removed from the
membership list. However, their processes are still up and running. It is the
responsibility of an application to deal with these processes.

provider

providers

ha_gs_expel

targeted
providers

ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services

deactivate script
84 RSCT Group Services: Programming Cluster Applications

The protocol flow of the approved n-phase expel protocol without
deactivate-on-failure is illustrated in Figure 55.

Figure 55. The approved n-phase expel protocol without deactivate-on-failure

If the protocol is rejected, the providers that are targeted for expulsion are not
removed from the membership list, and the group state value remains
unchanged. All the providers, except the providers that are targeted for
expulsion, receive a protocol rejected notification
(ha_gs_protocol_rejected_callback). The subscribers do not receive any
notification.

The protocol flow of the rejected n-phase expel protocol without
deactivate-on-failure is illustrated in Figure 56 on page 86.

provider

providers

ha_gs_expel

targeted
providers

ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
Chapter 5. Proposing protocols 85

Figure 56. The rejected n-phase expel protocol without deactivate-on-failure

5.8.2.4 N-phase protocol with deactivate-on-failure
If an expel protocol is an n-phase protocol and the value of the
gs_deactivate_phase field in the expel request block is not 0, the protocol has
voting phases, and a deactivate script is executed during the protocol.

If the deactivate script is to be executed in a future voting phase, Group
Services votes to continue as the targeted provider’s vote for each interim
voting phase. Therefore, even though all the providers vote to approve, the
protocol still continues the voting phase.

The beginning of the protocol flow of the n-phase expel protocol with
deactivate-on-failure is illustrated in Figure 57 on page 87.

provider

providers

ha_gs_expel

ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
86 RSCT Group Services: Programming Cluster Applications

Figure 57. The n-phase expel protocol with deactivate-on-failure

The voting phase is repeated at least until the phase that has one of the
following conditions:

• One or more of the providers vote to reject.

• The phase comes to the time a deactivate script is to be executed.

If one or more of the providers vote to reject before the phase in which the
deactivate script is to be executed, the expel protocol is rejected, and the
deactivate script will not be executed.

If the phase comes to the time that a deactivate script is to be executed and
Group Services has forked a child process to execute the deactivate script,
Group Services sends the protocol approval notification
(ha_gs_protocol_approved_callback) to the providers that are targeted for
expulsion. However, whether the provider will receive the notification before
or after the script executes is unpredictable. Group Services waits for the
script to complete execution within the voting time limit. The exit code of the
script is inspected.

According to the exit code, Group Services votes in place of the targeted
providers vote for the phase. If the protocol requires more voting phases,
Group Services continues to vote as the targeted providers vote for each
subsequent voting phase. The voting value is determined by the following
rule:

• The Group Services votes to approve if the exit code is 0.

provider ha_gs_expel

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

continue
providers
Chapter 5. Proposing protocols 87

• The Group Services votes the current default vote value in the following
cases:

- The exit code is not 0.

- If the protocol has specified a voting time limit and the script does not
complete its execution within the voting time limit.

- The script is not specified or it is not executable.

The protocol flow of the deactivate script execution phase is illustrated in
Figure 58 on page 89.
88 RSCT Group Services: Programming Cluster Applications

Figure 58. The deactivate script execution phase

If the protocol is approved, the providers that are targeted for expulsion are
removed from the membership list. The remaining providers receive the
protocol approved notification (ha_gs_protocol_approved_callback) with the
updated membership list. If a new group state value was proposed during the
voting phases, the notification contains the updated group state value inas
well. The subscribers also receive the notification if they subscribed for it.

The protocol flow of the approved n-phase expel protocol with
deactivate-on-failure is illustrated in Figure 59.

targeted
providers

ha_gs_protocol_approved_callback

ha_gs_n_phase_callback

Group
Services

deactivate script

ha_gs_vote

vote

ha_gs_n_phase_callback

ha_gs_vote

vote

providers
Chapter 5. Proposing protocols 89

Figure 59. The approved n-phase expel protocol with deactivate-on-failure

If the protocol is rejected, the providers that are targeted for expulsion are not
removed from the membership list, and the group state value remains
unchanged. The providers that are not targeted for expulsion receive a
protocol rejected notification (ha_gs_protocol_rejected_callback). The
subscribers do not receive any notification.

The providers that are targeted for expulsion are not removed from the
membership list. However, if the deactivate script causes a provider to exit,
the Group Services proposes a failure leave protocol for that provider.

The protocol flow of the rejected n-phase expel protocol with
deactivate-on-failure is illustrated in Figure 60.

Figure 60. The rejected n-phase expel protocol with deactivate-on-failure

5.8.3 Programming hints
The following sections contain programming hints.

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services

providers

ha_gs_protocol_rejected_callback

providers
Group
Services
90 RSCT Group Services: Programming Cluster Applications

5.8.3.1 Joining to multiple groups (case 1)
If a single process has joined as a provider to multiple groups and one of
those provider instances has been expelled from a group, the effect on the
other instances is as follows:

• If the process no longer exists (it is killed or has failed) as a result of the
expel protocol, the other provider instances of the process are handled
through failure leave protocols in their groups.

• If the process still exists, the other provider instances of the process are
not affected and continue as full participants in their groups.

5.8.3.2 Joining to multiple groups (case 2)
If a single process has joined as a provider to multiple groups and more than
one of the groups are simultaneously executing expel protocols that target
those providers (for example, because the process is unresponsive), the
order in which deactivate scripts are executed against the process is
undefined by Group Services.

Because each group’s expel protocol proceeds independently, Group
Services does not coordinate the execution of the deactivate script for each
group’s protocol. If all groups approve their expel protocols and the process is
killed, no failure leave protocols are executed. If one or more groups reject
their expel protocols, but the process is killed in the course of executing the
deactivate script, those groups initiate failure leave protocols to remove the
failed provider.

5.9 Change-attributes protocol

A group has its own attributes that specify characteristics of the group. These
attributes are defined when the first provider in the group creates the group.
Usually, the attributes will not change; however, if it is necessary, providers
are allowed to change some of theses attributes.

5.9.1 Subroutine call
A provider calls the ha_gs_change_attributes subroutine to propose a
change-attributes protocol. A subroutine prototype is shown in Figure 27 on
page 53. At input, the provider specifies the attribute change request block as
shown in Figure 61 on page 92.
Chapter 5. Proposing protocols 91

Figure 61. The attribute change request block

Each of the fields requires the following information:

gs_num_phases
This field requires the number of phases for the protocol. For the
ha_gs_num_phases_t type, refer to Figure 10 on page 20.

gs_time_limit
This field requires the voting time limit for the protocol. For the
ha_gs_time_limit_t type, refer to Figure 12 on page 22.

gs_group_attributes
This field requires a pointer to the group attributes block that is to
replace the current group attributes. The group attributes block is
shown in Figure 1 on page 8.

gs_backlevel_providers
This field requires a NULL pointer when the subroutine is called. If
the provider receives a delayed error notification with the value of
HA_GS_BACKLEVEL_PROVIDERS, this field contains a pointer
to a list of providers that are in the group and that were compiled
and linked against an older version of Group Services shared
libraries. The membership information block shown in Figure 2 on
page 10 is used for this list.

5.9.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified by
the provider that proposed the protocol.

5.9.2.1 One-phase protocol
If the change-attributes protocol is a one-phase, the protocol is approved
automatically.

All the providers, including the provider that proposed the protocol, receive
the protocol approved notification (ha_gs_protocol_approved_callback) with
the updated group attributes. The subscribers do not receive any notification.

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_group_attributes_t *gs_group_attributes;
ha_gs_membership_t *gs_backlevel_providers;

} ha_gs_attribute_change_request_t;
92 RSCT Group Services: Programming Cluster Applications

The protocol flow of the one-phase state value change protocol is illustrated
in Figure 62.

Figure 62. The one-phase change-attributes protocol

5.9.2.2 N-phase protocol
If the change-attributes protocol is an n-phase, the protocol has voting
phases. All the providers, including the provider that proposed the protocol,
participate in voting phases.

If the protocol is approved, the proposed group attributes replaces the current
group attributes. All the providers, including the provider that proposed the
protocol, receive a protocol approved notification
(ha_gs_protocol_approved_callback) with the updated group attributes. The
subscribers do not receive any notification.

If a new group state value was proposed during the voting phases, the
notification contains the updated group state value as well. The subscribers
also receive the notification, if they subscribed for it.

The protocol flow of the approved n-phase change-attributes protocol is
illustrated in Figure 63 on page 94.

providers

ha_gs_change_attributes

ha_gs_protocol_approved_callback

Group
Services

provider
Chapter 5. Proposing protocols 93

Figure 63. The approved n-phase change-attributes protocol

If the protocol is rejected, the group state value remains unchanged. All the
providers, including the provider that proposed the protocol, receive a
protocol rejected notification (ha_gs_protocol_rejected_callback). The
subscribers do not receive any notification.

The protocol flow of the rejected n-phase state value change protocol is
illustrated in Figure 64.

Figure 64. The rejected n-phase change-attributes protocol

provider
ha_gs_change_attributes

ha_gs_protocol_approved_callback

subscribers ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

providers

provider ha_gs_change_attributes

ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote
providers
94 RSCT Group Services: Programming Cluster Applications

5.9.3 Programming hints
The following section contains programming hints.

5.9.3.1 Changeable attributes
The following attributes can be changed through an ha_gs_change_attributes
subroutine call:

• gs_client_version

• gs_batch_control

• gs_num_phases

• gs_source_reflection_num_phases

• gs_group_default_vote

• gs_merge_control

• gs_time_limit

• gs_source_reflection_time_limit

For more information on the group attributes, refer to Section 2.2.2.1, “The
group attributes” on page 7.

5.10 Cast-out protocol

Group Services proposes a cast-out protocol to a group that uses a
source-target facility. When a source-group has changed its membership list,
Group Services may need to cast out some providers in the target-group. If
this is the case, Group Services proposes a cast-out protocol to the
target-group. For more details about a source-target facility, refer to Section
3.4, “Source-target facility” on page 36.
Chapter 5. Proposing protocols 95

The behaviors of a cast-out protocol and a failure leave protocol are quite
similar; the reasons why they are proposed are different, though. There are
two differences between them:

1. In the case of cast-out protocols, Group Services needs to decide if it
should execute a deactivate script or not when deactivate-on-failure is
activated. On the other hand, the Group Services always executes a
deactivate script in the case of failure leave protocols when
deactivate-on-failure is activated.

The decision is made as follows: If a provider that is to be cast out from a
target-group is a failed cast-out provider, the script will be executed. If it is
an active cast-out provider, the script will not be executed against it.

If batching cast-out protocols is enabled (this is equal to batching failure
leave protocols enabled), and if both failed cast-out providers and active
cast-out providers are targeted by a cast-out protocol, the script will be
executed only against the failed cast-out providers.

2. In the case of cast-out protocols, active cast-out provides receive a final
notification (a protocol approved notification or a protocol rejected
notification) and failed cast-out providers do not receive any notification
while, in the case of failure leave protocols, failed providers do not receive
any notification.

5.10.1 Protocol proposal
The Group Services subsystem uses the following fields of the group
attributes block to propose and execute a protocol:

• The gs_num_phases field is used for the number of phases.

This book uses the following semantics for a provider that is to be cast out
from a target-group:

• If a provider’s socket connection to the Group Services is broken at the
time the cast-out protocol begins execution, this provider is called a
failed cast-out provider.

• If a provider’s socket connection to the Group Services is not broken at
the time the cast-out protocol begins execution, this provider is called an
active cast-out provider.

You do not see these semantics in the official Group Services
documentations.

Note
96 RSCT Group Services: Programming Cluster Applications

• The gs_time_limit field is used for the voting time limit.

• The gs_batch_control field is used to enable/disable batching cast-out
protocols.

• The gs_batch_control field is also used to enable/disable a
deactivate-on-failure facility. A deactivate script has already been
registered by the ha_gs_init subroutine.

5.10.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified in
the group attributes block already registered.

The providers that are to be cast out from the group do not participate in any
voting phases of the protocol.

5.10.2.1 One-phase protocol without deactivate-on-failure
If a cast-out protocol is one-phase and deactivate-on-failure is disabled, the
protocol is approved automatically, and a deactivate script is not executed.

The providers that are to be cast out are removed from the membership list.
All the remaining providers receive a protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list. The
subscribers also receive the notification if they subscribed for it.

All the active cast-out providers receive a protocol approved notification. All
the failed cast-out providers do not receive any notification.

The protocol flow of the one-phase cast-out protocol without
deactivate-on-failure is illustrated in Figure 65 on page 98.

If batching cast-out protocols is enabled, one cast-out protocol handles one
or more providers that are to be cast out. If not, one cast-out protocol
handles only one provider that is to be cast out. This section assumes that
batching cast-out protocols is enabled. Therefore providers that are to be
cast out are treated as plural. If this is not the case, read it as singular.

Batching cast-out protocols
Chapter 5. Proposing protocols 97

Figure 65. The one-phase cast-out protocol without deactivate-on-failure

5.10.2.2 One-phase protocol with deactivate-on-failure
If deactivate-on-failure is enabled, and if one or more failed cast-out providers
are included in the cast-out targets, the protocol is approved automatically,
and a deactivate script will be executed against failed cast-out providers
immediately after the protocol begins execution. The Group Services does
not wait for the script to complete execution. The exit code of the deactivate
script is not inspected.

The providers that are to be cast out are removed from the membership list.
All the remaining providers receive a protocol approved notification
(ha_gs_protocol_approved_callback) with the updated membership list. The
subscribers also receive the notification if they subscribed for it.

All the active cast-out providers receive a protocol approved notification. All
the failed cast-out providers do not receive any notification.

The protocol flow of the one-phase cast-out protocol with
deactivate-on-failure is illustrated in Figure 66 on page 99.

ha_gs_protocol_approved_callback

Group
Services

propose

subscribers
ha_gs_protocol_approved_callback

active
cast-out
providers

ha_gs_protocol_approved_callback
providers
98 RSCT Group Services: Programming Cluster Applications

Figure 66. The one-phase cast-out protocol with deactivate-on-failure

5.10.2.3 N-phase protocol beginning without deactivate-on-failure
If a cast-out protocol is n-phase and deactivate-on-failure is disabled, the
protocol has voting phases and a deactivate script is not executed.

All the providers except the providers that are to be cast out from the
target-group participate in the voting phases.

The flow of the beginning of an n-phase cast-out protocol without
deactivate-on-failure is illustrated in Figure 67 on page 100.

failed
cast-out
providers

ha_gs_protocol_approved_callback

Group
Services

propose

subscribers
ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback

deactivate script

active
cast-out
providers

providers
Chapter 5. Proposing protocols 99

Figure 67. The beginning of protocol without deactivate-on-failure

5.10.2.4 N-phase protocol beginning with deactivate-on-failure
If deactivate-on-failure is enabled and if one or more failed cast-out providers
are included in the cast-out targets, a deactivate script will be executed
against failed cast-out providers immediately after the protocol begins
execution. Group Services waits for the script to complete execution within
the voting time limit. The exit code of the deactivate script is inspected.

According to the exit code, the Group Services votes as the failed cast-out
providers’ vote for the phase. If the protocol requires more voting phases,
Group Services continues to vote as the failed cast-out providers’ vote for
each subsequent voting phase. The voting value is determined by the
following rule:

• The Group Services votes to approve, if the exit code is 0.

• The Group Services votes current default vote value, in the following
cases:

- The exit code is not 0.

- If the protocol has specified a voting time limit and the script does not
complete its execution within voting time limit.

- The script is not specified or it is not executable.

The flow of the beginning of an n-phase cast-out protocol with
deactivate-on-failure is illustrated in Figure 68 on page 101.

ha_gs_n_phase_callback

ha_gs_vote

Group
Services

propose

providers
100 RSCT Group Services: Programming Cluster Applications

Figure 68. The beginning of protocol with deactivate-on-failure

5.10.2.5 N-phase protocol ending
If the protocol is approved, the providers that are to be cast out are removed
from the membership list. All the remaining providers receive a protocol
approved notification (ha_gs_protocol_approved_callback) with the updated
membership list. If a new group state value was proposed during the voting
phases of the protocol, a group state value is updated, and the protocol
approved notification includes the updated group state value as well. The
subscribers also receive the notification if they subscribed for it.

All the active cast-out providers receive the protocol approved notification. All
the failed cast-out providers do not receive any notification.

failed
cast-out
providers

ha_gs_n_phase_callback

Group
Services

ha_gs_vote

vote

ha_gs_n_phase_callback

ha_gs_vote

vote

deactivate script

propose

providers
Chapter 5. Proposing protocols 101

The flow of the ending of an approved n-phase cast-out protocol is illustrated
in Figure 69.

Figure 69. The ending of approved n-phase cast-out protocol

If the protocol is rejected, the providers that are to be cast out are still
removed from the membership list, and the group state value remains
unchanged. The remaining providers receive the protocol rejected notification
(ha_gs_protocol_rejected_callback) with an updated membership list. The
subscribers also receive the notification if they subscribed for it.

The active cast-out providers receive the protocol rejected notification. The
failed cast-out providers do not receive any notification.

The flow of the ending of rejected n-phase cast-out protocol is illustrated in
Figure 70 on page 103.

ha_gs_protocol_approved_callback

Group
Services

propose

subscribers
ha_gs_protocol_approved_callback

ha_gs_protocol_approved_callback

active
cast-out
providers

providers
102 RSCT Group Services: Programming Cluster Applications

Figure 70. The ending of rejected n-phase cast-out protocol

5.10.3 Programming hints
The following section contains programming hints.

5.10.3.1 Batching cast-out protocols
Batching cast-out protocols is controlled with batching failure leave protocols.
There is no separate control bits for each batching control.

5.11 Source-state reflection protocol

The Group Services subsystem proposes a source-state reflection protocol to
a target-group when a source-group has changed its group state value
through a non-membership change protocol.

5.11.1 Protocol proposal
The Group Services subsystem uses the following fields of the group
attributes block to propose and execute a protocol:

• The gs_source_reflection_num_phases field is used for the number of
phases.

ha_gs_protocol_rejected_callback

Group
Services

propose

subscribers
ha_gs_protocol_rejected_callback

ha_gs_protocol_rejected_callback

active
cast-out
providers

providers
Chapter 5. Proposing protocols 103

• The gs_source_reflection_time_limit field is used for the voting time limit.

5.11.2 Protocol flow
A protocol uses the number of phases and the voting time limit specified in
the group attributes block already registered.

5.11.2.1 One-phase protocol
If a source-state reflection protocol is one-phase, the protocol is approved
automatically.

The providers in the target-group receive a protocol approved notification
(ha_gs_protocol_approved_callback) with the updated source-group’s group
state value. The subscribers do not receive any notification.

The protocol flow of the one-phase source-state reflection protocol is
illustrated in Figure 71.

Figure 71. The one-phase source-state reflection protocol

5.11.2.2 N-phase protocol
If a source-state reflection protocol is n-phase, the protocol has voting
phases. All the providers in the target-group participate in voting phases.

If the protocol is approved, all the providers in the target-group receive a
protocol approved notification (ha_gs_protocol_approved_callback). The
subscribers do not receive any notification. If a new group state value is
proposed during the voting phases of the protocol for the target-group, the
notification contains the updated group state value. The subscribers also
receive the notification, if they subscribed for it.

The protocol flow of the approved n-phase source-state reflection protocol is
illustrated in Figure 72 on page 105. The flow assumes that the group state
value for the target-group is updated. If not, the subscribers do not receive
any notification.

ha_gs_protocol_approved_callback

Group
Services

propose

providers
104 RSCT Group Services: Programming Cluster Applications

Figure 72. The approved n-phase source-state reflection protocol

If the protocol is rejected, the group state value for the target-group remains
unchanged. All the providers receive a protocol rejected notification
(ha_gs_protocol_rejected_callback). The subscribers do not receive any
notification.

The protocol flow of the rejected n-phase source-state reflection protocol is
illustrated in Figure 73 on page 106.

ha_gs_protocol_approved_callback

subscribers
ha_gs_protocol_approved_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

propose

providers
Chapter 5. Proposing protocols 105

Figure 73. The rejected n-phase source-state reflection protocol

5.11.3 Programming hints
The following section contain programming hints.

5.11.3.1 Only with the first notification
The source-group’s group state value is presented only with the first
notification that is given to the target-group(s). It is the responsibility of the
target-group providers to remember it if it is necessary for their correct
operation. The first notification would be either an n-phase, protocol
approved, or protocol rejected notification.

5.11.3.2 If the target-group is running another protocol
If the target-group is running another protocol when a source-group state
value change is ready to be reflected, the running protocol continues
normally, and the source-state reflection protocol is queued to be proposed
later when the running protocol completes.

5.12 Voting on proposed protocol

If a provider receives an n-phase notification, the provider is expected to vote
on a proposed protocol to the group within the voting phase time limit. The
provider can vote to approve, continue, or reject the protocol proposal.

Optionally, a provider can submit the following proposals with its voting:

• A proposal to change a group state value.

ha_gs_protocol_rejected_callback

Group
Services

ha_gs_n_phase_callback

ha_gs_vote

propose

providers
106 RSCT Group Services: Programming Cluster Applications

• A proposal to send a provider-broadcast message.

• A proposal to change the default vote value to be used by the group until
the end of a currently executing protocol. It does not change the default
vote value in the group attributes block.

For more information, refer to Section 3.1.7, “Submitting changes with voting”
on page 30.

5.12.1 Subroutine call
To vote on a proposed protocol, a provider calls the ha_gs_vote subroutine.
The syntax of the ha_gs_vote subroutine is shown in Figure 74:

Figure 74. The syntax of ha_gs_vote subroutine

Each parameter requires the following information:

provider_token
This parameter requires a token that identifies the caller as a
provider of the group. This token was previously initialized when
the provider joined the group using the ha_gs_join subroutine.

vote_value
This parameter requires the value of the vote. It can take one of
the following values:

-HA_GS_VOTE_APPROVE

-HA_GS_VOTE_CONTINUE

-HA_GS_VOTE_REJECT

They are defined by the ha_gs_vote_value_t type shown in Figure
11 on page 21.

proposed_state_value
This parameter requires an optional updated state value for the
group. If the provider does not wish to propose an updated state
value, specify a null pointer. For more information, refer to Section
5.12.2, “Proposing a group state value” on page 108.

ha_gs_rc_t ha_gs_vote (
ha_gs_token_t provider_token,
ha_gs_vote_value_t vote_value,
const ha_gs_state_value_t *proposed_state_value,
const ha_gs_provider_message_t *provider_message,
ha_gs_vote_value_t default_vote_value)
Chapter 5. Proposing protocols 107

provider_message
This parameter requires an optional provider-broadcast message
to be sent to the providers as part of the next notification for this
protocol. If the provider does not wish to send a message, specify
a null pointer. For more information, refer to Section 5.12.3,
“Sending a provider-broadcast message” on page 110.

default_vote_value
This parameter requires the default vote value to be used by the
group until the end of the currently executing protocol. It does not
change the default vote value in the group attributes block. It can
take one of the following values:

-HA_GS_NULL_VOTE

-HA_GS_VOTE_APPROVE

-HA_GS_VOTE_REJECT

If the provider does not wish to change the default vote value,
specify HA_GS_NULL_VOTE. They are defined by the
ha_gs_vote_value_t type shown in Figure 11 on page 21.

5.12.2 Proposing a group state value
A group state value can be proposed during the voting phases by the
ha_gs_vote subroutine. The group state value is presented in the proposal
block provided by the next notification through the last notification for the
protocol. Notifications could be an n-phase, protocol approved, and/or
protocol rejected notification. If another group state value is proposed, it
replaces the previously proposed group state value.

If the proposed protocol is approved, the providers receive the protocol
approved notification with the updated group state value. The subscribers
also receive the notification if they subscribed for it.

This flow is illustrated in Figure 75 on page 109.
108 RSCT Group Services: Programming Cluster Applications

Figure 75. Proposing a group state value during voting phases and approved

If the proposed protocol is rejected, the group state value remains
unchanged, and the providers receive the protocol rejected notification. The
subscribers do not receive any notification.

This flow is illustrated in Figure 76 on page 110.

Group
Services

ha_gs_n_phase_callback

ha_gs_vote (a group state value)

ha_gs_n_phase_callback (a group state value)

ha_gs_vote

ha_gs_n_protocol_approved_callback (a group state value)

subscribers
ha_gs_n_protocol_approved_callback (a group state value)

providers
Chapter 5. Proposing protocols 109

Figure 76. Proposing a group state value during voting phases and rejected

5.12.3 Sending a provider-broadcast message
A provider-broadcast message can be sent during the voting phases by the
ha_gs_vote subroutine. The provider-broadcast message is presented only
once in the proposal block provided by the next notification. The notification
could be an n-phase, protocol approved, or protocol rejected notification.

If the provider-broadcast message is sent in the middle of voting phases, it
will be delivered by the next n-phase notification (ha_gs_n_phase_callback).
This flow is illustrated in Figure 77 on page 111.

Group
Services

ha_gs_n_phase_callback

ha_gs_vote (a group state value)

ha_gs_n_phase_callback (a group state value)

ha_gs_vote

ha_gs_n_protocol_rejected_callback

providers
110 RSCT Group Services: Programming Cluster Applications

Figure 77. Sending a message in the middle of voting phases

If the proposed protocol is approved and a provider-broadcast message is
proposed in the last voting phase, providers receive a protocol approved
notification (ha_gs_approved_notification_callback) with the
provider-broadcast message. The subscribers do not receive any notification.

If a new group state value was proposed during the voting phases, the
notification contains the updated group state value as well. The subscribers
also receive the notification if they subscribed for it.

This flows are illustrated in Figure 78 on page 112.

Group
Services

ha_gs_n_phase_callback

ha_gs_vote (provider-broadcast message)

ha_gs_n_phase_callback

ha_gs_vote

ha_gs_n_phase_callback (provider-broadcast message)

ha_gs_vote
providers
Chapter 5. Proposing protocols 111

Figure 78. Sending an approved message in the last voting phase

If the proposed protocol is rejected and a provider-broadcast message is
proposed in the last voting phase, it will be delivered by a protocol rejected
notification (ha_gs_rejected_notification_callback). A group state value
remains unchanged. The subscribers do not receive any notification.

These flows are illustrated in Figure 79.

Figure 79. Sending a rejected message in the last voting phase

5.12.4 Programming hints
If multiple providers in the same voting phase propose group state values, the
Group Services chooses only one of them. Therefore, if different providers
propose different group state values, it is unpredictable which group state
value the Group Services will choose.

ha_gs_protocol_approved_callback (provider-broadcast message)

subscribers ha_gs_protocol_approved_callback (provider-broadcast message)

Group
Services

ha_gs_n_phase_callback

ha_gs_vote (provider-broadcast message)providers

ha_gs_protocol_rejected_callback (provider-broadcast message)

Group
Services

ha_gs_n_phase_callback

ha_gs_vote (provider-broadcast message)providers
112 RSCT Group Services: Programming Cluster Applications

If multiple providers in the same voting phase send provider-broadcast
messages, Group Services chooses only one of them. Therefore, if different
providers send different provider-broadcast messages, it is unpredictable
which messages the Group Services will choose.
Chapter 5. Proposing protocols 113

114 RSCT Group Services: Programming Cluster Applications

Chapter 6. Subscribing to a group

If a GS client only needs information about a membership list and a group
state value change on a group, it is not necessary to become a provider of the
group. Group Services provides a subscriber with information about these
changes.

This chapter describes how a GS client subscribes and unsubscribes to and
from a group.

6.1 Subscribe to a group

When it is appropriate for a process to monitor a group without taking part in
the control of the group’s activities, the Group Services allows the process to
subscribe to the group.

6.1.1 Subroutine call
If a GS client has initialized itself with the Group Services, it can call the
ha_gs_subscribe subroutine to subscribe a group. The subroutine requires a
pointer to a token and a pointer to a proposal information block. A token will
be returned by the Group Services that is used to identify a GS client in the
group as a subscriber. A proposal information block describes the information
on subscription.

The prototype for the ha_gs_subscribe subroutine is shown in Figure 80.

Figure 80. The ha_gs_subscribe subroutine prototype

The token is also referred as the subscriber token and defined as
ha_gs_token_t type as shown in Figure 7 on page 14. The definition is the
same as the provider token.

The proposal information block is redefined as the subscribe request block as
shown in Figure 28 on page 54.

ha_gs_rc_t ha_gs_subscribe(
ha_gs_token_t *,
const ha_gs_proposal_info_t *);
© Copyright IBM Corp. 2000 115

The subscribe request block is defined as shown in Figure 81.

Figure 81. The subscribe request block

Each field requires the following information:

gs_subscription_control
This field requires one or more flags that indicate the types of
information that the subscriber wishes to receive about changes to
the subscribed-to group. A GS client may subscribe to changes in
the group state value, the membership list, or both.
The flags are not exclusive and may be specified in any
combination by ORing the individual flags together. They are
defined by the ha_gs_subscription_ctrl_t type shown in Figure 82.

Figure 82. The ha_gs_subscription_ctrl_t type

Each value indicates the following information:

HA_GS_SUBSCRIBE_STATE
This value indicates that the subscriber wants to receive the
group’s state value whenever the state value is updated.

HA_GS_SUBSCRIBE_DELTA_JOINS
This value indicates that the subscriber wants to receive the set of
providers that are joining the group, whenever a join occurs.

The following definition is available for convenience of programming:

#define gs_subscribe_request _gs_protocol_info._gs_subscribe_request

Note

typedef struct {
ha_gs_subscription_ctrl_t gs_subscription_control;
ha_gs_group_name_t gs_subscription_group;
ha_gs_subscription_cb_t *gs_subscription_callback;

} ha_gs_subscribe_request_t;

typedef enum {
HA_GS_SUBSCRIBE_STATE = 0x01,
HA_GS_SUBSCRIBE_DELTA_JOINS = 0x02,
HA_GS_SUBSCRIBE_DELTA_LEAVES = 0x04,
HA_GS_SUBSCRIBE_DELTAS_ONLY = 0x06,
HA_GS_SUBSCRIBE_MEMBERSHIP = 0x08,
HA_GS_SUBSCRIBE_ALL_MEMBERSHIP = 0x0e,
HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP = 0x0f

} ha_gs_subscription_ctrl_t;
116 RSCT Group Services: Programming Cluster Applications

HA_GS_SUBSCRIBE_DELTA_LEAVES
This value indicates that the subscriber wants to receive the set of
providers that are leaving the group, whenever a voluntary leave or
an involuntary leave (failure leave) occurs.

HA_GS_SUBSCRIBE_DELTAS_ONLY
This value indicates that, whenever a join or leave occurs, the
subscriber wants to receive both the set of providers that are
joining the group and the set of providers that are leaving the
group.

HA_GS_SUBSCRIBE_MEMBERSHIP
This value indicates that the subscriber wants to receive a full list
of providers in the group whenever a membership change (a join
or leave) occurs. If this flag is specified along with either of the
delta flags, the delta list and the full membership list are given as
two separate lists during membership changes. The delta flags
free the subscriber from having to determine the changing
members by comparing full membership lists after getting
notifications.
If HA_GS_SUBSCRIBE_MEMBERSHIP is not specified but at
least one of the delta flags is specified, the subscriber still
receives the full list of providers in the group on the first
subscription notification that contains membership data for the
group. Subsequent notifications contain only the delta list of
joining or leaving providers.

HA_GS_SUBSCRIBE_ALL_MEMBERSHIP
This value indicates that, on all subscription notifications that
contain membership information, the subscriber wants to receive
both the full set of providers in the group and the delta list of
joining or leaving providers.

HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP
This value indicates that the subscriber wants to receive all of the
information described by the other flags.

gs_subscription_group
This field requires a pointer to the name of the group to which the
caller wishes to subscribe. The name must be equal to the
gs_group_name field in the group attributes block shown in Figure
1 on page 8.

gs_subscription_callback
This field requires a pointer to the callback subroutine that is to be
called by a subscription notification. For a subscription notification,
refer to Section 7.9, “Subscription notification” on page 147.
Chapter 6. Subscribing to a group 117

6.1.2 Programming hints
If the ha_gs_subscribe subroutine call is successful, it returns HA_GS_OK,
and the subscriber_token field is set to the token that identifies this
subscriber’s connection to the group. However, it does not guarantee that the
subscription itself is successful. If subscription is successful, the subscriber
will receive a subscription notification that contains the current information. If
not, it will receive a delayed error notification.

For a subscription notification, refer to Section 7.9, “Subscription notification”
on page 147. For a delayed error notification, refer to Section 7.4, “Delayed
error notification” on page 141.

6.2 Unsubscribe from a group

When it is no longer necessary to monitor a group, a subscriber can
unsubscribe the group.

6.2.1 Subroutine call
If a GS client is a subscriber, it can call the ha_gs_unsubscribe subroutine to
unsubscribe from a group. The subroutine only requires a subscriber token
that was returned when it called the ha_gs_subscribe subroutine to subscribe
to the group.

The prototype for the ha_gs_unsubscribe subroutine is shown in Figure 83.

Figure 83. The prototype for the ha_gs_subscribe subroutine

The subscriber token is defined as the ha_gs_token_t type shown in Figure 7
on page 14. The definition is the same as the provider token.

6.2.2 Programming hints
If a group that a subscriber has subscribed is dissolved, the subscriber
receives a final subscription notification with a value of
HS_GS_SUBSCRIPTION_DISSOLVED. At this point, the group does not
exist; therefore, the subscriber (actually, it is not a subscriber anymore)
should not call the ha_gs_unsubscribe subroutine to that group.

ha_gs_rc_t ha_gs_unsubscribe(ha_gs_token_t);
118 RSCT Group Services: Programming Cluster Applications

Chapter 7. Getting notifications

During activities in a group, providers and subscribers receive notifications.
Upon receiving notifications, providers and subscribes are required to take
appropriate actions.

This chapter describes how a notification is created and how it is handled in a
group.

7.1 Overview

When Group Services has information that should be delivered to its clients, it
uses notifications. A notification is sent to GS clients, and it executes a
callback subroutine that is provided by GS clients. The callback subroutine
checks the information that is sent by the Group Services and takes
appropriate actions, if necessary.

There are seven notifications used by Group Services:

• Responsiveness notification

• Delayed error notification

• N-phase notification

• Protocol approved notification

• Protocol rejected notification

• Announcement notification

• Subscription notification

7.1.1 Notifications and callback subroutines
Each notification needs its corresponding callback subroutine. A GS client is
required to provide them. The required callback subroutines depend on the
type of GS client: Provider or subscriber. A provider needs to provide six
callback subroutines. A subscriber needs to provide three callback
subroutines. Table 3 summarizes notification, its callback subroutine, and GS
clients that need to provide it.

Table 3. Notification and GS clients

Notification Callback subroutine name Provider Subscriber

responsiveness ha_gs_responsiveness_callback yes yes

delayed error ha_gs_delayed_error_callback yes yes
© Copyright IBM Corp. 2000 119

These callback subroutines must be registered when a GS client registers
itself to the Group Services. The subroutines that register callback
subroutines are ha_gs_init, ha_gs_join, or ha_gs_subscribe. Table 4
summarizes callback subroutines and the subroutines that register them.

Table 4. Callback subroutine and the subroutine that registers it

Figure 84 on page 121 illustrates the relationship between notifications and
callback subroutines.

n-phase ha_gs_n_phase_callback yes no

protocol approved ha_gs_protocol_approved_callback yes no

protocol rejected ha_gs_protocol_rejected_callback yes no

announcement ha_gs_announcement_callback yes no

subscription hs_gs_subscriber_callback no yes

Callback subroutine Subroutine registers callback subroutine

ha_gs_responsiveness_callback ha_gs_init

ha_gs_delayed_error_callback ha_gs_init

ha_gs_n_phase_callback ha_gs_join

ha_gs_protocol_approved_callback ha_gs_join

ha_gs_protocol_rejected_callback ha_gs_join

ha_gs_announcement_callback ha_gs_join

hs_gs_subscriber_callback ha_gs_subscribe

Notification Callback subroutine name Provider Subscriber

A GS client can use any name for callback subroutines. Group Services
requires the address of callback subroutines, not their name. However, this
book uses the names shown in Table 3 for readability.

Note
120 RSCT Group Services: Programming Cluster Applications

Figure 84. Notification and callback subroutine

7.1.2 Executing callback subroutines
The previous section explained that with using a notification the Group
Services executes a callback subroutine that is provided by a GS client. From
the programming point of view, a GS client and the Group Services are
different processes. Therefore, it is not possible for the Group Services
process to call the subroutine that resides in the GS client’s process directly.

To solve this problem, Group Services provides the ha_gs_dispatch
subroutine. This subroutine resides in the Group Services shared library just
like other subroutines.

provider

notification

ha_gs_delayed_error_callback

ha_gs_n_phase_callback

ha_gs_protocol_approved_callback

ha_gs_protocol_rejected_callback

ha_gs_announcement_callback

ha_gs_responsiveness_callback

subscriber

notification

ha_gs_delayed_error_callback

ha_gs_subscriber_callback

ha_gs_responsiveness_callback

Group Services
Chapter 7. Getting notifications 121

When the ha_gs_init, ha_gs_join, or ha_gs_subscribe subroutine is called, it
registers the addresses of appropriate callback subroutines to a table that
resides in the data segment. The ha_gs_init subroutine also creates a socket
to communicate with the Group Services daemon.

The GS client program must call the ha_gs_dispatch subroutine regularly.
The ha_gs_dispatch subroutine checks the socket to see whether the Group
Services daemon has written notifications to it. If it has, the subroutine reads
the notifications and executes callback subroutines according to the
notifications. The subroutine uses the table that contains the address of
callback subroutines.

The GS client process itself must not read or write directly on the socket.

Figure 85 on page 123 illustrates the mechanism of the ha_gs_dispatch
subroutine and the callback subroutine.
122 RSCT Group Services: Programming Cluster Applications

Figure 85. ha_gs_dispatch subroutine and callback subroutines

7.1.3 Programming hints
When a GS client registers its callback subroutines, Group Services requires
their addresses.

Callback subroutine

Callback subroutine

Callback subroutine

Data segment

Callback subroutine address

Shared library text segment

ha_gs_init
ha_gs_join
ha_gs_subscribe

ha_gs_dispatch

Process text segment

Subroutine call

Callback subroutine
Address registration

Callback subroutine address

Callback subroutine address

Socket access

Callback subroutine
execution

Group Services daemon

Notification

Socket

GS client process
Chapter 7. Getting notifications 123

Group Services provides a number of separate callback routines, each of
which expects to receive a different type of notification. However, each
notification block also specifies its type. This design allows you to code
callback routines using either of the following two strategies or a combination
of the two:

• Code a number of specialized callback routines.

This reduces the amount of checking each callback routine must perform
when it receives a notification. You might want to use this approach if
performance and path length are considerations when your application
handles a notification.

• Code a general callback routine that parses the notifications it receives.

This reduces the number of callback routines you need to code, but it
increases the amount of work each routine must do to determine the type
of notification it has received.

7.2 Common design

This section provides information on notification designs that are commonly
used for all the notifications.

7.2.1 Callback subroutine prototypes
All callback subroutines use only one parameter. Figure 86 on page 125
shows prototypes of callback subroutines. Again, the program can use any
name for callback subroutines; however, this book uses the names shown in
Table 3 on page 119 for readability.
124 RSCT Group Services: Programming Cluster Applications

Figure 86. The callback subroutine prototypes

7.2.2 Notification blocks and their fields
The parameter of a callback subroutine points to a notification block. The
notification blocks are defined differently from each callback subroutine:

• A responsiveness notification block is defined by the
ha_gs_responsiveness_notification_t type.

• A delayed error notification block is defined by the
ha_gs_delayed_error_notification_t type.

• An n-phase notification block is defined by the
ha_gs_n_phase_notification_t type.

• A protocol approved notification block is defined by the
ha_gs_approved_notification_t type.

• A protocol rejected notification block is defined by the
ha_gs_rejected_notification_t type.

• An announcement notification block is defined by the
ha_gs_announcement_notification_t type.

• A subscriber notification block is defined by the
ha_gs_subscriber_notification_t type.

ha_gs_callback_rc_t ha_gs_responsiveness_callback(
const ha_gs_responsiveness_notification_t *);

void ha_gs_delayed_error_callback(
const ha_gs_delayed_error_notification_t *);

void ha_gs_n_phase_callback(
const ha_gs_n_phase_notification_t *);

void ha_gs_protocol_approved_callback(
const ha_gs_approved_notification_t *);

void ha_gs_protocol_rejected_callback(
const ha_gs_rejected_notification_t *);

void ha_gs_announcement_callback(
const ha_gs_announcement_notification_t *);

void ha_gs_subscriber_callback(
const ha_gs_subscription_notification_t *);
Chapter 7. Getting notifications 125

Each notification block contains two to seven fields as summarized in Table 5.
An asterisks (*) indicates that a field is a pointer.

Table 5. Notification blocks and their fields

Field in notification block

R
es

p
o

n
si

ve
n

es
s

n
o

ti
fi

ca
ti

o
n

b
lo

ck

D
el

ay
ed

er
ro

r
n

o
ti

fi
ca

ti
o

n
b

lo
ck

n
-p

h
as

e
n

o
ti

fi
ca

ti
o

n
b

lo
ck

P
ro

to
co

l
ap

p
ro

ve
d

n
o

ti
fi

ca
ti

o
n

b
lo

ck

P
ro

to
co

lr
ej

ec
te

d
n

o
ti

fi
ca

ti
o

n
b

lo
ck

A
n

n
o

u
n

ce
m

en
t

n
o

ti
fi

ca
ti

o
n

b
lo

ck

S
u

b
sc

ri
b

er
n

o
ti

fi
ca

ti
o

n
b

lo
ck

gs_notification_type O O O O O O O

gs_provider_token O O O O

gs_subscriber_token O

gs_protocol_type O O O O

gs_summary_code O O O O

*gs_proposal O O O

gs_responsiveness_information O

gs_request_token O

gs_delayed_return_code O

*gs_failing_request O

gs_time_limit O

*gs_announcement O

gs_subscription_type O

*gs_state_value O

*gs_full_membership O

*gs_changing_membership O

*gs_subscription_special_data O
126 RSCT Group Services: Programming Cluster Applications

The following sections describe the commonly-used fields in a notification
block.

7.2.2.1 gs_notification_type field
The gs_notification_type field contains the type of notification. It is defined by
the ha_gs_notification_type_t type shown in Figure 87.

Figure 87. The ha_gs_notification_type_t type

Each value indicates the following information:

HA_GS_RESPONSIVENESS_NOTIFICATION
This value indicates that a notification block is for a
responsiveness notification.

HA_GS_QUERY_NOTIFICATION
This value is reserved for IBM use.

HA_GS_DELAYED_ERROR_NOTIFICATION
This value indicates that a notification block is for a delayed error
notification.

HA_GS_N_PHASE_NOTIFICATION
This value indicates that a notification block is for an n-phase
notification.

HA_GS_APPROVED_NOTIFICATION
This value indicates that a notification block is for a protocol
approved notification.

HA_GS_REJECTED_NOTIFICATION
This value indicates that a notification block is for a protocol
rejected notification.

HA_GS_ANNOUNCEMENT_NOTIFICATION
This value indicates that a notification block is for an
announcement notification.

typedef enum {
HA_GS_RESPONSIVENESS_NOTIFICATION,
HA_GS_QUERY_NOTIFICATION,
HA_GS_DELAYED_ERROR_NOTIFICATION,
HA_GS_N_PHASE_NOTIFICATION,
HA_GS_APPROVED_NOTIFICATION,
HA_GS_REJECTED_NOTIFICATION,
HA_GS_ANNOUNCEMENT_NOTIFICATION,
HA_GS_SUBSCRIPTION_NOTIFICATION,
HA_GS_MERGE_NOTIFICATION

} ha_gs_notification_type_t;
Chapter 7. Getting notifications 127

HA_GS_SUBSCRIPTION_NOTIFICATION
This value indicates that a notification block is for a subscriber
notification.

HA_GS_MERGE_NOTIFICATION
This value is reserved for IBM use.

7.2.2.2 gs_provider_token field
The gs_provider_token field contains a token that identifies the caller as a
provider of the group. The token indicates to which provider the notification is
delivered. An application needs to use this field in case it is a provider of
multiple groups. The token is defined by the ha_gs_token_t type as shown in
Figure 7 on page 14.

7.2.2.3 gs_subscriber_token field
The gs_subscribe_token field contains a token that identifies the caller as a
subscriber of the group. The token indicates to which subscriber the
notification is delivered. An application needs to use this field in case it is a
subscriber of multiple groups. The token is defined by the ha_gs_token_t type
as shown in Figure 7 on page 14.

7.2.2.4 gs_protocol_type field
The gs_protocol_type field contains the protocol type for which the
notification is being delivered. It is defined by the ha_gs_request_t type
shown in Figure 88.

Figure 88. The ha_gs_request_t type

Each value indicates the following information:

typedef enum {
HA_GS_RESPONSIVENESS,
HA_GS_JOIN,
HA_GS_FAILURE_LEAVE,
HA_GS_LEAVE,
HA_GS_EXPEL,
HA_GS_STATE_VALUE_CHANGE,
HA_GS_PROVIDER_MESSAGE,
HA_GS_CAST_OUT,
HA_GS_SOURCE_STATE_REFLECTION,
HA_GS_MERGE,
HA_GS_SUBSCRIPTION,
HA_GS_GROUP_ATTRIBUTE_CHANGE,
MAX_REQUEST = HA_GS_GROUP_ATTRIBUTE_CHANGE

} ha_gs_request_t;
128 RSCT Group Services: Programming Cluster Applications

HA_GS_JOIN
This value indicates that a notification is delivered for a join
protocol.

HA_GS_FAILURE_LEAVE
This value indicates that a notification is delivered for a failure
leave protocol.

HA_GS_LEAVE
This value indicates that a notification is delivered for a voluntary
leave protocol.

HA_GS_EXPEL
This value indicates that a notification is delivered for an expel
protocol.

HA_GS_STATE_VALUE_CHANGE
This value indicates that a notification is delivered for a state value
change protocol.

HA_GS_PROVIDER_MESSAGE
This value indicates that a notification is delivered for a
provider-broadcast message protocol.

HA_GS_CAST_OUT
This value indicates that a notification is delivered for a cast-out
protocol.

HA_GS_SOURCE_STATE_REFLECTION
This value indicates that a notification is delivered for a
source-state reflection protocol.

HA_GS_MERGE
This value is reserved for IBM use.

HA_GS_GROUP_ATTRIBUTE_CHANGE
This value indicates that a notification is delivered for a
change-attributes protocol.

7.2.2.5 gs_summary_code field
The gs_summary_code field contains one or more flags that indicate a
summary of notification. Information includes: Voting activities,
responsiveness checks, and/or deactivate-on-failure activities. The field can
contain one or more of the flags defined by the ha_gs_summary_code_t type
shown in Figure 89 on page 130.
Chapter 7. Getting notifications 129

Figure 89. The ha_gs_summary_code_t type

Each value indicates the following information:

HA_GS_EXPLICIT_APPROVE
This flag is set for a protocol approved notification if all approval
votes in the tally were explicitly submitted by the providers.
No other flags are set with this flag.

HA_GS_EXPLICIT_REJECT
This flag is set for a protocol rejected notification if one or more
rejection votes in the tally were explicitly submitted by the
providers.

HA_GS_DEFAULT_APPROVE
This flag is set if one or more approval votes in the tally were
recorded by default. If this flag is set, the
HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both are also set.

HA_GS_DEFAULT_REJECT
This flag is set if one or more rejection votes in the tally were
recorded by default. If this flag is set, the
HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both are also set.

HA_GS_TIME_LIMIT_EXCEEDED
This flag is set when a default approval vote or a default rejection
vote was recorded because one or more providers failed to vote in
time.

typedef enum {
HA_GS_MIN_SUMMARY_CODE = 0x0001,
HA_GS_EXPLICIT_APPROVE = 0x0001,
HA_GS_EXPLICIT_REJECT = 0x0002,
HA_GS_DEFAULT_APPROVE = 0x0004,
HA_GS_DEFAULT_REJECT = 0x0008,
HA_GS_TIME_LIMIT_EXCEEDED = 0x0010,
HA_GS_PROVIDER_FAILED = 0x0020,
HA_GS_RESPONSIVENESS_NO_RESPONSE = 0x0040,
HA_GS_RESPONSIVENESS_RESPONSE = 0x0080,
HA_GS_GROUP_DISSOLVED = 0x0100,
HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY = 0x0200,
HA_GS_DEACTIVATE_UNSUCCESSFUL = 0x0400,
HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED = 0x0800,
HA_GS_GROUP_ATTRIBUTES_CHANGED = 0x1000,
HA_GS_MAX_SUMMARY_CODE = 0x1000

} ha_gs_summary_code_t;
130 RSCT Group Services: Programming Cluster Applications

HA_GS_PROVIDER_FAILED
This flag is set when a default approval vote or a default rejection
vote was recorded because one or more providers failed (because
the node or process failed). The reason for the failure will be
provided during the subsequent failure leave protocol.

HA_GS_RESPONSIVENESS_NO_RESPONSE
This flag is set for an announcement notification when one or more
providers failed a responsiveness check. The gs_announcement
field of the announcement notification block points to the list of
providers that failed the responsiveness check.

HA_GS_RESPONSIVENESS_RESPONSE
This flag is set for an announcement notification when one or more
providers that previously failed responsiveness checks are now
responding successfully. The gs_announcement field of the
announcement notification block points to the list of providers that
are now responding successfully.

HA_GS_GROUP_DISSOLVED
This flag is reserved for IBM use.

HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY
This flag is set for an announcement notification when the Group
Services daemon has died.

HA_GS_DEACTIVATE_UNSUCCESSFUL
This flag is set when a deactivate script exited with an
unsuccessful return value.

HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED
This flag is set when a deactivate script did not exit within the
specified time limit.

HA_GS_GROUP_ATTRIBUTES_CHANGED
This flag is reserved for IBM use.
Chapter 7. Getting notifications 131

Notification and its possible summary codes are summarized in Table 6.

Table 6. Notification and its possible summary codes

7.2.2.6 gs_proposal field
The gs_proposal field contains a pointer to the proposal block for the
proposal on which the vote is requested. The proposal block is defined by the
ha_gs_proposal_t type shown in Figure 90 on page 133.

Summary code

n
-p

h
as

e
n

o
ti

fi
ca

ti
o

n

P
ro

to
co

l
ap

p
ro

ve
d

n
o

ti
fi

ca
ti

o
n

P
ro

to
co

lr
ej

ec
te

d
n

o
ti

fi
ca

ti
o

n

A
n

n
o

u
n

ce
m

en
t

n
o

ti
fi

ca
ti

o
n

HA_GS_EXPLICIT_APPROVE O

HA_GS_EXPLICIT_REJECT O

HA_GS_DEFAULT_APPROVE O O

HA_GS_DEFAULT_REJECT O O

HA_GS_TIME_LIMIT_EXCEEDED O O O O

HA_GS_PROVIDER_FAILED O O O

HA_GS_RESPONSIVENESS_NO_RESPONSE O

HA_GS_RESPONSIVENESS_RESPONSE O

HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY O

HA_GS_DEACTIVATE_UNSUCCESSFUL O O

HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED O O
132 RSCT Group Services: Programming Cluster Applications

Figure 90. The proposal block

Each field contains the following information:

gs_phase_info
This field contains information about the type of protocol that is
executing and the phase number to which this notification applies.
The field is defined by the ha_gs_phase_info_t type shown in
Figure 91.

Figure 91. The ha_gs_phase_info_t type

Each field contains the following information:

gs_num_phases
This field contains HA_GS_1_PHASE if the executing protocol is a
one-phase or HA_GS_N_PHASE if the executing protocol is an
n-phase.

gs_phase_number
This field contains the phase number to which the notification
applies.

gs_proposed_by
This field contains the provider information block that identifies the
provider (or the Group Services subsystem itself) that proposed
the executing protocol. The provider information block is defined
as shown in Figure 8 on page 14.
On all join protocols, this field always contains the provider

typedef struct {
ha_gs_phase_info_t gs_phase_info;
ha_gs_provider_t gs_proposed_by;
ha_gs_updates_t gs_whats_changed;
ha_gs_membership_t *gs_current_providers;
ha_gs_membership_t *gs_changing_providers;
ha_gs_leave_array_t *gs_leave_info;
ha_gs_expel_info_t *gs_expel_info;
ha_gs_state_value_t *gs_current_state_value;
ha_gs_state_value_t *gs_proposed_state_value;
ha_gs_state_value_t *gs_source_state_value;
ha_gs_provider_message_t *gs_provider_message;
ha_gs_group_attributes_t *gs_new_group_attributes;

} ha_gs_proposal_t;

typedef struct {
unsigned short gs_num_phases;
unsigned short gs_phase_number;

} ha_gs_phase_info_t;
Chapter 7. Getting notifications 133

information block for the GS client that is executing the callback
subroutine rather than the provider that proposed the join protocol.
This allows each provider to capture its own provider information
block.

gs_whats_changed
This field contains one or more flags that indicate whether the
membership list and/or the group state value is changed and/or if
the notification contains a provider-broadcast message. The flags
are defined by the ha_gs_updates_t type shown in Figure 92.

Figure 92. The ha_gs_updates_t type

Each value indicates the following information:

HA_GS_NO_CHANGE
No fields have been updated from a previous notification.

HA_GS_PROPOSED_MEMBERSHIP
Membership changes are proposed. The gs_changing_providers
field points to a list of joining or leaving providers. For joining
providers, the gs_current_providers field points to a list of the
current members of the group.

HA_GS_ONGOING_MEMBERSHIP
An ongoing membership change protocol is executing. The
gs_changing_providers field points to a list of joining or leaving
providers and this field will not change during the protocol.

HA_GS_PROPOSED_STATE_VALUE
A change to the group state value is proposed. The
gs_proposed_state_value field points to a proposed new group

typedef enum {
HA_GS_NO_CHANGE = 0x0000,
HA_GS_PROPOSED_MEMBERSHIP = 0x0001,
HA_GS_ONGOING_MEMBERSHIP = 0x0002,
HA_GS_PROPOSED_STATE_VALUE = 0x0004,
HA_GS_ONGOING_STATE_VALUE = 0x0008,
HA_GS_UPDATED_PROVIDER_MESSAGE = 0x0010,
HA_GS_UPDATED_MEMBERSHIP = 0x0020,
HA_GS_REJECTED_MEMBERSHIP = 0x0040,
HA_GS_UPDATED_STATE_VALUE = 0x0080,
HA_GS_REFLECTED_SOURCE_STATE_VALUE = 0x0100,
HA_GS_EXPEL_INFORMATION = 0x0200,
HA_GS_PROPOSED_GROUP_ATTRIBUTES = 0x0400,
HA_GS_ONGOING_GROUP_ATTRIBUTES = 0x0800,
HA_GS_UPDATED_GROUP_ATTRIBUTES = 0x1000,
HA_GS_REJECTED_GROUP_ATTRIBUTES = 0x2000

} ha_gs_updates_t;
134 RSCT Group Services: Programming Cluster Applications

state value. If providers submit group state value changes with
their voting responses, this field may be updated during the
protocol. The gs_current_state_value field contains the group’s
current (last approved) state value.

HA_GS_ONGOING_STATE_VALUE
The gs_proposed_state_value field points to a proposed new
group state value, but the value is unchanged from a previous
notification. The gs_current_state_value field contains the group’s
current (last approved) state value.

HA_GS_UPDATED_PROVIDER_MESSAGE
The gs_provider_message field points to a provider-broadcast
message. This flag may be set on both n-phase notification and
final notifications (protocol approved or protocol rejected). A
message is presented only once.

HA_GS_REFLECTED_SOURCE_STATE_VALUE
The source-group updated its group state value during either a
membership change protocol or a group state value change
protocol. The source-group’s state value is presented only with the
first notification that is given to the target-group(s). It is the
responsibility of the target-group providers to remember it if it is
necessary for their correct operation.

HA_GS_PROPOSED_GROUP_ATTRIBUTES
The gs_new_group_attributes field contains the new group
attributes that were proposed by a change-attributes protocol.

HA_GS_ONGOING_GROUP_ATTRIBUTES
The gs_new_group_attributes field contains the new group
attributes that were proposed by a change-attributes protocol, and
these are unchanged from a previous notification.

HA_GS_UPDATED_GROUP_ATTRIBUTES
This flag is set on the protocol approved notification for a
change-attributes protocol. The gs_new_group_attributes field
contains the new group attributes.

HA_GS_REJECTED_GROUP_ATTRIBUTES
This flag is set on the protocol rejected notification for a
change-attributes protocol. The gs_new_group_attributes field
contains the rejected group attributes.

gs_current_providers
This field contains a pointer to a membership information block
shown in Figure 2 on page 10. The block contains a list of
providers that currently belong to the group.
Chapter 7. Getting notifications 135

gs_changing_providers
This field contains a pointer to a membership information block
shown in Figure 2 on page 10. The block contains a list of
providers that are joining or leaving the group through the
protocol.

gs_leave_info
This field contains a pointer to an array that contains the reason
codes for each provider specified in the gs_changing_providers
field that is leaving the group. The field is defined by the
ha_gs_leave_array_t type shown in Figure 93.

Figure 93. The ha_gs_leave_array_t type

Each field contains the following information:

gs_count
This field contains the number of providers that are leaving.

gs_leave_codes
This field contains a pointer to an entry for each provider that is
leaving the group that specifies the protocol and the reason for the
leave. The field is defined by the ha_gs_leave_info_t type shown
in Figure 94 on page 136. The leave reason entries are in the
same order in which the providers are listed in the
gs_changing_providers field.

Figure 94. The ha_gs_leave_info_t type

Each field contains the following information:

gs_voluntary_or_failure
This field contains the protocol that caused providers to leave. It
can contain one or more of the flags defined by the
ha_gs_leave_reasons_t type shown in Figure 95.

typedef struct {
unsigned int gs_count;
ha_gs_leave_info_t *gs_leave_codes;

} ha_gs_leave_array_t;

typedef struct {
unsigned int gs_voluntary_or_failure;
unsigned int gs_voluntary_leave_code;

} ha_gs_leave_info_t;
136 RSCT Group Services: Programming Cluster Applications

Figure 95. The ha_gs_leave_reasons_t type

Each value indicates the following information:

HA_GS_VOLUNTARY_LEAVE
The provider has requested to leave voluntarily. If this flag is set, it
is the only flag in the gs_voluntary_or_failure field.
The gs_voluntary_leave_code field contains the
application-defined leave code that was specified by a voluntary
leave protocol.
If this flag is not set, the gs_voluntary_leave_code field is not used
and is undefined.

HA_GS_PROVIDER_FAILURE
The provider is leaving the group because its process has failed.
This flag could be set with the HA_GS_HOST_FAILURE flag.

HA_GS_HOST_FAILURE
The provider is leaving the group because its node has failed. This
flag could be set with the HA_GS_PROVIDER_FAILURE flag.

HA_GS_PROVIDER_EXPELLED
The provider is leaving the group because of an expel protocol.

HA_GS_SOURCE_PROVIDER_LEAVE
The provider is being cast out of the group because of a cast-out
protocol. If a node failure causes both a source-group and a
target-group to lose providers, this flag could be set with the
HA_GS_HOST_FAILURE flag.

HA_GS_PROVIDER_SAID_GOODBYE
The provider proposed a goodbye protocol and has left the group.

gs_voluntary_leave_code
This field contains the application-defined leave code that was
specified on input to the ha_gs_leave subroutine. Refer to the
gs_leave_code field in Figure 48 on page 76.

gs_expel_info
This field contains a pointer to an expel information block. The

typedef enum {
HA_GS_VOLUNTARY_LEAVE = 0x0001,
HA_GS_PROVIDER_FAILURE = 0x0002,
HA_GS_HOST_FAILURE = 0x0004,
HA_GS_PROVIDER_EXPELLED = 0x0008,
HA_GS_SOURCE_PROVIDER_LEAVE = 0x0010,
HA_GS_PROVIDER_SAID_GOODBYE = 0x0020

} ha_gs_leave_reasons_t;
Chapter 7. Getting notifications 137

block is defined by the ha_gs_expel_info_t type shown in Figure
96.

Figure 96. The expel information block

Each field contains the following information:

gs_deactivate_phase
This field contains the phase number in which the deactivate script
should be executed against any providers that are being expelled.
If this field contains 0, no deactivate script is executed.

gs_expel_flag_length
This field contains the length of the expel flag.

gs_expel_flag
This field contains a flag that is to be passed to the deactivate
script. It is a pointer to a null-terminated string with a maximum
length of 256 bytes. If the pointer is null, no flag is passed to the
deactivate script.

gs_current_state_value
This field contains a pointer to a group state value information
block (shown in Figure 3 on page 11) that contains the current
group state value. This is the latest approved group state value,
which is the same group state value as at the beginning of the
protocol.

gs_proposed_state_value
This field contains a pointer to a group state value information
block (shown in Figure 3 on page 11) that contains the proposed
value for the group state value. The gs_whats_changed field
contains a value of either HA_GS_PROPOSED_STATE_VALUE or
HA_GS_ONGOING_STATE_VALUE. If there is no new state value
for the protocol, this field is null.

gs_source_state_value
This field contains a pointer to a group state value information
block (shown in Figure 3 on page 11) that contains the updated
group state value of this group’s source-group, if the proposal is
the result of a change in the source-group. The

typedef struct {
int gs_deactivate_phase;
int gs_expel_flag_length;
char *gs_expel_flag;

} ha_gs_expel_info_t;
138 RSCT Group Services: Programming Cluster Applications

gs_whats_changed field contains a value of
HA_GS_REFLECTED_SOURCE_VALUE. Otherwise, this field is
null.

gs_provider_message
This field contains a pointer to a provider-broadcast message
block (shown in Figure 4 on page 11) that contains the
provider-broadcast message, if any. The gs_whats_changed field
contains a value of HA_GS_UPDATED_PROVIDER_MESSAGE.
Otherwise, the field is null.

gs_new_group_attributes
This field contains a pointer to a group attributes block (shown in
Figure 1 on page 8) that contains the proposed value for the group
attributes. The gs_whats_changed field contains a value of either
HA_GS_PROPOSED_GROUP_ATTRIBUTES,
HA_GS_ONGOING_GROUP_ATTRIBUTES,
HA_GS_UPDATED_GROUP_ATTRIBUTES, or
HA_GS_REJECTED_GROUP_ATTRIBUTES. If there are no new
group attributes for the protocol, this field is null.

7.3 Responsiveness notification

The responsiveness callback routine is intended to provide Group Services
with a means of removing a provider that fails a responsiveness check. The
callback subroutine should perform any cleanup actions that are required by
the GS client. It also allows the GS client to perform any periodic validity
checks on its own operation or its environment that may be needed.

Group Services performs responsiveness checks once the GS client has
initialized. If a responsiveness check fails and the GS client is a provider,
Group Services places it on a list of nonresponsive providers. Then, Group
Services sends an announcement notification containing the list to all of the
group’s providers. Group Services takes no other direct action. For more
information on an announcement notification, refer to Section 7.8,
“Announcement notification” on page 146.

Upon receipt of the announcement notification, a provider could propose an
expel protocol to remove the nonresponsive providers from the group, if
appropriate. For more information on an expel protocol, refer to Section 5.8,
“Expel protocol” on page 81. Group Services tries to contact nonresponsive
providers. If a previously nonresponsive provider responds, Group Services
sends an announcement notification containing the list to all of the group’s
providers.
Chapter 7. Getting notifications 139

Note that because Group Services continues to perform responsiveness
checks for nonresponsive providers, the group can determine how quickly it
should respond to announcement notifications. A group can expel a
nonresponsive provider after receiving the first announcement notification, or
it can wait to see if the provider becomes responsive again.

If a GS client is a subscriber or no part of a provider or a subscriber, it is just
ignored.

For more information on a responsiveness check facility, refer to Section 3.2,
“Responsiveness check facility” on page 31.

7.3.1 Subroutine call
To deliver a responsiveness notification to GS clients, Group Services uses
their ha_gs_responsiveness_callback subroutine. At input, Group Services
provides a pointer to the responsiveness notification block shown in Figure
97.

Figure 97. The responsiveness notification block

Each field contains the following information:

gs_notification_type
This field contains a value of
HA_GS_RESPONSIVENESS_NOTIFICATION defined by the
ha_gs_notification_type_t type shown in Figure 87 on page 127.

gs_responsiveness_information
This field contains the pointer to the responsiveness control block
shown in Figure 20 on page 32. It was specified on input to the
ha_gs_init subroutine when this process initialized itself with the
Group Services.

7.3.2 Programming hints
The ha_gs_responsiveness_callback subroutine is the only callback
subroutine that requires a return code. If the GS client is operational, it should
return a value of HA_GS_OK. If the GS client has detected an internal
problem that prevents its correct operation, it should return a value of

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_responsiveness_t gs_responsiveness_information;

} ha_gs_responsiveness_notification_t;
140 RSCT Group Services: Programming Cluster Applications

HA_GS_CALLBACK_NOT_OK. These values are defined by the
ha_gs_callback_rc_t type shown in Figure 98.

Figure 98. The ha_gs_callback_rc_t type

7.4 Delayed error notification

An application must prepare for two kind of errors in the Group Services
environment. One is called a synchronous error and is returned immediately.
This type of error is commonly used for other subroutines. The other type of
error is unique to Group Services and is called an asynchronous error. No
error was detected when an application called a subroutine; however, Group
Services found the reason that it could not execute that subroutine later. In
this case, Group Services delivers an asynchronous error code with a
notification. This notification is called a delayed error notification.

For more information about synchronous/asynchronous errors, refer to
Section 8.1, “Synchronous/asynchronous errors” on page 153.

7.4.1 Subroutine call
To deliver a delayed error notification to GS clients, Group Services uses their
ha_gs_delayed_error_callback subroutine. On input, Group Services
provides a pointer to the delayed error notification block shown in Figure 99.

Figure 99. The delayed error notification block

Each field contains the following information:

gs_notification_type
This field contains the

typedef enum {
HA_GS_CALLBACK_NOT_OK,
HA_GS_CALLBACK_OK

} ha_gs_callback_rc_t;

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_request_token;
ha_gs_request_t gs_protocol_type;
ha_gs_rc_t gs_delayed_return_code;
ha_gs_proposal_info_t *gs_failing_request;

} ha_gs_delayed_error_notification_t;
Chapter 7. Getting notifications 141

HA_GS_DELAYED_ERROR_NOTIFICATION value described in
Section 7.2.2.1, “gs_notification_type field” on page 127.

gs_request_token
This field contains a provider token or subscriber token described
in Section 7.2.2.2, “gs_provider_token field” on page 128, or in
Section 7.2.2.3, “gs_subscriber_token field” on page 128.

gs_protocol_type
This field contains the protocol type described in Section 7.2.2.4,
“gs_protocol_type field” on page 128.

gs_delayed_return_code
This field contains the error number of the delayed error. For error
codes, refer to Section 8.2, “Error code” on page 154.

gs_proposal
This field contains the pointer to the proposal information block
described in Section 7.2.2.6, “gs_proposal field” on page 132.

7.5 N-phase notification

If a proposed protocol is an n-phase protocol, providers receive an n-phase
notification as the first notification. The callback subroutine should check its
environment or perform its operation according to the proposed protocol.

The providers are expected to vote to approve, reject, or continue for the
proposed protocol within the voting time limit. To do this, they call the
ha_gs_vote subroutine. For more information on the ha_gs_vote subroutine,
refer to Section 5.12, “Voting on proposed protocol” on page 106.

If a provider fails to vote within the voting time limit, the Group Services
applies the group’s default vote value for this provider for the rest of the
phases of the ongoing protocol. For more information on voting, refer to
Section 3.1.2, “Voting phase” on page 20.

7.5.1 Subroutine call
To deliver an n-phase notification to GS clients, Group Services uses their
ha_gs_n_phase_callback subroutine. On input, Group Services provides a
pointer to the n-phase notification block shown in Figure 100 on page 143.
142 RSCT Group Services: Programming Cluster Applications

Figure 100. The n-phase notification block

Each field contains the following information:

gs_notification_type
This field contains a value of HA_GS_N_PHASE_NOTIFICATION
described in Section 7.2.2.1, “gs_notification_type field” on page
127.

gs_provider_token
This field contains a provider token described in Section 7.2.2.2,
“gs_provider_token field” on page 128.

gs_protocol_type
This field contains the protocol type described in Section 7.2.2.4,
“gs_protocol_type field” on page 128.

gs_summary_code
This field contains summary codes described in Section 7.2.2.5,
“gs_summary_code field” on page 129.

gs_time_limit
This field contains the time limit, in seconds, within which the GS
client must submit its vote for this notification.

gs_proposal
This field contains the pointer to the proposal information block
described in Section 7.2.2.6, “gs_proposal field” on page 132.

7.6 Protocol approved notification

When a proposed protocol has been approved, Group Services delivers a
protocol approved notification to all the providers. The subscribers also
receive this notification if they have a subscriber for it.

For an n-phase protocol, this notification is delivered after the protocol has
been approved by voting. A one-phase protocol is automatically approved and
receives this notification.

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_request_t gs_protocol_type;
ha_gs_summary_code_t gs_summary_code;
ha_gs_time_limit_t gs_time_limit;
ha_gs_proposal_t *gs_proposal;

} ha_gs_n_phase_notification_t;
Chapter 7. Getting notifications 143

A notification contains the information if one or more approval votes in the
tally were recorded by default. It also contains its reason: Votes were not
submitted within the voting time limit, or providers failed due to the node or
process failure. However, the notification does not contain the list of providers
that failed to vote. Therefore, the Group Services also delivers an
announcement notification containing this list. For more information on an
announcement notification, refer to Section 7.8, “Announcement notification”
on page 146.

7.6.1 Subroutine call
To deliver a protocol approved notification to GS clients, Group Services uses
their ha_gs_protocol_approved_callback subroutine. On input, Group
Services provides a pointer to the protocol approved notification block shown
in Figure 101.

Figure 101. The protocol approved notification block

Each field contains the following information:

gs_notification_type
This field contains a value of
HA_GS_APPROVED_NOTIFICATION described in Section
7.2.2.1, “gs_notification_type field” on page 127.

gs_provider_token
This field contains a provider token described in Section 7.2.2.2,
“gs_provider_token field” on page 128.

gs_protocol_type
This field contains the protocol type described in Section 7.2.2.4,
“gs_protocol_type field” on page 128.

gs_summary_code
This field contains summary codes described in Section 7.2.2.5,
“gs_summary_code field” on page 129.

gs_proposal
This field contains the pointer to the proposal information block
described in Section 7.2.2.6, “gs_proposal field” on page 132.

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_request_t gs_protocol_type;
ha_gs_summary_code_t gs_summary_code;
ha_gs_proposal_t *gs_proposal;

} ha_gs_approved_notification_t;
144 RSCT Group Services: Programming Cluster Applications

7.7 Protocol rejected notification

When a proposed protocol has been rejected, Group Services delivers a
protocol rejected notification to all the providers. The subscribers do not
receive this notification.

For an n-phase protocol, this notification is delivered after the protocol has
been rejected by voting. For a one-phase protocol, this notification is not
delivered because it cannot be rejected.

A notification contains the information if one or more rejection votes in the
tally were recorded by default. It also contains its reason: Votes were not
submitted within the voting time limit, or providers failed due to the node or
process failure. However, the notification does not contain the list of providers
that failed to vote. Therefore, Group Services also delivers an announcement
notification containing this list. For more information on an announcement
notification, refer to Section 7.8, “Announcement notification” on page 146.

7.7.1 Subroutine call
To deliver a protocol rejected notification to GS clients, Group Services uses
their ha_gs_protocol_rejected_callback subroutine. On input, Group Services
provides a pointer to the protocol rejected notification block shown in Figure
102.

Figure 102. The protocol rejected notification block

Each field contains the following information:

gs_notification_type
This field contains a value of HA_GS_REJECTED_NOTIFICATION
described in Section 7.2.2.1, “gs_notification_type field” on page
127.

gs_provider_token
This field contains a provider token described in Section 7.2.2.2,
“gs_provider_token field” on page 128.

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_request_t gs_protocol_type;
ha_gs_summary_code_t gs_summary_code;
ha_gs_proposal_t *gs_proposal;

} ha_gs_rejected_notification_t;
Chapter 7. Getting notifications 145

gs_protocol_type
This field contains the protocol type described in Section 7.2.2.4,
“gs_protocol_type field” on page 128.

gs_summary_code
This field contains summary codes described in Section 7.2.2.5,
“gs_summary_code field” on page 129.

gs_proposal
This field contains the pointer to the proposal information block
described in Section 7.2.2.6, “gs_proposal field” on page 132.

7.8 Announcement notification

When abnormal conditions (other than a complete failure) that affect one or
more providers in the group occur, Group Services delivers an announcement
notification to providers.

How to deal with announcement notifications is up to the application itself. A
possible reaction may be proposing an expel protocol against the faulty
provider by one of the other group members. The approval of an expel
protocol results in the removal of the provider from the group.

A provider receives announcement notifications for the following reasons:

• One or more providers failed to vote within the voting time limit.

• One or more providers failed a responsiveness check.

• One or more providers that previously failed responsiveness checks are
now responding successfully.

• The GS daemon has died.

7.8.1 Subroutine call
To deliver an announcement notification to GS clients, Group Services uses
their ha_gs_announcement_callback subroutine. On input, Group Services
provides a pointer to the announcement notification block shown in Figure
103 on page 147.
146 RSCT Group Services: Programming Cluster Applications

Figure 103. The announcement notification block

Each field contains the following information:

gs_notification_type
This field contains a value of
HA_GS_ANNOUNCEMENT_NOTIFICATION described in Section
7.2.2.1, “gs_notification_type field” on page 127.

gs_provider_token
This field contains a provider token that is described in Section
7.2.2.2, “gs_provider_token field” on page 128.

gs_summary_code
This field contains summary codes described in Section 7.2.2.5,
“gs_summary_code field” on page 129.

gs_announcement
This field contains the pointer to a membership information block
(shown in Figure 2 on page 10) of providers that are affected by
the condition that is being reported by this announcement.

7.9 Subscription notification

When a proposed protocol changes the membership list and/or the group
state value, Group Services delivers a subscription notification to the
subscribers. If subscribers want to receive theses notifications, they must
subscribe to them. For information about subscribing to a group, refer to
Section 6.1, “Subscribe to a group” on page 115.

A subscriber receives subscription notifications for the following reasons:

• The membership list is updated.

• The group state value is updated.

• The group that was subscribed to has dissolved because all providers
have left the group.
The subscription is deactivated. To start receiving notifications again, the
subscriber must resubscribe to the group. If the group does not exist

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_summary_code_t gs_summary_code;
ha_gs_membership_t *gs_announcement;

} ha_gs_announcement_notification_t;
Chapter 7. Getting notifications 147

because providers have not rejoined it, each subscription request receives
an asynchronous error code of HA_GS_UNKNOWN_GROUP.

• The group that was subscribed to has dissolved because the Group
Services daemon has died.
The subscription is deactivated, and the subscriber’s connection to the
Group Services daemon is terminated. Before calling any Group Services
subroutines, the (former) subscriber must wait until control returns from
the ha_gs_dispatch subroutine. Failure to do so may result in an
application hang.
After the ha_gs_dispatch subroutine returns, the former subscriber must
re-initialize the connection to Group Services by calling the ha_gs_init
subroutine and then taking any other necessary actions to resubscribe to
the group.

7.9.1 Subroutine call
To deliver a subscription notification to subscribers, Group Services uses
their ha_gs_subscriber_callback subroutine. On input, the Group Services
provides a pointer to the subscription notification block shown in Figure 104.

Figure 104. The subscription notification block

Each field contains the following information:

gs_notification_type
This field contains a value of
HA_GS_SUBSCRIPTION_NOTIFICATION described in Section
7.2.2.1, “gs_notification_type field” on page 127.

gs_subscriber_token
This field contains a subscriber token described in Section 7.2.2.3,
“gs_subscriber_token field” on page 128.

gs_subscription_type
This field contains the type of change for which this subscription
notification is being delivered. It can contain one or more of the

typedef struct {
ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_subscriber_token;
ha_gs_subscription_type_t gs_subscription_type;
ha_gs_state_value_t *gs_state_value;
ha_gs_membership_t *gs_full_membership;
ha_gs_membership_t *gs_changing_membership;
ha_gs_special_data_t *gs_subscription_special_data;

} ha_gs_subscription_notification_t;
148 RSCT Group Services: Programming Cluster Applications

flags defined by the ha_gs_subscription_type_t type shown in
Figure 105.

Figure 105. The ha_gs_subscription_type_t type

Each value indicates the following information:

HA_GS_SUBSCRIPTION_STATE
This value indicates that the notification contains the updated
group state value. This flag may appear with any of the other flags.

HA_GS_SUBSCRIPTION_DELTA_JOIN
This value indicates that the notification contains the set of joining
providers. Joining and leaving providers are not listed together in a
single notification. Therefore, no notification will contain both the
HA_GS_SUBSCRIPTION_DELTA_JOIN and
HA_GS_SUBSCRIPTION_DELTA_LEAVE flags.

HA_GS_SUBSCRIPTION_DELTA_LEAVE
This value indicates that the notification contains the set of leaving
providers. Joining and leaving providers are not listed together in a
single notification. Therefore, no notification will contain both the
HA_GS_SUBSCRIPTION_DELTA_JOIN and
HA_GS_SUBSCRIPTION_DELTA_LEAVE flags.

HA_GS_SUBSCRIPTION_MEMBERSHIP
This value indicates that the notification contains the complete
updated membership list. This flag may appear with either the
HA_GS_SUBSCRIPTION_DELTA_JOIN or
HA_GS_SUBSCRIPTION_DELTA_LEAVE flag.

HA_GS_SUBSCRIPTION_DISSOLVED
This value indicates that the group that was subscribed to has
dissolved; all providers have left the group. This flag may appear
with any of the other flags.

HA_GS_SUBSCRIPTION_GS_HAS_DIED
This value indicates that the group that was subscribed to has

typedef enum {
HA_GS_SUBSCRIPTION_STATE = 0x01,
HA_GS_SUBSCRIPTION_DELTA_JOIN = 0x02,
HA_GS_SUBSCRIPTION_DELTA_LEAVE = 0x04,
HA_GS_SUBSCRIPTION_MEMBERSHIP = 0x08,
HA_GS_SUBSCRIPTION_SPECIAL_DATA = 0x40,
HA_GS_SUBSCRIPTION_DISSOLVED = 0x80,
HA_GS_SUBSCRIPTION_GS_HAS_DIED = 0x100

} ha_gs_subscription_type_t;
Chapter 7. Getting notifications 149

dissolved because the Group Services daemon has died. This flag
appears with the HA_GS_SUBSCRIPTION_DISSOLVED flag.

gs_state_value
This field contains a pointer to the group state value information
block (shown in Figure 3 on page 11) that contains the new group
state value, if the HA_GS_SUBSCRIPTION_STATE flag is set in
the gs_subscription_type field..

gs_full_membership
This field contains a pointer to the membership information block
(shown in Figure 2 on page 10) that contains providers currently
belong to the group, if the HA_GS_SUBSCRIBE_MEMBERSHIP
flag is set in the gs_subscription_type field.

gs_changing_membership
This field contains a pointer to the membership information block
(shown in Figure 2 on page 10) that contains changing (either
joining or leaving) providers, if the
HA_GS_SUBSCRIBE_DELTA_JOIN or
HA_GS_SUBSCRIBE_DELTA_LEAVE flag is set in the
gs_subscription_type field.

gs_subscription_special_data
This field contains the special group-specific subscription data, if
the HA_GS_SUBSCRIPTION_SPECIAL_DATA flag is set in the
gs_subscription_type field.
For more information on subscription special data, refer to
Appendix A, “Subscription Special Data” in Group Services
Programming Guide and Reference, SA22-7355.

7.10 Dispatching notifications

The ha_gs_dispatch subroutine is used by a process to receive notifications
from the Group Services shared library. It is vital that the GS client call this
subroutine on a regular basis to be able to receive notifications from the GS
shared library by executing the appropriate callback routines. This allows the
GS client to respond to any protocols that may be executing in the group. The
parameter to this subroutine controls the behavior of ha_gs_dispatch once all
outstanding notifications have been delivered.

Although the ha_gs_dispatch subroutine needs to be called regularly, exactly
how often will differ for each GS client. The most important factor is that the
GS client should be ready to respond to arriving notifications as quickly as
150 RSCT Group Services: Programming Cluster Applications

possible to allow it to respond to changes in its group or the system as quickly
as possible.

Once the ha_gs_dispatch subroutine is called, it will process all notifications
that have arrived, which may result in multiple GS client callback routines
being executed.

7.10.1 Subroutine call
To receive notifications from Group Services and to execute corresponding
callback subroutines, GS client must execute the ha_gs_dispatch subroutine
regularly. On input, the GS client provides the flag that indicates how
notifications are to be processed.

The syntax of the ha_gs_dispatch subroutine is shown in Figure 106.

Figure 106. The syntax of ha_gs_dispatch subroutine

The dispatch_flags parameter can be one of the following values:

HA_GS_NON_BLOCKING
The GSAPI should check for notifications that have arrived on the
GSAPI socket. If any notifications have arrived, the GSAPI should
call the appropriate callback subroutines. If no notifications have
arrived, the GSAPI should return control immediately.
This model is appropriate to single-threaded (or non-threaded) GS
clients. It is expected that the GS client will remain responsive to
arriving notifications using the select subroutine or similar
mechanisms.

HA_GS_BLOCKING
The GSAPI should check for notifications that have arrived on the
GSAPI socket. As notifications arrive, the GSAPI will call the
appropriate callback subroutines, and it will continue to do so until
an error occurs or the connection is broken.
This model is appropriate to multi-threaded GS clients, although it
may be used by single-threaded (or non-threaded) GS clients.

ha_gs_rc_t ha_gs_dispatch(
const ha_gs_dispatch_flag_t dispatch_flags)
Chapter 7. Getting notifications 151

152 RSCT Group Services: Programming Cluster Applications

Chapter 8. Error handling

As with general subroutines, the subroutines provided by Group Services
return an error code. However, Group Services uses a unique mechanism to
return an error code. Even a subroutine does not return an error immediately.
The subroutine may return an error code later; therefore, you must be careful
to handle error codes.

This chapter covers an error handling mechanism of the Group Services.

8.1 Synchronous/asynchronous errors

When an application calls subroutines provided by the Group Services
shared library, Group Services checks the subroutine call for errors. If the
subroutine call is syntactically invalid, the application receives a syntax error
code. If the group currently has an executing protocol and an application
proposes another protocol, the application receives an error code that
indicates a collision between competing protocols. This type of error code is
returned synchronously, and, therefore, it is called a synchronous error.

If there is no synchronous error, the Group Services tentatively accepts the
subroutine call, and the application receives a successful return code
synchronously. However, if collision errors are detected asynchronously
(because other providers or Group Services itself submit a proposal at the
same time), Group Services returns an error code. This type of error code is
returned asynchronously, and, therefore, it is called an asynchronous error.

An asynchronous error will be delivered by the ha_gs_delayed_error_callback
subroutine. This subroutine is provided by a GS client when it registers itself
to the Group Services by using the ha_gs_init subroutine.

Not all subroutines have both synchronous and asynchronous errors. Table 7
summarizes the subroutines and their error types.

Table 7. Subroutines and synchronous/asynchronous error

Subroutines Synchronous Asynchronous

For GS clients

ha_gs_init Yes No

ha_gs_quit No No

For providers
© Copyright IBM Corp. 2000 153

8.2 Error code

Error codes used for synchronous and asynchronous errors are defined by
the ha_gs_rc_t type shown in Figure 107 on page 155. Some error codes
appear with only one of these errors, and others appear with both of them.

ha_gs_join Yes Yes

ha_gs_change_state_value Yes Yes

ha_gs_send_message Yes Yes

ha_gs_leave Yes Yes

ha_gs_goodbye Yes No

ha_gs_expel Yes Yes

ha_gs_change_attributes Yes Yes

ha_gs_vote Yes No

For subscribers

ha_gs_subscribe Yes Yes

ha_gs_unsubscribe Yes No

For callback subroutines

ha_gs_responsiveness_callback Yes No

ha_gs_delayed_error_callback No No

ha_gs_n_phase_callback No No

ha_gs_protocol_approved_callback No No

ha_gs_protocol_rejected_callback No No

ha_gs_announcement_callback No No

ha_gs_subscriber_callback No No

For dispatch subroutines

ha_gs_dispatch Yes No

Subroutines Synchronous Asynchronous
154 RSCT Group Services: Programming Cluster Applications

Figure 107. The ha_gs_rc_t type

Each value indicates the following information:

HA_GS_OK
The subroutine was successful. This return code is returned
synchronously.

HA_GS_NOT_OK
An error occurred. This error is returned synchronously.

HA_GS_EXISTS
The GSAPI has already been initialized by a previous call to the
ha_gs_init subroutine. This error is returned synchronously.

HA_GS_NO_INIT
An attempt was made to use the GSAPI without initializing it by
calling the ha_gs_init subroutine. This error is returned
synchronously.

HA_GS_NAME_TOO_LONG
A name string was specified that was longer than that given by the

typedef enum {
HA_GS_OK,
HA_GS_OK_SO_FAR = HA_GS_OK,
HA_GS_NOT_OK,
HA_GS_EXISTS,
HA_GS_NO_INIT,
HA_GS_NAME_TOO_LONG,
HA_GS_NO_MEMORY,
HA_GS_NOT_A_MEMBER,
HA_GS_BAD_CLIENT_TOKEN,
HA_GS_BAD_MEMBER_TOKEN,
HA_GS_BAD_PARAMETER,
HA_GS_UNKNOWN_GROUP,
HA_GS_INVALID_GROUP,
HA_GS_NO_SOURCE_GROUP_PROVIDER,
HA_GS_BAD_GROUP_ATTRIBUTES,
HA_GS_WRONG_OLD_STATE,
HA_GS_DUPLICATE_INSTANCE_NUMBER,
HA_GS_COLLIDE,
HA_GS_SOCK_CREATE_FAILED,
HA_GS_SOCK_INIT_FAILED,
HA_GS_CONNECT_FAILED,
HA_GS_VOTE_NOT_EXPECTED,
HA_GS_NOT_SUPPORTED,
HA_GS_INVALID_SOURCE_GROUP,
HA_GS_UNKNOWN_PROVIDER,
HA_GS_INVALID_DEACTIVATE_PHASE,
HA_GS_PROVIDER_APPEARS_TWICE,
HA_GS_BACKLEVEL_PROVIDERS

} ha_gs_rc_t;
Chapter 8. Error handling 155

HA_GS_MAX_GROUP_NAME_LENGTH symbolic constant. This
error is returned synchronously.

HA_GS_NO_MEMORY
The Group Services subsystem could not allocate the required
memory. This error is returned synchronously.

HA_GS_NOT_A_MEMBER
The provider that is proposing the protocol is no longer a provider
for the specified group. This error is returned asynchronously. It
can be returned in response to the protocol requests resulting
from calls to the following subroutines:
ha_gs_change_state_value, ha_gs_send_message, and
ha_gs_leave.

HA_GS_BAD_CLIENT_TOKEN
This value is reserved for IBM use.

HA_GS_BAD_MEMBER_TOKEN
The specified token does not represent a valid provider or
subscriber instance for this client. This error is returned
synchronously.

HA_GS_BAD_PARAMETER
The specified parameter was not valid. This error can be returned
either synchronously or asynchronously, depending on when it
was detected.

HA_GS_UNKNOWN_GROUP
The group that was specified on the call to the ha_gs_subscribe
subroutine does not exist. This error is returned asynchronously.

HA_GS_INVALID_GROUP
The process does not have permission to join the group that was
specified on the call to the ha_gs_join subroutine. For example,
this error would be returned in response to an attempt to join a
system-defined group, such as the host membership group or an
adapter membership group. This error is returned asynchronously.

HA_GS_NO_SOURCE_GROUP_PROVIDER
A call to the ha_gs_join subroutine specified a source-group
name, and there is no provider from that source-group already
active on this node. This error is returned asynchronously.

HA_GS_BAD_GROUP_ATTRIBUTES
The group attributes that were specified on a call to the ha_gs_join
subroutine are either invalid or do not the match the group
attributes that were specified by the providers that already belong
156 RSCT Group Services: Programming Cluster Applications

to the group. This error can be returned either synchronously or
asynchronously, depending on when it was detected.

HA_GS_WRONG_OLD_STATE
This value is reserved for IBM use.

HA_GS_DUPLICATE_INSTANCE_NUMBER
The provider instance number that was specified on a call to the
ha_gs_join subroutine is already in use for this group on this node.
This error is returned asynchronously.

HA_GS_COLLIDE
Another protocol is already active for this group. This error can be
returned either synchronously or asynchronously, depending on
when it was detected. This error is returned in response to the
protocol requests resulting from calls to the following subroutines:
ha_gs_change_state_value, ha_gs_send_message, and
ha_gs_leave, ha_gs_change_attributes.

HA_GS_SOCK_CREATE_FAILED
The Group Services subsystem could not create a socket for
communication. This error is returned synchronously.

HA_GS_SOCK_INIT_FAILED
The Group Services subsystem could not initialize the socket for
communication. This error is returned synchronously.

HA_GS_CONNECT_FAILED
The Group Services subsystem could not complete the
connection. Possible causes are: The Group Services daemon is
not running or it is not ready to accept connections. This error is
returned synchronously.

HA_GS_VOTE_NOT_EXPECTED
A vote was received but was not expected. Either no protocol was
in progress or the Group Services subsystem already received a
vote for this protocol. This error is returned synchronously.

HA_GS_NOT_SUPPORTED
The requested function is not currently supported. This error is
returned synchronously.

HA_GS_INVALID_SOURCE_GROUP
The process specified an invalid source group on the call to the
ha_gs_join subroutine. For example, this error would be returned
in response to an attempt to specify as a source group a
system-defined group, such as the host membership group or an
adapter membership group. This error is returned synchronously.
Chapter 8. Error handling 157

HA_GS_UNKNOWN_PROVIDER
At least one of the providers that was specified in an expel
protocol is not a member of the specified group. This error can be
returned either synchronously or asynchronously, depending on
when it was detected. This error is returned in response to the
protocol requests resulting from calls to the ha_gs_expel
subroutine.

HA_GS_INVALID_DEACTIVATE_PHASE
The process specified a phase other than 0 or 1 on the call to the
ha_gs_expel subroutine for a one-phase expel protocol. This error
is returned synchronously.

HA_GS_PROVIDER_APPEARS_TWICE
A provider to be expelled is listed twice in the given gs_expel_list
provided by the expel request block shown in Figure 52 on page
81.

HA_GS_BACKLEVEL_PROVIDERS
A protocol request was made, and the group contains active
providers that were compiled against an older level of the Group
Services shared library that does not support the new protocol
request. This error is returned asynchronously.
158 RSCT Group Services: Programming Cluster Applications

Part 3. Group Services programming
© Copyright IBM Corp. 2000 159

160 RSCT Group Services: Programming Cluster Applications

Chapter 9. Recoverable Network File System

Network File System (NFS) could be the most popular solution for sharing
data throughout the distributed application environment. One node exports its
local file system and all the nodes mount this file system as their network file
system. As long as all the applications use their network file system, they are
accessing an identical file system and sharing the data.

However, the NFS server node may not be up and running all the time. It
might need to be shut down for maintenance, or it may fail by accident. In
either case, a system operator needs to do some work. Assigning a new
server node from the available nodes, creating a local file system on it,
copying the data from the old server node to the new server node, and, finally,
remounting all the node’s network file systems.

To automate this recovery procedure, this chapter introduces a unique
environment called the Recoverable Network File System (RNFS)
environment. There are two programs used to provide an RNFS environment:
RNFS and the Recoverable Network File System Monitor (RNFSM). The
RNFS program executes NFS recovery procedures automatically. The
RNFSM program monitors the state of the RNFS environment. These
programs utilize many services provided by Group Services. If you compare
the complexity of the recovery procedure with the size of programs that are
short enough to read through, you will realize how Group Services is useful
and powerful.

9.1 Mechanism

The rnfs program runs on multiple nodes and creates the RNFS group (the
program uses rnfs_group for the group name). In the group, there is only one
NFS server node. All the nodes, including the server node, mount the server
node’s local file system (the program uses /local_nfs for the local file system
name) as network file system (the program uses /shared_nfs for the network

The purpose of this chapter is helping you understand the Group Services
programming not providing you with a complete solution. Therefore the
programs are incomplete to use in the real environment.

In this chapter, in some cases, the term, node n, is used for the rnfs
program running on node n. For example, node n proposes a protocol
actually means the rnfs program running on node n proposes a protocol.

Note
© Copyright IBM Corp. 2000 161

file system name). When the server node takeover occurs, one available node
in the group is selected as a new server node. All the nodes, including the
new server node, remount the new server node’s /local_nfs as /shared_nfs.
The new server node’s /local_nfs must be updated as soon as possible.

To satisfy this requirement, the program uses the following tactics:

• All the nodes in the group, rnfs_group, have their own local file system,
/local_nfs, and they export it; so, any other node in the group can mount it
at any time.

• To keep the shared data as new as possible for a case of server node
takeover, all the nodes, except a server node, replicate /shared_nfs to
their /local_nfs once in a while.

• If server node takeover occurs as planned, the remaining nodes are
required to replicate /shared_nfs to their /local_nfs before remounting the
/shared_nfs.

• If server node takeover occurs by accident, the remaining nodes just
remount the /shared_nfs.

• An application that wants to use an RFNS environment must access
/shared_nfs instead of /local_nfs. They are on the node on which the
application is running.

Figure 108 on page 163 illustrates the mechanism of the rnfs program.
Currently, node 0 is the server node, and all the nodes (nodes 0, 1, and 2)
mount node 0’s /local_nfs as /shared_nfs. To keep a client node’s /local_nfs
up to date, the client nodes (nodes 1 and 2) must, occasionally, replicate
/shared_nfs to their /local_nfs. When server node takeover occurs, node 1 is
selected as a new server node in this example. All the nodes (nodes 1 and 2)
umount /shared_nfs and remount node 1’s /local_nfs as /shared_nfs.

The rnfs program does not have the rnfs server program or the rnfs client
program. This means that you do not need to think about which node will be
the server node. You can also add nodes to the group or delete nodes from
the group dynamically.

The rnfsm program monitors the state of nodes in the group. If a server node
is changed, it reports the new server node number. If nodes are added or
deleted, it reports all the nodes currently in the group.
162 RSCT Group Services: Programming Cluster Applications

Figure 108. Program mechanism

9.2 rnfs program overview

The rnfs program is required to predict all the possible situations that could
occur during normal operation, and it must prepare for them. The following
nine situations are managed by the program:

1. Checking responsiveness

2. Creating the group

3. Adding a node

4. Replicating a file system

5. Server node shutdown

/local_nfs

node 1

/local_nfs

node 2

mount

mount

export

mount

/shared_nfs

mount

mount

export

server node takeover

node 0

/local_nfs

/shared_nfs
replicate

replicate
Chapter 9. Recoverable Network File System 163

6. Client node shutdown

7. Server node failure

8. Client node failure

9. Receiving announcement

10.Receiving delayed error

How the program manages these situations is described in Section 9.3, “rnfs
program in details” on page 170.

9.2.1 Program state
The program has its own state variables to manage its state. The following
two global variables are used for this purpose:

• ima - This variable specifies the role of the program in the group. The
variable takes one of the following values:

- RNFS_SERVER - The program roles of an NFS server node.

- RNFS_CLIENT - The program roles of an NFS client node.

• imdoing - This variable specifies the program’s condition in the group.
The variable takes one of the following values:

- RNFS_JOINING - The program is joining the RNFS group.

- RNFS_STABLE - The program has joined the RNFS group and
/shared_nfs is mounted. All the other programs have responsiveness.

- RNFS_UNSTABLE - The program has joined the RNFS group;
however, /shared_nfs is not mounted and/or some other programs do
not have responsiveness.

- RNFS_LEAVING - The program is leaving the RNFS group.

The program defines these values and variables as follows:
164 RSCT Group Services: Programming Cluster Applications

The state diagram of the program is illustrated in Figure 109 on page 167.

When the program has initialized with the Group Services by calling the
ha_gs_init subroutine, it is ready to propose a join protocol (➀). If the program
is the first provider, it creates the group, becomes a server node, and mounts
its own /local_nfs to /shared_nfs (➁). If the program is not the first provider, it
joins the group, becomes a client node, and mounts the server node’s
/local_nfs to /shared_nfs (➂).

When a server node shutdown occurs as planned, the server node umounts
/shared_nfs and leaves the group (➅). At the same time, the client nodes
replicate /shared_nfs to their /local_nfs and then umount /shared_nfs. If a
client node is listed at the top of the membership list after the server node
leaves, this client node becomes a new server node (➃). The other client
nodes remain as client nodes (➄). The new server node registers its
hostname (➁) so that all the client nodes can mount the new server node’s
/local_nfs to /shared_nfs (➂). The new server node also needs to mount its
/local_nfs to /shared_nfs. When a client node shutdown occurs as planned,
the client node umounts /shared_nfs and leaves the group (➆).

When a server node failure occurs by accident, the client nodes do the same
procedure as when a server node shutdown occurs, except for file system
replication, because /shared_nfs (that is, /local_nfs of the server node) has
been lost. When a client node failure occurs by accident, no action is taken
for this.

The file system replication is required when the program is a client node and
has mounted /shared_nfs (➂).

The responsiveness check is applied for all the states. If one or more
programs lose their responsiveness, all the programs get notified and put
themselves in the RNFS_UNSTABLE state (➃ or ➄). If a program is in the

typedef enum {
RNFS_CLIENT,
RNFS_SERVER

} rnfs_ima_t;
typedef enum {

RNFS_JOINING,
RNFS_STABLE,
RNFS_UNSTABLE,
RNFS_LEAVING

} rnfs_imdoing_t;

rnfs_ima_t ima;
rnfs_imdoing_t imdoing;
Chapter 9. Recoverable Network File System 165

RNFS_UNSTABLE state, it rejects a join protocol to prevent the addition of a
node to the group. When the programs that previously lost their
responsiveness now start responding, all the programs get notified and put
themselves in the RNFS_STABLE state (➁ or ➂).
166 RSCT Group Services: Programming Cluster Applications

Figure 109. Program state diagram

not in RNFS group
RNFS_CLIENT
RNFS_JOINING

NFS server (leaving)
RNFS_SERVER
RNFS_LEAVING

NFS client (leaving)
RNFS_CLIENT
RNFS_LEAVING

NFS server
RNFS_SERVER
RNFS_UNSTABLE

NFS client
RNFS_CLIENT
RNFS_UNSTABLE

ha_gs_quit & exit or be killed

creating adding node

ha_gs_init

server node

NFS server
RNFS_SERVER
RNFS_STABLE

NFS client
RNFS_CLIENT
RNFS_STABLE

registering
hostname

registering
hostname

client node

server node
shutdown

server
node
failure

client
node
failure

➀

➁ ➂

➆

➃ ➄

➅

Chapter 9. Recoverable Network File System 167

9.2.2 Utilizing Group Services
The program utilizes many services provided by the Group Services. The
following sections describes these services and how the program uses them.

9.2.2.1 Services
The following services are used by the program:

The membership list
The list contains all the available nodes in the group. The node
listed at the top of the list plays the role a server node.

The group state value
The value contains the hostname of a server node. All the nodes
use this value when they mount a server node’s /local_nfs to
/shared_nfs.

The provider-broadcast message
All the client nodes are required to keep their /local_nfs up to date
in case it becomes a new server node. The server node
occasionally sends a provider-broadcast message to ask them to
replicate the file system.

Responsiveness check
All the nodes are periodically checked for responsiveness. If a
node loses its responsiveness, all the nodes receive this
information. If one or more nodes lose their responsiveness, the
group considers itself unstable and rejects a join protocol.

Deactivate-on-failure
When node failure occurs, a deactivate script is executed to
umount /shared_nfs for the failure node.

N-phase protocol
All the nodes are required to mount, umount, or replicate a file
system within a voting time limit. If they have not completed,
Group Services uses a default vote value; this default vote value is
approve, and the protocol completes. However, all the nodes
asynchronously receive the information about which nodes have
not completed their job. Voting to continue is not used by the
program. Therefore, the program has, at most, two phases.

9.2.2.2 Protocols
The following protocols are used by the program:

Join protocol
This protocol is used to create the group or to add a node to the
group.
168 RSCT Group Services: Programming Cluster Applications

Voluntary leave protocol
This protocol is used for a node shutdown. A server node
shutdown allows the remaining nodes to replicate the file system.

Failure leave protocol
This protocol is used for a node failure.

State value change protocol
This protocol is used for a server node’s hostname registration. If a
client node becomes a server node, it proposes this protocol.

Provider-broadcast message protocol
This protocol is used for file system replication. A server node
broadcasts a file system replication message once in a while.
Upon receiving this message, client nodes replicate the file
system.

9.2.2.3 Notifications
The following notifications are used by the program:

Responsiveness notification
After initializing with the Group Services, all the nodes are
expected to return the value of HA_GS_CALLBACK_OK to this
notification.

N-phase notification
A required action by this notification depends on each protocol. In
most cases, a node is required to vote when the required action is
completed.

Protocol approved notification
A required action by this notification depends on each protocol.

Protocol rejected notification
A join protocol could be rejected if the group is unstable.

Announcement notification
When nodes lose their responsiveness or they have not completed
a required action within the voting time, all the nodes receive this
notification.

Delayed error notification
If the program is already running on a node, or the hostname
registration request or file system replication request are
canceled, a program receives this notification.
Chapter 9. Recoverable Network File System 169

9.3 rnfs program in details

This section describes the rnfs program in detail. The entire program is
provided in Section C.1, “rnfs.c” on page 261.

9.3.1 main routine
The first half of main routine is shown in Figure 110 on page 171. In this part,
the program does the following operations:

1. Set domain name, group name, and instance number. The domain name
is given as a parameter of the program. The group name is defined as:

#define RNFS_GROUP_NAME "rnfs_group"

The instance number is defined as:

#define RNFS_INSTANCE_NUM 5523

The number is fixed; therefore, it prevents multiple instances from running
on the same node.

2. Set some global variables.

3. It calls the init_program subroutine to initialize the program with the Group
Services.

4. It calls propose_join subroutine to join the group. This will be the case
described in Section 9.3.3, “Creating the group” on page 175, or Section
9.3.4, “Adding a node” on page 180.
170 RSCT Group Services: Programming Cluster Applications

Figure 110. main routine (the first half)

The initialization subroutine is shown in Figure 111 on page 172. In this
subroutine, the program performs the following operations:

1. Set the responsiveness control block as follows:

- The program uses ping type responsiveness checks.

- The Group Services checks responsiveness every two seconds, and
the program must reply within one second. These are defined as:

#define RNFS_RESPONSE_RATE 2
#define RNFS_RESPONSE_TIME_LIMIT 1

2. Set the deactivate script defined as:

#define RNFS_DEACTIVATE "./rnfs_deact.ksh"

3. Set the address for the following callback subroutines:

ha_gs_responsiveness_callback
ha_gs_delayed_error_callback

/***************************************
* main
***************************************/
int main(int argc, char **argv) {

char key;
fd_set my_fd;
struct timeval timeout;
int replicate;

if(argc != 2) {
printf("Usage: %s domain_name\n", argv[0]);
exit(argc);

}
strcpy(domain_name, "HA_DOMAIN_NAME=");
strcat(domain_name, argv[1]);
putenv(domain_name);
printf("domain name: %s, ", getenv("e"));
printf("group name: %s, ", RNFS_GROUP_NAME);
printf("instance number: %d\n", RNFS_INSTANCE_NUM);

replicate = 0;
ima = RNFS_CLIENT;
descriptor = 0;
timeout.tv_sec = 1;
timeout.tv_usec = 0;

init_program();
propose_join();
Chapter 9. Recoverable Network File System 171

Figure 111. Initialization subroutine

The last half of the main routine is shown in Figure 112 on page 173. In this
part, the program enters an infinite loop and performs the following
operations:

1. Set two file descriptors for the select subroutine. One for stdin and the
other for the Group Services. Then, the program calls the select
subroutine. It waits one second, at most, and then returns.

2. If there is data from stdin, the program calls the suspend_program
subroutine to suspend the program and get your command.

3. If there is data from Group Services, the program calls the ha_gs_dispatch
subroutine to receive notification.

4. If the program runs on a server node, if it is not leaving the group, and if
almost 10 seconds have passed since the last file system replication, the
program calls the propose_message subroutine to propose a
provider-broadcast message protocol. This case is described in Section
9.3.5, “Replicating a file system” on page 183.

/***************************************
* init_program (ha_gs_init)
***************************************/
void init_program() {

responsiveness.gs_responsiveness_type = HA_GS_PING_RESPONSIVENESS;
responsiveness.gs_responsiveness_interval = RNFS_RESPONSE_RATE;
responsiveness.gs_responsiveness_response_time_limit = RNFS_RESPONSE_TIME_LIMIT;
responsiveness.gs_counter_location = NULL;
responsiveness.gs_counter_length = NULL;

gs_rc = ha_gs_init(
&descriptor,
HA_GS_SOCKET_NO_SIGNAL,
&responsiveness,
RNFS_DEACTIVATE,
ha_gs_responsiveness_callback,
ha_gs_delayed_error_callback,
NULL);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_init failed rc=%d ***\n", gs_rc);
exit(-1);

}
return;

}

172 RSCT Group Services: Programming Cluster Applications

Figure 112. main routine (the last half)

The suspension subroutine is shown in Figure 113 on page 174. If there is
data from stdin (in other words, if you press the Enter key), the program
suspends and awaits your command. You can choose one of the following
operations:

• Press the r or R key to resume the program.

• Press the l or L key to leave the group.

The resume operation simply returns to the main routine. The leave operation
calls the propose_leave subroutine to propose a voluntary leave protocol.
This case is described in Section 9.3.6, “Server node shutdown” on page 186,
and Section 9.3.7, “Client node shutdown” on page 194.

As you may have noticed, you can press any keys, other than l or L, to
resume operation.

printf("hit <Enter> key to suspend\n");
for(;;) {

FD_ZERO(&my_fd);
FD_SET(0, &my_fd);
FD_SET(descriptor, &my_fd);
rc = select(descriptor + 1, &my_fd, NULL, NULL, &timeout);
if(rc < 0) {

printf("*** select failed rc=%d ***\n", rc);
exit(rc);

}
if(FD_ISSET(0, &my_fd)) {

suspend_program();
}
if(descriptor && FD_ISSET(descriptor, &my_fd)) {

gs_rc = ha_gs_dispatch(HA_GS_NON_BLOCKING);
if(gs_rc != HA_GS_OK) {

printf("*** ha_gs_dispatch failed rc=%d ***\n", gs_rc);
}

}
if(ima == RNFS_SERVER) {

if((imdoing != RNFS_LEAVING) && (replicate > RNFS_REPLICATE_RATE)) {
propose_message();
replicate = 0;

} else {
replicate++;

}
}

}
}

Chapter 9. Recoverable Network File System 173

Figure 113. Suspension subroutine

9.3.2 Checking responsiveness
To make the RNFS environment reliable, the program utilizes the
responsiveness check facility. Group Services checks the responsiveness of
nodes occasionally, and, if the node loses its responsiveness, Group
Services notifies all the nodes in the group.

Figure 114 on page 175 illustrates the control flow for checking
responsiveness. When nodes 0, 1, and 2 have initialized with the Group
Services successfully (➀), they start receiving a responsiveness notification
from the Group Services (➁). The Group Services sends this notification
every two seconds. This interval is defined as follows:

#define RNFS_RESPONSE_RATE 2

Every time the node receives the notification, it is required to return the value
of HA_GS_CALLBACK_OK (➂). This must be done within one second. This
time limit is defined as follows:

#define RNFS_RESPONSE_TIME_LIMIT 1

A node receives a responsiveness notification regardless of whether it has
already joined the group or not.

If a node fails to return the value, Group Services sends an announcement
notification to all the nodes. For information about this situation, refer to
Section 9.3.10, “Receiving an announcement” on page 202.

/***************************************
* suspend_program
***************************************/
void suspend_program() {

char proposal[32];

gets(proposal); /* remove previously input strings */
printf("[program suspended] l(eave) or r(esume)?: ");
scanf("%s", proposal);
switch((int)proposal[0]) {
case ’l’: case ’L’:

propose_leave();
break;

default:
break;

}
gets(proposal); /* remove extra strings */
return;

}

174 RSCT Group Services: Programming Cluster Applications

Figure 114. Checking responsiveness

The responsiveness notification is implemented as shown in Figure 115.

Figure 115. Responsiveness notification

9.3.3 Creating the group
When it is time to create the RNFS environment, more than one node is going
to join the group at the same time. At this point, there is no server-client

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

➀ init

➁ responsiveness

➂ OK

➀ init

➁ responsiveness

➂ OK

➀ init

➁ responsiveness

➂ OK

/***************************************
* responsiveness notification
***************************************/
ha_gs_callback_rc_t ha_gs_responsiveness_callback(

const ha_gs_responsiveness_notification_t *block) {

return(HA_GS_CALLBACK_OK);
}

Chapter 9. Recoverable Network File System 175

relationship between the nodes, and no node knows the hostname of a server
node.

Figure 116 on page 177 illustrates the control flow for creating the group.
Three nodes propose a join protocol at the same time (➀). These join
proposals are handled by Group Services one-by-one. Because the group
has batching join protocols disabled. Assuming that node 0 is selected by
Group Services for the first join protocol.

When node 0 proposes a join protocol, it receives an n-phase notification (➁).
This notification specifies how many nodes are currently in the group. This
should be zero because this is the first join protocol for the group. At this
point, node 0 realizes it will be a server node. Therefore, node 0 votes to
approve and, thereby, proposes its hostname for the group state value (➂).
This must be done within five seconds. This time limit is defined as follows:

#define RNFS_JOIN_FAILURE_TIME_LIMIT 5

Then, it receives a protocol approved notification with the updated
membership list (➃). Using the group state value, the node executes the
rnfs_mount script (refer to Section 9.4.3, “rnfs_mount shell script” on page
209) to mount node 0’s /local_nfs to /shared_nfs.

If node 0 fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes (in this case, node 0). For this
situation, refer to Section 9.3.10, “Receiving an announcement” on page 202.

The rest of the nodes (node 1 and 2) are handled by Group Services in the
manner described in Section 9.3.4, “Adding a node” on page 180.
176 RSCT Group Services: Programming Cluster Applications

Figure 116. Creating the group

The program state changes as shown in Table 8.

Table 8. Program state change for creating the group

The join protocol proposal is implemented as shown in Figure 117 on page
178. Before calling the ha_gs_join subroutine, the imdoing variable is
required to be set to RNFS_JOINING.

Node Before protocol After protocol

node 0 RNFS_CLIENT
RNFS_JOINIG

RNFS_SERVER
RNFS_STABLE

node 1 RNFS_CLIENT
RNFS_JOINIG

No change

node 2 RNFS_CLIENT
RNFS_JOINIG

No change

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

➀ join

➁ n-phase

➂ vote

➃ approved

➀ join

➀ join

➄ mount

export
Chapter 9. Recoverable Network File System 177

Figure 117. Join protocol proposal

The n-phase notification for a join protocol is implemented as shown in Figure
118 on page 179. In this situation, the following condition is true:

!block->gs_proposal->gs_current_providers->gs_count

Therefore, node 0 joins the group as a server node and must register its
hostname by voting to approve.

/***************************************
* propose_join (ha_gs_join)
***************************************/
void propose_join() {

proposal_info.gs_join_request.gs_group_attributes = &group_attributes;
proposal_info.gs_join_request.gs_provider_instance = RNFS_INSTANCE_NUM;
proposal_info.gs_join_request.gs_provider_local_name = RNFS_LOCAL_NAME;
proposal_info.gs_join_request.gs_n_phase_protocol_callback

= ha_gs_n_phase_callback;
proposal_info.gs_join_request.gs_protocol_approved_callback

= ha_gs_protocol_approved_callback;
proposal_info.gs_join_request.gs_protocol_rejected_callback

= ha_gs_protocol_rejected_callback ;
proposal_info.gs_join_request.gs_announcement_callback

= ha_gs_announcement_callback;
proposal_info.gs_join_request.gs_merge_callback = NULL;

group_attributes.gs_version = 1;
group_attributes.gs_sizeof_group_attributes

= sizeof(ha_gs_group_attributes_t);
group_attributes.gs_client_version = 1;
group_attributes.gs_batch_control

= HA_GS_NO_BATCHING | HA_GS_DEACTIVATE_ON_FAILURE;
group_attributes.gs_num_phases = HA_GS_N_PHASE;
group_attributes.gs_source_reflection_num_phases = HA_GS_1_PHASE;
group_attributes.gs_group_default_vote = HA_GS_VOTE_APPROVE;
group_attributes.gs_merge_control = HA_GS_DISSOLVE_MERGE;
group_attributes.gs_time_limit = RNFS_JOIN_FAILURE_TIME_LIMIT;
group_attributes.gs_source_reflection_time_limit = NULL;
group_attributes.gs_group_name = RNFS_GROUP_NAME;
group_attributes.gs_source_group_name = NULL;

imdoing = RNFS_JOINING;

gs_rc = ha_gs_join(
&provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_join failed rc=%d **\n", gs_rc);

}
return;

}

178 RSCT Group Services: Programming Cluster Applications

Figure 118. N-phase notification (HA_GS_JOIN)

The voting subroutine is implemented as shown in Figure 119. Node 0 must
specify its hostname in the second parameter.

Figure 119. Voting subroutine

The protocol approved notification for a join protocol is implemented as
shown in Figure 120 on page 180. In this situation, the following conditions
are true:

imdoing == RFNS_JOINING

and

mynodeis == serveris

case HA_GS_JOIN:
if(block->gs_proposal->gs_current_providers->gs_count == 0) {

if(gethostname(hostname, 256)) {
printf("*** gethostname failed ***\n");

}
host_name.gs_length = strlen(hostname) + 1;
host_name.gs_state = hostname;
vote_protocol(HA_GS_VOTE_APPROVE, &host_name);

} else if(imdoing == RNFS_UNSTABLE) {
vote_protocol(HA_GS_VOTE_REJECT, NULL);

} else {
vote_protocol(HA_GS_VOTE_APPROVE, NULL);

}
break;

/***************************************
* vote_protocol
***************************************/
void vote_protocol(

ha_gs_vote_value_t vote_value,
const ha_gs_state_value_t *host_name) {

gs_rc = ha_gs_vote(
provider_token,
vote_value,
host_name,
NULL,
HA_GS_NULL_VOTE);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_vote failed rc=%d ***\n", gs_rc);

}
return;

}

Chapter 9. Recoverable Network File System 179

Therefore, node 0 joins the group as a server node and mounts node 0’s
/local_nfs by using the rnfs_mount script.

Figure 120. Protocol approved notification (HA_GS_JOIN)

9.3.4 Adding a node
One of the great abilities of the Group Services application is its scalability.
You can dynamically add any number of nodes to the group without modifying
the program. Also, you do not need to worry about whether the node is going
to be a server or client node.

Figure 121 on page 181 illustrates the control flow for adding a node to the
group. Assuming that nodes 0 and 1 have been in the group already, and
node 0 is the server node. Then, node 2 is being added to the group.

When node 2 proposes a join protocol (➀), all the nodes receive an n-phase
notification (➁). They are required to vote to approve or reject immediately
(➂). If the group is unstable (the variable, imdoing, is equal to the value of
RNFS_UNSTABLE), they vote to reject; otherwise, they vote to approve. This
must be done within five seconds. This time limit is defined as follows:

#define RNFS_JOIN_FAILURE_TIME_LIMIT 5

Then, they receive a protocol approved or rejected notification depending on
the condition of the imdoing variable (➃). Upon receiving the protocol
approved notification, node 2 executes the rnfs_mount script (refer to Section

case HA_GS_JOIN:
if(imdoing == RNFS_JOINING) {

mynodeis = block->gs_proposal->gs_proposed_by.gs_node_number;
serveris = block->gs_proposal->gs_current_providers->gs_providers->gs_node_numb
if(mynodeis == serveris) {

ima = RNFS_SERVER;
printf("[joined as server] ");

} else {
ima = RNFS_CLIENT;
printf("[joined as client] ");

}
printf("mount network file system from %s\n",

block->gs_proposal->gs_current_state_value->gs_state);
strcpy(mount_command, RNFS_MOUNT);
strcat(mount_command,

block->gs_proposal->gs_current_state_value->gs_state);
if(rc = system(mount_command)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
imdoing = RNFS_STABLE;

}
break;
180 RSCT Group Services: Programming Cluster Applications

9.4.3, “rnfs_mount shell script” on page 209) to mount node 0’s /local_nfs as
/shared_nfs using the group state value (➄). Upon receiving the protocol
rejected notification, node 2 exits the program, and nodes 0 and 1 do not
have any changes. It is the responsibility of node 2 to execute the program
again to join the group.

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.

Figure 121. Adding a node

The program state changes as shown in Table 9.

Table 9. Program state change for adding a node

Node Before protocol After protocol

node 0 RNFS_SERVER
RNFS_STABLE

no change

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs
Group
Service

mount

➄ mount

mount

export

➁ n-phase

➂ vote

➃ result

➀ join

➁ n-phase

➂ vote

➃ result

➁ n-phase

➂ vote

➃ result
Chapter 9. Recoverable Network File System 181

The join protocol proposal is implemented as shown in Figure 117 on page
178. Before calling the ha_gs_join subroutine, the imdoing variable is
required to be set to RNFS_JOINING.

The n-phase callback for a join protocol is implemented as shown in Figure
118 on page 179. In this situation, the following condition is false for all the
nodes.

block->gs_proposal->gs_current_providers->gs_count == 0

Therefore, if the group is unstable, a node votes to reject or approve.

The protocol approved notification for a join protocol is implemented as
shown in Figure 120 on page 180. In this situation, the condition

imdoing == RFNS_JOINIG

is false for node 0 and 1, and true for node 2.

For node 2, the condition

mynodeis == serveris

is false. Therefore, node 2 joins the group as a client node and mounts node
0’s /local_nfs by using the rnfs_mount script.

The protocol rejected notification for a join protocol is implemented as shown
in Figure 122 on page 183. In this situation, the condition

imdoing == RFNS_JOINIG

is false for node 0 and 1, and true for node 2. Therefore, nodes 0 and 1 do
nothing, and node 2 exits the program.

node 1 RNFS_CLIENT
RNFS_STABLE

no change

node 2
RNFS_CLIENT
RNFS_JOINIG

If approved,
RNFS_CLIENT
RNFS_STABLE
If rejected,
does not exist

Node Before protocol After protocol
182 RSCT Group Services: Programming Cluster Applications

Figure 122. Protocol rejected notification

9.3.5 Replicating a file system
The server node takeover occurs by any chances. In this case, Group
Services assigns a new server node from the available nodes in the group.
The new server node is required to provide its /local_nfs as /shared_nfs.
Therefore, the data in /local_nfs must be as new as possible. To achieve this
goal, the current server node asks the client nodes to replicate /shared_nfs to
their /local_nfs once in a while.

Figure 123 on page 184 illustrates the control flow for replicating file system.
Assuming that node 0 is a server node and node 1 and 2 are client nodes.

The node 0 proposes a provider-broadcast message protocol with the
message (➀). This message is defined as follows:

#define RNFS_MEAAGE “replicate file system\0”

All the nodes receive an n-phase notification and confirm the contents of the
message (➁). Nodes 1 and 2 execute the rnfs_replicate script (refer to
Section 9.4.4, “rnfs_replicate” on page 210) to replicate /shared_nfs to
/local_nfs (➂) and then vote to approve (➃). This must be done within five
seconds. This time limit is defined as follows:

#define RNFS_REPLICATE_TIME_LIMIT 5

All the nodes receive a protocol approved notification (➄); however, no action
is required for this.

/***************************************
* protocol rejected notification
***************************************/
void ha_gs_protocol_rejected_callback(

const ha_gs_rejected_notification_t *block) {

switch(block->gs_protocol_type) {
case HA_GS_JOIN:

if(imdoing == RNFS_JOINING) {
printf("* warning * the group is unstable, join later - exit\n");
exit(-1);

}
break;

default:
printf("*** protocol rejected notification is not expected ***\n");
break;

}
return;

}

Chapter 9. Recoverable Network File System 183

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.

Figure 123. Replicating file system

The provider-broadcast message protocol proposal is implemented as shown
in Figure 124 on page 185. If any other protocol is currently running, the
proposal is canceled.

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

➂ replicate

➂ replicate

➁ n-phase

➃ vote

➄ approved

➀ message

➁ n-phase

➃ vote

➄ approved

➁ n-phase

➃ vote

➄ approved
184 RSCT Group Services: Programming Cluster Applications

Figure 124. Provider-broadcast message protocol proposal

The n-phase callback for a provider-broadcast message protocol is
implemented as shown in Figure 125 on page 186. In this situation, the
condition

ima == RFNS_CLIENT

is false for node 0 and true for node 1 and 2. All the nodes check the contents
of the message, then node 1 and 2 execute rnfs_replicate script to replicate
/shared_nfs to /local_nfs. Finally, all the nodes vote to approve to complete
the notification.

/***************************************
* propose_message (ha_gs_send_message)
***************************************/
void propose_message() {

char message[2048];

strcpy(message, RNFS_MESSAGE);

proposal_info.gs_message_request.gs_num_phases = HA_GS_N_PHASE;
proposal_info.gs_message_request.gs_time_limit = RNFS_REPLICATE_TIME_LIMIT;
proposal_info.gs_message_request.gs_message.gs_length = strlen(message) + 1;
proposal_info.gs_message_request.gs_message.gs_message = message;

gs_rc = ha_gs_send_message(
provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
if(gs_rc == HA_GS_COLLIDE) {

printf("* warning * replication is canceled\n");
} else {

printf("*** ha_gs_send_message failed rc=%d ***\n", gs_rc);
}

}
return;

}

Chapter 9. Recoverable Network File System 185

Figure 125. N-phase notification (HA_GS_PROVIDER_MESSAGE)

The protocol approved notification for a provider-broadcast message protocol
is implemented as shown in Figure 126. No action is required for all the
nodes. The n-phase protocol is used to detect the node that did not replicate
the file system within a time limit.

Figure 126. Protocol approved notification (HA_GS_PROVIDER_MESSAGE)

9.3.6 Server node shutdown
The server node shutdown might be required for maintenance purposes. In
this situation, all nodes in the group are required to umount /shared_nfs
because a server node takeover will occur soon. Any available node can be a
new server node. Therefore, the remaining nodes are required to replicate
/shared_nfs to their /local_nfs before umount /shared_nfs.

Figure 136 on page 195 illustrates control flow for server node shutdown.
Assuming that node 0 is a current server node and has shut down as
planned, node 1 will be a new server node.

Node 0 proposes a voluntary leave protocol with the leaving code of
RNFS_SERVER (➀). Then, all the nodes receive an n-phase notification (➁).
At this moment, node 0 is removed from the membership list; therefore, it
calls the ha_gs_quit subroutine and then umount /shared_nfs (➂). Nodes 1
and 2 are required to check the leaving code. In this case, it is a server node
(RNFS_SERVER). Therefore, they execute the rnfs_replicate script (refer to
Section 9.4.4, “rnfs_replicate” on page 210) to replicate the file system (➃)

case HA_GS_PROVIDER_MESSAGE:
if(strcmp(RNFS_MESSAGE,

block->gs_proposal->gs_provider_message->gs_message)) {
printf("*** provider-broadcast message is not expected ***\n");
break;

}
if(ima == RNFS_CLIENT) {

printf("[replicate] replicate file system\n");
if(rc = system(RNFS_REPLICATE)) {

printf("\n*** system failed rc=%d ***\n", rc);
}

}
vote_protocol(HA_GS_VOTE_APPROVE, NULL);
break;

case HA_GS_PROVIDER_MESSAGE:
break;
186 RSCT Group Services: Programming Cluster Applications

and then execute the rnfs_umount script (refer to Section 9.4.5,
“rnfs_umount” on page 210) to umount /shared_nfs (➄). When it is
completed, they vote to approve (➅). This must be done within five seconds.
This time limit is defined as follows:

#define RNFS_SHUTDOWN_TIME_LIMIT 5

Nodes 1 and 2 receive a protocol approved notification with an updated
membership list (➆). Assuming that node 1 is listed at the top of the
membership list, node 1 becomes a new server node and is required to
propose a state value change protocol to register its hostname to the group
state value. This must be done immediately. For information about registering
a hostname, refer to the section entitled “Registering a hostname” on
page 191.

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.
Chapter 9. Recoverable Network File System 187

Figure 127. Server node shutdown

The program state is changed as shown in Table 10.

Table 10. Program state change for server node shutdown

The voluntary leave protocol proposal is implemented as shown in Figure 128
on page 189. The program needs to set the leaving code to the value of the

Node Before protocol After protocol

node 0 RNFS_SERVER
RNFS_LEAVING

Does not exist

node 1 RNFS_CLIENT
RNFS_STABLE

RNFS_SERVER
RNFS_UNSTABLE

node 2 RNFS_CLIENT
RNFS_STABLE

RNFS_CLIENT
RNFS_UNSTABLE

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

➃ replicate

➄ umount

➂ umount
➁ n-phase

➀ leave

➁ n-phase

➅ vote

➆ approved

➁ n-phase

➅ vote

➆ *approved➄ umount

➃ replicate

* This notification causes a state value change protocol proposal

Group
Service
188 RSCT Group Services: Programming Cluster Applications

ima variable, and the imdoing variable to the value of RNFS_LEAVING. If any
other protocol is currently running, the proposal is canceled. It is the
responsibility of the server node to propose a voluntary leave protocol again.

Figure 128. Voluntary leave protocol proposal

The n-phase notification for a voluntary leave protocol is implemented as
shown in Figure 129 on page 190. In this situation, the condition

imdoing != RNFS_LEAVING

is false for node 0 and true for nodes 1 and 2.

The following condition is true:

block->gs_proposal->gs_leave_info->gs_leave_codes->gs_voluntary_leave_code
== RNFS_SERVER

Therefore, nodes 1 and 2 call the rnfs_replicate script to replicate /shared_nfs
to /local_nfs. Then, they call the rnfs_umount script to umount /shared_nfs.
They must set the group to unstable to reject upcoming join protocols (if there
are to be any) because a joining node could pick up node 0 as a server node
instead of node 1. Then, they vote to approve.

/***************************************
* propose_leave (ha_gs_leave)
***************************************/
void propose_leave() {

proposal_info.gs_leave_request.gs_num_phases = HA_GS_N_PHASE;
proposal_info.gs_leave_request.gs_time_limit = RNFS_SHUTDOWN_TIME_LIMIT;
proposal_info.gs_leave_request.gs_leave_code = ima;

imdoing = RNFS_LEAVING;

gs_rc = ha_gs_leave(
provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
if(gs_rc == HA_GS_COLLIDE) {

printf("* warning * leaving the group is canceled\n");
} else {

printf("*** ha_gs_leave failed rc=%d ***\n", gs_rc);
}

}
return;

}

Chapter 9. Recoverable Network File System 189

Figure 129. N-phase notification (HA_GS_LEAVE)

This is the last notification for node 0. Node 0 is not a provider of the group at
this point and should not call the ha_gs_vote subroutine. Instead, it calls the
quit_program subroutine to quit using GSAPIs as shown in Figure 130.

Figure 130. Quit subroutine

The protocol approved notification for a voluntary leave protocol is
implemented as shown in Figure 131 on page 191. Only nodes 1 and 2
receive this notification. In this situation, the condition

ima != RNFS_SERVER

case HA_GS_LEAVE:
if(imdoing != RNFS_LEAVING) {

if(block->gs_proposal->gs_leave_info->gs_leave_codes->gs_voluntary_leave_code
== RNFS_SERVER) {
printf("[server shutdown] replicate file system\n");
if(rc = system(RNFS_REPLICATE)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
printf("[server shutdown] umount network file system\n");
if(rc = system(RNFS_UMOUNT)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
imdoing = RNFS_UNSTABLE;

}
vote_protocol(HA_GS_VOTE_APPROVE, NULL);

} else {
quit_program();

}
break;

/***************************************
* quit_program (ha_gs_quit)
***************************************/
void quit_program() {

gs_rc = ha_gs_quit();
if (gs_rc != HA_GS_OK) {

printf("*** ha_gs_quit failed rc=%d ***\n", gs_rc);
} else {

printf("[server takeover] umount network file system\n");
if(rc = system(RNFS_UMOUNT)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
exit(0);

}
return;

}

190 RSCT Group Services: Programming Cluster Applications

is true. The condition

mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number

is true for node 1 and false for node 2. Therefore, node 1 starts registering its
hostname.

Figure 131. Protocol approved notification (HA_GS_LEAVE)

Registering a hostname
Every time a server node takeover occurrs, a new server node is required to
register its hostname to the group state value. This registration is notified to
all the nodes in the group. Upon receiving this notification, all the nodes must
mount the server node’s /local_nfs to /shared_nfs.

Figure 132 on page 192 illustrates the control flow for registering a hostname
to the group state value. Assume that node 0 has left the group, node 1 has
become a server node, and node 2 is still a client node.

Node 1 realizes it becomes a server node by receiving the protocol approved
notification described in Section 9.3.6, “Server node shutdown” on page 186,
or Section 9.3.8, “Server node failure” on page 196. Node 1 is required to
register its hostname to the group state value so that nodes 1 and 2 can
mount node 1’s /local_nfs as /shared_nfs. To do this, node 1 proposes a state
value change protocol (➀). Then, nodes 1 and 2 receive an n-phase
notification with the proposed (not updated, because it is not approved) group
state value (➁). Upon receiving the notification, all the nodes mount node 1’s
/local_nfs (➂). When this is completed, they vote to approve (➃). This must be
done within five seconds. This time limit is defined as follows:

#define RNFS_TAKEOVER_TIME_LIMIT 5

Nodes 1 and 2 receive a protocol approved notification with an updated group
state value (➄). No action is required for this notification.

case HA_GS_LEAVE:
if(ima != RNFS_SERVER) {

if(mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number) {
ima = RNFS_SERVER;
propose_state();

}
}
break;
Chapter 9. Recoverable Network File System 191

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.

Figure 132. Registering hostname

The program state changes as shown in Table 11.

Table 11. Program state for registering hostname

The state value change protocol proposal is implemented as shown in Figure
133 on page 193. If any other protocol is currently running, the proposal is

Node Before protocol After protocol

node 1 RNFS_SERVER
RNFS_UNSTABLE

RNFS_SERVER
RNFS_STABLE

node 2 RNFS_CLIENT
RNFS_UNSTABLE

RNFS_CLIENT
RNFS_STABLE

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

➂ mount

➁ n-phase

➃ vote

➄ approved

➀ group state

➂ mount
➁ n-phase

➃ vote

➄ approved

export
192 RSCT Group Services: Programming Cluster Applications

canceled. However, node 0’s hostname must be registered. Therefore, using
the collide variable, the program retries the proposal until it is started.

Figure 133. Change state value protocol proposal

The n-phase callback for a state value change protocol is implemented as
shown in Figure 134 on page 194. Nodes 1 and 2 execute the rnfs_mount
script using node 1’s hostname.

/***************************************
* propose_state (ha_gs_chage_state_value)
***************************************/
void propose_state() {

char hostname[256];
int collide;

if(gethostname(hostname, 256)) {
printf("*** gethostname failed ***\n");

}

proposal_info.gs_state_change_request.gs_num_phases = HA_GS_N_PHASE;
proposal_info.gs_state_change_request.gs_time_limit

= RNFS_TAKEOVER_TIME_LIMIT;
proposal_info.gs_state_change_request.gs_new_state.gs_length

= strlen(hostname) + 1;
proposal_info.gs_state_change_request.gs_new_state.gs_state = hostname;

for(; collide;) {
gs_rc = ha_gs_change_state_value(

provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
if(gs_rc == HA_GS_COLLIDE) {

printf("* warning * hostname registration is canceled - retry\n");
collide = 1;

} else {
printf("*** ha_gs_change_state_value failed rc=%d ***\n", gs_rc);
collide = 0;

}
} else {

collide = 0;
}

}
return;

}

Chapter 9. Recoverable Network File System 193

Figure 134. N-phase notification (HA_GS_STATE_VALUE_CHANGE)

The protocol approved notification for a state value change protocol is
implemented as shown in Figure 135. Nodes 1 and 2 set the group to stable
so that a new node can join the group. The n-phase protocol is used to detect
the node that did not mount node 1’s /local_nfs as /shared_nfs within the time
limit.

Figure 135. Protocol approved notification (HA_GS_STATE_VALUE_CHANGE)

9.3.7 Client node shutdown
A client node shutdown might be required for maintenance purposes as a
server node. This situation does not require involved procedures. The client
node is required to umount the /shared_nfs, and that is all.

Figure 136 on page 195 illustrates control flow for a client node shutdown.
Assuming that node 2 is a client node and has shut down as planned.

Node 2 proposes a voluntary leave protocol with a leaving code of
RNFS_CLIENT (➀). Then, nodes 0, 1, and 2 receive an n-phase notification
(➁). At this moment, node 2 has been removed from the membership list;
therefore, it calls the ha_gs_quit subroutine and then umounts /shared_nfs
(➂). Nodes 0 and 1 are required to check the leaving code. In this case, it is a
client node (RNFS_CLIENT). Therefore, they vote to approve immediately
(➃). This must be done within five seconds. This time limit is defined as
follows:

#define RNFS_SHUTDOWN_TIME_LIMIT 5

case HA_GS_STATE_VALUE_CHANGE:
printf("[server takeover] mount network file system from %s\n",

block->gs_proposal->gs_proposed_state_value->gs_state);
strcpy(mount_command, RNFS_MOUNT);
strcat(mount_command,

block->gs_proposal->gs_proposed_state_value->gs_state);
if(rc = system(mount_command)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
serveris = block->gs_proposal->gs_proposed_by.gs_node_number;
vote_protocol(HA_GS_VOTE_APPROVE, NULL);
break;

case HA_GS_STATE_VALUE_CHANGE:
imdoing = RNFS_STABLE;
break;
194 RSCT Group Services: Programming Cluster Applications

Nodes 0 and 1 receive a protocol approved notification (➄); however, no
action is required for this notification.

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.

Figure 136. Client node shutdown

The program state changes are shown in Table 12.

Table 12. Program state for client node shutdown

Node Before protocol After protocol

node 0 RNFS_SERVER
RNFS_STABLE

no change

node 1 RNFS_CLIENT
RNFS_STABLE

no change

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

mount

export

➁ n-phase

➃ vote

➄ approved

➁ n-phase

➃ vote

➄ approved

➀ leave

➁ n-phase

mount

➂ umount
Chapter 9. Recoverable Network File System 195

The voluntary leave protocol proposal is implemented as shown in Figure 128
on page 189. The program needs to set the leaving code to the value of the
ima variable and the imdoing variable to the value of RNFS_LEAVING. If any
other protocol is currently running, the proposal is canceled. It is the
responsibility of the client node to propose a voluntary leave protocol again.

The n-phase notification for a voluntary leave protocol is implemented as
shown in Figure 129 on page 190. In this situation, the condition

imdoing != RNFS_LEAVING

is false for node 2 and true for nodes 0 and 1.

The condition

block->gs_proposal->gs_leave_info->gs_leave_codes->gs_voluntary_leave_code
== RNFS_SERVER

is false. Therefore, nodes 0 and 1 simply vote to approve.

This is the last notification for node 2. Node 2 is not a provider of the group at
this point and should not call the ha_gs_vote subroutine. Instead, it calls the
quit_program subroutine to quit using GSAPIs as shown in Figure 130 on
page 190.

The protocol approved notification for a voluntary leave protocol is
implemented as shown in Figure 131 on page 191. Only nodes 0 and 1
receive this notification. In this situation, the condition

ima != RNFS_SERVER

is false for node 0 and true for node 1. The condition

mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number

is false for node 1. Therefore, no action is required for nodes 0 or 1.

9.3.8 Server node failure
The server node failure is similar to the server node shutdown described in
Section 9.3.6, “Server node shutdown” on page 186. However, the node has
failed and cannot umount /shared_nfs. Therefore, Group Services does this

node 2 RNFS_CLIENT
RNFS_LEAVING

does not exist

Node Before protocol After protocol
196 RSCT Group Services: Programming Cluster Applications

operation for a failed server node. Also, unlike the server node shutdown, it is
impossible for the remaining nodes to replicate /shared_nfs to their /local_nfs.

Figure 137 on page 198 illustrates control flow for a server node failure.
Assuming that node 0 is a current server node that fails by accident, node 1
will be the new server node.

When node 0 fails, Group Services notices this situation and proposes a
failure leave protocol. At the same time, Group Services executes the
deactivate script (refer to Section 9.4.1, “rnfs_deact.ksh shell script” on page
208) against node 0 (➀) to umount /shared_nfs (➁). Then, nodes 1 and 2
receive an n-phase notification with a changing providers list (➂). This list
contains the node number of node 0; therefore, nodes 1 and 2 know node 0
was failed. Then, they are required to umount /shared_nfs (➃). When this is
complete, they vote to approve (➄). This must be done within five seconds.
This time limit is defined as follows:

#define RNFS_JOIN_FAILURE_TIME_LIMIT 5

Nodes 1 and 2 receive a protocol approved notification with an updated
membership list (➅). Node 1 is listed at the top of the membership list.
Therefore, node 1 becomes a new server node and is required to propose a
state value change protocol to register its hostname to the group state value.
This must be done immediately. For hostname registration, refer to the
section entitled “Registering a hostname” on page 191.

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.
Chapter 9. Recoverable Network File System 197

Figure 137. Server node failure

The program state changes as shown in Table 13.

Table 13. Program state for server node failure

The n-phase notification for a failure leave protocol is implemented as shown
in Figure 138 on page 199. In this situation, the condition

Node Before protocol After protocol

node 0 RNFS_SERVER
RNFS_STABLE

Does not exist

node 1 RNFS_CLIENT
RNFS_STABLE

RNFS_SERVER
RNFS_UNSTABLE

node 2 RNFS_CLIENT
RNFS_STABLE

RNFS_CLIENT
RNFS_UNSTABLE

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

➃ umount

➃ umount
➂ n-phase

➄ vote

➅ approved

➂ n-phase

➄ vote

➅ *approved

node 0

/local_nfs

deactivate
script ➀

➁ umount

* This notification causes a state value change protocol proposal
198 RSCT Group Services: Programming Cluster Applications

ima != RNFS_SERVER

is true and the condition

serveris ==
block->gs_proposal->gs_changing_providers->gs_providers->gs_node_number

is also true. Therefore, nodes 1 and 2 realize that node 0 was failed and
execute the rnfs_umount script to umount /shared_nfs. They must set the
group to unstable to reject the upcoming join protocols (if there will be any)
because a joining node could pick up node 0 as a server node instead of
node 1. Then, they vote to approve.

Figure 138. N-phase notification (HA_GS_FAILURE_LEAVE)

The protocol approved notification for a failure leave protocol is implemented
as shown in Figure 139 on page 200. In this situation, the condition

ima != RNFS_SERVER

is true and the condition

mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number

is true for node 1 and false for node 2. Therefore, node 1 starts registering its
hostname.

case HA_GS_FAILURE_LEAVE:
if(ima != RNFS_SERVER) {

if(serveris ==
block->gs_proposal->gs_changing_providers->gs_providers->gs_node_number) {
printf("[server failure] umount network file system\n");
if(rc = system(RNFS_UMOUNT)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
imdoing = RNFS_UNSTABLE;

}
}
vote_protocol(HA_GS_VOTE_APPROVE, NULL);
break;
Chapter 9. Recoverable Network File System 199

Figure 139. Protocol approved notification (HA_GS_FAILURE_LEAVE)

9.3.9 Client node failure
The client node failure is similar to the client node shutdown described in
Section 9.3.7, “Client node shutdown” on page 194. However, the node has
failed and cannot perform umount /shared_nfs. Therefore, Group Services
does this operation for a failed client node.

Figure 140 on page 201 illustrates control flow for a client node failure,
assuming that node 2 is a client node and fails by accident.

When node 2 fails, Group Services notices this situation and proposes a
failure leave protocol. At the same time, Group Services executes the
deactivate script (refer to Section 9.4.1, “rnfs_deact.ksh shell script” on page
208) against node 2 (➀) to umount /shared_nfs (➁). Then, nodes 0 and 1
receive an n-phase notification with a changing provider list (➂). This list
contains the node number of node 2, and nodes 0 and 1 know that the failure
node is not node 0. Therefore, they vote to approve immediately (➃). This
must be done within five seconds. This time limit is defined as follows:

#define RNFS_JOIN_FAILURE_TIME_LIMIT 5

Nodes 0 and 1 receive a protocol approved notification (➄); however, no
action is required for this.

If a node fails to vote within the time limit, Group Services sends an
announcement notification to all the nodes. For this situation, refer to Section
9.3.10, “Receiving an announcement” on page 202.

case HA_GS_FAILURE_LEAVE:
if(ima != RNFS_SERVER) {

if(mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number) {
ima = RNFS_SERVER;
propose_state();

}
}
break;
200 RSCT Group Services: Programming Cluster Applications

Figure 140. Client node failure

The program state changes as shown in Table 14.

Table 14. Program state for having NFS client failure

The n-phase notification for a failure leave protocol is implemented as shown
in Figure 138 on page 199. In this situation, the condition

ima != RNFS_SERVER

Node Before protocol After protocol

node 0 RNFS_SERVER
RNFS_STABLE

no change

node 1 RNFS_CLIENT
RNFS_STABLE

no change

node 2 RNFS_CLIENT
RNFS_STABLE

does not exist

/local_nfs

node 0

/local_nfs

node 1

/shared_nfs

Group
Service

mount

mount

export

➂ n-phase

➃ vote

➄ approved

➂ n-phase

➃ vote

➄ approved

node 2

/local_nfs

deactivate
script ➀

➁ umount
Chapter 9. Recoverable Network File System 201

is false for node 0 and true for node 1. The condition

serveris ==
block->gs_proposal->gs_changing_providers->gs_providers->gs_node_number

is false. Therefore, nodes 0 and 1 simply vote to approve.

The protocol approved notification for a failure leave protocol is implemented
as shown in Figure 139 on page 200. In this situation, the condition

ima != RNFS_SERVER

is false for node 0 and true for node 1. The condition

mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number

is true for node 0 and false for node 1. Therefore, no action is required for
nodes 0 and 1.

9.3.10 Receiving an announcement
A node receives an announcement notification in the following three
situations:

• When a node in the group has lost its responsiveness

• When a node in the group that lost its responsiveness has recovered

• When a node in the group has failed to vote within the time limit

• When the last node leaves the group

• When a node has disconnected unexpectedly from the Group Services, or
the Group Services daemon has died

In the first case, the program displays a warning message similar to the
following:

* warning * responsiveness check has failed on node 0 node 1

In the second case, the program displays a warning message similar to the
following:

* warning * responsiveness check has recovered on node 0 node 1

These situations are described in Section 9.3.2, “Checking responsiveness”
on page 174.

In the third case, the program is required to check to which protocol this
announcement notification has been sent. Unfortunately, there is no
information in the announcement notification block about this. Therefore, the
202 RSCT Group Services: Programming Cluster Applications

program needs to track the protocol it has processed. To do this, the program
assigns the latest protocol to the latest_protocol variable each time it receives
an n-phase notification as follows:

switch(latest_protocol = block->gs_protocol_type) {

The program translates the protocols and displays warning messages similar
to the following:

Join protocol (HA_GS_JOIN)
* warning * it might be very busy on node 0

This situation is described in Section 9.3.3, “Creating the group”
on page 175 and Section 9.3.4, “Adding a node” on page 180.

Failure leave protocol (HA_GS_FAILURE_LEAVE)
* warning * umounting file system might have failed on node 0

This situation is described in Section 9.3.8, “Server node failure”
on page 196.

Voluntary leave protocol (HA_GS_LEAVE)
* warning * replicating/umounting file system might have failed

on node 0

This situation is described in Section 9.3.6, “Server node
shutdown” on page 186.

State value change protocol (HA_GS_STATE_VALUE_CHANGE)
* warning * mounting file system might have failed on node 0

This situation is described in “Registering a hostname” on
page 191.

Provider-broadcast message protocol (HA_GS_PROVIDER_MESSAGE)
* warning * replicating file system might have failed on node 0

This situation is described in Section 9.3.5, “Replicating a file
system” on page 183.

Figure 141 on page 204 illustrates control flow for receiving an
announcement notification.
Chapter 9. Recoverable Network File System 203

Figure 141. Receiving an announcement

The announcement notification is implemented as shown in Figure 142 on
page 205.

/local_nfs

node 0

/local_nfs

node 1

/local_nfs

node 2

/shared_nfs

Group
Service

announcement

announcement

announcement
204 RSCT Group Services: Programming Cluster Applications

Figure 142. Announcement notification

/***************************************
* announcement notification
***************************************/
void ha_gs_announcement_callback(

const ha_gs_announcement_notification_t *block) {

switch(block->gs_summary_code) {
case HA_GS_RESPONSIVENESS_NO_RESPONSE:

printf("* warning * responsiveness check has failed on node ");
if(imdoing != RNFS_LEAVING) {

imdoing = RNFS_UNSTABLE;
}
break;

case HA_GS_RESPONSIVENESS_RESPONSE:
printf("* warning * responsiveness check has recovered on node ");
if(imdoing != RNFS_LEAVING) {

imdoing = RNFS_STABLE;
}
break;

case HA_GS_TIME_LIMIT_EXCEEDED:
switch(latest_protocol) {
case HA_GS_JOIN:

printf("* warning * it might be very busy on node ");
break;

case HA_GS_FAILURE_LEAVE:
printf("* warning * umounting file system might have failed on node ");
break;

case HA_GS_LEAVE:
printf("* warning * replicating/umounting file system might have failed on node ");
break;

case HA_GS_STATE_VALUE_CHANGE:
printf("* warning * mounting file system might have failed on node ");
break;

case HA_GS_PROVIDER_MESSAGE:
printf("* warning * replicating file system might have failed on node ");
break;

default:
printf("*** announcement notification is not expected ***\n");
return;

}
break;

case HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY:
printf("*** Group Services has died ***\n");
break;

case HA_GS_GROUP_DISSOLVED:
printf("*** rnfs_group has dissolved ***\n");
break;

default:
printf("*** announcement notification is not expected ***\n");
return;

}
print_nodes(block->gs_announcement);
return;

}

Chapter 9. Recoverable Network File System 205

The print_nodes subroutine shown in Figure 143 on page 206 prints out the
node numbers in the gs_announcement field in the announcement
notification block.

Figure 143. Print nodes subroutine

9.3.11 Receiving error
A node receives a delayed error notification in the following three situations:

• When multiple rnfs program instances are executed on a node

• When a protocol has collided

In the first case, the program displays a warning message similar to the
following and exits:

* warning * another rnfs program is running on this node - exit

This situation is described in Section 9.3.3, “Creating the group” on page 175,
and Section 9.3.4, “Adding a node” on page 180.

In the second case, the program is required to check to which protocol this
delayed error notification has been sent. The delayed error notification block
has this information.

The program translates the protocols and displays warning messages similar
to the following:

Voluntary leave protocol (HA_GS_LEAVE)
* warning * leaving the group is canceled

This situation is described in Section 9.3.6, “Server node

/***************************************
* print_nodes
***************************************/
void print_nodes(ha_gs_membership_t *membership_list) {

int number_of_nodes;
ha_gs_provider_t *member;

member = membership_list->gs_providers;
for(number_of_nodes = 0;

number_of_nodes < membership_list->gs_count;
number_of_nodes++, member++) {
printf("%d ", member->gs_node_number);

}
printf("\n");
return;

}

206 RSCT Group Services: Programming Cluster Applications

shutdown” on page 186, and Section 9.3.7, “Client node
shutdown” on page 194.

State value change protocol (HA_GS_STATE_VALUE_CHANGE)
* warning * hostname registration is canceled - retry

This situation is described in the section entitled “Registering a
hostname” on page 191.

Provider-broadcast message protocol (HA_GS_PROVIDER_MESSAGE)
* warning * replication is canceled

This situation is described in Section 9.3.5, “Replicating a file
system” on page 183.

The delayed error notification is implemented as shown in Figure 144.

Figure 144. Delayed error notification

/***************************************
* delayed error notification
***************************************/
void ha_gs_delayed_error_callback(

const ha_gs_delayed_error_notification_t *block) {

switch(block->gs_protocol_type) {
case HA_GS_JOIN:

if(block->gs_delayed_return_code == HA_GS_DUPLICATE_INSTANCE_NUMBER) {
printf("* warning * another rnfs is running on this node - exit\n");
exit(-1);

}
break;

case HA_GS_LEAVE:
if(block->gs_delayed_return_code == HA_GS_COLLIDE) {

printf("* warning * leaving the group is canceled\n");
}
break;

case HA_GS_STATE_VALUE_CHANGE:
if(block->gs_delayed_return_code == HA_GS_COLLIDE) {

printf("* warning * hostname registration is canceled - retry\n");
propose_state();

}
break;

case HA_GS_PROVIDER_MESSAGE:
if(block->gs_delayed_return_code == HA_GS_COLLIDE) {

printf("* warning * replication is canceled\n");
}
break;

default:
printf("*** delayed error notification is not expected ***\n");
break;

}
return;

}

Chapter 9. Recoverable Network File System 207

9.4 Shell script, Perl script, and log file

If you do not have an environment to modify and recompile the rnfs program,
the program provides you with flexibility by using shell scripts. The following
operations are done by the shell scripts:

• Deactivate-on-failure facility (a deactivate script)

• mount /shared_nfs file system

• replicate /shared_nfs file system to /local_nfs file system

• umount /shared_nfs file system

Instead of executing actual commands, these shell scripts write their activities
to the log file, rnfs.log. You can modify theses shell scripts to execute actual
commands or to do something else.

Entire shell scripts are provided in Appendix C, “Recoverable Network File
System programs” on page 261.

9.4.1 rnfs_deact.ksh shell script
The rnfs_deact.ksh shell script is a deactivate script called by Group Services
when a failure leave protocol is proposed.

The actual deactivate script is written by the Perl script. Group Services only
allows the use of a shell script or an executable program for a deactivate
script. Since a Perl script is neither of these, the shell script is required as a
wrapper to execute the Perl script. Therefore, two scripts are used for a
deactivate script: One for a wrapper written as a shell script and one for a
deactivate script written as a Perl script.

The name of the shell script is defined in the rnfs program as:

#define RNFS_DEACTIVATE "./rnfs_deact.ksh"

The shell script is implemented as shown in Figure 145.

Figure 145. The rnfs_deact.ksh shell script

It forwards the five parameters given by Group Services to the rnfs_deact.perl
Perl script. It also forwards the return value from the Perl script to the Korn
shell. This value is checked and used by Group Services for some cases.

./rnfs_deact.perl $1 $2 $3 $4 $5

exit $?
208 RSCT Group Services: Programming Cluster Applications

9.4.2 rnfs_deact.perl Perl script
The rnfs_deact.perl Perl script is the real deactivate script and is called by the
rnfs_deact.ksh shell script. The Perl script opens the rnfs log file (rnfs.log)
and writes the date and five parameters: Process ID, voting time limit, failed
group, deactivate flag, and failed provider. Then, it writes the operation
(umount /shared_nfs) and closes the log file. Finally, it returns to the
deact.ksh shell script. A successfully executed deactivate script must give a
return value of 0.

This Perl script is implemented as shown in Figure 146.

Figure 146. The rnfs_deact.perl Perl script

9.4.3 rnfs_mount shell script
The rnfs_mount shell script is used to mount a server node’s /local_nfs local
file system as /shared_nfs network file system. Instead of executing an actual
command, it writes the operation (the mount command) to the log file
(rnfs.log) with a time stamp.

The name of the shell script is defined in the rnfs program as:

#define RNFS_MOUNT "./rnfs_mount "

The shell script is implemented as shown in Figure 147 on page 210.

$FILE_SYSTEM = "/shared_nfs";
$LOG_FILE = "./rnfs.log";

if($#ARGV == 4) {
open(STDOUT, ">> $LOG_FILE");
‘date >> $LOG_FILE‘;
print " deactivate script executed by the Group Services\n";
print " Process ID: $ARGV[0]\n";
print " Voting Time Limit: $ARGV[1]\n";
print " Failed group: $ARGV[2]\n";
print " Deactivate flag: $ARGV[3]\n";
print " Failed provider(s): $ARGV[4]\n";
print " umount $FILE_SYSTEM\n";
close STDOUT;

} else {
print "*** the number of parameters is not expected ***\n";
exit -1;

}

exit with return code 0
exit 0;
Chapter 9. Recoverable Network File System 209

Figure 147. The rnfs_mount shell script

9.4.4 rnfs_replicate
The rnfs_replicate shell script is used to replicate /shared_nfs network file
system to /local_nfs local file system. Instead of executing an actual
command, it writes the operation (the cp command) to the log file (rnfs.log)
with a time stamp.

The name of the shell script is defined in the rnfs program as:

#define RNFS_REPLICATE "./rnfs_replicate"

The script is implemented as shown in Figure 148 on page 210.

Figure 148. The rnfs_mount shell script

9.4.5 rnfs_umount
The rnfs_umount shell script is used to umount the /shared_nfs network file
system. In stead of executing an actual command, it writes the operation (the
umount command) to the log file (rnfs.log) with time stamp.

The name of the shell script is defined in the rnfs program as:

#define RNFS_UMOUNT "./rnfs_umount"

The shell scrip is implemented as shown in Figure 149 on page 210.

Figure 149. The rnfs_mount shell script

9.5 rnfsm program

The rnfsm program monitors the status of the RNFS environment; if a server
node shutdown or failure occurs, it displays a new server node on the screen.

date >> ./rnfs.log
print " mount $1:/local_nfs /shared_nfs" >> ./rnfs.log

date >> ./rnfs.log
print " cp -R /shared_nfs/. /local_nfs" >> ./rnfs.log

date >> ./rnfs.log
print " umount /shared_nfs" >> ./rnfs.log
210 RSCT Group Services: Programming Cluster Applications

If client node shutdown or failure has happened, it displays all the available
nodes in the group on the screen.

The rnfs program is a provider’s program, and the rnfsm program is a
subscriber’s program. Therefore, the rnfsm program does not have any
protocol-related subroutines. Instead, it has subscriber-related subroutines.

This section describes the rnfsm program in detail. The entire program is
provided in Section C.7, “rnfsm.c” on page 273.

9.5.1 main routine
The main routine of the rnfsm program is shown in Figure 150 on page 212.
In this routine, the program performs the following operations:

1. Set the domain name and group name. The domain name is given as a
parameter of the program. The group name is defined as:

#define RNFS_GROUP_NAME "rnfs_group"

Unlike the rnfs program, an instance number is not required. This means
that you can execute the rnfsm program on a node as many times as you
want.

2. Set some global variables.

3. It calls the init_program subroutine to initialize the program with the Group
Services.

4. It calls the propose_subscribe subroutine to subscribe the group.

In an infinite loop, the program performs the following operations:

1. Set two file descriptors for the select subroutine, one for stdin and the
other for the Group Services. Then, the program calls the select
subroutine. It waits one second, at most, and then returns.

2. If there is data from stdin, the program calls the suspend_program
subroutine to suspend the program and get your command. This is the
case described in Section 9.5.3, “Unsubscribing the group” on page 217.

3. If there is data from the Group Services, the program calls the
ha_gs_dispatch subroutine to receive notifications.
Chapter 9. Recoverable Network File System 211

Figure 150. Main routine

The initialization subroutine is shown in Figure 151 on page 213. In this
subroutine, the program performs the following operations:

1. Set the responsiveness control block as follows:

- The program uses no responsiveness check.

/***************************************
* main
***************************************/
int main(int argc, char **argv) {

char key;
fd_set my_fd;
struct timeval timeout;

if(argc != 2) {
printf("Usage: %s domain_name\n", argv[0]);
exit(argc);

}
strcpy(domain_name, "HA_DOMAIN_NAME=");
strcat(domain_name, argv[1]);
putenv(domain_name);
printf("domain name: %s, ", getenv("HA_DOMAIN_NAME"));
printf("group name: %s\n", RNFS_GROUP_NAME);

descriptor = 0;
timeout.tv_sec = 1;
timeout.tv_usec = 0;
init_program();
propose_subscribe();

printf("hit <Enter> key to suspend\n");
for(;;) {

FD_ZERO(&my_fd);
FD_SET(0, &my_fd);
FD_SET(descriptor, &my_fd);
rc = select(descriptor + 1, &my_fd, NULL, NULL, &timeout);
if(rc < 0) {

printf("*** select failed rc=%d ***\n", rc);
exit(rc);

}
if(FD_ISSET(0, &my_fd)) {

suspend_program();
}
if(descriptor && FD_ISSET(descriptor, &my_fd)) {

gs_rc = ha_gs_dispatch(HA_GS_NON_BLOCKING);
if(gs_rc != HA_GS_OK) {

printf("*** ha_gs_dispatch failed rc=%d ***\n", gs_rc);
}

}
}

}

212 RSCT Group Services: Programming Cluster Applications

This does not mean you cannot use the responsiveness check for a
subscriber. However, Group Services does not take any action when it
notices that a subscriber has lost its responsiveness. Therefore, an
application is required to provide its own mechanism in the
responsiveness callback subroutine, if necessary.

2. Set the address for the following callback subroutine:

ha_gs_delayed_error_callback

Figure 151. Initialization subroutine

9.5.2 Subscribing the group
To subscribe the group, the program calls the subscription subroutine shown
in Figure 152 on page 214. In this subroutine, the program performs the
following operations:

1. Set the subscribe request block as follows:

- Subscribe both the group state value change and the membership list
change.

- Subscribe the group defined as:

#define RNFS_GROUP_NAME "rnfs_group"

- Set the address for the following callback subroutine:

/***************************************
* init_program (ha_gs_init)
***************************************/
void init_program() {

/* responsiveness control block */
responsiveness.gs_responsiveness_type = HA_GS_NO_RESPONSIVENESS;
responsiveness.gs_responsiveness_interval = NULL;
responsiveness.gs_responsiveness_response_time_limit = NULL;
responsiveness.gs_counter_location = NULL;
responsiveness.gs_counter_length = NULL;

gs_rc = ha_gs_init(
&descriptor,
HA_GS_SOCKET_NO_SIGNAL,
&responsiveness,
NULL,
NULL,
ha_gs_delayed_error_callback,
NULL);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_init failed rc=%d ***\n", gs_rc);

}
return;

}

Chapter 9. Recoverable Network File System 213

ha_gs_subscriber_callback

2. It calls the ha_gs_subscribe subroutine to subscribe the group.

Figure 152. Subscription subroutine

If the rnfsm program is started before the rnfs program has created the RNFS
environment, the rnfsm program will receive a delayed error notification as
shown in Figure 153 on page 215. The notification indicates that the group
being subscribed is unknown.

If this is the case, the program calls the quit_program subroutine shown in
Figure 154 on page 215 to terminate the program with a message similar to
the following:

$ rnfsm sp6en0
domain name: sp6en0, group name: rnfs_group
hit <Enter> key to suspend
*** no RNFS node is available currently ***
$

/***************************************
* propose_subscribe (ha_gs_subacribe)
***************************************/
void propose_subscribe() {

proposal_info.gs_subscribe_request.gs_subscription_control
= HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP;

proposal_info.gs_subscribe_request.gs_subscription_group
= RNFS_GROUP_NAME;

proposal_info.gs_subscribe_request.gs_subscription_callback
= ha_gs_subscriber_callback;

gs_rc = ha_gs_subscribe(
&subscriber_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_subscribe failed rc=%d **\n", gs_rc);

}
return;

}

214 RSCT Group Services: Programming Cluster Applications

Figure 153. Delayed error notification

Figure 154. Quit subroutine

If the rnfsm program has successfully subscribed the group, the program
receives the subscriber notification that contains the current state of the
group. The subscriber notification is shown in Figure 155 on page 216.

There are three situations in which the program receives a subscriber
notification:

• When the RNFS environment has been dissolved.
In other words, when all the providers (rnfs program) have left the group,
the program displays a message similar to the following:

*** no RNFS node is available any more ***

/***************************************
* delayed error notification
***************************************/
void ha_gs_delayed_error_callback(

const ha_gs_delayed_error_notification_t *block) {

switch(block->gs_protocol_type) {
case HA_GS_SUBSCRIPTION:

if(block->gs_delayed_return_code == HA_GS_UNKNOWN_GROUP) {
printf("*** no RNFS node is available currently ***\n");
quit_program();

}
break;

default:
printf("*** delayed error notification is not expected ***\n");
break;

}
return;

}

/***************************************
* quit_program (ha_gs_quit)
***************************************/
void quit_program() {

gs_rc = ha_gs_quit();
if (gs_rc != HA_GS_OK) {

printf("*** ha_gs_quit failed rc=%d ***\n", gs_rc);
} else {

exit(0);
}
return;

}

Chapter 9. Recoverable Network File System 215

• When the server node has been changed
In other words, when the group state has been changed, the program
displays a message similar to the following:

server node hostname: sp6n01

• When the client node has been added or deleted
In other words, when the membership list has been changed, the program
displays a message similar to the following:

client nodes: 1 3 5

Figure 155. Subscriber notification

The print_members subroutine is shown in Figure 156 on page 217.

/***************************************
* subscriber notification
***************************************/
void ha_gs_subscriber_callback(

const ha_gs_subscription_notification_t *block) {

printf("\n");
if(block->gs_subscription_type & HA_GS_SUBSCRIPTION_DISSOLVED) {

printf("*** no RNFS node is available any more ***\n");
quit_program();

} else {
if(block->gs_subscription_type & HA_GS_SUBSCRIPTION_STATE) {

printf("server node hostname: %s\n", block->gs_state_value->gs_state);
}
if(block->gs_subscription_type & HA_GS_SUBSCRIPTION_MEMBERSHIP) {

printf("client nodes: ");
print_members(block->gs_full_membership);

}
}
return;

}

216 RSCT Group Services: Programming Cluster Applications

Figure 156. Print members subroutine

9.5.3 Unsubscribing the group
If you want to stop monitoring the RNFS environment, that is, if the rnfsm
program wants to unsubscribe the group, you need to press the Enter key. If
you press the Enter key, the program calls the suspension subroutine shown
in Figure 157 on page 218 to suspend and await your command. You can
choose one of the following operations:

• Press the r or R key to resume the program.

• Press the u or U key to unsubscribe the group.

The resume operation simply returns to the main routine. The unsubscribe
operation calls the propose_unscribe subroutine shown in Figure 158 on
page 218 to unsubscribe the group.

As you may have noticed, you can press any keys other than u or U to resume
operation.

/***************************************
* print_members
***************************************/
void print_members(ha_gs_membership_t *membership_list) {

int i;
ha_gs_provider_t *member;

if(membership_list->gs_count) {
member = membership_list->gs_providers;
for(i = 0; i < membership_list->gs_count; i++, member++){

printf("%d ", member->gs_node_number);
}

}
printf("\n");
return;

}

Chapter 9. Recoverable Network File System 217

Figure 157. Suspension subroutine

Figure 158. Unsubscription subroutine

9.6 Operation example

This section provides you with an operation example of the rnfs and rnfsm
programs. This example uses the following environment:

• The domain name is sp6en0.

• There are three nodes in the domain. Their node numbers are 1, 3, and 5.
Their hostnames are sp6n01, sp6n03, and sp6n05.

/***************************************
* suspend_program
***************************************/
void suspend_program() {

char proposal[32];

gets(proposal); /* remove previously input strings */
printf("[program suspended] u(nsubscribe) or r(esume)?: ");
scanf("%s", proposal);
switch((int)proposal[0]) {
case ’u’: case ’U’:

propose_unsubscribe();
break;

default:
break;

}
gets(proposal); /* remove extra strings */
return;

}

/***************************************
* propose_unsubscribe (ha_gs_unsubscribe)
***************************************/
void propose_unsubscribe() {

gs_rc = ha_gs_unsubscribe(
subscriber_token);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_unsubscribe failed rc=%d ***\n", gs_rc);

} else {
quit_program();

}
return;

}

218 RSCT Group Services: Programming Cluster Applications

The following is the operation scenario. The sequential numbers, 1 through
15, are referred as event numbers in Table 15 on page 222 and Figure 159 on
page 224 through Figure 165 on page 228:

1. Node 1 (sp6n01) joins the group.

To do this, execute rnfs sp6en0 on node 1. Node 1 joins the group as a
server node and displays the following message:

[joined as server] mount network file system from sp6n01

2. Start RNFS monitor.

To do this, execute rnfsm sp6en0 on any node in the domain. The rnfsm
program displays the following message and starts monitoring:

server node hostname: sp6n01
client nodes: 1

3. Node 3 (sp6n03) joins the group.

To do this, execute “rnfs sp6en0” on node 3. Node 3 joins the group as a
client node and displays the following message:

[joined as client] mount network file system from sp6n01

Because node 3 is a client node, it replicates the file system every 10
seconds and displays the following message:

[replicate] replicate file system

4. Node 5 (sp6n05) joins the group.

To do this, execute “rnfs sp6en0” on node 5. Node 5 joins the group as a
client node and displays the following message:

[joined as client] mount network file system from sp6n01

Because node 5 is a client node, it replicates the file system every 10
seconds and displays the following message:

[replicate] replicate file system

5. Node 5 becomes busy and stops processing any notification.

To do this, press Enter and wait with the following message:

[program suspended] l(eave) or r(esume)?:

Because node 5 does not replicate the file system, nodes 1 and 3 are
notified of this situation and display the following message:

* warning * replicating file system might have failed on node 5

Because node 5 does not reply to a responsiveness notification either,
nodes 1 and 3 are notified of this situation and display the following
message:
Chapter 9. Recoverable Network File System 219

* warning * responsiveness check has failed on node 5

6. Node 5 becomes normal and starts processing notifications.

To do this, type r or R, and then press the Enter key as follows:

[program suspended] l(eave) or r(esume)?: r

Because node 5 starts replying to a responsiveness notification, nodes 1
and 3 are notified of this situation and display the following message:

* warning * responsiveness check has recovered on node 5

Node 5 processes all the suspended notifications and displays the
following messages:

[replicate] replicate file system
* warning * replicating file system might have failed on node 5
* warning * responsiveness check has failed on node 5
[replicate] replicate file system
* warning * responsiveness check has recovered on node 5

7. Node 1 leaves the group.

To do this, press the Enter key, type l or L, and then press the Enter key
again as follows:

[program suspended] l(eave) or r(esume)?: l

Node 1 umounts the file system before the rnfs program exits and displays
the following message:

[server takeover] umount network file system

Because node 1 is a server node, a server node takeover occurs. Node 3
is the node that joined the group next to node 1; therefore, it becomes a
new server node.

Nodes 3 and 5 replicate the file system and display the following message:

[server shutdown] replicate file system

Then, they umount the file system and display the following message:

[server shutdown] umount network file system

Finally, they mount the network file system from node 3 and display the
following message:

[server takeover] mount network file system from sp6n03

8. Node 3 becomes busy and stops processing any notification.

To do this, press the Enter key, and wait with the following message:

[program suspended] l(eave) or r(esume)?:
220 RSCT Group Services: Programming Cluster Applications

Because node 3 does not reply to a responsiveness notification, node 5 is
notified of this situation and displays the following message:

* warning * responsiveness check has failed on node 3

9. Node 1 tries to join the group.

To do this, execute rnfs sp6en0. This execution fails because node 3 is
currently not responding, and it has made the group unstable. Node 1 exits
and displays the following message:

* warning * the group is unstable, join later - exit

Node 5 explicitly voted to reject on the join protocol proposal. However,
Group Services voted to approve (the default vote value) as node 3’s vote.
Even though the join protocol has been completed, node 3 did not vote
within the voting time limit. Node 5 is notified of this situation and displays
the following message:

* warning * it might be very busy on node 3

10.Node 3 finally fails.

To do this, press Ctrl-C to terminate the program as follows:

[program suspended] l(eave) or r(esume)?:^C$

This is a node failure; therefore, node 3 cannot umount the file system by
itself. Group Services proposes a failure leave protocol and executes the
deactivate script on node 3 to umount the file system. This is recorded in
the rnfs.log file.

Node 5 umounts the file system without the file system replication and
displays the following message:

[server failure] umount network file system

Node 5 becomes a new server node. It mounts its own file system and
displays the following messages:

[server takeover] mount network file system from sp6n05

11.Node 1 joins the group.

To do this, execute rnfs sp6en0.

Node 1 joins the group and displays the following message:

[joined as client] mount network file system from sp6n05

12.Node 5 suddenly fails.

To do this, press Ctrl-C and terminate the program on node 5.

This is a node failure; therefore, node 5 cannot umount the file system by
itself. Group Services proposes a failure leave protocol and executes the
Chapter 9. Recoverable Network File System 221

deactivate script on node 5 to umount the file system. This is recorded in
the rnfs.log file.

Node 1 umounts the file system and displays the following message:

[server failure] umount network file system

13.Node 1 tries to leave the group.

To do this, press the Enter key, type l or L, and press the Enter key again
as follows:

[program suspended] l(eave) or r(esume)?: l

A server node takeover is currently occurring, that is, a state value change
protocol is running. Therefore, a voluntary leave protocol collides with this
protocol. The voluntary leave protocol is canceled and displays the
following message:

* warning * leaving the group is canceled

14.Node 1 leaves the group.

To do this, press the Enter key, type l or L , and press the Enter key again.

The group becomes stable when a server node takeover has completed
with the following message:

[server takeover] mount network file system from sp6n01

Node 1 umounts the file system and exits with the following message:

[server takeover] umount network file system

15.Because the group has been dissolved, the rnfsm program is notified of
this situation and exits with the following message:

*** no RNFS node is available any more ***

9.6.1 Events summary
Table 15 summarizes the event number and the event on each node. (S)
indicates a server node and (C) indicates a client node. If nothing is indicated,
a node is not in the group when an event occurs.

Table 15. Event number and the event on nodes

Event
number

rnfs on node 1 rnfs on node 3 rnfs on node 5 rnfsm on any
node

1 (S) join

2 (S) start

3 (S) (C) join
222 RSCT Group Services: Programming Cluster Applications

9.6.2 rnfs execution output
Figure 159 on page 224 through Figure 161 on page 225 show executions of
the rnfs program on nodes 1, 3, and 5. Arrows with a number indicate the
point at which the numbered event has occurred.

4 (S) (C) (C) join

5 (S) (C) (C) suspend

6 (S) (C) (C) resume

7 (S) leave (C) (C)

8 (S) suspend (C)

9 join (reject) (S) (C)

10 (S) node failure (C)

11 (C) join (S)

12 (C) (S) node failure

13 (S) leave (reject)

14 (S)leave

15 exit

Event
number

rnfs on node 1 rnfs on node 3 rnfs on node 5 rnfsm on any
node
Chapter 9. Recoverable Network File System 223

Figure 159. rnfs execution on node1

Figure 160. rnfs execution on node3

$ rnfs sp6en0 <--(1)
domain name: sp6en0, group name: rnfs_group, instance number: 5523
hit <Enter> key to suspend
[joined as server] mount network file system from sp6n01
* warning * replicating file system might have failed on node 5 <--(5)
* warning * responsiveness check has failed on node 5
* warning * responsiveness check has recovered on node 5 <---------(6)

[program suspended] l(eave) or r(esume)?: l <--------------------(7)
* warning * responsiveness check has failed on node 1
[server takeover] umount network file system
$ rnfs sp6en0 <--(9)
domain name: sp6en0, group name: rnfs_group, instance number: 5523
hit <Enter> key to suspend
* warning * the group is unstable, join later - exit
$ rnfs sp6en0 <--(11)
domain name: sp6en0, group name: rnfs_group, instance number: 5523
hit <Enter> key to suspend
[joined as client] mount network file system from sp6n05
[replicate] replicate file system
[server failure] umount network file system <--------------------(12)

[program suspended] l(eave) or r(esume)?: l <--------------------(13)
* warning * leaving the group is canceled
[server takeover] mount network file system from sp6n01

[program suspended] l(eave) or r(esume)?: l <--------------------(14)
[server takeover] umount network file system
$

$ rnfs sp6en0 <--(3)
domain name: sp6en0, group name: rnfs_group, instance number: 5523
hit <Enter> key to suspend
[joined as client] mount network file system from sp6n01
[replicate] replicate file system
[replicate] replicate file system
[replicate] replicate file system
* warning * replicating file system might have failed on node 5 <--(5)
* warning * responsiveness check has failed on node 5
[replicate] replicate file system
* warning * responsiveness check has recovered on node 5 <---------(6)
[replicate] replicate file system
* warning * responsiveness check has failed on node 1
[server shutdown] replicate file system <------------------------(7)
[server shutdown] umount network file system
[server takeover] mount network file system from sp6n03

[program suspended] l(eave) or r(esume)?:^C$ <-------------------(8)(10)
224 RSCT Group Services: Programming Cluster Applications

Figure 161. rnfs execution on node5

9.6.3 rnfs log file
Figure 162 on page 226 through Figure 164 on page 227 show the rnfs.log
log file on nodes 1, 3, and 5. Arrows with a number indicate the point at which
the numbered event has occurred. The log file records the following
information:

• The mount command execution

• The umount command execution

• The cp command execution

• The deactivate script execution.

$ rnfs sp6en0 <--(4)
domain name: sp6en0, group name: rnfs_group, instance number: 5523
hit <Enter> key to suspend
[joined as client] mount network file system from sp6n01
[replicate] replicate file system

[program suspended] l(eave) or r(esume)?: r <--------------------(5,6)
[replicate] replicate file system
* warning * replicating file system might have failed on node 5
* warning * responsiveness check has failed on node 5
[replicate] replicate file system
* warning * responsiveness check has recovered on node 5
[replicate] replicate file system
* warning * responsiveness check has failed on node 1
[server shutdown] replicate file system <------------------------(7)
[server shutdown] umount network file system
[server takeover] mount network file system from sp6n03
[replicate] replicate file system
* warning * responsiveness check has failed on node 3 <------------(8)
* warning * it might be very busy on node 3 <----------------------(9)
[server failure] umount network file system <--------------------(10)
[server takeover] mount network file system from sp6n05
Ĉ$ <--(12)
Chapter 9. Recoverable Network File System 225

Figure 162. rnfs.log on node1

Figure 163. rnfs.log on node3

$ cat rnfs.log
Fri Dec 10 15:56:18 EST 1999 <-------------------------------------(1)

mount sp6n01:/local_nfs /shared_nfs
Fri Dec 10 15:57:02 EST 1999 <-------------------------------------(7)

umount /shared_nfs
Fri Dec 10 15:57:33 EST 1999 <-------------------------------------(11)

mount sp6n05:/local_nfs /shared_nfs
Fri Dec 10 15:57:37 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:57:41 EST 1999 <-------------------------------------(12)

umount /shared_nfs
Fri Dec 10 15:57:46 EST 1999

mount sp6n01:/local_nfs /shared_nfs
Fri Dec 10 15:57:50 EST 1999 <-------------------------------------(14)

umount /shared_nfs
$

$ cat rnfs.log
Fri Dec 10 15:56:22 EST 1999 <-------------------------------------(3)

mount sp6n01:/local_nfs /shared_nfs
Fri Dec 10 15:56:26 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:32 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:39 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:48 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:57 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:57:02 EST 1999 <-------------------------------------(7)

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:57:02 EST 1999

umount /shared_nfs
Fri Dec 10 15:57:02 EST 1999

mount sp6n03:/local_nfs /shared_nfs
Fri Dec 10 15:57:27 EST 1999 <-------------------------------------(10)

deactivate script executed by the Group Services
Process ID: 0
Voting Time Limit: 5
Failed group: rnfs_group
Deactivate flag: providerdied
Failed provider(s): 5523

umount /shared_nfs
$

226 RSCT Group Services: Programming Cluster Applications

Figure 164. rnfs.log on node5

9.6.4 rnfsm execution output
Finally, Figure 165 shows an execution of the rnfsm program. Arrows with a
number indicate the point at which the numbered event has occurred. This
program can be executed on any node in the domain. You can also execute
as many instances as you want. The program must be started after the first
rnfs program joins the group. When all the nodes leave the group, the
program terminates automatically.

$ cat rnfs.log
Fri Dec 10 15:56:27 EST 1999 <-------------------------------------(4)

mount sp6n01:/local_nfs /shared_nfs
Fri Dec 10 15:56:32 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:52 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:53 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:56:57 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:57:02 EST 1999 <-------------------------------------(7)

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:57:02 EST 1999

umount /shared_nfs
Fri Dec 10 15:57:02 EST 1999

mount sp6n03:/local_nfs /shared_nfs
Fri Dec 10 15:57:09 EST 1999

cp -R /shared_nfs/. /local_nfs
Fri Dec 10 15:57:27 EST 1999 <-------------------------------------(10)

umount /shared_nfs
Fri Dec 10 15:57:32 EST 1999

mount sp6n05:/local_nfs /shared_nfs
Fri Dec 10 15:57:41 EST 1999 <-------------------------------------(12)

deactivate script executed by the Group Services
Process ID: 0
Voting Time Limit: 5
Failed group: rnfs_group
Deactivate flag: providerdied
Failed provider(s): 5523

umount /shared_nfs
$

Chapter 9. Recoverable Network File System 227

Figure 165. rnfsm execution

$ rnfsm sp6en0
domain name: sp6en0, group name: rnfs_group
hit <Enter> key to suspend

server node hostname: sp6n01 <-------------------------------------(2)
client nodes: 1

server node hostname: sp6n01 <-------------------------------------(3)
client nodes: 1 3

server node hostname: sp6n01 <-------------------------------------(4)
client nodes: 1 3 5

server node hostname: sp6n01 <-------------------------------------(7)
client nodes: 3 5

server node hostname: sp6n03

server node hostname: sp6n03 <-------------------------------------(10)
client nodes: 5

server node hostname: sp6n05

server node hostname: sp6n05 <-------------------------------------(11)
client nodes: 5 1

server node hostname: sp6n05 <-------------------------------------(12)
client nodes: 1

server node hostname: sp6n01

*** no RNFS node is available any more *** <-----------------------(14,15)
$

228 RSCT Group Services: Programming Cluster Applications

Chapter 10. Checking your program

During the GS application programing, you may want to check that your
program is working as you expected. For example, you think the program has
joined the group; however, Group Services may not think so.

Group Services provides you with several commands to look inside the Group
Services subsystem. This chapter takes a close look at the following
commands:

• hagsgr

• hagscl

• hagsvote

These commands are provided for development team use; therefore, they are
undocumented, and it is difficult to understand their output completely. This
chapter focuses only on the part of their output that is useful for checking your
program.

10.1 Command usage

The commands mentioned in this chapter use the following command usage:

command_name [-h host] [-l] -g group_name
Using the -g flag, you can specify a group name and display only
its information. The group name is a name used by the System
Resource Controller (SRC).

command_name [-h host] [-l] -s subsystem_name
Using the -s flag, you can specify a subsystem name and display
only its information. The subsystem name is a name used by SRC.

command_name [-h host] [-l] -p subsystem_pid
Using the -p flag, you can specify the process ID of the Group
Services daemon and display only its information.

The hagsgr and hagsvote commands use an additional flag:

The hagsgr, hagscl, and hagsvote commands are owned by the user, bin,
and belong to the group, bin. Prior to using them, make sure that you have
the proper access permissions.

Note
© Copyright IBM Corp. 2000 229

[-a group_name]
Using the -a flag, you can specify a group name and display only
its information. The group name is a name used by Group
Services.

10.2 Command examples

Using the commands mentioned in this chapter, you can check the following
information:

• The group, providers, and subscribers

• The group attributes

• The group state value

• The providers and subscribers in detail

• A deactivate script

• A responsiveness check

• The protocol currently executing

The following sections explain how to get this information. All the sections use
the operation example described in Section 9.6, “Operation example” on page
218. This chapter assumes that the rnfsm program is to run on node 1.

10.2.1 Checking the group, providers, and subscribers
To check whether the group has been created and whether the program has
become a provider or subscriber, you can use the hagsgr command.

When nodes 1, 3, and 5 have joined the group and the rnfsm program has
started on node 1 (event number 4), execute the hagsgr command on node 1.
Figure 166 shows the command output:

Figure 166. Checking the group, providers, and subscribers on node 1

The output provides you with the following information:

• The group name is rnfs_group (Group name [rnfs_group]).

hagsgr -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] group state[Inserted |Idle |]
Providers[[5523/1][5523/3][5523/5]]
Local subscribers[[10/1]]

#

230 RSCT Group Services: Programming Cluster Applications

• There is a provider running on nodes 1, 3, and 5. All of them use the
instance number 5523 (Providers[[5523/1][5523/3][5523/5]]).

• There is a subscriber running on node 1 (Local subscribers[[10/1]]). The
instance number of a subscriber is assigned by Group Services
automatically.

If you execute the command on another node, such as node 3 or 5, the output
does not provide subscribers with information because subscribers are
managed by a local Group Services daemon. Figure 167 shows the command
output when the command is executed on node 3:

Figure 167. Checking the group, providers, and subscribers on node 3

Subscriber information is not provided (Local subscribers[]).

An alternative to the hagsgr command is the lssrc command. The command is
provided by the SRC as a standard AIX command. To check similar
information, execute the lssrc command on node 1. Figure 168 shows the
output:

Figure 168. Checking the group, providers, & subscribers with the lssrc command

The output provides you with the following information:

• The group name is rnfs_group (Group name - rnfs_group).

hagsgr -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] group state[Inserted |Idle |]
Providers[[5523/1][5523/3][5523/5]]
Local subscribers[]

#

lssrc -ls hags
Subsystem Group PID Status
hags hags 19092 active
4 locally-connected clients. Their PIDs:
18788(rnfs) 6018(haemd) 18354(hagsglsmd) 6418(rnfsm)
HA Group Services domain information:
Domain established by node 11
Number of groups known locally: 3

Number of Number of local
Group name providers providers/subscribers
cssMembership 10 1 0
rnfs_group 3 1 1
ha_em_peers 11 1 0
#

Chapter 10. Checking your program 231

• The number of providers in the group is 3 (Number of providers - 3).

• The number of providers on node 1 is 1 (Number of local providers - 1).

• The number of subscribers on node 1 is 1 (Number of local subscribers
-1).

10.2.2 Checking the group attributes
To check whether the group uses the group attributes that you expected, you
can use the hagsgr command.

When nodes 1, 3, and 5 have joined the group and the rnfsm program has
started on node 1 (event number 4), execute the hagsgr command on any
node. Figure 169 on page 233 through Figure 171 on page 235 show the
output executed on node 1. Output is lengthy; therefore, numbers are added
in the figures as a reference mark.
232 RSCT Group Services: Programming Cluster Applications

Figure 169. Checking the group attributes (1 of 3)

hagsgr -l -a rnfs_group -s hags
Number of groups: 5
Information for SGroup: Group name [rnfs_group]
I am *not* Group Leader! Created by subscription request.
group state[Inserted |Idle |]
ProtocolToken[3219/6355]
counts: (prov/localprov/subs) [3/1/1]
delayed join count [0]
protocol counts: received [0]
dropped(total/DaemonMsg/ProtMgr) [4/0/1]
message counts: current queued [0] future queued/cumulative [0/0]
Group attributes[{group name: value: <------------------------------------- (1)
rnfs_group
}
batching[No batching| DeactivateOnFailure] membership phases[N phases] reflecti
on phases[?? unknown number of phases ??]
default vote[Approve] merge control[Dissolve]
membership time limit[5] reflection time limit[0]
client version[1] version[1] size[40]

Group state value: [min/max lengths (1/256)] actual length[7] value: <----- (2)
0x7370366e 0x303100
sp6n01.

Provider list:
SProvider(ProviderId[5523/1]conditionalListPosition[-1]
SVSuppMember: [owned by:Client: socketFd[4] pid[18788] progname[rnfs]] token[0]
status[MemberIn] name[SMemberName: (min/max)length: (1/16)4
value:
rNFS
]
supp ptr: 0x301b5658 group ptr: 0x300bbb48 groupListPosition: 0 nodeListPositio
n: 0 Need Vote/Voted Yet[0/1]
0x301d1528 [votingParticipant])[end SProvider]

SProvider(ProviderId[5523/3]conditionalListPosition[-1]
SVSuppMember: token[0] status[MemberIn]
supp ptr: 0x0 group ptr: 0x300bbb48 groupListPosition: 1 nodeListPosition: 0 Ne
ed Vote/Voted Yet[0/0]
[votingParticipant])[end SProvider]

SProvider(ProviderId[5523/5]conditionalListPosition[-1]
SVSuppMember: token[0] status[MemberIn]
supp ptr: 0x0 group ptr: 0x300bbb48 groupListPosition: 2 nodeListPosition: 0 Ne
ed Vote/Voted Yet[0/0]
[votingParticipant])[end SProvider]
Chapter 10. Checking your program 233

Figure 170. Checking the group attributes (2 of 3)

Local provider list: <-- (3)
SProvider(ProviderId[5523/1]conditionalListPosition[-1]
SVSuppMember: [owned by:Client: socketFd[4] pid[18788] progname[rnfs]] token[0]
status[MemberIn] name[SMemberName: (min/max)length: (1/16)4
value:
rNFS
]
supp ptr: 0x301b5658 group ptr: 0x300bbb48 groupListPosition: 0 nodeListPositio
n: 0 Need Vote/Voted Yet[0/1]
0x301d1528 [votingParticipant])[end SProvider]

Local subscriber list: <-- (4)
SSubscriber(SVSuppMember: [owned by:Client: socketFd[10] pid[6418] progname[rnfs
m]] token[0] status[MemberIn] name[SMemberName: (min/max)len
gth: (1/16)11 value:
noNameGiven
]
supp ptr: 0x301cd608 group ptr: 0x300bbb48 groupListPosition: 0 nodeListPositio
n: 1 Need Vote/Voted Yet[0/0]
Last Request:0x301cd8f8
subscriptions[HA_GS_SUBSCRIBE_STATE HA_GS_SUBSCRIBE_DELTA_JOINS HA_GS_SUBSCRIBE
_DELTA_LEAVES HA_GS_SUBSCRIBE_MEMBERSHIP]
number notifications sent[46]
[end SSubscriber]

Protocol Manager summary information:
Current count: 0
total count: executed/approved/rejected[678/667/11]
failure count: executed/approved/rejected(explicit/implicit)[54/54/0(0/0)]
join count: executed/approved/rejected[93/83/10]
expel count: executed/approved/rejected[0/0/0]
attribute change count: executed/approved/rejected[0/0/0]
leave count: executed/approved/rejected[26/26/0]
state change count: executed/approved/rejected[29/29/0]
PBM count: executed/approved/rejected[380/380/0]
source reflection count: executed/approved/rejected[0/0/0]
subscription count: executed/approved/rejected[2/1/1]
announcement count: executed/approved/rejected[94/94/0]
234 RSCT Group Services: Programming Cluster Applications

Figure 171. Checking the group attributes (3 of 3)

You can find the group attributes information at mark number 1 in Figure 169
on page 233:

Group attributes[{group name: value:
rnfs_group
}
batching[No batching| DeactivateOnFailure] membership phases[N phases] reflecti
on phases[?? unknown number of phases ??]
default vote[Approve] merge control[Dissolve]
membership time limit[5] reflection time limit[0]
client version[1] version[1] size[40]

This output provides you with the following information:

• The group name is rnfs_group ({group name: value: rnfs_group}).

• Batching protocols is not used and deactivate on failure is used
(batching[No batching| DeactivateOnFailure]).

• The number of protocol phases is N-phase (membership phases[N
phases]).

• The number of protocol phases for a source-state reflection protocol is not
defined (reflection phases[?? unknown number of phases ??]).

• The default vote value is approve (default vote[Approve]).

• The merge control has a value of HA_GS_DISSOLVE_MERGE (merge
control[Dissolve]).

• The voting time limit is five seconds (membership time limit[5]).

No transient protocol

No currently executing protocol

Unsent queue:[No entries]

Sent queue:[No entries]

Failure queue:[No entries]

Join queue:[No entries]

Subscribe queue:[No entries]

Announcement queue:[No entries]

#

Chapter 10. Checking your program 235

• The voting time limit for a source-state reflection protocol is not defined
(reflection time limit[0]).

• The user-defined client version is 1 (client version[1]).

• The version of he Group Services library is 1 (version[1]).

• The group attributes block has a 40 byte length (size[40]).

10.2.3 Checking the group state value
To check whether the group uses the group state value that you expected,
you can use the hagsgr command.

When nodes 1, 3, and 5 have joined the group and the rnfsm program has
started on node 1 (event number 4), execute the hagsgr command on any
node. Figure 169 on page 233 through Figure 171 on page 235 show the
output executed on node 1. Output is lengthy; therefore, numbers are added
in the figures as a reference mark.

You can find the group attributes information at mark number 2 in Figure 169
on page 233:

Group state value: [min/max lengths (1/256)] actual length[7] value:
0x7370366e 0x303100
sp6n01.

This output provides you with the following information:

• The group state value has a seven byte length (actual length[7]).

• The group state value has a hexadecimal value of 0x7370366e 0x303100
and an ASCII value of sp6n01 (value: 0x7370366e 0x303100 sp6n01.).

At this moment, node 1 is a server node; therefore, the group state value is
equal to the hostname of node 1.

Execute the command when node 1 has left the group (event number 7). The
output follows:

Group state value: [min/max lengths (1/256)] actual length[7] value:
0x7370366e 0x303300
sp6n03.

At this moment, node 3 is a server node; therefore, the group state value is
equal to the hostname of node 3 (value: 0x7370366e 0x303300 sp6n03.).
236 RSCT Group Services: Programming Cluster Applications

If a group does not make use of the group state value, the group state value is
initialized with a length of four bytes of 0. Then, the output should look like the
following:

Group state value: [min/max lengths (1/256)] actual length[4] value:
0x00000000
....

10.2.4 Checking providers and subscribers in detail

To find more detailed information on providers and subscribers, you can use
the hagsgr command.

When nodes 1, 3, and 5 have joined the group and the rnfsm program has
started on node 1 (event number 4), execute the hagsgr command on the
node the providers and subscribers are running. The command only provides
detailed information for local providers and subscribers. Figure 169 on page
233 through Figure 171 on page 235 show the output executed on node 1.
Output is lengthy; therefore, numbers are added in the figures as a reference
mark.

10.2.4.1 Detailed providers information
You can find the detailed providers information at mark number 3 in Figure
170 on page 234:

Local provider list:
SProvider(ProviderId[5523/1]conditionalListPosition[-1]
SVSuppMember: [owned by:Client: socketFd[4] pid[18788] progname[rnfs]] token[0]
status[MemberIn] name[SMemberName: (min/max)length: (1/16)4
value:
rNFS
]
supp ptr: 0x301b5658 group ptr: 0x300bbb48 groupListPosition: 0 nodeListPositio
n: 0 Need Vote/Voted Yet[0/1]
0x301d1528 [votingParticipant])[end SProvider]

The output provides you with the following information:

• The process ID is 18788 (pid[18788]).

• The program name is rnfs (progname[rnfs]).

• The local name is rNFS using four bytes (name[SMemberName:
(min/max)length: (1/16)4 value: rNFS]).

• The position in the membership list is top (groupListPosition: 0).
Chapter 10. Checking your program 237

10.2.4.2 Detailed subscribers information
You can find the following detailed subscribers information at mark number 4
in Figure 170 on page 234:

Local subscriber list:
SSubscriber(SVSuppMember: [owned by:Client: socketFd[10] pid[6418] progname[rnfs
m]] token[0] status[MemberIn] name[SMemberName: (min/max)len
gth: (1/16)11 value:
noNameGiven
]
supp ptr: 0x301cd608 group ptr: 0x300bbb48 groupListPosition: 0 nodeListPositio
n: 1 Need Vote/Voted Yet[0/0]
Last Request:0x301cd8f8
subscriptions[HA_GS_SUBSCRIBE_STATE HA_GS_SUBSCRIBE_DELTA_JOINS HA_GS_SUBSCRIBE
_DELTA_LEAVES HA_GS_SUBSCRIBE_MEMBERSHIP]
number notifications sent[46]
[end SSubscriber]

The output provides you with the following information:

• The process ID is 6418 (pid[6418]).

• The program name is rnfsm (progname[rnfsm]).

• The subscriber subscribes to

- HA_GS_SUBSCRIBE_STATE

- HA_GS_SUBSCRIBE_DELTA_JOINS

- HA_GS_SUBSCRIBE_DELTA_LEAVES

- HA_GS_SUBSCRIBE_MEMBERSHIP

(subscriptions[HA_GS_SUBSCRIBE_STATE
HA_GS_SUBSCRIBE_DELTA_JOINS HA_GS_SUBSCRIBE
_DELTA_LEAVES HA_GS_SUBSCRIBE_MEMBERSHIP]).

Actually the rnfsm program uses the value of
HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP; however, this value
includes all the listed values.

10.2.5 Checking a deactivate script
When you use a deactivate script, you have to be careful with:

Effective user ID (UID) and group ID (GID)
A deactivate script will be executed with the effective UID and GID
of the targeted provider that the provider had when it initialized
with Group Services.

Working directory
A deactivate script will be executed in the current working
238 RSCT Group Services: Programming Cluster Applications

directory of the targeted provider that the provider had when it
initialized with Group Services.

If Group Services uses effective uid, gid, and/or working directories that are
different than what you expected, a deactivate script may fail; therefore,
checking this information is important. To check deactivate script information,
you can use the hagscl command. This command only provides information
to local providers and subscribers. It does not allow you to use the -a flag;
therefore, output contains all the local client information.

When nodes 1, 3, and 5 have joined the group and the rnfsm program has
started on node 1 (event number 4), execute the hagscl command on the
node on which you want to check a deactivate script. Figure 172 on page 240
shows the output executed on node 1. Because the output is lengthy, a part of
it is removed.
Chapter 10. Checking your program 239

Figure 172. Checking a deactivate script and responsiveness check

The output provides you with the following information:

• Effective UID and GID are initialized as 201 and 203 (uid/gid/version:
[201/203/5]).

• Working directory is initialized as /tmp/yoshi and has a 10 byte length
(client directory: [SuppName: length: 10 value: /tmp/yoshi).

• A deactivate script is ./rnfs_deact.ksh and has 17 byte length (Deactivate
script information:SuppName: length: 17 value: ./rnfs_deact.ksh).

hagscl -l -s hags
Client Control layer summary:
Number of clients connected: 4
Cumulative number of clients connected: 41
Total number of client requests: 78
Number of client hash table conflicts: 0

--
Client: socketFd[4] pid[18788] progname[rnfs]Total number of Clients: 4
Client initialized: pid: 18788 progname: rnfs
uid/gid/version: [201/203/5]
client directory: [SuppName: length: 10 value:

/tmp/yoshi

Number of local providers/subscribers: 1/0
Responsiveness information for Client: socketFd[4] pid[18788] progname[rnfs] <--- (1)
Type[type[HA_GS_PING_RESPONSIVENESS]] interval[2] response time limit[1]
Checks done/bypassed[12/0] lastResponse[OK]]
Results(good/bad/late)[12/0/0]

Deactivate script information:SuppName: length: 17 value:
./rnfs_deact.ksh
Membership list:
slot info
0 [{provider}Member token[0] Client: socketFd[4] pid[18788] progname[rnfs]
ProviderId[5523/1]]
--

<<< output is partially removed >>>

--
Client: socketFd[10] pid[6418] progname[rnfsm]Total number of Clients: 4
Client initialized: pid: 6418 progname: rnfsm
uid/gid/version: [201/203/5]
client directory: [SuppName: length: 10 value:

/tmp/yoshi

Number of local providers/subscribers: 0/1
Membership list:
slot info
0 [{subscriber}Member token[0] Client: socketFd[10] pid[6418] progname[rnf
sm]]
#

240 RSCT Group Services: Programming Cluster Applications

In our environment, UID 201 is a general user named gs and only belongs to
the group named hagsuser that uses GID 203. The rnfs program resides in
the /tmp/yoshi directory.

10.2.6 Checking responsiveness check
To check whether the responsiveness check has been done as you expected,
you can use the hagscl command.

When nodes 1, 3, and 5 have joined the group and the rnfsm program has
started on node 1 (event number 4), execute the hagscl command on the
node on which you want to check responsiveness. Figure 172 on page 240
shows the output executed on node 1. Because the output is lengthy, a part of
it is removed.

You can find the responsiveness check information at mark number 1 in
Figure 172 on page 240:

Responsiveness information for Client: socketFd[4] pid[18788] progname[rnfs]
Type[type[HA_GS_PING_RESPONSIVENESS]] interval[2] response time limit[1]
Checks done/bypassed[12/0] lastResponse[OK]]
Results(good/bad/late)[12/0/0]

The output provides you with the following information:

• The group uses the ping type responsiveness check
(type[HA_GS_PING_RESPONSIVENESS]).

• Responsiveness is checked every two seconds (interval[2]).

• A provider must respond within one second (response time limit[1]).

• A responsiveness check has been done 12 times and canceled 0 times
(Checks done/bypassed[12/0]).

• The last responsiveness check was OK (lastResponse[OK]]).

• So far, responsiveness has been OK 12 times and not OK 0 times
(Results(good/bad/late)[12/0/0]).

If you execute the command when node 5 is suspended (event number 5),
you will have the following output. Make sure that you execute the command
on node 5 because the hagscl command only provides local provider
information:

Responsiveness information for Client: socketFd[4] pid[18124] progname[rnfs]
Type[type[HA_GS_PING_RESPONSIVENESS]] interval[2] response time limit[1]
Checks done/bypassed[14/2] lastResponse[Not OK]]
Results(good/bad/late)[10/4/4]

This time, the output is different than the previous time:
Chapter 10. Checking your program 241

• The responsiveness check has been done 14 times and canceled two
times (Checks done/bypassed[14/2]). A provider-broadcast message
protocol is proposed almost every 10 seconds to replicate the file system.
If a provider responds to this proposal properly, Group Services decides
that the provider has responsiveness and cancels the responsiveness
check. Responsiveness check is scheduled every two seconds; therefore,
it will be canceled only once in a while.

• The last response is not OK (lastResponse[Not OK]).

• So far, responsiveness has been OK 10 times and not OK four times
(Results(good/bad/late)[10/4/4]).

10.2.7 Checking the protocol currently executing
To check the protocol currently executing, you can use the hagsvote

command.

The rnfs group executes a provider-broadcast message protocol every 10
seconds. However, checking this protocol is not so easy. The rnfs program
uses only two phases for a protocol, and they do not last long enough to
catch. When you execute the hagsvote command, you usually get output
similar to that shown in Figure 173:

Figure 173. Checking the protocol currently executing

There are two chances that you can check the protocol currently executing:

• When node 5 is suspended (event number 5), you can check a
provider-broadcast message protocol.

• When node 1 is joining while node 3 is suspended (event number 9), you
can check a join protocol.

In the first case, node 1 proposes a provider-broadcast message protocol to
replicate the file system. Node 3 votes to approve, but node 5 cannot because
it is suspended. Group Services waits five seconds before it votes to approve
for node 5’s vote using the default vote value.

Figure 174 shows the command output on node 3.

hagsvote -l -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] GL node [1] voting data:
No protocol is currently executing in the group.

#

242 RSCT Group Services: Programming Cluster Applications

Figure 174. Checking a provider-broadcast message protocol on node 3

The output provides the following information:

• This is the first phase of the protocol (phase [1]).

• The current protocol is a provider-broadcast message protocol (type
[ProviderMessage]).

• The provider has voted (Voted? - Yes) to approve (Given vote:[Approve
vote]).

Figure 175 shows the command output on node 5.

Figure 175. Checking a provider-broadcast message protocol on node 5

The difference from the command output of node 3 is that node 5 has not
voted (Voted? - No) yet (Given vote:[No vote value]).

In the second case, node 1 proposes a join protocol to join the group. Node 5
votes to reject because the group is unstable. Node 3 cannot vote because it
is suspended. Group Services waits five seconds before it votes to approve
for node 3’s vote using the default vote value.

hagsvote -l -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] GL node [1] voting data:
Not GL in phase [1] of n-phase protocol of type [ProviderMessage].
Local voting data:
Number of providers: 1
Number of providers not yet voted: 0 (vote submitted).
Given vote:[Approve vote] Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[5523/3] Yes No No

#

hagsvote -l -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] GL node [1] voting data:
Not GL in phase [1] of n-phase protocol of type [ProviderMessage].
Local voting data:
Number of providers: 1
Number of providers not yet voted: 1 (vote not submitted).
Given vote:[No vote value] Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[5523/5] No No No

#

Chapter 10. Checking your program 243

Figure 176 shows the command output on node 5.

Figure 176. Checking a join protocol on node 5

The output provides the following information:

• This is the first phase of the protocol (phase [1]).

• The current protocol is a join protocol (type [Join]).

• The provider has voted (Yes) to reject (Given vote:[Reject vote]).

Figure 177 shows the command output on node 3.

Figure 177. Checking a join protocol on node 3

The difference from the command output of node 5 is that node 3 has not
voted (Voted? - No) yet (Given vote:[No vote value]).

hagsvote -l -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] GL node [1] voting data:
Not GL in phase [1] of n-phase protocol of type [Join].
Local voting data:
Number of providers: 1
Number of providers not yet voted: 0 (vote submitted).
Given vote:[Reject vote] Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[5523/5] Yes No No

#

hagsvote -l -a rnfs_group -s hags
Number of groups: 5
Group name [rnfs_group] GL node [1] voting data:
Not GL in phase [1] of n-phase protocol of type [Join].
Local voting data:
Number of providers: 1
Number of providers not yet voted: 1 (vote not submitted).
Given vote:[No vote value] Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[5523/3] No No No

#

244 RSCT Group Services: Programming Cluster Applications

Part 4. Appendices
© Copyright IBM Corp. 2000 245

246 RSCT Group Services: Programming Cluster Applications

Appendix A. Programming environment

This appendix provides information on the Group Services programming
environment.

A.1 The Group Services shared libraries

The Group Services Application Programming Interface (GSAPI) is a shared
library that a GS client uses to obtain the services of the Group Services
subsystem. This shared library is supplied in two versions: One for
non-thread safe programs and one for thread-safe programs. These libraries
are referenced by the following path names:

• /usr/lib/libha_gs.a (non-thread safe version)

• /usr/lib/libha_gs_r.a (thread-safe version)

These path names are actually symbolic links to /usr/sbin/rsct/lib/libha_gs.a
and /usr/sbin/rsctl/lib/libha_gs_r.a, respectively. The symbolic links are placed
in /usr/lib for ease of use. For serviceability, the actual libraries are placed in
the /usr/sbin/rsct/lib directory. These libraries are supplied as shared
libraries, also for serviceability.

To allow non-root users to use the Group Services shared library, perform the
following steps:

1. Create a group named hagsuser.

2. Add the desired user IDs to the hagsuser group.

3. Stop and restart hags (if it was running before you created the hagsuser
group).

Users in the created hagsuser group can use the Group Services shared
library.

A.2 Link and compile options

This redbook uses the following link and compile options for the rnfs and
rnfsm program:

-g Include debugging information.

-qnofold Suppress compile-time evaluation of constant floating-point
expressions.

-DBSD Set the BSD option to 1 (same as #define BSD).
© Copyright IBM Corp. 2000 247

-bloadmap:<file_name> Specifies the name of the map-file.

-lha_gs Uses non-thread safe version Group Services library.

-lbsd Uses BSD shared library.

For information on makefile, refer to Section C.8, “makefile” on page 277.

A.3 The man pages

All the subroutines provided by the Group Services shared library are
documented as man pages. To access the man pages, use the following
steps:

1. Install the PSSP file set ssp.docs on your system.

2. Make sure that the MANPATH environment variable includes the path,
/usr/lpp/ssp/man.

To display the man pages, issue the man command with the subroutine name:

man <subroutine name>

For example, to display the man pages of the ha_gs_init suroutine, issue the
man command as follows:

man ha_gs_init
248 RSCT Group Services: Programming Cluster Applications

Appendix B. ha_gs.h

This appendix provides you with the ha_gs.h file, the header file provided by
Group Services.

B.1 ha_gs.h
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* */
/* */
/* Licensed Materials - Property of IBM */
/* */
/* (C) COPYRIGHT International Business Machines Corp. 1996,1999 */
/* All Rights Reserved */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/* */
/* IBM_PROLOG_END_TAG */
#ifndef _HA_GS_H_
#define _HA_GS_H_
/***/
/* */
/* CPRY PGM */
/* */
/* Licensed Materials - Property of IBM */
/* */
/* 5765-529 PSSP */
/* */
/* (C) Copyright IBM Corp. 1996 All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or disclosure */
/* restricted by GSA ADP Schedule Contract with IBM Corp. */
/* */
/* CPRY */
/***/

static char *ha_gs_h_sccsid = "@(#)86 1.28 src/rsct/pgs/pgslib/ha_gs.h, gsapi,
rsct_rmoh, rmoht5d9 4/6/99 21:33:46";

#ifdef __cplusplus
extern "C" {
#endif

#include <sys/types.h>
#include <rsct/ct_ffdc.h>

#define HA_GS_RELEASE 5

typedef enum
{

HA_GS_OK, /* 0 */
HA_GS_OK_SO_FAR = HA_GS_OK, /* 0 */
HA_GS_NOT_OK, /* 1 */
HA_GS_EXISTS, /* 2 */
HA_GS_NO_INIT, /* 3 */
HA_GS_NAME_TOO_LONG, /* 4 */
© Copyright IBM Corp. 2000 249

HA_GS_NO_MEMORY, /* 5 */
HA_GS_NOT_A_MEMBER, /* 6 */
HA_GS_BAD_CLIENT_TOKEN, /* 7 */
HA_GS_BAD_MEMBER_TOKEN, /* 8 */
HA_GS_BAD_PARAMETER, /* 9 */
HA_GS_UNKNOWN_GROUP, /* 10 */
HA_GS_INVALID_GROUP, /* 11 */
HA_GS_NO_SOURCE_GROUP_PROVIDER, /* 12 */
HA_GS_BAD_GROUP_ATTRIBUTES, /* 13 */
HA_GS_WRONG_OLD_STATE, /* 14 */
HA_GS_DUPLICATE_INSTANCE_NUMBER, /* 15 */
HA_GS_COLLIDE, /* 16 */
HA_GS_SOCK_CREATE_FAILED, /* 17 */
HA_GS_SOCK_INIT_FAILED, /* 18 */
HA_GS_CONNECT_FAILED, /* 19 */
HA_GS_VOTE_NOT_EXPECTED, /* 20 */
HA_GS_NOT_SUPPORTED, /* 21 */
HA_GS_INVALID_SOURCE_GROUP, /* 22 */
HA_GS_UNKNOWN_PROVIDER, /* 23 */
HA_GS_INVALID_DEACTIVATE_PHASE, /* 24 */
HA_GS_PROVIDER_APPEARS_TWICE, /* 25 */
HA_GS_BACKLEVEL_PROVIDERS /* 26 */

}ha_gs_rc_t; /* Return Codes */

typedef enum
{

HA_GS_NO_BATCHING = 0x0000,
HA_GS_BATCH_JOINS = 0x0001,
HA_GS_BATCH_LEAVES = 0x0002,
HA_GS_BATCH_BOTH = 0x0003,
HA_GS_DEACTIVATE_ON_FAILURE = 0x0004

} ha_gs_batch_ctrl_t; /* Controls Batching of Requests */

typedef enum
{

HA_GS_1_PHASE = 0x0001,
HA_GS_N_PHASE = 0x0002

} ha_gs_num_phases_t; /* Protocol number of Phases selection */

typedef enum
{

HA_GS_FIRST_MERGE_TYPE, /* 0 */
HA_GS_DISSOLVE_MERGE = HA_GS_FIRST_MERGE_TYPE, /* 0 */
HA_GS_LARGER_MERGE, /* 1 */
HA_GS_SMALLER_MERGE, /* 2 */
HA_GS_DONTCARE_MERGE, /* 3 */
HA_GS_LAST_MERGE_TYPE = HA_GS_DONTCARE_MERGE /* 3 */

} ha_gs_merge_ctrl_t; /* Controlling Merges */

typedef enum
{

HA_GS_NULL_VOTE,
HA_GS_VOTE_APPROVE,
HA_GS_VOTE_CONTINUE,
HA_GS_VOTE_REJECT

} ha_gs_vote_value_t; /* Allowable Vote Responses */

typedef enum
{

HA_GS_SOCKET_NO_SIGNAL,
HA_GS_SOCKET_SIGNAL

} ha_gs_socket_ctrl_t; /* Socket Control */
250 RSCT Group Services: Programming Cluster Applications

typedef enum
{

HA_GS_NON_BLOCKING,
HA_GS_BLOCKING

} ha_gs_dispatch_flag_t; /* Modify behavior of ha_gs_dispatch */

typedef enum
{

HA_GS_RESPONSIVENESS_NOTIFICATION, /* 0 */
HA_GS_QUERY_NOTIFICATION, /* 1 */
HA_GS_DELAYED_ERROR_NOTIFICATION, /* 2 */
HA_GS_N_PHASE_NOTIFICATION, /* 3 */
HA_GS_APPROVED_NOTIFICATION, /* 4 */
HA_GS_REJECTED_NOTIFICATION, /* 5 */
HA_GS_ANNOUNCEMENT_NOTIFICATION, /* 6 */
HA_GS_SUBSCRIPTION_NOTIFICATION, /* 7 */
HA_GS_MERGE_NOTIFICATION, /* 8 */
HA_GS_NOTIFICATION_RESERVED_1 = 99 /* 99 */

} ha_gs_notification_type_t; /* Identify types of notifications */

typedef enum
{

HA_GS_RESPONSIVENESS, /* 0 */
HA_GS_JOIN, /* 1 */
HA_GS_FAILURE_LEAVE, /* 2 */
HA_GS_LEAVE, /* 3 */
HA_GS_EXPEL, /* 4 */
HA_GS_STATE_VALUE_CHANGE, /* 5 */
HA_GS_PROVIDER_MESSAGE, /* 6 */
HA_GS_CAST_OUT, /* 7 */
HA_GS_SOURCE_STATE_REFLECTION, /* 8 */
HA_GS_MERGE, /* 9 */
HA_GS_SUBSCRIPTION, /* 10 */
HA_GS_GROUP_ATTRIBUTE_CHANGE, /* 11 */
MAX_REQUEST = HA_GS_GROUP_ATTRIBUTE_CHANGE, /* 11 */
HA_GS_REQ_RESERVED_1 = 99 /* 99 */

} ha_gs_request_t; /* Type of request a notification was for */

typedef enum
{

HA_GS_NO_RESPONSIVENESS,
HA_GS_PING_RESPONSIVENESS,
HA_GS_COUNTER_RESPONSIVENESS

} ha_gs_responsiveness_type_t; /* Type of responsiveness checking */

typedef enum
{

HA_GS_NO_CHANGE = 0x0000, /* 0 */
HA_GS_PROPOSED_MEMBERSHIP = 0x0001, /* 1 */
HA_GS_ONGOING_MEMBERSHIP = 0x0002, /* 2 */
HA_GS_PROPOSED_STATE_VALUE = 0x0004, /* 4 */
HA_GS_ONGOING_STATE_VALUE = 0x0008, /* 8 */
HA_GS_UPDATED_PROVIDER_MESSAGE = 0x0010, /* 16 */
HA_GS_UPDATED_MEMBERSHIP = 0x0020, /* 32 */
HA_GS_REJECTED_MEMBERSHIP = 0x0040, /* 64 */
HA_GS_UPDATED_STATE_VALUE = 0x0080, /* 128 */
HA_GS_REFLECTED_SOURCE_STATE_VALUE = 0x0100, /* 256 */
HA_GS_EXPEL_INFORMATION = 0x0200, /* 512 */
HA_GS_PROPOSED_GROUP_ATTRIBUTES = 0x0400, /* 1024 */
HA_GS_ONGOING_GROUP_ATTRIBUTES = 0x0800, /* 2048 */
HA_GS_UPDATED_GROUP_ATTRIBUTES = 0x1000, /* 4096 */
HA_GS_REJECTED_GROUP_ATTRIBUTES = 0x2000 /* 8192 */

} ha_gs_updates_t; /* Whats Changed */
Appendix B. ha_gs.h 251

typedef enum
{

HA_GS_MIN_SUMMARY_CODE = 0x0001, /* 1 */
HA_GS_EXPLICIT_APPROVE = 0x0001, /* 1 */
HA_GS_EXPLICIT_REJECT = 0x0002, /* 2 */
HA_GS_DEFAULT_APPROVE = 0x0004, /* 4 */
HA_GS_DEFAULT_REJECT = 0x0008, /* 8 */
HA_GS_TIME_LIMIT_EXCEEDED = 0x0010, /* 16 */
HA_GS_PROVIDER_FAILED = 0x0020, /* 32 */
HA_GS_RESPONSIVENESS_NO_RESPONSE = 0x0040, /* 64 */
HA_GS_RESPONSIVENESS_RESPONSE = 0x0080, /* 128 */
HA_GS_GROUP_DISSOLVED = 0x0100, /* 256 */
HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY = 0x0200, /* 512 */
HA_GS_DEACTIVATE_UNSUCCESSFUL = 0x0400, /* 1024 */
HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED = 0x0800, /* 2048 */
HA_GS_GROUP_ATTRIBUTES_CHANGED = 0x1000, /* 4096 */
HA_GS_MAX_SUMMARY_CODE = 0x1000 /* 4096 */

} ha_gs_summary_code_t; /* Notification summary */

typedef enum
{

HA_GS_CALLBACK_NOT_OK,
HA_GS_CALLBACK_OK

} ha_gs_callback_rc_t; /* Callback Return Codes */

typedef enum
{

HA_GS_VOLUNTARY_LEAVE = 0x0001, /* 1 */
HA_GS_PROVIDER_FAILURE = 0x0002, /* 2 */
HA_GS_HOST_FAILURE = 0x0004, /* 4 */
HA_GS_PROVIDER_EXPELLED = 0x0008, /* 8 */
HA_GS_SOURCE_PROVIDER_LEAVE = 0x0010, /* 16 */
HA_GS_PROVIDER_SAID_GOODBYE = 0x0020 /* 32 */

} ha_gs_leave_reasons_t;

typedef enum
{

HA_GS_QUERY_ALL,
HA_GS_QUERY_GROUP

} ha_gs_query_type_t;

typedef enum
{

HA_GS_SUBSCRIBE_STATE = 0x01,
HA_GS_SUBSCRIBE_DELTA_JOINS = 0x02,
HA_GS_SUBSCRIBE_DELTA_LEAVES = 0x04,
HA_GS_SUBSCRIBE_DELTAS_ONLY = 0x06,
HA_GS_SUBSCRIBE_MEMBERSHIP = 0x08,
HA_GS_SUBSCRIBE_ALL_MEMBERSHIP = 0x0e,
HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP= 0x0f
} ha_gs_subscription_ctrl_t;

typedef enum
{

HA_GS_SUBSCRIPTION_STATE = 0x01, /* 1 */
HA_GS_SUBSCRIPTION_DELTA_JOIN = 0x02, /* 2 */
HA_GS_SUBSCRIPTION_DELTA_LEAVE = 0x04, /* 4 */
HA_GS_SUBSCRIPTION_MEMBERSHIP = 0x08, /* 8 */
HA_GS_SUBSCRIPTION_SPECIAL_DATA = 0x40, /* 64 */
HA_GS_SUBSCRIPTION_DISSOLVED = 0x80, /* 128 */
HA_GS_SUBSCRIPTION_GS_HAS_DIED = 0x100 /* 256 */

} ha_gs_subscription_type_t;
252 RSCT Group Services: Programming Cluster Applications

typedef int ha_gs_token_t;
typedef int ha_gs_descriptor_t;
typedef unsigned short ha_gs_time_limit_t;

#define HA_GS_MAX_GROUP_NAME_LENGTH 32
typedef char *ha_gs_group_name_t;

/* Use this name to subscribe to processor membership. */
#define HA_GS_HOST_MEMBERSHIP_GROUP "HostMembership"

#define HA_GS_ENET_MEMBERSHIP_GROUP "enMembership"
#define HA_GS_CSS_MEMBERSHIP_GROUP "cssMembership"
#define HA_GS_CSSRAW_MEMBERSHIP_GROUP "cssRawMembership"
#define HA_GS_TOKENRING_MEMBERSHIP_GROUP "trMembership"
#define HA_GS_FDDI_MEMBERSHIP_GROUP "fddiMembership"
#define HA_GS_RS232_MEMBERSHIP_GROUP "rs232Membership"
#define HA_GS_TMSCSI_MEMBERSHIP_GROUP "tmscsiMembership"
#define HA_GS_TMSSA_MEMBERSHIP_GROUP "tmssaMembership"
#define HA_GS_SLIP_MEMBERSHIP_GROUP "slipMembership"
#define HA_GS_ATM_MEMBERSHIP_GROUP "atmMembership"

typedef struct
{

short gs_version;
short gs_sizeof_group_attributes;
short gs_client_version;
ha_gs_batch_ctrl_t gs_batch_control;
ha_gs_num_phases_t gs_num_phases;
ha_gs_num_phases_t gs_source_reflection_num_phases;
ha_gs_vote_value_t gs_group_default_vote;
ha_gs_merge_ctrl_t gs_merge_control;
ha_gs_time_limit_t gs_time_limit;
ha_gs_time_limit_t gs_source_reflection_time_limit;
ha_gs_group_name_t gs_group_name;
ha_gs_group_name_t gs_source_group_name;

} ha_gs_group_attributes_t; /* Identify Group Attributes */

const short HA_GS_node_number = -1;
const short HA_GS_instance_number = -1;

#define gs_node_number _gs_provider_info._gs_node_number
#define gs_instance_number _gs_provider_info._gs_instance_number

typedef union
{

struct
{

short _gs_instance_number;
short _gs_node_number;

} _gs_provider_info;
int gs_provider_id;

} ha_gs_provider_t; /* Provider ID */

typedef struct
{

int gs_length;
char *gs_state;

} ha_gs_state_value_t; /* State Vector */

typedef struct
{

short gs_version;
Appendix B. ha_gs.h 253

ha_gs_state_value_t gs_group_state_value;
} ha_gs_group_state_t; /* encapsulation of state vector */

typedef struct
{

int gs_length;
char *gs_message;

} ha_gs_provider_message_t; /* provider message */

typedef struct
{

ha_gs_responsiveness_type_t gs_responsiveness_type;
unsigned int gs_responsiveness_interval;
ha_gs_time_limit_t gs_responsiveness_response_time_limit;
void *gs_counter_location;
unsigned int gs_counter_length;

} ha_gs_responsiveness_t; /* responsiveness attributes */

typedef union
{

struct {
ha_gs_state_value_t *_gs_info_state;
ha_gs_provider_t *_gs_info_providers;

} _gs_group_info;
ha_gs_group_name_t gs_groups;

} ha_gs_group_info_t;

#define gs_group_info_state _gs_group_info._gs_info_state
#define gs_group_info_providers _gs_group_info._gs_info_providers

typedef struct
{

ha_gs_query_type_t gs_query_type;
ha_gs_rc_t gs_query_return_code;
int gs_number_of_groups;
ha_gs_group_info_t *gs_group_info;

} ha_gs_query_info_t;

typedef struct
{

unsigned int gs_count;
ha_gs_provider_t *gs_providers;

} ha_gs_membership_t; /* Membership List */

typedef struct {
int gs_deactivate_phase;
int gs_expel_flag_length;
char *gs_expel_flag;

} ha_gs_expel_info_t;

typedef struct
{

unsigned int gs_voluntary_or_failure;
unsigned int gs_voluntary_leave_code;

} ha_gs_leave_info_t;

typedef struct
{

unsigned int gs_count;
ha_gs_leave_info_t *gs_leave_codes;

} ha_gs_leave_array_t;

typedef struct {
254 RSCT Group Services: Programming Cluster Applications

unsigned short gs_num_phases;
unsigned short gs_phase_number;

} ha_gs_phase_info_t;

typedef enum {
HA_GS_ADAPTER_DEATH_ARRAY = 0x01,
HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY = 0x02,
HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY = 0x04

} ha_gs_subscription_special_type_t;

typedef enum
{

HA_GS_ADAPTER_DEAD = 0x0001,
HA_GS_ADAPTER_REMOVED = 0x0002

} ha_gs_adapter_death_t;

typedef struct {
int gs_length;
unsigned int gs_flag;
void *gs_special_data;

} ha_gs_special_data_t;

typedef struct ha_gs_special_block_t {
unsigned int gs_special_flag;
struct ha_gs_special_block_t *gs_next_special_block;
int gs_special_num_entries;
int gs_special_length;
void *gs_special;

} ha_gs_special_block_t;

typedef struct
{

ha_gs_phase_info_t gs_phase_info;
ha_gs_provider_t gs_proposed_by;
ha_gs_updates_t gs_whats_changed;
ha_gs_membership_t *gs_current_providers;
ha_gs_membership_t *gs_changing_providers;
ha_gs_leave_array_t *gs_leave_info;
ha_gs_expel_info_t *gs_expel_info;
ha_gs_state_value_t *gs_current_state_value;
ha_gs_state_value_t *gs_proposed_state_value;
ha_gs_state_value_t *gs_source_state_value;
ha_gs_provider_message_t *gs_provider_message;
ha_gs_group_attributes_t *gs_new_group_attributes;

} ha_gs_proposal_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_responsiveness_t gs_responsiveness_information;

} ha_gs_responsiveness_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
unsigned int gs_number_of_queries;
ha_gs_query_info_t *gs_query_info;

} ha_gs_query_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
Appendix B. ha_gs.h 255

ha_gs_request_t gs_protocol_type;
ha_gs_summary_code_t gs_summary_code;
ha_gs_time_limit_t gs_time_limit;
ha_gs_proposal_t *gs_proposal;

} ha_gs_n_phase_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_request_t gs_protocol_type;
ha_gs_summary_code_t gs_summary_code;
ha_gs_proposal_t *gs_proposal;

} ha_gs_approved_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_request_t gs_protocol_type;
ha_gs_summary_code_t gs_summary_code;
ha_gs_proposal_t *gs_proposal;

} ha_gs_rejected_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_summary_code_t gs_summary_code;
ha_gs_membership_t *gs_announcement;

} ha_gs_announcement_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_provider_token;
ha_gs_request_t gs_protocol_type;
ha_gs_proposal_t *gs_proposal;
ha_gs_merge_ctrl_t gs_merge_control;
ha_gs_group_state_t gs_alpha_group_state;
ha_gs_group_state_t gs_omega_group_state;

} ha_gs_merge_notification_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_subscriber_token;
ha_gs_subscription_type_t gs_subscription_type;
ha_gs_state_value_t *gs_state_value;
ha_gs_membership_t *gs_full_membership;
ha_gs_membership_t *gs_changing_membership;
ha_gs_special_data_t *gs_subscription_special_data;

} ha_gs_subscription_notification_t;

typedef void (ha_gs_subscription_cb_t)(const ha_gs_subscription_notification_t*);

typedef void (ha_gs_query_cb_t)(const ha_gs_query_notification_t*);

typedef ha_gs_callback_rc_t (ha_gs_responsiveness_cb_t)(const ha_gs_responsivene
ss_notification_t*);

typedef void (ha_gs_n_phase_cb_t)(const ha_gs_n_phase_notification_t*);
256 RSCT Group Services: Programming Cluster Applications

typedef void (ha_gs_approved_cb_t)(const ha_gs_approved_notification_t*);

typedef void (ha_gs_rejected_cb_t)(const ha_gs_rejected_notification_t*);

typedef void (ha_gs_announcement_cb_t)(const ha_gs_announcement_notification_t*);

typedef void (ha_gs_merge_cb_t)(const ha_gs_merge_notification_t*);

typedef struct {
ha_gs_group_attributes_t *gs_group_attributes;
short gs_provider_instance;
char *gs_provider_local_name;
ha_gs_n_phase_cb_t *gs_n_phase_protocol_callback;
ha_gs_approved_cb_t *gs_protocol_approved_callback;
ha_gs_rejected_cb_t *gs_protocol_rejected_callback;
ha_gs_announcement_cb_t *gs_announcement_callback;
ha_gs_merge_cb_t *gs_merge_callback;

} ha_gs_join_request_t;

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_state_value_t gs_new_state;

} ha_gs_state_change_request_t;

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_provider_message_t gs_message;

} ha_gs_message_request_t;

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
unsigned int gs_leave_code;

} ha_gs_leave_request_t;

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_membership_t gs_expel_list;
int gs_deactivate_phase;
char *gs_deactivate_flag;

} ha_gs_expel_request_t;

typedef struct {
ha_gs_subscription_ctrl_t gs_subscription_control;
ha_gs_group_name_t gs_subscription_group;
ha_gs_subscription_cb_t *gs_subscription_callback;

} ha_gs_subscribe_request_t;

typedef struct {
ha_gs_num_phases_t gs_num_phases;
ha_gs_time_limit_t gs_time_limit;
ha_gs_group_attributes_t *gs_group_attributes;
ha_gs_membership_t *gs_backlevel_providers;

} ha_gs_attribute_change_request_t;

#define gs_join_request _gs_protocol_info._gs_join_request
#define gs_state_change_request _gs_protocol_info._gs_state_change_request
#define gs_message_request _gs_protocol_info._gs_message_request
#define gs_leave_request _gs_protocol_info._gs_leave_request
#define gs_expel_request _gs_protocol_info._gs_expel_request
Appendix B. ha_gs.h 257

#define gs_subscribe_request _gs_protocol_info._gs_subscribe_request
#define gs_attribute_change_request _gs_protocol_info._gs_attribute_change_request

typedef struct {
union {
ha_gs_join_request_t _gs_join_request;
ha_gs_state_change_request_t _gs_state_change_request;
ha_gs_message_request_t _gs_message_request;
ha_gs_leave_request_t _gs_leave_request;
ha_gs_expel_request_t _gs_expel_request;
ha_gs_subscribe_request_t _gs_subscribe_request;
ha_gs_attribute_change_request_t _gs_attribute_change_request;
} _gs_protocol_info;

} ha_gs_proposal_info_t;

typedef struct
{

ha_gs_notification_type_t gs_notification_type;
ha_gs_token_t gs_request_token;
ha_gs_request_t gs_protocol_type;
ha_gs_rc_t gs_delayed_return_code;
ha_gs_proposal_info_t *gs_failing_request;

} ha_gs_delayed_error_notification_t;

typedef void (ha_gs_delayed_error_cb_t)(const ha_gs_delayed_error_notification_t*);

ha_gs_rc_t ha_gs_init(ha_gs_descriptor_t *,
const ha_gs_socket_ctrl_t,
const ha_gs_responsiveness_t *,
const char *,
ha_gs_responsiveness_cb_t*,
ha_gs_delayed_error_cb_t*,
ha_gs_query_cb_t*);

ha_gs_rc_t ha_gs_dispatch(const ha_gs_dispatch_flag_t);
ha_gs_rc_t ha_gs_join(ha_gs_token_t *,

const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_change_state_value(ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_send_message(ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_leave(ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_expel(ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_change_attributes(ha_gs_token_t,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_goodbye(ha_gs_token_t);

ha_gs_rc_t ha_gs_vote(ha_gs_token_t,
ha_gs_vote_value_t,
const ha_gs_state_value_t *,
const ha_gs_provider_message_t *,
ha_gs_vote_value_t);

ha_gs_rc_t ha_gs_quit(void);
258 RSCT Group Services: Programming Cluster Applications

ha_gs_rc_t ha_gs_query_group_list(void);

ha_gs_rc_t ha_gs_query_group_info(const ha_gs_group_name_t);

ha_gs_rc_t ha_gs_subscribe(ha_gs_token_t *,
const ha_gs_proposal_info_t *);

ha_gs_rc_t ha_gs_unsubscribe(ha_gs_token_t);

void ha_gs_copy_group_attributes(ha_gs_group_attributes_t *gAttrsTarg,
ha_gs_group_attributes_t *gAttrsSrc);

ha_gs_rc_t ha_gs_get_ffdc_id(fc_eid_t fcid);

#ifdef __cplusplus
} /* end extern "C" */
#endif

#endif /* _HA_GS_H_ */
Appendix B. ha_gs.h 259

260 RSCT Group Services: Programming Cluster Applications

Appendix C. Recoverable Network File System programs

This appendix provides you with all the programs described in Chapter 9,
“Recoverable Network File System” on page 161.

You can download the source codes and executable modules of these
programs from the IBM Redbooks Web server. For more information, refer to
Appendix D, “Using the additional material” on page 279.

C.1 rnfs.c
/***************************************
*
* RSCT Group Services:
* Programming Cluster Applications
*
* SG24-5523-00
*
* Recoverable Network File System
*
* rnfs.c
*
***************************************/

/***************************************
* header files
***************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/select.h>
#include <ha_gs.h>

/***************************************
* definitions
***************************************/
void init_program(void);
void propose_join(void);
void propose_state(void);
void propose_message(void);
void propose_leave(void);
void quit_program(void);
void suspend_program(void);
ha_gs_callback_rc_t ha_gs_responsiveness_callback(

const ha_gs_responsiveness_notification_t *);
void ha_gs_n_phase_callback(

const ha_gs_n_phase_notification_t *);
void ha_gs_protocol_approved_callback(

const ha_gs_approved_notification_t *);
void ha_gs_protocol_rejected_callback(

const ha_gs_rejected_notification_t *);
void ha_gs_announcement_callback(

const ha_gs_announcement_notification_t *);
void ha_gs_delayed_error_callback(

const ha_gs_delayed_error_notification_t *);
void vote_protocol(ha_gs_vote_value_t, const ha_gs_state_value_t *);
© Copyright IBM Corp. 2000 261

void print_nodes(ha_gs_membership_t *);

typedef enum {
RNFS_CLIENT,
RNFS_SERVER

} rnfs_ima_t;
typedef enum {

RNFS_JOINING,
RNFS_STABLE,
RNFS_UNSTABLE,
RNFS_LEAVING

} rnfs_imdoing_t;

#define RNFS_RESPONSE_RATE 2
#define RNFS_RESPONSE_TIME_LIMIT 1
#define RNFS_REPLICATE_RATE 10
#define RNFS_REPLICATE_TIME_LIMIT 5
#define RNFS_SHUTDOWN_TIME_LIMIT 5
#define RNFS_JOIN_FAILURE_TIME_LIMIT 5
#define RNFS_TAKEOVER_TIME_LIMIT 5

#define RNFS_GROUP_NAME "rnfs_group"
#define RNFS_INSTANCE_NUM 5523
#define RNFS_LOCAL_NAME "rNFS"

#define RNFS_MESSAGE "replicate file system\0"
#define RNFS_DEACTIVATE "./rnfs_deact.ksh"
#define RNFS_REPLICATE "./rnfs_replicate"
#define RNFS_UMOUNT "./rnfs_umount"
#define RNFS_MOUNT "./rnfs_mount "

/***************************************
* global variables
***************************************/
int rc;
ha_gs_rc_t gs_rc;

rnfs_ima_t ima;
rnfs_imdoing_t imdoing;
ha_gs_request_t latest_protocol;

short mynodeis;
short serveris;

char domain_name[256];

ha_gs_descriptor_t descriptor;
ha_gs_responsiveness_t responsiveness;
ha_gs_token_t provider_token;
ha_gs_proposal_info_t proposal_info;
ha_gs_group_attributes_t group_attributes;

/***************************************
* main
***************************************/
int main(int argc, char **argv) {

char key;
fd_set my_fd;
struct timeval timeout;
int replicate;

if(argc != 2) {
printf("Usage: %s domain_name\n", argv[0]);
262 RSCT Group Services: Programming Cluster Applications

exit(argc);
}
strcpy(domain_name, "HA_DOMAIN_NAME=");
strcat(domain_name, argv[1]);
putenv(domain_name);
printf("domain name: %s, ", getenv("HA_DOMAIN_NAME"));
printf("group name: %s, ", RNFS_GROUP_NAME);
printf("instance number: %d\n", RNFS_INSTANCE_NUM);

replicate = 0;
ima = RNFS_CLIENT;
descriptor = 0;
timeout.tv_sec = 1;
timeout.tv_usec = 0;

init_program();
propose_join();

printf("hit <Enter> key to suspend\n");
for(;;) {

FD_ZERO(&my_fd);
FD_SET(0, &my_fd);
FD_SET(descriptor, &my_fd);
rc = select(descriptor + 1, &my_fd, NULL, NULL, &timeout);
if(rc < 0) {

printf("*** select failed rc=%d ***\n", rc);
exit(rc);

}
if(FD_ISSET(0, &my_fd)) {

suspend_program();
}
if(descriptor && FD_ISSET(descriptor, &my_fd)) {

gs_rc = ha_gs_dispatch(HA_GS_NON_BLOCKING);
if(gs_rc != HA_GS_OK) {

printf("*** ha_gs_dispatch failed rc=%d ***\n", gs_rc);
}

}
if(ima == RNFS_SERVER) {

if((imdoing != RNFS_LEAVING) && (replicate > RNFS_REPLICATE_RATE)) {
propose_message();
replicate = 0;

} else {
replicate++;

}
}

}
}

/***************************************
* suspend_program
***************************************/
void suspend_program() {

char proposal[32];

gets(proposal); /* remove previously input strings */
printf("[program suspended] l(eave) or r(esume)?: ");
scanf("%s", proposal);
switch((int)proposal[0]) {
case ’l’: case ’L’:

propose_leave();
break;

default:
break;
Appendix C. Recoverable Network File System programs 263

}
gets(proposal); /* remove extra strings */
return;

}

/***************************************
* init_program (ha_gs_init)
***************************************/
void init_program() {

responsiveness.gs_responsiveness_type = HA_GS_PING_RESPONSIVENESS;
responsiveness.gs_responsiveness_interval = RNFS_RESPONSE_RATE;
responsiveness.gs_responsiveness_response_time_limit = RNFS_RESPONSE_TIME_LIMIT;
responsiveness.gs_counter_location = NULL;
responsiveness.gs_counter_length = NULL;

gs_rc = ha_gs_init(
&descriptor,
HA_GS_SOCKET_NO_SIGNAL,
&responsiveness,
RNFS_DEACTIVATE,
ha_gs_responsiveness_callback,
ha_gs_delayed_error_callback,
NULL);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_init failed rc=%d ***\n", gs_rc);
exit(-1);

}
return;

}

/***************************************
* propose_join (ha_gs_join)
***************************************/
void propose_join() {

proposal_info.gs_join_request.gs_group_attributes = &group_attributes;
proposal_info.gs_join_request.gs_provider_instance = RNFS_INSTANCE_NUM;
proposal_info.gs_join_request.gs_provider_local_name = RNFS_LOCAL_NAME;
proposal_info.gs_join_request.gs_n_phase_protocol_callback

= ha_gs_n_phase_callback;
proposal_info.gs_join_request.gs_protocol_approved_callback

= ha_gs_protocol_approved_callback;
proposal_info.gs_join_request.gs_protocol_rejected_callback

= ha_gs_protocol_rejected_callback ;
proposal_info.gs_join_request.gs_announcement_callback

= ha_gs_announcement_callback;
proposal_info.gs_join_request.gs_merge_callback = NULL;

group_attributes.gs_version = 1;
group_attributes.gs_sizeof_group_attributes

= sizeof(ha_gs_group_attributes_t);
group_attributes.gs_client_version = 1;
group_attributes.gs_batch_control

= HA_GS_NO_BATCHING | HA_GS_DEACTIVATE_ON_FAILURE;
group_attributes.gs_num_phases = HA_GS_N_PHASE;
group_attributes.gs_source_reflection_num_phases = HA_GS_1_PHASE;
group_attributes.gs_group_default_vote = HA_GS_VOTE_APPROVE;
group_attributes.gs_merge_control = HA_GS_DISSOLVE_MERGE;
group_attributes.gs_time_limit = RNFS_JOIN_FAILURE_TIME_LIMIT;
group_attributes.gs_source_reflection_time_limit = NULL;
group_attributes.gs_group_name = RNFS_GROUP_NAME;
group_attributes.gs_source_group_name = NULL;
264 RSCT Group Services: Programming Cluster Applications

imdoing = RNFS_JOINING;

gs_rc = ha_gs_join(
&provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_join failed rc=%d **\n", gs_rc);

}
return;

}

/***************************************
* propose_state (ha_gs_chage_state_value)
***************************************/
void propose_state() {

char hostname[256];
int collide;

if(gethostname(hostname, 256)) {
printf("*** gethostname failed ***\n");

}

proposal_info.gs_state_change_request.gs_num_phases = HA_GS_N_PHASE;
proposal_info.gs_state_change_request.gs_time_limit

= RNFS_TAKEOVER_TIME_LIMIT;
proposal_info.gs_state_change_request.gs_new_state.gs_length

= strlen(hostname) + 1;
proposal_info.gs_state_change_request.gs_new_state.gs_state = hostname;

for(; collide;) {
gs_rc = ha_gs_change_state_value(

provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
if(gs_rc == HA_GS_COLLIDE) {

printf("* warning * hostname registration is canceled - retry\n");
collide = 1;

} else {
printf("*** ha_gs_change_state_value failed rc=%d ***\n", gs_rc);
collide = 0;

}
} else {

collide = 0;
}

}
return;

}

/***************************************
* propose_message (ha_gs_send_message)
***************************************/
void propose_message() {

char message[2048];

strcpy(message, RNFS_MESSAGE);

proposal_info.gs_message_request.gs_num_phases = HA_GS_N_PHASE;
proposal_info.gs_message_request.gs_time_limit = RNFS_REPLICATE_TIME_LIMIT;
proposal_info.gs_message_request.gs_message.gs_length = strlen(message) + 1;
proposal_info.gs_message_request.gs_message.gs_message = message;

gs_rc = ha_gs_send_message(
Appendix C. Recoverable Network File System programs 265

provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
if(gs_rc == HA_GS_COLLIDE) {

printf("* warning * replication is canceled\n");
} else {

printf("*** ha_gs_send_message failed rc=%d ***\n", gs_rc);
}

}
return;

}

/***************************************
* propose_leave (ha_gs_leave)
***************************************/
void propose_leave() {

proposal_info.gs_leave_request.gs_num_phases = HA_GS_N_PHASE;
proposal_info.gs_leave_request.gs_time_limit = RNFS_SHUTDOWN_TIME_LIMIT;
proposal_info.gs_leave_request.gs_leave_code = ima;

imdoing = RNFS_LEAVING;

gs_rc = ha_gs_leave(
provider_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
if(gs_rc == HA_GS_COLLIDE) {

printf("* warning * leaving the group is canceled\n");
} else {

printf("*** ha_gs_leave failed rc=%d ***\n", gs_rc);
}

}
return;

}

/***************************************
* quit_program (ha_gs_quit)
***************************************/
void quit_program() {

gs_rc = ha_gs_quit();
if (gs_rc != HA_GS_OK) {

printf("*** ha_gs_quit failed rc=%d ***\n", gs_rc);
} else {

printf("[server takeover] umount network file system\n");
if(rc = system(RNFS_UMOUNT)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
exit(0);

}
return;

}

/***************************************
* responsiveness notification
***************************************/
ha_gs_callback_rc_t ha_gs_responsiveness_callback(

const ha_gs_responsiveness_notification_t *block) {

return(HA_GS_CALLBACK_OK);
}

266 RSCT Group Services: Programming Cluster Applications

/***************************************
* n-phasse notification
***************************************/
void ha_gs_n_phase_callback(

const ha_gs_n_phase_notification_t *block) {
char hostname[256];
ha_gs_state_value_t host_name;
char mount_command[64];

switch(latest_protocol = block->gs_protocol_type) {
case HA_GS_JOIN:

if(block->gs_proposal->gs_current_providers->gs_count == 0) {
if(gethostname(hostname, 256)) {

printf("*** gethostname failed ***\n");
}
host_name.gs_length = strlen(hostname) + 1;
host_name.gs_state = hostname;
vote_protocol(HA_GS_VOTE_APPROVE, &host_name);

} else if(imdoing == RNFS_UNSTABLE) {
vote_protocol(HA_GS_VOTE_REJECT, NULL);

} else {
vote_protocol(HA_GS_VOTE_APPROVE, NULL);

}
break;

case HA_GS_FAILURE_LEAVE:
if(ima != RNFS_SERVER) {

if(serveris ==
block->gs_proposal->gs_changing_providers->gs_providers->gs_node_number) {
printf("[server failure] umount network file system\n");
if(rc = system(RNFS_UMOUNT)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
imdoing = RNFS_UNSTABLE;

}
}
vote_protocol(HA_GS_VOTE_APPROVE, NULL);
break;

case HA_GS_LEAVE:
if(imdoing != RNFS_LEAVING) {

if(block->gs_proposal->gs_leave_info->gs_leave_codes->gs_voluntary_leave_code
== RNFS_SERVER) {
printf("[server shutdown] replicate file system\n");
if(rc = system(RNFS_REPLICATE)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
printf("[server shutdown] umount network file system\n");
if(rc = system(RNFS_UMOUNT)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
imdoing = RNFS_UNSTABLE;

}
vote_protocol(HA_GS_VOTE_APPROVE, NULL);

} else {
quit_program();

}
break;

case HA_GS_STATE_VALUE_CHANGE:
printf("[server takeover] mount network file system from %s\n",

block->gs_proposal->gs_proposed_state_value->gs_state);
strcpy(mount_command, RNFS_MOUNT);
strcat(mount_command,

block->gs_proposal->gs_proposed_state_value->gs_state);
if(rc = system(mount_command)) {
Appendix C. Recoverable Network File System programs 267

printf("\n*** system failed rc=%d ***\n", rc);
}
serveris = block->gs_proposal->gs_proposed_by.gs_node_number;
vote_protocol(HA_GS_VOTE_APPROVE, NULL);
break;

case HA_GS_PROVIDER_MESSAGE:
if(strcmp(RNFS_MESSAGE,

block->gs_proposal->gs_provider_message->gs_message)) {
printf("*** provider-broadcast message is not expected ***\n");
break;

}
if(ima == RNFS_CLIENT) {

printf("[replicate] replicate file system\n");
if(rc = system(RNFS_REPLICATE)) {

printf("\n*** system failed rc=%d ***\n", rc);
}

}
vote_protocol(HA_GS_VOTE_APPROVE, NULL);
break;

default:
printf("*** n-phase notificaiton is not expected ***\n");
break;

}
return;

}

/***************************************
* protocol approved notification
***************************************/
void ha_gs_protocol_approved_callback(

const ha_gs_approved_notification_t *block) {
char mount_command[64];

switch(block->gs_protocol_type) {
case HA_GS_JOIN:

if(imdoing == RNFS_JOINING) {
mynodeis = block->gs_proposal->gs_proposed_by.gs_node_number;
serveris =

block->gs_proposal->gs_current_providers->gs_providers->gs_node_number;
if(mynodeis == serveris) {

ima = RNFS_SERVER;
printf("[joined as server] ");

} else {
ima = RNFS_CLIENT;
printf("[joined as client] ");

}
printf("mount network file system from %s\n",

block->gs_proposal->gs_current_state_value->gs_state);
strcpy(mount_command, RNFS_MOUNT);
strcat(mount_command,

block->gs_proposal->gs_current_state_value->gs_state);
if(rc = system(mount_command)) {

printf("\n*** system failed rc=%d ***\n", rc);
}
imdoing = RNFS_STABLE;

}
break;

case HA_GS_FAILURE_LEAVE:
if(ima != RNFS_SERVER) {

if(mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number) {
ima = RNFS_SERVER;
propose_state();
268 RSCT Group Services: Programming Cluster Applications

}
}
break;

case HA_GS_LEAVE:
if(ima != RNFS_SERVER) {

if(mynodeis ==
block->gs_proposal->gs_current_providers->gs_providers->gs_node_number) {
ima = RNFS_SERVER;
propose_state();

}
}
break;

case HA_GS_STATE_VALUE_CHANGE:
imdoing = RNFS_STABLE;
break;

case HA_GS_PROVIDER_MESSAGE:
break;

default:
printf("*** protocol approved notification is not expected **\n");
break;

}
return;

}

/***************************************
* protocol rejected notification
***************************************/
void ha_gs_protocol_rejected_callback(

const ha_gs_rejected_notification_t *block) {

switch(block->gs_protocol_type) {
case HA_GS_JOIN:

if(imdoing == RNFS_JOINING) {
printf("* warning * the group is unstable, join later - exit\n");
exit(-1);

}
break;

default:
printf("*** protocol rejected notification is not expected ***\n");
break;

}
return;

}

/***************************************
* announcement notification
***************************************/
void ha_gs_announcement_callback(

const ha_gs_announcement_notification_t *block) {

switch(block->gs_summary_code) {
case HA_GS_RESPONSIVENESS_NO_RESPONSE:

printf("* warning * responsiveness check has failed on node ");
if(imdoing != RNFS_LEAVING) {

imdoing = RNFS_UNSTABLE;
}
break;

case HA_GS_RESPONSIVENESS_RESPONSE:
printf("* warning * responsiveness check has recovered on node ");
if(imdoing != RNFS_LEAVING) {

imdoing = RNFS_STABLE;
}
break;
Appendix C. Recoverable Network File System programs 269

case HA_GS_TIME_LIMIT_EXCEEDED:
switch(latest_protocol) {
case HA_GS_JOIN:

printf("* warning * it might be very busy on node ");
break;

case HA_GS_FAILURE_LEAVE:
printf("* warning * umounting file system might have failed on node ");
break;

case HA_GS_LEAVE:
printf("* warning * replicating/umounting file system might have failed on node

");
break;

case HA_GS_STATE_VALUE_CHANGE:
printf("* warning * mounting file system might have failed on node ");
break;

case HA_GS_PROVIDER_MESSAGE:
printf("* warning * replicating file system might have failed on node ");
break;

default:
printf("*** announcement notification is not expected ***\n");
return;

}
break;

case HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY:
printf("*** Group Services has died ***\n");
break;

case HA_GS_GROUP_DISSOLVED:
printf("*** rnfs_group has dissolved ***\n");
break;

default:
printf("*** announcement notification is not expected ***\n");
return;

}
print_nodes(block->gs_announcement);
return;

}

/***************************************
* delayed error notification
***************************************/
void ha_gs_delayed_error_callback(

const ha_gs_delayed_error_notification_t *block) {

switch(block->gs_protocol_type) {
case HA_GS_JOIN:

if(block->gs_delayed_return_code == HA_GS_DUPLICATE_INSTANCE_NUMBER) {
printf("* warning * another rnfs is running on this node - exit\n");
exit(-1);

}
break;

case HA_GS_LEAVE:
if(block->gs_delayed_return_code == HA_GS_COLLIDE) {

printf("* warning * leaving the group is canceled\n");
}
break;

case HA_GS_STATE_VALUE_CHANGE:
if(block->gs_delayed_return_code == HA_GS_COLLIDE) {

printf("* warning * hostname registration is canceled - retry\n");
propose_state();

}
break;

case HA_GS_PROVIDER_MESSAGE:
if(block->gs_delayed_return_code == HA_GS_COLLIDE) {
270 RSCT Group Services: Programming Cluster Applications

printf("* warning * replication is canceled\n");
}
break;

default:
printf("*** delayed error notification is not expected ***\n");
break;

}
return;

}

/***************************************
* vote_protocol
***************************************/
void vote_protocol(

ha_gs_vote_value_t vote_value,
const ha_gs_state_value_t *host_name) {

gs_rc = ha_gs_vote(
provider_token,
vote_value,
host_name,
NULL,
HA_GS_NULL_VOTE);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_vote failed rc=%d ***\n", gs_rc);

}
return;

}

/***************************************
* print_nodes
***************************************/
void print_nodes(ha_gs_membership_t *membership_list) {

int number_of_nodes;
ha_gs_provider_t *member;

member = membership_list->gs_providers;
for(number_of_nodes = 0;

number_of_nodes < membership_list->gs_count;
number_of_nodes++, member++) {
printf("%d ", member->gs_node_number);

}
printf("\n");
return;

}

C.2 rnfs_deact.ksh
#!/usr/bin/ksh
#
RSCT Group Services:
Programming Cluster Applications
#
SG24-5523-00
#
Recoverable Network File System
#
rnfs_deact.ksh
#

./rnfs_deact.perl $1 $2 $3 $4 $5
Appendix C. Recoverable Network File System programs 271

exit $?

C.3 rnfs_deact.perl
#!/usr/bin/perl
#
RSCT Group Services:
Programming Cluster Applications
#
SG24-5523-00
#
Recoverable Network File System
#
rnfs_deact.perl
#

$FILE_SYSTEM = "/shared_nfs";
$LOG_FILE = "./rnfs.log";

if($#ARGV == 4) {
open(STDOUT, ">> $LOG_FILE");
‘date >> $LOG_FILE‘;
print " deactivate script executed by the Group Services\n";
print " Process ID: $ARGV[0]\n";
print " Voting Time Limit: $ARGV[1]\n";
print " Failed group: $ARGV[2]\n";
print " Deactivate flag: $ARGV[3]\n";
print " Failed provider(s): $ARGV[4]\n";
print " umount $FILE_SYSTEM\n";
close STDOUT;

} else {
print "*** the number of parameters is not expected ***\n";
exit -1;

}

exit with return code 0

exit 0;

C.4 rnfs_mount
#! /usr/bin/ksh
#
RSCT Group Services:
Programming Cluster Applications
#
SG24-5523-00
#
Recoverable Network File System
#
rnfs_mount
#

date >> ./rnfs.log
print " mount $1:/local_nfs /shared_nfs" >> ./rnfs.log
272 RSCT Group Services: Programming Cluster Applications

C.5 rnfs_replicate
#! /usr/bin/ksh
#
RSCT Group Services:
Programming Cluster Applications
#
SG24-5523-00
#
Recoverable Network File System
#
rnfs_replicate
#

date >> ./rnfs.log
print " cp -R /shared_nfs/. /local_nfs" >> ./rnfs.log

C.6 rnfs_umount
#! /usr/bin/ksh
#
RSCT Group Services:
Programming Cluster Applications
#
SG24-5523-00
#
Recoverable Network File System
#
rnfs_umount
#

date >> ./rnfs.log
print " umount /shared_nfs" >> ./rnfs.log

C.7 rnfsm.c
/***************************************
*
* RSCT Group Services:
* Programming Cluster Applications
*
* SG24-5523-00
*
* Recoverable Network File System
*
* rnfsm.c
*
***************************************/

/***************************************
* header files
***************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/select.h>
#include <ha_gs.h>
Appendix C. Recoverable Network File System programs 273

/***************************************
* definitions
***************************************/
void init_program(void);
void propose_subscribe(void);
void propose_unsubscribe(void);
void quit_program(void);
void suspend_program(void);
void ha_gs_subscriber_callback(

const ha_gs_subscription_notification_t *);
void ha_gs_delayed_error_callback(

const ha_gs_delayed_error_notification_t *);
void print_members(ha_gs_membership_t *);

#define RNFS_GROUP_NAME "rnfs_group"

/***************************************
* variables
***************************************/
int rc;
ha_gs_rc_t gs_rc;

char domain_name[256];

ha_gs_descriptor_t descriptor;
ha_gs_responsiveness_t responsiveness;
ha_gs_token_t subscriber_token;
ha_gs_proposal_info_t proposal_info;

/***************************************
* main
***************************************/
int main(int argc, char **argv) {

char key;
fd_set my_fd;
struct timeval timeout;

if(argc != 2) {
printf("Usage: %s domain_name\n", argv[0]);
exit(argc);

}
strcpy(domain_name, "HA_DOMAIN_NAME=");
strcat(domain_name, argv[1]);
putenv(domain_name);
printf("domain name: %s, ", getenv("HA_DOMAIN_NAME"));
printf("group name: %s\n", RNFS_GROUP_NAME);

descriptor = 0;
timeout.tv_sec = 1;
timeout.tv_usec = 0;
init_program();
propose_subscribe();

printf("hit <Enter> key to suspend\n");
for(;;) {

FD_ZERO(&my_fd);
FD_SET(0, &my_fd);
FD_SET(descriptor, &my_fd);
rc = select(descriptor + 1, &my_fd, NULL, NULL, &timeout);
if(rc < 0) {

printf("*** select failed rc=%d ***\n", rc);
exit(rc);
274 RSCT Group Services: Programming Cluster Applications

}
if(FD_ISSET(0, &my_fd)) {

suspend_program();
}
if(descriptor && FD_ISSET(descriptor, &my_fd)) {

gs_rc = ha_gs_dispatch(HA_GS_NON_BLOCKING);
if(gs_rc != HA_GS_OK) {

printf("*** ha_gs_dispatch failed rc=%d ***\n", gs_rc);
}

}
}

}

/***************************************
* suspend_program
***************************************/
void suspend_program() {

char proposal[32];

gets(proposal); /* remove previously input strings */
printf("[program suspended] u(nsubscribe) or r(esume)?: ");
scanf("%s", proposal);
switch((int)proposal[0]) {
case ’u’: case ’U’:

propose_unsubscribe();
break;

default:
break;

}
gets(proposal); /* remove extra strings */
return;

}

/***************************************
* init_program (ha_gs_init)
***************************************/
void init_program() {

/* responsiveness control block */
responsiveness.gs_responsiveness_type = HA_GS_NO_RESPONSIVENESS;
responsiveness.gs_responsiveness_interval = NULL;
responsiveness.gs_responsiveness_response_time_limit = NULL;
responsiveness.gs_counter_location = NULL;
responsiveness.gs_counter_length = NULL;

gs_rc = ha_gs_init(
&descriptor,
HA_GS_SOCKET_NO_SIGNAL,
&responsiveness,
NULL,
NULL,
ha_gs_delayed_error_callback,
NULL);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_init failed rc=%d ***\n", gs_rc);

}
return;

}

/***************************************
* propose_subscribe (ha_gs_subacribe)
***************************************/
void propose_subscribe() {
Appendix C. Recoverable Network File System programs 275

proposal_info.gs_subscribe_request.gs_subscription_control
= HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP;

proposal_info.gs_subscribe_request.gs_subscription_group
= RNFS_GROUP_NAME;

proposal_info.gs_subscribe_request.gs_subscription_callback
= ha_gs_subscriber_callback;

gs_rc = ha_gs_subscribe(
&subscriber_token,
&proposal_info);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_subscribe failed rc=%d **\n", gs_rc);

}
return;

}

/***************************************
* propose_unsubscribe (ha_gs_unsubscribe)
***************************************/
void propose_unsubscribe() {

gs_rc = ha_gs_unsubscribe(
subscriber_token);

if(gs_rc != HA_GS_OK) {
printf("*** ha_gs_unsubscribe failed rc=%d ***\n", gs_rc);

} else {
quit_program();

}
return;

}

/***************************************
* quit_program (ha_gs_quit)
***************************************/
void quit_program() {

gs_rc = ha_gs_quit();
if (gs_rc != HA_GS_OK) {

printf("*** ha_gs_quit failed rc=%d ***\n", gs_rc);
} else {

exit(0);
}
return;

}

/***************************************
* subscriber notification
***************************************/
void ha_gs_subscriber_callback(

const ha_gs_subscription_notification_t *block) {

printf("\n");
if(block->gs_subscription_type & HA_GS_SUBSCRIPTION_DISSOLVED) {

printf("*** no RNFS node is available any more ***\n");
quit_program();

} else {
if(block->gs_subscription_type & HA_GS_SUBSCRIPTION_STATE) {

printf("server node hostname: %s\n", block->gs_state_value->gs_state);
}
if(block->gs_subscription_type & HA_GS_SUBSCRIPTION_MEMBERSHIP) {

printf("client nodes: ");
print_members(block->gs_full_membership);
276 RSCT Group Services: Programming Cluster Applications

}
}
return;

}

/***************************************
* delayed error notification
***************************************/
void ha_gs_delayed_error_callback(

const ha_gs_delayed_error_notification_t *block) {

switch(block->gs_protocol_type) {
case HA_GS_SUBSCRIPTION:

if(block->gs_delayed_return_code == HA_GS_UNKNOWN_GROUP) {
printf("*** no RNFS node is available currently ***\n");
quit_program();

}
break;

default:
printf("*** delayed error notification is not expected ***\n");
break;

}
return;

}

/***************************************
* print_members
***************************************/
void print_members(ha_gs_membership_t *membership_list) {

int i;
ha_gs_provider_t *member;

if(membership_list->gs_count) {
member = membership_list->gs_providers;
for(i = 0; i < membership_list->gs_count; i++, member++){

printf("%d ", member->gs_node_number);
}

}
printf("\n");
return;

}

C.8 makefile
#
RSCT Group Services:
Programming Cluster Applications
#
SG24-5523-00
#
Recoverable Network File System
#
makefile
#

all: rnfs rnfsm

rnfs: rnfs.c
cc -o rnfs -g -qnofold -DBSD -bloadmap:rnfs.map -lha_gs -lbsd rnfs.c
Appendix C. Recoverable Network File System programs 277

rnfsm: rnfsm.c
cc -o rnfsm -g -qnofold -DBSD -bloadmap:rnfsm.map -lha_gs -lbsd rnfsm.c

clean:
rm -f rnfs rnfsm *.map core
278 RSCT Group Services: Programming Cluster Applications

Appendix D. Using the additional material

This redbook contains additional material in the form of Web material. See
the following section for instructions on downloading or using this material.

D.1 Downloading the additional material on the Internet

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245523

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with
the redbook form number.

D.2 Using the Web material

The additional Web material that accompanies this redbook includes the
following:

File name Description
sg245523.zip Code samples (using zip)
sg245523.tar.Z Code samples (using tar and compress)

The contents of these two files are identical. They use different tools for
packing the code samples. Use a zip tool for the sg245523.zip file or use the
tar and compress command for the sg245523.tar.Z file.
© Copyright IBM Corp. 2000 279

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/

280 RSCT Group Services: Programming Cluster Applications

Appendix E. Special notices

This publication is intended to help programmers to learn how to use the
RSCT Group Services Application Programming Interfaces to develop highly
available cluster applications. The information in this publication is not
intended as the specification of any programming interfaces that are provided
by the RSCT Group Services. See the PUBLICATIONS section of the IBM
Programming Announcement for RSCT Group Services for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
© Copyright IBM Corp. 2000 281

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other

AFP AIX
AS/400 IBM
Micro Channel Netfinity
RS/6000 SP
System/390
282 RSCT Group Services: Programming Cluster Applications

countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix E. Special notices 283

284 RSCT Group Services: Programming Cluster Applications

Appendix F. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 287.

• HACMP Enhanced Scalability Handbook, SG24-5328

• RS/6000 SP High Availability Infrastructure, SG24-4838

F.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates, and formats.

F.3 Other resources

These publications are also relevant as further information sources:

• HACMP V4.3 AIX: Enhanced Scalability Installation & Administration
Guide, SC23-4284

• PSSP: Administration Guide, SA22-7348

• RSCT: Group Services Programming Guide and Reference, SA22-7355

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 285

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

286 RSCT Group Services: Programming Cluster Applications

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM intranet for Employees
© Copyright IBM Corp. 2000 287

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
288 RSCT Group Services: Programming Cluster Applications

Glossary

ABI Application Binary Interface.

ACL Access Control List.

AFPA Adaptive Fast Path Architecture.

AH Authentication Header.

ANSI American National Standards Institute.

API Application Programming Interface.

ARP Address Resolution Protocol.

ASRAddress Space Register.

ATM Asynchronous Transfer Mode.

AUI Attached Unit Interface.

AWT Abstract Window Toolkit.

BIND Berkeley Internet Name Daemon.

BOS Base Operating System.

BLOB Binary Large Object.

BSC Binary Synchronous Communications.

CDE Common Desktop Environment.

CDLI Common Data Link Interface.

CD-R CD Recordable.

CE Customer Engineer.

CEC Central Electronics Complex.

CGE Common Graphics Environment.

CHRP Common Hardware Reference
Platform.

CISPR International Special Committee on
Radio Interference.

CLVM Concurrent LVM.

CMOS Complimentary Metal-Oxide
Semiconductor.

COFF Common Object File Format.

CORBA Common Object Request Broker.

CSID Character Set ID.

DAD Duplicate Address Detection.

DASD Direct Access Storage Device.
© Copyright IBM Corp. 2000
DBE Double Buffer Extension.

DBCS Double Byte Character Set.

DCE Distributed Computing Environment.

DES Data Encryption Standard.

DHCP Dynamic Host Configuration Protocol.

DIT Directory Information Tree.

DMA Direct Memory Access.

DN Distinguished Name.

DNS Domain Naming System.

DS Differentiated Service.

DSE Diagnostic System Exerciser.

DSMIT Distributed SMIT.

DTE Data Terminating Equipment.

EA Effective Address.

ECC Error Checking and Correcting.

EIA Electronic Industries Association.

EMU European Monetary Union.

EOF End of File.

ESID Effective Segment ID.

ESP Encapsulating Security Payload.

FCAL Fibre Channel Arbitrated Loop.

FCC Federal Communication Commission.

FDDI Fiber Distributed Data Interface.

FDPR Feedback Directed Program
Restructuring.

FIFO First In/First Out.

FLASH EPROM Flash Erasable
Programmable Read-Only Memory.

FLIH First Level Interrupt Handler.

FRCA Fast Response Cache Architecture.

GAI Graphic Adapter Interface.

GPR General Purpose Register.

GUI Graphical User Interface.
289

HACMP High Availability Cluster
Multi-Processing.

HCON IBM AIX Host Connection Program/6000.

HFT High Function Terminal.

IAR Instruction Address Register.

ICCCM Inter-Client Communications
Conventions Manual.

ICE Inter-Client Exchange.

ICElib Inter-Client Exchange library.

ICMP Internet Control Message Protocol.

IETF Internet Engineering Task Force.

IHV Independent Hardware Vendor.

IIOP Internet Inter-ORB Protocol.

IJG Independent JPEG Group.

IKE Internet Key Exchange.

ILS International Language Support.

IM Input Method.

INRIA Institut National de Recherche en
Informatique et en Automatique.

IPL Initial Program Load.

IPSec IP Security.

IS Integrated Service.

ISA Industry Standard Architecture.

ISAKMP/Oakley Internet Security Association
Management Protocol.

ISNO Interface Specific Network Options.

ISO International Organization for
Standardization.

ISV Independent Software Vendor.

ITSO International Technical Support
Organization.

I/O Input/Output.

JDBC Java Database Connectivity.

JFC Java Foundation Classes.

JFS Journaled File System.

LAN Local Area Network.

LDAP Lightweight Directory Access Protocol.

LDIF LDAP Directory Interchange Format.

LFT Low Function Terminal.

LID Load ID.

LP Logical Partition.

LPI Lines Per Inch.

LPP Licensed Program Products.

LPR/LPD Line Printer/Line Printer Daemon.

LP64 Long-Pointer 64.

LRU Least Recently Used.

LTG Logical Track Group.

LV Logical Volume.

LVCB Logical Volume Control Block.

LVD Low Voltage Differential.

LVM Logical Volume Manager.

L2 Level 2.

MBCS MultiByte Character Support.

MCA Micro Channel Architecture.

MDI Media Dependent Interface.

MII Media Independent Interface.

MODS Memory Overlay Detection Subsystem.

MP Multiple Processor.

MPOA Multiprotocol Over ATM.

MST Machine State.

NBC Network Buffer Cache.

ND Neighbor Discovery.

NDP Neighbor Discovery Protocol.

NFS Network File System.

NHRP Next Hop Resolution Protocol.

NIM Network Installation Management.

NIS Network Information System.

NL National Language.

NLS National Language Support.

NTF No Trouble Found.
290 RSCT Group Services: Programming Cluster Applications

NVRAM Non-Volatile Random Access Memory.

OACK Option Acknowledgment.

ODBC Open DataBase Connectivity.

ODM Object Data Manager.

OEM Original Equipment Manufacturer.

OLTP Online Transaction Processing.

ONC+ Open Network Computing.

OOUI Object-Oriented User Interface.

OSF Open Software Foundation, Inc..

PCI Peripheral Component Interconnect.

PDT Paging Device Table.

PEX PHIGS Extension to X.

PFS Perfect Forward Security.

PHB Processor Host Bridges.

PHY Physical Layer Device.

PID Process ID.

PII Program Integrated Information.

PMTU Path MTU.

PPC PowerPC.

PSE Portable Streams Environment.

PTF Program Temporary Fix.

PV Physical Volume.

QoS Quality of Service.

RAID Redundant Array of Independent Disks.

RAN Remote Asynchronous Node.

RAS Reliability Availability Serviceability.

RDB Relational DataBase.

RDISC ICMP Router Discovery.

RDN Relative Distinguished Name.

RDP Router Discovery Protocol.

RFC Request for Comments.

RIO Remote I/O.

RIP Routing Information Protocol.

RPA RS/6000 Platform Architecture.

RPC Remote Procedure Call.

RPL Remote Program Loader.

RSVP Resource Reservation Protocol.

SA Secure Association.

SACK Selective Acknowledgments.

SBCS Single-Byte Character Support.

SCB Segment Control Block.

SCSI Small Computer System Interface.

SCSI-SE SCSI-Single Ended.

SDRAM Synchronous DRAM.

SE Single Ended.

SGID Set Group ID.

SHLAP Shared Library Assistant Process.

SID Segment ID.

SIT Simple Internet Transition.

SKIP Simple Key Management for IP.

SLB Segment Lookaside Buffer.

SLIH Second Level Interrupt Handler.

SM Session Management.

SMIT System Management Interface Tool.

SMB Server Message Block.

SMP Symmetric Multiprocessor.

SNG Secured Network Gateway.

SP Service Processor.

SPCN System Power Control Network.

SPI Security Parameter Index.

SPM System Performance Measurement.

SPOT Shared Product Object Tree.

SRC System Resource Controller.

SRN Service Request Number.

SSA Serial Storage Architecture.

SSL Secure Socket Layer.

STP Shielded Twisted Pair.

SUID Set User ID.
Glossary 291

SVC Supervisor or System Call.

SYNC Synchronization.

TCE Translate Control Entry.

TCP/IP Transmission Control Protocol/Internet
Protocol.

TOS Type Of Service.

TTL Time To Live.

UCS Universal Coded Character Set.

UIL User Interface Language.

ULS Universal Language Support.

UP Uni-Processor.

USLA User-Space Loader Assistant.

UTF UCS Transformation Format.

UTM Uniform Transfer Model.

UTP Unshielded Twisted Pair.

VFB Virtual Frame Buffer.

VG Volume Group.

VGDA Volume Group Descriptor Area.

VGSA Volume Group Status Area.

VHDCI Very High Density Cable Interconnect.

VMM Virtual Memory Manager.

VP Virtual Processor.

VPD Vital Product Data.

VPN Virtual Private Network.

VSM Visual System Manager.

WLM Workload Manage.

XCOFF Extended Common Object File Format.

XIE X Image Extension.

XIM X Input Method.

XKB X Keyboard Extension.

XOM X Output Method.

XPM X Pixmap.

XVFB X Virtual Frame Buffer.
292 RSCT Group Services: Programming Cluster Applications

Index

A
announcement notification 23, 146, 169
announcement notification block 146

gs_announcement 147
gs_notification_type 147
gs_provider_token 147
gs_summary_code 147

approve 20
attribute change request block 91

gs_backlevel_providers 92
gs_group_attributes 92
gs_num_phases 92
gs_time_limit 92

B
barrier synchronization 21, 24

C
callback subroutine 119

design 124
execute 121
register 120

cast-out protocol 95
approved 97, 98, 101
deactivate-on-failure 98, 100
flow 97
n-phase 99
one-phase 97
proposal 96
rejected 102

change-attributes protocol 91
approved 92, 93
flow 92
n-phase 93
one-phase 92
rejected 94
subroutine 91

command usage 229
-a flag 230
-g flag 229
-p flag 229
-s flag 229

commands
hagscl 239, 241
hagsgr 230, 232, 236, 237
© Copyright IBM Corp. 2000
hagsvote 242
lssrc 231

commit phase 22
continue 20

D
data segment 122
deactivate script 34, 208

check program 238
deactivate flag 35
effective uid and gid 34
environment variables 35
exit code 36
instance numbers 35
name of the group 35
process ID parameter 35
STDIN, STDOUT, and STDERR 35
voting time limit 35
working directory 34

deactivate-on-failure 33, 168
default vote value 22, 30
delayed error notification 141, 169
delayed error notification block 141

gs_delayed_return_code 142
gs_notification_type 141
gs_proposal 142
gs_protocol_type 142
gs_request_token 142

descriptor 13
domain 5, 16, 17

choose 45
Group Services HACMP/ES domain 6
Group Services PSSP domain 5

E
environment variables

HA_DOMAIN_NAME 5, 6, 45, 46, 171, 212
HA_GS_SUBSYS 5, 6, 45, 46
HA_SYSPAR_NAME 45

error codes
HA_GS_BACKLEVEL_PROVIDERS 92, 158
HA_GS_BAD_CLIENT_TOKEN 156
HA_GS_BAD_GROUP_ATTRIBUTES 156
HA_GS_BAD_MEMBER_TOKEN 156
HA_GS_BAD_PARAMETER 156
HA_GS_COLLIDE 157, 185, 189, 193, 207
293

HA_GS_CONNECT_FAILED 157
HA_GS_DUPLICATE_INSTANCE_NUMBER
157, 207
HA_GS_EXISTS 155
HA_GS_INVALID_DEACTIVATE_PHASE 158
HA_GS_INVALID_GROUP 156
HA_GS_INVALID_SOURCE_GROUP 157
HA_GS_NAME_TOO_LONG 155
HA_GS_NO_INIT 155
HA_GS_NO_MEMORY 156
HA_GS_NO_SOURCE_GROUP_PROVIDER
156
HA_GS_NOT_A_MEMBER 156
HA_GS_NOT_OK 155
HA_GS_NOT_SUPPORTED 157
HA_GS_PROVIDER_APPEARS_TWICE 158
HA_GS_SOCK_CREATE_FAILED 157
HA_GS_SOCK_INIT_FAILED 157
HA_GS_UNKNOWN_GROUP 148, 156, 215
HA_GS_UNKNOWN_PROVIDER 158
HA_GS_VOTE_NOT_EXPECTED 157
HA_GS_WRONG_OLD_STATE 157

expel protocol 81
approved 82, 83, 84, 89
deactivate-on-failure 83, 86
flow 82
n-phase 84, 86
one-phase 82, 83
rejected 90
subroutine 81

expel request block 81
gs_deactivate_flag 82
gs_deactivate_phase 82
gs_expel_list 82
gs_num_phases 82
gs_time_limit 82

F
failure leave protocol 60, 169

approved 61, 62, 65
deactivate script 68
deactivate-on-failure 62, 63
flow 61
multiple providers 68
n-phase 63
one-phase 61
proposal 60
rejected 66

special condition 66

G
goodbye protocol 80

flow 80
subroutine 80

group 6, 17
check program 230

group attributes 7
check program 232

group attributes block 8
gs_batch_control 8
gs_client_version 8
gs_group_default_vote 9
gs_group_name 9
gs_merge_control 9
gs_num_phases 8
gs_sizeof_group_attributes 8
gs_source_group_name 10
gs_source_reflection_num_phases 9
gs_source_reflection_time_limit 9
gs_time_limit 9
gs_version 8

Group Services client 12
Group Services daemon 6, 16

initialization 46
Group Services HACMP/ES domain

choose 45
Group Services PSSP domain

choose 45
Group Services subsystem 6

initialization 46
group state value 10, 30, 168

check program 236
group state value information block 11

gs_length 11
gs_state 11

GS client 12, 17

H
ha_gs_announcement_callback 205
ha_gs_change_state_value 193
ha_gs_delayed_error_callback 207, 215
ha_gs_dispatch 121, 173, 212
ha_gs_init 120, 172, 213

deactivate_script 47
delayed_error_callback 47
ha_gs_descriptor 46
294 RSCT Group Services: Programming Cluster Applications

query_callback 47
responsiveness_callback 47
responsiveness_control 46
socket_options 46

ha_gs_join 120, 178
ha_gs_leave 189
ha_gs_protocol_rejected_callback 183
ha_gs_quit 190, 215
ha_gs_responsiveness_callback 175
ha_gs_send_message 185
ha_gs_subscribe 120, 214
ha_gs_subscriber_callback 216
ha_gs_unsubscribe 218
ha_gs_vote 179

default_vote_value 108
proposed_state_value 107
provider_message 108
provider_token 107
vote_value 107

HACMP/ES 6
HACMP/ES cluster 6
HACMPcluster 15
handle 15

I
instance number 14

J
join protocol 55, 168

approved 57, 58
flow 57
n-phase 58
one-phase 57
rejected 59
subroutine 56

join request block 56
gs_announcement_callback 57
gs_group_attributes 56
gs_merge_callback 57
gs_n_phase_protocol_callback 56
gs_protocol_approved_callback 56
gs_protocol_rejected_callback 56
gs_provider_instance 56
gs_provider_local_name 56

L
leave request block 75

gs_leave_code 76
gs_num_phases 76
gs_time_limit 76

M
membership information block 10

gs_count 10
gs_providers 10

membership list 10, 168
message board 3
message broadcast 4
message request block 72

gs_message 73
gs_num_phases 72
gs_time_limit 73

monitoring application 4

N
node 5, 16
node number 15
notification 119

dispatch 150
notification block 125

gs_notification_type 126, 127
gs_proposal 126, 132
gs_protocol_type 126, 128
gs_provider_token 126, 128
gs_subscribe_token 128
gs_subscriber_token 126
gs_summary_code 126, 129

n-phase notification 142, 169
n-phase notification block 142

gs_notification_type 143
gs_proposal 143
gs_protocol_type 143
gs_provider_token 143
gs_summary_code 143
gs_time_limit 143

n-phase protocol 20, 168
proposed by a provider 24
proposed by the Group Services 26

O
one-phase protocol 19

proposed by a provider 23
proposed by the Group Services 25
Index 295

P
peer process synchronization 3
proposal block 132

gs_changing_providers 136
gs_current_providers 135
gs_current_state_value 138
gs_expel_info 137
gs_leave_info 136
gs_new_group_attributes 139
gs_phase_info 133
gs_proposed_by 60, 133
gs_proposed_state_value 138
gs_provider_message 139
gs_source_state_value 138
gs_whats_changed 134

proposal information block 53
proposal phase 19
protocol 19

batching 28
check program 242
proposal 51
serializing 27

protocol approved notification 23, 143, 169
protocol approved notification block 144

gs_notification_type 144
gs_proposal 144
gs_protocol_type 144
gs_provider_token 144
gs_summary_code 144

protocol rejected notification 23, 145, 169
protocol rejected notification block 145

gs_notification_type 145
gs_proposal 146
gs_protocol_type 146
gs_provider_token 145
gs_summary_code 146

provider 12, 14
check program 230, 237

provider information block 14
_gs_instance_number 14
_gs_node_number 15
gs_provider_id 15

provider token 14, 53
provider-broadcast message 11, 30, 168
provider-broadcast message block 11

gs_length 12
gs_message 12

provider-broadcast message protocol 72, 169
approved 73

flow 73
n-phase 73
one-phase 73
rejected 74
subroutine 72

R
reject 20
responsiveness check 31, 168

check program 241
ha_gs_init 47

responsiveness check types 31
no responsiveness check 31
ping-like responsiveness check 31

responsiveness control block 32
gs_counter_length 32
gs_counter_location 32
gs_responsiveness_interval 32
gs_responsiveness_response_time_limit 32
gs_responsiveness_type 32

responsiveness notification 139, 169
responsiveness notification block 140

gs_notification_type 140
gs_responsiveness_information 140

return code
HA_GS_OK 80, 118, 140, 155

S
socket 122
source-state reflection protocol 72, 103

approved 104
flow 104
n-phase 104
one-phase 104
proposal 103
rejected 105

source-target 36, 95
configuration 37
group state value 41
joins and leaves 37

SP partition 5
state change request block 69

gs_new_state 69
gs_num_phases 69
gs_time_limit 69

state value change protocol 69, 169
approved 69, 70
flow 69
296 RSCT Group Services: Programming Cluster Applications

group state value 72
n-phase 70
one-phase 69
rejected 71
subroutine 69

subroutines
ha_gs_announcement_callback 146
ha_gs_change_attributes 91
ha_gs_change_state_value 69
ha_gs_delayed_error_callback 141
ha_gs_dispatch 151
ha_gs_expel 81
ha_gs_goodbye 80
ha_gs_init 46
ha_gs_join 56
ha_gs_n_phase_callback 142
ha_gs_protocol_approved_callback 144
ha_gs_protocol_rejected_callback 145
ha_gs_quit 48
ha_gs_responsiveness_callback 140
ha_gs_send_message 72
ha_gs_subscribe 115
ha_gs_subscriber_callback 148
ha_gs_unsubscribe 118
ha_gs_vote 107

subscribe 115
subscribe request block 116

gs_subscription_callback 117
gs_subscription_control 116
gs_subscription_group 117

subscriber 12, 15
check program 230, 238

subscriber token 15, 115
subscription notification 147
subscription notification block 148

gs_changing_membership 150
gs_full_membership 150
gs_notification_type 148
gs_state_value 150
gs_subscriber_token 148
gs_subscription_special_data 150
gs_subscription_type 148

sundered namespace 41

T
types

ha_gs_announcement_notification_t 147
ha_gs_approved_notification_t 144

ha_gs_attribute_change_request_t 92
ha_gs_batch_ctrl_t 29
ha_gs_callback_rc_t 141
ha_gs_delayed_error_notification_t 141
ha_gs_descriptor_t 13
ha_gs_expel_info_t 138

gs_deactivate_phase 138
gs_expel_flag 138
gs_expel_flag_length 138

ha_gs_expel_request_t 81
ha_gs_group_attributes_t 8
ha_gs_join_request_t 56
ha_gs_leave_array_t 136

gs_count 136
gs_leave_codes 136

ha_gs_leave_info_t 136
gs_voluntary_leave_code 137
gs_voluntary_or_failure 136

ha_gs_leave_request_t 76
ha_gs_membership_t 10
ha_gs_message_request_t 72
ha_gs_n_phase_notification_t 143
ha_gs_notification_type_t 127
ha_gs_num_phases_t 20
ha_gs_phase_info_t 133

gs_num_phases 133
gs_phase_number 133

ha_gs_proposal_info_t 53
ha_gs_proposal_t 132
ha_gs_provider_message_t 11
ha_gs_provider_t 14
ha_gs_rejected_notification_t 145
ha_gs_request_t 128
ha_gs_responsiveness_notification_t 140
ha_gs_responsiveness_t 32
ha_gs_responsiveness_type_t 31
ha_gs_state_change_request_t 69
ha_gs_state_value_t 11
ha_gs_subscribe_request_t 116
ha_gs_subscription_ctrl_t 116
ha_gs_subscription_notification_t 148
ha_gs_subscription_type_t 149
ha_gs_summary_code_t 129
ha_gs_time_limit_t 22
ha_gs_token_t 14
ha_gs_updates_t 134
ha_gs_vote_value_t 20
Index 297

U
unsubscribe 118

V
values

HA_GS_1_PHASE 20
HA_GS_ANNOUNCEMENT_NOTIFICATION
127, 147
HA_GS_APPROVED_NOTIFICATION 127,
144
HA_GS_BATCH_BOTH 29
HA_GS_BATCH_FAILURES 29
HA_GS_BATCH_JOINS 29
HA_GS_BLOCKING 151
HA_GS_CALLBACK_NOT_OK 141
HA_GS_CAST_OUT 129
HA_GS_COUNTER_RESPONSIVENESS 32
HA_GS_DEACTIVATE_ON_FAILURE 30, 48
HA_GS_DEACTIVATE_TIME_LIMIT_EXCEED
ED 131
HA_GS_DEACTIVATE_UNSUCCESSFUL
131
HA_GS_DEFAULT_APPROVE 130
HA_GS_DEFAULT_REJECT 130
HA_GS_DELAYED_ERROR_NOTIFICATION
127, 142
HA_GS_EXPEL 129
HA_GS_EXPLICIT_APPROVE 130
HA_GS_EXPLICIT_REJECT 130
HA_GS_FAILURE_LEAVE 80, 129
HA_GS_GROUP_ATTRIBUTE_CHANGE 129
HA_GS_GROUP_ATTRIBUTES_CHANGED
131
HA_GS_GROUP_DISSOLVED 131
HA_GS_GROUP_SERVICES_HAS_DIED_HO
RRIBLY 131
HA_GS_HOST_FAILURE 137
HA_GS_instance_number 14
HA_GS_JOIN 129
HA_GS_LEAVE 129
HA_GS_MERGE 129
HA_GS_MERGE_NOTIFICATION 128
HA_GS_N_PHASE 20
HA_GS_N_PHASE_NOTIFICATION 127, 143
HA_GS_NO_BATCHING 29
HA_GS_NO_CHANGE 134
HA_GS_NO_RESPONSIVENESS 31, 47
HA_GS_node_number 15

HA_GS_NON_BLOCKING 151
HA_GS_NULL_VOTE 21
HA_GS_ONGOING_GROUP_ATTRIBUTES
135
HA_GS_ONGOING_MEMBERSHIP 134
HA_GS_ONGOING_STATE_VALUE 135
HA_GS_PING_RESPONSIVENESS 32
HA_GS_PROPOSED_GROUP_ATTRIBUTES
135
HA_GS_PROPOSED_MEMBERSHIP 134
HA_GS_PROPOSED_STATE_VALUE 134
HA_GS_PROVIDER_EXPELLED 137
HA_GS_PROVIDER_FAILED 131
HA_GS_PROVIDER_FAILURE 81, 137
HA_GS_PROVIDER_MESSAGE 129
HA_GS_PROVIDER_SAID_GOODBYE 81,
137
HA_GS_QUERY_NOTIFICATION 127
HA_GS_REFLECTED_SOURCE_STATE_VAL
UE 135
HA_GS_REJECTED_GROUP_ATTRIBUTES
135
HA_GS_REJECTED_NOTIFICATION 127,
145
HA_GS_RESPONSIVENESS_NO_RESPONS
E 131
HA_GS_RESPONSIVENESS_NOTIFICATION
127, 140
HA_GS_RESPONSIVENESS_RESPONSE
131
HA_GS_SOURCE_PROVIDER_LEAVE 137
HA_GS_SOURCE_STATE_REFLECTION
129
HA_GS_STATE_VALUE_CHANGE 129
HA_GS_SUBSCRIBE_ALL_MEMBERSHIP
117
HA_GS_SUBSCRIBE_DELTA_JOINS 116
HA_GS_SUBSCRIBE_DELTA_LEAVES 117
HA_GS_SUBSCRIBE_DELTAS_ONLY 117
HA_GS_SUBSCRIBE_MEMBERSHIP 117
HA_GS_SUBSCRIBE_STATE 116
HA_GS_SUBSCRIBE_STATE_AND_MEMBER
SHIP 117
HA_GS_SUBSCRIPTION_DELTA_JOIN 149
HA_GS_SUBSCRIPTION_DELTA_LEAVE
149
HA_GS_SUBSCRIPTION_DISSOLVED 149
HA_GS_SUBSCRIPTION_GS_HAS_DIED
149
298 RSCT Group Services: Programming Cluster Applications

HA_GS_SUBSCRIPTION_MEMBERSHIP 149
HA_GS_SUBSCRIPTION_NOTIFICATION
128, 148
HA_GS_SUBSCRIPTION_STATE 149
HA_GS_TIME_LIMIT_EXCEEDED 130
HA_GS_UPDATED_GROUP_ATTRIBUTES
135
HA_GS_UPDATED_PROVIDER_MESSAGE
135
HA_GS_VOLUNTARY_LEAVE 137
HA_GS_VOTE_APPROVE 21
HA_GS_VOTE_CONTINUE 21
HA_GS_VOTE_REJECT 21
HS_GS_SUBSCRIPTION_DISSOLVED 118

voluntary leave protocol 75, 169
approved 76, 77
flow 76
n-phase 77
one-phase 76
rejected 78
subroutine 75

vote 106
group state value 108

approved 108
rejected 109

provider-broadcast message 110
approved 111
rejected 112

voting phase 20
voting time limit 21
Index 299

300 RSCT Group Services: Programming Cluster Applications

© Copyright IBM Corp. 2000 301

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5523-00
RSCT Group Services: Programming Cluster Applications

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
http://www.ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

Printed in the U.S.A.

SG24-5523-00

R
SC

T
G

rou
p

Services:
P

rogram
m

ing
C

luster
A

pplications
S

G
24-5523-00

®

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Group Services concepts
	Chapter 1. Introduction
	1.1 What Group Services provides
	1.2 Solutions

	Chapter 2. Boundaries and components
	2.1 Boundaries
	2.1.1 Node
	2.1.2 Domain

	2.2 Components
	2.2.1 Group Services subsystem
	2.2.2 Groups
	2.2.3 Group Services client
	2.2.4 Providers
	2.2.5 Subscriber

	2.3 Relationship between boundaries and components
	2.3.1 Domains, nodes, and Group Services daemons
	2.3.2 Domains and groups
	2.3.3 Groups and GS clients

	Chapter 3. Protocols and facilities
	3.1 Protocols
	3.1.1 Proposal phase
	3.1.2 Voting phase
	3.1.3 Commit phase
	3.1.4 Protocol flows
	3.1.5 Serializing protocols
	3.1.6 Batching protocols
	3.1.7 Submitting changes with voting

	3.2 Responsiveness check facility
	3.2.1 Responsiveness check types
	3.2.2 Utilizing a facility

	3.3 Deactivate-on-failure facility
	3.3.1 Utilizing a facility
	3.3.2 Deactivate scripts

	3.4 Source-target facility
	3.4.1 Configurations
	3.4.2 Membership list changes
	3.4.3 Group state value changes

	3.5 Sundered namespaces

	Part 2. Group Services design
	Chapter 4. Initializing with Group Services
	4.1 Choosing a domain
	4.1.1 Group Services PSSP domains
	4.1.2 Group Services HACMP/ES domains

	4.2 Initializing with Group Services
	4.2.1 Subroutine call
	4.2.2 Programming hints

	4.3 Quit using Group Services
	4.3.1 Subroutine call
	4.3.2 Programming hints

	Chapter 5. Proposing protocols
	5.1 Protocol proposal
	5.1.1 Protocols
	5.1.2 Subroutines

	5.2 Join protocol
	5.2.1 Subroutine call
	5.2.2 Protocol flow
	5.2.3 Programming hints

	5.3 Failure leave protocol
	5.3.1 Protocol proposal
	5.3.2 Protocol flow
	5.3.3 Programming hints

	5.4 State value change protocol
	5.4.1 Subroutine call
	5.4.2 Protocol flow
	5.4.3 Programming hints

	5.5 Provider-broadcast message protocol
	5.5.1 Subroutine call
	5.5.2 Protocol flow
	5.5.3 Programming hints

	5.6 Voluntary leave protocol
	5.6.1 Subroutine call
	5.6.2 Protocol flow
	5.6.3 Programming hints

	5.7 Goodbye protocol
	5.7.1 Subroutine call
	5.7.2 Protocol flow
	5.7.3 Programming hints

	5.8 Expel protocol
	5.8.1 Subroutine call
	5.8.2 Protocol flow
	5.8.3 Programming hints

	5.9 Change-attributes protocol
	5.9.1 Subroutine call
	5.9.2 Protocol flow
	5.9.3 Programming hints

	5.10 Cast-out protocol
	5.10.1 Protocol proposal
	5.10.2 Protocol flow
	5.10.3 Programming hints

	5.11 Source-state reflection protocol
	5.11.1 Protocol proposal
	5.11.2 Protocol flow
	5.11.3 Programming hints

	5.12 Voting on proposed protocol
	5.12.1 Subroutine call
	5.12.2 Proposing a group state value
	5.12.3 Sending a provider-broadcast message
	5.12.4 Programming hints

	Chapter 6. Subscribing to a group
	6.1 Subscribe to a group
	6.1.1 Subroutine call
	6.1.2 Programming hints

	6.2 Unsubscribe from a group
	6.2.1 Subroutine call
	6.2.2 Programming hints

	Chapter 7. Getting notifications
	7.1 Overview
	7.1.1 Notifications and callback subroutines
	7.1.2 Executing callback subroutines
	7.1.3 Programming hints

	7.2 Common design
	7.2.1 Callback subroutine prototypes
	7.2.2 Notification blocks and their fields

	7.3 Responsiveness notification
	7.3.1 Subroutine call
	7.3.2 Programming hints

	7.4 Delayed error notification
	7.4.1 Subroutine call

	7.5 N-phase notification
	7.5.1 Subroutine call

	7.6 Protocol approved notification
	7.6.1 Subroutine call

	7.7 Protocol rejected notification
	7.7.1 Subroutine call

	7.8 Announcement notification
	7.8.1 Subroutine call

	7.9 Subscription notification
	7.9.1 Subroutine call

	7.10 Dispatching notifications
	7.10.1 Subroutine call

	Chapter 8. Error handling
	8.1 Synchronous/asynchronous errors
	8.2 Error code

	Part 3. Group Services programming
	Chapter 9. Recoverable Network File System
	9.1 Mechanism
	9.2 rnfs program overview
	9.2.1 Program state
	9.2.2 Utilizing Group Services

	9.3 rnfs program in details
	9.3.1 main routine
	9.3.2 Checking responsiveness
	9.3.3 Creating the group
	9.3.4 Adding a node
	9.3.5 Replicating a file system
	9.3.6 Server node shutdown
	9.3.7 Client node shutdown
	9.3.8 Server node failure
	9.3.9 Client node failure
	9.3.10 Receiving an announcement
	9.3.11 Receiving error

	9.4 Shell script, Perl script, and log file
	9.4.1 rnfs_deact.ksh shell script
	9.4.2 rnfs_deact.perl Perl script
	9.4.3 rnfs_mount shell script
	9.4.4 rnfs_replicate
	9.4.5 rnfs_umount

	9.5 rnfsm program
	9.5.1 main routine
	9.5.2 Subscribing the group
	9.5.3 Unsubscribing the group

	9.6 Operation example
	9.6.1 Events summary
	9.6.2 rnfs execution output
	9.6.3 rnfs log file
	9.6.4 rnfsm execution output

	Chapter 10. Checking your program
	10.1 Command usage
	10.2 Command examples
	10.2.1 Checking the group, providers, and subscribers
	10.2.2 Checking the group attributes
	10.2.3 Checking the group state value
	10.2.4 Checking providers and subscribers in detail
	10.2.5 Checking a deactivate script
	10.2.6 Checking responsiveness check
	10.2.7 Checking the protocol currently executing

	Part 4. Appendices
	Appendix A. Programming environment
	A.1 The Group Services shared libraries
	A.2 Link and compile options
	A.3 The man pages

	Appendix B. ha_gs.h
	B.1 ha_gs.h

	Appendix C. Recoverable Network File System programs
	C.1 rnfs.c
	C.2 rnfs_deact.ksh
	C.3 rnfs_deact.perl
	C.4 rnfs_mount
	C.5 rnfs_replicate
	C.6 rnfs_umount
	C.7 rnfsm.c
	C.8 makefile

	Appendix D. Using the additional material
	D.1 Downloading the additional material on the Internet
	D.2 Using the Web material

	Appendix E. Special notices
	Appendix F. Related publications
	F.1 IBM Redbooks
	F.2 IBM Redbooks collections
	F.3 Other resources

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

