
SG24-5511-00

International Technical Support Organization

www.redbooks.ibm.com

Database Performance on AIX
in DB2 UDB and Oracle Environments

Nigel Griffiths, James Chandler, João Marcos Costa de Souza, Gerhard Müller, Diana Gfroerer

Database Performance on AIX in DB2 UDB and Oracle
Environments

December 1999

SG24-5511-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1999)

This edition applies to Version 6.1 of DB2 Universal Database - Enterprise Edition, referred to as DB2
UDB; Version 7 of Oracle Enterprise Edition and Release 8.1.5 of Oracle8i Enterprise Edition, referred
to as Oracle; for use with AIX Version 4.3.3.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix E, “Special notices” on page 411.

Take Note!

Contents

Preface . xv
How this book is organized . xv
The team that wrote this redbook. xvi
Comments welcome. xix

Chapter 1. Introduction to this redbook . 1

Part 1. RDBMS concepts . 3

Chapter 2. Introduction into relational database system concepts. . . . 5
2.1 What is an RDBMS?. 5
2.2 What does an RDBMS provide? . 10
2.3 The database performance trick . 13
2.4 What are the components of an RDBMS? . 15
2.5 Defining the RDBMS terms and ideas . 22

2.5.1 RDBMS terms. 22
2.6 Structured Query Language . 29
2.7 How do we make the data safe?. 31
2.8 Backup and performance . 35

2.8.1 Backup media. 35
2.8.2 Full or partial backup . 37
2.8.3 Physical and logical backup . 37
2.8.4 Online and off-line backup . 38
2.8.5 Backup recommendations . 40

Chapter 3. Types of workload . 43
3.1 Online Transaction Processing (OLTP) . 43
3.2 Online Analytical Processing (OLAP) . 44
3.3 Decision Support Systems (DSS) . 46

3.3.1 Data warehouse . 47
3.3.2 Data mart . 47
3.3.3 Business Intelligence (BI) . 48
3.3.4 Data mining . 48

3.4 Enterprise Resource Planning (ERP) . 49
3.5 e-Business . 51
3.6 Reporting . 52

Chapter 4. Specific databases . 55
4.1 DB2 UDB Database architecture . 55

4.1.1 Memory structures . 55
4.1.2 Logical storage structures. 56
© Copyright IBM Corp. 1999 iii

4.1.3 Physical storage structures. 59
4.1.4 Processes . 62
4.1.5 SQL extensions - Stored procedures . 65
4.1.6 Administration tools . 66

4.2 Oracle database architecture . 68
4.2.1 Memory structures . 68
4.2.2 Logical storage structures. 70
4.2.3 Physical storage structures. 72
4.2.4 Processes . 73
4.2.5 SQL extensions - Stored procedures . 76
4.2.6 Administration tools . 77

Chapter 5. Parallel databases . 81
5.1 Parallel concepts in database environments. 81

5.1.1 Shared memory . 81
5.1.2 Shared disks . 82
5.1.3 Shared nothing . 83

5.2 DB2 UDB Enterprise - Extended Edition (EEE). 84
5.2.1 Concepts and functionality . 84
5.2.2 Optimizer . 86
5.2.3 Inter-partition and intra-partition parallelism 86
5.2.4 Hardware implementation . 87

5.3 Oracle Parallel server . 89
5.3.1 Parallel Oracle architecture . 90
5.3.2 Virtual Shared Disk (VSD) . 94
5.3.3 Distributed Lock Manager (DLM) . 95

5.4 Advantages and disadvantages of parallel databases 96

Part 2. System design and sizing for optimal performance . 99

Chapter 6. Sizing a database system . 101
6.1 Sizing constraints . 101
6.2 Sizing techniques . 103

6.2.1 Sizing from the data size . 104
6.2.2 Sizing from transaction rates . 104
6.2.3 Sizing from user numbers . 105

6.3 Sizing for a particular application . 106
6.4 CPU goals and sizing . 106

6.4.1 Uniprocessor (UP) Systems . 107
6.4.2 Symmetric Multiprocessor (SMP) Systems 107
6.4.3 CPU utilization . 108

6.5 Memory goals and sizing . 108
6.5.1 AIX operating system . 109
iv Database Performance on AIX in DB2 UDB and Oracle Environments

6.5.2 AIX file system cache (AIX buffer cache) 109
6.5.3 RDBMS cache and structures. 109
6.5.4 User applications and database connections 110

6.6 Disk goals and sizing . 112
6.6.1 General database sizing - High-level . 112
6.6.2 Specific table by table sizing - Detailed level 113
6.6.3 Which disk size to choose . 115
6.6.4 Disk protection . 116

6.7 Balancing a system via the component costs 119

Chapter 7. Designing a system for an RDBMS 121
7.1 Working space . 121

7.1.1 Basic and future AIX resources . 121
7.1.2 Basic and future application resources 122
7.1.3 Basic RDBMS resources . 122
7.1.4 Future RDBMS resources. 126

7.2 Workload considerations . 128
7.3 Network considerations . 128
7.4 Memory and database considerations . 129

7.4.1 DB2 UDB memory requirements. 129
7.4.2 Oracle memory requirements . 130

7.5 System resource utilization. 131
7.6 Can the database be backed up and restored? 133

7.6.1 DB2 UDB backup/restore scenario . 133
7.6.2 Oracle backup/restore scenario . 134
7.6.3 General backup considerations . 135

7.7 Coping with growth . 137
7.7.1 DB2 UDB reorganization method . 138
7.7.2 Oracle reorganization method. 138
7.7.3 When and how to avoid database reorganization 139
7.7.4 Coping with large, unexpected growth 140
7.7.5 Expected growth areas . 141
7.7.6 Loading large amounts of data . 142

7.8 Performance versus availability . 142
7.9 Production, development, and testing on the same machine 144

7.9.1 Production . 144
7.9.2 Development . 145
7.9.3 Testing . 146
7.9.4 Hybrid machines. 146

7.10 AIX and RDBMS upgrades . 146

Chapter 8. Designing a disk subsystem . 149
8.1 Disk subsystem design approach . 149
v

8.2 Bandwidth related performance considerations 150
8.3 Physical database layout considerations . 151

8.3.1 Database datafile distribution . 152
8.4 Logical Volume Manager (LVM) Concepts . 153

8.4.1 Physical Partition striping versus LVM fine striping 154
8.4.2 Use of LVM policies . 156

8.5 Raw logical volumes versus Journaled File Systems (JFS) 160
8.6 RAID Levels overview and performance considerations 161

8.6.1 RAID Level 0 . 162
8.6.2 RAID Level 1 . 163
8.6.3 RAID Level 2 and Level 3 . 163
8.6.4 RAID Level 4 . 164
8.6.5 RAID Level 5 . 164
8.6.6 RAID 0+1 . 165
8.6.7 Comparison of RAID Levels . 166
8.6.8 RAID 5 versus AIX LVM mirroring. 166

8.7 Use of Mirror Write Consistency (MWC) . 167
8.8 Serial Storage Architecture (SSA) . 171

8.8.1 Technology overview . 171
8.8.2 SSA specific performance considerations 172

8.9 Integrated disk storage systems . 175
8.9.1 IBM Enterprise Storage Server (ESS). 176

8.10 Disk performance measurements and observations 178
8.11 Choosing your disk subsystem . 181

Part 3. System optimization . 183

Chapter 9. Implementing your database . 185
9.1 Hardware and AIX ready check list . 186
9.2 Pre-starting check list . 189
9.3 Database data . 191
9.4 Hardware testing . 194
9.5 Installing the RDBMS code . 195
9.6 Physical layout of the database . 196
9.7 Scripting the build. 197
9.8 Build a small cut down system . 199
9.9 After installation . 199
9.10 Backup and recovery test . 200

Chapter 10. Monitoring an RDBMS system for performance 203
10.1 RDBMS tools . 203

10.1.1 DB2 UDB monitoring tools . 203
10.1.2 Oracle monitoring tools. 215
vi Database Performance on AIX in DB2 UDB and Oracle Environments

10.2 Regular monitoring, ad-hoc, or alert method usage 220
10.2.1 Regular monitoring method. 221
10.2.2 Ad-hoc monitoring method . 222
10.2.3 Alert monitoring method . 222

10.3 Performance monitoring scripts . 222
10.4 Monitoring and tuning responsibilities . 223
10.5 When should a performance problem be reported and to whom? . . 224

10.5.1 What are you looking for? . 224

Chapter 11. Tuning an RDBMS system . 227
11.1 Tuning skills . 228
11.2 Reference manuals and books . 229

11.2.1 About RDBMS tuning and RDBMS performance tuning books 230
11.3 Tuning strategy . 231
11.4 Formal fine tuning method . 232

11.4.1 Clear definition of the success criteria 233
11.4.2 Limiting the activity . 233
11.4.3 Iteration . 234
11.4.4 One change at a time . 234
11.4.5 Deciding priorities . 235
11.4.6 Hot spots . 235
11.4.7 Well known important areas . 236
11.4.8 Reproducible workloads . 236
11.4.9 How to measure response time . 237
11.4.10 Careful instrumentation and measurement 238
11.4.11 Documentation . 238
11.4.12 Scheduling the tests . 239
11.4.13 Verifying the improvement . 239
11.4.14 The tuning team . 240

11.5 Change all at once method. 241
11.5.1 Ignore the rumors . 242
11.5.2 Gathering the information . 243
11.5.3 Check for errors . 245
11.5.4 Upgrade to the latest fix levels . 245
11.5.5 Investigating the system . 246
11.5.6 Check and set top performance parameters 246

11.6 Bottlenecks, utilization, and resources . 247
11.6.1 Utilization goals . 248
11.6.2 Insufficient CPU and latent demand . 249
11.6.3 Insufficient memory . 251
11.6.4 Insufficient disk I/O . 252
11.6.5 Insufficient network resources . 254
11.6.6 Insufficient logical resource access . 255
vii

11.7 What can we tune?. 255
11.7.1 Tuning window . 257

11.8 Classic mistake list . 257

Chapter 12. DB2 UDB tuning . 259
12.1 Performance improvement process . 259
12.2 General tuning elements . 260

12.2.1 Operational performance considerations. 260
12.2.2 Environmental considerations . 260
12.2.3 Application considerations . 260
12.2.4 System catalog statistics . 261
12.2.5 SQL compiler . 261
12.2.6 SQL Explain facility. 261
12.2.7 Using the DB2 UDB governor . 262
12.2.8 Scaling the configuration . 262
12.2.9 Memory usage by DB2 UDB . 262

12.3 What can you change to make a difference? 264
12.4 What are the options? . 265

12.4.1 Database manager configuration parameters 265
12.4.2 Database parameters . 267
12.4.3 DB2 UDB registry variables . 269

12.5 Which options will make a large difference? 270
12.5.1 Buffer pool size (buffpage) . 270
12.5.2 Number of I/O servers (num_ioservers) 273
12.5.3 Number of asynchronous page cleaners (num_iocleaners) . . . 274
12.5.4 Changed pages threshold (chngpgs_thresh). 276
12.5.5 Sort heap size (sortheap) . 276
12.5.6 Sort heap threshold (sheapthres) . 277
12.5.7 Statement heap size (stmtheap) . 278
12.5.8 Package cache size (pckcachesz) . 279
12.5.9 Database heap size (dbheap) . 280
12.5.10 Catalog cache size (catalogcache_sz) 280
12.5.11 Log buffer size (logbufsz) . 281
12.5.12 Maximum number of agents (maxagents) 282
12.5.13 Maximum storage for lock list (locklist) 283
12.5.14 Maximum percent of lock list before escalation (maxlocks) . . 284
12.5.15 Maximum query degree of parallelism (max_querydegree) . . 285
12.5.16 DB2MEMDISCLAIM and DB2MEMMAXFREE 286
12.5.17 DB2_PARALLEL_IO . 286
12.5.18 DB2_STRIPED_CONTAINERS. 286
12.5.19 Reorganizing tables . 287

12.6 Simulating through SYSSTAT views . 288
viii Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 13. Oracle tuning . 291
13.1 What can you change to make a difference? 291
13.2 Oracle tuning order. 292
13.3 Check the most common AIX configuration mistakes 295

13.3.1 Change control . 295
13.3.2 Failure to use asynchronous I/O . 296
13.3.3 Poor disk subsystem installation . 296
13.3.4 Redo log disks . 296
13.3.5 Paging space and monitoring paging 296
13.3.6 Not allocating enough memory to Oracle 297
13.3.7 Poor use of AIX disk features . 297
13.3.8 Busy disks . 298

13.4 Check the most common Oracle mistakes 299
13.4.1 Indexes. 299
13.4.2 Analysis . 299
13.4.3 Basic Oracle parameters . 300
13.4.4 Analyze database tables and indexes. 300

13.5 Tuning hint categories for AIX and Oracle used in this chapter 302
13.6 Evaluate the top 10 Oracle parameters . 303

13.6.1 db_block_size. 303
13.6.2 db_block_buffers . 304
13.6.3 use_async_io or disk_asynch_io . 306
13.6.4 db_writers, db_writer_processes and dbwr_io_slaves. 307
13.6.5 shared_pool_size . 307
13.6.6 sort_area_size . 308
13.6.7 sql_trace. 308
13.6.8 timed_statistics. 308
13.6.9 optimizer_mode . 308
13.6.10 log_buffer . 309
13.6.11 rollback_segments . 309

13.7 Other key Oracle parameters . 310
13.8 Iterative fine tuning steps . 311

13.8.1 Access method tuning . 311
13.8.2 Memory tuning . 313
13.8.3 Disk I/O tuning . 314
13.8.4 CPU tuning . 315
13.8.5 Contention tuning . 316

13.9 Tuning AIX for Oracle hints . 317
13.9.1 AIX asynchronous I/O. 318
13.9.2 AIX Logical Volume Manager or Oracle files 318
13.9.3 Create logical volumes at a standardized size 320
13.9.4 AIX JFS or raw devices . 320
13.9.5 AIX disk geometry considerations . 322
ix

13.9.6 Naming convention . 323
13.9.7 AIX sequential read ahead . 323
13.9.8 AIX paging space . 324
13.9.9 AIX paging rate. 324
13.9.10 Hot disk removal. 325
13.9.11 Disk sets for hot disk avoidance . 325
13.9.12 SMP balanced CPU utilization . 326

13.10 Advanced AIX tuning hints . 326
13.10.1 AIX readv() feature . 326
13.10.2 AIX direct I/O . 327
13.10.3 AIX write behind . 327
13.10.4 AIX disk I/O pacing . 327
13.10.5 AIX processor binding on SMP . 328
13.10.6 AIX spin count on SMP . 328
13.10.7 AIX process priority . 329
13.10.8 AIX process time slice . 329
13.10.9 AIX free memory. 330
13.10.10 AIX buffer cache size . 331

13.11 Oracle tuning hints . 333
13.11.1 Oracle installed according to Oracle Flexible Architecture . . 333
13.11.2 Oracle ARCHIVEMODE . 333
13.11.3 Oracle control files . 333
13.11.4 Oracle post-wait kernel extension for AIX 333
13.11.5 Oracle block size . 334
13.11.6 Oracle SGA size . 334
13.11.7 Oracle database writers . 335
13.11.8 Oracle buffer cache hit ratio tuning . 336
13.11.9 Split the database disks from the AIX disks 336
13.11.10 Oracle redo log should have a dedicated disk. 337
13.11.11 Mirror the redo log or use RAID 5 fast-write cache option . . 337
13.11.12 Oracle redo log groups or AIX mirrors. 337
13.11.13 Oracle parallel recovery . 338
13.11.14 Oracle db_file_multiblock_read_count parameter 338
13.11.15 Oracle redo buffer latch . 338
13.11.16 Oracle redo buffer size . 338
13.11.17 Oracle shared pool size . 339
13.11.18 Oracle tablespace and table creation 339
13.11.19 Number of Oracle rollback segments 339
13.11.20 Oracle parallelization . 340
13.11.21 Oracle archiver buffers . 341
13.11.22 Oracle use TRUNCATE rather than DELETE all rows 341
13.11.23 Oracle marking and batch deleting rows 341
13.11.24 Oracle SQL*Loader I/O buffers . 342
x Database Performance on AIX in DB2 UDB and Oracle Environments

13.12 Other tuning hints . 342
13.12.1 Network TCP/IP . 342
13.12.2 Compiling programs with embedded Oracle SQL 342

13.13 Books for Oracle database administration and tuning 343

Chapter 14. Austin - we have a problem! . 345
14.1 Perfpmr - the performance data collection tool 345

14.1.1 Get the latest version of perfpmr. 345
14.1.2 AIX media supplied version . 346

14.2 Before you have a problem. 347
14.3 Raising a Problem Management Record (PMR) 348

14.3.1 PMR information. 349
14.4 Most common sources of database performance PMRs 351
14.5 Avoiding the next performance crisis . 352

Appendix A. AIX performance tools summary 353
A.1 Summary of performance bottlenecks . 353
A.2 filemon - File I/O Monitor. 354
A.3 iostat - Disk I/O Statistics . 356
A.4 lsattr - List attributes . 356
A.5 lscfg - List configuration . 357
A.6 lsdev - List devices . 357
A.7 lslpp - List licensed program produce . 357
A.8 lslv - List logical volume . 358
A.9 lsps - List Paging Space . 358
A.10 lspv - List physical volume . 359
A.11 lsvg - List volume group . 359
A.12 ncheck - Inode Check . 360
A.13 netpmon - Network Monitor. 360
A.14 nfsstat - Network File System statistics . 360
A.15 nmon - online monitor . 361
A.16 no - Network options . 361
A.17 ps - Process State. 361
A.18 rmss - Reduced Memory System Simulator . 363
A.19 sar - System Activity Reporter . 363
A.20 schedtune - Process Scheduling Tuning . 365
A.21 svmon - System Virtual Memory Monitor . 366
A.22 vmstat - Virtual Memory Management Statistics. 367
A.23 vmtune - Virtual Memory Tuning. 369

Appendix B. Vital SQL . 371
B.1 DB2 UDB . 371

B.1.1 List the existing tables on a database. 371
B.1.2 Describe the structure of the columns in a table. 371
xi

B.1.3 Describe the indexes defined in a table and their structure 371
B.1.4 Describe structure of the columns within a SELECT statement . . . 372
B.1.5 List all the tablespaces of a database. 372
B.1.6 List tablespace name, Id number, size, and space consumption . . 372
B.1.7 List the tablespace containers . 372
B.1.8 Enable all monitor switches . 372
B.1.9 Disable all monitor switches . 372
B.1.10 Check the monitor status . 373
B.1.11 Reset the monitor counters for a specific database 373
B.1.12 Show the locks existing on a database. 373
B.1.13 List application number, status, idle time, and AIX processes . . . 373
B.1.14 List connected and effectively executing users 373
B.1.15 Display the amount of memory being used for sort operations . . 373
B.1.16 Display the number of deadlocks and lock escalations 373
B.1.17 Display the number of attempted SQL COMMIT statements 373

B.2 Oracle . 374
B.2.1 Oracle number of transactions . 374
B.2.2 Buffer cache hit ratio - manual . 374
B.2.3 Buffer cache hit ratio - automatic . 374
B.2.4 Shared pool free memory . 374
B.2.5 Redo log buffer too small . 375
B.2.6 Rollback segment . 375
B.2.7 Oracle nested explain plan . 375
B.2.8 Oracle report on tablespaces . 375
B.2.9 Oracle report on tables . 376
B.2.10 Oracle report on indexes . 377
B.2.11 Oracle report on database files. 378
B.2.12 Oracle report on extents . 378
B.2.13 Oracle report on parameters. 379
B.2.14 Oracle report on free space . 379

Appendix C. Reference sheets. 381
C.1 SQL reference sheet. 381

C.1.1 Data Definition Language (DDL) commands 381
C.1.2 Data Manipulation Language (DML) commands 383
C.1.3 Operators . 384
C.1.4 SQL functions . 386

C.2 Oracle SQLplus extensions reference sheet . 388
C.2.1 Running files and editing . 388
C.2.2 Line editing commands. 388
C.2.3 Report/formatting commands . 389
C.2.4 Miscellaneous. 389
C.2.5 Help and additional settings . 390
xii Database Performance on AIX in DB2 UDB and Oracle Environments

C.3 Oracle DBA reference sheet . 390
C.3.1 Storage-Clause. 390
C.3.2 ALTER DATABASE . 391
C.3.3 ALTER INDEX . 391
C.3.4 ALTER ROLLBACK SEGMENT . 391
C.3.5 ALTER SESSION . 391
C.3.6 ALTER SYSTEM . 391
C.3.7 ALTER TABLE . 392
C.3.8 ALTER TABLESPACE . 392
14.5.1 ALTER USER . 392
C.3.9 ANALYZE . 393
C.3.10 CREATE DATABASE. 393
C.3.11 CREATE INDEX . 393
C.3.12 CREATE ROLLBACK SEGMENT . 394
C.3.13 CREATE TABLE. 394
C.3.14 CREATE TABLESPACE . 395
C.3.15 CREATE USER . 395
C.3.16 CREATE VIEW. 395
C.3.17 DROP . 395
C.3.18 EXPLAIN PLAN . 396
C.3.19 RENAME . 396
C.3.20 TRUNCATE . 396
C.3.21 Useful Oracle internal tables . 396

C.4 DB2 UDB DBA reference sheet . 397
C.4.1 ALTER BUFFERPOOL. 397
C.4.2 ALTER TABLE . 397
C.4.3 ALTER TABLESPACE . 398
C.4.4 CREATE DATABASE. 398
C.4.5 CREATE INDEX . 398
C.4.6 CREATE TABLE. 398
C.4.7 CREATE TABLESPACE . 399
C.4.8 CREATE VIEW. 400
C.4.9 DROP . 400
C.4.10 EXPLAIN PLAN . 400
C.4.11 RENAME TABLE . 400
C.4.12 Useful DB2 UDB internal catalog views . 400

Appendix D. The Model Database used for testing in this redbook . 401
D.1 Schema. 402
D.2 The model database tables . 403
D.3 The model database indexes . 403
D.4 OLTP workload generation . 404
D.5 DSS workload generation . 406
xiii

D.5.1 Query 2. 407
D.5.2 Query 6. 407
D.5.3 Query 13. 408
D.5.4 Query 17. 408

D.6 Model Database physical layout . 408

Appendix E. Special notices . 411

Appendix F. Related publications . 415
F.1 IBM Redbooks publications. 415
F.2 IBM Redbooks collections. 415
F.3 Other resources . 415
F.4 Referenced Web sites. 417

How to get IBM Redbooks . 419
IBM Redbooks fax order form . 420

List of abbreviations . 421

Index . 425

IBM Redbooks evaluation . 443
xiv Database Performance on AIX in DB2 UDB and Oracle Environments

Preface

This redbook is designed to help system designers, system administrators,
and database administrators design, size, implement, maintain, monitor, and
tune a Relational Database Management System (RDBMS) for optimal
performance on AIX. Relational Database Management Systems are a
significant factor in the profit line of a company. They represent an important
investment and their performance is often vital to the success of the company.

This redbook contains hints and tips from experts that work on RDBMS
performance every day. It also provides introductions to general database
layout concepts from a performance point of view, design and sizing
guidelines, tuning recommendations, and performance and tuning information
for DB2 UDB and Oracle databases.

How this book is organized

This redbook consists of three major parts, that are adopted to a database’s
life cycle.

The first part, RDBMS concepts contains information for a basic
comprehension of RDBMSs, which is fundamental for understanding a
database’s performance behavior in order to design, size, and tune an
RDBMS. This first part may be helpful if you want to learn about databases,
as a reference to refresh your knowledge, or to help you understand why
certain concepts have an impact on the database’s performance. Different
workloads are described in this part as well as the different architectures of
DB2 UDB and Oracle databases and their parallel editions. System designers
and system and database administrators will find this part especially useful.

The second part, System design and sizing for optimal performance, covers
the time before the database is actually implemented and deals with
preparing the system. This second part gives sizing techniques and provides
a number of rules of thumb, from our experience, that can help you to size
your database system. The design chapters deal with different circumstances
that have to be taken into account when a database system is planed, such
as growth or backup and restore needs. We dedicated one chapter to the disk
subsystem design since this is the most sensitive and essential area for good
database performance. This second part is vital for system designers and
architects.

The third part, System optimization, covers the time from the database
implementation on. First, we give hints and tips on how to optimize your
© Copyright IBM Corp. 1999 xv

database implementation that go beyond the implementation documentation
provided by database vendors. Then, we introduce some monitoring tools and
methods that help you to keep track of your database’s performance. The
tuning chapters not only introduce different tuning methods and their benefits
and drawbacks, they are, furthermore, filled with hints and tips and
recommendations that help you tune the performance of your database
system. There are AIX tuning hints and tips as well as separate chapters on
DB2 UDB and Oracle tuning. The last chapter of this part should be used if all
else fails. It provides hints and tips on how to open a problem record with IBM
Software Service in a most effective way.

The appendixes are provided for your reference. They contain reference
sheets for database administrators, AIX performance tools, vital SQL, and we
describe the Model Database that we used for our performance tests during
the development of this redbook.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Diana Gfroerer is an International Technical Support Specialist for RS/6000
and AIX Performance at the International Technical Support Organization,
Austin Center. She writes extensively and teaches IBM classes worldwide on
all areas of AIX performance and tuning. Before joining the ITSO this year,
Diana Gfroerer worked in AIX pre-sales Technical Support in Munich,
Germany. She was leading the Region Central, EMEA, and World Wide
Technical Skill Communities for AIX and PC Interoperability.

Nigel Griffiths is a Performance Guru in the RS/6000 Pre-Sales Technical
Support Group in the UK. He has 20 years experience with UNIX, seven of
which are with IBM. His areas of expertise include C programming including
UNIX kernel internals, performance tuning, and sizing of SMP and parallel
Oracle databases. He has been a performance and database technical
support leader for six years and has written extensively on performance and
sizing.

James Chandler is a Database Administrator with IBM Global Services in
Lexington, Kentucky. He has four years of experience with storage
management and database administration in distributed environments. He
has worked at IBM for six years. His areas of expertise include implementing
storage management solutions using ADSM and third party vendor tools, as
well as database administration in SAP environments using Oracle and DB2.
xvi Database Performance on AIX in DB2 UDB and Oracle Environments

Joao Marcos Costa de Souza is a DB2 UDB Support Professional in Sao
Paulo, Brazil. He has seven years of experience in database administration
and support in the field. He holds a degree in Computer Science and is an
IBM Certified Solutions Expert - DB2 UDB V6.1 Database Administration and
an Oracle Certified Professional Database Administrator. His areas of
expertise include DB2 UDB EE and EEE implementation and support as well
as performance and tuning.

Gerhard Mueller is a Software Engineer with AIX Software Support in IBM
Global Services in Mainz, Germany. He has five years of field experience in
DB2 on AIX. He is a Certified Solutions Expert for DB2 UDB Administration.
His areas of expertise include installation, administration, and problem
determination in DB2 UDB EE and EEE environments.

Thanks to the following people for their invaluable contributions to this project:

Elizabeth Barnes
International Technical Support Organization, Austin Center

Richard Cutler
International Technical Support Organization, Austin Center

John Owczarzak
International Technical Support Organization, Austin Center

Temi Rose
International Technical Support Organization, Austin Center

Tetsuya Shirai
International Technical Support Organization, Austin Center

George Accapadi
IBM Austin

Mathew Accapadi
IBM Austin

John Aschoff
IBM San Jose

Stephen Atkins
IBM UK

Richard Bridgman
IBM UK
xvii

Doug Doole
IBM Toronto

Jessica Escott
IBM Toronto

Ian R. Finlay
IBM Toronto

Angel González
IBM Germany

Andreas Hoetzel
IBM Austin

Karl Huppler
IBM Raleigh

Joey V. James
IBM Austin

Dale Martin
IBM San Francisco

Dennis Massanari
IBM Poughkeepsie

Sean McKeough
IBM Toronto

Walter Orb
IBM Foster City

Ram Pandiri
IBM Austin

Dr. Norbert Pistoor
IBM Germany

Steve Pittman
IBM San Francisco

Lilian Romero
IBM Austin
xviii Database Performance on AIX in DB2 UDB and Oracle Environments

Berni Schiefer
IBM Toronto

Johnny Shieh
IBM Austin

Bill Topliss
IBM Austin

Aspi Wadia
IBM Austin

Eddine Walehiane
IBM Austin

David Whitworth
IBM Austin

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 443
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xix

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

xx Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 1. Introduction to this redbook

Relational Database Management Systems (RDBMS) become more and
more the core IT systems of companies and large enterprises. They are vital
for companies’ profit lines since RDBMS systems hold data, such as sales,
stock, finances, and order income. This data has to be accessible by many
people at the same time, often 24 hours a day, 7 days a week, especially
since companies are extending their business onto a global market, and
people need to have access to the systems from all time zones.
Not only production data for the daily business, but also historical data is held
in the companies’ database systems. This data is used for research and to
provide information for major management decisions.

High performance of these systems is very often vital for the success of a
company. Customer orders have to be processed quickly, and available stock
in the warehouses has to be found and assigned to the according order.
Especially for companies with time-critical data, such as airlines, good
performance is mandatory.
Performance also becomes an increasing issue because the systems get
bigger every year, the databases get more complex, and, last but not least,
RDBMS systems mean a large investment in resources, both in money and
people, and everybody wants value for their money.

Database performance is a very wide area with many different aspects. It is
dependent on a large number of factors, such as the hardware, the
application, the workload, the layout of the disk subsystem, and an uncounted
number of system and database parameters.

Within this book, we want to share our knowledge and experience with you
and help you to understand what database performance is all about and
where to focus on when you plan, run, and tune a Relational Database
Management System. We found that it was often hard to pin down clear facts
since the alteration of one little parameter can change the whole picture, but
we give you a number of rules of thumb, based on our experience, and we put
a large amount of information down for you to make conclusions about the
performance needs and impacts of your database system.

We also hope to cut through many myths and legends about performance
tuning options that are no longer true or that are only part of the truth as well
as give you an update on the latest features of AIX that you can use to make
your database perform at its best.
© Copyright IBM Corp. 1999 1

You might find this book to be helpful in any stage of your database’s life
cycle: In the planning and sizing stage, during implementation, and when
running a productive database system. We adapted the structure of our
redbook to this life cycle and subdivided it into three major parts:

• RDBMS concepts - Covering the concepts of Relational Database
Management Systems, the different workload characteristics, and an
introduction into both DB2 UDB and Oracle databases, including a brief
introduction into parallel database systems.

• System design and sizing for optimal performance - Covering the pre-life
phase of an RDBMS the sizing to meet the requirements of the predicted
workload, and the system design and layout for optimal performance.

• System optimization - Focusing on the implementation of an RDBMS and
the monitoring and tuning tasks once the database is installed.

This book is written from an AIX and RS/6000 point of view and focuses on
how an RDBMS can use the advanced features of these products.

Even though we are covering DB2 UDB and Oracle databases in more detail,
a large part of the book also applies to any other Relational Database
Management System. We chose DB2 UDB and Oracle because they
represent 80 percent of all databases installed on RS/6000s, and 65 percent
of the RS/6000 Enterprise and SP Systems run a version of these popular
databases.

Database design or application programming are large subjects that are
common to all platforms. There is a wide range of literature available on these
subjects; therefore, we do not cover these subjects in this redbook, nor do we
go into great detail on Structured Query Language (SQL). Please refer to
Appendix F, “Related publications” on page 415 for some useful books.
Appendix 3 has a simple quick reference sheet on SQL, useful if you are
sitting in front of the machine trying to remember a particular SQL statement
in order to get certain information from the database.

Parallel databases are briefly mentioned so that you know when to consider
them. However, covering parallel database design and performance exceeds
the scope of this redbook.

Designing, sizing, and tuning an RDBMS is rather an art than a science, and
it requires a lot of technical skills and personal experience. This book,
therefore, is a valuable source of information on your way of becoming a
professional RDBMS performance expert.
2 Database Performance on AIX in DB2 UDB and Oracle Environments

Part 1. RDBMS concepts
© Copyright IBM Corp. 1999 3

4 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 2. Introduction into relational database system concepts

This chapter covers the basic theory behind modern Relational Database
Management Systems (RDBMS) and how they are implemented on AIX at an
overview level. It also details what the RDBMS is meant to achieve and how it
keeps the data safe. If you are new to databases, or have forgotten the basics
and want a reminder, then this is a good place to start.

2.1 What is an RDBMS?

Data is information. A database is somewhere that you store data.
Databases can store three different types of data:

1. Common data - Which can include numbers, dates, and strings of
characters, such as names and addresses.

2. Complex and large objects - There are many esoteric data types that can
be stored and managed by a database, such as sound, geographical data,
such as maps, pictures, graphics, and even videos.

3. New user defined data - Most modern database systems also allow the
user to store new data types that they define and want to manipulate.

Figure 1. Databases write, read, and update many types of data

The database must allow the user to:

• Write information into the database

• Retrieve the information later

Most common data:
numbers, strings, dates

Complex or large data:
sound, pictures, maps, video

User defined data:
new data called objects

Database

read

write

update
© Copyright IBM Corp. 1999 5

• Update the data

Databases must be able perform all these operations in a very reliable
fashion (or we would not trust the database with important data) and at high
speed. They also should be able to provide these functions to many people at
the same time. As a side effect, a database can be used as a common place
for information and provide many people with one common view. By this, we
mean that if the database contains details of, for example, a parts inventory,
everyone can see the same number of items that are available (there is only
one true answer).

Although various types of data can be stored in a modern database, the vast
bulk of production databases are used to store simple records of numbers,
strings of characters, and dates. In this redbook, we concentrate on these
data types.

Figure 2. Classic UNIX approach of using multiple servers

In UNIX system environments, there is a tradition of each UNIX machine
having one purpose. An example might be one machine as an NFS server,
another as a printer server, and yet another as an e-mail server (see Figure
2). This is for a number of reasons:

• In the early days, UNIX machines were not as powerful as other systems
(for example, the IBM mainframe). So, dedicating a server to the workload
maximized the computer power for the workload.

e-mail ServerDatabase Server Print Server

Users ...

Network
6 Database Performance on AIX in DB2 UDB and Oracle Environments

• UNIX is strong on networking, which makes client server systems easier to
implement; therefore, splitting workloads this way is natural for UNIX.

• Having the workload on different machines avoids interference between
the applications. For example, if two compute intensive (or I/O intensive)
applications on one machine compete for resources, the performance of
both applications suffers.

• Limitation on the number of disks a single UNIX machine can support.

Traditionally, RDBMSs run on dedicated UNIX servers. This redbook
assumes that most databases are running on dedicated machines. This
means that the machine can be tuned for maximum database performance
with no concern for other workload types. In the last couple of years, UNIX
machines have become very powerful (by adopting many mainframe design
characteristics). This results in large SMP UNIX machines on which a variety
of workloads are run. An SMP machine is managed as one machine. The
application workloads are, however, separated by logical or physical
partitions to reduce competition between workloads for CPU, memory, or I/O
resources. This means these machines perform like many smaller database
servers joined together.

In this redbook, we assume the RDBMS is running on a dedicated
machine. Therefore, the system tuning for performance does not have to
take other applications or workloads into account.

Note
Introduction into relational database system concepts 7

Figure 3. Non-relational Database Method

This redbook is about relational database management systems (RDBMS).
What does the word relational mean? In a simple database, there are many
records, and application can add more records to the database. This
operation is called write, put, save, or add a record. They all mean the same
thing. These records can later be retrieved. This operation is called retrieve,
read, fetch, or get a record. Figure 3 shows how data is read from a
non-relational database. To decide which record to retrieve, the application
has to inform the database on how it wishes to see the records (access
method, for example, the customer record in last name order) and the record
identity (a number or name). If this record contains reference to other data
(for example, the first record is for an employee, and it contains the
department number), then the application has to include the code used to
access these other records. It has to set up the access method and then read
the record for the department to find out the department name, address,
manager, etc. This is sometimes called a one row at a time application, which
is inefficient.

Index

Table

1) Access via
this index

3) Need
more data

Index

Table

4) Access via
this index

5) Retrieve
this record

(If the index changes the
application must change too!)

2) Retrieve
this record
8 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 4. Relational database method

The alternative is the relational method used by an RDBMS. The database
understands relations between data and uses this information to extract the
data needed in a single operation. Figure 4 shows how RDBMS data is
accessed. It allows the application to read the two records from two tables at
the same time and only get back the relevant information it requested. The
RDBMS has used the relationship to:

• Save the application making two requests.

• Reduce the information retrieved to what the application really needs (in
other words, not the entire record, just the parts needed).

• Save the database from having to process two requests.

• Save the application from having to decide how to access the data.

That last part is probably the most important. In an RDBMS, the application
does not need to understand how the RDBMS will access the data, just what
data and relationship to use. This allows the RDBMS to intelligently make its
own mind up on the best method. It also allows the database administrator
(DBA) to change the database without effecting all the applications or
requiring them to be recoded. Thus, one change from the DBA, for example,
adding a new index, can increase the performance of all applications at a
single stroke. The language used to describe what data the applications
require and the relationship is called Structured Query Language (SQL). See

(If the index changes - no
application change is required)

Index

Table

1) Use this relation

3) RDBMSworks out howand
which indexes are useful

Index

Table

2)Retrievethis data

SQL=
Introduction into relational database system concepts 9

Appendix C.1, “SQL reference sheet” on page 381 for a summary and some
details.

2.2 What does an RDBMS provide?

Maintaining a set of records is simple. We all could do this with a simple card
index on our desk but imagine 200 people turn up at your desk and:

• 40 of them start adding new cards as fast as they can.

• 40 of them spot mistakes in your cards and start making adjustments to
correct the cards.

• 10 start removing cards and throwing them in the waste paper basket.

• 50 of them start cross checking the cards to make sure things, such as
addresses and telephone numbers, are correct.

• 40 of them are trying to update the same cards at the same time and start
having heated arguments about who should have the card and if the last
change was correct or not.

• 20 people have half-updated a card and went for lunch, and then someone
else took the card and made other changes.

This then goes on day after day. Chaos would be the result as soon as:

• The number of cards occupy the entire room.

• The heated arguments can result in damaged cards.

• The details on the cards can not be trusted.

• Finding the right card would be increasingly hard and would take longer as
the number of cards increases.

• If there was an accident (such as a dropped card, or worse, a fire or flood),
we might never sort out the mess.

This is what an RDBMS copes with 24 hours a day. What we need is
transactions that are ACID. What this means is:

ACID

• Atomic - Changes are fully completed or not done at all.

• Consistent - The data is never seen in a half completed transaction state.

• Independent - Ongoing changes are not allowed to interfere with each
other.

• Durable - Once changed, the new data is guaranteed to be available.
10 Database Performance on AIX in DB2 UDB and Oracle Environments

These attributes are not simple. This is why people use one of the well known
RDBMSs and do not write their own. How then are these attributes actually
implemented in practice within the RDBMS?

• Atomic - This means that every change either completely works, and all
records are updated, or the update completely fails, and the database is
not changed at all. This is particularly important when you are considering
things such a banking system. You should either transfer the money from
one account to the other or not at all. A half completed change is not a
satisfactory condition. The RDBMS system achieves atomicity by using a
database log. If changes or updates are atomic, they are called
transactions. When transactions make changes to the database, they are
noted in the database log. When the outcome of a transaction becomes
known (that is, it has finished or been abandoned), the RDBMS will update
database records. Either all the records are updated, or all the records will
be unchanged. To do this, the RDBMS keeps copies of the original records
and the updated records in the log. The RDBMS uses the term commit to
refer to a finished transaction and abort to refer to an abandoned
transaction.

• Consistent - This is achieved by maintaining multiple, concurrent views of
the same data. The main point of this attribute is that no program (or user)
is able to see the database in a state between transactions. It appears to
the user that a transaction takes an infinitely short period of time (which
means the database suddenly changes at commit time). Why is this
important? Without this attribute, it is possible to get misleading results.
Think back to the banking example where, this time, a customer has
$1000 in their deposit account and zero in their current account and is
transferring all the money between these accounts as a transaction. At all
times, the customer has $1000 in total. If the RDBMS was not providing a
consistent view of the database, we could find the customer with
(depending on the order of updating the records):

1. $1000 (the right answer)

2. $0 (that is, when the money is withdrawn from one account but not yet
added to the new account)

3. $2000 (that is, the money added into the new account before it is
withdrawn from the first account)

If one of the last two items on this list takes place for the program that
prints monthly bank statements, then the customer could be very worried
($0) or delighted ($2000). Clearly, the database needs to provide
consistency, and this is done by temporarily keeping multiple versions of
records during transactions. Each transaction will see a consistent state of
the data. If necessary, these copies are place in the database log.
Introduction into relational database system concepts 11

• Independence - This is achieved by using clever locking mechanisms. A
simplistic way of updating the database would be to allow only one
program to do all the updates, but this would have severe performance
limitations. So, an RDBMS must allow many programs to read and write
records at the same time. Before updating records, a program locks the
data for reading or writing so that no two programs actually update the
same record at the same time. In a large database, there are millions or
billions of records; so, the chances of two users wanting the same record
is very low and, therefore, this works well. But, there are some records in
the database that many users need. A classic example is the sales
ordering processing database where the next invoice number is held in a
single record. Every invoice needs to take the current number and
increment it by one. These issues are well understood, and there are
various methods to reduce the problem. These include RDBMS support
for supplying simple numbers, the application taking a number and
immediately committing to release the locks, pre-allocation of numbers (for
example, one program uses the range of 1 million to 2 million and the next
using 2 million to 3 million), and letting a background process do the actual
updating.

One problem with locking is that two programs can lock each other;
therefore, both wait indefinitely for the other to release its locks. This is
called a dead-lock or deadly-embrace. All RDBMS systems have
mechanisms to spot this problem and to resolve it. Typically, the RDBMS
will fail one of the transactions, and the application can (if coded properly)
retry the update slightly later and, hopefully, after the other transaction has
completed, it will not cause the same problem again.

• Durable - The data in the database is often vital for the business. If the
transactions are lost, then major problems are expected. For example, in
sales order processing, if the transaction information is forgotten, not only
does the company not make a profit, but the customer gets annoyed when
the goods do not arrive and may well take their business elsewhere. To
make the transaction durable, we have to make sure that, whatever
happens, the transaction’s details are remembered. To provide atomicity,
we used a database log. Durability uses the log too. When the transaction
finishes, the outcome is also placed in the log (committed or aborted). If
the database fails in some way (for example, a power cut or a disk crash),
then when the RDBMS is restarted, it checks the database log. It will
either find that the transaction finished, in which case the updated records
are put into the database, or the transaction failed, in which case the
RDBMS makes sure the original records are in the database.
12 Database Performance on AIX in DB2 UDB and Oracle Environments

Without these ACID attributes, your data is not in safe hands. Fortunately,
these are the properties that an RDBMS provides. It is only through thinking
about possible bad experiences of incorrect, damaged, or missing data that
one can work out how important these attributes are for a database.

2.3 The database performance trick

The trick for an RDBMS is to provide these ACID attributes while maintaining
high performance and scaling to large volumes of data. The main trick that
RDBMSs use for performance is not at all obvious. To provide three of the
ACID properties, the RDBMS uses the database log (the other property uses
locks that are not logged because they are transitory). Normally, when a
transaction finishes, this is noted in the log so that if a failure occurs the
database knows the result and, if necessary, can rework the transaction.
Once the log is written to disk, the transaction is saved so that the RDBMS
does not actually have to immediately go and update the database records
themselves. Instead, the database only writes to the database log and then
tells the application (and user) that the transaction has finished. It does the
updating of the data disks a little later and at its leisure. This method is used
because the log and data disks have different characteristics. The records in
the database are probably scattered all over many disks. This means
updating them would take time, as the user would have to compete with all
the other database I/O to the disk, and the disk heads are making large
movements, which slows down access times (see Figure 5).

ACID stands for:

• Atomic - changes are fully completed or not done at all

• Consistent - the data is never seen in a half completed transaction state

• Independent - changes are not allowed to interfere with each other

• Durable - once changed, the new data is guaranteed to be available

ACID attributes
Introduction into relational database system concepts 13

Figure 5. Data I/O is slow and random, but log I/O is fast and serial

The log, however, is written out as a sequential file, and if the log disk is
dedicated to the log (which is normally the case), writing out to the log will be
extremely fast. For the log disk, there is little or no disk head movement, and,
thus, it has faster access times.

This RDBMS data logging has three side effects:

• Good performance - Transactions are finished very fast (before the
records are even updated) and allow the user to continue with the next
transaction.

• Logging performance is a focus point - The log is critical to the
performance. This is why RDBMS logs are often on dedicated disks and
on the fastest disks possible.

• The log disk is a failure point - As we have not updated the database
records immediately, the log is the only place the recent updates are
stored. If the log disk fails, we destroy the database because we no longer
know which records where updated and which were not. We have lost
three of the ACID properties. Most RDBMSs will refuse to allow access to
the database until this log is recovered in some way. The solution to the
single point of failure is to protect yourself from the disk crash by mirroring
the log disk or by using RAID 5.

Data I/O is random
with full seek time

Log I/O is serial write
with no seek time

The RDBMS log is the key to RDBMS performance and recovery.

Note
14 Database Performance on AIX in DB2 UDB and Oracle Environments

2.4 What are the components of an RDBMS?

This section explains what to expect on a system that is running an RDBMS
and what components provide what features.

The first thing you need for an RDBMS is somewhere to store the data, and
that is on disks (occasionally also called DASD). Databases are getting larger
every year, and most people now refer to the size of a database in GBs. The
definition of very large database (VLDB) changes each year. Table 1 is a
guideline for database sizes. But, note that this is the data size not the disk
size. For disk sizes, use the 1:3 rule of thumb (for more information see
Chapter 8, “Designing a disk subsystem” on page 149).

Table 1. Typical sizes of database

Note, that for a good performance, there is a minimum number of disks
required for an RDBMS. For the following example shown in Table 2, we
assume that the disks are a few GBs in size, and the database size is very
small. The system needs disks for different purposes as shown in Table 2.

Table 2. Minimum disk requirements

Database Description Raw data Size

Minuscule or sample Less than 1 MB

Experimental or test 100 MB to 2 GB

Tiny Less than 1 GB

Very small 1 GB to 5 GB

Small 5 GB to 10 GB

Moderate 10 GB to 50 GB

Medium 50 GB to 100 GB

Large 100 GB to 200 GB

Very large (called VLDB) 200 GB to 300 GB

Extremely large 300 GB to 500 GB

Massive Greater than 500 GB

Disk use Number of disks and comments

Operating System 1 disk.

Paging space 0 disks = Use above disk.
1 - 3 disks for larger memory sizes(2 GB or more).
Introduction into relational database system concepts 15

The conclusion is that, even for the smallest database, about six disks is the
minimum for a well performing RDBMS.

In addition, extra disks would be required for mirroring or RAID 5 to allow full
disk failure protection. Most databases allow the use of either file system files
for the database or raw devices (that is, direct access to the disks by the
RDBMS). The file system database is visible to all UNIX users, for example
using the df or ls UNIX commands, but the files are not readable or writable
by anyone other than the RDBMS processes.

Figure 6. Structure of an RDBMS

RDBMS code 1 disk - To allow for upgrade of the RDBMS.

RDBMS data
RDBMS indexes
RDBMS tmp/sort

3 disks - It is recommended to use one disk for each
of the three parts as a minimum (for databases that
are less than the size of one disk, this could be the
same disk, but this is likely to become a
performance bottleneck).

RDBMS log 1 disk - Dedicated for performance.

Totals 6 disks is a minimum.

Disk use Number of disks and comments

= a process

Shared
Memory

RDBMS
monitor

Log disk

Data disks

Log writer

DB writer

RDBMS agent
or server

user
program

user

SQL

Data

Recovery

RDBMS
monitor
16 Database Performance on AIX in DB2 UDB and Oracle Environments

All RDBMSs have to read and write data from the disks and into memory. But
in computer terms, the disks are very slow when compared with memory. The
access time to a disk is approximately 10 milliseconds, and the access time to
memory is approximately 10 nanoseconds, that is, a ratio of one to a million
(1,000,000). Therefore, to save time, the RDBMS keeps all the recently used
disk blocks in memory. This is referred to as the RDBMS buffer cache or
RDBMS disk block cache. This memory gives an RDBMS a major boost in
performance. Ideally, the RDBMS would like to copy the entire database into
memory. Unfortunately, memory is a lot more expensive than disks. The ratio
is one to 40 for memory and disk space of the same size. This means, in
practice, that only a small, but frequently used, part of the database is kept in
memory. The RDBMS allocates memory using a least recently used (LRU)
algorithm so that it dynamically works out the most important data. This
memory on UNIX systems allocated by the RDBMS is called IPC Shared
Memory and allows all the RDBMS processes to have concurrent access. A
rule of thumb is that five percent of the database data is kept in memory. Also
held in memory are a lot of internal data structures of the RDBMS itself. So,
the shared memory includes:

• The RDBMS buffer/block cache

• The RDBMS lock data

• The log entries to be written to the log disk

• The SQL statement and query plan cache so that the RDBMS does not
have to work out the best strategy for answering the same statement twice

• Some special tables used internally by the RDBMS

In practice, this memory is implemented as UNIX shared memory and is
visible to the UNIX user via the ipcs command.

The RDBMS code, data, memory, and processes have to be owned by a
UNIX user. So, while installing the RDBMS, one of the first tasks is to create
this user to own the RDBMS files, memory, and processes. Other normal
RDBMS users can access the database but only if they have their permission
set up to the RDBMS and only via RDBMS programs.

The users (or their programs, applications, tools, or code) are never allowed
direct access to the RDBMS memory or files. This is because users are not

The RDBMS Cache or pool is the key to performance by reducing disk I/O
and allowing many users concurrent access to the same data.

Note
Introduction into relational database system concepts 17

trusted. If a single user damages the database in memory database
structures due to a poor program (or deliberately), then database data could
be corrupted, and the database could crash. User programs (from any
source) can only interact with the RDBMS via a special library, which, itself,
interfaces via a RDBMS supplied process that is connected to the RDBMS
memory and files. This seems like over-kill, but user level RDBMS
programers are famous for making mistakes (particularly with pointers in the
C code), which can compromise the RDBMS.

Each RDBMS has a set of processes that provide the core function of the
RDBMS. These processes have to do a number of things:

• Recovery - recover the database when it fails. This is actually done on the
next database start.

• Sanity checking - Monitor the RDBMS to check for major problems.

• Clean up - Monitor transactions and user processes and, if they fail, put
the record back to its original state and remove the locks.

• Log writing - Write the database log to disk whenever a transaction
finishes.

• Database update - Write the updated data and indexes from memory back
onto the database disks.

Each RDBMS uses different names for the various parts. In DB2 UDB, all the
processes are named db2<something>, and in Oracle, the processes are
named ora<something>.

Note, that the processes described above are doing RDBMS house keeping.

So, which processes actually do the work for the user in terms of:

• Executing the SQL statements?

• Reading data from the disks into memory?

• Returning data back to the user program?

When a user program starts up, it has to make a connection to the RDBMS.
We said before that user programs are not allowed to directly use the RDBMS
resources; so, during the connect, the RDBMS starts or allocates a special
RDBMS process to do the work requested by the user program. These
special programs are called differently by the various RDBMS vendors. For
DB2 UDB, they are called DB2 agents, and for Oracle, they are known as
Oracle servers, background servers, or Oracle slaves. Until the user program
stops, crashes, or disconnects from the database, these RDBMS processes
are dedicated to this user program.
18 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 7. Local or remote user access

Users can actually be using local dumb terminals, accessing the RDBMS
from another system, or using a PC. This connection to an RDBMS can be
local or remote. The same thing happens in both cases, but the
communication method used it different. Typically, local connections use
UNIX Inter Process Communication (IPC) services, and remote connections
use UNIX sockets over TCP/IP. Whichever method is used, the user ends up
communicating to the RDBMS via the DB2 agent or Oracle server.

Users are quite often not good program developers. So, how do non-technical
users get access to the data that is stored in the database? First, they can
use applications written for them. These may be written by their company, or
they might be bought in from third parties. Either way, the user either starts

Shared Memory
(disk cache/locks)

RDBMS monitors

Log disk

Data disks

Log
writer

DB
writer

Local
user

via TCP/IP UNIX
sockets

via interprocess
comunication

= process

= disk

= memory

RDBMS agents
or servers

Remote user on PC or
other system

UNIX IPC services are shared memory, shared message queues, and
shared semaphores. These are used to communicate between processes
on the same machine at high speed.

UNIX IPC Services
Introduction into relational database system concepts 19

the application or starts a graphical interface that communicates with the
application.

For database administration (and for experienced users that can write SQL),
there are actually applications written by the RDBMS vendor. Before the
RDBMS is started, and to control the RDBMS once started, there is a
Database Administrator (DBA) tool. This tool (or group of tools) allows the
DBA to create the initial database, start the database in exclusive mode (only
the DBA has access), make large changes to the database and the way it
operates, and, of course, shut the database down.

There is one final important tool available to the DBA and to normal database
users (if given the permissions to run it). This tool has the generic name of
the database interactive monitor. For DB2 UDB, it is the db2 command, and
for Oracle, it is the sqlplus command. These tools allow the user to type in
SQL statements directly, send them to the RDBMS, and output the results in a
reasonably sensible format. This allows the user to:

• Type in an SQL statement and run it (without writing a program every time)

• Experiment with SQL statements for education

• Do ad-hoc SQL to answer specific questions from the data

• Try alternative SQL statements to determine the one with the best
performance

These tools also have non-SQL features that control the output format,
provide response time information on the SQL, and output details about the
database, tables, and indexes. In DB2, the UNIX shell can be used to provide
programming features to the basic SQL statements. The Oracle sqlplus tool
also provides a complete programming language PL/SQL (like BASIC with
SQL added).
20 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 8. User tools and table types

Figure 8 shows the various methods of interacting with the RDBMS.

The database has the tables and indexes for the users. But how does RDBMS
keep track of all the table names, column names and types, the indexes, user
details, and structures? The answer is simple, the database has yet more
tables that describe the user tables, indexes, and users themselves (names,
passwords, and privileges). It also has many internal tables used to control
and monitor the RDBMS while it is running. In effect, it has a database about
the database. This is called a catalog or dictionary in all RDBMSs. In DB2
UDB, it is called the catalog, and in Oracle, it is called the system data
dictionary. Some of these internal tables do not actually exist as tables on the
disk but are internal, temporary, and dynamic variables within the RDBMS
about the currently running system. The RDBMS gives the DBA and database
user an SQL interface to this data so that there is one interface to all the data.
This is a mandatory feature of a relational database, which states there
should not be any other data access method to internal data. Therefore, each
vendor’s interactive monitor gives both the user and DBA one consistent
interface to this internal RDBMS data, the RDBMS internal table structures,
and the user’s own data tables. This makes this interface a very important
tool.

There are yet more tools with RDBMS, but each has a specific purpose. For
example:

• A data loading tool to rapidly load vast quantities of data and as fast as
possible. These can either use SQL to load the data or bypass the
RDBMS and load directly into the databases files.

User tables
data in tables

Database internal tables
data dictionary or catalog

Pseudo tables
statistics+performance data

Database

Applications and
most tools

DBA Tools

Interactive
Monitor

SQL

Start, Stop,
Recover,
Restructure
Introduction into relational database system concepts 21

• Backup and recovery tools to save the contents of the database and
reload it. There is often various methods and options that balance safety
against speed and may interface with tape management software, such as
IBM ADstar Storage Manager (ADSM).

These tools are very specific to each RDBMS. Some are covered in more
detail in Chapter 10, “Monitoring an RDBMS system for performance” on
page 203.

2.5 Defining the RDBMS terms and ideas

In the previous section, we have deliberately been a little vague in the use of
terms describing the ideas behind the RDBMS. In this section, we will define
the terms more accurately.

2.5.1 RDBMS terms

RDBMS
transaction

This is a unit of work that is either committed or
aborted. This means the changes required are either
completely done or no changes are made at all. In an
RDBMS, a transaction is automatically started
whenever the user (actually their application)
performs any SELECT, INSERT, UPDATE or DELETE SQL
statement. At the end of the transaction, the user has
to use the COMMIT or ABORT SQL statement. In the
COMMIT case, the RDBMS logs the transaction, the
changes are made, and the lock is released. If it is
ABORT, then the RDBMS undoes any updates made so
far, logs the failure in the database, and releases the
locks. Transactions are assumed to fail unless the
COMMIT is found in the log. Most transactions COMMIT;
so, the RDBMS attempts to make this happen as fast
as possible.

The database administrator has many tools to use and learn. Effective
usage of these tools is vital for a safe database and good performance.

Note
22 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 9. RDBMS transactions

Business
transaction

Business transactions are often confused with
RDBMS transactions. These are the transactions as
the user views the system. A business transaction
might be creating an invoice. Depending on the
application, this may actually be many RDBMS
transactions. The initial filling of the user’s screen
might be an RDBMS transaction to extract basic data
like the customer details. Further RDBMS
transactions might be used to look up data, such as
part numbers or supplier details. Finally, when the
invoice details are finished, and the user hits the
commit key, the RDBMS will do a transaction to save
the new details in the database. Applications use
many small RDBMS transactions during one
business transaction because this reduces the length
of time locks on the records are held.

Select

Application

RDBMS
Insert

Update

Delete

Commit
Introduction into relational database system concepts 23

Figure 10. Business transactions

Commit One possible result of an RDBMS transaction, which
saves the data or updates to the database. See
RDBMS transaction and the other result, which is
abort.

Abort One possible result of an RDBMS transaction, which
removes all changes of this transaction. In the
database, nothing will have changed after the abort.
See RDBMS transaction and the other result, which
is commit.

Instance This term has two meanings depending on the
RDBMS. For DB2 UDB, it means the physical
database data and files. For Oracle, it means the set
of RDBMS processes that are connected to the
database.

RDBMS This term includes the database data, files in which
the data is stored, the running database processes,
and the database shared resources, such as shared
memory, the code, and tools.

RDBMS = four
transactions

User = one
business transaction

Select

Insert
Update

Commit

Select

Commit

Select

Commit

Commit

Confirm purchase

Look up inventory

Look up product

Look up customer
24 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 11. Tables, rows, and columns

Shared Memory This is memory on the machine that is dedicated, in
this case, to the RDBMS. All of the RDBMS
processes have access to this memory and mainly
use it to store copies of disk blocks and control
information. The RDBMS processes cooperate in
using the memory and use locks to control access.

Buffer Pool or Buffer
Cache

This is the part of Shared Memory used to store
copies of disk blocks to update them and to speed up
processing. Buffer pool is mainly a DB2 UDB term,
and Buffer cache is mainly an Oracle term, but the
use of these terms is often intermixed.

SGA System Global Area. This is the Oracle term for all the
information in Shared Memory.

Tables All of the information in the RDBMS is stored in tables.
This concept closely matches the common spread
sheet. The table has rows and columns. The columns
are the various attributes of the data, for example, the
name, the address the telephone number, and a
date.The rows are the data items. These are similar
to records (rows) and fields (columns) in
non-relational database files (tables).

account
num ber

birth date nam e address

rows = entities or records

colum ns = attributes of fie lds
(numbers, dates, characters, others)
Introduction into relational database system concepts 25

Row Rows contain the data of the database. In relational
theory, they are called entities, and in a non-relation
database, they are called records. See also tables.

Column Columns are the various parts of a row. Each row of
a table has the same number and type of columns. A
column can be of only one type of data, such as
numbers or characters. Columns in relational theory
are called attributes of the entity, and in
non-relational databases, called fields of a record.
See also tables.

Relation or
Relationships

This is a term used to describe how the RDBMS
should connect two tables in the database. The
relationship is made between two columns in the two
tables. Typically, each table has a special column that
is unique for each row (see keys). When one row
refers to a row in the other table, it has this unique
identifier in one of its columns. The relationship is
described in the SQL statement by referring to these
two columns. It should be matched up in the where
clause.

View A view presents one or more tables in a way that
makes the view seem like a new table. The view does
not contain any data, as the data is still in the original
tables. A view can also be thought of as a pre-defined
SQL statement that can hide the underlying table’s
details and relationships. A user or application cannot
tell the difference between a table and a view.

Keys Columns used to build relations between tables are
said to contain keys. SQL relations are created via
these key columns. Do not confuse these with index
values, as SQL does not use indexes directly. There
are two types of keys - primary and foreign.
26 Database Performance on AIX in DB2 UDB and Oracle Environments

Primary key To be able to refer to a particular row of a table, there
needs to be something unique about it. Database
designers usually add a column to every table
specifically for this purpose. These numbers or
character strings are called primary keys. When a row
wishes to refer to data in a row of another table, all
that is needed is the primary key. This reference to the
primary key is called a foreign key, (see foreign key).
The primary key is a good candidate for an index
because many SQL statements will often specify a
particular row using this key.

Foreign key This is a column of a table that refers to the primary
key in another table so that the tables can be joined in
an SQL statement (see primary key).

Multi-part key Sometimes the primary key is made from more than
one column. Provided the columns together uniquely
define a row, this combination can be used as a
primary key.

Security The RDBMS has a complete security system with
users clearly defined to have access rights to
particular tables. There are SQL statements to define
a user and grant and revoke privileges. This redbook
does not cover security in any further detail, as it is
not a performance issue.

Indexes In the SQL, language indexes are not mentioned in
the data access statements of SELECT, INSERT,
UPDATE, and DELETE. A RDBMS will run without any
indexes. Indexes are added to tables by the DBA to
speed up finding particular rows in large tables. A
table can have more than one index, and an index
can be on one or more columns.

Temporary Storage
or Tmp Area
or Sort Area

When an RDBMS is performing indexing, sorting
large tables, or preparing the results of SQL
statements, it quite often needs to hold very large
volumes of data. If this does not fit into memory, then
the RDBMS temporarily stores the data on disk. This
will slow down the processing but still provide the
possibility to eventually finish. This area on disk is
large. It can be as large as the raw data size of the
database; so, it represents a large proportion of the
disks.
Introduction into relational database system concepts 27

Structured Query Language (SQL) terms
SQL is a standard syntax for accessing relational database systems based on
a relational theory, which is documented in The Relational Model for
Database Management by E. F. Codd. This book covers the 12 rules that
database management systems need to follow in order to be described as
truly relational.

The following are SQL statements or terms:

Logs The database uses the log to save the updates to the
database data. It also provides disk crash protection
and good performance.

Locks To make sure the two processes or transactions do
not attempt to update the same information at the
same time the database uses locks.

Optimizer An SQL statement details what is required, but the
RDBMS optimizer has to work out how to get and
organize the data. There is often many different
access methods including the order of reading tables,
sorting method, and data merging strategies. The
optimizer decides which is the most efficient. This
plan takes time to workout; so, the RDBMS caches
the query plan to save time if the same query is
requested again.

SELECT An SQL statement to read data from the database.

JOIN The relation used to connect two tables so that data
can be extracted. The two tables are joined to form
one large logical table.

WHERE clause Part of SQL used to specify a join or a restriction.

INSERT An SQL statement to add new data to the database.

DELETE An SQL statement to remove data from the database.

UPDATE An SQL statement to modify data already in the
database.

SQL functions SQL provides standard functions that can be used in
SQL statements. Most RDBMSs add other
non-standard functions to make SQL more useful.
28 Database Performance on AIX in DB2 UDB and Oracle Environments

2.6 Structured Query Language

The relational database is based on the use of the Structured Query
Language (SQL). Early work was performed by IBM, but SQL is now a formal
international standard to which most RDBMSs conform. SQL provides the
core language to access data from an RDBMS. The prime statements in the
language are the Data Manipulation Language (DML) statements:

• SELECT

• INSERT

Aggregates These are SQL standard defined functions that
perform useful operations on groups of rows
returned by the RDBMS. These include sum(),
avg(), count(), max(), and min().

CREATE An SQL statement to make something in the
database, such as a table or index. The RDBMS
vendors make additions to the standard SQL.
These allow creating of the database itself and to
create tablespaces and offer fine tuning to
database structures and resources. These
additions are not standard between vendors.

DROP An SQL statement to remove a table or index
completely.

Tablespace This is the place where tables and indexes are
created. It is not part of the SQL standard, but DB2
UDB and Oracle both use this concept. The DBA
creates tablespaces from files or raw devices in the
UNIX system and then creates a table within it. This
allows the DBA to place tables and indexes onto
particular disks or sets of disks.

Sub-query The answer to one SQL statement can be used
within the where clause of another SQL statement.
This is called a sub-query.

Relational
operators

=, >, <, =>, <= used in an SQL statement.

Logical operators AND, OR, or NOT used in an SQL statement.

Singleton select A SELECT statement that returns one row.
Introduction into relational database system concepts 29

• UPDATE

• DELETE

These statements give access to the data within the database. There are also
Data Definition Language (DDL) statements, such as:

•CREATE TABLE, CREATE INDEX, CREATE VIEW

•DROP TABLE, DROP INDEX, DROP VIEW

GRANT and REVOKE (used to control user access to data)

Each database has added to the standard basic statements for the following
reasons:

• To make the language easier to use (extra functions for common SQL
tasks)

• To reduce programming effort (to save time and reduce the amount of
coding required)

• To clarify certain ambiguous parts or options in the language (for example,
outer joins)

• So that it can also be used to control the databases behavior itself
(creating roll back areas and logs)

• For performance optimization (such as parallelization and optimizer
control)

• To be very specific on data placement and space use (such as table
defaults)

To make matters confusing, some extensions are simply new SQL
statements, but others add new options to the standard statements. Typically,
programmers can (if careful) avoid RDBMS specific extensions and, thereby,
make their application portable between RDBMSs. The DBA, however, is
forced to use the extensions because these are used for data placement on
disks and for performance tuning. The DBA also uses very RDBMS specific
options and internal database parameters for tuning the RDBMS.

Please refer to Appendix C.1, “SQL reference sheet” on page 381 for a quick
reminder of SQL syntax and examples of SQL.

If you are looking for an introduction to SQL or an advanced manual, please
refer to Appendix F.3, “Other resources” on page 415 for some excellent
references to whole books on the subject.
30 Database Performance on AIX in DB2 UDB and Oracle Environments

2.7 How do we make the data safe?

Based on business needs and available budgets, every customer has to
determine how safe they need to make their database systems. A helpful way
of viewing the important decision is - What is the cost of the RDBMS not
being available? Many businesses cannot survive without their computer
system because it controls many operations of the company. Some industries
start loosing money if the system is down for more than two minutes, for
example, airlines and telephone ordering systems. Some businesses can run
manually for a few hours or a day or two. Other systems are mainly back room
activities and not visible to customers or directly involved with the company’s
finances. For example, some Business Intelligence systems do not stop sales
when they are not available.

Another important factor is - What is the damage of losing data? For sales
systems, this means lost business and angry customers. Some systems
capture data that can never be replaced, and on other systems, wrong
decisions may be made based on inaccurate data.

Modern computers are very reliable and get more reliable all the time. But,
occasionally, they do have failures. The most common failures of RDBMS
systems on AIX are:

1. Temporary power loss to the system.

2. Network goes down.

3. Disk crashes.

4. AIX system administrator makes a mistake or has problems with
something that should work, such as upgrading software.

5. RDBMS administrator makes a mistake, for example, dropping a table.

6. Hardware failure in CPU, memory, adapter, or motherboard.

7. Total site disaster, such as fire, flood, bomb, hurricane, tornado, and so on.

What can we do about these problems, even if they are very unlikely? First,
every RDBMS site must determine a policy regarding the down time that is
acceptable. This can range from 60 seconds to five days. This, on the other
hand, affects the time and money that is spent on making the RDBMS
systems really safe. For each of these problems, there are options to remove
or reduce the impact. First, assume we have no disk protection (how to
protect disks is covered later).

1. Power loss - This is the most common problem with any computer and can
be caused by accidental pressing of the off button or removing the wrong
Introduction into relational database system concepts 31

power plug, fuses, or whole site power loss. Whatever the cause, once
power is returned, the machine restarts automatically, and the RDBMS will
also automatically recover the database up to the last committed
transaction. The database recovery time depends on the volume of
transactions on the system. This can be from a few minutes to a few hours
in the worst case. Using an uninterruptable power supply can avoid this
problem or at least give a period of time to stop the system cleanly.

2. Network - This means the system is unavailable, but once the network is
fixed, the RDBMS is still OK. The only counter measure is alternative
routes between users and the RDBMS server and good management
practices. Networks are typically controlled by a different group of people
than the database specialists. A network failure means the RDBMS is,
strictly speaking, not available to users and can, therefore, be regarded as
a lack of RDBMS service.

3. Disk crash - This affects the RDBMS directly. Assuming there is no disk
protection, such as RAID 5, mirroring, or a standby system, then the
damage depends on which disk is faulty. If the faulty disk is a:

• Data disk - The disk can be replaced and a backup (see Part 2.8,
“Backup and performance” on page 35) can be recovered onto the disk.
When the RDBMS is restarted, it will replay the RDBMS log and, in
effect, do all the transactions again since the backup. This will bring the
replacement disk back up-to-date. This might, however, take a long
time and depends on having an available disk, the speed of recovering
the backup file, and the number of transactions the database has to
recover.

• Index disk - There are two choices for index disks. First, this can be
treated like a data disk and recovered in the same way. The alternative
is to replace the disk, inform the RDBMS that the index has been
destroyed, and then re-create the index from the data. The time taken
to re-create the indexes depends on the number of indexes and the
size of the tables. Usually, which ever is the quickest method is used,
but it can be very hard to determine which is fastest.

• Temporary or Sort Area disk - This data does not need to be recovered.
There is no data on these disks that the database needs. The RDBMS
should restart with this disk missing or after the DBA has informed the
RDBMS to ignore the disk. The DBA should try to find alternative disk
space to make up for the missing temporary or sort area space.

• RDBMS Log disk - This is a disaster. Without the RDBMS log, the
database cannot be restarted. All recent transactions are lost forever.
The only option is to reload the entire backup. If older parts of the load
(since the backup) were copied to other disks, they can be used to
32 Database Performance on AIX in DB2 UDB and Oracle Environments

recover some of the transactions. This is why the RDBMS log should
always be the first to have some sort of disk protection. If the log
cannot be recovered, then the only alternative is to go back to the last
backup.

• Operating system, RDBMS configuration files, RDBMS code, or
application code disk - These must be recovered from the system
backup.

4. AIX system administrator - To try to stop this from happening, system
administrators should be well trained and maintain high skill levels.
Nothing replaces experience in running large production systems. All
operations, such as updating the AIX system, RDBMS code, or application
code, should be tested on other systems and only implemented after full
backups and out of normal working hours. Sites that make a lot of changes
to their system suffer a great deal more than those with tightly controlled
update schedules and methods. If this machine is part of a High
Availability Clustered Multiple Processing (HACMP) or replication cluster,
then the alternative backup machine should spot the failure, and the
service is resumed a few minutes later.

5. RDBMS administrator - DBAs do make mistakes, and a full and tested
RDBMS backup system is the only precaution that can help. HACMP
would not help because both the machines share the now corrupted
database. Unfortunately, a replica system would not help in this situation
because the mistake will be replicated to the other machine, and both the
machines now have corrupted databases. A backup is needed to recover
from this problem. The database then needs to be recovered to the time
just before the corruption.

6. Hardware failure - This failure is unlikely to corrupt the database; so, once
the system is repaired, RDBMS will recover the database quickly. The time
depends on the number of transactions in the RDBMS log. An HACMP or
replica configuration would mean a takeover to the duplicate machine
while the failed system is repaired.

7. Total site disaster - A number of things are vital to recover from this
problem.

• A full recent off-site backup

• Clear documentation on the way the system was configured

• Alternative hardware and network

• The skills to do the job
Introduction into relational database system concepts 33

Note that some transactions will be lost. Alternatives to avoid this problem
are using geographic, high-availability solutions, such as HAGEO, remote
disks, such as the SSA disk sub-systems can allow, or remote replication.

From the above, three important facts should have become clear:

1. Disk protection

One important benefit of AIX is that it does monitor disk errors and
reports them to the AIX system error log. Disks tend to start reporting
intermittent errors before they actually fail completely. A good
administrator should be monitoring the AIX error logs, and if this is
being reported, actions should be taken immediately to prevent loosing
data. With AIX, logical volume data can be migrated to alternative or
spare disks with the system up. This means the disk can then be
replaced at a convenient time.

But, some disk do fail without warning or before data can be saved.
Therefore, it is highly desirable for a reliable RDBMS that the disks are
protected in some way. There are various alternatives:

• Mirroring - Good for performance but adds extra cost.

• RAID 5 - Lower cost but also lower performance if the fast write
cache option is not used.

These are discussed in more detail in Chapter 8, “Designing a disk
subsystem” on page 149.

2. Standby machine

With a database system, there are two alternatives for a standby
service to recover in a short time from many of the above problems.
Both of these require duplicate hardware:

• HACMP can provide alternative CPU, memory, and network
resources but use a shared disk and database (no duplicate disks
are required). This IBM AIX product is a market leader in monitoring
the status of a cluster of machines and automatically taking over
workload, disk, network addresses, and services when a problem is
detected. HACMP does require careful setting up and testing but will
automatically recover from many of the problems above.

• RDBMS replication is a service on a duplicate machine and a
duplicate database. The primary RDBMS sends all local database
updates to the replica RDBMS so that the two databases are the
same. In practice, the replica will be slightly behind the primary
database due to the time it takes to complete replication. Note there
is a performance cost, as replication adds significantly to the
34 Database Performance on AIX in DB2 UDB and Oracle Environments

workload of the primary RDBMS. Every row that is changed is also
copied to a replication table. From there it is read by the replication
process and sent on the network to the replica. When the replica
confirms it has done the update, the entry can be deleted. This can
double the workload on the RDBMS server. RDBMS replication is
available from the RDBMS vendor.

3. The database backup is vital for recovering disk crashes.

Having a regular backup of the database is not optional but mandatory.
There are many ways and options to perform a backup. We list and
comment of many of these below and then recommend the best
approach. Note that deciding the full details of a backup strategy and
method, and then testing it, is a large amount of work and often left
until too late.

Table 3. Making your RDBMS safe from common problems

2.8 Backup and performance

It might sound strange to consider backups and performance at the same
time. Unfortunately, taking a backup either requires the database to be
stopped, in which case, there is zero performance, or the backup is
performed with the database running, and the backup will have a large
performance impact. In this section, the various options are detailed.

Before the backup, the data is on the database disks. The backup process
involves getting a copy of the data to some other media that is reliable,
inexpensive, and moveable to an alternative site.

2.8.1 Backup media
There are many options in backing up media:

Problem Impact Precautions

Power low UPS

Network low alternative routes

Disk crash high disk protection and backup

UNIX system administrator high backup and HACMP

DBA high backup

Hardware high HACMP or Replication

Site disaster high backup
Introduction into relational database system concepts 35

Tape This is the classic backup media. Tapes are inexpensive
and can hold a large volume of data in a small package.
The RS/6000 has the typical UNIX tape formats, such as 4
mm and 8 mm DAT tape drive and 9 track tapes. But it can
also connect to the tape drives commonly used on AS/400
and mainframe machines that can offer higher
performance in terms of throughput. Also, multiple tape
drives can be attached to reduce backup time and also
offer redundancy in case of a problem with a tape drive.
The best tape drives currently available can match the
speed of disks in their data transfer rates.

Disk One option is to back up the database disks to a different
set of disks. This means an extra expense of more disks
but can reduce the time the backup takes significantly.
Once the backup is complete, the database can return to
normal operations. The disks are then often backed up to
tape or other media. If the database disks fail, this extra
disk copy is very convenient because the data is
immediately available for a recovery to start. Care must be
taken to maximize the performance of these disks, or the
disk to disk backup can take a long time. As this is a copy
of the real database, many sites do not use disk protection
on these backup disks. Some sites even move the disks to
another site.

Mirror breaking If the database disks are using mirrors for disk protection,
then one copy of the data can be made by splitting the two
copies of the data. The original is still part of the
database, but the copy can be used to perform the backup
without effecting the database disk performance. There
are two problems with this. First, if the database had a
mirror for disk protection, then when the mirror is split off,
there is no longer any disk protection. This means most
sites use a three way mirror and split the third copy off,
and the two remaining will still give disk protection.
Secondly, after the mirror has been used as the source for
the backup, the mirror has to be rejoined to the original
disks. This is called resilvering. As all the disk blocks of
one disk have to be read from the original and written to
the resilvered mirror, the disks will be very busy for a long
period of time. This will significantly affect database
performance but is often forgotten. Mirror breaking is used
to reduce the time the database is not available.
36 Database Performance on AIX in DB2 UDB and Oracle Environments

Network The database can be backed up over a network. Many
sites have a collection of tape drives connected to a
backup and tape management system. The database
system sends the data across the network. This assumes
the network is available, can be dedicated to the backup,
and can provide the bandwidth requirements for the
backup. The backup system will eventually place the data
on the backup media. Often, they temporarily store the
data on internal disks as a staging area before writing to
tape at high speed.

Optical Some sites have legal requirements to archive data for
many years and achieve this by using optical storage for
their backups. Optical storage has a reputation of not
being very fast.

2.8.2 Full or partial backup
Usually, you want to back up the whole database and the whole system in a
full backup. This means that one set of tapes, for example, contains the whole
computer system: Operating system, applications, RDBMS code, and data.
But backing up the entire system means a large volume of data and the
maximum backup time.

One way to reduce backup time is to reduce the data volume that is backed
up every time. This is called a partial backup. For example, during the week,
one fifth of the database is backed up every day with a full backup only once
a week. This means, though, that the recovery time might be a lot longer
(because the weekly and partial backups will need to be restored), but still
this can be a good compromise. For instance, for databases that contain a lot
of read-only data or data that is not changed much on a day-to-day basis, the
partial backup of this part of the database is a good choice because the
recovery time will be low.

If large parts of the database are completely read-only, most databases allow
this part of the data to be accessed in a special way, which means the
database cannot modify it. This guarantees no changes to the data so that
only one backup is ever required. This read-only data is common for DSS
databases.

2.8.3 Physical and logical backup
Most backups are performed on the actual database files. This is either
directly using AIX commands, such as dd, tar, cpio, and backup, or indirectly
by RDBMS vendor tools, application vendor tools, or tools from the backup
Introduction into relational database system concepts 37

system. This is called a physical backup. It is the system administrator’s and
database administrator’s job to make sure they back up a complete set of files
that make up the database.

The alternative is the logical backup of the database. This makes a copy of
the database, but it includes the instructions on how to create the database,
tables, indexes, and the table data. This copy is often in an ASCII format and
in a format that is portable between different machines even with different
architectures. For example, this could be used to move a database between
AIX and a PC based system. Logical backups can be performed on tables or
complete databases.

• In Oracle, a logical backup is performed with the Oracle export DBA tool.

• In DB2 UDB, a logical backup is performed with the db2 backup command.

The advantages are that the backup is portable between hardware platforms
and operating systems and is a readable ASCII file as opposed to the normal
binary database files.

The disadvantages are that a logical backup is much slower because a single
tool is used to perform the backup (although some parallelization is possible
for table level logical backups), and it can generate a huge file, which is much
larger than the capacity of the disk; so, they are often sent directly to tape.

Logical backups are ideal for moving smaller test databases or smaller tables
between systems.

2.8.4 Online and off-line backup
Everyone affiliated with database administration is comfortable with the idea
of stopping the database (and any other services offered by the machine) and
then, when no data can be changed, backing up the files of the system to a
backup media (usually a tape). This is the classic off-line full backup and
sometimes also called a cold backup. Once completed, that set of tapes
contains the entire system that is consistent at a particular point in time.

One problem is that users are often still using the database or are connected
to the database via their application that is still running late. Most sites have a
policy to forcibly removing users from the system at a particular time. This
can be done by forcibly halting the database; however, vendors recommend
backing up the database only after a normal shutdown. To achieve this, the
database is forcibly taken off-line and then restarted in a mode that stops
users and then cleanly shuts down before the backup.
38 Database Performance on AIX in DB2 UDB and Oracle Environments

However, an increasing number of systems are required to be available 24
hours a day, seven days a week. This does not leave any time for a full off-line
backup. One way to nearly achieve this is stopping the database, breaking a
mirror copy of the database off, and restarting the database. This can reduce
the database down time to a few minutes. But, even this is not acceptable to
many truly 24 hours a day, global company’s system and, for example, Web
sites where users are online every hour of the day.

The only option is to back up with the database still running. This is called an
online backup or hot backup. Most sites know the usage patterns of the
database system based on user workloads. This means the backup can take
place during the time of least workload. This makes the backup faster, and
even though the backup may slow the system down, less users are effected,
and the machine should have some spare capacity.

The various types of files on the system are treated differently.

• The AIX operating system should be backed up via the mksysb command.

• The user files, RDBMS configuration files, RDBMS code or application
code disk can be backed up using AIX backup commands.

• The temporary or sort area files do not need to be backed up, as these are
re-initialized every time the database is restarted.

• The data and index files of the database must clearly be backed up. To
achieve the backing up of these files while they are being modified is
impossible. So, the RDBMS vendors have special features to make this
possible. The procedure is:

1. The DBA informs the RDBMS that a particular part of the database
needs to be backed up.

2. The RDBMS stops modifying these files but puts all the updates that
would go into them into the database log instead.

3. The DBA does the backup of the data and the index files.

4. The DBA informs the RDBMS that the backup is finished.

5. The RDBMS searches the log for the updates and brings the files back
up-to-date.

While the backup is taking place, a lot of extra data is sent to the database
log; so, there is a performance implication of online backups. Once
finished, it may take some time for the RDBMS to get the data and index
files updated. This also takes additional space in the log file. Note that not
all of the data and indexes have to be backed up at one time. The data and
Introduction into relational database system concepts 39

index files of one tablespace can be backed up as a group. This limits the
reduction in performance, but the backup may take a little longer.

• RDBMS log disks are the final part of the database to get backed up. As
the database is running, these files are being updated nearly all the time.
This means that they cannot be backed up. But, an RDBMS does not just
have one log. The various RDBMSs organize the logs in different ways,
but they all allow the DBA to switch between log files or switch to a new
file. This means that the old log file is no longer in use and can be backed
up. This process is called archiving the log files. Because the log is vital
for recovery, this log switching is going on regularly. To back up the
RDBMS log, the DBA forces a log switch and then backs up the original
log file.

Provided the DBA can find some time in the day that is less busy, then the
online backup should not slow the performance of a database too badly. The
problem with online backups is that you do not end up with one set of tapes
that are a complete and consistent backup at one point in time. The various
parts of the backup all happen at different times, and it is the database log
that allows the database to recover fully. The RDBMS stores the backup files
and times in the control files; so, it knows when each backup took place and
the particular log files that are required to recover the database from a
particular backup file. Some people find this worrying because it is not in their
control.

2.8.5 Backup recommendations
• Plan for backing up your database during the design of the system for high

performance. If it is added at the last minute, you may find it cannot be
backed up in the available time or budget.

• Have more than one tape drive so that it does not become a single point of
failure.

• Test the backup and tapes regularly.

• Perform a disaster recovery test once a year.

• Do not be afraid of online backups, as they are used often.

• The RDBMS vendor’s manuals have all the backup methods and options,
but they are not very good at recommending any particular strategy,
schedule, or method.

There are excellent books on backing up Oracle that cover all the options in
great detail, for example, Oracle Backup and Recovery Handbook, ISBN
40 Database Performance on AIX in DB2 UDB and Oracle Environments

0-0788-2106-1. If you want to avoid making typical mistakes and save a lot of
time testing, then these books are definitely worth reading.
Introduction into relational database system concepts 41

42 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 3. Types of workload

In order to understand the performance issues associated with a particular
database, it is helpful to have an understanding of the different database
profiles and their unique workload characteristics.

RDBMS systems can be put to many different uses, that is, holding different
types of data and allowing different types of processing to be performed
against that data. In this chapter, we outline typical databases and their
characteristic workloads, but there will always be deviations that do not fit
within the models described here.

Throughout this chapter, we will use as our reference database one that
contains 50 GB of raw data. Depending on the exact nature of the database,
more or less disk space may be required in order to actually implement the
database. We also describe typical user numbers and transaction response
times for the different workloads.

Most IT departments are responsible for managing more than one database
system; so, real environments are more complex than suggested here. There
are typically multiple OLTP and DSS systems in use that, together, satisfy all
the processing requirements of the company. Data is often moved between
these databases so that different applications with different transaction types
and user populations can access the data.

3.1 Online Transaction Processing (OLTP)

Online Transaction Processing (OLTP) databases are among the most
mission-critical and widely deployed of any of the database types. Literally,
millions of transactions encompassing billions of dollars are processed on
OLTP systems around the world on a daily basis. The primary defining
characteristic of OLTP systems is that the transactions are processed in
real-time or online and often require immediate response back to the user.
Examples would be:

• A point of sale terminal in a retail setting

• An Automated Teller Machine (ATM) used for withdrawing funds from a
bank

• A telephone sales order processing site looking up inventories and taking
order details

From a workload perspective, OLTP databases typically:
© Copyright IBM Corp. 1999 43

• Process a large number of concurrent user sessions

• Process a large number of transactions using simple SQL statements

• Process a single database row at a time

• Are expected to complete transactions in seconds, not minutes or hours

OLTP systems process the day-to-day operational data of a business and,
therefore, have strict user response and availability requirements. They also
have very high throughput requirements and are characterized by large
amounts of database inserts and updates. They typically serve hundreds, if
not thousands, of concurrent users, which can severely impact system
performance.

Special consideration should be given to the following areas when designing
an OLTP system for performance:

• Use indexes to improve performance. However, too many indexes can
degrade the performance of insert and update operations.

• SQL statements should be as well-tuned as possible.

• Database block sizes should be small, in the range of 2-4 KB.

In comparison to our reference 50 GB database, a typical OLTP system would
have the following characteristics:

• Would require three times the disk space - standard rule of thumb for the
data plus indexes and temporary work areas.

• Would support 200 to 600 users.

• Response times would be less than two seconds.

• Specific queries might be allowed to take 45 seconds.

• Available during normal business hours, typically 8 am to 6 pm. An
increasing number of systems require 24 hour, 7 day a week availability,
especially international companies.

• Upgrades are planned in advance to occur over a weekend.

• The application is often written in-house but is increasingly likely to be a
third party package possibly modified for particular business needs.

3.2 Online Analytical Processing (OLAP)

Modern Online Analytical Processing (OLAP) databases are based on a set
of 12 rules developed by E.F. Codd in 1993 in his white-paper entitled
Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT
44 Database Performance on AIX in DB2 UDB and Oracle Environments

Mandate. This whitepaper outlined a methodology for designing systems that
would be capable of providing live, ad-hoc data access and analysis.

The primary defining characteristic of OLAP databases is that they provide
multi-dimensional or aggregated views of the data. The multi-dimensional
data is called by many a data cube. This term is used to express the idea that
the data has been transformed into different dimensions, such as geography,
sales figures, and product line. There are many other dimensions that can be
used at the same time, but it is easier to think in terms of only three
dimensions.

Using an OLAP system, a user can asks such questions as: Which
geographical area has the best sales? They could then select a particular
geography, turn the data cube to see the next dimension (product lines), and
ask: Which product lines sold best in these geographies? Then they might
turn the data cube again and ask: How has that changed with time?

The aggregate views used by OLAP databases are summary tables that are
used to perform these types of analyses. The RDBMS could search the entire
database to answer each question, but this would be very expensive in disk
I/O and CPU terms and reduce the response time or numbers of users that
the system could support. After the OLAP database has received more data
from other systems, the database creates a series of summary tables
containing averages and totals for sales figures from the individual sales
details. The application then uses these much smaller summary tables to
answer most of the user and application queries.

The workload characteristics of OLAP databases differ from those of OLTP
databases in that they:

• Serve a smaller number of users

• Support a large number of queries using complex SQL statements

• Process many database rows at a time

In comparison to our reference 50 GB database, a typical OLAP system
would have the following characteristics:

• Would require five times the amount of disk space to allow for the large
summary tables.

• Would support 20 to 50 users.

• Response times would be less than 20 seconds.

• Large user requests that require the query to read the fine details from the
database might be allowed to take 15 minutes.
Types of workload 45

• Available during normal business hours. The database needs to take data
updates from OLTP systems so that the aggregrates can be re-created or
updated, usually every night.

• The vast bulk of the database is very static, only the last month’s data
changes.

• System down time allows for improvements of the summary tables based
on the results of monitoring user activity.

• The application is nearly always a third party package with a business
model created for this particular company’s product or services.

3.3 Decision Support Systems (DSS)

Decision Support Systems (DSS) differ from the typical transaction-oriented
systems in that they most often consist of data extracted from multiple source
systems for the purpose of supporting end-user:

• Data analysis applications using pre-defined queries

• Application generated queries

• Ad-hoc user queries

• Reporting requirements

DSS systems typically deal with substantially larger volumes of data than
OLTP systems due to their role in supplying users with large amounts of
historical data. Whereas 100 gigabytes would be considered large for an
OLTP system, a large DSS system would most likely be 1 terabyte or more.
The increased storage requirements of DSS systems can also be attributed to
the fact that they often contain multiple, aggregrated views of the same data.

While OLTP queries tend to be centered around one specific business
function, DSS queries are often substantially more complex. The need to
process large amounts data results in many CPU intensive database sort and
join operations. The complexity and variability of these types of queries must
be given special consideration when designing a DSS system for
performance.

DSS systems fall into two categories: Data warehouse and data mart. Both
data warehouses and data marts have the following workload characteristics:

• Complex and very complex SQL statements

• Long running SQL queries that may take minutes or hours to complete

• Diverse query types that answer complex business questions
46 Database Performance on AIX in DB2 UDB and Oracle Environments

• Applications often model the logical structure of the business and hide the
database and SQL structure from the end-user

• Perform mostly full table scans or use summary tables built by the
database administrator

3.3.1 Data warehouse
Data warehouses normally consist of a single large server that serves as a
consolidation point for enterprise data from several diverse database
systems. Data warehouses typically contain years worth of historical data in
order to serve as a single source of information for all the decision support
processing in the entire business organization. Whereas OLTP systems are
primarily concerned with changing the data contained in the database, data
warehouses are used to extract data for end user reporting and data analysis
needs.

In comparison to our reference 50 GB database, a typical data warehouse
would have the following characteristics:

• The data warehouse might include six other databases and contain a
great deal of historical information, therefore, increasing the database size
by a factor of 10 (500 GB) and increasing the disk space required by a
factor of 3 (1500 GB).

• Limited number of users with super-user authority that create the data
aggregates and perform cleanup operations on the data.

• Response times could be one hour to one week.

• System available 24 hours a day with particular tables taken off-line for
periodic updates.

• Supports one view of the business data extracted to data marts for further
analysis.

• The application is often written in-house but is increasing likely to be a
third party package to automate common and repetitive work.

3.3.2 Data mart
Data marts can be defined as more narrowly focused data warehouses. Data
marts are created with a subset of the operational production data in order to
satisfy the reporting needs of a specific organizational unit or to solve a
particular business problem.

In comparison to our reference 50 GB database, a typical data mart would
have the following characteristics:
Types of workload 47

• Would require five times the amount of disk space - standard rule of thumb
for building the data mart. Extra space would be required for new data to
be cleaned and modified before adding to the database and extra
summary tables

• Would support 20 to 100 users.

• Response times would be less than two minutes, many simpler requests
under 10 seconds. Once the data is extracted to the user tool, the users
analyze the data for five to 30 minutes before requesting more.

• Large user requests might be allowed to take 20 minutes.

• Available during normal business hours.

• System taken down for data loads and creation of summary tables.

• Data can be reextracted and loaded from the warehouse or original data
source.

• Application third party package resides on PC for graphical modeling and
analysis. Often there is a business model on the PC to hide the
complexities of the database design and SQL.

3.3.3 Business Intelligence (BI)
Business Intelligence (BI) is a general term used to describe the process of
extracting previously unknown, comprehensible, and actionable information
from large databases and using that information to make intelligent business
decisions.

3.3.4 Data mining
Data mining is a relatively new data analysis technique used to find and
exploit previously unknown relationships between seemingly unrelated data.
Unlike traditional reporting and multi-dimensional analysis techniques in
which very specific queries are used to extract the data, data mining uses
several statistical data analysis algorithms to extract previously unknown
information from the existing data.

For example, a data mining application might study car insurance claims to
spot particularly good or poor risk customers, and their insurance premiums
could change as a result. The application can spot correlations in the data,
such as particular areas of the country, age groups, car types, and jobs that
might otherwise go undiscovered.

Unlike OLAP and Data Marts, where the user formulates a question and the
RDBMS finds the answer (or graphs the data), which might then pose further
48 Database Performance on AIX in DB2 UDB and Oracle Environments

questions, the data mining application not only finds the answers but goes on
to explain the relationships between the selection criteria upon which the
answers are based. Care must be taken to ensure the new information is
really a trend and not a quirk in the data.

Data mining solutions often consist of a mixture of database tools and
technologies. These include such IBM products as DB2 OLAP Server and
Intelligent Data Miner.

3.4 Enterprise Resource Planning (ERP)

Enterprise Resource Planning (ERP) systems have gained enormous market
share in the last decade primarily due to their ability to consolidate multiple
data sources into one system offering tightly integrated applications. They are
typically implemented in a three tier client/server configuration with the
database at the core of the system. Application vendors, such as SAP, Baan,
JBA, PeopleSoft, Siebel, Retek, and Oracle Financials are among the current
market leaders in the ERP arena.

ERP systems can be considered something of a hybrid from a database
workload perspective, as they most often exhibit the same workload
characteristics as traditional OLTP, OLAP, DSS, and batch reporting systems.
Originally, ERP systems were primarily used in an OLTP capacity, but
increasingly, they are offering more DSS functions or modules as an
extension.

ERP systems have the following characteristics:

• They are three tier client/server solutions in that they include:

1. A central database server.

2. Multiple application servers - Are mainly compute bound systems
running a few processes that actually do the work for users and cache
data from the database server for performance. A typical configuration
would be one database server with four to eight application servers.
These application servers also limit the number of user connections to
the database.

3. User workstations (normally PC based) that provide user friendly GUI
based applications and graphics.

• The databases structures are complex having hundreds or thousands of
tables.

• The application is completely generic. As supplied, it needs a lot of
tailoring to meet the specific business needs of a company. Most of this
Types of workload 49

tailoring goes into the tables of the database. For example, the various
divisions, departments, and reporting structures and their cost and profit
centers would be stored in the database tables. The effect of this on the
database is that queries are much more complex than those on OLTP
systems and join many more tables.

• To increase response times and the number of users supported, most
ERP vendors do not allow users to directly modify the database. The
updates are typically queued to background processes that do the updates
at a later time. This reduces database locking problems and speeds up
user response times.

• Serve a large number of users (same as OLTP systems).

• Process a large number of transactions utilizing both simple and complex
SQL statements (mixture of OLTP and OLAP).

• Interactive user response times are measured in seconds (same as
OLTP).

• Process many database rows at a time (same as OLAP).

Workloads should be clearly defined and separated in order to avoid
performance problems associated with mixing OLTP, OLAP, DSS, or batch
reporting activities on the same system at the same time.

In comparison to our reference 50 GB database, a typical ERP system would
have the following characteristics:

• Would require three to five times the disk space (standard rule of thumb).

• Would support 100 to 1000 users.

• Response times would be less than four seconds.

• Available 24 hours, 7 days a week for most production systems.
Development and test systems would need to be available during normal
business hours.

• Zero system down-time for production systems; 4 to 8 hours per night for
development and test systems due to the lack of a 24 x 7 availability
requirement.

• The application would be a well known third party package possibly
modified for particular business needs during the implementation phase,
which is likely to take many months.
50 Database Performance on AIX in DB2 UDB and Oracle Environments

3.5 e-Business

e-business, as defined by IBM, is any activity that connects critical business
systems directly to their critical constituencies (customers, employees,
vendors, and suppliers) via intranets, extranets, and over the World Wide
Web. The explosive growth of the Internet in the mid 90s has forced
businesses to radically change the way in which services are provided to their
customers. Companies have had to Web-enable core business processes to
strengthen customer service operations, streamline supply chains, and reach
new and existing customers. These changes have forever altered customer’s
expectations regarding support and response.

At the core of any e-business transaction is the database used to satisfy user
queries. These queries are typically generated as a result of user input via
HTML pages that eventually end up being processed by the database server.
The Web server normally has a special interface module that calls the
database server to supply the information. The Web server also has to
provide the information back to the user in HTML format so that the raw
database data has to be packaged up before being returned to the Web
server. The generation of the connection to the database as a result of the
user request is known as a Web hit.

Connecting and disconnecting to a database takes a lot of processing power
and is not a good option for each Web hit in terms of providing good
performance. Therefore, a Web application server is typically used to provide
this permanent connection and sits between the Web server and the
database server.

When compared to an OLTP or ERP database, a Web database is actually
small in size. The actual data content is not very large for most Web sites;
however, there are exceptions. A less desirable alternative is to connect the
Web server and application server to the real production OLTP or ERP
system. The major risk is security, as a Web hacker effectively has a network
connection to your vital database. This is one reason why there is such a
great deal of interest in security on the Web and why there are a multitude of
products to help provide this security.

In workload terms, these databases are like OLTP systems, but there is an
additional problem. Unlike a company machine where the user population is
well known and understood, the Web is unpredictable. Sizing a Web-enabled
database can be very hard to nearly impossible due to the volatility in the
number of users accessing the site and the tendency to initially
underestimate the demand that will be placed on the servers.
Types of workload 51

There are two different approaches that can be taken when sizing the system:

1. Over-specify the machine by a factor of two or three to ensure it can take
the unexpected peak hit rates.

2. Have a machine that can be rapidly upgraded, particularly from a CPU
standpoint.

Also, a high availability solution (like IBMs HACMP) should be in place from
the start, as a site that is failing or very slow can quickly result in users
migrating to a competitor’s Web site.

In comparison to our reference 50 GB database, a typical e-business system
would have the following characteristics:

• Would require three times the disk space (like OLTP).

• No real concept of a user, but each database hit usually results in the
execution of a database transaction.

• Response times would be less than two seconds.

• Available 24 hours, 7 days a week due to the fact that it is connected to the
Web.

• The application would be a third party package, possibly modified for style.

3.6 Reporting

It might sound strange that, in what many people thought should be a
paperless world by now, many large databases are used simply to create
reports. Often small volumes of reports can be performed on the customer’s
live OLTP system. However, the fact that report generation often involves
processing huge volumes of data can cripple OLTP performance. The most
common solution is to move the data to a dedicated report database system.

While some databases receive their information from the customer’s live
OLTP systems, others are updated directly for the purposes of data collection
and summarization. An example would be a water company that receives
data from thousands of water flow meters into the system and automatically
updates the database at a defined interval. The database is then used to
report:

• The state of the overall system

• Quirks that might need investigation

• Data used to spot long term trends
52 Database Performance on AIX in DB2 UDB and Oracle Environments

There are some third party or RDBMS tools that are often used to generate
reports. These tools allow an advanced user or DBA to reformat the report
and describe the data columns and totals. The user then activates the report
after supplying specific limitations, such as the period in which the report
should cover or particular areas to be included or excluded. An example
would be the sales report for the North region for the past three months.

Often, there is a trade off between using the report tool, which is quick to
implement and simple to modify and maintain, and performance. For high
capacity, high volume reports customers typically use the report tool as a
prototype and then recode the report in a 3 GL language, such as C or
COBOL for better performance.

In comparison to our reference 50 GB database, a typical reporting system
would have the following characteristics:

• Would require three times the amount of disk space - very similar to the
OLTP database.

• Would support one to 40 users. Access might be via a batch queue for
ad-hoc reports or a scheduling system for a report needed at fixed
intervals.

• Response times are dependent on the nature of the report. Large reports,
for example, could take eight hours or more.

• Available nearly 24 hours, 7 days a week.

• The system will be taken down for updates and backups only.

• The application would consist of RDBMS tools or a third party package
with very specific, pre-defined reports.
Types of workload 53

54 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 4. Specific databases

This chapter describes the different physical and logical structures for DB2
UDB and Oracle as well as the processes used to access and manipulate the
databases. It is recommended that these basic concepts are totally
comprehended since they are referenced in the other chapters.

4.1 DB2 UDB Database architecture

The DB2 UDB databases are stored in both physical and logical structures.
When the database is accessed either locally or remotely, some internal DB2
UDB processes will interact with another structure created on memory. DB2
UDB databases consist of the following:

• Physical Structure:
This is where the data and all objects that belong to a database are
stored.

• Logical Structure:
Logically divides the objects inside the database.

• Memory Structure:
Holds the information that is necessary to process the requests generated
by the applications and user connections.

• Processes:
Accesses the memory structure, manipulates, and returns data requested
by the applications and user connections.

This entire structure makes DB2 UDB easily configurable for the different
system workload characteristics. All possible administration tasks can be
done either locally on the AIX platform or remotely from a workstation.

4.1.1 Memory structures
When DB2 UDB is running on an AIX operating system, the amount of real
and virtual memory used will basically depend on how the database manager
(instance) parameters and database parameters are set. Based on these
parameters, the RDBMS will allocate more, or maybe less, memory resources
to process the requests generated by the applications and user connections.

It is important to point out that, if the resources requested by DB2 UDB
cannot be satisfied with real memory, some pages will be requested from
paging space, which causes a performance degradation.
© Copyright IBM Corp. 1999 55

The memory will be allocated for four different memory requestors. The
memory allocation for each of them will happen at different times depending
on the following:

• Database Manager Shared Memory: Is allocated when the command
db2start is run and deallocated with the db2stop command execution.

• Database Global Memory: Is allocated when the database is activated
using the command ACTIVATE DATABASE or when the first connection is
established

• Application Global Memory: Is allocated when an application connects to a
database in a partitioned environment or when the intra_parallel
parameter is enabled. This memory is used by agents working on behalf of
the application in order to share data and coordinate activities among
themselves.

• Agent Private Memory: Is allocated when an agent is assigned to work for
a particular application.

Please refer to Chapter 12, “DB2 UDB tuning” on page 259 for further
explanation of which DB2 UDB parameters can be tuned for better system
performance.

4.1.2 Logical storage structures
The primary data storing object in a database is a row. A row is composed of
one or more columns that store logically related information. A table is
composed of a certain numbers of rows, from zero to an undetermined
number. The amount of existing rows in a table defines the table cardinality.
Cardinality means number of distinct values.

A DB2 UDB table can store data in the following listed types of columns:

• SMALLINT - Small integer
• INTEGER - Large integer
• BIGINT - Big integer
• FLOAT - Single or double precision floating-point number
• DECIMAL - Decimal number
• CHARACTER - Fixed-length character string of length integer
• VARCHAR - Varying-length character string
• LONG VARCHAR - Varying-length character string
• BLOB - Binary large object string
• CLOB - Character large object string
• DBCLOB - Double-byte character large object string
• GRAPHIC - Fixed-length graphic string
• VARGRAPHIC - Varying-length graphic string
56 Database Performance on AIX in DB2 UDB and Oracle Environments

• LONG VARGRAPHIC - Varying-length graphic string
• DATE - Date
• TIME - Time
• TIMESTAMP - Timestamp
• DATALINK - A link to data stored outside the database
• DISTINCT-TYPE-NAME - A user-defined type that is a distinct type
• REF - Reference to a typed table

See both volumes of the DB2 UDB SQL Reference, SC09-2847 and
SC09-2848, for details on the supported data types.

Once the database administrator defines a table with the appropriate
columns, the table is ready to maintain some relationship with other tables,
and their data can be retrieved though a standardized language called SQL
(Structured Query Language).

In order to speed up the access to the data in a table, one or more indexes
can be created. Indexes consist of search-key values and pointers to the rows
containing those values.

All the tables and indexes are stored on logical space divisions called
tablespaces. There are two types of tablespaces:

• SMS - System Managed Space. Data is stored in file system directories.

• DMS - Database Managed Space. Data is stored in file system files and/or
on raw devices.

The physical disk space assigned to a tablespace is called container.

Both types of tablespaces allow the user to store tables and indexes together
in the same tablespace. However, if DMS tablespaces are used, it is possible
to logically split a single table into three different tablespaces containing,
respectively, the data, the indexes, and the Large Objects (LOB) type
columns. This operation allows the same table to be stored on three different
devices, thus, enabling parallelism and performance improvement.

By default, three SMS tablespaces are created:

• SYSCATSPACE - Stores the internal database control tables called
catalog tables

• USERSPACE1 - Stores the user defined tables

• TEMPSPACE1 - Used to store temporary tables for operations, such as
sorts and reorganizations
Specific databases 57

Tablespaces are stored in nodegroups. Nodegroups are a set of one or more
database partitions. When using the DB2 UDB Enterprise Edition, only one
database partition exists on the machine. However, when using the DB2 UDB
Enterprise-Extended Edition, one or more database partitions can be defined
on a system.

All the tables, indexes, catalog tables, DB2 UDB objects, tablespaces, and
nodegroups form an entity called a database. Each database has its own set
of physical control files, log files, and data files. For more information about
the physical structure please refer to 4.1.3, “Physical storage structures” on
page 59.

One or more existing databases reside within an instance. An instance is a
complete environment that holds the databases. It controls the access to all
databases created within it. Other instances access those databases by
communicating with the owning instance. The more instances defined on a
system, the more machine resources will be needed.

Each physical machine represents one system that is composed of one or
more instances. Figure 12 illustrates how the DB2 UDB is logically structured.

Figure 12. DB2 UDB logical structure

System

Instance(s)

Database(s)

Nodegroup(s)

Table Space
tables

index(es)

long data
58 Database Performance on AIX in DB2 UDB and Oracle Environments

4.1.3 Physical storage structures
When the DB2 UDB Version 6.1 code is installed on an RS/6000 machine, all
the product files will be located in the directory /usr/lpp/db2_06_01.

Each instance will be created on a physical directory that is the home
directory of the userid defined at the instance creation time. This userid will
have the same name as the instance name and will have the system
administrator privilege for this instance.

After the instance is created and started, databases can be created within it.
Databases are created on existing directories or file systems specified by the
ON clause on the create database command:

create database sample on /db_sample

This command will create the database sample on the following physical
structure:

/db_sample/instance_name/NODE0000/SQL00001

where:

instance_name is the name of the instance where the database was created.

NODE0000 identifies the partition number in a partition environment. For a
machine where DB2 UDB Enterprise Edition is running, this entry is always
NODE0000.

SQL00001 identifies the sequence in which the databases were created. The
next database that is created will be located under SQL00002.

4.1.3.1 Internal files
After the database is created, some internal control files will be located under
the database directory /db_sample/instance_name/NODE0000/SQL00001.
Each file will be responsible for a different database functionality, as follows:

• SQLDBCON - Stores the database configuration parameters and flags for
the database

• SQLOGCTL.LFH - Tracks and controls all of the database’s log files
• Syyyyyyy.LOG - Restores the database into a consistent state in the event

of a database failure situation or system crash
• SQLINSLK and SQLTMPLK- Ensures that a database is only used by one

instance of the database manager
• SQLSPCS.1 - Contains the definition and current state of all table spaces

in the database.
Specific databases 59

• SQLSPCS.2 - Is a copy of SQLSPCS.1
• SQLBP.1 - Contains the definition of all the buffer pools used in the

database
• SQLBP.2 - Is a copy of SQLBP.1
• DB2RHIST.ASC - Is the database recovery history file
• DB2RHIST.BAK - Is a copy of DB2RHIST.ASC

These files are used exclusively by the RDBMS and should not be deleted or
removed from this location.

4.1.3.2 Log files
The log files, Syyyyyyy.LOG, will have their file names varying from
S0000001.LOG through S9999999.LOG. This files are used to ensure the
database’s consistency in case a failure or if a system crash occurs. The
number of existing logs in a database will depend upon the log size, number
of primary logs defined, number of secondary logs defined, the setting of the
LOGRETAIN parameter, and the amount of transactions that insert, update,
and delete data rows.

The size of the logs used by the database (measured in 4 K pages) will be
determined by the database configuration parameter logfilsiz. The number of
primary and secondary logs will be determined by the database parameters
logprimary and logsecond, respectively.

By default, the database uses circular logging, that is, the connections will
record their transactions on the primary logs until they are filled. At this time,
the secondary log will be allocated according to the amount of log space
requested. The logging operation continues until both the primary and
secondary logs are completely used. From this point on, each command that
generates a change to be recorded on the log files will be refused unless a
COMMIT or ROLLBACK statement is executed. This logging behavior is ideal for a
read-only environment, when few database changes are expected, since the
number of primary and secondary logs is limited.

However, if the database is updated frequently, the recommended logging
mode is the log retention logging. With this approach, a command will only be
rolled back when its unit of work exceeds the total amount of space defined
by the sum of primary and secondary logs. The number of log files will
increase until they reach S9999999.log, then the log name counter will be
restarted. Using this logging method also allows an online database backup,
a backup of chosen tablespaces, as well as a point-in-time recovery.

Please refer to 7.6.1, “DB2 UDB backup/restore scenario” on page 133 for
more information about database and tablespace recovering scenarios.
60 Database Performance on AIX in DB2 UDB and Oracle Environments

4.1.3.3 Data files, index files, and temporary space
Table rows and indexes are stored in tablespaces, as well as temporary
tables that are used for reorganizations and sorts. The tablespaces can be
either System Managed Space (SMS) or Database Managed Space (DMS).
The main difference is how the disk space will be allocated and how these
tablespaces will increase in size. The physical disk space allocated for a
tablespace is called container. Containers store data and indexes in disk
pages of 4 k, 8 k, 16 k, or 32 k sizes. The choice for the value to be used will
depend basically on the system workload as well as on SQL limits. See also
Appendix A "SQL Limits" in the IBM DB2 UDB SQL Reference, Volume 2,
SC09-2848.

SMS tablespaces
By default, three System Managed Space (SMS) tablespaces are created
when a database is created. The physical storage space allocation and
management tasks within the SMS will be the responsibilities of the operating
system's file system manager. The data and index pages will be recorded in
files within file systems or directories. Every time the amount of data, indexes,
or temporary tables increases, DB2 UDB will determine the name of the files
to extend in order to accommodate this data, and the operating system will be
responsible for managing them. The two most important characteristics of this
tablespace type is that the disk space is not pre-allocated and, once the
number of containers is specified, it can not easily be changed. Only through
an operation called redirected restore it is possible to add more containers to
an SMS tablespace.

The following is the list of files that compose an SMS tablespace:

• SQLTAG.NAM - One for each container subdirectory and used to verify
that the database is complete and consistent

• SQLxxxxx.DAT - Table file, where all rows of a table are stored, with the
exception of LONG VARCHAR, LONG VARGRAPHIC, CLOB, BLOB, and
DBCLOB data

• SQLxxxxx.LF - File containing LONG VARCHAR or LONG VARGRAPHIC
data

• SQLxxxxx.LB - Files containing BLOB, CLOB, or DBCLOB data
• SQLxxxxx.LBA - Files containing allocation and free space information

about the SQLxxxxx.LB files
• SQLxxxxx.INX - Index file for a table
• SQLxxxxx.DTR - Temporary data file for a REORG of a DAT file
• SQLxxxxx.LFR - Temporary data file for a REORG of a LF file
• SQLxxxxx.RLB - Temporary data file for a REORG of a LB file
• SQLxxxxx.RBA - Temporary data file for a REORG of a LBA file
Specific databases 61

DMS tablespaces
When Database Managed Space (DMS) tablespaces are used, the database
manager will be responsible to control the physical storage space allocation
and management.

The containers for a DMS tablespace are raw devices or file system files with
pre-defined sizes, that is, the disk space is pre-allocated when a DMS
tablespace is defined. Usually, a DMS tablespace performs better than an
SMS since it does not have to spend time extending a lot of files when new
rows are inserted. Using DMS tablespaces also allows a single table to store
its data, index, and large objects on up to three different DMS tablespaces,
thus, improving performance through parallel disk I/O. Also, a DMS
tablespace can be easily increased by just adding new containers to it.

4.1.4 Processes
The DB2 UDB RDBMS architecture is based on processes. Through this
architecture, DB2 UDB is able to communicate with remote and local client
applications.

For each client application that connects to a database, a single coordinator
agent is assigned. This coordinator agent is a process named db2agent, and
it is responsible for serving the requests from the clients to the database. On
a database where the intra-partition parallelism feature is enabled, the
db2agent will use one or more agent processes, named db2agntp, and
coordinate their work in order to retrieve the information requested by the
clients more quickly. Please refer to 5.2.3, “Inter-partition and intra-partition
parallelism” on page 86 for more information about the different types of
parallelism.

As client applications could easily interfere with the internal engine
processes, the DB2 UDB implements a firewall that isolates the DB2 UDB
engine's processes from the application processes in order to avoid a
possible instance crash. Apart from that, two other processes remain outside
the firewall:

• db2udfp- Fenced user-defined functions (UDFs)
• db2dari- Fenced stored procedures

The following figure illustrates how the DB2 UDB is structured:
62 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 13. DB2 process model

The DB2 UDB listeners are responsible for the communication between the
client and server processes when the clients ask the server for a connection.
For each different communication protocol, there is an associated listener.
They will only be available if DB2 UDB is asked to support a specific
communication protocol (defined at the DB2COMM registry variable). For
treating local connections, a special inter-process communications (IPC)
listener will be used. The IPC processes can be queried with the ipcs

command.

F i r e w a l l

Remote
Client

Program
Local
Client

Program
db2udfp db2dari

Remote
Listeners db2ipccm db2sysc

Other
Thread/

Processes

db2agent

db2agntp db2agntp db2agntp db2agntp

db2agent
Agent
Pool

db21pfchr db21pclrr db21oggr db2dlock

Per Instance

Per Connection

Per Database
Specific databases 63

There can be up to four listeners available in an AIX environment:

• db2ipccm - For local client connections
• db2tcpcm - For TCP/IP connections
• db2snacm - For APPC connections
• db2tcpdm - For TCP/IP discovery tool requests

Each different instance on an AIX machine will have their own set of
processes that are responsible to keep the instance running as well as
managing other operational needs. Basically, this system availability is
achieved through the use of the system controller process db2sysc.

Along with db2sysc, the following processes are also needed at the instance
level:

• db2resyn - The resync agent that scans the global resync list

• db2gds - The global daemon spawner on UNIX-based systems that
starts new processes

• db2wdog - The watchdog on UNIX-based systems that handles
abnormal terminations

• db2fcmdm - The fast communications manager daemon that handles
inter-nodal communication (used only in DB2 EEE)

• db2pdbc - The parallel system controller, which handles parallel
requests from remote nodes (used only in DB2 EEE)

• db2panic
the panic agent, which handles urgent requests after agent limits have
been reached at a particular node (used only in DB2 EEE)

DB2 UDB also uses the following processes for each created database:

• db2pfchr - For input and output (I/O) prefetching
• db2pclnr - For buffer pool page cleaners
• db2loggr - For manipulating log files to handle transaction processing and

recovery
• db2dlock - For deadlock detection

Among all the possible client, listener, database, and instance processes, the
db2agent (or db2agntp on an intra parallel database) is the one that can
allocate and possibly hold the largest amount of memory resource in the
system.

When a connected application ends the connection, the agent (or agents)
associated with that specific application turn to an idle status. The number of
64 Database Performance on AIX in DB2 UDB and Oracle Environments

agents allowed to remain idle, but still holding resources, will be determined
by the database parameter num_poolagents.

In order to verify all the DB2 UDB processes running on a AIX machine, the
command ps -ef | grep db2 can be issued.

None of the DB2 UDB processes should be killed by the system or database
administrator since any attempt in this direction could cause the whole
instance to crash. DB2 UDB controls the creation and removal of all the
existing processes from memory.

4.1.5 SQL extensions - Stored procedures
Many programmers code repetitive sequences of inserts, updates, deletes,
and selects. Depending on how often the same sequence is executed by the
client machines, the usage of stored procedures might be recommended.
Stored procedures are programs that reside on the server machine and that
can be called by the client machine through a regular CALL command within a
transaction.

The usage of stored procedures can improve the overall database
performance by reducing the number of the transmissions on the network.
The faster the network can send a request and deliver the output, the quicker
the client application will finish processing.

The stored procedures can be written in four different languages: JAVA, SQL
Procedure, Cobol, and C.

The choice of which language should be used will depend on how familiar the
application designers are with the language. In the other cases, it is
recommended that SQL Procedure language or JAVA are used due to their
easy writable code.

• JAVA

DB2 UDB Stored Procedure Builder Tool generates stored procedures
written in JAVA without the need to know the language. Only the SQL
statements need to be defined. DB2 UDB also implements support for
both static and dynamic SQL in the body of the stored procedure.

• SQL Procedure

SQL Procedure is an IBM programming language extension to the SQL
language based on the ANSI/ISO standard language SQL/PSM. It is
similar to Sybase, Microsoft SQL, Oracle, and Informix SQL languages,
which allows the users of those RDBMSs to easily get adapted to it.
Specific databases 65

4.1.6 Administration tools
The DB2 UDB Administration Client provides all tools necessary to administer
a server. The main tool for database administration is the Control Center.

Control Center is a GUI tool that provides a clear overview of all the objects
within a DB2 UDB system. Through this graphical tool, it is possible to create
objects, such as databases, tablespaces, bufferpools, tables, indexes, and
triggers.

It can be launched through the command db2cc and looks as follows:

Figure 14. DB2 UDB Control Center

Besides enabling easy object creation and administration, it also allows to
launch other administration tools provided by DB2 UDB:
66 Database Performance on AIX in DB2 UDB and Oracle Environments

• Script Center
The Script Center enables you to create, run, and schedule
operating-system-level commands and DB2 command scripts.

• Alert Center
The Alert Center notifies you when thresholds that you have set have been
exceeded or when a node in a multi-node environment is no longer
responding.

• Journal
The Journal allows you to view the status of jobs and to view the recovery
history log and messages log.

• Information Center
The Information Center gives you quick access to the information in the
DB2 product manuals and sample programs and provides access to other
sources of DB2 information on the Web.

• License Center
The License Center displays the status of your license as well as it allows
you to configure your system for proper license monitoring.

For database administration beginners, DB2 UDB provides SmartGuides.
SmartGuides are GUI windows that help the database administrators to
understand more clearly the tasks that they are performing through a
step-by-step panel that, based on the information received, is able to create
and execute commands and also recommend changes in order to increase
the database performance.

The SmartGuides are available for the following tasks:

• Back up database
• Create database
• Create table
• Create table space
• Index SmartGuide
• Performance configuration
• Restore database
• Configure multi-site update SmartGuide

There are other GUI tools that are not available directly from the Control
Center toolbar but have the same administration importance as the tools
available on the Control Center. The following is a list of these tools and a
brief description of their tasks:

• Performance Monitor
Tool used to monitor DB2 UDB objects such as databases, tables, and
tablespaces, thus, allowing the database administrator to easily tune the
database.
Specific databases 67

• Event Monitor
Collects monitoring information for a specified database activity during a
period of time.

• Event Analyzer
Used to analyze the output generated by the Event Monitor.

• Visual explain
Allows the database administrator to investigate how DB2 UDB accesses
and retrieves the data.

• Client Configuration Assistant
Configures access to other servers by cataloging them on the current
system.

4.2 Oracle database architecture

Oracle databases have both a logical and physical storage structure. This
separation of physical from logical allows the physical aspects of the
database to be managed without affecting access to the logical storage
structures. The logical storage structures dictate how the actual physical
space of a database is used.

Oracle also uses several memory and process structures to access and
manage the database. The memory structures are used to hold executing
program code as well as the actual data from the underlying physical storage
structures. The various Oracle processes perform such tasks as interfacing
with user application programs and monitoring the database for availability
and performance.

4.2.1 Memory structures
Oracle utilizes several different types of memory structures for storing and
retrieving data in the system. These include the System Global Area (SGA)
and Program Global Areas (PGA). These memory structures and the
relationship between them is depicted in Figure 15 on page 69.
68 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 15. Oracle memory structures

The Oracle SGA is a shared memory region used to hold data and internal
control structures of the database. This shared memory region details can be
displayed in AIX with the ipcs -ma command. The Oracle SGA and its
associated background processes, described in Section 4.2.4, “Processes”
on page 73, are known as an Oracle instance. The instance identity is called
by the short name SID. This short name is used in all Oracle processes
connected to this instance. To connect to a particular instance, set the shell
variable $ORACLE_SID to the SID. The SGA memory region is allocated
upon instance startup and de-allocated when the instance is shut down and is
unique to each database instance. The information contained in the SGA is
logically separated into three different areas: The database buffer cache, the
redo log buffer, and the shared pool.

The database buffer cache consists of Oracle database data blocks or buffers
that have been read from disk and placed into memory. These buffers are
classified as either free, dirty, or pinned. Free buffers are those that have not
yet been modified and are available for use. Dirty buffers contain data that
has been modified but has not yet been written to disk. Lastly, pinned buffers
are buffers that are currently being accessed.

AIX Kernel

U
se

r
ap

pl
ic

at
io

ns

File System cache

SGA

Free Memory

O
ra

cl
e

ba
ck

gr
ou

nd
pr

oc
es

se
s Buffer Cache

SGA

Shared Pool

Redo Log Buffer

Shared Pool

Dictionary Cache

Shared SQL,
SQL Plans, Locks

Session Data

Real Memory

Files

Log Disk

Data,
Index,
sort

System
Specific databases 69

Oracle uses a Least Recently Used (LRU) algorithm to age the dirty data
blocks from memory to disk. A LRU list is used to keep track of all available
buffers and their state (dirty, free, or pinned). Infrequently accessed data is
moved to the end of the LRU list where it will eventually be written to disk by
the Oracle DBWn process (see Section 4.2.4, “Processes” on page 73)
should an additional free buffer be requested but not available.

The size of the database buffer cache is determined by a combination of the
Oracle initialization parameters DB_BLOCK_BUFFERS and
DB_BLOCK_SIZE. Oracle allocates one Oracle data block of size
DB_BLOCK_SIZE for each buffer specified by DB_BLOCK_BUFFERS.

The redo log buffer is used to store information about changes made to data
in the database. This information can be used to reapply or redo the changes
made to the database should a database recovery become necessary. The
entries in the redo log buffer are written to the online redo logs by the LGWR
process (see Section 4.2.4, “Processes” on page 73). The size of the redo log
buffer is determined by the LOG_BUFFER parameter in the Oracle
initialization file.

The shared pool area stores memory structures, such as the shared SQL
areas, private SQL areas, and the data dictionary cache. Shared SQL areas
contain the parse tree and execution plan for SQL statements. Identical SQL
statements share execution plans. One memory region can be shared for
multiple identical Data Manipulation Language (DML) statements, thus,
saving memory. DML statements are SQL statements that are used to query
and manipulate data stored in the database, such as SELECT, UPDATE, INSERT,
and DELETE.

Private SQL areas contain Oracle bind information and runtime buffers. The
bind information contains the actual data values of user variables contained
in the SQL query.

The data dictionary cache is used to hold information pertaining to the Oracle
data dictionary. The Oracle data dictionary serves as a roadmap to the
structure and layout of the database. The information contained in the data
dictionary is used during Oracle’s parsing of SQL statements.

4.2.2 Logical storage structures
An Oracle database is made up of several logical storage structures
including: Data blocks, extents and segments, tablespaces, and schema
objects.
70 Database Performance on AIX in DB2 UDB and Oracle Environments

The actual physical storage space in the datafiles is logically allocated and
deallocated in the form of Oracle data blocks. Data blocks are the smallest
unit of I/O in an Oracle database. Oracle reserves a portion of each block for
maintaining information, such as the address of all the rows contained in the
block and the type of information stored in the block. This overhead is
normally in the range of 84 to 107 bytes.

An extent is a collection of contiguous data blocks. A table is comprised of
one or more extents. The very first extent of a table is known as the initial
extent. When the data blocks of the initial extent become full, Oracle allocates
an incremental extent. The incremental extent does not have to be the same
size (in bytes) as the initial extent.

A segment is the collection of extents that contain all of the data for a
particular logical storage structure in a tablespace, such as a table or index.
There are four different types of segments, each corresponding to a specific
logical storage structure type:

• Data segments

• Index segments

• Rollback segments

• Temporary segments

Data segments store all the data contained in a table. Likewise, index
segments store all the data contained in an index. Rollback segments are
used to hold the previous contents of an Oracle data block prior to any
change made by a particular transaction. If any part of the transaction should
not complete successfully, the information contained in the rollback segments
is used to restore the data to its previous state.

Rollback segments are also used to provide read-consistency. There are two
different types of read-consistency: Statement-level and transaction-level.
Statement-level read consistency ensures that all of the data returned by an
individual query comes from a specific point in time: The point at which the
query started. This guarantees that the query does not see changes to the
data made by other transactions that have committed since the query began.
This is the default level of read-consistency provided by Oracle.

In addition, Oracle offers the option of enforcing transaction-level read
consistency. Transaction-level read consistency ensures that all queries
made within the same transaction do not see changes made by queries
outside of that transaction but can see changes made within the transaction
itself. These are known as serializable transactions.
Specific databases 71

Temporary segments are used as temporary workspaces during intermediate
stages of a query’s execution. They are typically used for sort operations that
cannot be performed in memory. The following types of queries may require a
temporary segment:

•SELECT.....ORDER BY

•SELECT.....GROUP BY

•SELECT.....UNION

•SELECT.....INTERSECT

•SELECT.....MINUS

•SELECT DISTINCT.....

•CREATE INDEX....

Tablespaces group related logical entities or objects together in order to
simplify physical management of the database. Tablespaces are the primary
means of allocating and distributing database data at the physical disk level.
Tablespaces are used to:

• Control the physical disk space allocation for the database

• Control the availability of the data by taking the tablespaces online or
off-line

• Distribute database objects across different physical storage devices to
improve performance

• Regulate space for individual database users

Every Oracle database contains at least one tablespace named SYSTEM.
The SYSTEM tablespace contains the data dictionary tables for the database
used to describe its structure.

Schema objects are the logical structures used to refer to the database’s
data. A few examples of schema objects would be: Tables, indexes, views,
and stored procedures. Schema objects, and the relationships between them,
constitute the relational design of a database.

4.2.3 Physical storage structures
An Oracle database is made up of three different types of physical database
files: Datafiles, redo logs, and control files.

An Oracle database must have one or more datafiles in order to operate.
Datafiles contain the actual database data logically represented in the form of
tables or indexes. At the operating system level, datafiles can be
implemented as either JFS files or raw devices. The data contained in the
72 Database Performance on AIX in DB2 UDB and Oracle Environments

datafiles is read from disk into the memory regions as described in Section
4.2.1, “Memory structures” on page 68.

An Oracle tablespace is comprised of one or more datafiles. A datafile cannot
be associated with more than one tablespace, nor can it be used by more
than one database. At creation time, the physical disk space associated with
a datafile is pre-formatted but does not contain any user data. As data is
loaded into the system, Oracle reserves space for data or indexes in the
datafile in the form of extents.

Redo logs are used by Oracle to record all changes made to the database.
Every Oracle database must have at least two redo logs in order to function.
The redo log files are written to in a circular fashion; when the current online
log fills up, Oracle begins writing to the next available online redo log. In the
event of a failure, changes to the Oracle database can be reconstructed using
the information contained in the redo logs. Due to their importance, Oracle
provides a facility for mirroring or multiplexing the redo logs so that two (or
more) copies of the log are available on disk.

The control file describes the physical structure of the database. It contains
information, such as the database name, date, and time the database was
created and the names and locations of all the database data files and redo
logs. Like the redo logs, Oracle can have multiple copies of the control file to
protect against logical or physical corruption.

4.2.4 Processes
A process is defined as a thread of control used in an operating system to
execute a particular task or series of tasks. Oracle utilizes three different
types of processes to accomplish these tasks:

• User or client processes

• Server processes

• Background processes

User processes are created to execute the code of a client application
program. The user process is responsible for managing the communication
with the Oracle server process via a session. A session is a specific
connection of a user application program to an Oracle instance. The session
lasts from the time that the user or application connects to the database until
the time the user disconnects from the database. The processes connected
to an instance include the Oracle SID in their process name.
Specific databases 73

Figure 16. Oracle architecture

Server processes are created by Oracle to service requests from connected
user processes. They are responsible for interfacing with the database to
carry out the requests of user processes. The number of user processes per
server process is dependent on the configuration of Oracle. In a dedicated
server configuration, one server process is spawned for each connected user
process. In a multi-threaded server configuration, user processes are
distributed among a pre-defined number of server processes.

Oracle background processes are created upon database startup or
initialization. Some background processes are necessary for normal
operation of the system, while others are only used to perform certain
database maintenance or recovery related functions. The Oracle background
processes include:

• Database Writer (DBWn)
The database writer process is responsible for writing modified or dirty
database buffers from the database buffer cache to disk. It uses a least
recently used (LRU) algorithm to ensure that the user processes always
find free buffers in the database buffer cache. Dirty buffers are written to
disk using a single multi-block write. Additional database writer processes
can be configured to improve write performance if necessary. On AIX,
enabling asynchronous I/O eliminates the need for multiple database
writer processes and should yield better performance. Please reference

Applications

SGA
System Global Area
Shared Memory

Servers

CKPT PMON SMON Dnnn

SQL*Net

DBWR

LGWR

Database

Redo Log

Control Files

ARCH

Tape

Parameter Files
74 Database Performance on AIX in DB2 UDB and Oracle Environments

13.9.1, “AIX asynchronous I/O” on page 318 for additional information
regarding the use of asynchronous I/O.

• Log Writer (LGWR)
The log writer process is responsible for writing modified entries from the
redo log buffer to the online redo log files on disk. This occurs when one of
the following conditions is met:

• Three seconds have elapsed since the last buffer write to disk

• The redo log buffer is one-third full

• The DBWn process has written modified buffers to disk

• A transaction commits

A commit record is placed in the redo log buffer when a user issues a
COMMIT statement, at which point, the buffer is immediately written to disk.
The commit record serves as a reminder to the LGWR process that the
redo entries associated with this particular transaction have already been
written to disk. The actual modified database data blocks are written to
disk at a later time, a technique known as fast commit. The committed
transaction is assigned a system change number (SCN), which is
recorded in the redo log in order to uniquely identify the changes made
within the transaction.

• Checkpoint Process (CKPT)
The checkpoint process is responsible for notifying the DBWn process that
the modified database blocks in the SGA need to be written to the physical
datafiles. It is also responsible for updating the headers of all Oracle
datafiles and the controlfile(s) to record the occurrence of the most recent
checkpoint.

• Archiver (ARCH)
The archiver process is responsible for copying the online redo log files to
an alternate physical storage location once they become full. The ARCH
process exists only when the database is configured for ARCHIVELOG mode.

• System Monitor (SMON)
The system monitor process is responsible for performing recovery of the
Oracle instance upon startup. It is also responsible for performing various

Multiple database writer processes provide no performance benefit on
uniprocessor based systems.

Note
Specific databases 75

other administrative functions, such as cleaning up temporary segments
that are no longer in use and coalescing free extents.

• Process Monitor (PMON)
The process monitor is responsible for cleaning up after failed user
processes. This includes such tasks as removing entries from the process
list, releasing locks, and freeing up used blocks in the database buffer
cache associated with the failed process.

• Recover (RECO)
The recover process is responsible for recovering all in-doubt transactions
that were initiated in a distributed database environment. RECO contacts
all other databases involved in the transaction to remove any references
associated with that particular transaction from the pending transaction
table. The RECO process is not present at instance startup unless the
DISTRIBUTED_TRANSACTIONS parameter is set to a value greater than
zero.

• Dispatcher(Dnnn)
Dispatcher processes are only present in a multi-threaded server
configuration. They are used to allow multiple user processes to share one
(or more) server processes. A client connection request is received by a
network listener process, which, in turn, passes the request to an available
dispatcher process who then routes the request to an available server
process. If no dispatcher processes are available, the listener process
starts a new dedicated server process and connects the user process
directly to it.

• LOCK (LCKn)
The lock process is used in Oracle Parallel server configurations to ensure
inter-instance locking. As of Oracle 8, up to ten lock processes can be
started.

4.2.5 SQL extensions - Stored procedures
Oracle has extended the standard ANSI/ISO SQL specification by providing
additional tools and technologies for accessing the database. These include
both the procedural language extension PL/SQL and the support for
embedded SQL in Java language programs via SQLJ.

4.2.5.1 PL/SQL
PL/SQL is Oracle’s proprietary programming language extension to the SQL
language. It allows the user to define such common programming language
constructs as procedures, packages, and functions, to manipulate data stored
in the Oracle database. PL/SQL is a block-structured language, meaning that
the procedures and functions that make up the program are divided into
76 Database Performance on AIX in DB2 UDB and Oracle Environments

logical blocks. The PL/SQL engine is available not only in the Oracle server,
but in application development tools, such as Oracle Forms and Oracle
Reports as well. PL/SQL has the following features and advantages:

• SQL support.

• Object-oriented support.

• Portability. It will run unmodified on any platform that Oracle supports.

• Increased performance.

• Tight integration with Oracle.

The PL/SQL engine is also responsible for processing Oracle stored
procedures. Stored procedures are commonly used procedures used by an
application that has been stored in the database for easy access. Some
characteristics of stored procedures are that they:

• Can take parameters and return values

• Can be called by many users

• Are stored in the Oracle data dictionary

• Execute on the database server

4.2.5.2 SQLJ
SQLJ is a Java language extension that allows application programmers to
embed static SQL statements in their Java code in order to extract and
manipulate data in the database. Static SQL statements are predefined and
do not change over the course of the execution of the program. Oracle’s SQLJ
implementation consists of two major components:

• Oracle SQLJ translator
The translator is a preprocessor or precompiler that is run against SQLJ
source code to produce Java file output. A Java compiler is then invoked to
produce class output files from the Java source code.

• Oracle SQLJ runtime
The SQLJ runtime is invoked when a user invokes a SQLJ compliant
application. It then accesses the underlying database using the Oracle
Java Database Connectivity (JDBC) driver.

4.2.6 Administration tools
Oracle provides several unique tools for managing various aspects of the
database. These include tools for exporting and importing data, performance
and availability monitoring, and centralized database administration. These
Specific databases 77

include Server Manager, Export and Import, and Oracle Enterprise Manager
(OEM).

4.2.6.1 Server Manager
Server Manager is an Oracle tool used to perform routine database
administration tasks, such as startup and shutdown of the database, backup
and recovery, and running dynamic SQL statements. There are both
command-line and GUI versions of the tool available. Server Manager can be
used to:

• Create a database and initialize the Oracle data dictionary

• Administer multiple databases

• Centralize database management by connecting to both local and remote
databases

• Dynamically execute SQL, PL/SQL, or Server Manager commands

4.2.6.2 Export and Import utilities
Oracle provides utilities for the exporting and importing of data contained in
the database. The primary tools for exporting and importing are exp and imp

commands. The exp command is used to extract the object definitions and
table data from an Oracle database and store them in an Oracle proprietary
binary format on disk or tape. Likewise, the imp utility is used to read the
object definitions and table data from the exported data file and insert them
into an Oracle database.

While the imp utility addresses the need for importing data that was exported
from an existing Oracle database, it does not provide a facility for importing
user defined data. The Oracle utility SQL*Loader is used to load data from
external data sources into an Oracle database. SQL*Loader can be used to:

• Load data from multiple input files of different file types

• Load data from disk, tape, or named pipes

• Load data directly into Oracle datafiles, thereby, bypassing the Oracle
buffers and increasing the speed of data import operations

• Load fixed format, delimited format, or variable length records

• Selectively filter data based on predefined filtering rules

4.2.6.3 Oracle Enterprise Manager (OEM)
Oracle Enterprise Manager (OEM) is an integrated system management tool
for managing Oracle databases. It includes a graphical console, intelligent
system agents, and access to common database management tools. The
78 Database Performance on AIX in DB2 UDB and Oracle Environments

graphical console serves as a central management point for the database
allowing the database administrator to:

• Administer and tune multiple databases

• Perform software distribution to both client and servers

• Schedule jobs to run on different databases at different times

• Monitor and respond to predefined database events
Specific databases 79

80 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 5. Parallel databases

This chapter’s purpose is to provide information about the parallel versions of
DB2 UDB and Oracle. These are called DB2 UDB EEE and Oracle Parallel
Server (OPS). Both of these products are covered in greater detail in other
redbooks and are, therefore, not the main subject matter for this redbook.
They have been included here to highlight the functional differences between
the standard (sometimes called classic) versions of these databases and the
parallel versions.

This chapter also allows you to gain an understanding of how the parallel
versions work, how they benefit from the RS/6000 SP architecture, and in
which workload environments they are most efficiently used.

Parallel Database Management Systems are designed to store and manage
very large databases and to provide better performance than purely serial
database systems. The term Very Large Databases (VLDB) is used to refer to
databases that are 200 GB or larger in size. Databases for Decision Support
(DSS), Data Warehouses or OLAP typically contain a large amount of data
generated over a large time frame. They usually have one, very large table
called a fact table and some small tables called dimension tables. OLTP
databases can have very large tables too, but this is not as common.

The implementation of parallel RDBMSs depends on the hardware
architecture on which the database system runs. This chapter provides
information about how parallel database concepts are implemented by DB2
UDB and Oracle on the RS/6000 SP. Some reflections about the advantages
and disadvantages of parallel database systems are made.

5.1 Parallel concepts in database environments

Large and parallel databases benefit from certain system architectures, such
as shared memory, shared disk, or shared nothing architectures. The
implementation of parallel databases also depends on the hardware
architecture on which the database system runs. This section is meant as a
short introduction into these system architectures.

5.1.1 Shared memory
In a shared memory environment, the system consists of two or more
processors.These multiple processors access the same memory and also the
disks of the system concurrently. This is called a Symmetric Multi Processor
(SMP) environment. The database system uses the availability of multiple
© Copyright IBM Corp. 1999 81

processors to split the workload of a query onto these CPUs in order to
improve the query’s response time. This is shown in Figure 17 and is typical
of the RS/6000 R Series, H Series, and S Series machines.

Figure 17. Shared memory

5.1.2 Shared disks
In a shared disk environment, every CPU has its own dedicated memory, but
all processors share the same disks within the system. An RDBMS on this
system consists of one database system that stores data and indexes across
all disks. Every process running on any CPU has access to all data and
indexes that are placed on all disks of the system. In order to improve
performance, it is easy to add additional CPUs and memory. Therefore,
systems with shared disk architecture have good scalability. This is shown in
Figure 18 and is used in RS/6000 HACMP clusters for fast recovery.

p r o c e s s o r s

s h a r e d m e m o r y

d is k s
82 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 18. Shared disk

5.1.3 Shared nothing
In a shared nothing environment, every CPU has its own memory and its own
set of disks and, therefore, does not have to compete for resources with other
processors. These loosely coupled systems are linked by a high speed
interconnection (see Figure 19). As nothing is shared, the system can scale
to a high number of nodes. This environment is referred to as Massively
Parallel Processors (MPP). It can be implemented by two or more separate
RS/6000 systems connected via fast communication adapters (Token Ring,
Ethernet).

An implementation of this concept is the RS/6000 SP system. This system
has several nodes installed in one or more frames. A node is an independent
RS/6000 model with CPU, memory, internal disks, and communication
adapters. The nodes are connected via the SP Switch for
inter-communication. Within the RS/6000 platform, parallel databases means
RS/6000 SP.

d i s k s

p r o c p r o c p r o c p r o c

m e m m e m m e m m e m

O S O S O S O S

i n t e r - p r o c e s s o r c o n n e c t i o n
Parallel databases 83

Figure 19. Shared nothing

5.2 DB2 UDB Enterprise - Extended Edition (EEE)

IBM implementation of parallel database concepts on AIX is DB2 Universal
Database Enterprise - Extended Edition (DB2 UDB EEE). This product is
based on the same code as DB2 UDB Enterprise Edition and extended with
the fileset DB2 UDB Parallel Extension that enables the distribution of data
and indexes over multiple database partitions. For this reason, it is also called
a partitioned database system or clustered system.

5.2.1 Concepts and functionality
What makes DB2 UDB EEE different from DB2 UDB EE is the capability of
splitting the data into database partitions. A database partition is a logical
concept that must be mapped to the available hardware by the database
administrator. On an RS/6000 SP, you may decide to assign one partition to
every single node of your system, but it is also possible to declare several
partitions per node. On large SMP machines, you logically assign a number of
processors, memory, and a couple of disks per partition. The decision of how
many partitions your system should have must be a balance between the
overhead a partition adds to your configuration (in terms of CPU, memory, and
administrative resources) and the higher level of parallelism you gain for some
operations, such as loads, backups, and all those workloads that are often
referred to as batch jobs. In previous versions of DB2 UDB, database partitions
were called logical nodes, which gives an idea of the internal processing
independence that one database partition owns.

On each database partition, one database manager is responsible for a
portion of the databases data. Each database server has its own set of data.

d i s k s

p r o c p r o c p r o c p r o c

m e m m e m m e m m e m

O S O S O S O S

i n t e r - p r o c e s s o r c o n n e c t i o n

d i s k s d i s k sd i s k s
84 Database Performance on AIX in DB2 UDB and Oracle Environments

The fact that data is partitioned across database partition servers is
transparent to users and applications. Each database system has one
database partition on which the create database command for the database
was issued. This database partition contains the database system catalogs
for the entire database and is called the catalog node. The user interaction
with the database is handled from the node the user is connected to. This
database partition is known as the coordinator node. Each database partition
can act as a coordinator node to handle the distribution of system resources.

Data and indexes are stored in tablespaces. DB2 UDB EEE uses nodegroups
to define to which nodes every table space is distributed. A nodegroup is a
group of database partitions.

DB2 UDB EEE executes everything in parallel. All database functions, such
as SELECT, INSERT, UPDATE, and DELETE are performed in parallel on all
database partitions. Both database activities, such as data scan, index scan,
joins, sorts, index creation, or table reorganization and DB2 UDB utilities,
such as data load, backup, and restore are executed simultaneously on all
partitions. Particularly the loading of very large amounts of data can be
performed much faster in this parallel database environment than on a serial
database system.

DB2 UDB EEE provides excellent scalability. If the number of concurrent
connected users grows over time, or the amount of data reaches the system
resource capacity, a parallel database system can be extended by adding
additional nodes to the system and defining new database partitions. DB2
UDB EEE provides the capability to redistribute the data onto the newly
added node. This means that after adding a database partition, the database
manager starts to move a part of the data to the new node in order to get an
equally balanced system. This process is referred to as data redistribution.

Communication across all database nodes is realized by the Fast
Communication Manager (FCM). Each database partition has one FCM
daemon to provide communication support in order to handle DB2 UDB agent
requests and to manage message buffers. In an SP environment, the FCM
daemons interact over the SP Switch and TCP/IP sockets. On an SMP
system, this communication happens in shared memory.

DB2 UDB EEE uses a hashing strategy to partition the data. If you want a
partitioned table, you have to decide on which nodes (database partitions) the
data will be distributed. These nodes will form a nodegroup that can be reused
for other tables you want to partition as well. Internally, DB2 UDB will create for
you a partitioning map, which plays an essential role for the hashing process.
Then, you have to declare a tablespace and assign it to the nodegroup previously
Parallel databases 85

created. It will contain the definition of the physical layout, that is, you specify
directories, files, and raw devices where the data will be physically stored. Again,
this tablespace can be reused for other tables and indexes as well. Finally, you
declare your table in this tablespace, specifying a partitioning key (the second
essential player in the hashing process) and start to insert or load data. DB2
UDB will decide to which node each record must be sent.
The partitioning key consists of one or more columns of the table. Do not forget
that all columns of the partitioning key must be included in the primary key or
unique indexes you might want to create on this table. Briefly, the partitioning
process starts when a new row must be inserted: DB2 UDB applies its internal
hashing function, taking the value(s) of the column(s) defined as partitioning key
argument(s), and produces a hash-value for this row. Then, DB2 UDB scans the
partitioning map of the nodegroup searching for the hash-value. The partitioning
map contains the information on which node is assigned to which hash-value.
Finally, the row is sent to the node according to the definition of the partitioning
map and is stored in the datafiles specified in the tablespace.

The determination of the best partitioning key is important for the most
effective distribution of rows and is, therefore, essential for optimal system
performance. See also The DB2 Cluster Certification Guide, ISBN
0-1308-1500-X, for more information.

5.2.2 Optimizer
DB2 UDB EEE uses a cost-based optimizer. It compares different data
access methods and selects the most efficient one. The optimizer uses
information about how base tables and the intermediate tables that result
from queries are partitioned across the system and determines the best
execution strategy. As a result, the optimizer determines a cost optimized
access plan for that query that can be visualized through performance tools,
such as Explain. When generating the access plans, the optimizer considers
different parallel methods for joining tables including co-located, directed, and
broadcast joins. The optimizer features extensions, such as SQL query
rewrite, SQL extensions, Star Joins, Dynamic Bit-Mapped Indexing ANDing
(DBIA), and OLAP extensions to find the optimal strategy for joining very
large tables with one or more small table.

5.2.3 Inter-partition and intra-partition parallelism
All database operations, such as index scans and table scans, aggregation,
set operations, joins, inserts, deletes, and updates can gain significant
performance improvements provided by the intra-query parallelism and/or
inter-query parallelism. The DB2 UDB cost-based optimizer decides whether
a user statement runs in parallel or not, which stages of that user statement
86 Database Performance on AIX in DB2 UDB and Oracle Environments

are parallelized, and how these stages are parallelized. The decision is based
on:

• Available hardware (such as the number and speed of processors, the
number of nodes, and the number and speed of disks)

• Configuration parameters

• Current workload (how many queries run on the system and how many
resources are consumed)

• Type of operation

• Physical layout (nodegroup configuration, tablespace containers)

• Available information about the objects referred to in the statement (table
and index statistics)

Inter-partition parallelism means that the function is executed in parallel by
each database partition. An example would be when a user or application
issues an SQL statement, such as a SELECT statement, to fetch data with
certain conditions from many tables spread over multiple nodes. In this case,
the coordinator node sends this request to all database partitions. The
database manager on each node selects the data from tables stored on the
disks, sorts the data, and sends all rows that meet the selected conditions
back to the coordinator node. On this node, all rows are finally merged and
returned to the user or application. In this example, the function (query) is
shipped to all nodes, and only the data that satisfies this request is sent back
across the network. This concept reduces the network traffic and is known as
function shipping.

Intra-partition parallelism allows different operators in the same query to be
executed in parallel by the same database partition node. If, for instance, an
application performs a query including a SCAN, a JOIN, and a SORT, the
database manager can execute this request in parallel depending on the
setting of dedicated DB2 UDB configuration parameters.

5.2.4 Hardware implementation
As mentioned above, DB2 UDB EEE is designed for two different types of
hardware configurations:

• MPP systems with shared nothing architecture

• SMP systems with shared memory architecture

5.2.4.1 DB2 UDB EEE on RS/6000 SP
An RS/6000 SP is the most commonly used system for DB2 UDB EEE. Each
node is an independent RS/6000 model with CPU, memory, internal disks,
Parallel databases 87

and several adapters for communication, external disks, and devices. One
key part of the SP is the switch, which is responsible for high performance
data transfer. The communication protocol used by the nodes to communicate
through the switch is TCP/IP with the advantage of easy implementation and
configuration associated with this protocol. The administration of this system
is done from a single point of control using a dedicated machine known as
Control Workstation (CWS). This is an RS/6000 model with enough disk
space to hold all management tools and all LPP sources for all nodes. It also
contains a graphic adapter, monitor and keyboard, a CD ROM for software
installation, and backup devices, such as tape drives.

Additional software must be installed on all nodes and the CWS in order to
provide inter-communication support and management. This software is the
AIX Parallel System Support Programs (PSSP), which is also responsible for
authentication, security, and administration.

This environment is best suited to make use of all the features that DB2 UDB
EEE provides for optimal performance.

If an SP system contains SMP nodes, it is possible to combine the
advantages of MPP systems with those of SMP systems. In this environment,
two or more database partitions reside on one SMP node, and each node is
part of a clustered databases system on the SP.
88 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 20. DB2 UDB EEE structure

5.2.4.2 DB2 UDB EEE on an SMP system
DB2 UDB EEE installed on an SMP system corresponds to the concept of a
shared memory implementation. Optimal performance will be achieved by
using a system with eight or more CPUs, on which one database partition
uses one, two, or four processors. The amount of memory should be as large
as possible to provide enough space for buffer pool and buffers for all
database manager processes. In order to prevent the disk subsystem from
becoming a bottleneck for I/O throughput, it is recommended to use more
than one SCSI adapter or more than one SSA subsystem to provide a larger
bandwidth.

This environment might be a good solution for DSS databases, BI
applications, and Data Marts where many complex queries run in a loop
against a larger table, and the most used computer resource is the CPU.

5.3 Oracle Parallel server

Oracle has implemented its RDBMS product on the IBM RS/6000 SP so that
it can run on multiple nodes of an SP in parallel. This implementation uses
the shared disk model as discussed earlier in this chapter and is unique in

Parti tioned D atabase

D atabase
P art ition
Server

Da tabase
Partition
Server

d isksdisks disksdisks

1 2 3 4 5 6 7 8

Database
Partit ion

Database
Partit ion

Database
P arti tion

Database
P arti tion

Database
Partit ion
Server

Da tabase
Partition
Server

High Perform ance Sw itch Toke n Ring Etherne t

n ode 1 n ode 2 node 3 node 4

Database Ins tance
Parallel databases 89

this as the other parallel databases use shared nothing. The parallel version
of Oracle is like classic Oracle with a few additions.

• It makes use of the Oracle Parallel Query (OPQ) features that are also
available on classic Oracle, but here, not only does the query get split out
onto the CPUs of a single system but also split out across the nodes of the
SP. This feature is used a lot in DSS workloads where all the CPUs in all of
the different nodes can participate in working on the query for maximum
parallelization and reduced response times.

• The addition of Oracle Parallel Server (OPS), which allows different
instances of Oracle to run on different nodes of the SP having shared
access to a single database. OPS uses two extra subsystems to achieve
this: The Virtual Shared Disk (VSD) and the Distributed Lock Manager
(DLM). These two components are described below.

• Many Oracle tools have been enhanced to allow extra parallelization, for
example, parallel load and parallel indexes.

• To support very large databases, the new partitioned tables features is
very important. It reduces DBA time for load, index, and delete operations
of very large tables and can also reduce query time.

Many of these extra features are also available in the classic version of
Oracle where they are useful, but they become very important for OPS and
with extremely large databases.

5.3.1 Parallel Oracle architecture
Figure 21 shows the various components of classic Oracle. There are two
major components:

1. The Instance - The processes connected and co-operating via the
SGA. The front end processes (also referred to as client processes and
server or shadow processes) are connected to users and execute the
SQL statements. The back end processes (also referred to as
background processes) are internal to Oracle for the redo log,
database updating and recovery. They come and go with an Oracle
Instance.

2. The Database - All the disks and files that make up the database.

See 4.2, “Oracle database architecture” on page 68 for more details on
Oracle structure.
90 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 21. An Oracle instance

In Oracle Parallel Server, there are multiple copies of the instance and a
single database. Figure 22 shows the overview level of Oracle with multiple
instances and one database. The database is, of course, made up of lots of
files and/or devices that are ultimately on a disk in the system. This general
architecture of the OPS is then mapped to the SP architecture where each SP
node is an RS/6000 computer on its own. Each node has:

1. One CPU or multiple CPUs (in an SMP node)

2. Memory

3. Adapters

4. Disks

On the SP, there is also the High Speed Switch network that allows fast
communication (low latency) and high bandwidth (large data transfers)
between the nodes of the SP.

Parameter Files

Data

Control Files

Front End

SGA
System Global Area
Shared Memory

Back End

Index

RollbackSystem/DD

Redo Log

OS.
AIX

Tmp/Sort

Archive
(disk or tape)
Parallel databases 91

Figure 22. General Oracle Parallel Server architecture

With OPS, one instance of Oracle is run on each node of the SP, but there are
two problems with this architecture:

1. An individual disk is actually attached to one of the nodes. This makes
it impossible for an instance on one node to read data from disks that
are attached to another node.

2. All of these instances of Oracle may have local copies of data blocks,
and there is a risk of two of them updating the same data and, thus,
corrupting the database.

These two problems are addressed by two software systems:

1. The Virtual Shared Disk (VSD) makes it possible for OPS to read the
data from a remotely attached disk. The details are in 5.3.2, “Virtual
Shared Disk (VSD)” on page 94.

2. The Distributed Lock Manager (DLM) makes sure data corruption
between instances does not happen.The details are in 5.3.3,
“Distributed Lock Manager (DLM)” on page 95.

Figure 23 shows the architecture of OPS when implemented on the SP. The
database is spread across disks that are attached to all the nodes of the SP.
This spreads the I/O requirements evenly across disks, adapters, and all of
the nodes in order to reduce I/O bottlenecks.

Front End

SGA

Back
End

Front End

SGA

Back
End

Front End

SGA

Back
End

Front End

SGA

Back
End

Front End

SGA

Back
End

Logical Database

Disks that make up the database

One
Instance
92 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 23. Parallel Oracle on SP

When an application connects to OPS, it actually connects to one of the
instances. As every instance has access to the entire database, simple
(OLTP type) queries are performed directly by that instance. If the query is
large, Oracle is able to split the query into sub-queries. For example, a full
table scan can be broken down into a number of sub-queries that each work
on a range of rows, and other sub-queries can merge the results together and
sort the results. On an SMP node, these sub-queries can be run on different
CPUs. For very large queries, the sub-queries can also be sent to other
nodes of the SP, and the results are sent back to the original node. So, in
Parallel Oracle, there are two types of parallelization:

• Degree - The number of processes (and, therefore, CPUs) on an instance

• Instance - The number of instances to use

The decision on the amount of parallelization is made by the optimizer and is
based on the parameters set on one of the following:

• Table level parallelization settings

• Hints in the SQL statement

In general all the nodes in an OPS system on the SP are kept identical to
reduce system administration and DBA workloads. Due to the extra
dimension of multiple nodes and the large size of these databases, OPS is
considered complex when compared to a single SMP machine running on

Adapter Adapter Adapter Adapter Adapter

VSD - Virtual Shared Disk

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

DLM - Distributed Lock Manager
Parallel databases 93

smaller databases with classic Oracle. However, the power and scalability of
the SP does mean that much larger databases can be implemented, and this
is a requirement, particularly for DSS workloads.

5.3.2 Virtual Shared Disk (VSD)
This is an IBM supplied product that allows any of the nodes in the SP to read
and write data from disks attached to other nodes. Figure 23 shows that the
VSD layer is between the Oracle Instance and the device drivers and disk
adapters. OPS does not have direct access to the disks but opens VSD
devices instead. The VSD layer then checks if the real disk is attached to the
local node, and if not, it works out which other node has it attached:

• In the case of a local disk, the read/write request is passed by the VSD
directly to the regular logical volume device driver on the node.

• In the case of a remote disk, the request is sent by the VSD device driver
(via the SP Switch) to the VSD device driver on the node to which the
disks is attached. The receiving VSD device driver then passes the
request to the device driver of the second node, and the data is read or
written on behalf of the initial node. The data is also transferred over the
SP Switch.

The difference in time between the local and remote disk I/O is small.

Figure 24. Oracle tables working with VSD operations

Row->Tables->Tablespace->File->VSD->LV

File 1

File 3

File 2

lv03

lv02

lv01

High Speed Switch

vsd01

vsd02

vsd03

N
od

e
B

Table

Tablespace

N
od

e
A

D
ev

ic
e

D
riv

er

VSD Device Driver

VSD Device Driver

VSD Device Driver

VSD Device Driver

VSD Device Driver

VSD Device Driver
94 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 24 shows the VSD structure in more detail. Node A thinks it has three
files that make up a tablespace, but the files are actually VSDs. When Oracle
reads from or writes to these files, the requests are passed over the High
Speed Switch to the right node.

In OPS, all Oracle data files are raw devices; there are no JFS based data
files except for the init.ora parameter files. Reading from, and writing to, a
table means I/O operations are performed to one or more of the files that
make up the tablespace in which the table resides. As far as Oracle knows,
these files behave like real devices but are actually VSD devices. If
necessary, the disk I/O requests are redirected to the node with the logical
volumes that contain the actual data where the regular logical volume
manager device driver actually does the disk I/O.

5.3.3 Distributed Lock Manager (DLM)

Figure 25. Distributed Lock Manager operation

The following is a brief description on how the DLM works by taking a simple
example where the instances on the far right and far left want to update the
same block in the database. The order is as follows:

1. The right instance wants the block; so, it requests a lock from the DLM
for that block, and the DLM grants the lock because no other instance
has the lock.

VSD - Virtual Shared Disk

DLM(1)Lock/OK

(2)Read

(3)Lock(4)Force

(5)W
rite

(7
)R

ea
d

(6)OK

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Adapter AdapterAdapterAdapter Adapter
Parallel databases 95

2. The right instance reads in the block into its local SGA buffer cache.

3. The left instance wants the block; so, it requests a lock from the DLM
for that block, but the DLM finds that the block is locked.

4. The DLM requests the right instance to release the lock.

5. When the right instance has finished the transaction, it writes the block
to the disk via the VSD and informs the DLM that it no longer needs the
lock and releases it.

6. The DLM grants the lock to the left instance.

7. The left instance reads in the block.

Note that this example is for instances needing to update a block. In the case
of read access, multiple instances can have a read-only copy of a block, but if
an instance wants to update the block later, they all have to release the read
copy.

Improvements have been made in Oracle 8i (Version 8.1.5 and later), which
improve OPS performance by eliminating the need for two disk operations
when one instance needs a read-only copy of a data block that is modified in
another instances cache.

In this case, a ping (as described above) is replaced with a cache to cache
transfer of the data block over the switch or network. This is referred to as
Cache Fusion. The cache to cache transfer over the network, along with the
required DLM communication, is much faster than having one instance write
the block out to disk and the other instance read it from disk.

5.4 Advantages and disadvantages of parallel databases

The overriding advantage of a parallel database is that it can be used with
database sizes far bigger than the largest database that can be connected to
an SMP system. Some recent RS/6000 SP systems are in the 10 terabytes to
80 terabytes range of disk space.

There are three workloads to cover:

1. For decision support queries that are very complex and involve very large
volumes of data, the parallel databases allow the whole system to split
down the work into small components so that the parallel machine can
work on it. This gives good performance gains in reduced response times
and increased throughput.

2. For medium complex queries (such as data mart, OLAP, or batch loads),
where there are a number of users (for example, five to 50), the various
96 Database Performance on AIX in DB2 UDB and Oracle Environments

levels of parallelization means that the parallel database can spread the
demands across a portion of the machine to give concurrent access and
reduced query times. If there are high numbers of users (for example,
higher than the number of CPUs in the system), then the queries are
typically not made parallel. For this to work, the users of the system have
to be requesting small to medium size queries.

3. For small queries (such as OLTP), there are issues for the parallel
database. These evolve around three critical areas that are harder for
parallel databases than for classic databases:

• Function shipping - For DB2 UDB EEE, if the query only involves very
low numbers of rows, the request is sent to the nodes with the data.
The results are sent back to the original node for final manipulation to
return them to the application. This requires inter-node communication
and CPU resources. The classic DB2 UDB does not have this overhead
and, therefore, will appear faster.

• I/O shipping and locking - For Oracle OPS with more than three nodes,
the majority of the I/O is done remotely (via VSD). This takes extra time
but also involves locking the data via the DLM, which takes extra time
too. In the worst case, however, every transaction requests the same
block (or small set of blocks). This involves the DLM forcing the release
of the lock and the block being repeatedly written to disk in order to be
read into another node (called block pinging). Applications requiring
this will run much slower on a parallel database.

Therefore, for OLTP type workloads, there are problems to consider.
These can be tackled with:

• Careful design of the database and partitioning of the data.

• Careful design of the application to reduce inter-node workload.

• Use of a transaction processing monitor, such as: CICS, Encina,
Tuxedo, or Top End to make sure the transactions go to the right node
and data.

Parallel databases and large databases go hand-in-hand. This means the
problems of parallel databases are mainly due to the size of the database.
Large and parallel means:

• Large systems cost more, are complex to justify in the initial stages, and
take longer to implement and, thus, have management focus. Therefore,
they need careful and experienced project management. Many large
system problems stem from lack of project management rather than
technical problems.
Parallel databases 97

• Large systems take higher people resources. A single parallel 5 terabyte
system might take less man-power than managing 50 * 100 megabyte
systems but will take more than a single 100 megabyte system.

• Parallel RDBMS and the RS/6000 SP are more complex and require that
database and system administrators have additional education and
experience.

Given a choice between a large SMP system or a small parallel system, we
usually recommend an SMP system unless the database size will outgrow the
capabilities of the largest SMP. The size of IBM SMP systems, like the
RS/6000 S80, are growing every year due to the developments in processor
design and SMP technology. There is some cut off between the largest SMP
available today and a set of SP nodes. It can be very hard to determine where
that is, but remember the extra complexity of a parallel database added to the
path length for a transaction. This means more CPU instructions are executed
on a parallel database. A single node parallel database will run slower than a
single node classic database with the same CPU power. This negative impact
is removed as soon as the parallel database has more nodes. For these
reasons, we do not recommend less than four nodes in a parallel database
environment.
98 Database Performance on AIX in DB2 UDB and Oracle Environments

Part 2. System design and sizing for optimal performance
© Copyright IBM Corp. 1999 99

100 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 6. Sizing a database system

This chapter provides an overview of concepts and rules of thumb for sizing a
database system based on IBM RS/6000.

Sizing is the estimation of the type and size of the components in a balanced
system that supports a defined application workload while meeting a set of
performance requirements.

System components can be, for example, CPU, memory, disks, and network
connections. Application workload is determined by the type of application,
the amount of data, the number of users, and the type and number of
transactions and/or batch jobs the users initiate on the system. Performance
requirements are usually stated in terms of expected throughput and
response time.

The objective of sizing a system for RDBMS should be a balanced system. A
balanced system is a system that has a sensible set of CPU, memory, disks,
and network connections. There should be no bottleneck, which would make
the other components ineffective. All parts of a balanced system are used
appropriately during normal business operation workloads.

Accurate sizing requires detail quantitative requirements, which are rarely
available, therefore, a practical approach is needed.

The final aspect is that the recommended system configuration is reflected in
the costs of the machine. Successful system sizing requires choosing the
right components from the alternatives to maximize the price performance
and to meet the growth requirements.

6.1 Sizing constraints

Sizing a system is a difficult undertaking. The results of the sizing is the
system configuration in terms of CPU, memory, adapters, and disks to
perform the required computing tasks. In addition, there are other factors that
also effect the recommendation. These include:

Sizing always assumes the system is installed properly and well tuned. A
poorly tuned system will not reach the performance requirements.

Note
© Copyright IBM Corp. 1999 101

• Growth - Most systems are expected to grow by a factor from 30 percent to
100 percent a year. This is often built into the sizing, and the
recommended system must demonstrate the ability to be upgraded.

• Availability - All systems are regarded as important. But some are vital for
the commercial success of the company and can justify the expense of
disk protection and products to ensure minimum down time, such as High
Availability Clustered Multi-Processors (HACMP) from IBM.

• Cost limits - Often a sizing is made to a budget. In this case, the sizing
determines the best configuration for the requirement at the price or that it
simply cannot be done (and requires further negotiating).

We recommend you to use the following:

• For growth, it is best to simplify the work by only considering one size at a
time. Once all the configuration details are decided, then the alternative
sizes are considered - one by one. It does not matter if you start with the
initial or final configuration. It can be the initial system followed by how to
upgrade to the final size. Alternatively, you can size the full configuration
and then decide what parts can be removed to make the initial system. In
either case, develop a growth plan for minimum disruption of the system
during the upgrade. SMP machines make this relatively simple. Also,
sometimes the initial machine can be assigned a different task as part of
the upgrade. For example, it may become the test or development
machine once the larger production machine is available.

• For availability, first size the system without disk protection. Once a good
configuration can be recommended, the disk protection should be
considered. For disk protection, the common solutions are mirrors
(doubling the cost) and RAID 5. Then the additions required for HACMP
should be priced. Most customers prefer to understand the extra costs and
benefits as a separate issue.

When planing a database system on a new RS/6000 or migrating an existing
database system to a new one, several factors need to be considered. These
are mainly:

• The type of workload and the CPU power required for the various
transactions

• The expected size of the database data and the largest table in it

Size the basic system first and then add extra complexities of growth and
availability to the configuration.

Note
102 Database Performance on AIX in DB2 UDB and Oracle Environments

• The other database objects, such as indexes and temporary space

• The type of data you will be using

• The maximum number of concurrently connected users

• The maximum number of concurrent jobs

• The number of transactions within a certain period of time

These factors are used to determine which hardware system is needed,
particularly if a single CPU system or an SMP system is required.

Unfortunately, most database sizing tasks do not have sufficient information
to allow an accurate sizing. The computer saying of Garbage In = Garbage
Out applies especially to sizing when not enough accurate details are
available. However, even with very limited information, sizing does have to
take place for sales and budgeting, but the unavoidable result is high error
margins.

6.2 Sizing techniques

Sizing a system is a difficult task. It is not difficult though when given precise
details of the requirements to precisely workout every detail of the system
and the exact configuration. The problem is the level of details available from
which to size. You should have the following details:

• Disk size

• Disk I/O

• The numbers of users

• The various transactions and batch processes in terms of CPU
requirements

• The transaction rates

• The memory for the system (database cache and per user)

• Availability requirement to decide the needs for disk protection and
HACMP

• The network latency and bandwidth

• The backup requirements

With limited input facts, sizing becomes estimation and guesswork.
Garbage In = Garbage Out
Sizing a database system 103

Given all of the above, a spreadsheet could quickly determine an ideal
system.

But, in practice, people are asked to size based on one, two, or three of the
facts above, which means a lot of guesswork and assumptions are required.

Given the lack of information, the error margin of the sizing is going to be
large, but customers need some indication of the size and type of machine
they should consider.

6.2.1 Sizing from the data size
Data size is often the only clear fact from which to size.

First, you have to decide if this size is the data or disk size. This has to be
checked and confirmed, or the system could be wrong by a factor of three. If
no other details are available, then the 1:3 ration of raw data size to disk size
is used. For example, 50 GB of raw data will require 150 GB of disk space.
The minimum number of disks for a database is six disks, and you should
always use the smallest disks available, as the more disks you have, the
higher the I/O rate.

Then, you can use the balanced systems rules of thumb to work out the CPU
and memory sizes. See 6.7, “Balancing a system via the component costs” on
page 119 for more information.

Be aware that the below are very rough estimation rules of thumb and should
be considered to have a plus or minus 50 percent error margin.

• Memory can be very roughly sized as 5 percent of the raw data size plus
64 MB for AIX and RDBMS processes.

• CPU can very roughly be sized via the formula 2 GB of raw data per
Relative OLTP. For example, the F50 4 way 332 MHz has a Relative OLTP
value of 32; so, using the formula, this system should roughly be able to
support 64 GB of raw data.

6.2.2 Sizing from transaction rates
Some sizing is done from the customer knowing the transaction rates that are
required on the system. This is often based on previous sales and marketing
estimates.

There is a serious problem when taking a years worth of transactions and
working out a transactions per minute rate from this.
104 Database Performance on AIX in DB2 UDB and Oracle Environments

For example, it might be known that last year 1,000,000 items were sold and
each required two transactions on the system (one for ordering and one for
shipment). This gives us 2,000,000 transactions. If we allow five days a week,
52 weeks a year, and eight hours a day, we can workout that 2,000,000 / 5 /
52 / 8/ 60 = 16 transactions per minute. But people do not order or work like
this. First, there are seasonal buying patterns. Second, people do not work
eight hours a day at a constant rate. So, we might guess 30 percent of sales
are in one month, and 60 percent of the orders are taken between 10 am and
12 mid-day. If you check the math, you get 150 transactions per minute. You
can see 150 is a large difference from 16 transaction per minute. If the
workload is generated from Web users, the peaks in demand can be extreme
and totally unpredictable.

Once we have a transaction rate we can then compare this to some standard
benchmark numbers. But be careful when comparing to standard
benchmarks, such as TPC-C, TPC-H, or TPC-R. These benchmarks are run
on very highly tuned system. In TPC-C, the application is very small, and the
transactions are very small. If the application you are going to use, and the
transactions are not exactly like the benchmark you are comparing with, you
will introduce are very large margin of error.

Internally to IBM, and for IBM Business Partners, there are tools that contain
typical transactions from benchmarks and are based on real production
workloads. These tools are called FastSize and the RDBMS Sizer and are
available from http://w3.aixncc.uk.ibm.com or the ParterInfo system for
Business Partners. These tools have the CPU, disk read/write, and memory
requirements for various transactions. This is multiplied with the number of
users and the transactions rates to estimate the CPU, disk, and memory. This
is then matched against the machines in the RS/6000 range to find suitable
machines and configurations.

Because transaction complexity can differ by three orders of magnitude, we
cannot offer any rules of thumb. If you can find examples of the transactions
running on a system and know the transaction rates, then you can workout
the CPU power required per transaction and work from there.

6.2.3 Sizing from user numbers
If the number of users on the system is known, then the first question that
needs clarification is what kind of users they are:

• Users just known by the system as defined users

• Users logged on to the system but might not be using it at the moment

• Users actually busy using the system in the peak period
Sizing a database system 105

Once this is worked out, it is best to classify the users into different types,
such as those only looking up data, those inputting information, those doing
complex transactions, and those starting large report generation type tasks.
Each of these users is likely to have different response time requirements.

We suggest that you do not think in terms of all transaction must take less
than three seconds because there will be some large transactions that are
never going to be that short. A wildcard search of a large number of records
takes time and so do reports that need to summarize a lot of data. A better
way to specify the required response time would be: 90 percent of the
transactions will take less than two seconds, or something similar.

Given the above information, the transaction per second or minute can be
estimated, and then you can try sizing based on the transaction rate (see
Section 6.2.2). The tools mentioned there can help estimate system sizes
from the number of users too, but assumptions on the transaction types and
rates introduce large margins of error.

6.3 Sizing for a particular application

There are many applications available on AIX and some very popular ones in
the Enterprise Resource Planning (ERP) arena, for example, Oracle
Financials, SAP, BAAN, and Powersoft. If you are sizing a system for an
application, the first place to call is the application vendor. They, after all,
understand:

• The application and the workload it generates.

• The database structure and size.

• Typical user and transaction rates.

• How the system operates in installed production systems.

Many software application vendors perform benchmarks and capacity
planning tests with IBM to establish the best method of sizing and which
parameters are best to estimate the machine requirements.

Many times IBM or IBM Business Partners can add experience and product
knowledge once the vendor has provided the initial sizing estimates.

6.4 CPU goals and sizing

It is imperative to first determine the CPU requirements when selecting an
RS/6000 model. The recommended configuration of the system should be
106 Database Performance on AIX in DB2 UDB and Oracle Environments

less than full capacity to allow for future upgrades. This is valid for all
components of the system (CPU, memory, disks, etc.).

The RS/6000 family provides a wide range of systems starting from single
CPU systems up to Symmetric Multiprocessor (SMP) systems with 24
processors. The selection of the system should correlate with the anticipated
workload.

6.4.1 Uniprocessor (UP) Systems
A Uniprocessor System is sufficient to serve the needs of a department
where the data is managed by a single database system. Memory or disks
can be added, if necessary, but the number of CPUs cannot be increased.
The amount of data that can be handled by a single processor is limited. As
workload increases, a single CPU may become insufficient to process user
requests regardless of other additional components, such as memory or disks
that may be added.

6.4.2 Symmetric Multiprocessor (SMP) Systems
Symmetric Multiprocessor Systems are made up of multiple, isometric
processors within the same machine. Resources, such as disk space and
memory, are shared. SMP systems generally allow more disks and memory
to be added than UP systems and are as easy to manage. With multiple
processors, different database operations can be completed significantly
faster than with a single processor.

The problem with SMP machines is that, for efficient use, each CPU needs to
have something to do. This depends on the workload involved.

• Online Transaction Processing (OLTP) workload involves many users and
naturally uses either a lot of processes or a lot of process threads. AIX is
fully multi-threaded, thus OLTP workloads can make use of SMP machines
to their full extent.

• Batch workloads usually have limited parallelisation. If the batch task is
implemented as a single process, this can be a significant performance
bottleneck, as only one CPU would be used. Batch implementers should
endeavor to make multiple batch tasks able to run into multiple streams by
splitting the task in to many parts for concurrent running.

• Decision Support Systems run a limited number of very large queries at
the same time. If the number of queries is larger than the number of CPUs,
then it will simply make good use of the SMP machine. If the number of
queries is less than the number of CPUs, the database’s parallel query
Sizing a database system 107

option must be used to split the query into many parts so that it can be
distributed among the CPUs.

• Many DBA tasks, for example, index creation, creating summary tables
and data loads, need to be parallelized. Most RDBMSs support parallel
DBA tasks, and both DB2 UDB and Oracle support them.

6.4.3 CPU utilization
The CPU utilization goal should be about 70 to 80 percent of the total CPU
time. CPU utilization is determined by adding the usr and sys columns from
vmstat (see Appendix A.22, “vmstat - Virtual Memory Management Statistics”
on page 366).

Lower utilization means that the CPU can cope even better with peak
workloads. CPU workloads between 85 percent to 90 percent result in
queuing delays for CPU resources, which affect the response time of the
application. CPU utilization above 90 percent, even for a short period, results
in unacceptable response times.

While running batch jobs, backups, or loading large amounts of data, the CPU
utilization can be driven to high percentages, such as to 80 to 100 percent, to
maximize the throughput. This level is only achieved if the rest of the system
is well tuned for these tasks too.

RDBMSs serving Web information, on the other hand, have very
unpredictable workloads due to the nature of the Web and are working 24
hours a day. Having a Web site with poor performance is going to encourage
customers to go elsewhere. To avoid this, we recommend sizing a Web server
database to have 50 percent CPU utilization to allow for peaks in workload.

As the functionality of the CPU makes it an expensive component of a
computer system, care should be taken when selecting the type and number
of processors for the anticipated workload.

6.5 Memory goals and sizing

Memory is used to run programs (the code and data) for interprocess
co-operation and for caching disk blocks to avoid disk I/O. For memory, there
are two sizing questions:

• How much memory to have?

• How to divide this among the various uses of memory for maximum
performance?
108 Database Performance on AIX in DB2 UDB and Oracle Environments

The best approach is to decide the space requirements for each memory use
and add up the total. Skimping on memory can have large performance
limitation consequences. Memory is used for:

• The Operating System - AIX.

• The file system cache - In AIX, this will use up any unused memory.

• The RDBMS programs.

• The RDBMS working structures.

• The RDBMS disk cache.

• The application programs.

• The users connected to the database.

6.5.1 AIX operating system
AIX operating system is a program and requires memory. AIX is dynamic and,
therefore, only brings in some features when they are actually used and will
grow data structures on demand. When physical memory is completely
allocated, and more is demanded by programs, AIX will page out memory that
has not been accessed recently to the paging space on disk. Excessive
paging will hurt any UNIX system performance and must be avoided by
having sufficient memory or reducing the other memory requirements.

As a usable figure, allocate 32 MB for AIX. If a graphics screen is attached to
the RDBMS machine, and it is using X Windows, then add an additional 16
MB of memory.

6.5.2 AIX file system cache (AIX buffer cache)
Memory is also used by the operating system to save copies of recently used
journaled file system (JFS) disk blocks. This avoids disk I/O and is, therefore,
beneficial for performance. Even if the database files use raw devices, the
programs will still need to use the file system cache. When the database uses
the AIX file system cache, it needs a significant amount of memory.

For databases based on raw devices, allow 16 to 32 MB.

For databases based on JFS, allow 25 percent of the RDBMS cache (see
6.5.3, “RDBMS cache and structures” on page 109).

6.5.3 RDBMS cache and structures
The most important memory space used by the database is the area where
the data will be read and modified, such as changing data or inserting new
Sizing a database system 109

rows. This memory area is called RDBMS cache. Each RDBMS product
implements this cache in a different way. DB2 UDB calls it buffer pool; Oracle
calls it buffer cache. Adjusting its size greatly affects the database
performance. Therefore, this memory size should be as large as possible.

Memory space is also used by the RDBMS for the locking, control structures,
internally used tables, areas used to control parallel queries, and saving data
that reduces work, such as the SQL query plans. Making this memory space
too small will drastically decrease performance.

Additional memory is necessary for database utilities, such as backup,
restore, or load utilities. To achieve good performance while backing up a
database, this memory size must be large enough to accommodate all the
buffers that you want to allocate for this backup and for other concurrent
utilities.

The effect of caching is very difficult to determine before running the system
and monitoring the effect of smaller and larger cache sizes. Generally, the
more memory the better, up to 2 GB, from there on, tests are required to
justify that the extra memory will improve performance.

A minimum size of 64 MB should be used.

We suggest sizing initially at five percent of the raw database data size up to
2 GB in size.

6.5.4 User applications and database connections
This is the code and data of the application that each user needs to run.
Because AIX uses paging space, it does not need to have the entire program
in memory to run, and usually only a part of the application is required.

Only the parts of the user processes code that have actually been executed
are brought into memory in the first place. If not used regularly, the code or
data will be paged out to make room for other processes. As a result of this,
only the parts of a process that are frequently used are held in memory. This
code and data is called the process’ working set or resident set. When
calculating the memory requirements for RDBMS processes and applications,
you need to understand that it is the resident set that is used for the
calculation and not the total process size.

For example, the program on disk might be 10 MB when investigated with the
size command. But, the resident size might be 6 MB. Also, note the resident
set is made up of the code and data. The code is usually shared; so, there will
only be one copy of the code in memory for all processes running this
110 Database Performance on AIX in DB2 UDB and Oracle Environments

program, but the data will be unique to each process. In our 6 MB resident
size example, it might be 4 MB of code and 2 MB of data. So, for 100
processes running this 10 MB program, the memory used is not:

10 * 100 MB = 1000 MB <- wrong!

but is calculated as

1 * 4 MB + 100 * 2 MB = 204 MB <- correct

Usually for applications coded in C, the amount of memory per user should be
calculated at 2 to 3 MB. For more complex applications, 6 MB is a good value.
If there is more than one application binary, then each must be taken into
account.

For a discussion on what is really meant by a user, please see 6.2.3, “Sizing
from user numbers” on page 105.

Sizing application programs is not simple because each of them is different.
The important factors are:

• The language or environment used to implement it.

• The number of screens, features, and functions of the application.

• If the application is for general purpose (larger) or very specific (more
compact).

• If the application is written for a specific RDBMS or written to work with
any database (and, thus, not able to use specific features for higher
performance).

• If the application is ported from an alternative OS or non-RDBMS system.
Generally, these applications are large and slow.

We offer the following as very approximate starting points:

• Simple C language program - 2 to 3 MB

• Large C language program - 5MB

• 4 GL or forms - 4 to 8 MB

The ps command can output the resident set in the RSS, TSS, and DSS
columns.

Note
Sizing a database system 111

• Programs generated from a high-level application design tool or created
within a sophisticated graphical and object oriented development
environment - 6 to 15 MB

It is relatively simple to find out the memory requirements of a program from
the vendor or actually measure the size of a program by running it on a test,
proto-type, or any other system.

If the application is running on a machine other than the RDBMS server or the
user’s PC, then it does not count towards the memory requirement of the
RDBMS machine. However, the application will still have to communicate with
the RDBMS machine via the RDBMS server process. These are large
programs themselves, but as explained above, they share the code. Allow
between 4 and 8 MB per user. If the Oracle Multi Threaded Server is used,
then decide how many servers you are to run instead. Each of these will be 8
MBs in size.

6.6 Disk goals and sizing

All database objects are ultimately stored on disks. These objects are the
data itself, indexes, catalog/data dictionary and temporary tables. In addition,
the database needs log files and rollback segments for transaction and crash
recovery.

There are two levels at which to size the disks for a database:

• General, high-level, whole databases sizing

• Specific, detailed-level table by table sizing.

6.6.1 General database sizing - High-level
This has to be used when only the total size of the database is known. It has
to be carefully qualified whether the size is the raw data or the disk size.

6.6.1.1 Raw data size
First, add an overhead to the raw size of the data for the placement of the
data in the disk blocks of the database. Some wastage is inevitable, as one or
more rows have to fit within one block; so, the last few bytes of a block are
most often wasted. Databases compact the data of each row. If the column is
specified with 100 bytes but only contains 25 bytes, then the database only
uses 25 bytes of the block. This means more rows are stored per block. But, if
an item is updated, it can get bigger and, thus, not fit within the same block
anymore. In this case, the database uses a chained block to store the larger
data item. This results in lower performance, as both blocks will need to be
112 Database Performance on AIX in DB2 UDB and Oracle Environments

read to find the row. The database allows you to specify that each block
allocates some free space to cover for rows getting larger.

As a rule of thumb, most DBA use a ratio of raw data to disk size between
1:1.1 to 1:1.3. In other words, 10 to 30 percent more than the size of the data
itself.

Raw data size to database size
After calculating the raw data as shown above, a scaling up calculation has to
be made to cover the other parts of the database, such as indexes and
working space. If there is no information available, then use the following
standard raw data to disk ratios as a rule of thumb:

• OLTP - Ratio 1:3

• DSS - Ratio 1:4

• Data warehouse ratio 1:5

If you are new to databases, these values will seem high but are typical in
production systems. Many people do not understand or expect the
data-to-disk ratios to be so large. For example, if they use a 1:2 ratio without
careful calculation, then this is unlikely to be practical, and the database will
not perform well. Indeed, the data might not even be able to be loaded and
indexed, or the first large query will hopelessly run out of space.
Many times people also think the index size will only be a small fraction of the
raw data. For example, only allowing an extra 10 to 20 percent instead of
allowing an extra 100 percent of space for the indexes (see also 6.6.2.2,
“Indexes” on page 114).

6.6.1.2 Total disk size
In order to make sure that the disk size includes everything, double check if
disk space for AIX, the paging space, and the database log has been
included.
If in doubt, add a dedicated disk for each of the following:

• The AIX system.

• Paging if you have more then 1 GB of memory.

• Database log.

6.6.2 Specific table by table sizing - Detailed level
The alternative is the detailed level sizing of the database. Typically, this is
worked out with a simple spreadsheet.
Sizing a database system 113

6.6.2.1 Tables
For each table, the number of rows, and then the size of one row, is
estimated. By far the best way to determine this is to actually create the table
in a small test database and load it with some data. A few hundred or a
thousand rows will do. Then, the database can calculate the average row
sizes accurately.

For DB2 UDB, use the runstats command, and for Oracle, use the analyze

table command.

If the table sizes can only be estimated, refer to the database manuals for
explanations on how to do this.

6.6.2.2 Indexes
Indexes can be hard to determine if this is early in the design cycle. However,
the indexes might be well known from previous experience. If in doubt, guess
two to three indexes per table with over a thousand rows. If the table is
smaller, the indexes might not help performance and are insignificant in size
anyway.

There is a minimum size of the index items for the B tree structure and an
overhead for index structures. Most RDBMS indexes use a variant of the B
tree structure to organize the index. To find a particular row, the RDBMS
starts at the top of the tree and works its way down each node or branch of
the tree choosing the route based on the details of the column it is looking for
until it finds the reference to the row required. This final index reference is
called a leaf node. For example, in Oracle, this is 22 to 25 bytes. Again, this is
best worked out via a test table and index or using the explanations from the
database’s manuals.

The default recommendation is to assume the index size is the same as the
data size. For example, if the table is 100 GB in size, then allow a further 100
GB for the index. This is based on two observations. If the table only contains
a few columns (called a thin or narrow table), and only one column is indexed,
then the index overhead will result in an index of roughly the same number of
bytes as a row; so, the data and indexes will be roughly the same size.
Alternatively, if the table has many columns (called a fat or wide table) then it
is likely that many indexes will be used for the table. Each index will be
smaller (as each index will only cover one column), but the multiple indexes
means the indexes will be roughly the same size as the table.
114 Database Performance on AIX in DB2 UDB and Oracle Environments

6.6.2.3 Temporary space (sort space)
This is used for DBA activities, such as creating indexes, creating summary
tables, loading data, and for very large SQL query results to be stored and
sorted before being returned to the application and user.

To index a large table requires a large amount of temporary space. It is not
precise, but the space to allow for a full table sort on disk can be up to 1.3
times the size of the table. If the table is indexed in parallel, this can take up
to two times the table size. Most databases have one dominant table. If this
table is 30 percent of the data size, then the temporary space needs to be 60
percent of the data size. This assumes that nothing else is using temporary
space while indexing.

For DSS databases, there is a large need for temporary space due to the
large numbers of rows being sorted and the summary table creation.

Most systems use the rule of thumb of having the same amount of temporary
space as data space. Running out of temporary space results in a complete
failure to create indexes, which makes performance impossible or SQL
statements failing with errors. Both must be avoided at all costs.

6.6.3 Which disk size to choose
Currently, there are 4.5 GB, 9.1 GB, 18.2 GB, and shortly, 36 GB disks drives
available for the RS/6000. There are several trends in disk technology:

• They get bigger every year, roughly following Moore’s law, which states
that computer power doubles every 18 months.

• The cost per GB is lower each year.

• The cost difference of the two smallest drives diminishes until there is little
point in continuing with the smaller drive.

• The disk drives improve a little each year in seek time.

• The disk drives get smaller in physical size.

All this means is that the databases use disk drives that are bigger in space
size and smaller in physical size. The speed improvements are, however,
small in comparison.

This means that a database that would have taken 36 * 1 GB drives four years
ago can now be placed on one disk. This highlights the database I/O
problems. For example, if each 1 GB can do 80 I/O operations a second, this
means the system can do a combined 36 * 80 = 2880 I/O operations per
second. But a single 36 GB drive with a seek time of 7 ms can do 140 I/O
Sizing a database system 115

operations per second. Clearly, the new disk drive capacity is good news, but
lower numbers of disks cannot deliver the same I/O throughput.

The only way to work out the I/O throughput requirements is to:

• Use some test or proto-type system from which to measure the I/O for a
given workload.

• Determine the transaction rate and read and write operations per
transaction for OLTP systems. Remember reading data will involve reading
indexes, and inserts and updates require data, index, and logs to be
written.

• Estimate the number of rows and tables that will be scanned for typical
query types for DSS systems.

The writers of this redbook recommend using the smallest drive possible
purely on the basis of increasing the number of disks for I/O throughput. The
alternative (when the two smallest drives are nearly the same price) is to buy
the next largest drive and only use half the disk space. The middle area of the
disk is the fastest; so, it would make sense to use this. This leaves the other
half of the disk available for other things, such as:

• Disk to disk backup

• Archiving data

• Test databases for out-of-hour testing

• Extra copy of the database for upgrade testing

6.6.4 Disk protection
Disks crash. We have to live with this and build a system that can tolerate this
problem. The system can (given sufficient funds) be built to carry on running
with zero interruption or to be recovered in a few hours, despite a crash.

The database log needs disk protection to allow database recovery of recent
transactions. The other disks can optionally be protected. If they are
protected, downtime while data is recovered can be eliminated.

Traditionally, we decide the number of disks by dividing disk space
requirement by the current disk size, but as disk drives increase in capacity,
it will become more important to decide the number of disks via the disk I/O
requirements.

Note
116 Database Performance on AIX in DB2 UDB and Oracle Environments

In practice, there are two options:

• RAID 5

• Mirrored disks - With PP striping or fine striping from AIX 4.3.3 onwards

See Chapter 8, “Designing a disk subsystem” on page 149 for more
information on disk options and performance. In terms of sizing, both options
mean more disks and suitable adapters.

• RAID 5 - We recommend using a seven data to one parity disk ratio; so,
add one seventh to the number of disks.

• Mirror - Simply double the disk requirements, but do not forget you may
need additional adapters for the disks.

• You may choose to implement a mixture like mirrored log disks and RAID 5
for data, index and temporary space (but note temporary space is 50
percent read and 50 percent write).

Do not forget the AIX and paging space disks. A failure on these disks can
bring down your system. If a paging space disk fails, the system will restart
without it, but if the AIX disk fails, it can take extra long to correct it. The AIX
mksysb backup method will minimize this down time. The alternative is
mirroring these disks - RAID 5 is not recommended.

Also, do not forget to include a spare disk or two for speeding up recovery and
the risks while running after a disk failure.

6.6.4.1 Minimum disk requirements for small databases
Table 4 highlights that, with small database and small numbers of disks, you
have to be very careful with the 1:3 rule of thumb, as it only applies to larger
databases and higher numbers of disks.

Table 4 gives some example database sizes (assuming 4.5 GB disks).

Table 4. Example database sizes:

Use number of
disks

Absolute
minimum
disks

Small
RDBMS

Small and
safe
RDBMS

Large
RDBMS

AIX 1 1 1 + mirror 1

Paging and
RDBMS code

use above 1 1 + mirror 2

RDBMS data 1 1 1 + mirror 8

RDBMS indexes 1 1 1 + mirror 8
Sizing a database system 117

In the Absolute minimum disks column, we have allocated the index and temp
space onto one disk. This is not ideal, but might work in practice because
databases tend to use indexes for transactions or temp space for index
creation and sorting full table scan large queries, but not both at one time.
This column highlights the minimum number of disks for an RDBMS. This is
not a recommended minimum disk subsystem for a database but does have
the lowest cost.

The Small RDBMS column is a recommended minimum disk subsystem
although there may be limits in I/O rates due to the data being placed on only
one disk. Striping the data, indexes, and temp across these three disks might
help reduce this. This does not include disk protection for the database or
other disks (apart from the mandatory log disk protection for transaction
recovery).

The Small and safe RDBMS column adds full disk protection and would
survive any disk crash with zero down time.

The Large RDBMS column highlights a normal sized database and
approaches the 1:3 ratio rule of thumb. We could add disk protection to this
configuration too.

RDBMS temp use above 1 1 + mirror 8

RDBMS logs 1 + mirror 1 + mirror 1 + mirror 1

Database data 2 GB 4 GB 4 GB 36 GB

Total disk size 22 GB 31 GB 58 GB 128 GB

No. of disks 5 7 13 28

Data to Disk Ration 1:11 1:7 1:14 or 1:7
with mirror

1:3.5

Use number of
disks

Absolute
minimum
disks

Small
RDBMS

Small and
safe
RDBMS

Large
RDBMS

Use the simple 1:3 ratio rule with a minimum number of disks to decide the
database size and number of disks and then add disk protection.

Summary
118 Database Performance on AIX in DB2 UDB and Oracle Environments

6.7 Balancing a system via the component costs

Once a machine size has been determined, it is worth making a few checks to
make sure that the system is sensible and will work in practice. The teams
that size database systems regularly have found that the majority of
configurations have a constant ratio between the power of the CPU, the
memory, and the number and size of disks. This is based on the idea that a
certain CPU power running an RDBMS will generate a certain level of disk I/O
to supply new data for processing. The memory is then related to the
database size and reduces the Disk I/O by caching data.

Rather than giving you a lot of ratios and calculations to work out for each
machine in the range, Table 5 gives you the percentages of the cost of the
machine for the main components.

Table 5. Percentage of cost for CPU, memory and disks

With this information, do not forget that, in addition, you will probably need:

• Network adapters

• Backup the system to tape drives

• Software

This also points out that on smaller machines the memory is relatively
inexpensive, but the disks are not because you need a minimum set of disks
to run a database.

Other things to notice are:

• CPU - On SMP machines with less than the full number of CPUs, it is a
very simple and inexpensive task to upgrade. But, machines with the full
number of CPUs are less expensive in cost per CPU power terms.

• The upgrade from machines with one CPU or the maximum SMP CPUs is
often not simple. The next machine up in the range might be quite different
and require the CPU, motherboard, complete cabinet, memory, and
adapters changed. This means the upgrade will take much longer in
downtime and will be more complex. Also, larger machines cost more. A

System Size Example Percentage of cost

CPU Memory Disk

Low End 43P 40 10 50

Mid Range F Series or H Series 40 20 40

High End S Series 40 25 35
Sizing a database system 119

requirement for a ten percent improvement in CPU terms might mean
actually having to install a machine that is 50 percent faster and much
more costly.

• Memory - Most machines are not initially configured or installed with the
maximum memory in the system. This means extra memory can simply be
added to the machine if the initial size proves to be too small.

• Disks - Compared to the cost of the machine, the cost of a single disk
drive is very small. Adding external disks does not have to involve the
main system cabinet. SSA disks, in particular, can be very simply added to
the system with zero downtime. Even adding a disk adapter is a simple
process. Disk space is also the first part of the system that is likely to
outgrow the initial size.

For more sizing information refer to the redbook Understanding IBM RS/6000
Performance and Sizing, SG24-4810.

Sizing is often choosing the RS/6000 model based on the CPU power
rating and then balancing memory and disks so that full use of the CPU(s)
can be achieved. Use the ratios above to double check your sizing is
balanced.

Summary
120 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 7. Designing a system for an RDBMS

When designing a system for implementing an RDBMS, you should be aware
that the deeper you comprehend all the basic design concepts necessary to
build a system, the better the design and the more stable the system will be.

Most of the design considerations discussed in this chapter can not only
affect the AIX and RDBMS performance but also the availability of your whole
system. All the fundamental considerations about physical space, memory
usage, and CPU consumption must be analyzed prior to implementing a
system, and they must also be planned for future needs. This chapter will also
discuss the different machine groups as well as explain how to maintain the
database’s security through the use of backups.

7.1 Working space

When you are designing an RDBMS, you have to keep in mind that there are
basically three vital concerns for a well-designed system:

• Basic and future AIX resources

• Basic and future application resources

• Basic and future RDBMS resources

7.1.1 Basic and future AIX resources
The first point to be considered is how much space the AIX operating system
will consume when installed on an RS/6000. The current AIX Version 4.3.3
needs approximately 400 MB of disk space for basic installation and graphical
tools. Besides this basic disk space allocation, the system administrator will
have to increase the AIX paging space size using the value suggested by the
AIX Installation Assistant tool. The real indicator as to whether the paging
space might be increased is the database’s resource consumption as
requested by users and applications. Once the system is implemented and
the number of user and application requests increase, it is possible to monitor
the paging space consumption in order to determine if it is necessary to
define more space for it. As a rule of thumb, it is recommended that the
minimum size for the paging space area is set to the same size as real
memory. Sometimes this value has to be increased to two times the size of
the machine’s real memory. If more than 1GB will be used for paging space,
and if more than one disk exists in the machine, it is recommended to split the
paging space across the disks usually using 1 GB per disk drive. You should
be aware that whenever you use the paging space area, the overall
performance automatically decreases. Please refer to Chapter 10,
© Copyright IBM Corp. 1999 121

“Monitoring an RDBMS system for performance” on page 203 for further
information about monitoring tools and techniques.

Keep in mind that new AIX features and fixes can eventually consume more
space than what was initially designed to be available for AIX. Although these
changes do usually not consume a substantial amount of disk space, they still
must be considered as part of the future AIX resource allocation.

At the time AIX is installed, it is recommended to load most of the frequently
used features, such as the online manuals, in order to avoid future space
consumption and unnecessary workload. Please consider 2 GB of disk space
for all the AIX Journaled File Systems, such as /tmp, /home, and /var.

7.1.2 Basic and future application resources
Production tools, third-party tools, and applications used on a system must be
considered when planning for disk space. These kinds of products are subject
to be replaced and/or added constantly, especially due to the constant
application development cycle. The initial needed space and long-term
growth must be planned in the system. Please refer to the application vendors
in order to find out about the space requirements for their particular products.

7.1.3 Basic RDBMS resources
This is the core area of an RDBMS system, and errors in the design can
result in major performance problems. Therefore, special care should be
taken when designing the resources for the RDBMS.

7.1.3.1 Basic DB2 UDB resources
When designing a system for a DB2 UDB RDBMS, the following physical files
have to be taken into consideration:

Log files
The log files contain all the information regarding the database changes
caused by an INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP command. They
are used in a database failure situation or even in a system crash for restoring
the database to its consistent state. This action ensures the integrity of the
database.

When the circular logging is being used, the only thing to be aware of is the
possible secondary log file’s disk space allocation. When the archival logging
is being used, a user-exit must be coded for moving the archived log files to a
tape device, thus, freeing the disk space. Please refer to 4.1.3, “Physical
storage structures” on page 59 for further information about the different
types of logging.
122 Database Performance on AIX in DB2 UDB and Oracle Environments

Data files
Data files are the main area to be considered when designing an RDBMS
system. This is the place where the database stores its data, and space
consumption is usually quite high, independent of whether SMS or DMS
tablespaces are used. Because this is such a dynamic area, system and
database administrators need to monitor the growth of the data files very
closely. For information about the different types of tablespaces, please refer
to 4.1.3.3, “Data files, index files, and temporary space” on page 61.

Index files
As in the Oracle RDBMS, the indexes will be defined for a table, and they will
be responsible for speeding up some queries. Since they consume some disk
space, it is necessary to estimate the disk space consumption size. Please
refer to Chapter 3, “Designing Your Physical Database - Index Space” in the
manual IBM DB2 UDB Administration Guide: Design and Implementation,
Version 6, SC09-2839, for a complete equation description.

DB2 UDB control files
Each DB2 UDB database has its own set of control files used for managing
the database’s internal functionality. These are:

• SQLDBCON
• SQLOGCTL.LFH
• SQLINSLK
• SQLTMPLK
• SQLSPCS.1
• SQLSPCS.2
• SQLBP.1
• SQLBP.2
• DB2RHIST.ASC
• DB2RHIST.BAK

These files should not be deleted, renamed, or moved from their original
location. The RDBMS will be responsible for saving them to a file or a tape
device when a database backup is taken. These files do not represent more
than 1 MB of disk space.

Sort space
Some SQL statements require that the RDBMS creates some temporary
tables in order to process them. This is the case where an ORDER BY statement
is used on a large amount of data, therefore, causing a sort operation to
occur. If the amount of data is bigger than the size of the available memory, a
temporary table will be created on disk in order to execute the order
Designing a system for an RDBMS 123

operation. Both RDBMSs will create the temporary tables on the physical
space that was defined for the temporary tablespace.

Two rules of thumb can be used for sizing the sort space:

• Make the sort area size 1.5 times larger than the largest table of the
database. This can be used when the database has very few big tables
and a lot of small tables.

• Make the sort area size equal to the sum size of all tables on the
database. This can be used when all the tables have approximately the
same size.

Since the amount of required space will be totally dependent on the queries
and the amount of data returned for the sort operation, the only way to figure
out the ideal size for the temporary tablespace will be through the monitoring
process once the database is operational.

Reorganization space
Reorganization is necessary to remove the wasted space caused by deleted
rows. Whenever you need to reorganize a table or the indexes that are
defined on it, you will need some staging area to be allocated.

If the reorganization takes place on DB2 UDB, the temporary tablespace will
have to be increased in size, or maybe another staging tablespace can be
created for the reorganization step.

If the reorganization takes place on Oracle, another staging table, with the
same size of the table to be reorganized, must be created in order to allow the
data to be transferred in and out of the table. Another option is to export the
table to a file on a disk, drop the contents of the table, and import the data
again.

Please refer to 7.7, “Coping with growth” on page 137 for more information
about table and index reorganization.

7.1.3.2 Basic Oracle resources
Oracle RDBMS needs disk space for the following physical files:

Redo log files
The redo log file records all changes made to the user or system objects.

They are also used for error recovery in case of media failure or a system
crash. Each Oracle instance requires at least two redo log files, but this
number can be expanded for availability or security reasons. The copies
124 Database Performance on AIX in DB2 UDB and Oracle Environments

should also reside on different disks if there are disks available on the
system.

The more INSERTS, UPDATES, DELETES, CREATES, ALTERS, and DROPS you have in
your database, the more physical space for the log files should be planned.
Once the database determines that all the transactions recorded in the log
file were committed, that is, when the database puts the log files in a state
called archived, the log files are ready to be moved out from disk to a tape
device, thus, freeing the disk space. Due to this very frequent update
characteristic, the redo log files should be put on dedicated disks when
possible. As a rule of thumb, consider 4.5 GB to 9 GB of disk space for the
redo log file.

Data files
This is the main area that both system and database administrators should be
concentrating on because it is usually a source of never-ending space
consumption, and the database must have this space available for storing the
new added rows.

Index files
Whenever you want to avoid sorts, speed up frequently executed queries, and
provide some organization in the table, index usage should be considered.
However, as with the data files, the index files sometimes consume large
portions of disk space depending on the number of indexes defined for each
table and the size of the table that you want to index. For an estimated
amount of disk space consumed by an index, please refer to “Appendix A
Space Estimation for Schema Objects” in the Oracle8 Administrator’s Guide,
Release 8.0, A58397-01.

Control files
The control files include information about the database itself. They are small
in size, usually less than 1 MB, but crucial for starting the database. Without
them, the database cannot operate properly.

Initialization file
The initialization file is usually named init.ora. This file is read at the database
startup time, and it can contain more than two hundred parameters that can
influence the performance and functionality of the Oracle RDBMS. This is a
text file, and its size is usually less than 20 KB.

Rollback segments
A rollback segment is responsible for recording the old values of data that
were changed by each transaction and is used to provide read consistency to
roll back transactions and to recover the database. Compared to the size of
Designing a system for an RDBMS 125

the data files, a small amount of space should be assigned to the rollback
segments. Please refer to Oracle8 Administrator’s Guide, Release 8.0,
Identifying Rollback Segment Contention, A58397-01, for more information
about the size of the rollback segments.

7.1.3.3 Backup space
A backup copy is necessary for the whole machine, for AIX (command mksysb)
but also for each existing database. However, the backup strategy will depend
on the size of the database and also on the free disk space available.

For small and medium size databases, allocating disk space for the database
backup copy might be a reasonable strategy. However, for large databases,
this concept tends to be impractical due to the huge amount of disk space you
should have available for each different database backup copy and for each
different daily, weekly, or monthly backup strategy. For this scenario, it is
recommended that you back up your database directly to an external unit,
such as a tape device.

If you chose to generate and store database backup copies on disk, you
should use separate disks for the database files and the backup copies. This
can avoid hardware problems destroying the database and all the backup
copies at the same time.

Please refer to 2.7, “How do we make the data safe?” on page 31 for a
general description on backup strategies.

7.1.4 Future RDBMS resources
When designing a system, it is important to first consider the space needed
for an immediate start. Then, you must have a clear idea of how much disk
space is needed for:

• The start point

• The database growth for the near future

• An estimated database growth for the remote future

The discussion of what can be considered near future and remote future will
depend on the database growth rate. For a read-only database, the near
future can be estimated to be six months, and maybe the remote future one
year. However, on a OLTP environment, one month can be usually considered
as the near future, and three months can be considered to be remote future.
These are only suggested value since each company will have its own growth
rate, thus, changing the time frames for what is considered near and remote
future.
126 Database Performance on AIX in DB2 UDB and Oracle Environments

Some space should be planned for future RDBMS upgrades and additions of
new features.

Please refer to 7.7, “Coping with growth” on page 137 for more information
about the most commonly changing RDBMS areas.

7.1.4.1 Overall disk space allocation
The disk space has to be planned for all areas, such as initial and future
needs, in order to avoid possible lack of space situations. Some areas,
however, will demand special attention due to their expected growth rate.

Each customer’s disk space consumption areas will vary depending on the
workload characteristics. Table 6 describes the different disk space
consumption areas and reports what is commonly expected for DB2 UDB and
Oracle.

Table 6. Growth rates for planning disk space

Disk space consumption area Expected growth

AIX (updates and upgrades) Small

Application (languages, production, and third-party tools) Medium

Oracle archived REDO log files High

Oracle data files High

Oracle index files * High

Oracle control files Small

Oracle initialization files Small

DB2 UDB log files High

DB2 UDB data files High

DB2 UDB index files * High

DB2 UDB internal control files Small

Temporary tablespace for sort operation Medium

Backup space Medium

* The growth of the index files will depend on how many indexes are defined for a table
and the table’s growth.
Designing a system for an RDBMS 127

7.2 Workload considerations

Before you start, it is necessary to have a clear idea of how the database will
be accessed. In other words, you need to know the database’s workload
characteristics. For example, a database that is used to store patients’
personal information in an emergency room is completely different to a
database holding historical data in a museum. The first one has a unique
characteristic of inserting data, while the data stored for a museum is
basically queried during the whole day.

Please refer to Chapter 3, “Types of workload” on page 43 for a better
understanding of Workload characteristics.

7.3 Network considerations

One thing to be considered when designing the system is how the network
can influence your overall performance.

Usually, there are very few local connections to the server machine. In the
majority of the cases, the user applications run on client workstations that
send and receive requests through the network. Even if the database is able
to process the requests immediately after they arrive, a serious performance
issue will exist if there is a network delay in the following situations:

• The time between when a client machine sends a request to the server
and the server receives this request.

• The time between when the server machine sends data back to the client
machine and the client machine receives the data.

Once a system is implemented, the network should be monitored in order to
assure that its bandwidth is not being consumed more than 50 percent.

There are two application techniques that improve overall performance and
avoid high-network consumption:

• Transmit a block of rows to the client machine in a single operation.
When using DB2 UDB, this can be accomplished by using the BLOCKING

option in the pre-compile or bind procedures. Please refer to the IBM DB2
Universal Database Administrator Guide: Performance Version 6,
SC09-2840, for further information about row blocking. When using
Oracle, this can be achieved by a process called extracting data via
arrays.

• Use stored procedures to minimize the number of accesses to the
database. Stored procedures are programs that reside on the server side
128 Database Performance on AIX in DB2 UDB and Oracle Environments

and can be executed as part of a transaction by the client applications.
This way, several pre-programmed procedures can be executed by using
only one CALL command from the client machine. The stored procedures
can be coded in different languages depending on the RDBMS. For
Oracle, the PL/SQL or JAVA extensions can be used. For DB2 UDB, there
is a choice of Java, C, Cobol, or SQL procedures.

Besides the application enhancements that can be provided by DB2 UDB and
Oracle, it is recommended that medium and large databases are connected
to the client machines using FDDI or 100 MB Ethernet LANs. A 10 MB
Ethernet LAN usually only provides an acceptable bandwidth for small
databases.

7.4 Memory and database considerations

The database administrator will be responsible for balancing the database’s
memory usage, while the system administrator will balance the overall
memory usage. One of the most ordinary cases, where both areas should
work together, is where an RDBMS and an application, such as SAP, have to
share the same machine. A practical example is that both of them have their
own buffer pool for treating the data, and the memory space dedicated to
each application should be carefully chosen.

The RDBMSs use memory to manipulate their own data in order to satisfy the
customer’s requests. The amount of memory to be planned for an RDBMS is
proportional to the number of users and applications that will be connecting to
the database. The memory space needs are different for Oracle and DB2
UDB.

7.4.1 DB2 UDB memory requirements
The following table suggests the amount of memory that is required to run
DB2 UDB based on the total number of possible connections. The real
memory need will vary depending on the functions that the users and
applications are using.

Table 7. Memory requirements for DB2 Universal Database

Number of clients connecting to a server Memory space
needed

10 concurrent connections 80 MB

25 concurrent connections 96 MB

50 concurrent connections 186 MB
Designing a system for an RDBMS 129

For example, if the system will have the DB2 UDB administration tools and 65
users connected to it, it is necessary to provide 30 MB for the administration
tools, 186 MB for 50 users, and 96 MB for 25 users. The total suggested
memory is 312 MB.

Whenever there is an increase in the number of users and applications
connected, the memory size should be recalculated.

DB2 UDB has several parameters that affect memory consumption, either on
the server side, client side, or on both. Please refer to 12.4, “What are the
options?” on page 265 for further explanation about the different types of
memory allocated by DB2 UDB.

7.4.2 Oracle memory requirements
The first thing to be calculated for an Oracle RDBMS is the size of the Shared
Global Area (SGA). This area contains all the space necessary for the
Database Buffer Cache, Redo Log Buffer, and Shared Pool. Please refer to
2.5.1, “RDBMS terms” on page 22 for a further information about the SGA.

The following initialization parameters control the size of the Oracle Shared
Global Area:

• DB_BLOCK_BUFFERS
• DB_BLOCK_SIZE
• SORT_AREA_SIZE
• SHARED_POOL_SIZE

These parameters should be set with caution since a too high value for them
could lead to exhaustive memory usage and paging. The sum of all instances’
SGA sizes should not exceed more than fifty percent of the total memory.

The approximate size of an instance's SGA can be calculated with the
following formula:

DB2 UDB Administration Tools 30 MB

Number of clients connecting to a server Memory space
needed

(DB_BLOCK_BUFFERS * DB_BLOCK_SIZE)
+ SORT_AREA_SIZE
+ SHARED_POOL_SIZE
+ 1 MB
130 Database Performance on AIX in DB2 UDB and Oracle Environments

After you have defined the SGA size, and prior to starting Oracle RDBMS, the
following formula can be used to estimate the total memory requirement for
the server:

The command size -f can be used to retrieve an executable’s text size,
private data section size, and uninitialized data section size.

Oracle also calculates memory space allocation based on the number of
users and applications that will connect to the database.

For each client connection, the following formula can be used for estimating
the memory consumption:

Whenever there is an increase in the number of users and applications
connected, the memory size should be recalculated.

Please refer to the Oracle8 Server Tuning Manual, A54638-01, for more
information about the Oracle memory tuning.

7.5 System resource utilization

An RDBMS should run on a machine that fulfills all the system resource
demands, from the operating system needs through the connected
applications, asking for a row from the database. Prior to choosing the most
appropriate machine type and model, it is essential that some basic points
are clearly defined, such as the amount of users and applications that will

Size of the Oracle executables
+ size of the SGA
+ number of background processes * size of tool executable’s private data
section
+ size of the Oracle executable’s un-initialized data section
+ 8192 bytes for the stack
+ 2048 bytes for the processes’ user area

Size of the Oracle executable’s data section
+ size of the Oracle executable’s un-initialized data section
+ 8192 bytes for the stack
+ 2048 bytes for processes user area
+ cursor area needed for the application
Designing a system for an RDBMS 131

access the database, how much CPU, memory, and disk the RDBMS needs
for handling its own tasks, and the system workload characteristics.

Once the total amount of resources are defined, it is possible to build the
databases and monitor and tune them in order to achieve the machine's
maximum planned capacity usage.

The CPU, memory, and disk resources must be well planned in order to
speed up the system through the use of their maximum capacity but always
avoid to overcommitting them.

The expected CPU consumption will depend on which system workload is
running on the machine as follows:

• OLTP
70 - 80 percent

• Web
50 percent

• DSS
80 - 90 percent

• Batch
90 - 100 percent

On an SMP or SP machine, this workload must be split evenly all over the
CPU's. If the CPU utilization is higher than the recommended values over an
extended period of time, this might be an indicator for a possible CPU
bottleneck.

Operating system and RDBMS will allocate memory in order to perform the
operations requested by users and applications. The available memory
resources should be completely used most of the time, but care should be
taken that no paging occurs on the system due to a bad memory consumption
plan.

The disk subsystem design should allow the database's data to be evenly
distributed among the disks. The data placement step must be very well
designed, thus, avoiding data skew. A bad data placement can easily lead to
a bad I/O request distribution, that is, some of the disks can be continuously
used, while others can be available and without any task to perform. The
more even the distribution is, the more the performance gains that can be
achieved. When all the disks are being accessed evenly, the disk utilization
rate for each disk should be around 40 to 50 percent.
132 Database Performance on AIX in DB2 UDB and Oracle Environments

These three resource consumptions should always be monitored and under
control, therefore, assuring that the RDBMS is able to completely and evenly
explore all the available resources. For more information about the monitoring
process, please refer to Chapter 10, “Monitoring an RDBMS system for
performance” on page 203.

7.6 Can the database be backed up and restored?

Maintaining a backup and restore strategy is not only a good practice but a
real necessity.

Backing up the database allows recovery of the database either partially or
totally in case of an operating system, RDBMS software, or hardware failure.
These can damage or make the database inoperative and the data
inaccessible.

Each company has a different need and a different approach for the backup
strategy. Some read-only environments, such as a DSS, will keep two or three
backup images but will not be interested in taking frequent backups as an
OLTP environment should do.

The backup and recovery type, either totally or partially, will depend on how
the logging mode (for DB2 UDB) and archive mode (for Oracle) are set. Both
RDBMSs, although using different terms, have the same ability to configure
the two possible database restore scenarios:

• Partially
After the database is restored from a backup image, it will only allow users
to access the data available at the time the backup image was taken. All
the database changes made from that point on are lost.

• Totally
After the database is restored from a backup image, all the transactions
made to the database will be reapplied, thus, allowing users to access the
last committed transaction prior to the crash. No database change is lost.

7.6.1 DB2 UDB backup/restore scenario
In order to make a backup copy of a database, the db2 backup command is
issued. This command can be issued with two different options: off-line and
online.

The off-line backup is mandatory when the database parameter LOGRETAIN
is set to NO, which is also known as circular logging. It indicates that no
connections to the database can exist at the time the backup is taken.
Designing a system for an RDBMS 133

If the LOGRETAIN parameter is set to RECOVERY, also known as log
retention logging, the backup can be taken with all users and applications
connected. It can be taken for either the whole database or only for some
tablespaces. When this backup is taken, the database administrator should
always be aware that the future archived logs (logs that contain all units of
work that have been committed) must also be copied to a safe unit since they
store the data needed to update the database to the last committed
transaction in case a crash occurs. This is the most recommended backup
strategy for a 24x7, non-stop system.

Now suppose that your database became inconsistent due to an external
factor, such as a power failure, media problem, or application failure. When a
new connection is made, or when the restart command is issued, it initiates
an activity called crash recovery. Crash recovery consists of rolling back
incomplete units of work from the time a failure took place, thus, allowing the
database to be operational again. The RDBMS uses the database log files for
the database crash recovery process.

If the database cannot be put into a consistent state again, for example, in
cases where the log files are also damaged, one of the two recovery methods
should be used: Version recovery or roll forward recovery.

• Version recovery uses off-line backups for recovering the database to a
consistent point again. The database can only be restored off-line, and it is
restored to the same state it was in when the off-line backup operation
took place.

• Roll-forward recovery also uses off-line backups for recovering the
database to a consistent point again. Apart from that, roll forward recovery
has the possibility to apply all the changes made to the database from the
last time the backup was taken to the last committed transaction. This is
done by reading and applying all the database changes stored on the
active and archived log files. This process is called roll forward.

7.6.2 Oracle backup/restore scenario
When the database is abruptly interrupted by an external factor and must be
set into an operational state in order to allow connections again, an instance
recovery will take place. The online redo logs are used to roll back
transactions that were not committed at the time the database had the
problem.

If the online redo logs are also damaged, Oracle will provide two different
ways of restoring the database depending on which archive mode is in use:
ARCHIVELOG or NOARCHIVELOG.
134 Database Performance on AIX in DB2 UDB and Oracle Environments

When the NOARCHIVELOG mode, also called Media Recovery Disabled, is
used, the archiving of the online redo log is disabled, and a recovery will only
be possible up to the point the last off-line backup was taken. This mode does
not protect the database from a possible media failure since it only allows the
database administrator to take off-line backups.

If the ARCHIVELOG mode is used, archiving of the online redo log is enabled
allowing the database to be restored to the last committed transaction. This is
done through a process called roll forward, which consists of applying the
redo logs to datafiles and control files. This mode also allows the database
administrator to take off-line or online backups from both the whole database
as well as from certain tablespaces only.

7.6.3 General backup considerations
For security reasons, the backup/restore routines must be treated as a
two-step procedure. Only backing up a database and never testing the
restore might have the same catastrophic results as having no backups at all.
Although the backup utility for both RDBMSs are very functional and stable,
the restoring procedure is as important as the backup on a controlled system.

The restoring test should not be done after each backup but should happen
periodically on a scheduled day, preferably on another machine. This can
help to determine the amount of time required for recovering the database.

Depending on your business requirements and on the size of the database
being backed up, different backup/restore approaches should be considered.
The next two examples can show practical approaches for the different
possible backup methods:

• Example 1 - Using Tablespace Backup
In a database where only some specific tables are being updated, and
they represent a small percentage of the whole database, it is desirable to
distribute them among separate tablespaces and back up only these
tablespaces. Besides being faster, it might also save some disk space.

• Example 2 - Using Backup Online
For a 24x7 system, the best option is the use of online backups, which
allow users and applications to be connected while the backup is running.
Although it might cause a little overall performance decrease, it is the best
way for assuring a secure database backup without closing the
transactions or disconnecting users and applications.

These are the recommended backup procedures for the different database
scenarios:
Designing a system for an RDBMS 135

Database can be stopped daily
• Daily - Take an off-line backup

• Monthly - Choose one of the daily backups as a permanent monthly
archive

• Yearly - Test the integrity of the backup archives

Database can be stopped once a week
• Daily - Back up the log files, back up the most important tables and take an

online backup

• Weekly - Take an off-line backup

• 3 month - Choose one of the weekly backups as a 3 month archive

• 6 month - Test the integrity of the backup archives

Database cannot be stopped
• Daily backup. Choose one of the two following options:

• Full online backup of the database including the log files.

• If the database is large, then make an online backup of the log files, the
important volatile tables (that have a lot of inserts and updates but are
not too large), and 20 percent of the database. This means that over
five days the entire database is backed up and the backup data volume
is reduced.

• 3 month - Choose one of the backup sets (possibly five days worth) as a 3
month archive.

• 6 month - Test the integrity of the backup archives set (five days worth).

Since the backup and restore processes represent a very demanding task, it
is recommended that some external tools are used in conjunction with the
RDBMSs. These tools must be able to ease the data security management by
automating the backup and restore processes. A recommended storage
management solution, that can be used with both RDBMSs, is the Tivoli
Storage Management ADSTAR Distributed Storage Manager for AIX.

Always store the backup media off-site!
Consider, however, that backups stored on tape are often in plain ASCII.
Therefore, sensitive data should be encrypted, which might increase
backup time but will protect the data when it goes off-site.

Note
136 Database Performance on AIX in DB2 UDB and Oracle Environments

Many customers, usually when working in some big environments, tend to
have the backup functionality residing on another machine, usually called a
backup server machine. When this is the scenario, where the backup will take
place, it is recommended that another dedicated physical network is used for
data transmission between the RDBMS production server and the backup
server. This can avoid users and applications being impacted by an overall
network performance degradation caused by the huge amount of data
transmitted between the servers when the backup is started.

7.7 Coping with growth

Coping with database growth is a task that demands close and planned
monitoring; this is essential for having a clear idea on how the database is
growing day by day. The database growth involves the following areas:

• Increasing number of tables

• Increasing number of indexes in each table

• Increasing physical space for the table data

• Increasing physical space for the index data

• Increasing number of connected users for each database

• Increasing number of applications accessing each database

The total sum of all these factors could lead to an increase usage of CPU,
memory, disk, and network resources. Among all of these factors, the most
delicate area is the lack of disk resource.

When you do not have a clear idea of the disk allocation for immediate and
future needs, you could find yourself dealing with a data fragmentation
problem in the future, especially when data is split among several files on the
same disk. When the data is not stored on raw devices, it is recommended
that the data is split evenly across all disks, thus, increasing the performance
by making the data parallel accessible. Data is stored on tablespaces, and
tablespaces map to physical files or disks. It is recommended that each
tablespace file is created on a separate disk in order to spread out disk I/O.

Whichever RDBMS you are working with, data and index reorganization
represents an important task. Extra temporary space will possibly be needed.
The frequency of the reorganization, however, will depend on how the tables
and indexes were created, the frequency with which the tables are updated
and how long users can remain without accessing the tables during the
reorganization phase. This only applies to Oracle since DB2 UDB is able to
reorganize the table with users connected to the database.
Designing a system for an RDBMS 137

7.7.1 DB2 UDB reorganization method
When coping with DB2 UDB RDBMS growth, you should keep in mind that
the tables and indexes might need to be reorganized and that the system
catalog tables are always up-to-date to reflect database growth. An easy way
to determine if a table or an index (or maybe both) must be reorganized is to
run the reorgchk command.

When checking the table data organization, the reorgchk command will
display an entry called CLUSTERRATIO, which indicates the percentage of
table data that is organized according to an index. If this value is less than 80,
the table needs to be reorganized according to the most used index. When a
table has multiple indexes, some of them will always be in a different
sequence than the table, but this is expected. However, you have to specify
the most important index for reorganizing the data.

For checking the organization of the indexes, the reorgchk command will
display an entry called 100*NPAGES/FPAGES, which indicates how
organized an internal index page is. If this value is less than 80, the indexes
must be dropped and re-created.

DB2 UDB provides the facility to perform an automatic index reorganization
online without the need to force the connected users and applications off the
database. Special attention must be paid to the size of the temporary
tablespace since this is the space that is used for the reorganization
procedure by the database.

7.7.2 Oracle reorganization method
When coping with Oracle RDBMS growth, the simple method is using the
export and import routines frequently in order to keep the data organized.

To check the table data organization, the command ANALYZE TABLE table_name

COMPUTE STATISTICS must be used. This command collects storage statistics
that can be queried through the following statement:

SELECT NUM_ROWS, BLOCKS, EMPTY_BLOCKS, AVG_SPACE, CHAIN_CNT, AVG_ROW_LEN
FROM ALL_TABLES
WHERE TABLE_NAME = ’table_name’

If you have many empty blocks (column EMPTY_BLOCKS) or many migrated rows
(column CHAIN_CNT), it is recommended that you reorganize the table data.
This can be accomplished by exporting the data to a file or to another table,
therefore, dropping the original table and inserting all the rows again.
138 Database Performance on AIX in DB2 UDB and Oracle Environments

In order to check the organization of the indexes, the command ANALYZE INDEX

index_name COMPUTE STATISTCS must be used. This command collects statistics
from all the indexes dictionary views and stores them in the BLEVEL column.
Once the statistics are collected, the following command can be run in order
to analyze the reorganization need:

select index_name, blevel from all_indexes where index_name=’index_name’

If the value of the BLEVEL column is greater than four, the index must be
rebuilt. This can be done by issuing the ALTER INDEX index_name REBUILD

command.

Only the index can be reorganized online if Oracle is used on a 24x7 system.
In order to reorganize the data on a table, the users will not be able to access
that specific table while the reorganization is taking place. Besides, it is
important to allocate a staging space, either on a table or on a disk, for
holding the data of the table that is being reorganized. This alternative can be
accomplished by creating a new table using the Oracle command create

new_table as select * from old_table, dropping the old table, and renaming
the new table to the name of the old table. Although possible, this is an
alternative that demands available disk space.

7.7.3 When and how to avoid database reorganization
Although the reorganization procedure usually provides a good performance
increase, it is also an expensive task. Databases residing on a 24x7 system
usually cannot afford to have inaccessible tables during reorganization (as in
Oracle), or they might not be affected by the performance decrease caused
by an online reorganization (as in DB2 UDB).

For this situation, both RDBMSs suggest the use of a parameter called
PCTFREE, which indicates the percentage of a data blocks (Oracle) or data
page/index pages (DB2 UDB), to be reserved as free space for future
updates and inserts.

The following sections offer suggestions as to how to avoid reorganization.

7.7.3.1 Avoiding DB2 UDB reorganization
Since DB2 UDB implements PCTFREE parameters for both data and index
pages, the following method can be used, after creating the table structure, in
order to avoid reorganization:

1. Alter table to add PCTFREE

2. Create clustering index with PCTFREE on index
Designing a system for an RDBMS 139

3. Sort the table data externally

4. Load the data

The recommended value for PCTFREE will depend on how frequently data is
updated or inserted into the table. The PCTFREE value for indexes is set to
10 by default, and it is a good initial value. For tables, it is a good practice to
define the same value and use the reorgchk command to monitor how long
this PCTFREE value helped to keep the data organized. Depending on the
output, this value can be increased or decreased. In order to reduce the
frequency of dropping and re-creating the indexes for reorganization, the
parameter MINPCTUSED can also be defined when creating an index. This
parameter specifies the threshold for the minimum amount of used space on
the indexes leaf page. This space is automatically reclaimed after a DELETE
operation if this threshold is reached. The default value for MINPCTUSED is
zero, which means that online reorganization is disabled. The recommended
value should be less than 50 percent in order to merge two neighboring index
leaf pages.

7.7.3.2 Avoiding Oracle reorganization
Oracle implements PCTFREE only for the data blocks. This value is used in
conjunction with PCTUSED. PCTUSED sets the minimum percentage of a
block that can be used for storing raw data before new rows are added to that
block. This means that, after the free space in a data block reaches the
PCTFREE value, no new rows are inserted into the block until the percentage
of space used falls below PCTUSED.

The default value for PCTFREE is 10 and for PCTUSED it is 40. Both values
are related and should be set in conjunction for the different scenarios.

Usually, the less volatile the data is, the lower the PCTFREE parameter can
be set; so, data blocks will be completely filled. The higher the PCTUSED
value is set, the quicker the page will be reused.

7.7.4 Coping with large, unexpected growth
When the database begins to increase in size more than that which was
planned for, some special actions need to be taken.

First, consider partitioning the tables and indexes. This approach can result in
some important operational advantages and performance benefits:

• Reduced possibility of data and index corruption

• Balanced I/O

• Easier backup/restore control
140 Database Performance on AIX in DB2 UDB and Oracle Environments

Oracle is able to implement this scenario through the creation of partitioned
tables, that is, tables or indexes are divided into a number of partitions
according to the same logical attribute.

Both RDBMSs are able to split ordinary data, indexes, and large objects of
one single table into three different tablespaces.

Depending on how large your database is and what kind of workload runs on
that machine, just increasing the number of disks, memory, and processors
might not be enough in order to survive the growth. Especially for very large
DSS systems, you should consider a parallel version of the RDBMS,
particularly on an RS/6000 SP machine. DB2 UDB’s parallel version is called
DB2 UDB Extended Enterprise Edition and Oracle’s parallel version is named
Oracle Parallel Server. For more information about parallel databases, refer
to Chapter 5, “Parallel databases” on page 81.

7.7.5 Expected growth areas
Both RDBMSs have their own characteristics, concepts, and monitoring
methods, but mainly the same growth areas. The following table describes the
meaning of each area, its consumption, and its equivalence between both
RDBMSs:

Table 8. Equivalence table for expected growth areas

Description DB2 UDB ORACLE Affected
area

Records database
changes

Log Files Redo Log Files Physical

Records system catalog
and user data

Data Files Data Files Physical

Records index data Data Files Data Files Physical

Used temporary tables’
creation and sorts

Temporary
Tablespace

Temporary Sort
Tablespace

Physical

Stored packages Package Cache Library Cache Logical

Database object’s
definitions

Catalog Cache Data dictionary Logical

Application’s allocated
resources

Agent Private
Memory

Memory Global
Area

Logical

Data block copies Bufferpool Database Buffer
Cache

Logical
Designing a system for an RDBMS 141

The database growth will really depend on how users and applications are
consuming the resources. The monitoring task will indicate which area needs
a better tuning.

7.7.6 Loading large amounts of data
Loading large amounts of data can turn into a problem when indexes are
defined over a table. Although both RDBMSs have special programs
designed to speed up the loading process for large amounts of data, the
re-creation of the indexes can still turn into a bottleneck.

Since DB2 UDB V6.1, the Load utility loads data into the table and then
creates the index pages for the loaded rows only. This does not influence
performance.

Oracle works with a tool called SQL*Loader. It works in two different ways:
Conventional path (use SQL INSERTS) and direct path (directly writes the
external data into database blocks). For both the conventional path and the
direct path, SQL*Loader loads data into the table and rebuilds the index for
the whole table. When the number of rows being loaded is large compared to
the size of the table, this is an acceptable behavior. However, if the number of
loaded rows is relatively small, the time required to rebuild the indexes may
be excessive. This index rebuild can be avoided through the use of one of the
following options:

• Drop the indexes before loading the data

• Mark the indexes as Index Unusable before loading the data and use DB2
UDB’s SKIP_UNUSABLE_INDEXES option

• Use the DB2 UDB SKIP_INDEX_MAINTENANCE option (only applies to
the direct path method)

Another way to avoid full re-indexing is to use Oracle partitioned tables.

7.8 Performance versus availability

The ideal RDBMS scenario is that the database is serving all the connected
applications and users in less time than it is expected, twenty-four hours a

Last/Current data value Log Buffer Redo Log Buffer logical

Last data value Log Buffer Rollback Segments logical

Description DB2 UDB ORACLE Affected
area
142 Database Performance on AIX in DB2 UDB and Oracle Environments

day, seven days a week. However, some undesirable and unpredictable
factors could cause system downtime, thus, invalidating the ideal scenario.
Especially on a machine that holds all the company’s important information,
the database availability should be one of the main concerns. However, the
more security you implement for better availability purposes, the more the
overall system performance will usually be impacted.

The administrators should be looking for the perfect balance point between
performance and database availability.

For every RDBMS, there are some areas where availability can be improved
but with an expected overall performance decrease, for example:

• Disk protection
The performance will be directly affected by how the disks are set for data
storage. Usually the two most often implemented solutions are data
mirroring and RAID 5. Please refer to Chapter 8, “Designing a disk
subsystem” on page 149 for further information about disks.

• Online backup
This is the only possible way of taking backup copies while users and
applications are connected to the database. It might cause a little overall
performance decrease, but it is the only choice for a non-stop system.
Please refer to Chapter 2.8.4, “Online and off-line backup” on page 38.

• High Availability Cluster Multiprocessing (HACMP)
HACMP is an application that can link up to 32 RS/6000 servers or SP
nodes in a cluster. Clustering servers enables parallel access to the data
and provides redundancy and fault resilience. HACMP also allows
administrators to perform hardware, software, and other maintenance
activity while the applications continue to run on other machines. The
HACMP implementation is highly recommended for 24x7 environments.
This chapter will not cover the implementation and use of HACMP.

On the other hand, when performance is increased, availability sometimes
suffers. An example is the use of the DB2 UDB load tool, where a
performance increase can be achieved, but the database availability can be
compromised. The load tool can be used for inserting rows into a table
without recording the insert operation in the log files. Although the insert rate
significantly increases, a failure in this process can put the tablespace where
the table resides in load pending state; so, all the tables within that particular
tablespace are not accessible. Fortunately, the TERMINATE option of the LOAD

command can roll back the operation and set the involved tables and
tablespaces into a normal (available) state.
Designing a system for an RDBMS 143

All these areas can represent a success factor or a performance constraint
depending on how they are designed, monitored, and tuned.

7.9 Production, development, and testing on the same machine

We can classify machines in four different groups according to their
functionality:

• Production

• Development

• Testing

• Hybrid

Each one will have an unique and essential role as well as a different system
configuration.

7.9.1 Production
This is the machine that holds the company’s vital data. The production
databases, where all the applications and final users connect to, is usually
required to be available 100 percent of the time with an impressive response
time.

The production machine must be the most reliable and stable among all the
others. Not only must the database and the operating system be monitored,
but also the hardware.

Even the worst possible situation that could lead the database to an
unexpected stop must have a pre-defined emergency plan already set in
order to minimize the downtime. This can be achieved with good and tested
backups, as well as with disk protection implementations, such as RAID 5 or
mirroring. Also, the High Availability Cluster Multi-Processing (HACMP), an
IBM software solution, provides a machine’s high-availability through
redundancy and shared resource access.

The administrator must focus the performance and tuning efforts onto this
machine. The monitoring and performance tasks must be implemented in

Each company will have different performance and availability needs.
However, be aware that several availability methods also bring a decrease
of performance.

Note
144 Database Performance on AIX in DB2 UDB and Oracle Environments

order to achieve the best database response time through the efficient use of
the operating system and hardware resources. This is the main reason why
you should not have any other testing or development load interfering with
your production machine.

The production concept implies that this machine holds the fundamental data
for the department, or even for the whole company. A severe database
downtime on this machine can be the bottleneck for the company’s business
success. The production machine must have enough, and well consumed,
resources as well as administrators committed to the monitoring and
performance goals in order to support these characteristics.

7.9.2 Development
This must be a separate small system used exclusively by the development
personnel.

Although some basic security recommendations can be taken into account,
this is the machine where symptoms, such as running out of disk space and
system outages, will occur. This basically happens because the developers
are running untested code, and all of the load generated by these tests can
directly interfere with CPU, disk, and memory utilization. A lot of times these
experiments can easily cause a system havoc, and that is exactly what this
machine is about: To show the developers, through the output and effect of
their applications, what must be changed in their code and eliminate any
possible failure when going into production.

Usually a machine with few CPUs, disk, and memory resources is used as the
development machine due to the following facts:

• Very uneven machine resource demand

• Expected instability

• Disconnected from the production environment

In order to reduce the production machine downtime caused by an
unexpected problem, it is recommended that the database and system
administrators handle this machine with extreme care and always have a
tested backup set of the operating system and database available.

Note
Designing a system for an RDBMS 145

7.9.3 Testing
The test system must be a separate, medium sized system where new
products, fixes to products, and final user code can be tested before placing
these items into the production system. The system can also be used for
training purposes.

It should contain a reasonable amount of production data in order to simulate
how the code would run with real production mass data. Due to these
characteristics, the test machine can be smaller than the production machine
but must have enough resources available for running at a reasonable speed.

The test system should never run on the production machine due to the
unpredictable behavior of its untried changes.

7.9.4 Hybrid machines
Based on the different characteristics, it is primarily recommended that each
scenario is put onto separate machines so that they do not interfere with each
other.

However, there are some special situations where the system and database
administrators are asked to share the same machine for different scenarios.
In this particular case, it is recommend that only development and testing are
put together. Once the production machine plays a vital role for the company,
this machine should not be exposed to possibly hazardous testing and
development failures.

7.10 AIX and RDBMS upgrades

It is always a good practice to have the system on the most up-to-date state.
Usually, an update is different from an upgrade depending whether the
product version, release, or modification level is altered. Upgrades alter one
of the three product identifiers. In this section, we will reference any change
made to the product, no matter if it changed the version, the release, or the
modification level, as an upgrade.

Each new upgrade introduces new and useful improvements as well as fixes
for occasionally reported problems.

An upgrade could be recommended in one of three cases:

• Instructed by the IBM supporting team in order to fix a known defect

• A new desired feature is available through the upgrade
146 Database Performance on AIX in DB2 UDB and Oracle Environments

• Prevent problems by keeping all the products always up-to-date

It is important to be aware that each system has a different reaction when you
upgrade the products.

It is always a good and recommended practice to upgrade AIX and RDBMSs
following this sequence:

1. Run the AIX utility perfpmr
(please refer to 14.1, “Perfpmr - the performance data collection tool” on
page 345)

2. Back up your database twice

3. Back up the rest of the system twice

4. Choose one of the products for upgrading (do not upgrade multiple
products at the same time)

5. Upgrade the product

6. Test the upgrade with your own pre-defined proof of concept test programs

7. Back up the rest of the system twice again

8. Run the AIX utility perfpmr again

It is also highly recommended to upgrade the testing environment first and,
only when the proof of concept programs indicate that the environment is
stable, upgrade the production environment. However, on systems where
there is no other machine to test the upgrade but the production system, extra
care should be taken, especially with the integrity of the backup image. For
this kind of machine configuration, it is suggested that a High Availability
Cluster Multi-Processing (HACMP) is implemented. HACMP is an IBM
software solution that provides a machine’s high availability through
redundancy and shared resource access.

Usually, the AIX operating system is upgraded by the system administrator,
while the RDBMSs are upgraded by the database administrator.

In order to upgrade AIX and DB2 UDB, please contact your local IBM Support
Team. DB2 UDB upgrades can also be downloaded from the following
Web-site:
ftp://ftp.software.ibm.com/ps/products/db2/fixes/english-us/db2aixv61/

In order to request upgrades for Oracle RDBMS, please contact your local
Oracle Support Team.
Designing a system for an RDBMS 147

148 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 8. Designing a disk subsystem

When designing a system for performance, many different factors must be
taken into consideration. You will often find that changing one facet of the
design can have unexpected, sometimes undesirable, effects on the overall
performance of the system. This is especially true when deciding on how to
lay out the disk subsystem for optimal performance. Some of the factors that
we will explore in this chapter include:

• Bandwidth of disk adapters and system bus

• Physical database layout

• Configuration of the disk hardware

• Workload characteristics of the application

• Operating system settings including Logical Volume Manager (LVM)
considerations

• Performance implications of different disk technologies (SSA, striping,
mirroring, RAID and normal disks)

A more detailed discussion on implementing a disk storage system for
systems running Oracle databases can be found in the IBM white paper
Configuring and Tuning IBM Storage Systems in an Oracle Environment. IBM
employees can obtain the white paper on the IBM Intranet at the following
URL:

http://w3.developer.ibm.com/depts/spra/ORACLE/downloads/Oracle_Stor.PDF

The white paper can also be obtained from the IBM/Oracle International
Competency Center by sending an E-mail request to: ibmoracl@us.ibm.com

8.1 Disk subsystem design approach

For many systems, the overall performance of an application is bound by the
speed at which data can be accessed from disk. Designing and configuring a
disk storage subsystem for performance is a complex task that must be
carefully thought out before the first disk is purchased. Some of the factors
that must be considered include:

• Performance versus availability
A decision must be made early on as to which is more important: I/O
performance of the application or application integrity and availability.
Increased data availability often comes at the cost of decreased system
performance and vice versa.
© Copyright IBM Corp. 1999 149

• Application workload type
The I/O workload characteristics of the application should be fairly well
understood prior to implementing the disk subsystem. Different workload
types most often require differently configured disk subsystems in order to
provide acceptable I/O performance. Further descriptions of database
workload types can be found in Chapter 3, “Types of Workload” on page 31.

• Required disk subsystem throughput
The I/O performance requirements of the application should be defined up
front, as they will play a large part in dictating both the physical and logical
configuration of the disk subsystem. In database environments, this is
typically expressed in transactions per second or minute (tps/tpm).

• Required disk space
Prior to designing the disk subsystem, the disk space requirements of the
application should be well understood. Guidelines for estimating the
amount of disk space that will be required can be found in 6.6, “Disk goals
and sizing” on page 112.

• Cost
While not a performance related concern, overall cost of the disk
subsystem most often plays a large part in dictating the design of the
system. Just as with performance and availability, cost and performance
are inversely related: You must sacrifice one in order to achieve gains in
the other.

8.2 Bandwidth related performance considerations

The bandwidth of a communication link, such as a disk adapter or bus,
determines the maximum speed at which data can be transmitted over the
link. When describing the capabilities of a particular disk subsystem
component, performance numbers are typically expressed in maximum or
peak throughput, which often do not realistically describe the true
performance that will be realized in a real world setting. In addition, each
component will most likely have different bandwidths, which can create
bottlenecks in the overall design of the system.

The bandwidth of each of the following components must be taken into
consideration when designing the disk subsystem:

• Disk devices
The latest SCSI and SSA disk drives have maximum sustained data
transfer rates of 14-20 MB per second. Again, the real world expected rate
will most likely be lower depending on the data location and the I/O
workload characteristics of the application. Applications that perform a
150 Database Performance on AIX in DB2 UDB and Oracle Environments

large amount of sequential disk reads or writes will be able to achieve
higher data transfer rates than those that perform primarily random I/O
operations.

• Disk adapters
The disk adapter can become a bottleneck depending on the number of
disk devices that are attached and their use. While the SCSI-2
specification allows for a maximum data transfer rate of 20 MB/sec,
adapters based on the UltraSCSI specification are capable of providing
bandwidth of up to 40 MB/sec. The SCSI bus used for data transfer is an
arbitrated bus. In other words, only one initiator or device can be sending
data at any one time. This means the theoretical maximum transfer rate is
unlikely to be sustained. By comparison, the IBM SSA adapters use a
non-arbitrated loop protocol, which also supports multiple concurrent
peer-to-peer data transfers on the loop. The current SSA adapters are
capable of supporting maximum theoretical data transfer rates of 160
MB/sec.

• System bus
The system bus architecture used can further limit the overall bandwidth of
the disk subsystem. Just as the bandwidth of the disk devices is limited by
the bandwidth of the disk adapter to which they are attached, the speed of
the disk adapter is limited by the bandwidth of the system bus. The
industry standard PCI bus is limited to a theoretical maximum of either 132
MB/sec (32-bit) or 528 MB/sec (64-bit).

8.3 Physical database layout considerations

Deciding on the physical layout of the database is one of the most important
decisions to be made when designing a system for optimal performance. The
physical location of the database’s datafiles is critical to ensuring that no
single disk, or group of disks, becomes a bottleneck in the I/O performance of
the application. In order to minimize their impact on disk performance, heavily
accessed tables and their corresponding datafiles should be placed on
separate disks, ideally under different disk adapters.

There are several ways to ensure even data distribution among disks and
adapters, including operating system level data striping, hardware data
striping (RAID), and manually distributing the database data files among the
available disks. This section is concerned with the manual method of
distributing the data. Operating system level data striping techniques are
covered in Section 8.4.1, “Physical Partition striping versus LVM fine striping”
on page 154, while hardware level data striping using RAID is addressed in
Designing a disk subsystem 151

Section 8.6, “RAID Levels overview and performance considerations” on page
161.

8.3.1 Database datafile distribution
Manual distribution of the database datafiles is one the most widely used
methods for attempting to evenly distribute the I/O workload of an application.
This can be attributed to the fact that, unlike OS level and hardware data
striping techniques, manually distributing the database datafiles across
multiple disks does not require any additional hardware or operating system
capabilities.

One major drawback to this approach is that as the database data access
patterns become skewed due to data growth, more and more manual effort is
required to manually distribute the I/O among the disks. In contrast to OS
level and hardware data striping techniques, manual datafile distribution often
requires significant downtime in order to move tables and indexes to different
disks, as the database (or at least the affected tables and indexes) must be
made unavailable while the work is being performed.

When using the manual method for distributing data, the following I/O
intensive database datafiles should be placed on separate disks for optimal
performance:

• Data dictionary tablespace - SYSTEM (ORACLE) or SYSCATSPACE (DB2
UDB) used to maintain internal database operation information, such as
database structure and performance statistics.

• Temporary tablespace used for performing sort operations that cannot be
done in memory.

• Rollback segments tablespace holds the prior value of the data in order to
guarantee read consistency.

• Redo log files record every change made to the database. This has heavy
sequential I/O activity.

• Database datafiles with heavily accessed tables.

• Database datafiles with heavily accessed indexes.

The database data tables and indexes should be placed on separate disks
attached to separate disk adapters in order to avoid I/O contention, especially
for those tables that are frequently joined (JOIN) in SQL queries. The
database redo logs are the most I/O intensive datafiles in the entire system
due to the fact that they record every change made to the database. Due to
their importance in ensuring the integrity of the system, they are often
mirrored via the RDBMS software. Since the updates to the redo logs are
152 Database Performance on AIX in DB2 UDB and Oracle Environments

performed sequentially, both the redo logs and their mirrors should be placed
on dedicated disks, each attached to a separate disk adapter. This will ensure
that there is no other disk activity taking place that would interfere with their
update.

8.4 Logical Volume Manager (LVM) Concepts

Many modern UNIX operating systems implement the concept of a Logical
Volume Manager (LVM) that can be used to logically manage the distribution
of data on physical disk devices. The AIX LVM is a set of operating system
commands, library subroutines, and other tools used to control physical disk
resources by providing a simplified logical view of the available storage
space. Unlike some competitor’s LVM offerings, the AIX LVM is an integral
part of the base AIX operating system provided at no additional cost.

Within the LVM, each disk or physical volume (PV) belongs to a volume group
(VG). A volume group is a collection of 1 to 32 physical volumes (1 to 128 in
the case of a big volume group), which can vary in capacity and performance.
A physical volume can belong to only one volume group at a time. A
maximum of 255 volume groups can be defined per system.

When a volume group is created, the physical volumes within the volume
group are partitioned into contiguous, equal-sized units of disk space known
as physical partitions (PP). Physical partitions are the smallest unit of
allocatable storage space in a volume group. The physical partition size is
determined at volume group creation, and all physical volumes that are
placed in the volume group inherit this size. The physical partition size can
range from 1 to 1024 MB but must be a power of 2. If not specified, the default
physical partition size in AIX 4.3 is 4 MB for disks up to 4 GB but must be
larger for disks greater than 4 GB due to the fact that the LVM, by default, will
only track up to 1016 physical partitions per disk (unless you use the -t option
with mkvg, which, however, reduces the maximum number of physical volumes
in the volume group). Table 9 lists typical physical partition sizes for 2.2, 4.5,
9.1, 18.2, and 36.4 GB physical disks.

Table 9. Typical physical partition sizes for varying physical disk sizes

Physical disk size Physical partition size

2.2 GB 4 MB

4.5 GB 8 MB

9.1 GB 16 MB

18.2 GB 32 MB
Designing a disk subsystem 153

After adding a physical disk to a volume group, in order to use the storage
space you must create logical volumes (LV). Logical volumes define disk
space allocation at the physical partition level. They can reside on many
different non-contiguous physical partitions, thereby, allowing them to span
physical disks. At the operating system level, logical volumes appear to
applications as one single, contiguous disk.

When creating logical volumes, you must specify the number of logical
partitions to allocate. Each logical partition maps to one, two, or three
physical partitions depending on how many copies of the data you want to
maintain. This allows for mirroring of the data either on the same physical
disk or different disks in the same volume group.

8.4.1 Physical Partition striping versus LVM fine striping
Most disk I/O performance bottlenecks in a database environment are the
result of a few hot tables or datafiles receiving a disproportionate amount of
the I/O activity in the system. While manually distributing the database
datafiles among physical disk devices can alleviate some of these
bottlenecks, this is typically not a good solution for large, heavily accessed
databases for the reasons documented in Section 8.3.1, “Database datafile
distribution” on page 152.

For databases that generate a large amount of I/O activity, no amount of
system memory, database buffers, or external cache can shield the
application from performance problems associated with skewed data access
patterns. For these types of databases, the most viable solution may be to
consider distributing the I/O load across a number of physical disk drives
through the use of data striping techniques. Since the data is located on more
than one physical device, data striping allows a single disk I/O request to be
divided into multiple parallel I/O operations.

The AIX LVM provides two different techniques for striping data: Physical
Partition (PP) striping and LVM striping. In Figure 17 on page 118, the
numbers represent the sequence of data blocks for a given file using both PP
and LVM striping.

36.4 GB 64 MB

Physical disk size Physical partition size
154 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 26. Physical Partition and LVM striping example

Physical Partition striping refers to the technique of spreading the physical
partitions of a logical volume across two or more physical disk drives. With
PP striping, the size of the data stripe is the size of the physical partition,
which is typically 4, 8, or 16 MB in size. This technique works well in
environments that are characterized by a large amount of primarily random
I/O operations, such as OLTP applications.

LVM striping, also known as fine striping, likewise attempts to distribute the
I/O load by placing data stripes on multiple physical disks. However, LVM

Physical Partition
Striping

LVM Striping

Logical Partition 1

Logical Partition n

Physical Partition 1

Stripe Unit 1

Stripe Unit 4

Physical Partition 1 Physical Partition 2

Physical Partition
n+1

Physical Partition 3

Physical Partition
n+2

Physical Partition n

Stripe Unit n

Stripe Unit n+3

Physical Partition 2

Stripe Unit 2

Stripe Unit 5

Physical Partition n+1

Stripe Unit n+1

Stripe Unit n+4

Physical Partition 3

Stripe Unit 3

Stripe Unit 6

Physical Partition n+2

Stripe Unit n+2

Stripe Unit n+5

Physical Partition
n

Stripe 2

Stripe 1

Stripe n

Stripe n+1
Designing a disk subsystem 155

striping differs from PP striping in its use of a more granular or fine data
stripe. With LVM striping, each logical partition of a logical volume is broken
up into multiple stripe units and distributed among all of the physical devices
that contain part of the logical volume. The stripe unit size must be a power of
two in the range 4 KB to 128 KB and is specified when the logical volume is
created.

LVM striping works best in environments that perform many sequential read
and write operations against large datafiles due to the performance benefits
of sequential read ahead. Sequential read ahead occurs when either the
RDBMS or the AIX Virtual Memory Manager (VMM) detects that the file is
being accessed sequentially. In this case, additional disk reads are scheduled
against the file in order to pre-fetch data into memory. This makes the data
available to the program much faster than if it had to explicitly request the
data as part of another I/O operation. Sequential read ahead is only available
for files residing on JFS file systems and has no meaning for raw devices (raw
logical volumes). DSS and batch workloads are good candidates for LVM
striping.

8.4.2 Use of LVM policies
The AIX LVM provides a number of facilities or policies for managing both the
performance and availability characteristics of logical volumes. The policies
that have the greatest impact on performance are: Intra-disk allocation,
inter-disk allocation, write scheduling, and write-verify policies.

8.4.2.1 Intra-disk allocation policy
The intra-disk allocation policy determines the actual physical location of the
physical partitions on disk. The disk is logically divided into the following five
concentric areas: Outer edge, outer middle, center, inner middle, and inner
edge.

Prior to AIX version 4.3.3, logical volumes could not be mirrored and
striped at the same time. Logical volume mirroring and striping combines
the data availability of RAID 1 with the performance of RAID 0 entirely
through software. Volume groups that contain striped and mirrored logical
volumes cannot be imported into AIX Versions 4.3.2 and below.

Note
156 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 27. Physical Partition mapping

Due to the physical movement of the disk actuator, the outer and inner edges
typically have the largest average seek times and are a poor choice for
application data that is frequently accessed. The center region provides the
fastest average seek times and is the best choice for applications that
generate a significant amount of I/O activity. The outer and inner middle
regions provide better average seek times than the outer and inner edges but
worse seek times than the center region.

As a general rule, when designing a logical volume strategy for performance,
the most performance critical data should be placed as close to the center of
the disk as possible. There are, however, two notable exceptions:

1. Applications that perform a large amount of sequential reads or writes
experience higher throughput when the data is located on the outer edge
of the disk due to the fact that there are more data blocks per track on the
outer edge of the disk than the other disk regions.

2. Logical volumes with Mirrored Write Consistency (MWC) enabled should
also be located at the outer edge of the disk, as this is where the MWC
cache record is located. Please refer to Section 8.7, “Use of Mirror Write
Consistency (MWC)” on page 167 for further information concerning the
effect of MWC on logical volume performance.

8.4.2.2 Inter-disk allocation policy
The inter-disk allocation policy is used to specify the number of disks that
contain the physical partitions of a logical volume. The physical partitions for
a given logical volume can reside on one or several disks in the same volume
group depending on the setting of the Range option:

(Outer) Edge

(Outer) Middle

Center

Inner Edge

Inner Middle
Designing a disk subsystem 157

• The maximum range setting attempts to spread the physical partitions of a
logical volume across as many physical volumes as possible in order to
decrease the average access time for the logical volume.

• The minimum range setting attempts to place all of the physical partitions
of a logical volume on the same physical disk. If this cannot be done, it will
attempt to place the physical partitions on as few disks as possible. The
minimum setting is used for increased availability only and should not be
used for frequently accessed logical volumes. If a non-mirrored logical
volume is spread across more than one drive, the loss of any of the
physical drives will result in data loss. In other words, a non-mirrored
logical volume spread across two drives will be twice as likely to
experience a loss of data as one that resides on only one drive.

The physical partitions of a given logical volume can be mirrored to increase
data availability. The location of the physical partition copies is determined by
the setting of the Strict option. When Strict = y, each physical partition copy is
placed on a different physical volume. When Strict = n, the copies can be on
the same physical volume or different volumes. When using striped and
mirrored logical volumes in AIX 4.3.3 and above, there is an additional
partition allocation policy known as Super Strict. When Strict = s, partitions of
one mirror cannot share the same disk as partitions from a second or third
mirror, thus, further reducing the possibility of data loss due to a single disk
failure.

In order to determine the data placement strategy for a mirrored logical
volume, the settings for both the Range and Strict options must be carefully
considered. As an example, consider a mirrored logical volume with range
setting of minimum and a strict setting of yes. The LVM would attempt to
place all of the physical partitions associated with the primary copy on one
physical disk, with the mirrors residing on either one or two additional disks,
depending on the number of copies of the logical volume (2 or 3). If the strict
setting were changed to no, all of the physical partitions corresponding to
both the primary and mirrors would be located on the same physical disk.

8.4.2.3 Write-scheduling policy
When mirrored copies of the data are maintained by the LVM, the setting of
the mirrored write-scheduling policy determines the sequence of the write
operations to the logical volume. Mirrored writes can be either parallel or
sequential.

The sequential write-scheduling policy writes the physical partitions for a
mirrored logical volume in the sequence primary, secondary, and tertiary,
where primary represents the first copy of the logical volume, secondary the
158 Database Performance on AIX in DB2 UDB and Oracle Environments

second, and tertiary the third. A write request for a given copy must complete
prior to updating the next copy in the sequence. Read requests are first
directed to the primary copy. If that copy cannot be accessed due to a drive
failure or physical corruption, the request is redirected to the secondary copy
and so forth. While the redirected read request is being processed, the LVM
automatically attempts to correct the copies on which the read failed through
a process known as bad block relocation.

The parallel write-scheduling policy schedules the write operation to each of
the copies at the same time. The write request is satisfied when the copy that
takes the longest to update is finished. The parallel write-scheduling option
provides the best performance, as the duration of the write request is limited
only by the speed of the slowest disk and not the number of copies that must
be updated. Read requests are directed to the copy that can be accessed in
the shortest amount of time, thereby realizing the same performance gains as
write requests. Just as with the sequential-write policy, failed read requests
will automatically initiate bad block relocation.

8.4.2.4 Write-verify policy
When the write-verify policy is enabled, all write operations are validated by
immediately performing a follow-up read operation of the previously written
data. An error message will be returned if the read operation is not
successful. The use of write-verify enhances the integrity of the data but can
drastically degrade the performance of disk writes.

8.4.2.5 Recommendations for performance optimization
As with any other area of system design, when deciding on the LVM policies
to be used, a decision must be made as to which is more important:
Performance or availability. The following LVM policy guidelines should be
followed when designing a disk subsystem for performance:

• When using LVM mirroring:

• Use a parallel write-scheduling policy.

• Allocate each logical partition copy on a separate physical disk by
using the Strict option of the inter-disk allocation policy.

• Disable write-verify

• Allocate heavily accessed logical volumes near the center of the disk, with
the exceptions noted in Section 8.4.2.1, “Intra-disk allocation policy” on
page 156.

• Use a intra-disk allocation policy of maximum in order to spread the
physical partitions of the logical volume across as many physical disks as
possible.
Designing a disk subsystem 159

8.5 Raw logical volumes versus Journaled File Systems (JFS)

There has been a long standing debate surrounding the use of raw logical
volumes (raw devices) versus Journaled File Systems (JFS), especially in
database environments. Advocates of raw logical volumes stress the
performance gains that can be realized through their use, while JFS
supporters emphasize the ease of use and manageability features of file
systems. As with many other aspects of system design, a decision must be
made as to which is more important: Performance or manageability.

In order to better understand the performance advantages associated with
raw logical volumes, it is helpful to have an understanding of the impact of the
JFS file system cache. Most UNIX file systems set aside an area of memory
to hold recently accessed file data, thereby, allowing a physical I/O request to
be satisfied from memory instead of from disk. In AIX, this area of memory is
known as the buffer cache. If an application requests data that is not already
in memory, AIX will read the data from disk into the buffer cache and then
copy the data to a user buffer so that it can be used by the application.
Therefore, each read request translates into a disk read followed by a copy of
the data from the buffer cache to the user buffer.

Because the data is read from memory, I/O requests can be satisfied in
nanoseconds instead of the milliseconds that would be required in order to
fetch the data from disk. In addition, AIX JFS file systems employ the use of a
sequential read-ahead mechanism to pre-fetch data into memory when it is
determined that a file is being accessed sequentially.

In non-database environments, the AIX buffer cache can significantly reduce
I/O wait time for heavily accessed files. However, the performance benefits of
file system caching in database environments are not so clear. This is due to
the fact that most modern RDBMS systems also allocate a region of memory
for caching frequently accessed data. The end result when using JFS file
systems is that the data is double-buffered: Once in the file system buffer
cache and once in the RDBMS cache. In most cases, the extra memory used
by the file system buffer cache could be better utilized by the database
buffers.

The primary benefit of raw logical volumes is that they bypass the AIX file
system buffer cache entirely by directly accessing the underlying logical
device. The extra memory saved by eliminating the file system cache can
then be allocated to the database to increase the data buffers. In addition,
overall CPU utilization is decreased due to the fact that the system no longer
has to copy the data from the file system cache to the user buffers. Another
benefit of raw logical volumes is that there is no inode management
160 Database Performance on AIX in DB2 UDB and Oracle Environments

overhead, as opposed to JFS where the inode is locked when the file is
accessed.

The main drawback of using raw logical volumes lies in the increased
administration costs associated with their use. Since raw logical volumes do
not exist as files at the UNIX level, many of the traditional tools and utilities for
managing data will not work. Backup and recovery operations can be
especially difficult when using raw logical volumes. Many third party vendor
backup applications (such as the IBM ADSM) cannot directly read raw logical
volumes and must rely on the UNIX dd command to copy the raw data to a
UNIX filesystem prior to backing up the data. Restores are equally
complicated as the data must first be restored to a UNIX filesystem and then
copied to the raw logical volume. If this approach is used, additional disk
space will be required for the JFS filesystems used to temporarily hold the
data contained in the raw logical volume. However, if the raw logical volumes
can be backed up directly to a locally attached tape drive using the dd

command, this will not be an issue.

Many raw logical volume benchmarks point to an overall disk I/O throughput
gain of 5-30 percent when compared to JFS file systems. However, the actual
performance gains that can be realized in a typical database environment will
vary depending on the I/O workload mix of the application. Applications that
perform a large amount of random I/O operations, such as OLTP systems,
benefit the most from the use of raw logical volumes. Applications that
perform a large amount of sequential I/O operations, such as DSS systems,
benefit from the sequential read ahead feature of JFS file systems.

8.6 RAID Levels overview and performance considerations

Redundant Array of Independent Disks (RAID) is a term used to describe the
technique of improving data availability through the use of arrays of disks and
various data striping methodologies. A disk array is a group of physical disk
drives used simultaneously to achieve higher data transfer and I/O rates than
those available through the use of one single drive. IBM was responsible for
much of the initial research and development into the use of RAID, with the
first patent being issued in 1978.

The initial focus of RAID research was to improve performance while at the
same time reducing the overall cost per unit of storage. Further research
emphasized the improved data reliability and fault tolerance that
characterizes modern RAID systems.
Designing a disk subsystem 161

The alternative to RAID disks is a set of disks connected to the system in
which logical volumes are placed, and any one logical volume is entirely on
one disk. This is often called JBOD, meaning Just a Bunch of Disks.

Within the RAID architecture, there are varying degrees of data reliability and
performance, known as RAID Levels. Depending on the RAID Level, data can
be either mirrored or striped. Data redundancy is provided through data
mirroring, which maintains two copies of the data on separate physical disks.
Data striping involves distributing the data among several disks by splitting it
into multiple sequential data blocks and writing them to each of the drives in
the array in parallel. In addition, most of the RAID Levels create parity
information that can be used to reconstruct data on a particular drive in the
event of a failure. The standard RAID specification provides for Levels 0-6,
although some vendor specific implementations exist, such as EMC’s
RAID-S.

8.6.1 RAID Level 0
RAID 0, referred to as data striping, differs from the other RAID
implementations in that it does not offer any form of data redundancy. RAID 0
splits data into chunks and then writes or stripes the data sequentially across
all of the disks in the array. This implementation offers the following
performance advantages:

• Parallel I/O streams to multiple drives allow for higher data transfer rates
for sequential read/write operations

• Increased throughput of random disk accesses due to the distribution of
data onto multiple disks

The primary disadvantage of a RAID 0 configuration is that, should a single
disk in the array fail, all of the data in the array will become unusable due to
the fact the data cannot be reconstructed from the remaining drives. RAID 0
should, therefore, be used for applications that require a high level of
performance but which do not have very stringent data availability
requirements.

The following overview contains performance-related comparisons of the
different RAID Levels. These comparisons, and the resulting
recommendations, are meant to compare and contrast the performance
characteristics of different RAID Levels only and are not meant to serve as
a comparison of RAID versus LVM performance.

Note
162 Database Performance on AIX in DB2 UDB and Oracle Environments

8.6.2 RAID Level 1
RAID 1, also known as disk mirroring, uses data mirroring to achieve a high
level of redundancy. In a RAID 1 configuration, two copies of the data are kept
on separate disks, each mirroring the other. In the event of a single disk
failure, all read/write operations will be redirected to the mirrored copy of the
data. RAID 1 configurations are the most expensive of any of the other
solutions due to the fact that twice as many disks are required in order to
mirror the data.

Read performance of a RAID 1 configuration implemented via the AIX LVM is
enhanced due to the fact that, should the primary copy be busy, read
requests are directed to the mirror copy. Write performance can be slower
than in non-RAID implementations depending on the write scheduling policy
selected through the LVM: Parallel or sequential.

Using the parallel scheduling policy, the writes to all copies of the data are
initiated at the same time or in parallel. The write operation is considered
complete when the copy that takes the longest time to update is finished. This
is the fastest but less reliable option, as a failure to write to one of the copies
may go undetected for a period of time.

Under the sequential scheduling policy, the update of the mirror is not started
until the write to the primary copy has successfully completed. This is the
more reliable, but slower, of the two methods.

In addition, the use of mirror write consistency can have an impact on the
performance since potentially four disk write operations are performed for
each LVM write operation. See Section 8.7, “Use of Mirror Write Consistency
(MWC)” on page 167 for more details.

8.6.3 RAID Level 2 and Level 3
RAID Level 2 and Level 3 both break data into multiple chunks or segments
and evenly distribute it across several physical disks. Striping in RAID 2 and
RAID 3 occurs at the bit or multi-byte level. During a read operation, multiple
simultaneous requests are sent to each disk causing all of the disk actuators
- the arm that holds the read/write head for the disk - to move in parallel. This
limits the number of concurrent I/O operations in the array to one.

In order to provide data redundancy, RAID 2 and 3 configurations require
parity information to be written for each write operation performed. While
RAID 2 can distribute the parity information across multiple drives through the
use of an encoding technique known as the Hamming method, RAID 3 uses
only one drive for the parity. If one drive in the array fails, the data can still be
Designing a disk subsystem 163

accessed and updated using the parity information. However, the system will
operate in a degraded mode until the drive is fixed due to the time required to
dynamically reconstruct the data located on the failed drive using the parity
information.

8.6.4 RAID Level 4
RAID 4 is very similar to RAID 3 in that it stripes the data across multiple
physical disks in the array. The primary difference is that the striping
increment is a block or record instead of the bit or byte method used by RAID
3 configurations. By virtue of the larger data increment used to create the
stripe, reads can be matched to the one physical disk that contains the
requested data. This allows both simultaneous and independent reads to be
processed.

As in RAID 3, a single parity disk is used for data redundancy. This can create
a performance bottleneck for write operations, as requests to update the sole
parity disk cannot be processed in parallel. Due to the performance problems
associated with the single parity disk and RAID 4’s similarity to RAID 5, RAID
4 is not a commonly used or recommended configuration.

8.6.5 RAID Level 5
Instead of having a dedicated parity disk, RAID 5 interleaves both data and
parity on all disks. In a 4+P RAID 5 array, five disks are used for data and
parity combined. Four-fifths of the space on those disks is used for data and
one-fifth of the space is used for parity. In RAID 5, the disks can be accessed
independently of one another, and it is possible to use a large stripe size; so,
most data transfers involve only one data disk. This enables multiple
concurrent accesses, thereby, giving higher throughput for OLTP or other
random workloads.

Due to the way in which parity data is typically generated for RAID 5, there is
a write penalty associated with write access. Random write I/Os usually result
in four actual I/O operations:

The AIX LVM does not directly support RAID Level 2 or RAID Level 3.
Note

The AIX LVM does not directly support RAID Level 4.

Note
164 Database Performance on AIX in DB2 UDB and Oracle Environments

1. Read the old data

2. Read the old parity

3. Write the new data

4. Write the new parity

Some IBM RAID 5 implementations, such as the SSA RAID adapters,
incorporate full or partial stripe write algorithms for sequential writes. This
reduces the number of I/O operations required. Also, the use of read/write
cache in the adapter can mask the write penalty for many workloads either by
getting a cache hit during the data read operation or by caching the writes. It
is important to note that there is some form of write penalty associated with
any redundant RAID architecture, including RAID 1. This is due to the fact
that some amount of redundant information must be written in addition to the
base data.

The IBM PCI SSA RAID adapters can be configured with an optional fast
write cache, which dramatically reduces the impact of the write penalty
associated with RAID 5 implementations.

8.6.6 RAID 0+1
RAID 0+1, also known as IBM RAID-1 Enhanced or RAID 10, is a
combination of RAID 0 (data striping) and RAID 1 (data mirroring). RAID 0+1
provides the performance advantages of RAID 0 while maintaining the data
availability of RAID 1. In RAID 0+1 configurations, both the data and its mirror
are striped across all the disks in the array. The first stripe is the data stripe,
and the second stripe is the mirror, with the mirror being placed on a different
physical drive than the data. RAID 0+1 implementations provide excellent
write performance, as they do not have to calculate or write parity data. RAID
0+1 can be implemented solely in software (AIX), solely in hardware, or in a
combination of hardware and software. Which is the appropriate solution for
each implementation depends on overall requirements, such as high
availability.
Designing a disk subsystem 165

8.6.7 Comparison of RAID Levels
The following chart summarizes the performance and availability
characteristics of the different RAID Levels:

Table 10. Comparison of RAID Levels

8.6.8 RAID 5 versus AIX LVM mirroring
When deciding on a data protection strategy, most customers narrow their
choices down to the two most widely implemented solutions: SSA RAID 5 or
LVM mirroring. Both solutions provide a highly robust and reliable data
protection mechanism with varying degrees of performance and cost.

When evaluating the performance of a RAID 5 configuration, two important
factors should be considered: The number of disks in the array and the
read/write ratio of the application that will be using the array. In RAID 5
configurations, transaction performance (especially for reads) is directly
related to the number of disks used in the array. As the number of disks in the
array increases, so do the number of I/O operations processed/second, up to
the limits of the RAID adapter. This is due to the fact that read operations can
be processed in parallel across the disks in the array

RAID
Level

Capacity Data
Protection

Performance Cost

Sequential Random
Read

Random
Write

RAID 0 Very High None High High High Low

RAID 1 Moderate Very Good Medium-High Medium-High Medium High
(can be twice
RAID 0)

RAID 3 High Good High Low-Medium Low-Medium Medium

RAID 5 High Good High High Medium Medium

RAID 0+1 High Very Good High High High High

The number of I/O operations processed/second will decrease if the size of
the logical volume that is striped across the array increases. This is due to
the fact that the each disk in the array will be required to seek over a larger
area of the disk in order to read or write data.

Note
166 Database Performance on AIX in DB2 UDB and Oracle Environments

The read/write ratio of the application is the other factor that should be
considered when assessing the performance of a RAID 5 configuration. The
write penalty associated with RAID 5 configurations that do not utilize a fast
write cache can result in severe performance degradation for applications that
are write intensive. If the application is characterized by a large number of
read operations and relatively few writes, RAID 5 solutions can provide
roughly equivalent performance to their mirrored counterparts provided they
use sufficiently large disk arrays.

For applications that are not particularly I/O intensive, RAID 5, not regarding
the usage of the fast write cache, can provide reasonable performance at a
significant cost savings when compared to mirrored solutions. As an example,
in a RAID 5 environment, eight disks would be required for seven disks worth
of storage: seven for the data and one for the distributed parity. By
comparison, a mirrored environment would require 14 disks: Seven for the
data and seven for mirrors.

In summary, since both RAID 5 and LVM mirroring solutions provide equally
reliable data protection mechanisms, one should focus on the following
factors when attempting to choose between the two solutions:

• Performance characteristics of the application - Does the application
process many random I/O operations, or does it perform primarily
sequential reads and writes?

• I/O response times required for the application - How critical is I/O
performance to the operation of the application?

• Cost - Which solution provides the best performance at the lowest cost?

8.7 Use of Mirror Write Consistency (MWC)

Mirror Write Consistency (MWC) is a technique used by the LVM to ensure
data consistency between mirrored logical volume copies when a volume
group is not varied off-line cleanly. If all LV copies are not kept in sync, a read
request will return two different versions of the data depending on which copy
was chosen by the LVM.
Designing a disk subsystem 167

A Mirror Write Consistency (MWC) log (sometimes referred to as the Mirror
Write Consistency cache or MWCC) identifies those Logical Track Group
copies that may be inconsistent when a volume group is not varied off-line
cleanly. A Logical Track Group (LTG) is a group of 32 4 K blocks (128 K bytes
total) within a logical volume (LV). When a volume group is varied back
on-line, LVM uses the MWC log to make LTG copies consistent again in all
mirrored logical volumes for which MWC is enabled.

An MWC log for each active volume group is maintained in kernel memory.
There is a copy of the log in a single 512-byte disk block near the outer edge
(prior to the first physical partition) of every physical volume in the volume
group. Since the MWC log is written to different disks at different times, the
disk copies are not usually identical.

An MWC log has 62 entries. Each entry contains a logical volume minor
number and the index of a Logical Track Group within the logical volume.
When a write request is received for a mirrored logical volume with MWC
enabled, the MWC log in kernel memory is checked for the LTG that will be
affected by the write. If an entry for the LTG is found in the MWC log in
memory, then the corresponding write requests are allowed to proceed. If
there is no entry for the LTG, one is added and the updated MWC log is
written to the physical volumes on which the affected LTG copies reside.
Meanwhile, the LTG write request is held within the scheduling layer. When
the MWC log write requests are complete, the LTG write request is released
and allowed to proceed.

Entries are never removed from the MWC log in memory. Instead, a count of
the number of writes active to the specified LTG is kept for each entry. When
the count is zero, the entry is eligible for reuse. When a new write request
arrives for an LTG that is not yet in the log, it replaces the least recently used
entry that has a write count of zero. If all 62 entries have non-zero write
counts, the LTG write request is queued until the write count of some entry
goes to zero.

Mirror Write Consistency is enabled, by default, for mirrored logical
volumes. To disable MWC, you must use the -w n option of the mklv

command when creating the logical volume. To disable MWC on previously
created logical volumes, use the -w n option of the chlv command. Please
refer to the AIX Commands Reference, SBOF-1877, for your particular
operating system version for a full description of the mklv and chlv

commands

Note
168 Database Performance on AIX in DB2 UDB and Oracle Environments

AIX does not return iodone to an application until writes have completed to all
mirror copies (or until one or more copies have been marked stale). To
synchronize a logical volume after a crash, an RDBMS must reissue all write
requests for which iodone had not been received at the time of the crash.
Mirrored logical volumes containing JFS logs or file systems must be
synchronized after a crash either by forcing a sync (see below) or by enabling
MWC prior to the crash.

When a logical volume closes, all MWC log entries referring to the logical
volume are cleared, and the MWC log is written to every disk in the volume
group.

When a volume group is varied back online, AIX reads the MWC log record
from every disk in the volume group and processes each MWC entry in each
log. For each unique MWC entry (which contains a logical volume minor
number and the index of a Logical Track Group within the logical volume), AIX
reads the LTG from the logical volume and writes it back. Duplicate MWC
entries that have already been processed are ignored.

The LTG copy that is read depends upon the logical volume's scheduling
policy. If the scheduling policy is parallel, AIX directs the read request to the
available copy that is least busy. If neither copy is busy, the first is used. If the
scheduling policy is sequential, AIX tries each copy in turn, starting with the
first, until it finds one that is available.

Since the LTG copy read and write does not necessarily contain the latest
data, there is no guarantee that the latest data will be propagated. An
RDBMS must, therefore, determine the validity of data in question after a
crash (the data for which a write had been issued but for which no iodone had
been received at the time of the crash) even if MWC is used to guarantee
consistency.

In other words, enabling MWC insures the consistency of logical volume
copies but does not protect the integrity of logical volume data. Even when a
logical volume is mirrored to improve availability, an RDBMS must still take
steps to provide for data integrity.

If MWC must be used, and write throughput is important (to optimize RDBMS
update performance, for example), it is unwise to implement volume groups
with anything close to the maximum number of physical volumes (128)
currently allowed. When every logical volume in a volume group is
double-mirrored with MWC enabled, write I/O can be in progress to, at most,
62 LTGs at any given instant. Since each LTG has two copies, write I/O can
be in progress to, at most, 124 physical LTG copies (at most,124 physical
Designing a disk subsystem 169

volumes) in the volume group. Any given LTG copy can, of course, have more
than one write I/O in progress to it. Since optimum disk subsystem write
throughput is achieved when a queue of several write I/Os is maintained on
every physical disk, if write throughput is an issue and MWC must be used, a
volume group should be only as large as is required to implement the desired
striping and mirroring of those logical volumes in the volume group. Many
small volume groups should be defined in preference to one large one.

From a database performance standpoint, enabling MWC on mirrored logical
volumes can be quite costly, especially for those database files with high I/O
activity, such as the redo logs. This is due to the fact that two writes are
performed for every update: One for the MWC cache record and one for the
actual data. However, the performance degradation associated with writes to
MWC enabled logical volumes can be minimized through the use of hardware
write cache. Certain SSA adapters, such as the IBM SSA Advanced
SerialRAID Adapter, support an optional 32 MB non-volatile fast write cache.

If MWC is disabled to improve overall I/O performance to one or more
mirrored logical volumes, some other measure must be taken to guarantee
mirror consistency in the event of a system crash. In order to ensure that all
copies contain the same version of the data, you must disable autovaryon for
any volume groups that contain such logical volumes and manually force
synchronization (syncvg -f -l LVname) of every mirrored LV. The -f option tells
syncvg to choose a good physical LV copy and propagate it to all other copies,
whether any copy is marked stale or not. Every syncvg must complete before
varying on the volume group and making logical volumes available for use by
the database.

MWC can be disabled to improve batch load performance provided:

1. The logical volumes involved are completely reloaded from scratch if the
system crashes and reboots.

2. MWC is enabled as soon as batch loading completes.

Consider the following example:

In the middle of a database update transaction, a system crash occurs
preventing some mirrored copies from being updated. The LVM does not have
time to mark any partitions stale. The system restarts, and the LVM
automatically varies on the volume group(s) containing the data in question.
Because none of the partitions are marked stale, logical volumes are placed
back online without undergoing any form of synchronization.
170 Database Performance on AIX in DB2 UDB and Oracle Environments

At this point, the database initiates some form of crash recovery to roll back
any failed transactions. The first copy of the mirror (copyA) indicates that the
data was changed, but the transaction did not complete. Another copy of the
data (copyB) indicates that the data was not changed. If copyA is chosen, and
the transaction is rolled back, everything will be consistent from a database
perspective, as all copies will be written to during the roll back of the failed
transaction. However, if copyB is chosen, no recovery is performed, and two
different copies of the data still exist, which can cause logical corruption of
the database.

The main drawback to disabling MWC is that manually resyncing the mirrors
can significantly increase the amount of time necessary to make the volumes
available, as every single partition must be read and rewritten to all of the
mirrors. A decision must be made as to which is the most important: Speed of
recovery in the event of a system failure or performance of the application.

8.8 Serial Storage Architecture (SSA)

Serial Storage Architecture (SSA) is an open-storage interface used to
connect I/O devices and adapters to host systems. SSA was designed to be a
high-performance, low-cost alternative to traditional SCSI based storage
systems. SSA also directly addresses some of the performance and
manageability limitations of the SCSI architecture.

8.8.1 Technology overview
SSA subsystems are comprised of loops of adapters and disk devices. A
theoretical maximum of 127 devices can be connected in a SSA loop,
although current IBM SSA adapters limit this to a maximum of 48 devices per
loop. Each SSA adapter has two loops, each with two ports or nodes. Data
transfer is bi-directional in a SSA loop, with a maximum data transfer speed of
40 MB/s in each direction, for a total transfer speed of 80 MB/s per node or
160 MBs/ per loop.

In SSA terms, a node can be either an initiator or a target. As stated
previously, each adapter contains two nodes or ports, and each SSA disk
device also contains one node. The SSA adapter nodes are the initiator
nodes responsible for issuing commands to the target nodes on the attached
SSA disk devices.

SSA provides the following performance and manageability advantages:

• Dual connection paths to attached devices - If a break occurs in a loop, the
data is automatically rerouted.
Designing a disk subsystem 171

• Simplified cabling when compared to SCSI - Cheaper, smaller cables and
connectors, no need for separate terminators.

• Faster interconnect technology:

• Full-duplex, frame-multiplexed serial links

• Capable of transferring data at 80 MB/s per port, 160 MB/s per loop
and adapter

• Hot pluggable cables and disks

• Supports large number of devices - Up to 127 per loop, although current
IBM SSA adapters limit this to 96 disks per adapter.

• Auto-configuration of attached devices and online discovery.

• Increased distance between devices - Up to 25 meters with copper cables
and 10 kilometers with optical fiber extenders.

8.8.2 SSA specific performance considerations
There are various performance factors specific to SSA implementations that
must be considered when designing your disk subsystem. These include:

• The number of disks per SSA loop or adapter

• The distribution of the data among disks in a loop

• The position of the device in the loop

8.8.2.1 Number of disks per SSA loop or adapter
While the SSA adapter itself is capable of supporting a peak data transfer
rate of 160 MB/sec, the host interface or bus usually limits the speed to a
fraction of that supported by the adapter. The maximum sustained data
transfer rate is approximately 90 MB/sec. Given that limitation and the
maximum sustained data rates for different SSA drives listed in Table 11 on
page 172, the actual number of disks that can be effectively placed on a loop
or adapter is much less than the maximum of 48 per loop and 96 per adapter.

Table 11. SSA Disk Characteristics

Formatted
Capacity
(GB)

1.1 2.2 4.5 4.5 9.1 9.1 9.1 18.2 18.2 36.4

Media data
rate (MB/s)

9.59-
12.58

9.59-
12.58

9.59-
12.58

11.52-
22.4

10.3-
15.4

11.5 2-
22.4

15.2-
30.5

11.52-
22.4

15.2-
30.5

17.9-
28.9

Sustaineddata
rate (MB/s)

7 7 7 9 9 14 18 14 18 18

Average seek
time(ms)

6.9 7.5 8.0 6.5 8.0 6.5 5.3 7.5 6.5 7.5
172 Database Performance on AIX in DB2 UDB and Oracle Environments

The Drive Type information shown for each drive in Table 11 corresponds with
the Machine Type and Model field shown in the output of the lscfg command
when used to query the configuration of an SSA physical disk. For example:

lscfg -vl pdisk5
DEVICE LOCATION DESCRIPTION

pdisk5 30-60-P 2GB SSA C Physical Disk Drive

Manufacturer................IBM
Machine Type and Model......DFHCC2B1
Part Number.................02L7551
ROS Level and ID............9190
Serial Number...............6811D707
EC Level....................E29646
Device Specific.(Z2)........RAMSC091
Device Specific.(Z3)........02L7551
Device Specific.(Z4)........97246

The number of disks that can be effectively placed on a SSA loop or adapter
is largely dependent on the I/O characteristics of the application that will be
accessing the data. The exact number of disks that will provide the most
optimal performance will obviously vary depending on the workload placed on
the disk subsystem by the application. With that in mind, the following general
rules of thumb apply:

• If the application primarily performs long sequential I/O operations, a
maximum of 8 to 16 disks should be configured per SSA adapter. This
configuration would provide sufficient bandwidth to saturate the host
system bus in a PCI architecture.

• If the application performs a mixture of sequential and random I/O
operations, then 16 to 32 disks per adapter would be sufficient.

Rotational
speed (rpm)

7200 7200 7200 7200 7200 7200 10K 7200 10K 7200

Latency
(Average)

4.17 4.17 4.17 4.17 4.17 4.17 2.99 4.17 2.99 4.17

SSA Transfer
Rate
(max MB/s)

20 20 20 40 20 40 40 40 40 40

Drive Type DFHCC1B1 DFHCC2B1 DFHCC4B1
or
DFHCC4C1

DGHC04B DCHC09B1
or
DCHC09C1

DGHC09B DRVC09B DGHC18B DRVC18B DRHC36B

Formatted
Capacity
(GB)

1.1 2.2 4.5 4.5 9.1 9.1 9.1 18.2 18.2 36.4
Designing a disk subsystem 173

• If the application is characterized by many short transfers with random
seeks, the chances of any one disk saturating the available bandwidth of
the adapter or bus is fairly low; therefore, more disks should be added per
loop/adapter. In this instance, two loops of 24 to 48 disks per loop should
provide adequate performance while still staying within the limits of the
adapter or host system bus.

8.8.2.2 Distribution of data among disks in a loop
The SSA architecture allows data to be transferred in different portions of a
loop concurrently, a concept known as spatial reuse. The distribution of I/O
operations to the physical disks in a loop must be carefully considered when
designing the disk subsystem in order to take advantage of spatial reuse and
maximum throughput on the adapter. As an example, consider the one
adapter, single loop, eight drive configuration depicted in Figure 28.

Figure 28. Spatial reuse in a SSA disk subsystem

With this configuration, the adapter accesses disks A, B, C, and D using
portion X of the loop and disks E, F, G, and H along portion Y of the loop.

Due to the fact that the SSA link is full-duplex, each portion of the loop can
concurrently process both read and write operations. Optimal utilization of the
bandwidth of the loop would occur if, at any given point in time, 50 percent of
the operations in portion X of the loop were reads and 50 percent were writes.
If, however, 100 percent of the reads were accessing disks in portion X of the
loop, and 100 percent of the writes were accessing disks in portion Y of the
loop, only half of the available bandwidth of the adapter would be used.

Optimal performance can be obtained by ensuring that disk accesses are
balanced across both portions of an SSA loop. This will ensure that both the

S S A
A dapter

A 1 A 2

B 1 B 2

X Y

X Y

H ost

A B C D E F G H
174 Database Performance on AIX in DB2 UDB and Oracle Environments

available bandwidth and the number of disks that can be placed in the loop
are maximized.

8.8.2.3 Position of the device in the loop
The proximity of a device in a loop to the SSA adapter can have performance
implications in heavily loaded SSA networks. In these cases, the SSA drives
that are furthest away from the adapter consume more of the available
bandwidth than those that are closer to the adapter.

In an SSA loop, data packets are passed from the originating device or node
to a packet buffer on an adjacent node, and so on, until the packet reaches
the adapter. If the SSA loop has many disks, each passing data packets to
their adjacent nodes, the disk(s) nearest the adapter can become very busy
passing data packets to the adapter that originated farther down the loop. In
order to ensure that the devices nearest the adapter do not become stuck
passing data packets for other devices on the loop, the SSA architecture
employs a fairness algorithm that uses a token passing mechanism.

One token, known as the SAT token, circulates in each direction around the
loop. If a device on the loop has outstanding I/O requests that needs to be
processed, it must wait until it receives the token. The queued I/O requests
are then processed in sequence up until a point in time at which the fairness
algorithm determines that it must stop. It must then wait until the token
recirculates around the loop before processing any additional I/O requests.

Even with the introduction of the token, devices nearest the adapter will still
be responsible for passing more data packets to the adapter than those
further down the loop. Therefore, in heavily loaded configurations, you should
consider placing disks with the highest I/O as far away from the adapter as
possible.

8.9 Integrated disk storage systems

Providing access to data in an open systems environment represents a
substantial challenge given the multitude of servers and storage systems that
exist within most organizations today. The ability to manage and share
information is a pressing concern as administrative costs continue to climb,
and the management of multiple servers and data storage systems grow
more complex every day. These concerns, and the spiraling costs associated
with them, have led many organizations to a strategy of server consolidation:
The relocation of distributed servers and related storage into data centers
with centralized management provided by corporate IT departments.
Designing a disk subsystem 175

Companies need storage solutions that are flexible and designed to simplify
storage management, provide sharing of storage resources, enhance data
sharing, and support their plans for server consolidation. Storage
consolidation can be the first step towards the goal of implementing server
consolidation in reducing the number of boxes and providing IT departments
with the flexibility to add or assign storage capacity when and where it is
needed.

With the increasing standardization of Internet technologies and focus on
Web-centric computing, rapid growth in global e-Business is increasingly
demanding continuous computing and 7x24 access to data. Intelligent
storage subsystems are emerging as key players in providing servers with the
capability to off-load administrative tasks, such as copy services, and even
executing backups without impacting the production servers. In response to
this trend, IBM offers a series of products on the Seascape Enterprise
Storage Architecture platform that includes the Enterprise Storage Server
(ESS). The ESS's high performance, attachment flexibility and large capacity
provides the ability to consolidate data from different platforms onto a single
high-performance, high-availability box.

8.9.1 IBM Enterprise Storage Server (ESS)
The IBM Enterprise Storage Server provides universal data access including
RS/6000 and SP2 running AIX, many leading UNIX variants, IBM Netfinity,
and other Intel-based PC servers running Windows NT, Novell Netware, and
AS/400 running OS/400. Any combination of these heterogeneous platforms
may be used with the ESS including S/390. The IBM Enterprise Storage
Server is a storage subsystem that is compatible with previous generation of
IBM storage products. The following key design and functional characteristics
define the ESS:

• The ESS provides connectivity to UNIX, NT, and AS/400 hosts through
SCSI (32 SCSI-2 or SCSI-3) interfaces S/390 connectivity is provided
through ESCON channels (32). A combination of ESCON and SCSI
channel configurations provide multi-platform connectivity.

• Designed to handle a wide variety of open system hosts, the ESS provides
these hosts with the ability to address 4096 SCSI and 4096 S/390 devices
through 16 host adapters, each supporting two ports. With support for the
SCSI-3 protocol, the ESS offers the assignment of up to 64 logical unit
numbers (LUNs) per SCSI target or SCSI ID, thus providing a maximum of
15 x 64 or 960 LUNs (one host adapter used by the host). While not all
open host systems support the full 64 LUN capability, AIX handles up to
32 LUNs/SCSI target, while NT only handles 8 LUNs/SCSI target. For
UNIX and NT systems, the IBM Data Path Optimizer can be used to
176 Database Performance on AIX in DB2 UDB and Oracle Environments

provide multiple paths (up to 16 paths) from a single host to shared LUNs,
thus, providing ways to distribute the workload in order to avoid
bottlenecks.

• Fibre Channel connectivity to open system hosts is provided through the
IBM SAN Data Gateway product. In the future, the ESS will support the
native Fibre Channel Protocol (FCP), Fibre Channel Arbitrated Loop
(FC-AL), and FC-switched capability for all open systems, while Fibre
Channel (FICON) protocol will support S/390.

• The ESS contains two, independently-managed, 4-way RISC (332 MHz)
SMP processor clusters connected to each of the host adapter delivering
leadership fault tolerant storage subsystem functionality. Failover and
failback provides redundancy for the disk arrays connected to both
clusters.

• Each cluster is supported by 3 GB of non-shared cache (total of 6 GB) to
store both READ and WRITE data to improve performance to attached
hosts system. In the future, this cache will be increased to 16 GB in total.

• Each computing cluster in the ESS also has 192 MB of battery-backed,
non-volatile storage (total 384 MB) to store a second copy of WRITE data
to ensure data integrity in the event of an unexpected loss of a cluster,
power failure, or cache copy loss. The design and process of failure
management in the ESS ensures that no data is lost even in the event of
component failure.

• Using the latest SSA 40 MB/sec full-duplex loop based interface
technology within its 8-pack disk array, and with its four pairs of device
adapters, accessible by each of its two independent clusters, the ESS
provides a total internal disk bandwidth of 1,280 MB/sec.

• The basic unit of capacity in an ESS is the 8-pack or a group of eight disks
in a drawer. These disk arrays are called "ranks" in the ESS. RAID rank
arrays can be configured as RAID arrays or as non-RAID arrays known as
Just a Bunch of Disks (JBODs requiring only one disk to form an array). A
RAID5 rank array of eight disks can be configured either as
(6+Parity+Spare) or (7+Parity). Using 36.4 GB disks (7200 RPM), a single
ESS with an expansion rack delivers approximately 11.3 TB of usable
capacity. Other available configurations options include 18.2 GB disks
(10000 RPM) and 9.1 GB disks (10000 RPM). For investment protection,
the ESS also supports 7133-D40 drawers and 7133-020 drawers when the
2105-B09 VSS or 2105-100 VSS racks are attached to it.

• The ESS provides several hardware-assisted advanced functions for
delivering instant copy, mirroring, backup (including split mirror backup),
and disaster recovery capabilities for UNIX, NT, and S/390 environments:
Designing a disk subsystem 177

• FlashCopy delivers the ability to make near-instant (called time zero -
T0 copy) identical copies of specified source LUNs/volumes to target
LUNS/volumes. The target volume, or copy, is accessible for READ or
WRITE immediately upon execution of the selected FlashCopy
command. This enables applications to be stopped for a very short
period of time, while instant backups can be performed using
FlashCopy.

• Peer-to-Peer-Remote-Copy (PPRC) is a robust, synchronous,
IBM-patented copy function that provides mirroring (RAID1) capability
between two ESSs connected by ESCON links (fiber optic links using
S/390 ESCON protocol). Currently, PPRC functions over a distance of
103 kilometers using third party channel extenders.

• For ease of management, the ESS comes with its own resource
management tools provided by the StorWatch ESS Specialist. Accessible
through any Web browser that supports Java 1.1, the ESS Specialist must
be used to configure the ESS, administer Copy services (through the ESS
Copy Server), set up FlashCopy and PPRC functions, and partition ESS
capacity among attached hosts.

• In the future, IBM plans to deliver a virtual storage capability through the
implementation of the Log Structured File (LSF) architecture currently
available only on IBM RAMAC Virtual Array (RVA product).

8.10 Disk performance measurements and observations

In order to validate some of the assumptions and recommendations
presented in this chapter, we performed a series of tests using the model
database described in Appendix D, “The Model Database used for testing in
this redbook” on page 401. These tests were separated into two different
categories:

• Evaluation of database performance on raw logical volumes versus JFS
file systems

• Comparison of different data placement strategies: RAID 5, JBOD +
mirrors, and mirroring and striping.

For the evaluation of raw devices versus JFS file systems, we used the test
queries described in the Appendix D to simulate both OLTP and DSS
workloads. The OLTP queries consisted of a mixture of read, update, and
insert operations, while the DSS queries were comprised of 100 percent read
operations. Based on these tests, raw logical volumes were approximately 15
percent faster than JFS file systems in an OLTP environment and
approximately 35 percent faster in a DSS environment. The rather large
178 Database Performance on AIX in DB2 UDB and Oracle Environments

performance advantage associated with using raw logical volumes in a DSS
environment can be attributed to the increased sequential read activity that
often takes place in DSS systems.

These results agree with comments from the IBM Austin performance
experts, but the IBM Austin performance experts comment that the difference
in performance is not the result of the double buffering used by the JFS buffer
cache (faster CPUs and CPU caches have reduced this to a minimum) but
due to the locking requirements when using a file system to access disk
blocks. If an RDBMS used the Direct I/O feature, it could lead to an increase
in performance for JFS based databases, but the effect is very small when
compared to the performance limits caused by the inode locks. In practice,
the RDBMS vendors have not implemented Direct I/O because the
performance gains do not warrant the development and testing costs. For
faster disk I/O, they recommend raw devices.

The performance data outlined in Table 12 is the result of a series of tests
that we performed simulating workloads typically found in OLTP and DSS
environments. AIX Version 4.3.3 was used in order to take advantage of the
new LVM striping + mirroring capabilities. The disks were attached to an IBM
SSA Multi-Initiator/RAID EL Adapter and used raw logical volumes.

In our tests, raw logical volumes were faster than JFS files:

• 15 percent for OLTP

• 35 percent for DSS

Note

Logical volumes, configured with the new AIX 4.3.3 mirroring and striping
functionality option, were tested as part of this redbook and performed well.

They can be recommended for databases.

AIX 4.3.3 mirroring + striping
Designing a disk subsystem 179

Table 12. Relative disk performance in OLTP environments

DSS workloads exhibited roughly the same performance numbers. However,
AIX 4.3.3 striping + mirroring performance numbers were slightly better due
to the increased sequential read activity found in DSS applications.

Relative
performance

5 percent
write

operations

Relative
performance
10 percent

write
operations

Relative
performance
20 percent

write
operations

Advantage Disadvantage

JBOD 801 80 80 Low cost No disk
protection and
manual effort

JBOD + mirror 120 110 100 High speed Manual effort2

Costs

4.3.3 striping+
mirroring

110 100 90 No manual
effort

Slower than
JBOD + mirror

Notes:
The test scenario was:

• Random I/O on multiple 1 GB files
• 4 KB reads and writes
• High concurrent access (16 parallel I/O requests)
• JBOD = 4 disks, Mirrors = 8 disks

1 The relative performance number serves as an overall indicator of the performance of the particular data
placement option (JBOD+mirror, and 4.3.3 striping and mirroring) relative to each of the other options.
2 Manual effort refers to the process of manually distributing the database’s datafiles among the disks and
their mirrors in a JBOD configuration in an attempt to balance the I/O load of an application. LVM striping
automatically distributes the I/O load across multiple physical disks through the use of data striping
techniques.

The performance numbers expressed in this section in no way represent a
definitive statement as to the maximum or minimum capabilities of a
particular disk configuration. They merely serve as a relative indicator of
the performance observed in the specific environment in which they were
tested. No hardware or software specific performance tuning was
attempted during the course of these tests. The SSA adapters used in
these tests did not possess the Fast Write Cache option that is available for
the most current SSA Advanced Serial RAID adapters.

Note
180 Database Performance on AIX in DB2 UDB and Oracle Environments

8.11 Choosing your disk subsystem

Based on the experience of designing disk sub-systems, performance tuning
production databases, and the performance tests conducted as part of the
redbook, Figure 29 is a summary of the process of choosing an appropriate
disk.

Figure 29. Choosing a disk subsystem

JFS based files Raw device files

Is disk I/O
greater than
20% write?

Is there
enough
disks for

mirroring? No

Yes

No

Yes

Automatic
disk I/O

balancing?

Start

No

Yes

Yes

* DBA must monitor for I/O balance across disks and move files or data around.

Can the
backup tool
access raw

devices?

Yes

NoNo

No

Yes

No Striping * PP level Striping
AIX 4.3.3 fine

Striping

Using AIX
4.3.3 or
later?

Use RAID5Use JBODUse Mirror

Is Disk I/O
an issue for

this
database?
Designing a disk subsystem 181

There are three levels of decisions that need to be considered:

1. Disk protection

2. Striping (if it is not RAID)

3. Whether to use the file system or not

You will need to decide on your priorities. All the possibilities from this
diagram are expectable, but two extremes might be:

• For low maintenance, low cost with disk protection, and low I/O rate
databases, RAID 5 with JFS is a good choice. However, the fast write
cache enhancements on the latest SSA RAID adapters improve I/O
performance, especially write performance, significantly.

• For high performance, disk protection, and I/O bound databases, mirrored
and fine striped AIX 4.3.3. raw devices are a good choice.

There is no perfect choice.
182 Database Performance on AIX in DB2 UDB and Oracle Environments

Part 3. System optimization
© Copyright IBM Corp. 1999 183

184 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 9. Implementing your database

This chapter covers hints and tips on how to install, set up, load, document,
and test your database system. This is basically a chapter to let you learn
from the mistakes of others, and the hints have been developed from
experience of large production systems, especially benchmark systems.
Benchmark systems are created from scratch for each benchmark and often
on new hardware and software versions; so, a lot of experience is developed
in a short time. The aim is to make your installation as simple and straight
forward as possible and to avoid common pitfalls.

This chapter does not cover how to install the RDBMS code itself. This is very
different for each RDBMS and even changes between releases. For details on
how to install your RDBMS, please refer to the documentation supplied with
the product.

Each RDBMS installation process has its own quirks. For example:

• Oracle, from 8.1.5 on, no longer requires the Oracle 7 start.sh script to be
run to create thousands of symbolic links to the contents of the CD-ROM
to make the files on the CD-ROM readable by the installation application
orainst. Oracle now has a graphical user interface tool to guide the DBA
through installation; so, access through an X Windows console, X
Terminal, or X Windows emulation on a PC is now advisable.

• DB2 UDB, on the other hand, loads like any other IBM licensed program
product (LPP) but is large because it comes with all the online
documentation for every supported language. This makes it a long
process to copy the images between machines for remote installation over
a network. A recently ordered complete set of DB2 UDB installation code
came on 46 CD-ROMS, although that did include many samples and try
before you buy CD-ROMs of DB2 support and development programs.

Most people rush into installing RDBMS code before really being ready. The
pressure to start loading is clear and understandable. The machine has been
delivered; the project has been waiting for some time; the various parts are
ready, and everyone on the team wants to see some real progress before they
go home. But, this pressure should be resisted. It is like a race car driver
arriving at the race track for the first time and is itching to drive around the
circuit. The driver will, of course, want to drive the race car, but it is still being
prepared and tuned. As an alternative, the driver could take out a standard
road car to have a go, but it is clear that the results, although interesting, will
not help in the effort of winning races. The same is true of installing the
RDBMS without the necessary planning and care. Indeed, many hours or
© Copyright IBM Corp. 1999 185

days might be lost because what should be a quick test might fail to work, and
it might take a long time to track down the cause. Worse still, a lot of damage
can be caused by rumors and panic about this project being a failure because
of reports that the machine and RDBMS do not work.

.

The rest of this chapter will give you guidance to achieve this from the
experiences of people that do this all the time and have learned from hitting
the problems themselves.

9.1 Hardware and AIX ready check list

The requirements before installing the database depend on who you are, or
more precisely, your job role. If you are the AIX system administrator, then
you are responsible for installing the RS/6000 in the first place. As an
alternative you might be the database administrator and be using an internal
I/T infrastructure team, IBM global services, a facilities management
company, IBM business partner or consultants to do this part of the work.

Whoever is preparing the RS/6000 hardware and operating system needs to
have the following ready and running:

• Basic machine hardware running AIX.

• Recent version of AIX. The AIX code is (very approximately) updated once
per year. The same is true for RDBMS versions. You are strongly
recommended to keep up with the latest version to enjoy full and prompt
support from your vendors. As this is a new system, make sure you at
least start off with the current version of AIX and save the effort of
upgrading shortly afterwards. The only reason for installing an earlier
version is that application support is some times lagging behind the latest
version but only by one release. Also, from experience, both AIX and the
RDBMS have improved performance with each release and additional new
functions that either give performance or reduce the manpower required to
maintain the system. For example, AIX 4.3.3 has striped and mirrored
logical volumes (partitions) and enhanced disk I/O performance. Or with

The recommended implementing approach is:

• Do it once.

• Do it right the first time.

• Know exactly how you did it in case you have to do it again in an
emergency.

Note
186 Database Performance on AIX in DB2 UDB and Oracle Environments

the RDBMSs, both Oracle and DB2 UDB have improved SQL optimizers
for better SQL query plans and have added object orientation support and
Web access in recent versions.

• Set up the AIX root user with a sensible password. This will need to be
changed later once the system is ready for production use. Therefore, use
something easy to type quickly for now (not something guessable, such as
the machine or project name or persons name) but do have a password.
During the set up and installation, many people might know the root user
password to configure the various parts of the system. A simple password
does this and will not waste time. Do not use a password with odd upper
and lower case characters or passwords that are meaningless and easy to
get wrong. Once every thing is working, root access should be limited to
only those that really need root authority.

• Change the maximum number of users to the licensed limit. When the
system was purchased, this included a particular number of users. It is
simple to forget to install the machine with this number set up. To do this,
use SMIT and use the System Environment menu. This is one of the few
things that requires a system reboot; so, get this done now. The two user
licence default limit is too low for installation, and you will find the machine
refusing user logins; therefore, it can take some time before you workout
what is causing the problem. Note: If you run into this problem, the root
user can still log in, and you can then su to the user you need.

• Increase the maximum number of processes per user and set this to a
number sensible for the RDBMS user who will be creating many of the
processes on behalf of the users. This limit will stop the RDBMS from
handling a lot of users and cause problems on the first test of the system
with more than 30 to 40 users. You do not have to reboot the system, but
you will have to stop the RDBMS completely, log out, and then log in and
restart the database.

• The paging space created and online. There is a large debate on the size
of paging space to use. We recommend that the absolute minimum is one
times the size of memory. Most people would argue for much more than
this. It might seem a lot when you have 32 GB of memory, but below this,
you are taking a serious risk. This is a classic benchmark system mistake
to forget if a quick test is run on the default paging space. If this test
requires a lot more paging space, then absolute mayhem is guaranteed.
Processes start crashing while running (when requesting more memory),
new processes (when forking) fail, and AIX automatically attempts process
re-forking at 30 second intervals. Also UNIX commands fail to start, even
root cannot log in, and usually you can either wait three hours and AIX will
eventually work through these unfair demands and recover, or you can halt
Implementing your database 187

the machine with the reset button and wait for the long, full system check
reboot. It is worth avoiding these problems by spending ten minutes
setting up a proper sized paging space. Refer to 7.1.1, “Basic and future
AIX resources” on page 121 for more details.

• Have all the media devices of the system working, such as the CD-ROM
and tape drives, because they will be needed shortly. It is better to get
these devices working beforehand, as this might require changes to SCSI
cables or stopping the system to check the hardware. A good way to test
the tape drive(s) is to create a system backup (using mksysb) of the initial
AIX system. This could also save time if the installation of the RDBMS
fails, and you need to clean up quickly. For example, incorrectly setting the
owner and permissions in the /dev directory (required for raw device
access by the RDBMS) could take hours to fix by hand. A simple mistake
on the command line is all it takes.

• All databases, of course, require disk drives. Large databases require a
large number of disks. All of the disk drives have to be connected and
available. We assume that, in the hardware planning stage, a suitable
design has been carried out on the layout and the configuration of the
disks and adapters, for example, the number of disks that may be attached
to SCSI adapters to provide full access to all disks at high speed.
Additionally, for SSA or FCAL connected disks, the number of disks per
loop and the loop design for recovery must be carried out. It is vital to
check that the documented design has actually been implemented. It is
very easy for hardware to be configured wrong by mistake. Or, the
hardware people might have made what they thought were improvements
to the design without telling anyone. It is important to have a very clear,
full, and documented understanding of the adapter, loop, and disk
configuration.

• Multiple user access. Do not try implementing an RDBMS on the only
dumb terminal connected to the machine. Often, in the course of setting
up the machine, you will want two (or more) screens, as you will be partly
through one activity, and you will want to check something without
stopping the tool. Two screens, or better still, an X Windows access to the
machine, will save you time and frustration.

• Hardware sign off. Get agreement with the hardware engineer installing
the machine that the machine is complete (all parts delivered) and that
everything is working and there are no outstanding activities. On large
machines, this can take time, and you may have been told the machine is
working, but you were not told that some final part or cable is missing or
that not all of the hardware installation process has been completed. It is
best to double check that all is finished. Also, make a check before the
188 Database Performance on AIX in DB2 UDB and Oracle Environments

hardware support personnel go, as it is easy to miss things, such as
earthing cables on metal covers and that all the cables are neat and tidy
and their weight supported correctly.

• Finally, check that the machine reboots cleanly and without user
intervention.

9.2 Pre-starting check list

The last section covered the basic hardware and AIX, but before starting to
install the RDBMS, there is another list of things to check and information to
have at hand. These include:

• The AIX installation media. You may be told to load extra features of AIX to
support the RDBMS, the application, or administration tools. Do not waste
time trying to track these down later; so, make sure they are available and
are the correct version.

• Access to AIX manuals. You must have some means to access the AIX
manual pages and AIX information. This could be hardcopy physical
manuals, but it is more often the case these days to be the online
manuals. Make sure they are current. Some of the system administrator
commands have new options on each release, unlike the normal user
commands that are all now POSIX standard and change little between
releases. Also, have the hardware manual for the actual machine, the disk
drive subsystem, and the tape units you are using, along with the RS/6000

• Get the machine running

• Install the latest version of AIX

• Set the root user password

• Set the user licence limit

• Set the processes per user

• Set up paging space

• Quick test the devices, such as CD-ROM and tape drives

• Quick test the disks and ensure that they are connected appropriately

• Use an X Windows terminal

• Get hardware sign off

• Check the machine reboots cleanly

Summary
Implementing your database 189

product documentation with all the boot LED codes in case there are
hardware problems. Again, this will save you time later.

• The RDBMS installation manual. The number of people attempting to
install a database system without this is amazing! We have already said
there are often subtle changes between versions that will catch out
anyone assuming it will be the same procedure as the last version. Your
notes from the last install might be acceptable for a test or development
system but not for a production system.

• The RDBMS readme files will include last minute information that the
vendor thinks you need to know before installing. So, make sure you have
it and have read it.

• The application installation media. This might be a third party application
on CD-ROM or in-house binaries supplied by your own development team.
It is particularly true for in-house development that the application is often
not clearly documented or controlled. Many times these things are left until
the last minute, and the development team has trouble getting the function
and features correct before sitting down to write documentation about
things, such as installation procedures.

Whatever the source of application, you should know:

• Precisely which version it is

• What level of testing it has been through

• If optional parts are required or not

• Any dependencies on AIX level or extensions, RS/6000 architectures,
and RDBMS level and extensions

• The required size of both disk space and memory per user

• Placement recommendations in the file systems

• Pre- and post-installation requirements, particularly if the RDBMS
needs to be modified

• Configuration parameters

• How updates are going to be handled

• The RDBMS vendors and application recommended tuning parameters
and options for the RDBMS. These are likely to change with experience of
running the system, but you need to start somewhere.

• The database data. See next section
190 Database Performance on AIX in DB2 UDB and Oracle Environments

9.3 Database data

We are covering the database data at this point because most of the
problems with database data can be tackled before the system is ready for
use. At this point, you can gather the information and make sure the data will
load once the database is ready. As databases grow in size, it is often
forgotten that handling large volumes of data takes time. If the data is found
to be wrong when it is being loaded, it can take hours or days to prepare an
improved version. It might take weeks if it has to be fitted into a production
cycle.

Particular care must be taken regarding the database data. Very few
databases start with no data at all. We assume the application install will
create the empty tables and perhaps the indexes. Some applications hide all
of the complexity of the database from the installer, but this requires a lot of
work from the application provider. It also limits the choices for the installer. If
this is the case, you have to have faith in the application vendor or take a look
at the information to determine what has been pre-decided and if it is going to
perform well on your system. Other applications tell the installer to modify and
then run a database creation script. Either way, there are a number of
questions that need to be asked about the actual data to be placed within the
database once created. Also, note that precise answers are required. If you
get either imprecise answers, or are told not to worry, then start worrying.
Here are the basic items you need:

• The database schema describes the objects and relationships in the
database. All good databases or applications should have a schema
diagram available. The objects are implemented as tables, and the
relationships are used in SQL to join tables together (in the WHERE clause).
The database schema is often a large entity relationship diagram, as this
is a good way to represent the schema’s objects/tables (by boxes on the
diagram) and relationships (by lines joining the tables). Some databases
and applications will simply have the table creation script. For a simple
example, see Figure 44 on page 402.

• Referential integrity policy. Many applications use the SQL standard to
implement referential integrity using primary keys (the RDBMS will use an
index to enforce this behind the scenes) and to define the other tables
referring to this key. This ensures that a row referring to the primary key of
another row in another table actually exists. For example, if an employee
row states the employee works in department 42, then there must be one
row in the department table with a primary key of 42. The script to create
the tables will include these keys, and their use is explicitly described in
the SQL. But, note that primary keys and enforcing them does create an
Implementing your database 191

overhead and has a performance cost; so, many applications do not
enforce this on production databases. In this case, you should be provided
with a script or program that can check for referential integrity.

• A list of every table, its definition, the average row size, row count, and
size including the RDBMS overhead (to allow for rows being placed in disk
blocks and some wasted space at the end of each block). This is often in
the form of a spreadsheet to allow simple adding up of all the various
columns to work out the overall size.

• A list of every index, its definition, uniqueness, average size, and size
including RDBMS overhead. This also is often in the form of a spread
sheet to allow the simple adding up of all the various columns to work out
the overall size. Indexes are vital for high performance, and a tuned
application will demand a minimum set of indexes, while others might be
added after production goes live and are based on observed access
patterns.

• The tables and indexes that are very busy (some times called the hot
tables). These are the items that are critical for the best performance of
the system. They will need careful placement on the disks of the database
to ensure that overworked disks can be avoided. They can be placed on
dedicated disks, or the data can be spread across many disks to ensure
I/O bandwidth.

• The data source. If this is a machine that is very different to the database
machine, then problems can be expected. If it is another UNIX machine, it
is worth checking the tape media are compatible, and the tape commands
use the same format. It is worth actually trying if a small sample can be
loaded. An alternative is using a network, but check that it can handle the
data bandwidth requirements and actually works. If it is a different
architecture, like IBM AS/400 or IBM mainframe, then both the tape format
and the data format is worth checking. Extra care needs to be taken if the
volume of the data means multiple tapes because end of tape marks and
formats are often a difficult problem. Generally, the UNIX dd command can
load the raw data from any tape drive, provided the drive recognizes the
format and tape density. But, you may need a very good C programmer to
extract the data from the file that was read from tape and produce a file
that can be loaded into the RDBMS. If there is any doubt, run a test
beforehand.

• The date when the data is available and if improved data is available at a
later date. Many systems are tested with early data and then reloaded
again with the final data just before going live. This might be because the
data manipulation and cleaning is not finished or because the production
192 Database Performance on AIX in DB2 UDB and Oracle Environments

system needs to go live with the very latest copy of the data, as it will have
been updated during the test period.

• Verify that the data has been test loaded on the same RDBMS version.
Developers often assume later releases will work the same, but there can
be subtle differences.

• The instructions for loading the data. Many data suppliers assume you can
read their mind and do not supply basic information. Is it clear which data
is for which table? Is it clear in which order to load the tables? Is it clear
which tape contains what data? Many companies have tape defaults and
standards and assume everyone else understands these. Benchmark
centers are often sent tapes labeled TAPE1 to TAPE9. It takes time to
work out the command used to create the tape. It takes time to work out
the block size. It takes time to work out the options to the command used.
Then you can start to work out what data is on the tape.

• Maintaining referential integrity during the load. If the SQL standards for
integrity are used, it can be very difficult to load a database because rows
and tables have to be loaded in the right order, and this makes using bulk
loading methods very hard to use. It is easy to bulk load 100 million rows,
and only afterwards notice they were all rejected because they refer to a
table that has not been loaded yet. The alternative is to disable
(sometimes called switch off) referential integrity while loading the data
and then enable it afterwards. Once the database is loaded, it is important
to check it was loaded correctly. The absolute minimum is to count the
rows of each table. This makes sure that it was correctly loaded and
ensures that the table has not been forgotten or loaded twice. Also, check
that the indexes are built-in and valid.

• Recommended load method. Each RDBMS has various means to load
data including simple, bulk, and very fast loading methods. If the data for a
particular table is large, then it is important to load it using the right
method, or it might take days or weeks to load the database. For example,
on one benchmark, the simplest method (Oracles PL/SQL) was used to
create a sample database, and it worked well. But when it was rerun to
create the full database, it seemed to be taking a long time. On checking
the progress, it was worked out that it would take three and a half weeks to
complete. A better approach was developed using a C program to
generate the raw data, which was then loaded using the Oracle loader.

This might seem to be a long list of items, but this aspect of the database
implementation process is often ignored, postponed, or covered at the last
possible moment, and the complexity is often not appreciated. A lack of
planning can bring the installation of a database system to a complete stand
still. Planning ahead and having the right data and information at the right
Implementing your database 193

time can often reduced the time it takes to install a system. A lot of the
preparation can even take place before the machine arrives.

9.4 Hardware testing

Before you start loading a large amount of data onto a machine, a few things
about hardware should be acknowledged. First, the good news:

• Computer systems get more reliable every year.
• Each component is designed to self-check. For example, memory with

ECC and parity will automatically check for memory errors and even
correct them, if they are found, without stopping the system.

• The mean time between failures is larger too. For example, the mean time
between failures on disks is longer with each generation of disk, and each
generation of disk supports more and more data.

Indeed, IBM is committed to improving quality in all products and does testing
to ensure each new product is more reliable than the one it replaces.

Now, the bad news:

• New systems get bigger every year.

The problem can be highlighted by an extreme example using made-up
numbers to make the point: Product reliability over a five year period is
doubled (that is, it fails half as often) but the system is now 10 times more
complex (that is, 10 times the number of parts). So far, so good. But, the
outcome is that the whole system will fail five times more often.

This is a very real problem for manufacturers of very large systems. Larger
systems need more and more designed-in features to cater for failures in the
various subsystems that can monitor and correct temporary and permanent
failures and yet do not bring the system down. IBM is leading the way in this
field in machines, such as the RS/6000 S Series, and is able to do this
because IBM has such a large amount of experience in designing very
reliable system for mainframe customers.

This means we must do everything possible to try to eliminate failures in
components and, therefore, reduce the risk, however small.

Analysis of failures in large systems, such as large RDBMS systems, reveal
three important facts:

1. Most failures happen quite soon, within the first 24 hours of serious use.
194 Database Performance on AIX in DB2 UDB and Oracle Environments

2. After that, failures seem to happen at completely random intervals but
usually much later in terms of weeks, months, and years.

3. Occasionally failures happen in small batches. This sounds odd, but it
happens. Take as an example: If you replace all the light bulbs in a house
at the same time, you can notice several light bulbs will fail in the same
week about a year later!

This is particularly true of hard disk drives because they have practically all
the high speed moving parts of a modern computer system. CD-ROM and
tapes have moving parts but not under the same constant pressure as disks.
To eliminate disk failures, we must:

1. Burn-in the system - Run a little test on the system for 24 hours,
particularly on the disks. It might take an hour to create some data on disk.
Then, write a script to copy the data back and forth, but it will be worth it in
the long run. This test does not have to be complex.

2. Prepare for failure with some form of disk protection, such as mirrored
disks or RAID 5.

3. If you have protection via duplication, make sure they are as far away as
possible from each other. For example, that disk mirrors are not in the
same disk tower or drawer, not on the same loop or cable and not on the
same adapter.

This might seem like overkill, but the big benchmark centers, who regularly
install a 10 terabyte disk subsystem, do this because they have learned from
experience. This disk burn-in will, of course, also test everything else, such as
adapters, memory, buses, and CPUs.

9.5 Installing the RDBMS code

There are many explanations to the term RTFM. We prefer - Read The
Flaming Manual. In this case, the manual is the installation manual or
installation guide and the read me first information.

We advice following the RDBMS vendors standards and recommended
procedures in all cases.

For example, Oracle recommends the Oracle Flexible Architecture (OFA)
layout for the RDBMS code, scripts, and parameter files. Also, follow the

The larger the system, the more valuable a burn-in test will be.

Note
Implementing your database 195

recommended names for the RDBMS owner names and directories. This
makes it far easier for others to work on your system, such as IBM, Business
Partner or third party consultants. These recommendations from the RDBMS
vendors has been found to work by experience. Do not invent your own way of
doing things, or you will be creating a problem that has already been
resolved.

The recommendations also cater for the long term. For example, when you
upgrade to the next release of the RDBMS and have to have two versions
running at the same time.

It is very important to load all the recommended pre-requisite code, checks
and AIX PTFs. It might seem like extreme caution, but they are there for a
reason. This might be:

• Other customers may have had problems that you can now easily avoid
and save time.

• If you have a problem, this will be the very first thing you will be forced to
check and ensure it is correct by your support people or the vendors.

• If there are problems, and you have not done this, you will look, at best,
very unprofessional.

So, install the RDBMS by simply and methodically going through the
installation steps, one at a time, and make sure you do it right the first time.

9.6 Physical layout of the database

We are now at the point where the RDBMS is installed, and the next step is
the creation of the actual database. We have to assume, at this point, that the
database was designed, and this was documented. This documentation
should include the placement and sizes for every part of the RDBMS system
including:

• RDBMS code (actually already loaded at this point)

• Application code

• New versions of RDBMS and application and their fixes

• System catalogue or data dictionary

• Data

• Indexes

• Sort or temporary areas

• Logs (roll forward and backward)
196 Database Performance on AIX in DB2 UDB and Oracle Environments

This should also be summarized in a data placement policy so that if you
need to make small changes during the database creation, you know how to
keep within the design goals. Later growth and increases in the number of
disks can follow the same principles. This will include:

• Disk protection used - This might be different for the various parts of the
database.

• Naming conventions for volume groups and logical volumes.

• conventions for separating data (such as mirroring) and mixing data and
indexes, or not.

• Strip sizes and the sizes of logical volumes.

• The number of disks in volume groups or RAID 5 LUNs.

You should also have the default RDBMS parameters to be initially used and
options for changing these once some experience of the database is used.
For example:

• The size of data blocks to use in the database

• How much memory has been allowed for in the RDBMS disk pool or cache
and the other parts of the shared memory

• What levels of parallelism should be set and how this is set

9.7 Scripting the build

There are three methods for setting up the disks, installing the application,
and loading the database data:

1. Hacking the machine by sitting at a terminal until it is done

2. Writing and running a script

3. A mixture of the above

Experienced people only use one method, and that is method 2 - scripting.

Take the time to place all the AIX commands in a script for things, such as:

Use scripts to create everything.

It is very tempting to just start and work your way through to the end, but
please, just do not do it.

Note
Implementing your database 197

• Creating AIX volume groups or RAID 5 disks

• Creating logical volumes and their stripes

• Adding logical volume mirrors

• Creating accounts and setting up .profile files

• Changing ownerships and permissions

• Creating journal file systems

Also, script RDBMS tasks, such as:

• Creating the database and loading the catalog/data dictionary

• Creating containers and tablespaces

• Creating tables

• Loading data

• Creating indexes

• Checking the database consistency

This scripting has a number of benefits that will save you time in the long run
and has hidden benefits too:

• Scripting makes you think and plan ahead.

• Scripting makes sure everything is done in the right order.

• Scripting is actually faster - The machine does not have to wait for you to
think of the next task or wait while you are gone for lunch.

• Scripting documents as to how it was done, which can be vital for disaster
recovery.

• Scripting is much less error prone, as you can visually double check the
commands and options.

• Scripting helps because, if it fails, it is simply a quick edit to get it right the
next time. Even if you forget something major and have to start all over
again, if it is scripted, you just fix the script and let it run over night.

• Scripting makes things consistent, such as naming conventions and sizes.
If you are typing in all the names at the command line, it is easy to make
simple typing mistakes that initially go unnoticed.

Once you have a set of scripts like this, you will find creating the next
database much easier.
198 Database Performance on AIX in DB2 UDB and Oracle Environments

9.8 Build a small cut down system

If you have a database with more than 10 GB of data, then we advice first
implementing a small cut down (say 1 GB or 2 percent, whichever is the
greater) system as a quick trial of the main system. This allows you to:

• Work out how long the production system build will take. Particularly, the
time to load the very large tables and indexes and investigate alternatives
and options to reduce the load times. You might decide to use other tools if
the time load is too slow.

• Sort out the scripts so that they will work the first time.

• Check the data formats are correct and readable.

• Check you have a complete set of data (although you might have to load a
subset of the main large tables).

• Check the data is consistent and that you have tools to prove it.

• Check the application is complete.

• Check the application performs reasonably well even on smaller data sets
and tests the indexes help performance.

• Check the administration and support tools actually work.

• Check the backup is complete and recovery can take place.

• Check the interfaces to the users, other application, and other computer
systems work as expected.

This cut down system might be a throw away prototype system or might live
on as a simple test system. Either way, the facts and experiences learned will
be invaluable when it comes to building the full size system and should avoid
common mistakes in handling large data volumes.

9.9 After installation

Every one promises to do these three things, but only the really smart ones
actually go ahead and do them:

1. Finish the documentation and have a copy stored off site so that you are
ready for a disaster.

2. Write a two page summary of what was learned during the installation,
what went right, what went wrong and how to avoid the same mistakes the
next time, what still needs to be worked on, and pass this information
around the whole team. This is also called quality feedback to improve the
process.
Implementing your database 199

3. Start an RS/6000 system and RDBMS log book to record changes. This
can be either on the system or hardcopy. This would mean that you always
know what you have and why and when changes happened. This is
invaluable for performance tuning later on and diagnosing the cause of
problems.

9.10 Backup and recovery test

Once the database has been established and the data is loaded, the backup
and recovery plan is very important.

You have taken some time in getting the database ready for use; so, save this
work via the backup and, thus, ensure you do not have to repeat this work all
over again.

Many sites do not test the recovery plan. When they then have a problem, it is
too late. We all know a few horror stories:

• The tapes were not readable.

• They did not have the scripts to create the database and, therefore, could
not reload the database.

• They were just about to recover the data from tape when the automatic
backup script started and overwrote the backup with the corrupted
database.

• They forgot to back up the logs (or some other vital database component);
so, the backup was useless.

• The expert was away on holiday, and there was no one else who knew how
to recover the data or even the tape format and commands to use.

Try hard not to be the starting point for the next industry horror story and
check those backups and disaster recovery plans.

Documenting and recovery planning go hand in hand:

• Save the scripts used to create the initial database. They are a good start
for writing recovery scripts and documentation for recovery.

• Automate the generation of every configuration detail into a regular report,
such as the disks’ layout and parameters.

Start a system log book now.

Note
200 Database Performance on AIX in DB2 UDB and Oracle Environments

• Store off-site copies of the details along with the backups in case the site
is destroyed.

• Database backup is useless unless you can re-create the database into
which to load the data first.

• It is extremely easy to forget vital facts and parts of the system; so, if in
doubt, document it twice.

• Testing recovery is the only way to prove it - Schedule a recovery test once
per year. At the very least, have an independent person check that the
procedures, information, and tapes are readable.

And, finally, a warning: 70 percent of companies that fail to recover their IT
systems within two weeks of a site disaster go bankrupt. Do not let your IT
department be the cause of your company failing.
Implementing your database 201

202 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 10. Monitoring an RDBMS system for performance

Monitoring the RDBMS provides the database administrator with information
about the interaction between user applications and the RDBMS and also
between the RDBMS and the operating system. These indicators can help the
database administrator to identify possible bottlenecks and to determine how
to adjust the different RDBMS configuration parameters.

10.1 RDBMS tools

The DB2 UDB and Oracle performance monitoring tools can be used to assist
an analysis of how the design of your system is affecting the way the
database is performing. The database administrator should be aware of the
most important success factors of the system, regarding not only how the
system resources are being consumed but also how the database optimizer
chooses the best and cheapest path to the data.

In addition to direct API and SQL interfaces into database statistic
information, both RDBMSs include pre-defined GUI (Graphical User
Interface) tools designed for easier database administration of both local and
remote database instances.

10.1.1 DB2 UDB monitoring tools
DB2 UDB features two types of database monitoring, defined as follows:

• Snapshot monitoring - Used for obtaining database relevant statistics at a
specific point in time1

• Event monitoring - Used for obtaining database relevant statistics over a
period of time2

There is also a tool called Performance Monitor that uses the main functions
of both the Snapshot and Event Monitor tools. The Performance Monitor is
part of the Control Center.

Besides these monitoring tools, there is a tool called Explain that allows the
database administrator to comprehend how the database is accessing the
data.

No matter which tool you use for monitoring, it is necessary to keep in mind
that the monitoring process is cyclical and should be part of the database
administrator’s everyday tasks.

1 The interface to the snapshot monitor is through the use of APIs.
2 The interface to the event monitor is through the use of SQL.
© Copyright IBM Corp. 1999 203

10.1.1.1 Snapshot monitoring
For snapshot monitoring, there are eight levels of data available. Six monitor
switches are used to control the focus and the amount of data to be collected.
These switches can be turned on and off dynamically to reduce the amount of
resources dedicated to monitoring if the system is running unmonitored for an
extended period of time.

Through the snapshot APIs, it is possible to collect the resources being
allocated at the database level, drilling down to the tasks being executed by
each application connected to the database. This is the fastest and easiest
way to collect vital database information at runtime, such as all the resources
being locked by a specific session, the amount of memory space used for sort
operations, how many users are connected to the databases, and which
statements are being issued by each connected user.

The following lists describe the existing levels and switches for snapshot
monitoring:

Snapshot monitoring levels:

• Database Manager
• Database

• Application
• Table
• Tablespace
• Bufferpool
• Dynamic SQL
• Locks

• Application
• Locks
• Statements

• Bufferpool

Snapshot monitoring switches:

• Sort
• Lock
• Table
• Bufferpool
• UOW
• Statement

The status of the snapshot monitor switches can be queried through the DB2
UDB Command Line Processor (CLP), which is a non-GUI, tool or through
the DB2 UDB Control Center, for example:
204 Database Performance on AIX in DB2 UDB and Oracle Environments

get monitor switches

The output you get looks as follows:

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

The command syntax for collecting the snapshot information through CLP is
as follows:

>>-GET SNAPSHOT FOR--->
>-----+-+-DATABASE MANAGER-+---------------------------------------+>
| +-DB MANAGER-------+ |
| '-DBM--------------' |
+-ALL--+-----+--DATABASES------------------------------------+
| '-DCS-' |
+-ALL--+-----+--APPLICATIONS---------------------------------+
| '-DCS-' |
+-ALL BUFFERPOOLS--+
+-+-----+--APPLICATION----+-APPLID--appl-id-------+----------+
| '-DCS-' '-AGENTID--appl-handle--' |
+-FCM FOR ALL NODES--+
+-LOCKS FOR APPLICATION--+-APPLID--appl-id-------+-----------+
| '-AGENTID--appl-handle--' |
'--+-ALL-----------------------------+---ON--database-alias--'
+-+-----+--+-DATABASE-+-----------+
| '-DCS-' '-DB-------' |
+-+-----+--APPLICATIONS-----------+
| '-DCS-' |
+-TABLES--------------------------+
+-TABLESPACES---------------------+
+-LOCKS---------------------------+
+-BUFFERPOOLS---------------------+
'-DYNAMIC SQL--+----------------+-'
'-WRITE TO FILE--'
>--><

Based on the combination of levels and switches, your output will contain
valuable information for performance and diagnosis purposes.

It is a very common task to monitor the system in order to control the locks
that are being held by applications. Suppose you want to know how the locks
on your database were influenced by the command lock table org in
Monitoring an RDBMS system for performance 205

exclusive mode. The command get snapshot for locks on database sample,
when issued from the CLP, will produce the following output:

Database Lock Snapshot
Database name = SAMPLE
Database path =
/home/db2inst1/db2inst1/NODE0000/SQL00001/
Input database alias = SAMPLE
Locks held = 4
Applications currently connected = 1
Agents currently waiting on locks = 0
Snapshot timestamp = 08-24-1999 12:52:59.582179

Application handle = 26
Application ID = *LOCAL.db2inst1.990824163630
Sequence number = 0001
Application name = db2bp
Authorization ID = ROOT
Application status = UOW Waiting
Status change time = Not Collected
Application code page = 819
Locks held = 4
Total wait time (ms) = 0

List Of Locks

Lock Object Name = 2
Object Type = Table
Tablespace Name = USERSPACE1
Table Schema = ROOT
Table Name = ORG
Mode = S
Status = Granted
Lock Escalation = NO

Lock Object Name = 3078
Object Type = Row
Tablespace Name = SYSCATSPACE
Table Schema = SYSIBM
Table Name = SYSTABLES
Mode = NS
Status = Granted
Lock Escalation = NO

Lock Object Name = 2
Object Type = Table
Tablespace Name = SYSCATSPACE
Table Schema = SYSIBM
Table Name = SYSTABLES
206 Database Performance on AIX in DB2 UDB and Oracle Environments

Mode = IS
Status = Granted
Lock Escalation = NO

Lock Object Name = 0
Object Type = Internal P Lock
Tablespace Name =
Table Schema =
Table Name =
Mode = S
Status = Granted
Lock Escalation = NO

This output indicates that four locks are being held for providing an exclusive
lock on table ORG. It also shows that tables ROOT.ORG and
SYSIBM.SYSTABLES are being locked in order to provide the necessary lock
level for an exclusive request.

The same get snapshot command can be issued at any time for displaying the
overall locks used on the system.

10.1.1.2 Event Monitor
The Event Monitor is used for recording database related statistics for the
following event types:

• Database
• Tables
• Deadlocks
• Tablespaces
• Bufferpools
• Connections
• Statements
• Transactions

More than one Event Monitor can be created, each having a state (1=on or
0=off) that is totally independent from each other.

After an Event Monitor is created, its state can be changed to 1 or 0 in order
to start or stop it. When all the information is collected, the event monitor can
be stopped by changing its state to 0 in order to analyze what happened
during the time the monitor was running.

Event Monitors write their information to file or a pipe. By using the
externalized Event Monitor stream formats, users can write applications to
extract useful information from the event logs. In addition, there are two
Monitoring an RDBMS system for performance 207

available tools for analyzing the newly created event monitor files: db2evmon
and the Event Monitor GUI tool.

The text-based tool used for analyzing the event monitor files is located in
$INSTHOME/sqllib/bin and is called db2evmon.

10.1.1.3 Performance Monitor
The Performance Monitor tool monitors database objects, such as instances,
databases, tables, tablespaces, and connections. It uses Snapshot Monitor
data for viewing, analyzing, and detecting performance problems.

It is a GUI tool that can be started from the Control Center, either locally or
remotely. It can be configured to send a visible or audible alert, pre-defined
messages, or execute commands when certain user-defined threshold values
have been exceeded.

These topics are covered in 10.2, “Regular monitoring, ad-hoc, or alert
method usage” on page 220.

10.1.1.4 Alert Center
The Alert Center is used by the Performance Monitor to notify the database
administrator when the threshold values have been exceeded.

10.1.1.5 Explain
The Explain tool is used by the database administrator to analyze and
understand the access plan strategy the optimizer is choosing for retrieving
the data as well as the cost of the access strategy in DB2 UDB’s timerons
measures. The Explain tool can be used to explain the access strategy for
both static and dynamic SQL.

The explain tables, composed of a set of seven tables, are used by the
Explain tool to hold all the information involved in the access plan strategy,
such as the command syntax, environment in which the explanation took
place, and the operators (FETCH, SORT, TBSCAN) needed to satisfy the
SQL. The explain tables are created automatically by the Control Center
(when Visual Explain is used) or via the command:

db2 -tvf $HOME/sqllib/misc/EXPLAIN.DDL

EXPLAIN.DDL contains two additional tables for the DB2 UDB Index Advisor,
which is a new tool in DB2 UDB V6.1 for recommending indexes for either
individual or a workload of queries and/or updates.
208 Database Performance on AIX in DB2 UDB and Oracle Environments

The database administrator can choose one of the three available tools for
analyzing the contents of the Explain tables:

• Graphical tool
• Text-based tool
• Direct query to the explain tables

Graphical tool
The Visual Explain GUI Tool is called from the Control Center panel.

Text-based tools
The text-based tool used for analyzing Static SQL is located in
$INSTHOME/sqllib/bin and is called db2expln.

The text-based tool used for analyzing Dynamic SQL is located in
$INSTHOME/sqllib/bin and is called dynexpln.

The text-based tool used for formatting the Explain tables is located in
$INSTHOME/sqllib/bin and is called db2exfmt.

Suppose you want to use the db2exfmt tool to determine if the optimizer is
choosing table scanning when you issue the command select * from org

against database SAMPLE.

The first step is to set the special register CURRENT EXPLAIN MODE to EXPLAIN,
meaning that only the explain data will be captured and inserted into the
explain tables, but the query to be explained will not be executed:

db2 set current explain mode explain

The second step is to run the SQL command you want to analyze:

db2 select * from org

The last step is to run the db2exfmt command. Accept all the default values by
pressing ENTER.

db2exfmt

The generated output describes all the operations, CPU and I/O costs, and
table descriptions, such as name, cardinality, and columns retrieved. For this

It is extremely important that the command runstats is executed before
using any explain method in order to refresh the catalog tables metadata
since the optimizer will read them for creating the access strategy plan.

Note
Monitoring an RDBMS system for performance 209

particular example, the explain output indicates that a table scan was chosen
by the Optimizer for data retrieval.

The output you get looks as follows:

DB2 Universal Database Version 6, 5622-044 (c) Copyright IBM Corp. 1995,
1999
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 06.01.0
BUILD LEVEL: db2_v6:n990616

SOURCE_NAME: SQLC29A3
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 1999-08-26-10.42.00.324351
EXPLAIN_REQUESTER: ROOT

Database Context:

Parallelism: None
CPU Speed: 1.259585e-06
Comm Speed: 0
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1130

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 201 ----------------
QUERYNO: 3
QUERYTAG: CLP
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:
210 Database Performance on AIX in DB2 UDB and Oracle Environments

select *
from org

Optimized Statement:

SELECT Q1.DEPTNUMB AS "DEPTNUMB", Q1.DEPTNAME AS "DEPTNAME", Q1.MANAGER AS
"MANAGER", Q1.DIVISION AS "DIVISION", Q1.LOCATION AS "LOCATION"
FROM ROOT.ORG AS Q1

Access Plan:

Total Cost: 25.0881
Query Degree:1

RETURN

(1)

|

TBSCAN

(2)

|

TABLE: ROOT

ORG

1) RETURN: (Return Result)
Cumulative Total Cost: 25.0881
Cumulative CPU Cost: 69979
Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 0.0281971
Cumulative Re-CPU Cost: 22386
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.0627
Estimated Bufferpool Buffers: 1

Input Streams:

2) From Operator #2

Estimated number of rows: 12
Number of columns: 5
Monitoring an RDBMS system for performance 211

Subquery predicate ID: Not Applicable

Column Names:

+LOCATION+DIVISION+MANAGER+DEPTNAME+DEPTNUMB

2) TBSCAN: (Table Scan)
Cumulative Total Cost: 25.0881
Cumulative CPU Cost: 69979
Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 0.0281971
Cumulative Re-CPU Cost: 22386
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.0621
Estimated Bufferpool Buffers: 1

Arguments:

MAXPAGES: (Maximum pages for prefetch)
ALL
PREFETCH: (Type of Prefetch)
NONE
ROWLOCK : (Row Lock intent)
NEXT KEY SHARE
SCANDIR : (Scan Direction)
FORWARD
TABLOCK : (Table Lock intent)
INTENT SHARE

Input Streams:

1) From Object ROOT.ORG

Estimated number of rows: 12
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+RID+LOCATION+DIVISION+MANAGER+DEPTNAME
+DEPTNUMB

Output Streams:

2) To Operator #1

Estimated number of rows: 12
212 Database Performance on AIX in DB2 UDB and Oracle Environments

Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+LOCATION+DIVISION+MANAGER+DEPTNAME+DEPTNUMB

Objects Used in Access Plan:

Schema: ROOT
Name: ORG
Type: Table
Time of creation: 1999-08-23-16.27.04.301208
Last statistics update: 1999-08-26-10.41.45.448796
Number of columns: 5
Number of rows: 12
Width of rows: 47
Number of buffer pool pages: 1
Distinct row values: No
Tablespace name: USERSPACE1
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Prefetch page count: 32
Container extent page count: 32
Table overflow record count: 0

The explain output clearly mentions, on the second section, that the optimizer
chose the tablescan operation for retrieving the data. Since this is a small
table (12 rows), this was the cheapest way for retrieving the data. However, if
you have larger tables, and the optimizer is still choosing the tablescan as the
access strategy, you should carefully think about defining indexes for the
table, always considering the SQL that is most often used.

Direct query to the Explain Tables
The Explain Tables can also be directly queried through SQL SELECT
commands. There are always seven tables populated by the explain tool,
given the fact that the EXPLAIN MODE has been set to EXPLAIN:

• Explain_Instance
• Explain_Statement
• Explain_Operator
• Explain_Argument
• Explain_Object
• Explain_Stream
• Explain_Predicate
Monitoring an RDBMS system for performance 213

10.1.1.6 LIST APPLICATIONS command
The LIST APPLICATIONS CLP command uses snapshot monitoring to display, at
instance or database level, the application program name, authorization ID,
application handle, application ID, database name, application sequence
number, status, status change, and database path information for all
connected applications.

The LIST APPLICATIONS command syntax is as follows:

>>-LIST APPLICATIONS----+-------------------------------------+->

'-FOR--+-DATABASE-+---database-alias--'

'-DB-------'

>----+-------------+---><

'-SHOW DETAIL-'

The following is an example for the command and its output:

db2 list applications for database sample show detail

The output you get looks as follows:

Auth Id Application Name Appl. Handle
------------ -------------------- --------------
DB2INST1 db2bp 1

Application Id Seq#
-------------------------------------- -------
*LOCAL.db2inst1.990920184212 0001

Number of Agents Coordinating Node Number
--------------------- ---------------------------
1 0

Coordinator pid/thread

25722

Status Status Change Time
----------------- -----------------------
UOW Waiting Not Collected
214 Database Performance on AIX in DB2 UDB and Oracle Environments

DB Name DB Path
------------ --
SAMPLE /db2sys/db2inst1/NODE0000/SQL00001/

10.1.2 Oracle monitoring tools
The Oracle Enterprise Manager (OEM) is a new product from Oracle that is
specially designed for monitoring and tuning databases. OEM typically runs
on a PC with Windows NT and connects to the database via SQL*Net.

The following products are extensions to the OEM and can be used to provide
the database administrator with a better and easier understanding of the
resource consumption within the machine.

The Oracle Diagnostic Pack consists of:

• Oracle Performance Manager
• Oracle Top Sessions
• Oracle Lock Manager
• Oracle Trace

The Oracle Tuning Pack consists of:

• Oracle Tablespace Manager
• Oracle SQL Analyze
• Oracle Expert

10.1.2.1 Oracle Diagnostic Pack
The following is a brief description of each product within the Oracle
Diagnostic Pack.

Oracle Performance Manager
The Oracle Performance Manager provides graphical-based, real-time
monitoring that allows the database administrator to monitor the contention,
database instance, I/O, memory, and system load. All the data displayed can
be stored for replay.

Oracle Top Sessions
Oracle Top Sessions is a tool designed for monitoring all the resources being
allocated for connected users. It is possible to display the top sessions,
sorted by the database administrator’s chosen statistics, needed for the
analysis.
Monitoring an RDBMS system for performance 215

Oracle Lock Manager
Through the Oracle Lock Manager tool, it is possible to be aware of all the
existing locks on the database and which session is blocking the other
session's requested resource.

Oracle Trace
The Oracle Trace tool collects data through a methodology based on every
occurrence of key events, such as the number of connections to, or
disconnections from, a database.

10.1.2.2 Oracle Tuning Pack
The following is a brief description of each product within the Oracle Tuning
Pack.

Oracle Tablespace Manager
This tool is designed to collect data about the internal structure of the
database’s tablespaces. It is also used to reorganize the tablespaces in order
to increase the performance by de-fragmenting and coalescing the small data
blocks that might exist inside the tablespaces.

Oracle SQL Analyze
The Oracle SQL Analyze tool is basically designed to tune application SQL.

Oracle Expert
Oracle Expert provides automated tuning through the use of a particular
methodology based on integrated rules. It implements a tuning methodology
based on the following steps: Specification of tuning scope, collection, view
and edit data, analysis, review of recommendations, and then
implementation.

10.1.2.3 Comments on Oracle Enterprise Manager (OEM)
Time did not allow this redbook team to investigate these tools in detail. As far
as we can determine, most of the information available in these tools is also
available using the traditional standard tools of Oracle, but the information is
presented in a structured way and saves a lot of time by removing the need to
type a lot of select statements or run scripts. From our investigations, these
products will make a large impact on the productivity of the DBA. However,
there is a charge for the OEM and its extensions.

Oracle Expert is an advanced tool that uses many rules to check and advise
changes to the database for performance. It can even create scripts to do the
changes. It is doubtful that it fully understands the platform on which it is
running; so, it tackles performance from a pure database point of view. For
example, AIX and will only make changes within Oracle. Therefore, it will not
216 Database Performance on AIX in DB2 UDB and Oracle Environments

optimize AIX level items, such as logical volume options, AIX parameters, and
cater for availability via mirrors or RAID 5.

As these tools are new, most sites will not have them. They may find it hard to
justify the expense of a high powered PC, the cost of the product, and the
time required to install and learn the product, but it should help to reduce
performance problems.

10.1.2.4 The UTLBSTAT/UTLESTAT monitoring tool
The UTLBSTAT/UTLESTAT monitoring tool should be used when
performance data collection over a defined period of time is needed.

The following two SQL scripts are probably the most important tools in the
DBA’s toolset for analyzing what Oracle is up to as a whole and for deciding
which and what to tune in the Oracle parameters. The scripts can be found in
the $ORACLE_HOME/rdbms/admin directory on the system.

The utlbstat.sql script (note the b means beginning) is run, and it creates a
set of statistics tables. Then, after a period of the database working, which
might be a busy period of the day in a production system or a benchmark test,
the matching utlestat.sql script (note the e means end) is run. This creates a
report.txt file in the current directory. This human-readable file includes:

• The SQL used to collect the data so that you can look into the meaning of
the columns in the Oracle documentation.

• Explanations on what to look for in the numbers in the report.

• Some ideas about what can be changed to improve performance.

The statistics compare the before and after values of a lot of important Oracle
counters. So, make sure that the system is doing the sort of work that you
wish to gather information about in the period the monitoring tool runs. For
example, if you are tuning the daytime performance, do not capture data
overnight.

The following is a small sample part of the output generated in report.txt:

. . .

SVRMGR> Rem Select Library cache statistics. The pin hit rate should be
high.
SVRMGR> select namespace library,
2> gets,
3> round(decode(gethits,0,1,gethits)/decode(gets,0,1,gets),3)
4> gethitratio,
5> pins,
Monitoring an RDBMS system for performance 217

6> round(decode(pinhits,0,1,pinhits)/decode(pins,0,1,pins),3)
7> pinhitratio,
8> reloads, invalidations
9> from stats$lib;
LIBRARY GETS GETHITRATI PINS PINHITRATI RELOADS INVALIDATI
--
BODY 0 1 0 1 0 0
CLUSTER 0 1 0 1 0 0
INDEX 0 1 0 1 0 0
OBJECT 0 1 0 1 0 0
PIPE 0 1 0 1 0 0
SQL AREA 114 .956 263 .947 4 0
TABLE/PROCED 26 .885 40 .9 0 0
TRIGGER 0 1 0 1 0 0
8 rows selected

. . .

This small sample outputs a value of .956 for SQL AREA GETHITRATIO, which is
an ideal value since it represents that 95.6 percent of the parse calls could
find a cursor to share. This value should always be in the high nineties.

It is worth running these scripts and carefully studying the output and
recommendations found in the report. The report includes the following
sections:

• Library cache statistics

• 96 important statistics covering the measuring period

• System-wide wait event

• Latch statistics

• Buffer busy and wait statistics

• Statistics for roll back segments

• init.ora parameters currently in effect

• Sum I/O operations over tablespaces

• I/O spread across drives

• The times that utlbstat and utlestat were run

All the above areas will display valuable performance information. Choosing
which area to monitor first will depend upon which are the bottlenecks on the
database.
218 Database Performance on AIX in DB2 UDB and Oracle Environments

10.1.2.5 EXPLAIN PLAN command
The Oracle EXPLAIN PLAN gives the DBA, developer, or anyone who is writing
SQL statements the means to:

• Find out which method the Oracle optimizer will use to access the data

• The order in which the tables are extracted from the database

• If indexes are used

• The relative cost of the statement

No book about Oracle is without a chapter dedicated to explaining the EXPLAIN

PLAN mechanism and how to read the output. The original, but basic, method,
using sqlplus, is still available, but is hard work. This involves:

• Creation of a special table

• Running the EXPLAIN PLAN command

• Using a SELECT from the special table to extract the plan

The new Oracle tools for PC based users (see below) make the EXPLAIN PLAN

far easier to use. Note that the database does not actually run the SQL. It
only gets the RDBMS to analyze the SQL and the optimizer to decide the plan
it would use to run the query.

Which ever method is used, the output of EXPLAIN PLAN is useful to investigate
what Oracle is doing with particular SQL statements. This is very useful
when:

• Oracle seems to take unexpectedly long to run a statement.

• Oracle seems to take an unexpected method to answer a query.

• To investigate the effects of parallelizing a query.

• Alternative SQL statements might yield a result faster - This is extremely
useful for analyzing decision support statements that might differ in their
execution time in terms of hours.

Prior to running the command, the Explain tables should be created using the
utlxplan.sql script.

Once the Explain tables are created, the command EXPLAIN PLAN FOR can be
issued prior to any SQL statement.

Suppose you want to analyze the access plan generated for the query:

SELECT * FROM EMP
Monitoring an RDBMS system for performance 219

The first step is issuing the following command:

explain plan for select * from emp

The command will be executed, and the explain data will be stored in a table
called PLAN_TABLE. To view the execution plan contained in the
PLAN_TABLE, you should run the following SQL statement:

select id, operation, options, object_name, position from plan_table

The output you get looks as follows:

ID OPERATION OPTIONS OBJECT_NAME POSITION
-- ---------------- ------- ---------- --------
0 SELECT STATEMENT
1 TABLE ACCESS FULL EMP 1
2 rows selected.

The value FULL for TABLE ACCESS entry explains that the optimizer chose
tablescanning for all the tables in order to retrieve the data.

For more detail on the use of EXPLAIN PLAN with Oracle, refer to the Oracle
documentation. For example, the Oracle 8 Server Tuning manual, A54638-01,
has a complete chapter on the use of EXPLAIN PLAN, and the Oracle 8 Server
Concepts, A54646-01, has a chapter on the optimizer, which includes
explaining the EXPLAIN PLAN output.

For a nested output of the EXPLAIN PLAN, which can help in complex SQL
statements, see Appendix B.2.7, “Oracle nested explain plan” on page 375.

There are also excellent reference books on Oracle that include this subject.
See the references section at the end of this redbook.

10.2 Regular monitoring, ad-hoc, or alert method usage

Although we can propose three different methods of monitoring, regular,
ad-hoc, or alert, it is important to highlight that the best choice will vary from
administrator to administrator.

The monitoring task is very important in order to:

• Maintain a minimum level of control over the system environment - The
more the establishment of the monitoring process is delayed, the more
complex it will become to put the environment (HW and SW) under control.
220 Database Performance on AIX in DB2 UDB and Oracle Environments

• Prevent the machine and operating system from affecting the database,
for instance, through external factors, such as slow disks and CPUs, lack
of memory, or older versions of operating systems.

• Preventing the database from affecting the machine and operating system
- If the database is consuming more memory, disks space, and CPU than
it is supposed to, the operational system can be severely impacted.

Each monitoring session consists of basically three steps:

Define your objectives
You have to define exactly which database or AIX area you want to monitor.
For example, you might want to know how your queries are affecting AIX
memory consumption or how many disk I/Os your applications have done so
far for retrieving the data.

Define information you want to analyze
Once you know which area you want to analyze, you have to figure out the
possible ways to achieve the results. For example, to find out how the queries
are affecting AIX memory consumption, you could start the analysis by taking
a look on how much memory space the database is allocating for the sort
operation and also check on AIX how memory and paging space are
consumed when the applications are running.

Define which tools will be used
Once you have chosen what to monitor and how to monitor, you have to
choose which tool will be used. You may use the pre-defined monitors, or you
can also create your own monitoring scripts.

All three steps must be followed every time you begin a monitoring session.

10.2.1 Regular monitoring method
This monitoring technique is an essential daily routine for both system and
database administrators.

The main purpose of this close and regular monitoring is to:

• Keep the AIX and database under supervised control

• Document how the system and the database are performing day-to-day

• Based on the collected history, try to narrow down the possible predictable
incidents

The system administrator and the database administrator involved with the
regular monitoring should have the following prerequisites:
Monitoring an RDBMS system for performance 221

• Global system and database knowledge

• Total knowledge on their expertise area

• Ability to manipulate the monitoring tools

• Ability to create their own monitoring scripts

They should also be committed to allocate, every single day, a time period for
this monitoring process.

10.2.2 Ad-hoc monitoring method
Although the regular monitoring method guarantees that the system is, most
of the time, under total and assisted control, some unpredictable facts, such
as unexpected delays or hangs, might sometimes happen.

For this specific scenario, the practice of regular monitoring will assist the
database administrator in figuring out the main cause of basic problems, such
as if an application is really hanging or just performing long sorts, if an
application is stopped due to a lock or deadlock situation, or if a query
response time is too low due to a disk I/O bottleneck. A good practice is to
have some pre-defined scripts already created that can speed up the problem
determination by displaying basic system characteristics, such as CPU
consumption, disk usage, paging space consumption, number of users
connected, and number of AIX processes allocated to the database.

Please refer to Appendix B, “Vital SQL” on page 371 for more information
about the suggested scripts.

10.2.3 Alert monitoring method
The alert method consists of pre-defining some lower and upper values for
special performance variables, and, when these values are reached, the
database or system administrators are notified, and then an action can be
taken for solving that possible problem. This alert method can also be used
with the regular monitoring method but, due to its unassisted characteristic,
should not be the only monitoring technique adopted for an environment.

10.3 Performance monitoring scripts

Once you are familiar with all the different monitoring tools and are aware of
all the possible monitoring strategies, you will be able to determine which tool
best fits for your daily database’s monitoring needs and also create some
scripts that, using the output from the monitoring commands, can help you
speed up the monitoring process.
222 Database Performance on AIX in DB2 UDB and Oracle Environments

It is also recommended that you store all the daily database monitoring
information so that you can have a better and cumulative understanding of
how the machine resources are being consumed by your database. This
monitoring history could help in determining how the database is growing and
also help to plan for more memory and disk resources before these issues
become bottlenecks.

Please refer to Appendix B, “Vital SQL” on page 371 for more information
about the suggested scripts.

10.4 Monitoring and tuning responsibilities

This is one of the most discussed topics when performance is an issue.

A poorly performing database does not necessarily mean that the hardware
does not meet the system demand, or that the database design was poorly
planned, or that the application programs were coded badly. However, one (or
all) of them could be the cause of the database’s bad performance.

Performance in focus must be a reality for everyone involved with RDBMSs,
from application developers and system designers through the database
administrator. A well-tuned system takes into account not only the database
itself, but all the areas that, in conjunction with the database, form the
system.

Prior to designing the database structure, there is a need for understanding
all the database’s resource demands regarding disks, memory, and
processors. If the hardware was not very well planed for meeting all the user’s
demands, this is the first possible area to be considered.

We can basically point out three different job responsibilities that are in
charge of almost all possible enhancements in the RDBMS performance
area:

• The system administrator
• The database administrator
• The application developers

The system administrator should always be aware of how the databases are
affecting the physical structure and also provide a stable and secure
operational environment for them.

The database administrator’s main tasks are: Design, develop, operate,
safeguard, and maintain one or more databases. They can also be
responsible for the database integrity and availability by managing the
Monitoring an RDBMS system for performance 223

authorities and privileges over all the objects as well as controlling the
backups.

The application developer is responsible for developing and testing
applications that issue SQL statements for inserting, deleting, updating, and
retrieving data. This is a special area where a poorly coded SQL statement is
able to influence the behavior of the entire database. You can influence the
RS/6000 memory and swap disk consumption depending on the amount of
resources the database will have to allocate for the SQL statements to be
executed. Please refer to 2.6, “Structured Query Language” on page 29 for
more details about using SQL Statements.

It is important to say that the three areas are inter-dependent, and that a
change in one of the areas could possibly affect the other ones.

In almost all the cases where performance problems show up, the database
administrator is usually the person capable of pointing out where the main
performance bottleneck is.

10.5 When should a performance problem be reported and to whom?

Performance problems, in a monitored and stable environment, can be
detected by the administrators but are usually reported to them by the end
user.

After a problem is reported, problem determination monitoring should be
done involving the database administrator, the system administrator, and the
application programmer.

10.5.1 What are you looking for?
CPU
When the CPU is busy 90 percent of the time, it is considered that it has
reached its capacity. It is also a good practice to monitor how the CPU is
being consumed by AIX. The operating system should not consume more
than approximately 20-40 percent of CPU time. If this value is higher, check
with performance tools, such as trace or tprof, to find out which application is
causing the high system CPU time consumption and continue your

The monitoring process is a team task and will only be successfully
performed when all the involved areas agree and work together targeting a
stable and controlled system.

Note
224 Database Performance on AIX in DB2 UDB and Oracle Environments

investigation from there, for instance, find out if the application can be
changed so that it consumes less system CPU time.

In multi-processor systems, the system administrator should monitor if the
CPU load is balanced across all of the CPUs.

Disk
The database administrator should be aware of the fact that wrong physical
data placement could lead to data skew and, sometimes, overload the I/O
requests for some disks while others could be available and not processing.

The I/O requests should be equally distributed among the disk controllers and
disks.

Memory
The Oracle RDBMS uses memory for manipulating the SGA, background and
user processes while DB2 UDB uses it for the bufferpools, database heaps,
internal processes, and agents.

The more memory you can allocate for the database, the higher the buffer
pool hit ratio tends to be. The buffer pool hit ratio indicates the percentage of
time that the database manager did not need to load a page from disk since it
was already available in memory. The greater the buffer pool hit ratio, the
lower the frequency of disk I/O.

Paging space
The system and database administrators should be aware that, whenever you
use the operating system paging space, the performance automatically
decreases since the number of disk I/Os and CPU consumption increases.

The amount of disk space defined for the AIX paging space will depend on
how the database allocates the real memory resources. If the amount of real
memory is enough to supply the RDBMS with all the memory requested, the
paging space can be set to the default value recommended by the AIX
Installation Assistant tool.

Sort operation
The application developers should avoid using SQL statements that can
generate sort operations, such as ORDER BY and GROUP BY clauses.

If the sort operation cannot be avoided, it is recommended that you allocate
enough room for this operation to be done in real memory and, thus, avoid
using the paging space.
DB2 UDB allows you to control the allocation of the sort heap by using the
sortheap and sheapthres parameters (see also 12.5.5, “Sort heap size
Monitoring an RDBMS system for performance 225

(sortheap)” on page 276 and 12.5.6, “Sort heap threshold (sheapthres)” on
page 277).

Locks
The database administrator should always control the number of locks on the
database. Both RDBMSs lock data using the lowest level of restrictiveness,
the row level, allowing the highest degree of concurrence while guaranteeing
data consistency.

The application developers should keep in mind that the frequency of COMMIT
statements usually determines the degree of concurrence. The more COMMITs

the application developers code, the less rows will be locked, thus, allowing
other users to use the rows. Although each commit operation increases the
number of physical I/Os to disk in order to record the new row value, it is still
recommended that, whenever suitable, COMMIT statements are used.

For information on DB2 UDB lock parameters, see 12.5.13, “Maximum
storage for lock list (locklist)” on page 283 and 12.5.14, “Maximum percent of
lock list before escalation (maxlocks)” on page 284.

Deadlocks
A deadlock situation happens when two or more applications are waiting
indefinitely for data locked by each other.

Although this situation is automatically solved by both RDBMSs and does not
need external intervention, a high number of occurrences can point to
possible lock contention, and the application’s code should probably be
reviewed as well as the isolation level.
226 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 11. Tuning an RDBMS system

Everyone wants value for their money, and the point of tuning an RDBMS is to
make sure that the system is delivering good performance. In tuning an
RDBMS, there are two approaches:

1. Minimum man-power approach

Setting up a system that provides reasonable performance with only the
minimum amount of man-power used for the on-going tuning effort of the
System Administrator (SA) or Database Administrator (DBA). In this case,
once set up, the machine is largely ignored unless users complain or
something goes wrong.

2. Maximum performance approach

Setting up the system for maximum performance. Tuning of the system
includes the system administrator monitoring the hardware and AIX, and
the DBA monitoring the database and applications on a daily basis. In this
case, the machines are likely to be larger and, thus, of higher value. The
investment in man-power is justified in efficient use of the computing
resources.

It is important to know which you are trying to achieve, and it depends on the
company culture and the importance of the system itself. This decides the
time invested in tuning and the investment level in extra capacity.

Regardless of which approach is used, the RDBMS will be tuned due to one
of five causes:

• Regular task

Regular periodic monitoring and tuning is standard practise. Many sites do
a review of performance on quarterly, half-yearly, or yearly intervals.
Problem machines would be investigated immediately.

• Generated warning

The automated monitoring of the system has warned that performance is
degrading and has hit some threshold. Please see Chapter 10,
“Monitoring an RDBMS system for performance” on page 203 for more on
these subjects.

• Emergency

There is an emergency in performance or response time, which has been
highlighted by user feedback. The tuning must identify the problem,
recommend a solution, and then work out how to avoid this happening
again.
© Copyright IBM Corp. 1999 227

• New system

A newly build system requires initial tuning for maximum performance
before going into production. In most of the cases, however, this system
might already be in production because of the difficultly of generating user
workload artificially and not being able to predict real user workloads and
work patterns. Ideally, the number of users is still growing and is not the
full number yet since this will allow tuning before system response times
become unacceptable.

• System change

The system is shortly going to have a change in workload. For example,
the database size increased, the number of users increase, or a whole
database is added to the system for concurrent access. In this case, the
current system needs to be tuned to free up as many resources as
possible before the new workload is added.

Whatever the reason, the approach will largely be the same, although, in the
case of an emergency, there is much higher pressure from users to get to the
root of the problem and fix it.

11.1 Tuning skills

Most RDBMSs are important. They represent an important investment by the
company. Any RDBMS is complex. They include state-of-the-art architecture
machines, such as the RS/6000 family; they have a complex operating
system, such as AIX, which offers many options for tuning and particularly
disk layout, and then advanced databases - again with many tuning and
performance options. On top of this platform is a complex database data
structure and application software.

This means an RDBMS is both important and vital. The tuner, if not careful,
could make performance worse, or even damage the database, and make it
unavailable for a long period of time. To reduce the risk, make sure that the
appropriate skills and knowledge are available before tuning a system. These
might include:

• RS/6000 and AIX architecture

• AIX System Administration

• AIX tuning and performance

• DBA skills for the RDBMS

• Tuning for the RDBMS
228 Database Performance on AIX in DB2 UDB and Oracle Environments

• SQL tuning

• Application writing

If you are unsure either:

• do not tune

• investigate and propose changes to the system for others to check before
implementing the changes

• start building a team that together has all the right skills

11.2 Reference manuals and books

Before you start tuning, make sure that you have the right reference materials
readily available. While tuning, many questions will be raised, and these need
to be answered quickly and completely.

For AIX, there are two excellent and highly recommended redbooks covering
performance, sizing, and the tools:

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

This has full explanations of how the RS/6000 really performs and why.
This is a good book to expel years of misconceptions, muddy thinking, and
false ideas that are found in the computer industry.

• AIX Performance Tools in Focus, SG24-4989

This is the best place of information on the wide range of tools available
for AIX, and you will need to understand many of these tools for database
tuning. UNIX commands and tools are famous for having high-detail levels
but very poor headings and explanations. This book actually explains what
the numbers mean and what you can do to change them.

For the RDBMS, there are the manuals for the database. In particular:

• The performance tuning manuals for your actual RDBMS in the correct
version. These may be online versions due to costs, however, hardcopies
of the tuning manuals might be better for scanning and finding the right
section.

• The RDBMS reference manuals for the RDBMS and DBA tools.

With RDBMS tuning, a little knowledge is a very dangerous thing.
Note
Tuning an RDBMS system 229

• The RDBMS SQL reference manual.

• The RDBMS introduction or concepts manuals.

There is a growing number of good performance books available. For a few
recommended RDBMS tuning books, see Appendix F.3, “Other resources” on
page 415.

11.2.1 About RDBMS tuning and RDBMS performance tuning books
If you purchase an RDBMS Performance Tuning book, or read the Tuning
chapters of a general book on your database, one thing you will notice is that
there is no end to the details that can be covered in these books, and each
generation of the book seems to be larger than the previous. Next, you will
find that there are some guidelines about where to tune and where
performance stems from. This highlights an important message about what
can be fixed in performance terms on the actual machine. They will quote
some numbers, such as:

• 50 percent of the performance comes from a good database design and
application design.

• 30 percent of performance comes from good programming and correct use
of SQL.

• 19 percent comes from good implementation and tuning the system.

• 1 percent comes from fixing hardware errors.

The numbers might vary a bit depending on the source. This really means
that if the design and programming is bad, or even just poor, then, in practical
terms, there is little that can be done on the system that will remedy this. If
these parts of the total performance picture are poor, the machine could run
1000 times slower than expected. If, however, these are good, then the tuning
on the machine can be the cause of performance problems. A very poor
implementation can cause a 100 times slow-down in performance.

While this is very interesting, there is little or nothing we, as system
administrators and database administrators, can do about the design, the
programming, or the SQL. The design was fixed months or years ago. If the
application was bought as a package, then the application code is not even
available. We cannot get the code changed, or it means a very large expense.
If the code is developed in-house, then we might find that the development
team is too busy on other projects. We might be able to make the case for
specific SQL changes, but only if we can identify a very small number of
problem statements.
230 Database Performance on AIX in DB2 UDB and Oracle Environments

For the most part, we can only alter the set up and configuration, and if we
can make the business case to justify the expense, purchase a little extra
hardware.

In this redbook, we have assumed there is little we can do about the SQL
being sent to the RDBMS. We just have to make it work as fast as possible.
This means that performance tuning books that have 70 percent of the book
taken up with SQL tuning tips are not going to help the DBA that much. We
have to concentrate on the AIX and RDBMS side of tuning.

11.3 Tuning strategy

Before we get to the tuning hints and tips, we need to decide the tuning
method to use so that the tuning exercise:

• Does not waste time - especially if we are tuning due to an emergency
because users cannot perform their tasks.

• Does not waste computer time and people resources.

• Actually comes to a conclusion.

• Has some quantitative measure of the improvement made.

• Can be applied elsewhere, if appropriate.

Many books and papers on performance tuning detail the formal tuning
method and include chapters on:

• The iterative process

• Only changing one thing at a time

• Defining the goals and objectives

• Reproducible workloads

• Careful instrumentation, measurement, and documentation

All of the above list is really common sense, but:

• It can be hard to follow in practice.

• It would mean tuning would take a very long time.

• There are fundamental things that need to be addressed immediately.

Remember performance is only refined by SA and DBA.
It is created by the designers and programmers.

Note
Tuning an RDBMS system 231

So, in addition to this normal fine tuning method, there is the change all at
once approach to tuning that has the following phases:

• Gather all the information about what is actually going on and disregard
the rumors, opinions, and theories about the problem.

• Fix the blatantly obvious mistakes in one pass.

• Get the system into reasonably good shape by tuning the high-impact
performance options including hardware, AIX, and basic database
parameters.

• Then, start the fine tuning phase using the formal tuning method.

The following sections deal with formal tuning and the change all at once
approach. They are followed with our list of tuning hints and tips for particular
databases.

11.4 Formal fine tuning method

There are many books on this subject; so, this section is a summary of the
important points and ideas about the formal and fine tuning method. Most will
seem obvious and common sense, but they are here to stop one classic
mistake, which might be called the all guns firing approach. In this approach,
every option and parameter is changed, seemingly at random, and no one
knows if the performance got better or worse. This has three possible
outcomes:

1. A miracle happens, and the performance becomes excellent.

2. Performance decreases dramatically, and nobody knows which parameter
was the cause.

3. Tuning goes on forever, and, eventually, a manager stops the tuning as a
waste of effort and money and appoints someone with a real method.

The formal tuning method can be outlined based on the following principles,
outlined in 11.4.1 through 11.4.14.

It is much easier to tune an RDBMS badly than tune an RDBMS well.

Database Tuning
232 Database Performance on AIX in DB2 UDB and Oracle Environments

11.4.1 Clear definition of the success criteria
Before actually doing anything on the system, the performance tuning team
needs to define the goals and objectives. This is obvious but rarely done at
the start.

Often the machine has performance problems, and the goal is to remove
them. This is not a good goal because it has not definitive end point. Try to
answer the questions: How can you determine if the system performance is
good enough? How is the performance actually measured?

Another poor example is: The response times must be acceptable.
Acceptable to whom, and how is it decided if it is good or bad? It might
depend on how the system administrator is feeling that day or how many
complaints from users come in, and might not be based on the system at all.
A further poor example is: The response times must be less than 3 seconds,
but often the application has some tasks that are expected to take 10
minutes, such as creating a large report. The response time requirements
need to be limited to particular transactions and, hopefully, the ones most
often used.

Again, you need clearly defined and measurable goals.

You might be tuning the online performance, but the problem is with the batch
run. For late night batch runs, there is often a goal set that it must take less
than a certain number of hours. But do not forget there might be an
alternative solution, such as performing an online backup rather than an
off-line backup and, thus, increasing the time available for the batch run.

If you are given a number of targets to reach, then insist they are given a
priority order since it will help you to make better progress. For example,
when you have fixed four out of five problems, you can claim to have fixed 80
percent of the problem, and it is the least important one that remains to be
finished.

11.4.2 Limiting the activity
Performance tuning is a never-ending task. The data, users, and workload
changes with time and more tuning can be performed. So, unless you have
been told to tune this system forever, at some point of tuning, you will have to
stop. A decision on the time frame allowed must be made. This might be a
limited number of days or a limit to the performance gains reached. If the limit
is time based, then the team should aim to increase the maximum amount of
performance in that fixed period of time to increase user satisfaction. If the
tuning is performance goal based, then the team should focus only on that
Tuning an RDBMS system 233

goal and to achieve it in the minimum amount of time and effort. Most of the
time there are actually both limits, but one is going to be a lot harder to reach
than the other. So:

• If time is limited, work on the quick wins that can be tried in the time.

• If the goal is limited, work on all the options in impact priority order that
can help reach the target.

11.4.3 Iteration
Tuning is an iterative process. A test is run, the results are studied, a change
is made, a further test is run, and so on. This is obvious but has large
implications. First, you have to define what is a test. This can be very hard to
be precise on (see 11.4.8, “Reproducible workloads” on page 236) and you
have to be careful to collect the right results. Next, the changes made have to
be carefully controlled (see 11.4.4, “One change at a time” on page 234).
Continue to iterate until either:

• The original goals are met.

• You run out of time.

• You run out of ideas and areas to tune.

• You proved it cannot be done and need the goal post moved.

11.4.4 One change at a time
Only change one thing at a time between test runs. If, as the result of a test,
you want to try to change two variables, the temptation is to change them
both and rerun the test. But, when the results show a small improvement, you
cannot determine what caused the small improvement. One change might
have made all the difference. The other change might have made no
difference; it might have stopped the first from making an enormous
improvement, or it might have reduced the performance, which is hidden by
the improvement of the other. The only reliable method is change one thing at
a time. This is obvious but it is very tempting to make a lot of changes (see
11.5, “Change all at once method” on page 241).

In practice, all tuners change multiple things at a time and are forced to by
time limitations, but they try to limit the function area. For example, tune just
the allocation of memory to the various memory consumers but do not tune
the disk layout at the same time.

Iterate and then iterate again!

Note
234 Database Performance on AIX in DB2 UDB and Oracle Environments

11.4.5 Deciding priorities
Once a test is run, and the results are analyzed, there will be a number of
conclusions. For example, the buffer cache size, number of locks, and
perhaps the AIX parameter to free up memory should be tuned. The team
then must decide which area to tune next.

There needs to be a balance between how hard it is to tune this area, the
benefits in performance, and, if the machine is in production, the likelihood
that this could cause a major problem if it goes wrong. A list of the priorities
needs to be drawn up. Usually, the safest and most effective changes are the
route to go. Sometimes good choices are ignored because the team does not
have strong skills in this area.

Some effective teams draw up on a white board all the alternatives. They then
discuss each option and try to estimate the potential performance
improvement. Finally, they all vote on which option to try in the next round of
tests.

11.4.6 Hot spots
When investigating the machine’s performance, one of the CPU, memory,
disk, and network areas will become the focus of your attention. This area
seems to be the bottleneck area, and it needs addressing. It is called the hot
spot. But be aware that, if this area is fixed, then the hot spot will just move
elsewhere. For example, we can reduce data disk bottlenecks by increasing
caching, but that might cause high paging rates. We need to tune the system
to make it balanced. We can express this as having a lot of small bottlenecks
all over the system, somewhat impacting performance, or that no one area is
the hot spot, but all areas are getting warm.

There is always one hot spot in a computer system. After all, in a perfectly
tuned system, there is always something stopping it from reaching infinite
performance and zero response times. The point is, if all areas of the
machine are well used, the apparent hot stop must be regarded as normal.

Also, note that the hot spot can move around. As users do different tasks
during the day, week, or month, the hot spot might change in the system from
the lack of CPU in periods of high OLTP transaction rates to the lack of disk
speed during report creation at a different time. Also, the needs of the nightly
batch work or data loads and summaries can be very different to the needs of
online users during the day. Many sites have different tuning setups for
daytime and nighttime activities.
Tuning an RDBMS system 235

11.4.7 Well known important areas
There are hundreds of options and parameters that can effect performance in
a modern computer system. These range from hardware choices and
connections to AIX and on to the RDBMS parameters and configuration. But
there is a list of well known things that have the largest impact on
performance. Also, check the list of well known simple mistakes (11.8,
“Classic mistake list” on page 257) to make sure you avoid them.

11.4.8 Reproducible workloads
This is a particular problem with systems that have many online users. The
users’ work patterns change, even during the day. They may do different
things in the morning and afternoon. For example, mornings might be
telephone sales, and the afternoon mail order, and later in the day, reports.
Most businesses have peaks in orders on particular days of the week or times
of the month and year. Also, every business has business administration
induced peaks, such as end of quarter and end of year. To make matters
worse, users also can work at different rates at different times. This causes a
problem when the workload changes between tests. It can be very difficult to
determine if the performance difference is the result of the tuning effort or the
users changing their work pattern.

One last problem is that if performance improves, and, therefore, the system
has better response times, the users simply do more work, and the system
slows down again. This means the transaction rate is higher, but the response
time remains unchanged.

What we need to do is to capture and compare both, the response times and
the transaction rate, before determining if the performance is better or worse.

Batch workload, in comparison, is quite sane, but do check the numbers in
this case also. For example, you might find there are differing numbers of
records used in batch runs on different days of the month.

Decision Support Systems have an even worse problem in this area. The
transactions are usually 10 to 100 times (or much more) bigger than the
transactions of an OLTP system. This means that different queries can differ
in response times by large amounts; so, measuring the response time and
throughput is still important. The extra problem is that the size of the SQL

Hot spots are the places to focus on.

Note
236 Database Performance on AIX in DB2 UDB and Oracle Environments

statements can vary a great deal when compared to other systems. DSS
queries can differ in complexity by 1 to 1,000,000 simply by changing the
criteria for the SQL statement. For example, looking for a trend of a particular
product, a small time period, and a limited number of stores might take 15
seconds; but looking for all products, a large time period, and all stores might
take 30 hours, simply due to the volume of data and that summary tables
cannot be used. Also, many sites bring new data onto the system irregularly,
sometimes just once a month. In the next few days, this new data is
investigated intensively, and, therefore, the queries that are submitted change
during the months. The only suggestion to help this is to also measure large
table scan rates and the volume of data extracted from the disks, or to
develop a standard and typical set of queries for testing.

11.4.9 How to measure response time
This is a problem for online user systems because it is very difficult to
accurately record the response time from a system. If the system is extremely
slow, then there will be no discussion that the response time is not sufficient.
But if the system is responding in about 1.9 to 2.1 seconds, and the
requirement is 2 seconds, there can be a large argument about how it is
measured. A human cannot start and stop a stop-watch with an accuracy of
1/10th of a second anyway. Also, note that a fixed response time goal (for
example, all response times must be under 2 seconds) is unlikely to be
achieved nor guaranteed for two reasons. First, there are peaks in user
demands that are unpredictable, for example, if all the users attempt to
commit a transaction at the same time (this is rare but can happen). To
guarantee the response time for this extreme case would mean a system at
least ten times more powerful than really warranted. Second, there are
always transactions that take too long. For example, creating a report or
certain wildcard lookups of large numbers of rows (such as looking up a
customer with only part of their name) that will take longer than the 2 seconds
and which no one really would expect within this time limit. This results in a
more realistic response time goal, for example, 90 percent of responses are
under a fixed time limit and for specific transactions (usually the most used 10
or 20 transactions). Again, this makes statistically accurate measurements
extremely hard to agree on.

One approach in the industry is that the application code is modified to keep
track of the response time by measuring and reporting the response time.

Trusting the users to give a accurate picture of response times is famous
for being inaccurate.

Note
Tuning an RDBMS system 237

The down side is that this takes CPU power, and the data needs to be
collected and summarized. This extra work results in slowing the system
down. But, we may see more of this in the future.

The alternative is running a small tool that, while the users are working,
executes some well know SQL statements that are as typical as possible to
the user workload, and the response times of these are accurately measured.
This sample workload is small compared to the user workload and is run at
regular intervals to allow the performance tuning team to accurately
determine the relative response time of the sample. These accurate response
times help in working out the benefit (or not) of tuning changes.

11.4.10 Careful instrumentation and measurement
Tuning is impossible unless you have the means to decide if you have made
an improvement or not. This requires you to take measurements on the
system to help decide what the problem is, and later, to decide if performance
has improved due to tuning changes. Instrumentation is an IBM term that
means the system has the right tools and features to allow the data to be
collected, be meaningful, precise, and not intrusive. This instrumentation
should not impact performance itself more than a few percent. Fortunately,
AIX is extremely well instrumented and has powerful tools beyond the
standard UNIX system. This includes AIX tools, such as Performance
Toolbox/6000 and the AIX trace system. The DB2 UDB and Oracle databases
have excellent tools as well. In all cases, they need to be used and
understood before this benefit can be harnessed for making performance
enhancements to the system.

11.4.11 Documentation
Although some dread this word, it does not need to be painful in the case of
performance tuning. The bulk of the facts needed for tuning can be collected
from the tools. You do need to be careful that we save these results in a
methodical way. In addition, you need to make notes of what was done in
each test in terms of when the tests were run, the particulars of the workload
and users, the interesting facts discovered, and suggestions for
improvements. This sounds like a lot, but it is worth to formally record this
data. This can either be in a tuning log book or in read.me type files saved
along with the tool output files and results. If this is neglected, and you later
want to refer back to earlier tests, you will find that you have forgotten or are
unsure of the facts. This then means rerunning the test to be sure. So, we
recommend keeping good records of each test, as this will save time. It also
helps writing these things down because you have to think about how sure
you really are of the facts and how much is guessed.
238 Database Performance on AIX in DB2 UDB and Oracle Environments

Tuning log recommendations:

• First of all: Create a log. Without a clear and detailed log, it is very easy to
forget the configuration details, the conclusions of each test, and the set of
results. This results in having to rerun a test in order to check it, which
wastes time.

• Perhaps include parts of the HW and DB logs of the system.

• We recommend to use a lot of directories and use a standard script to
capture all the configuration details and then add a read.me about what
the test hoped to prove and what it did prove.

• Collect data with scripts, such as those in Appendix B, “Vital SQL” on page
371 and with database supplied tools, such as utlbstat.sql/utlestat.sql

for Oracle or snapshot for DB2 UDB.

11.4.12 Scheduling the tests
If the system is not in production, then you have an excellent chance of
making quick progress, and you have time to try out some ideas. It is good
to try to reduce the test period to a time as short as possible. 20 to 30
minutes is a good time. Keep in mind that large systems take a while to
reach a steady pace, for example, to get all the users working and the
RDBMS buffer cache or pool filled with data. If the test is longer than 20 to
30 minutes, this drastically reduces the number of test cases that can be
run in one day.

If the system is in production, then there are a number of problems to
overcome. First, is that if you make a mistake in tuning the parameters,
then all the users will be complaining the next day. Second, many of the
tuning options require the database to be restarted. This is not an option
on production systems, and many international companies might only
allow this once a week. This cuts down the number of opportunities you
have to improve performance. In this case, a test machine is the only real
option, but, ideally, this needs to be a similar size to the production
machine but this can be hard to justify because of the costs. Alternatives
are renting machines or using IBM test centers to run a tuning project or
having sole access to the machine, but this usually means early hours,
such as three to five in the morning or on Sundays.

11.4.13 Verifying the improvement
The change was made and the test rerun. Did it make a difference? There are
a number of possible outcomes:
Tuning an RDBMS system 239

• Big improvement - Good, a further change might be in order to see if a
larger change would cause a larger improvement.

• Small improvement - Fine, you might try again or change something else
that might help even more.

• Tiny improvement or degradation - You have to decide if this was worth it
or not. You might find that the margin of error means that you cannot tell if
anything improved or not. You have a choice of leaving it at the new level
or returning it to the original.

• The before and after performance was not checked - Not very
professional, and might well cause a bottleneck later.

We recommend:

• If the old level was a default, then return it to the default.

• If you think the new number should really help but suspect there is another
item that stopped this improving performance, then leave it at the new
level and investigate the other item further.

• If this change was to remove the current bottleneck but made little
difference, then return it to the original value and think again.

11.4.14 The tuning team
Do not forget that you are not alone. There is help available from your
supplier, as it is in their best interests that the hardware, software, and
RDBMS are working well and meeting your needs because they know happy
customers are likely to buy more in the future. IBM, IBM Business Partners,
application providers, and the database vendors have support organizations
that can assist you if you cannot solve the performance issues.

When you escalate to other people, they have to start from scratch; so, save
them time (and possibly your company money) by getting them the facts and
information before engaging with them. Then, be ready to get further
information that they might need and be ready to run other tests and, if
necessary, add instrumentation so that they can investigate at a higher level
of detail. Do not expect to phone in a it does not work problem and expect the
support people to solve it from there.

See Chapter 14, “Austin - we have a problem!” on page 345 for more
information on getting assistance.
240 Database Performance on AIX in DB2 UDB and Oracle Environments

11.5 Change all at once method

In the previous section, we have outlined a good approach to tune a system
for maximum performance and minimum response times. If the system is
working reasonably well, then this is an excellent approach to fine tune the
system further.

But, often the system performance is very poor, or this is the first ever tuning
session on the new system. In this case, you might use the alternative
change all at once approach to try and get the system working reasonably
well and as quickly as possible.

Figure 30. Change all at once method puts all the standard tuning parameters right in one go

This approach involves six key stages:

1. Ignoring the rumors about what is wrong, as these are based on little or no
information.

2. Check for errors.

3. Get to the latest fix level.

4. Measure what is actually going on regarding performance and then
document all the parameter settings.

5. Check and change the top ten performance parameters to sensible
settings and use defaults for most of the rest.

6. Remeasure performance to check if performance has improved.

The point of using a change all at once approach is to get the system into
good shape as soon as possible. Most of the tuning parameters should be the
default values apart from a few, well known, key ones that need to be set
depending on the size of the machine and the workload type. You also need
to check that the machine is configured properly so that it can make good use
of the various parts available.

0 1 0 0

R u le o f
T h u m b
V a lu e s

C u rre n t V a lu e s

F ix th e m a ll in th e firs t ro u n d o f tu n in g
Tuning an RDBMS system 241

Once this is done, you need to remeasure the system performance.
Hopefully, it has improved. Then you can do further tuning using the formal
tuning method.

The above stages are covered in more details in the following section.

11.5.1 Ignore the rumors
The IBM technical support groups often get involved with performance
situations that are escalated through customer management and then
through IBM. By the time a technical specialist is involved, there have been
gross distortions in what is the actual problem and what are the symptoms
leading people to decide what the problem is caused by. There is a need to
ignore the rumors, theories, assumptions, and suspicions and get to some
solid facts. Often a simple misunderstanding of some performance figure
leads people to think there is a problem when there is no problem at all.

A classic example is monitoring CPU I/O wait time and assuming high I/O
wait time on an 8 way SMP is bad and indicates a disk problem. In fact it is
just a quirk about the way I/O wait is reported before AIX 4.3.3. A system can
report 80 percent I/O wait time was and easily provide sub seconds response
times. So, the performance problem is actually a lack of understanding of the
performance figures.

Another example is running tests on disk speed and comparing machines.
One site determined that the disks behaved very differently on two identical
RS/6000 machines; therefore, the slow machine must have an adapter or disk
problem. It turned out to be the system administrator had been changing AIX
parameters (minpout, maxpout) in an effort to increase a backup speed but had
forgotten to put these back to the default values on one machine. So, the
performance problem was a lack of careful administration and leaping to
conclusions without checking the details.

Another site tried comparing an RS/6000 disk to a competitors machine. The
test was simple and proved the RS/6000 was two thirds of the speed at
reading and writing files. But, they did not understand the test. It turned out
they were using the cp command, which meant the file was cached in memory
after the first time and so was a pure write to the disk test. It was then found
that the two machines were rated about the same speed, but the RS/6000
CPUs was an eight way and the other machine a three way. The test was only

There is a clear tendency to first blame the hardware.

Note
242 Database Performance on AIX in DB2 UDB and Oracle Environments

using a single command, which used only one CPU; therefore, it was only
using 1 eighth of the RS/6000’s CPU power compared to one third of the
other machine. In addition, the competitors’ machine was writing to a fine
striped file system (well known for good write performance), but on the
RS/6000, it was a RAID 5 disk configuration. Writing to RAID 5 was a known
performance bottleneck, with the former RAID adapters that did not provide
the fast-write cache option. When all of these issues were fixed, the RS/600
turned out to be three times faster than the competition. So, the performance
problem was to not understand the so called simple test and not being aware
of the performance impact of SMP systems and various disk configurations.

Another example is the it is slow problem, but no ones knows:

• What is slow?

• How was slow measured?

• What is acceptable?

• Has it changed or was it always slow?

• What has been changed to make it slow?

The only performance fact available is everybody thinks there is a problem!
The first task in this situation is trying to workout who started saying it is slow
and why. Many performance problems result from too many managers
dutifully escalating but are not based on no technical facts.

11.5.2 Gathering the information
Before changing anything on the system or database, it is worth checking a
few basic parameters to make sure that they are either the default value, a
sensible number, and that we know when, by whom, and why they have been
changed.

11.5.2.1 Machine details
You should have an understanding of the machine including the following:

• CPU rating and number of CPUs

• Memory size and type

• Disk types and configuration

• Disk speeds in seek time and throughput

Ignore the rumors - Just stick to the verifiable performance facts.

Fact or Fiction
Tuning an RDBMS system 243

• Disk usage and logical volume

• Adapter types and ratings

11.5.2.2 Workload details
You should know the workload profile:

• The busy periods of the system so you can tune for these peaks in
workload.

• The number of users logging on and actually being busy during the peak.

• The number of transactions per minute during the peaks.

• If there are online and batch peaks in the workload.

11.5.2.3 AIX virtual memory parameters
Check to see if the vmtune command is present on the system. See Appendix
A, “AIX performance tools summary” on page 353 for more details. The
vmtune command is part of the bos.adt.samples AIX fileset.

If is not available, then no one can have changed the vmtune parameters. If it
is present, then use the command vmtune with no parameters to detail the
current settings. Then, check that all the values are set to their default values.
The default values for various levels of AIX and those that depend on the
system size (for example memory) are documented in the AIX manuals.

If any parameter is not set to the default value, either:

1. Clearly document in the system log who, when, and why the parameter
was set.

2. If no explanation is available, then you should seriously consider setting it
back to the default value, as inappropriate values can have serious impact
on AIX and database performance.

Inappropriate use of these parameters is the cause of many reported
performance problems.

11.5.2.4 AIX system tunable parameters
Use the lsattr -E -l sys0 command to detail the AIX tunable parameters.

Check to see that all the values are set to their default values. The default
values for various levels of AIX and those that depend on the system size (for
example, memory) are documented in the AIX manuals.

If any parameter is not set to the default value, either:
244 Database Performance on AIX in DB2 UDB and Oracle Environments

1. Clearly document in the system log who, when, and why the parameter
was set.

2. If no explanation is available, then you should seriously consider setting it
back to the default value, as inappropriate values can have serious impact
on AIX and database performance.

Inappropriate use of these parameters is the cause of many reported
performance problems. See Appendix A, “AIX performance tools summary”
on page 353 for more details.

11.5.2.5 Network parameters
Use the no -a command to document the network parameters. See Appendix
A, “AIX performance tools summary” on page 353 for more details.

11.5.2.6 Hardware configurations
Use the lscfg command to document the adapters. See Appendix A, “AIX
performance tools summary” on page 353 for more details.

11.5.2.7 Document the RDBMS parameters
Use the DBA tools to output the database parameters currently in use. See
Chapter 10, “Monitoring an RDBMS system for performance” on page 203 for
more information.

11.5.3 Check for errors
The first thing is to see if the system is, in fact, trying to tell you that there is a
problem. Many times the machines are in a computer room, and there are
warning messages on the console screen that have gone unnoticed. In AIX,
the second place to look is in the AIX system error log. To do this, use the
commands: errpt | pg, and if there are recent errors, check the full details
with errpt -a | pg. The error log is particularly likely to show up disk and
network errors. If it is a network problem, then the network specialists or
support group should be handed the problem. If it is a disk error, take actions
immediately to rectify the problem. AIX reports temporary disk errors when a
disk is about to fail but still works after the disk is stopped and started again
by a hardware reset. This takes time and can produce a performance
problem. If you are quick, the data can be moved to an alternative disk and,
thus, a more serious problem can be avoided. Second, check the RDBMS
error logs. On a DB2 UDB system, these are in the $DIAGPATH/db2diag.log
file. On Oracle, these are in the $ORACLE_HOME/rdbms/logs directory.

11.5.4 Upgrade to the latest fix levels
Check if there are outstanding upgrades for:
Tuning an RDBMS system 245

• AIX - PTF

• Hardware firmware

• RDBMS fixes or PTF

• Application fixes or newer versions

Review what is available and decide when to schedule the upgrades.
Stay current: Latest release, or latest release -1 plus all fixes.

11.5.5 Investigating the system
This is an extension of the investigation order suggested in the redbook
Understanding IBM RS/6000 Performance and Sizing, SG24-4810. It is
different as this concentrates on an RDBMS system. The investigations are
ordered into a sensible list of tasks.

First, check for errors and then go through CPU, memory, disks, and finally,
the network. From experience, the fields memory and disks are more likely to
be the bottleneck and the areas in which we have more choices in tuning.
Run the following during a busy period and save the output:

•vmstat

•iostat

• Load perfpmr from the AIX media or the IBM ftp site (14.1, “Perfpmr - the
performance data collection tool” on page 345)

• Run _config.sh from perfpmr

•lsattr

•vmtune

• If available, use other tools for performance monitoring, such as nmon.

• Use lsvg, lspv, and lslv to draw up a diagram of the disk configuration.

• Use the database tools to document the parameters and performance
numbers.

• Use the applications to document the number of transactions.

11.5.6 Check and set top performance parameters
This is detailed in Chapter 12, “DB2 UDB tuning” on page 259, and Chapter
13, “Oracle tuning” on page 291 for the two databases.
246 Database Performance on AIX in DB2 UDB and Oracle Environments

11.6 Bottlenecks, utilization, and resources

The base-line is that we only have hardware. This means we have to make
the best use of the CPU, memory, adapters, disks, and avoid network limits.

Figure 31. Hardware is: CPU, memory, and disks - Tuning means balancing

The CPU, memory, and disk of the system have to work together to achieve
the maximum performance. In many of the things that can be tuned, we find
that there is a trade off. For example, using more memory for disk block
caching results in less disk I/O, and this means less CPU time for running
device drivers. So, we are trading more memory used for less disk I/O. Figure
31 tries to how these things are all linked together. More memory can reduce
disk I/O. More memory can mean more CPU due to longer in-memory
searches. More disk I/O means more CPU to run the disk device drivers. All
three dimensions are linked together.

The network is a further limiting factor, but we assume that the network is not
the problem. This is a large subject area and is outside the scope of this
redbook.

In a poorly balanced system, one of the components causes a bottleneck
before the other components. Figure 32 shows the disks will hit a bottleneck
before other components. If caching was increased, this would move the disk
curve to the right and mean higher workloads are possible before the
response time rises.

CPU
M

em
or

y

D
is

k

Tuning an RDBMS system 247

Figure 32. Poorly tuned means one bottleneck slows the system

In a well balanced and tuned system, we will find that no one component
causes a bottleneck. For example, Figure 33 shows a well balanced system
where no component is going to hold back the others.

Figure 33. Well balanced systems postpone the bottleneck

11.6.1 Utilization goals
The first thing to investigate is the utilization level of each of these resources
and compare these to the levels we would like to find. Each of these
resources has an optimal level which, if exceeded, has a negative impact on

R
es

po
ns

e
Ti

m
e

Increasing Demand

Bottleneck

D
is

k

C
P

U

M
em

or
y

N
et

w
or

k

R
es

po
ns

e
Ti

m
e

Increasing Dem and

Bottleneck
248 Database Performance on AIX in DB2 UDB and Oracle Environments

the overall system performance. These levels differ between workloads, and
various people have different opinions on these levels too. Below is a table
(Table 13) that you can use as a starting point.

Table 13. Bottleneck thresholds depend on the resource and workload

Generally speaking, batch and DSS workloads can use higher utilization
levels because they are focused on throughput rather than response time.

11.6.2 Insufficient CPU and latent demand
On well performing machines with many users attached, the workload varies
during the working day. Figure 34 shows the typical pattern where there is a
dip in workload during the lunch time period, and the CPU is not 100 percent
busy during the peaks during mid-morning and mid-afternoon.

Resourc
e

Measured by OLTP DSS OLAP Batch

CPU Percent system
+ percent user
time

70 percent 80 percent 70 percent 100 percent

System
memory

See 1 99 percent 99 percent 99 percent 99 percent

RDBMS
memory

Cache and
library hit ratio

99 percent 80 percent 99 percent 60 percent

Adapters Percent busy and
throughput

50 percent 50 percent 50 percent 50 percent 2

Disks Percent busy 40 percent 40 percent 40 percent 60 percent 2

Network Transfers and
throughput

30 percent 40 percent 30 percent 60 percent 2

Notes:
1 AIX makes use of all available memory once it is running for any length of time.
2 Batch can stress the system higher than these levels, but checks need to be made in order to
make sure that other workloads or users of these resources are not affected.
Tuning an RDBMS system 249

Figure 34. Demand over the working day

On an overworked system, the picture changes quite a lot because during the
peaks, the CPU becomes 100 percent busy. It is nearly impossible to work out
how much CPU power is required to stop the CPU from becoming the
bottleneck. If the system is then tuned, the CPU may still be the bottleneck
even though the tuning might improve the performance on the machine.

.

Figure 35. 100 percent busy machine means it is hard to determine if tuning helped or not

100%

CPU Busy

0%
Morning Afternoon

Lunch

Time

L unch
M o rn in g A fte rno on

10 0%

0 %

C PU Busy

Tim e

Latent Dem and C urves

B efore Tuning

A fter Tuning
250 Database Performance on AIX in DB2 UDB and Oracle Environments

In these cases, the response times may improve even if the CPU is still
overworked. If the CPU is still overworked after tuning, and an upgrade is
recommended, it is still going to be very hard to estimate the CPU
requirements of the upgraded machine because the height of the peaks
cannot be determined.

11.6.3 Insufficient memory
When a machine does not have sufficient memory, the symptoms can be
difficult to clearly detect. First, the machine might look like it has a disk or I/O
throughput problem. This can be caused by simple UNIX paging and
swapping activity. If the paging space is on a dedicated disk, this can be
easily spotted. If the paging space is on other disks, such as the AIX, RDBMS
code, or other working file disks, it can be difficult to determine that the high
disk activity is due to paging. AIX commands, such as vmstat, can highlight
paging activity. As the RDBMS buffer cache or pool takes up memory, one
way is to reduce its size in order to free memory. This may stop paging but
may mean the database cannot keep enough of the database in memory for
high performance, and this results in the database performing a lot of extra
I/O operations. This means paging I/O and database I/O have to be balanced,
and a compromise has to be reached as shown in Figure 36.

Figure 36. Balancing paging I/O against database I/O

Generally, most systems are tuned for near zero paging. On large systems,
such as the RS/6000 H and S Series machines, sometimes paging cannot be
avoided if a large number of user processes change their memory usage over

High

Low

Paging I/O

Size of Buffer Cache or Buffer Pool

Medium

Too small About right Too large

I/O rate

Database I/O

Sweet spot
Tuning an RDBMS system 251

time. Given a well placed paging space, this does not present a problem and
these machines are designed for efficient I/O subsystems in order to handle
paging I/O.

To determine if the database buffer cache or buffer pool is of sufficient size,
each database provides tools to provide details of the cache hit ratio. For
OLTP systems, this is normally in the region of 95 percent to 99 percent. The
other main usage of the memory by the RDBMS is for the shared_pool and
log buffers.

11.6.4 Insufficient disk I/O
If the database does not have sufficient disk I/O capability, this is clearly seen
by monitoring the disk performance statistics and CPU statistics. If the
machine has high I/O wait CPU numbers, this can indicate I/O problems, but
care has to be taken in trusting this number. First, I/O wait is assigned in a
manner that is not clear to many people and has been changed in AIX 4.3.3
to make more sense. Please refer to Appendix A.22, “vmstat - Virtual Memory
Management Statistics” on page 366 for more details.

If the disk statistics are investigated, then there are three areas to check:

• Disk I/O is distributed across the disk evenly. It is the job of both the
system administrator and the database administrator to ensure the I/O is
spread across many disks. If one disk is overworked, and the others
under-used, then the whole system performance can suffer. The iostat

command should be used to investigate this issue.

Figure 37 shows a system with one disk overworked. This disk is probably
slowing down the entire system.
252 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 37. Unbalanced disk I/O - Disk 1 will cause a bottleneck

If data is moved from this disk and manually spread across other disks, the
outcome should appear as that shown in Figure 38.

Figure 38. Balanced disk I/O - No bottlenecks

If, however, disk striping of some sort is used, the balancing of disk I/O
across disks is performed by AIX or the disk subsystem (rather than by
manually moving data). In this case, you will see very balanced I/O as
shown in Figure 39.

disk1
disk2

disk3
disk4

disk5
disk6

disk7
disk8

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

bu
sy

disk1
disk2

disk3
disk4

disk5
disk6

disk7
disk8

0

20

40

60

80

100

P
er

ce
nt

B
us

y

Tuning an RDBMS system 253

Figure 39. Disk I/O balanced by the system using data striping

• Disks are not overworked. For a disk to perform well and respond quickly
to user demands, it is best to have the disk not running above 50 percent
busy because it will mean that the queue for devices drivers can become
large and, as a result, response times grow. For large query DSS and
batch workload, the disks can be used above 50 percent busy. The iostat

command should be used to investigate this issue.

• Disk channel is not a limiting factor. The disk channel is the PCI or MCA
bus, SCSI, FCAL or SSA adapters, cables, and SSA loops. Any of these
can become limiting factors especially when a lot of disks are attached on
the same channel. It is very hard to track if the channel is overworked and
to prove it is a limiting factor. The disks will appear to not be overworked,
but the CPU appears to be in I/O wait state. The nmon tool gives the
adapter busy and throughput statistics by adding up the statistics for all
the disks attached to the adapter.

11.6.5 Insufficient network resources
The general rule of thumb is to monitor network throughput and do not allow it
to be over 50 percent of the maximum throughput. Any collision detect

disk1
disk2

disk3
disk4

disk5
disk6

disk7
disk8

0

20

40

60

80

100

P
er

ce
nt

B
us

y

The RDBMS logs (if placed on a dedicated disk or set of disks) are an
exception to most of the rules above. Logs should not be spread across
disks, are often overworked, and, if necessary, should have dedicated
adapters and cables.

Note
254 Database Performance on AIX in DB2 UDB and Oracle Environments

protocol network suffers with throughput problems above this level of network
traffic.

11.6.6 Insufficient logical resource access
Within AIX and the RDBMS, access to logical resources is carefully controlled
to make sure that data is not corrupted. This control is implemented as locks,
latches, and semaphores. But whatever method is used, this restriction
means that many operations cannot be performed in parallel, and for
important resources, the tasks are serialized. This can have a large impact on
performance.

Unfortunately, this is extremely hard to detect from observing CPU, memory,
and disk activity. The system will seem to not be particularly busy, but the
performance will be low. Only internal examination of AIX or the RDBMS will
reveal the problem. AIX has trace facilities to allow this. DB2 UDB has the
snapshot facility to allow this to be investigated. Oracle has numerous
internal performance tables that can be used to monitor locks and latches. In
all three cases, you may need assistance from technical support to determine
the nature of the problem and provide a solution.

Fortunately, logical resource contention is one of the last places to investigate
for possible performance problems.

11.7 What can we tune?

It is easy to think the only items we can change is a few disks and the
database tuning parameters. But, there is quite a long list of things that can
be changed. For example:

• A little purchasing power - Performance tuning should always highlight
which component of the system should be considered for the next
upgrade. If this is relatively inexpensive (similar to a few days performance
tuning consultation), then it might be better to upgrade the machine
immediately rather than continue tuning. Also, it allows planning and
budgets to be prepared for longer term upgrades.

• Balancing the use of CPU, memory, and disk I/O - If one is overworked,
you might be able to use the others to compensate.

• Balancing the use of memory between AIX, user processes, RDBMS
processes, and the RDBMS shared memory.

• Balancing the various consumers of the RDBMS shared memory - For
example: buffer, library, locks.
Tuning an RDBMS system 255

• Tuning disks by balancing speed over reliability with options, such as RAID
5, striping, and mirrors.

• Changing data placement on the disks via the AIX LVM options centre,
middle, or edge.

• Removing hot spots by moving data between disks or hardware spreading
of data via stripes or RAID 5.

• Dedicating disks to particular tasks for maximum response time and
throughput. For example, the log disks.

• Ensuring equal use of disk and network I/O across adapters and that they
are not approaching their theoretical or practical limits.

• Balancing disk I/O against memory. One of the many benefits of using
memory is to reduce time-consuming disk I/O.

• Ensuring all CPUs of SMP machines are at work. Many performance
problems are caused by a single batch process not making use of all the
CPUs in the system.

• Maximizing backup rate to reduce the backup window or minimizing user
interference with online backups. These considerations might effect the
usage of disks and reserving disks for backup purposes.

• Balancing workloads. Many performance problems are simply poor
management of workloads, in particular, batch operations or online
requested reports. Sometimes users are willing to change their working
habits if they realize they can improve performance (and their job) by
making small changes to their work patterns.

• Identifying and fixing poor application modules and SQL statements.

The database can help you work out the worst offenders. Many DBAs
assume they cannot change the application code or SQL. This means they
never investigate the SQL nor try to get it improved. Having identified the
worst SQL example and the ones used repeatedly, these will yield the
largest performance improvements:

• If you know other sites that use the same application or SQL, then find
out if they have the same list of issues.

• Join the appropriate user groups.

• Start providing feedback to the vendor or your own development team
and start increasing the pressure for getting these problems fixed.

• Although many developers resist making individual changes to
application code, they do welcome real production feedback to improve
their products performance in the longer term and for future releases.
256 Database Performance on AIX in DB2 UDB and Oracle Environments

• Starting to think in parallel on SMP machines. Unless you can make use of
all the CPUs, you will be making use of a fraction of the available compute
power.

• Starting to turn your attention toward logical resources, such as lock, spin
counts, time-out, delay flags, and database latches, when the machine
looks idle but responds badly.

• Finally, tuning the database via the parameters and options.

11.7.1 Tuning window
If this is a real production machine, there is often a problem to find:

1. The opportunity to change parameters or move disk space or data around

2. The means to run tests to check performance

3. A way to create a reproducible workload

Possible tuning windows are:

• At night, which makes tuning not very desirable to those doing the work.

• Just once per day when the database is restarted (perhaps after a
backup), and you have to hope that you never make a mistake, therefore,
making the system unusable in the morning.

• Sometimes a copy can be made (on similar or smaller size machine). If it
has the same performance issues and architecture (for example, like an 8
way SMP), then this can be used to do a lot of tuning without effecting the
production machine.

• Ideally in the pre-production phase, testing time is allocated to allow full
scale, full speed testing, but time constraints and problems of user
emulation can make this impossible.

• Extra machines can be rented, loaned, or a test run within IBM at a
benchmark center, although this can be expensive in man-power terms.

11.8 Classic mistake list

These problems mostly arise due to people making simple statements but not
covering the exceptions, that performance options do not change when
hardware and software improves, and that their experience extends to all
known cases.

Be very careful you do not encourage the folklore, misunderstandings, or over
simplifications. The following lists the classic mistakes to avoid:
Tuning an RDBMS system 257

• Thinking file system based databases are as fast as raw devices.

• Thinking a RAID database is fast (it is inexpensive).

• Thinking RAID write performance will not be too bad or the database does
not do many writes to disk.

• Thinking that using a new, just released, feature is going to work and fix all
know performance issues first time with no testing.

• Misreading I/O wait CPU statistics and deciding a high value is a problem.

• Performing a seemingly simple test, not understanding the results, and
assuming something is wrong with the machine.

• Assuming the database defaults will be fine (especially the Oracle init.ora
parameters).

• Changing from a file system based database to raw devices and not
adjusting the RDBMS buffer cache/pool to use more memory.

• Using the tool you know rather than the right tool.

• Changing AIX parameters to try and fix a problem, not knowing if they
helped or not, and then forgetting to set them back to the safe default
values.

• Running more than one database on a machine and expecting the
machine to work out which is more important.

• Working out a transaction rate per second or minute, based on the number
of transactions for a year in total, and assuming a completely flat and even
work rate for five days a week and an even workload during the whole day.
This is especially not true for e-business.

• Basing a transaction rate on marketing estimates.
258 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 12. DB2 UDB tuning

For tuning a DB2 UDB database, there are some basic considerations to take,
which include the following topics:

• Operational performance considerations

• Environmental considerations

• Application considerations

• System catalog statistics

• SQL compiler

• SQL explain facility

• Using the DB2 UDB governor

• Scaling the configuration

This chapter focuses on operational and environmental factors only because
they can be changed during the life time of a database system and managed
by the database administrator.

12.1 Performance improvement process

The following process is recommended to improve the performance of any
system:

1. Establish performance indicators.

2. Define performance objectives.

3. Develop a performance monitoring plan.

4. Carry out the plan.

5. Analyze your measurements to determine whether you have met your
objectives. If you have, consider reducing the number of measurements
you make because performance monitoring itself uses system resources.
Otherwise, continue with the next step.

6. Determine the major constraints in the system.

7. Decide where you can afford to make trade-offs and which resources can
bear additional load. (Nearly all tuning involves trade-offs among system
resources and the various elements of performance.)

8. Adjust the configuration of your system. If you think that it is feasible to
change more than one tuning option, implement one at a time. If there are
© Copyright IBM Corp. 1999 259

no options left at any level, you have reached the limits of your resources
and need to upgrade your hardware.

9. Return to Step 4 above and continue to monitor your system.

Periodically, or after significant changes to your system or work load:

1. Return to Step 1 above.

2. Reexamine your objectives and indicators.

3. Refine your monitoring and tuning strategy.

12.2 General tuning elements

The following sections provide a short description of all tuning considerations
of a DB2 UDB RDBMS.

12.2.1 Operational performance considerations
These considerations are about how to improve the operational performance
by analyzing the performance indicators collected at run-time. The database
administrator is responsible for maintaining a stable and well tuned RDBMS in
order to achieve an excellent operational performance.

12.2.2 Environmental considerations
These considerations apply to database manager configuration parameters,
database configuration parameters, such as buffpage or sortheap, and DB2
registry variables of DB2 UDB, and may be tuned by the database or system
administrator.

12.2.3 Application considerations
A number of factors exist that can impact the runtime performance of an
application, such as concurrency, locking, or stored procedures. Application
developers have to pay attention to all these factors during application design
and development because they can not be changed without recompiling and
binding the program. However, if only the isolation level is changed, no
recompilation is needed. In this case, only a bind with the new isolation level
is required.

DB2 UDB provides many tools and commands that interface with the
control files and catalog tables, thus, providing an easy, fast, and valuable
monitoring information usually not well exploited on other RDBMSs.

Note
260 Database Performance on AIX in DB2 UDB and Oracle Environments

12.2.4 System catalog statistics
The database manager creates and maintains two sets of system catalog
views: SYSCAT and SYSSTAT. These system catalog views are created when
a database is created. The SYSCAT view is updated during normal operation
in response to SQL data definition statements, environment routines, and
certain utilities, such as RUNSTATS. Data in the system catalog views is
available through normal SQL query facilities. The SYSSTAT view contains
statistical information used by the optimizer. The optimizer uses these
statistics to estimate the costs of alternative access paths that could be used
to resolve a particular query. Some columns in the SYSSTAT views may be
changed to investigate the performance of hypothetical databases. After a
certain time or after a large number of rows were inserted or updated into a
database, it is recommended to issue the RUNSTATS command so that all
statistics will reflect the current, new state. The RUNSTATS command is a DB2
UDB command that updates statistics about the physical characteristics of a
table and the associated indexes. These characteristics include the number
of records, number of pages, and average record length. The optimizer uses
these statistics when determining access paths to the data. It is
recommended to call this command when a table has had many updates or
after reorganizing a table. See the IBM DB2 UDB Command Reference,
SC09-2844, for more details.

12.2.5 SQL compiler
The SQL compiler generates, during runtime of a dynamic SQL statement,
the access plan for this particular query. It performs several steps before
producing an access plan that can be executed. Information about access
plans for static SQL is stored in the system catalog tables. When the package
for a certain static SQL statement is executed, the database manager will use
the information stored in the system catalog tables to determine how to
access the data and provide results for the query. For more information on
how the SQL compiler generates the access plan see, Chapter 20 of the DB2
UDB Administration Guide.

12.2.6 SQL Explain facility
The SQL Explain facility is part of the SQL Compiler that can be used to
capture information about the environment in which the static or dynamic SQL
statement is compiled. The information captured allows the database
administrator to understand the structure and potential execution
performance of SQL statements. The Explain facility assists in designing
application programs, determines when an application should be rebound,
and assists in database design (see 10.1.1.5, “Explain” on page 208).
DB2 UDB tuning 261

12.2.7 Using the DB2 UDB governor
The governor monitors and changes the behavior of applications that run
against a database. The governor is a DB2 UDB process (daemon) that
collects statistics about the applications running against a database. It then
checks these statistics against the rules that the database administrator
specified in a governor configuration file that applies to that specific
database. The governor then acts according to these rules. It can change the
priority of a DB2 UDB process, or it can force an application that uses more
resources as defined in the governor configuration file. The database
administrator uses a front end utility to configure the governor. For more
information, refer to Chapter 8 of the IBM DB2 UDB Administration Guide:
Performance, SC09-2840.

12.2.8 Scaling the configuration
If a database system grows and reaches a configuration that does not satisfy
the business need anymore, further system resources may be added. Please
refer to 7.5, “System resource utilization” on page 131 for more information
about the system resource demands. Some facts must be taken into
consideration depending on the current database system. For example, the
current database system is a single-partition configuration with a single
processor (UP system). An exchange of the UP CPU planar through a SMP
CPU planar allows the database manager to take advantage of the new
processors by using the parallel implementations of DB2 UDB. However, to
allow the new functionality, some configuration parameters should be
reviewed and perhaps updated. These are:

• Enable intra-partition parallelism (intra_parallel)

• Default degree (dft_degree)

• Maximum query degree of parallelism (max_querydegree)

Many more options exist for upgrading an SMP system with a single database
partition to an SMP system with more CPUs and more database partitions.
For more information about scaling a database system, refer to Chapter 9 of
the IBM DB2 UDB Administration Guide: Performance, SC09-2840.

12.2.9 Memory usage by DB2 UDB
Many of the configuration parameters available in DB2 UDB affect memory
usage on the system. To better understand how DB2 UDB manages the
systems memory, the following figure shows how DB2 UDB uses memory for
the database manager shared memory, for database global memory, for
application global memory, for application private memory, and for
262 Database Performance on AIX in DB2 UDB and Oracle Environments

agent/application shared memory (see Chapter 23 of the DB2 UDB
Administration Guide).

Figure 40. Memory usage by DB2 UDB Database Manager

A database administrator should seek for balancing the overall memory
usage on the system. Different applications that run on the operating system

Database M anger Shared M em ory
(including FCM)

U tility Heap
(until_heap_sz)

Database Global Memory

Buffer Poo ls
(buffpage)Backup Buffer

(backbufsz)

R estore B uffer
(restbufsz)

P ackage C ache
(pckcachesz)

E xtended Mem ory C ache

Lock List (locklist)

U tility H eap
(until_heap_sz)

Log B uffer
(logbufsz)

C ataloge Cache
(catalogcache_sz)

Application Global Memory

(app_ctl_heap_sz)

Agent/Application
Shared M em ory

A pplication
H eap

(applheapsz)

A gent Stack
(agent_stack_sz)

D R DA H eap
(d rda_heap_sz)

Statistics H eap
(stat_heap_sz)

UD F Memory
(udf_m em_sz)

S ort Heap
(sortheap)

S tatement Heap
(stmtheap)

Clien t I/O Block (rqrioblk)Q uery Heap
(que ry_heap_sz)

Agent Private M emory

A pplica tion S upport
Layer Heap (aslheapsz)

Clien t I/O Block (rqriob lk)

User o r Application P rocess
(Local C lient)

U se r or A pplication Process
(Rem ote C lient)

N ote : Box size does not indicate rela tive size of mem ory .
DB2 UDB tuning 263

may use memory in different ways. For example, some applications may use
the file system cache, while the Database Manager uses its own buffer pool
for data caching instead of the operating system facility.

12.3 What can you change to make a difference?

After creating an instance and a database, all configuration parameters come
up with default values. Default values are implemented for systems with small
databases and a relatively small amount of memory. These default values are
not always sufficient for all installations. Different types of applications and
users have different response time requirements. An OLTP system needs
other tuning procedures than a DSS system. In an RDBMS environment,
there are many factors affecting the performance of the entire system. Most of
these parameters can be changed (configurable parameters), and some
cannot be changed (informational parameters). DB2 UDB has been designed
with a wide array of tuning and configuration parameters. These parameters
can be subdivided in two general categories:

• Database Manager parameters

• Database parameters

Each parameter has a different scope. To understand the scope of a
parameter allows the database administrator to estimate the potential impact
of changing the parameter. The different scopes are:

• Database instance (for example, dir_cache)

• Database (for example, util_heap)

• Application/Agent (for example, sortheap)

The impact on performance of these parameters are different. They are
categorized into four levels:

• High: This parameter can have a significant performance impact and
should be selected and changed very carefully.

• Medium: This parameter indicates that it has some impact on
performance.

• Low: This parameter has only a low impact.

• None: This parameter does not have to be observed because it does
not directly impact performance.

All configurable parameters can be viewed, changed, or reset by any of the
following methods:
264 Database Performance on AIX in DB2 UDB and Oracle Environments

• Using the DB2 UDB Control Center. This utility provides a comfortable
and easy-to-use interface for database administration. It is available on
the server itself but also on any supported client.

• Using the Command Line Processor (CLP). This is a non-GUI tool that
provides the capability of issuing all available DB2 UDB commands
from the AIX command line.

• Using the application programming interface (API) delivered with DB2
UDB.

12.4 What are the options?

This section shows the database manager, database, and environment
configuration parameters that have an important impact on database
performance.

12.4.1 Database manager configuration parameters
Database manager configuration parameters are related to the entire
instance and reside on both database servers and clients. However, only few
parameters are available on a client. They are subsets of database manager
configuration on the server. Most of them either affect the amount of system
resources that will be allocated, or they configure the setup of the database
manager and the different communication subsystems.

The database manager configuration parameters are stored in a file named
db2systm. It is created at the time of DB2 UDB instance creation and resides
in the $HOME/sqllib directory. This file cannot be changed directly. After
changing any of the database manager configuration parameters, the
database manager must be stopped and restarted to make the changes
available.

The following table shows the most important configurable database manager
parameters with high and medium impact of performance. For a complete list
of dbm parameters see Table 54 in Chapter 28, "Configuring DB2 UDB" of the
DB2 UDB Administration Guide.

Table 14. Database manager configuration parameters at a glance

Database Manager
parameter

Performance
Impact

Description

agentpri High Priority of agents given to all database processes

aslheapsz High Applications support layer heap size
DB2 UDB tuning 265

audit_buf_sz High Audit buffer size

dos_rqrioblk High DOS requester I/O block size for DOS and Win 3.1 clients

fcm_num_anchors High Number of FCM message anchors

fcm_num_buffers High Number of FCM buffers

fcm_num_connect High Number of FCM connection entries

fcm_num_rqb High Number of FCM request blocks

intra_parallel High Enable intra-partition parallelism

java_heap_sz High Maximum Java interpreter heap size

max_querydegree High Maximum query degree of parallelism

num_poolagents High Agent pool size

rqrioblk High Client I/O block size

sheapthres High Sort heap threshold

backbufsz Medium Default backup buffer size

comm_bandwidth Medium Communications bandwidth

conn_elapse Medium Connection elapse time

dft_monswitches Medium Default database system monitor switches

dir_cache Medium Directory cache support

discover Medium Discovery mode

federated Medium Federated database system support

indexrec Medium Index re-creation time

initdari_jvm Medium Initialize DARI process with JVM

keepdari Medium Keep DARI process indicator

maxagents Medium Maximum number of agents

maxcagents Medium Maximum number of concurrent agents

max_connretries Medium Node connection retries

max_coordagents Medium Maximum number of coordinating agents

Database Manager
parameter

Performance
Impact

Description
266 Database Performance on AIX in DB2 UDB and Oracle Environments

12.4.2 Database parameters
These parameters reside only on a database server and are individually
assigned to each database. The information is stored in the file SQLDBCON
located under the directory SQLnnnnn (nnnnn is a number assigned when the
database is created). It cannot be edited directly.

Updates to database configuration parameters do not take effect while
applications or users are connected to the database. After termination of all
applications and reconnection, the changes are available. If a database is in
active state, it must be deactivated, which can be achieved by executing the
DEACTIVATE DATABASE command or disconnecting all applications from the
database.

Table 15 on page 267 lists database configuration parameters with high and
medium performance impact. For the complete list of database parameters,
see Table 56 in Chapter 12, "Configuring DB2 UDB" of the IBM DB2 UDB
Administration Guide: Performance, SC09-2840.

Table 15. Database configuration parameters at a glance

maxdari Medium Maximum number of DARI processes

max_time_diff Medium Maximum time difference among nodes

maxtotfilop Medium Maximum total files open per application

min_priv_mem Medium Minimum committed private memory

num_initagents Medium num_initagents

num_initdaris Medium Initial number of fenced DARI processes in pool

priv_mem_thresh Medium Private memory threshold

query_heap_sz Medium Query heap size

restbufsz Medium Default restore buffer size

spm_log_path Medium Sync point manager log file path

Database parameter Performance
impact

Description

buffpage High Buffer pool size

avg_appls High Average number of active applications

Database Manager
parameter

Performance
Impact

Description
DB2 UDB tuning 267

chngpgs_thresh High Changed pages threshold for asynchronous page cleaners

dft_degree High Default degree for intra-partition parallelism

logbufsz High Log buffer size

mincommit High Number of commits to group

num_iocleaners High Number of asynchronous page cleaners

num_ioservers High Number of I/O servers

pckcachesz High Package cache size

seqdetect High Sequential detection flag

sortheap High Sort heap size

locklist High 1) Maximum storage for lock list

maxlocks High 1) Maximum percent of lock list before escalation

app_ctl_heap_sz Medium Application control heap size

applheapsz Medium Application heap size

audit_buf_sz Medium Audit buffer size

catalogcache_sz Medium Catalog cache size

dbheap Medium Database heap

dft_extent_sz Medium Default extent size of table spaces

dft_loadrec_ses Medium Default number of load recovery sessions

dft_prefetch_sz Medium Default prefetch size

dft_queryopt Medium Default query optimization class

discover_db Medium Discover database

dlchktime Medium Time interval for checking deadlock

estore_seg_sz Medium Extended storage memory segment size

indexrec Medium Index re-creation time

locktimeout Medium Lock timeout

logfilsiz Medium Size of log files

Database parameter Performance
impact

Description
268 Database Performance on AIX in DB2 UDB and Oracle Environments

12.4.3 DB2 UDB registry variables
Apart from the database manager and database configuration parameters,
DB2 UDB provides a set of environment variables that are stored in the DB2
UDB profile registry. The db2set command allows the database administrator
to display, set, or remove these profile variables. Some of these variables
affect the performance of a database system.

Table 16. DB2 UDB environment variables affecting performance

logprimary Medium Number of primary log files

logsecond Medium Number of secondary log files

maxappls Medium Maximum number of active applications

maxfilop Medium Maximum database files open per application

num_estore_segs Medium Number of extended storage memory segments

softmax Medium Recovery range and soft checkpoint interval

stmtheap Medium Statement heap size

Parameter Description

DB2_AVOID_PREFETCH Specifies whether or not prefetch should be used during crash
recovery

DB2_BINSORT Enables a new sort algorithm that reduces the CPU time and elapsed
time of sorts.

DB2CHKPTR Specifies whether or not pointer checking for input is required.

DB2_DARI_LOOKUP_ALL Specifies if DB2 UDB server will perform a catalog lookup for ALL
DARIs and stored procedures

DB2MEMDISCLAIM Changes the behavior of DB2 UDB how to disclaim some or all
memory

DB2MEMMAXFREE Specifies the amount of free memory that is retained by each DB2
UDB agent

DB2_MMAP_READ Allows DB2 UDB to use mmap as an alternate method of I/O

DB2_MMAP_WRITE Used in conjunction with db2_mmap_read to allow DB2 UDB to use
mmap as an alternate method of I/O

DB2_OVERRIDE_BPF Specifies the size of the buffer pool, in pages, to be created at
database activation, or first connection, time

Database parameter Performance
impact

Description
DB2 UDB tuning 269

12.5 Which options will make a large difference?

The previous tables show that many configurable database manager
parameters and database parameters exist, which effect the performance of a
database manager and the databases that run on it. The following topics
show the most important database manager configuration (dbm) and
database configuration (db) parameters. These are parameters that have a
large impact on performance and should, therefore, be tuned first.

12.5.1 Buffer pool size (buffpage)
The buffer pool is the area of memory where database pages (table rows or
indexes) are temporarily read and manipulated. All buffer pools reside in
global memory, which is available to all applications using the database. The
purpose of the buffer pool is to improve database performance. Data can be
accessed much faster from memory than from disk. Therefore, the more data
(rows and indexes) the database manager is able to read from or write to
memory, the better the database performance. One component of the
database manager is the Bufferpool Services (BPS). The BPS initializes the
segments for buffer pool and extended storage within the memory when the
first connection is made to a database or at the time the database is activated
through the db2 activate database database_name command. The BPS is
responsible for reading data and index pages from disk into memory and to
write pages from memory to disk. The BPS will use the File Storage Manager
or the Raw Storage Manager to get the pages depending on whether an SMS
tablespace or DMS tablespace is used. When an application accesses a row
of a table for the first time, the BPS places the page containing that row from
disk into the buffer pool. The next time an application requests data, the
buffer pool is checked first if the data is in this memory area. If the requested
data is found in the buffer pool, the BPS does not need to read the data from
disk. If the buffer pools are not large enough to keep the required data in
memory, the BPS has to read new data from disk. Avoiding data retrieval from
disk storage results in faster performance.

DB2PRIORITIES Controls the priorities of DB2 UDB processes and threads

DB2_RR_TO_RS Set the Repeatable Read isolation level to Read Stability

DB2_SORT_AFTER_TQ Specifies how the optimizer works with directed table queues in a
partitioned database

DB2_NO_PKG_LOCK Allows the Global SQL Cache to operate without the use of package
locks to protect cached package entries.

Parameter Description
270 Database Performance on AIX in DB2 UDB and Oracle Environments

There are two ways to place pages into the buffer pool and to write it back to
disk:

• Read/write operations done by a db2agent resulting in synchronous I/O
operations.

• Read operations performed by the I/O servers (prefetchers) and write
operations done by the page cleaners using asynchronous I/O.

If a db2agent needs data requested by a query, and it cannot find this data in
the buffer pool, it reads the pages from disk. This synchronous I/O consumes
time. To avoid this response time, DB2 UDB uses asynchronous I/O servers
to read data ahead into the buffer pool. This is done by the prefetcher. It is
recommended to configure at least one I/O server for each physical disk (see
also 12.5.3, “Number of asynchronous page cleaners (num_iocleaners)” on
page 274). For performance reasons, it is desirable to hit as many pages as
possible in the buffer pool. The buffer pool hit ratio indicates the percentage
of time that the database manager did not need to load a page from disk into
memory. The greater the buffer pool hit ratio, the lower the frequency of disk
I/O.

Each database has at least one buffer pool, IBMDEFAULTBP, which is
created when the database is created. You can create more than one buffer
pool and can assign each buffer pool to a certain tablespace. For example, it
is possible to assign a buffer pool to a tablespace that contains data of a large
table or to create a buffer pool for an index tablespace to hold all indexes in
memory.

Description:

The buffer pool size parameter for DB2 UDB on AIX has a default value of
1000 pages. The range of the buffpage parameter is from (2*maxappls) 524
to 288 pages. The maxappls parameter defines the maximum number of
active applications (see Table 15 on page 267). Related parameters are:

The configuration of one or more buffer pools is the single most important
tuning area since it is here that most of the data manipulations take place
for applications connected to the database. This is valid for regular data
only (except large objects and long field data).

Never leave this parameter on its default value.

Buffer pool performance should be tracked permanently.

Note
DB2 UDB tuning 271

• Database heap (dbheap)

• Number of asynchronous page cleaners (num_iocleaners)

• Changed pages threshold (chngpgs_thresh)

Please refer to step number 9 on page 273 for information on buffer pool page
sizes.

Recommendations:

1. The buffpage parameter controls the size of a buffer pool when the CREATE

BUFFERPOOL and ALTER BUFFERPOOL SQL statements were run with NPAGES
-1; otherwise, the buffpage parameter is ignored, and the buffer pool will
be created with the number of pages specified by the NPAGES parameter.
To determine whether the buffpage parameter is active, issue:
SELECT BPNAME, NPAGES from SYSCAT.BUFFERPOOLS

Each buffer pool that has an NPAGES value of -1 uses the buffpage
parameter.

2. Because the size of the buffer pool has a major impact on performance,
consider the following factors to avoid excessive paging:

• The amount of physical memory installed on the database server.

• The size of memory used by other applications running concurrently
with the database manager on the same machine.

3. In an OLTP environment, it is recommended to allocate as much as 75
percent of the system’s memory that is left after taking out the memory
required by the Operating system, applications running on the system, and
memory for communication to the buffer pools under the following
conditions:

• There are multiple users connected to the database.

• This system is used as a database server only.

• The applications access the same data and index pages repeatedly.

• There is only one database installed.

Other key OLTP parameters are mincommit, num_iocleaners, pckcacgesz,
and agentpri.

Instead of using the buffpage parameter, it is recommended to use the
CREATE BUFFERPOOL and ALTER BUFFERPOOL SQL statements to create and
change buffer pools and their sizes. This is helpful if more than one
buffer pool is installed on the system.

Important
272 Database Performance on AIX in DB2 UDB and Oracle Environments

4. Particularly in OLTP environments, where there is typically a repetitive
access to indexes, it is recommended to strive to have a buffer pool large
enough to keep all indexes in memory.

5. In a DSS environment, it is recommended to allocate up to 50 percent of
the left over memory to the buffer pool. More memory is required to the
database sort parameters for large queries.

6. The buffer pool hit ratio should reach 100 percent. This can be monitored
by DB2 UDB monitor utility.

7. For every buffer pool page allocated, some space is used in the database
heap for internal control structures. This means, if you increase the
buffpage size parameter, increase the dbheap parameter also. Each page
in the buffer pool has a descriptor. This descriptor is an internal structure
of about 140 bytes for each page in the buffer pool. For every 30 buffer
pool pages, there is an additional one page overhead in the dbheap size.

8. The size of buffer pool is used by the optimizer in order to determine
access plans. Therefore, after changing the value of this parameter, you
have to rebind your applications. When selecting the access plan, the
optimizer considers the I/O cost of fetching pages from disk to the buffer
pool. In this calculation, the optimizer will estimate the number of I/Os
required to satisfy a query. This estimate includes a prediction of buffer
pool usage since additional physical I/Os are not required to read rows in
a page that are already in the buffer pool. The I/O cost of reading the
tables can have an impact on:

• How two tables are joined.

• Whether an unclustered index will be used to read the data.

9. The page size of a bufferpool can be 4 KB, 8 KB, 16 KB, or 32 KB. The
page size of the bufferpool must match the page size of the tablespaces
that are associated with it.

12.5.2 Number of I/O servers (num_ioservers)
DB2 UDB can activate prefetchers that read data and index pages into the
buffer pool anticipating their need by an application (asynchronously).
Prefetchers are also used by utilities, such as backup, restore, and load for
asynchronous I/O. In most situations, these pages are read just before they
are needed. To enable prefetching, the database manager starts separate
threads of control, known as I/O servers, to perform page reading. As a
result, the query processing is divided into two parallel activities: Data
processing (CPU) and data page I/O. The I/O servers wait for prefetch
requests from the CPU processing activity.
DB2 UDB tuning 273

The database parameter num_ioservers specifies the number of I/O servers
for a database. No more than this number of I/Os for prefetching and utilities
can be in progress at any time.

Description:

The default value of num_ioservres is 3, and the range is from 1 to 255.
Related parameters are:

• Default prefetch size (dft_prefetch_sz)

• Sequential detection flag (seqdetect)

Recommendations:

Because one I/O server can serve only one I/O device (disk), it is
recommended to configure one or two more num_ioservers than the number
of physical devices on which the tablespace containers reside. It is better to
use additional I/O servers since there is a minimal overhead associated with
each.

12.5.3 Number of asynchronous page cleaners (num_iocleaners)
Page cleaners are DB2 UDB processes that monitor the buffer pool and
asynchronously write pages to disk before the space in the buffer pool is
required by another database agent. This means that the agents will not wait
for changed pages to be written out before being able to read a page. Pages
that are changed by an UPDATE statement must be written to disk to store
them permanently. These pages are called dirty pages. After the dirty pages
are written to disk, they are not removed from the buffer pool unless the
space they occupy is needed for other pages. Page cleaners ensure that
db2agents will always find free pages in the buffer pool. If an agent does not
find free pages in the buffer pool, it must clean them itself, and the associated
application will have a poorer performance. Another purpose of page
cleaners is to speed the database recovery if a system crash occurs. The
more pages that have been written to disk, the smaller the number of log file
records that must be processed to recover the database.

Description:

The default value for num_iocleaners is 1; the range is from 0 to 255.

Related parameters are:

• Buffer pool size (buffpage)

• Changed page threshold (chngpgs_thresh)
274 Database Performance on AIX in DB2 UDB and Oracle Environments

Recommendations:

If this parameter is set to 0, no page cleaners are started, and, as a result,
the database agents will perform all of the page writes from the buffer pool to
disk. This parameter can have a significant performance impact on a
database stored across many physical storage devices since, in this case,
there is a greater chance that one of the devices will be idle. If no page
cleaners are configured, your applications may encounter periodic log full
conditions. If the applications for a database primarily consist of transactions
that update data, an increase in the number of cleaners will speed up
performance.

In an OLTP environment, where many transactions are run against the
database, it is recommended to set the value of this parameter to between
one and the number of physical storage devices used for the database.
Environments with high update transaction rates may require more page
cleaners to be configured. This is valid also for database systems with large
buffer pools.

In a DSS environment, that will not have updates, it is usual to set this
parameter to 0. The exception would be if the query workload results in many
TEMP tables being created. This can be determined by using the Explain
utility. In this case, it is recommended to set the number of I/O cleaners to the
number of disks that assigned to the TEMP tablespace.

You can use the command get snapshot for bufferpools on database_name to
monitor the write activity information from the bufferpools in order to
determine if the number of page cleaners must be increased or decreased.
You should reduce the number of page cleaners if both of the following
conditions are true:

• The number of buffer pool data writes is approximately equal to the
number of asynchronous pool data page writes.

• The number of buffer pool index writes is approximately equal to the
number of asynchronous pool index page writes.

However, you should increase the number of num_iocleaners parameter if
either of the following conditions are true:

• The number of buffer pool data writes is much greater than the number of
asynchronous pool data page writes.

• The number of buffer pool index writes is much greater than the number of
asynchronous pool index page writes.
DB2 UDB tuning 275

12.5.4 Changed pages threshold (chngpgs_thresh)
This parameter can be used to specify the level (percentage) of changed
pages at which the asynchronous page cleaners will be started if they are not
currently active. When the page cleaners are started, they will build a list of
the pages to write to disk. Once they have completed writing those pages to
disk, they will become inactive again and wait for the next trigger to start.
Therefore, this parameter is connected to the num_iocleaners parameter.

Description:

The default value is 60 percent, and the range is from five percent to 99
percent of dirty pages to be written. Related parameters are:

• Number of asynchronous page cleaners (num_iocleaners)

Recommendations:

In an OLTP environment, you should generally ensure that there are enough
clean pages in the buffer pool by setting the chngpgs_thresh value to be
equal to or less than the default value. A percentage larger than the default
can help performance if the database has a small number of very large
tables.

In an DSS environment, these page cleaners are not used.

12.5.5 Sort heap size (sortheap)
The sortheap is a database configuration parameter. It is the amount of
private memory allocated to each process connected to a database at the
time of the sort. The memory is allocated only at the time of sort and
deallocated after sorting has been finished. It is possible for a single
application to have concurrent sorts active. For example, in some cases, a
SELECT statement with a subquery can cause concurrent sorts. The larger
the table to be sorted, the higher the value should be for this parameter. If the
value is too large, then the system can force to page if memory becomes
overcommitted.

Description

The default value is 256 pages, and the range is 16 pages to 524 288 pages.
A related parameter is:

• Sort heap threshold (sheapthres)

Recommendations:
276 Database Performance on AIX in DB2 UDB and Oracle Environments

If the memory for sorts is too small, the database manager will create
temporary sort tables, possibly on disk. This reduces the performance. The
use of sort heap can be minimized by the appropriate defined indexes. It is
recommended to increase the size of sortheap when frequent large sorts are
required. This can be monitored with the Explain utility.

The memory for sortheap is allocated from the same agent private memory
heap as the application heap, statement heap, and statistic heap.

Because the optimizer uses this parameter when determining whether or not
to pipe a sort, it is necessary to rebind the application when the value is
changed.

This is one of the most important areas to be tuned since a sort operation
done in real memory can significantly improve performance. It is
recommended that the remaining real memory that is not allocated to the AIX,
applications, and other DB2 UDB memory structures, is allocated to the sort
operations.

If there are more data to be sorted than memory space, merge phases will be
required in order to finish the sort operation. A possible way to avoid this is to
increase the sortheap parameter.

The get snapshot for database database_name command will provide two
indicators that can be used for tuning the sortheap parameter:

• total sort time
• total sorts

It is recommended that you keep on increasing the sortheap parameter as
long as both of the following conditions are true:

• You have real memory available.
• The result value of the equation total sort time/total sorts is decreasing.

12.5.6 Sort heap threshold (sheapthres)
This is a database manager configuration parameter. DB2 UDB uses this
parameter to control the sum of all sortheap allocations of all applications in
the instance. Therefore, this parameter impacts the total amount of memory
that can be allocated across the database manager instance for sortheap.

The sheapthres parameter is used differently for private and shared sorts.

• For private sorts, this parameter is an instance-wide soft limit on the total
amount of memory that can be consumed by private sorts at any given
time. When the total private-sort memory consumption for an instance
DB2 UDB tuning 277

reaches this limit, the memory allocated for additional incoming
private-sort requests will be considerably reduced.

• For shared sorts, this parameter is a database-wide hard limit on the total
amount of memory consumed by shared sorts at any given time. When
this limit is reached, no further shared-sort memory requests will be
allowed (until the total shared-sort memory consumption falls below the
limit specified by sheapthres).

Description

The default value is 20,000 pages, and the range is from 250 to 2,097,152
pages.

A related parameter is:

• Sort heap size (sortheap)

Recommendations:

Explicit definition of the threshold prevents the database manager from using
excessive amounts of memory for large numbers of sorts. It is recommended
to set this value to a reasonable multiple of the largest sortheap parameter
defined in the database manager instance. This parameter should be at least
two times of the largest sortheap value for any database within the instance.

It is important to be aware that, when using DB2 UDB V5.2, and when the
database manager parameter intra_parallel is enabled, the sheapthres does
not simply work as a limiting number anymore, but the amount of space
defined for this parameter is automatically allocated from memory.

12.5.7 Statement heap size (stmtheap)
The statement heap size is a database configuration parameter that specifies
the size of workspace used for the SQL compiler during the compilation of an
SQL statement. For dynamic SQL statements, this memory area will be used
during execution of the application. For static SQL statements, it is used
during the bind process. The memory will be allocated and released for every
SQL statement only.

Description

The default value is 2,048 pages, and the range is from 128 to 60,000 pages.

Recommendations:
278 Database Performance on AIX in DB2 UDB and Oracle Environments

For most cases, the default value can be used. If an application has very
large SQL statements, and DB2 UDB reports an error when it attempts to
compile a statement, then the value of this parameter has to be increased.
The error messages issued are:

•SQL0101N The statement is too long
•SQL0437W Performance of this complex query may be sup-optimal. Reason
code 1.

These messages are sent to the applications that run the queries and are
also logged in the DB2 UDB error log file called db2diag.log.

12.5.8 Package cache size (pckcachesz)
This database configuration parameter is used to define the amount of
memory for caching static and dynamic SQL statements. Caching packages
allows the database manager to reduce its internal overhead by eliminating
the need to access the system catalogs when reloading a package or, in the
case of dynamic SQL, eliminating the need for compiling a query twice. For
example, if two users run the same application with the same query, the
access strategy for this query can be used by both users as long as the
compilation environment for both users and the application is the same. The
compilation environment includes isolation levels, query optimization level,
blocking, and application code page.

The package cache is available until the application terminates, or the cache
runs out of space.

Description:

The default value is -1, which means the value used to calculate the page
allocation is eight times the value specified for the maxappls configuration
parameter. The range is from 32 to 64,000 pages.

Recommendations:

The package cache is important in an OLTP environment where the same
query is used multiple times by multiple users within an application. To tune
this parameter, it is helpful to monitor the package cache hit ratio. This value
shows if the package cache is used effectively. If the hit ratio is large (> 90
percent), the package cache is performing well.

The package cache hit ratio can be obtained by the following formula:

(1 - (package cache inserts / package cache lookups)) * 100 percent
DB2 UDB tuning 279

These indicators can be retrieved by the get snapshot for database on

database_name command.

12.5.9 Database heap size (dbheap)
Each database has one memory area called a database heap. It contains
control block information for tables, indexes, table spaces, and buffer pools. It
also contains space for the event monitor buffers, the log buffer (logbufsz),
and the catalog cache (catalogcache_sz). The memory will be allocated when
the first application connects to the database and keeps all control block
information until all applications are disconnected.

Description

The database heap size configuration parameter has a default value of 1,200
pages, and the range is from 32 to 60,000 pages. Related parameters are:

• Catalog cache size (catalogcache_sz)

• Log buffer size (logbufsz)

Recommendations:

Each page in the buffer pool has a descriptor of about 140 bytes. For every 30
buffer pool pages, an additional page for overhead is needed in the database
heap. For databases with a large amount of buffer pool, it is necessary to
increase the database heap appropriately.

12.5.10 Catalog cache size (catalogcache_sz)
The catalog cache is part of the database heap. It is used to store table
descriptor information that is used when a table, view, or alias is referenced
during the compilation of an SQL statement. When a transaction references a
table, it causes an insert of a table descriptor into this cache so that
subsequent transactions referencing that same table can use that descriptor
and avoiding reading from disk.

Running any DDL statements against a table will purge that table's entry in
the catalog cache. Otherwise, a table entry is kept in the cache until space is
needed for a different table, but it will not be removed from the cache until any
units of work referencing that table have completed.

Description
280 Database Performance on AIX in DB2 UDB and Oracle Environments

The catalog cache size parameter indicates the amount of memory used for
the catalog cache. The default value is 64, and the range is from 1 to the size
of database heap. Related parameters are:

• Database heap size (dbheap)

• Log buffer size (logbufsz)

Recommendations:

The default value is appropriate for most database environments. More cache
space is required if a unit of work contains several dynamic SQL statements
or if a package is bound to the database that contains a lot of static SQL
statements. For OLTP databases with a large amount of tables and views, it is
necessary to improve this value by tuning it using small increments. If the
catalog cache hit ratio observed by DB2 UDB monitor utility is less than 80
percent, it is recommended to increase the value also.

12.5.11 Log buffer size (logbufsz)
This database configuration parameter specifies the amount of the database
heap to use as a buffer for log records before writing these records to disk.
The log records are written to disk when one of the following occurs:

• A transaction commits, or a group of transactions commit, as defined by
the mincommit configuration parameter.

• The log buffer is full.

• As a result of some other internal database manager event.

Buffering the log records will result in more efficient logging file I/O because
the log records will be written to disk less frequently, and more log records
will be written at each time.

Description

The default value for this parameter is eight pages, and the range is from four
pages to 512 pages. Related parameters are:

• Catalog cache size (catalogcache_sz)

• Database heap (dbheap)

• Number of commits to group (mincommit)

Recommendations:

It is recommended to increase the value of log buffer size if there is a high
disk utilization on the dedicated disks for log files.
DB2 UDB tuning 281

12.5.11.1 Maximum number of active applications (maxappls)
This database parameter specifies the maximum number of concurrent
applications that can be connected (both local and remote) to a database.
Since each application that attaches to a database causes some private
memory to be allocated, allowing a larger number of concurrent applications
will potentially use more memory.

Description:

The default value for this parameter is 40 active applications, and the range is
from 1 to 64,000 active applications. Related parameters are:

• Maximum number of agents (maxagents)

• Maximum number of coordinating agents (max_coordagents)

• Maximum percent of lock list before escalation (maxlocks)

• Maximum storage for lock list (locklist)

• Average number of active applications (avg_appls)

Recommendations:

Increasing the value of this parameter without decreasing the maxlocks
parameter or increasing the locklist parameter can cause that the database’s
limit on locks to be reached more frequently, thus, resulting in many lock
escalation problems.

12.5.12 Maximum number of agents (maxagents)
This parameter indicates the maximum number of database manager agents
(db2agent) available at any given time to accept application requests.There
are two types of connections possible that require the use of DB2 UDB
agents. Local connected applications require db2agents within the database
manager instance as well applications running on remote clients. The
maxagents parameter value must be at least equal to the sum of both values.
This parameter is useful in memory constrained environments to limit the total
memory usage of the database manager because each additional agent
requires additional memory.

Description

The default value for maxagents is 200 agents, and the range is one to
64,000 agents.

Related parameters are:
282 Database Performance on AIX in DB2 UDB and Oracle Environments

• Maximum number of active applications (maxappls)

• Maximum number of concurrent agents (maxcagents)

• Maximum number of coordinating agents (max_coordagents)

• Maximum number of DARI processes (maxdari)

• Minimum committed private memory (min_priv_mem)

• Agent pool size (num_poolagents)

Recommendations:

The value of maxagents should be at least the sum of the values for
maxappls in each database allowed to be accessed concurrently.

12.5.13 Maximum storage for lock list (locklist)
This parameter indicates the amount of storage that is allocated to the lock
list. There is one lock list per database, and it contains the locks held by all
applications concurrently connected to the database. Locking is required to
ensure data integrity; however, too much locking reduces concurrency. Both
rows and tables can be locked. Each lock requires 32 or 64 bytes of the lock
list depending on whether other locks are held on the object:

• 64 bytes are required to hold a lock on an object that has no other locks
held on it.

• 32 bytes are required to record a lock on an object that has an existing
lock held on it.

If the memory assigned for this parameter becomes full, the database
manager performs lock escalation. Lock escalation is the process of replacing
row locks with table locks, thus, reducing the number of locks in the list. DB2
UDB selects the transaction using the largest amount of the locklist and
changes the record locks on the same table to a table lock. Therefore, one
lock (table lock) replaces many locks (record locks) of a table. This reduces
the concurrency and, therefore, the performance. For example, two
applications, A and B, select and update rows on a certain table. The lock
manager manages the data access on row level. If the database manager has
to change the locks for application A from row locking to table locking, the
other application, B has to wait until application A releases the lock on that
entire table. This can lead to hang situations from a user’s point of view.

Description

The default value for this parameter is 100 pages, and the range is from four
pages to 60,000 pages. Related parameters are:
DB2 UDB tuning 283

• Maximum percent of lock list before escalation (maxlocks)

• Maximum number of active applications (maxappls)

Recommendations:

If lock escalations are causing performance or hang problems, it is
recommended to increase the value of this parameter. Additional
considerations that affect application design are:

• It is helpful to perform frequent COMMIT statements to release locks.

• When an application performs many updates, it is recommended to lock
the entire table (using the SQL LOCK TABLE statement) before updating.
This will use only one lock, keeps other applications from interfering with
the updates, but does reduce concurrency of the data.

• The use of Cursor Stability isolation level decreases the number of share
locks held. If application integrity requirements are not compromised, it is
recommended to use Uncommitted Read instead of Cursor Stability to
further decrease the amount of locking.

If many lock escalations are performed by the database manager, deadlocks
between applications can occur, which will result in transactions being rolled
back. Please refer to Appendix B.1.16, “Display the number of deadlocks and
lock escalations” on page 373 for more information about monitoring
deadlocks and lock escalations.

12.5.14 Maximum percent of lock list before escalation (maxlocks)
This parameter defines a percentage of the lock list held by an application
that must be filled before the database manager performs escalation. When
the number of locks held by any one application reaches this percentage of
the total lock list size, lock escalation will occur for the locks held by that
application.The database manager determines which locks to escalate by
looking through the lock list for the application and finding the table with the
most row locks. If after replacing these with a single table lock, the maxlocks
value is no longer exceeded, lock escalation will stop. If not, it will continue
until the percentage of the lock list held is below the value of maxlocks. The
maxlocks parameter multiplied by the maxappls parameter cannot be less
than 100.

Description

The default value for this parameter is 10 percent, and the range is from one
percent to 100 percent.
284 Database Performance on AIX in DB2 UDB and Oracle Environments

Related parameters are:

• Maximum storage for lock list (locklist)

• Maximum number of active applications (maxappls)

Recommendations:

When setting maxlocks, the following formula helps to calculate the size of
the lock list:

maxlocks = 100 * (512 locks per application * 32 bytes per lock * 2) / (locklist
* 4096 bytes)

This sample formula allows any application to hold twice the average number
of locks. You can increase maxlocks if few applications run concurrently since
there will not be a lot of contention for the lock list space in this situation.

12.5.15 Maximum query degree of parallelism (max_querydegree)
This database manager parameter specifies the maximum degree of
intra-partition parallelism that is used for any SQL statement executing on this
instance of the database manager. An SQL statement will not use more than
this number of parallel operations within a partition when the statement is
executed. The intra_parallel configuration parameter must be set to YES to
enable the database partition to use intra-partition parallelism.

Description

The default value is -1, which means any value, and that the database system
(optimizer) determines the value of this option. The range is from one to
32,767 as value for degree.

Related parameters are:

• Default degree (dft_degree)

• Enable intra-partition parallelism (intra_parallel)

Recommendations:

This parameter can be used to change the degree of parallelism for an SQL
statement that was specified at statement compilation time using the CURRENT

DEGREE special register or specified with the DEGREE bind option. It is useful on
an SMP database system only and should not exceed the number of CPUs of
this system. Please refer to the DB2 UDB Administration Guide: Performance
V6, which contains detailed information on query parallelism.
DB2 UDB tuning 285

12.5.16 DB2MEMDISCLAIM and DB2MEMMAXFREE
Depending on the workload being executed and the pool agents
configuration, it is possible to run into a situation where the committed
memory for each DB2 UDB agent will stay above 32 MB even when the agent
is idle. This behavior is expected and usually results in good performance, as
the memory is available for fast reuse. However, on a memory constrained
system, this may not be a desirable side effect. The db2set command
db2set DB2MEMDISCLAIM = yes

avoids this condition. This variable tells the AIX operating system to stop
paging the area of memory so that it no longer occupies any real storage.
This variable tells DB2 UDB to disclaim some or all memory once freed
depending on DB2MEMMAXFREE. This ensures that the memory is made
readily available for other processes as soon as it is freed.
DB2MEMMAXFREE specifies the amount of free memory that is retained by
each DB2 UDB agent. It is recommended to set this value to 8 MB by using:
db2set DB2MEMMAXFREE = 8000000

12.5.17 DB2_PARALLEL_IO
This registry variable can be used to force parallel I/O for a tablespace that
has a single container. When reading data from, or writing data to, tablespace
containers, the database manager may use parallel I/O if the number of
containers in the database is greater than 1. However, there are situations
when it would be beneficial to have parallel I/O enabled for single container
tablespaces. For example, if the container is created on a single RAID device
that is composed of more than one physical disk, you may want to issue
parallel read and write calls. The DB2_PARALLEL_IO variable can be set to
one specific tablespace or to all tablespaces of that instance. For example, to
enable parallel I/O for tablespace USERSPACE1 with tablespace ID 2, the
command is:
db2set DB2_PARALLEL_IO= 2

12.5.18 DB2_STRIPED_CONTAINERS
When creating a DMS tablespace container (device or file), a one-page tag is
stored at the beginning of the container. The remaining pages are available
for data storage by DB2 UDB and are grouped into extent-sized blocks. When
using RAID devices for tablespace containers, it is suggested that the
tablespace is created with an extent size that is equal to, or a multiple of, the
RAID stripe size. However, because of the one page container tag, the
extents will not line up with the RAID stripes, and it may be necessary during
an I/O request to access more physical disks than would be optimal. DMS
table space containers can now be created in such a way that the tag exists in
its own (full) extent. This avoids the problem described above, but it requires
286 Database Performance on AIX in DB2 UDB and Oracle Environments

an extra extent of overhead within the container. To create containers in this
fashion, set the DB2 UDB registry variable DB2_STRIPED_CONTAINERS to
ON by issuing:
db2set DB2_STRIPED_CONTAINERS=ON

Any DMS container that is created will have new containers with tags taking
up a full extent. Existing containers will remain unchanged.

12.5.18.1 Tablespace page size
Since Version 5.2, DB2 UDB provides the possibility to expand the page size
of tablespaces from default 4 KB to 8 KB. Version 6.1 supports 16 KB or 32
KB. This allows larger tables and larger row lengths. For example, a table
created in a tablespace with a page size of 32 KB can reach a maximum size
of 512 GB.

A bufferpool using the same page size must be assigned to each tablespace.
For instance, if you have tablespaces with 4 KB, 8 KB, and 16 KB page sizes
within a database, the database must have at least three bufferpools that also
use a page size of 4 KB, 8 KB, and 16 KB.

A tablespace page size larger than 4 KB is advantageous for tables with large
data rows. However, it is important to be aware that on a single data page
there will never exist more than 255 rows of data, regardless of the page size.

12.5.19 Reorganizing tables
The performance of SQL statements that use indexes can be impaired after
many updates, deletes, or inserts have been made. Newly inserted rows can
often not be placed in a physical sequence that is the same as the logical
sequence defined by the index (unless you use clustered indexes). This
means that the Database Manager must perform additional read operations
to access the data because logically sequential data may be on different
physical data pages that are not sequential. The DB2 UDB REORG command
performs a reorganization of a table by reconstructing the rows to eliminate
fragmented data and by compacting information.

REORGCHK
Because the REORG utility needs a lot of time for reorganizing a table, it is
useful to run the REORGCHK command before running the REORG command. The
REORGCHK utility calculates statistics on the database to determine if tables
need to be reorganized or not. Please refer to 7.7.1, “DB2 UDB
reorganization method” on page 138 for more information about reorganizing
the tables.
DB2 UDB tuning 287

12.6 Simulating through SYSSTAT views

The DB2 UDB optimizer is responsible for estimating and generating an
optimal access plan for any SQL query statement. To achieve an access plan
it uses statistics of the database system. When optimizing SQL queries, the
decisions made by the SQL compiler are heavily influenced by the optimizer's
model of the database contents. This data model is used by the optimizer to
estimate the costs of alternative access paths that could be used to resolve a
particular query.

A key element in the data model is the set of statistics gathered about the
data contained in the database and stored in the system catalog tables. This
includes statistics for tables, nicknames, indexes, columns, and user-defined
functions (UDFs). A change in the data statistics can result in a change in the
choice of access plan selected as the most efficient method of accessing the
desired data.

Examples of the statistics available that help define the data model to the
optimizer include:

• The number of pages in a table and the number of pages that are not
empty.

• The degree to which rows have been moved from their original page to
other (overflow) pages.

• The number of rows in a table.

• The number of distinct values in a column.

• The degree of clustering of an index, that is, the extent to which the
physical sequence of rows in a table follows an index.

• The number of index levels and the number of leaf pages in each index.

• The number of occurrences of frequently used column values.

• The distribution of column values across the range of values present in the
column.

• Cost estimates for user-defined functions (UDFs).

Statistics for objects are updated in the system catalog tables only when
explicitly requested. Some, or all, of the statistics may be updated by:

• Using the RUNSTATS utility (see 12.2.4, “System catalog statistics” on
page 261)

• Using LOAD with statistics collection options specified
288 Database Performance on AIX in DB2 UDB and Oracle Environments

• Coding SQL UPDATE statements that operate against a set of predefined
catalog views

With SYSSTAT, the database administrator is able to simulate a non-existent
database or to clone an existent database into a test database. To do this,
they can create a new database on a test system and then change the
contents of the SYSSTAT tables with SQL UPDATE statements in order to
achieve that the optimizer creates different access plans under different
conditions. With the Explain utility, the database administrator can see which
access plan the optimizer uses and which cost the optimizer estimates for a
given SQL statement.

For example, to simulate the selection of rows from two large tables that do
not really exist in this size, using the database described in Appendix D, the
administrator first substitutes the entry for the CARD column in the
SYSSTAT.TABLES with a large value.The DBA then changes the cardinality of
table CUSTOMER from the current value to a fictitious value of 850,000 rows
and for table ORDERS to a value of 5,000,000 rows with:

UPDATE SYSSTAT.TABLES SET CARD = 850000 WHERE TABNAME = ’CUSTOMER’

UPDATE SYSSTAT.TABLES SET CARD = 5000000 WHERE TABNAME = ’ORDERS’.

After that update, the administrator starts the SQL query and monitors its
execution with the Explain tool. They can see how the optimizer changes the
access plan and estimate the query cost. With this method, the administrator
can estimate how an increasing amount of data affects the performance of
that given query. The administrator can also clone their production database
to a test database and can simulate different performance strategies. The
DB2 UDB tool, db2look, is designed to capture all table DDLs and statistics of
the production database to replicate it to the test system.

The SYSSTAT views should only be updated manually for modeling a
production environment on a test system or for what-if analysis. Statistics
should not be updated on production systems.

Note
DB2 UDB tuning 289

290 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 13. Oracle tuning

In this chapter, we cover the important items to make your Oracle database
run well on the AIX platform. These tuning details are AIX specific, and we do
not recommend using them on other platforms.

You can read this chapter in two ways:

• If you start from the top and read your way though, then you will follow the
structured fine tuning approach discussed in 11.4, “Formal fine tuning
method” on page 232.

• The alternative is jumping straight into the tuning hints and tips that start
in 13.6, “Evaluate the top 10 Oracle parameters” on page 303 and then
browse the details for particular issues you want to study further.

Tuning Oracle is a constant task. We have selected the top high-win
performance issues and AIX specific issues to be included here. You will, no
doubt, have your favorite hints, and your feedback would be welcome for the
next revision of this redbook.

13.1 What can you change to make a difference?

There are several levels that need addressing in order to tune the Oracle
RDBMS:

1. RS/6000 hardware design

This is covered in Chapter 7, “Designing a system for an RDBMS” on page
121 and Chapter 8, “Designing a disk subsystem” on page 149.

2. AIX tuning parameters

3. Application design

Not covered in this book (see comment below).

4. Use of SQL

Not covered in this book (see comment below).

5. Disk configuration

6. Logical volume parameters

7. Oracle instance parameters in the init.ora file

8. Oracle dynamic tables
© Copyright IBM Corp. 1999 291

Note: Items 3 and 4 are not the prime focus of this book. This chapter will
cover the other items and how to tune them for maximum Oracle performance
with AIX.

13.2 Oracle tuning order

The Oracle Server Tuning manual recommends the following order for tuning:

1. Install and configuring Oracle

2. Application Design

3. Data Access Method (SQL and indexes)

4. Memory Allocation

5. Disk I/O

6. CPU usage

7. Resource Contention

After each item from number 3 and onwards, it is recommended that, if a
change is made, the tuning starts again from the top. For example, if a
change is made to the disk I/O, then the data access methods and memory
allocation need to be re-checked. This is shown in a diagram form in Figure
41.

Figure 41. Oracle tuning sequence

Note: Application design and SQL tuning fall outside the scope of this book.

Access
Method

Database
Design

Implement

Tune
Memory

Application
Design

Tune Disk

Tune CPU

Tune
Contention
292 Database Performance on AIX in DB2 UDB and Oracle Environments

This is clearly a database-centric view of a system. We recommend the same
tuning order, but highlight:

• That once the memory is adjusted, it will effect the disk I/O performance
enormously.

• The disk I/O is the main area that has a lot of options and opportunities for
tuning.

• The CPU usage can be measured, but there is not much that can be done
to tune it apart from tuning other resources to avoid using the CPU.

• Tuning contention is really tuning Oracle internals and requires detailed
understandings of the Oracle structure and algorithms.

If we remove the two design phases and add in the change all at once
approach, which attempts to fix the major performance issues in one step, the
tuning approach is that which is shown in Figure 42.

Figure 42. Change all at once plus practice tuning sequence

This practical sequence involves a number of stages:

• The first thing to do is gather all the information possible to build a picture
of the machine and how it is behaving.

• Document the Oracle parameters.
Use the DBA tools to output the Oracle parameters currently in use. This
can be done in a number of ways:

Try to get
SQL
fixed

Gather
Information

Implement

Tune
Memory

Tune top
ten items

Tune Disk

Tune CPU

Tune
Contention

Access
Method

Check for
mistakes
Oracle tuning 293

• Using svrmgr and the show parameters command. Note: it is best to save
the output to a file with the spool <filename> command and then check
the details from the file. For example:

oracle@/u01> svrmgr

Oracle Server Manager Release 3.1.5.0.0 - Production

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production

SVRMGR> connect internal

Connected.

SVRMGR> spool para.txt

SVRMGR> show parameters

...

SVRMGR> spool off

The output will be written to the para.txt file in the current directory.

• The other option is running the following SQL statements from
SQLPLUS:

• SQL> spool para.txt

SQL> select name, value

from v$parameter where isdefault = 'FALSE'

order by name;

SQL> spool off

• Check the Oracle alert logs. These are found in the
$ORACLE_HOME/rdbms/log.

See Chapter 10, “Monitoring an RDBMS system for performance” on
page 203 for more information. Oracle has a set of tools to aid in
analyzing details. See 10.1.2, “Oracle monitoring tools” on page 215 for
more information.

• Next, check for the obvious mistakes that ruin performance. See 13.4,
“Check the most common Oracle mistakes” on page 299 for more
information. Also, see 13.3, “Check the most common AIX configuration
mistakes” on page 295 the for more information.

• The top ten Oracle parameters are checked next, as these need to be right
before further tuning is possible. See 13.6, “Evaluate the top 10 Oracle
parameters” on page 303 and 13.7, “Other key Oracle parameters” on
page 310 for more information
294 Database Performance on AIX in DB2 UDB and Oracle Environments

• Then, enter the normal round of fine tuning the database and system for
maximum performance. This involves tuning in the following order:

• Access method

• Memory

• Disk and Disk I/O

• CPU

• Contention

See 13.8, “Iterative fine tuning steps” on page 311 for more information.

• Finally, as System Administrators or Database Administrators, we rarely
have control of the SQL being used on the system, but we can identify the
worst offenders and highlight them to be fixed by others as soon as
possible.

This approach is used in the remaining part of the chapter.

13.3 Check the most common AIX configuration mistakes

This section contains the common AIX and system administration items that
were found to be wrong on database systems. These are worth checking
before engaging in fine, detailed-level database tuning.

13.3.1 Change control
If the machine is important, then it should have some form of change control.
To test this process, ask the following questions:

• Has anything in the system been changed recently?

• Has anything changed in the database recently?

If the answer to both is no, do not believe the answer, and, therefore, the next
question must be:

• When was the last change, and what were the details?

If there is no system or database log being maintained to record changes to
the system, then please start one now. Create a simple binder of pages with
columns labeled:

• Date

• Who

• What changed
Oracle tuning 295

• Why

This would cover 90 percent of what any more complex change control
system can achieve.

13.3.2 Failure to use asynchronous I/O
Asynchronous I/O is normal operation for AIX. It reduces CPU use with no
risk and is recommended by IBM and Oracle.

• For details how to start AIX asynchronous I/O, see 13.9.1, “AIX
asynchronous I/O” on page 318

• For how to get Oracle to use asynchronous I/O, see 13.6.3, “use_async_io
or disk_asynch_io” on page 306.

13.3.3 Poor disk subsystem installation
This includes not making good use of the available hardware or configuring
too many disks per adapter and forgetting availability in disk setup.

For example:

• Not balancing disks and I/O across SSA loops and adapters

• Not having mirrors on different disks and adapters

This subject is beyond the scope of this redbook, but we recommend disk
configurations in:

• Chapter 6, “Sizing a database system” on page 101

• Chapter 8, “Designing a disk subsystem” on page 149

13.3.4 Redo log disks
For a system with more than a few disks, the redo log should be separated
out on to a dedicated and mirrored pair of disks. For more information see:

• 13.11.10, “Oracle redo log should have a dedicated disk” on page 337

• 13.11.11, “Mirror the redo log or use RAID 5 fast-write cache option” on
page 337

This is included in the AIX section because the AIX system administrator has
to set this up for DBA use.

13.3.5 Paging space and monitoring paging
This is simple to forget especially on a newly set up machine:
296 Database Performance on AIX in DB2 UDB and Oracle Environments

• For paging space see, 13.9.8, “AIX paging space” on page 324

• For paging rate, see 13.9.9, “AIX paging rate” on page 324

13.3.6 Not allocating enough memory to Oracle
Oracle must have a significant amount of memory to operate at high
performance levels. Although it is an Oracle tuning feature, it is included here
because it is generally the AIX administrator who is best able to decide how
much memory can be dedicated to Oracle use.

The initial guess will depend on the number of users, their process size, and
the application. See 6.5, “Memory goals and sizing” on page 108.

Once running, any free memory should be allocated to Oracle. The AIX
administrator can make careful use of the rmss command to determine the
amount of free memory. Because AIX will make use of all memory after
running for a while, we use the term free for memory that AIX is using, but
allocating it for another purpose would not effect performance. To check for
free memory, use the rmss command to take away two percent of memory and
then releasing it. Watching the speed at which this is allocated indicates if the
memory is really needed or not. See A.18, “rmss - Reduced Memory System
Simulator” on page 363. Also, if paging rate is excessive, then the memory
dedicated to Oracle should be reduced. See 13.11.6, “Oracle SGA size” on
page 334 for more details on resizing the Oracle memory.

13.3.7 Poor use of AIX disk features
AIX has many advanced features for maximum performance and minimum
workload for the System Administrator (SA) and Oracle DBA. If the database
physical layout designer (this can be the SA or DBA) is:

• New to AIX

• Unfamiliar to these advanced AIX features

• Uses standard procedures that ignore these features

then the benefits of these advanced AIX features are not implemented.

This results in a database physical design using the alternative Oracle
techniques to attempt to spread data across disks. These techniques assume
an old and simple UNIX version and, therefore, gets Oracle to provide
features now found in the AIX operating system. For example, it assumes files
can only be placed on one disk. This forces the designer to place one or two
large files per disk and then get Oracle to balance data across these files.
Oracle tuning 297

Unfortunately, if the design is not perfect, or the data in the database
changes, this approach to managing disks has three implications:

• The data and disk I/O will not be spread evenly across disks, which results
in hot disks and poor performance. Alternatively, AIX features will
automatically spread disk I/O and avoid hot disks.

• The DBA has to constantly monitor for hot disk problems and plan for
changes. If AIX features are used, monitoring and planning efforts can be
reduced.

• The DBA then has to manually move tables or data files between disks to
reduce hot disk problems. Often this has to be done at night with no users
online. Employing AIX features means the DBA resources can be better
used on other activities.

Using the advanced AIX features avoids disk performance issues (by
stopping hot disks) and drastically reduces the workload of the DBA.

The traditional Oracle approach results in many sites not using these
advance AIX features on their systems and includes:

• Failure to use AIX striping will reduce disk management effort and
automatically reduce hot disks. See 13.9.2, “AIX Logical Volume Manager
or Oracle files” on page 318.

• Failure to creating logical volumes that are easy to manage and allocate.

• For LV sizes, see 13.9.3, “Create logical volumes at a standardized
size” on page 320.

• For a comparison of JFS and raw device files, see 13.9.4, “AIX JFS or
raw devices” on page 320.

• For making the hot files faster, see 13.9.5, “AIX disk geometry
considerations” on page 322.

• For simple administration, see 13.9.6, “Naming convention” on page
323.

13.3.8 Busy disks
There is always going to be some disks used more than others. These busiest
disks are called hot disks because of the idea that a disk might heat up if it is
used repeatedly due to the head movement.

The AIX administrator should always know which are the warm or hot disk
disks and be ready to fix this if it becomes critical.

See 13.9.10, “Hot disk removal” on page 325 for more information.
298 Database Performance on AIX in DB2 UDB and Oracle Environments

13.4 Check the most common Oracle mistakes

This section is to remind you of the common Oracle mistakes found on
systems with a performance problem. Check these on your system before
going into further time consuming fine tuning details.

13.4.1 Indexes
Accidental removal of indexes and indexes being disabled, that the DBA has
not noticed, are a common problem. For example: an index can get disabled
when the SQL*Loader is used to directly load data, and the re-index failed.
So, check the indexes for the following:

• Do all the indexes actually exist?

• Are the indexes valid (up to date and usable by the RDBMS)?

• Does the index have the right columns?

• Are all primary keys indexed (do not include trivially small tables)?

If an index is missing, there is nothing within the database to check on that.
To detect a missing index, there must be a definitive list of required indexes,
and the columns that should be in the index.

If there is an index problem, then fix it before tuning anything.

If indexes are missing, then use the Oracle parallel index creation feature to
make the index in the shortest possible time. This works very well on SMP
machines, but you may want to restart the database with larger than normal
SORT_AREA_SIZE to allow fast sorting of the resulting index.

13.4.2 Analysis
Oracle depends on data about the tables and indexes. Without this, the
optimizer has to guess. It is worth checking the optimizer has the following
information:

• Have all tables been analyzed?

• Have all indexes been analyzed?

• Have they been analyzed after any recent changes to tables size or table
structure?

If there is an analyzing problem, then fix it before tuning anything. See 13.4.4,
“Analyze database tables and indexes” on page 300 for more information.
Oracle tuning 299

13.4.3 Basic Oracle parameters
There are a limited number of all the Oracle parameters that have a large
impact on performance. Without these being set correctly, Oracle cannot
operate properly nor give good performance. These need to be checked
before further fine tuning.

This is covered in detail in 13.6, “Evaluate the top 10 Oracle parameters” on
page 303.

It is worth tuning the database further only if all these top ten parameters are
okay.

13.4.4 Analyze database tables and indexes
Oracle has warned all customers that rule based optimization will be dropped
in future releases. As the cost based optimizer is now likely to give the best
performance in most cases, this should be used. The cost based optimizer
needs data to decide the access plan, and this data is generated by the
analyze command.

Most parallel SQL statements, SQL hints, and many of the new performance
features of Oracle, such as hash, star joins, and partitions, will only be
available using the cost based optimizer. If the analyze command is not run,
and the SQL does not use SQL hints, the optimizer has to use rule based
optimization and will not make the new performance feature available.

The optimization mode is set in the Oracle parameters via the init.ora file with
the optimizer_mode variable. Possible values are:

• CHOOSE - This means using the cost based optimizer.

• RULE - Use the rule based optimizer

• ALL_ROWS - This means the same as CHOOSE, but try to finish the
query as soon as possible and maximize throughput (good for large batch
queries).

• FIRST_ROWS - This means the same as CHOOSE, but try to supply the
first row of the results as early as possible (good for small indexed
queries).

It is usually set to CHOOSE or RULE.

It can also be set at the session level. Note that, for Oracle versions before
8.1.5, the set option is called OPTIMIZER_GOAL. From version 8.1.5
onwards, it is called OPTIMIZER_MODE like the init.ora parameter. We do
not generally recommend setting this at the session level, but the syntax is:
300 Database Performance on AIX in DB2 UDB and Oracle Environments

ALTER SESSION SET OPTIMIZER_GOAL = RULE or
ALTER SESSION SET OPTIMIZER_MODE = RULE -- Oracle 8.1.5 onwards

Setting the optimizer mode to CHOOSE in the init.ora file so that the cost
based optimizer is used is highly recommended in most cases. The main
exception to using the cost based optimizer is when an application has been
manually tuned by developers for the rule based optimizer. Even this should
be tested with the latest release of Oracle to check if the cost based optimizer
can now improve on the older rule based query plans and performance.

To determine if a table is analyzed, check the AVG_ROW_LEN column of the
USER_TABLES table. If it is non-zero, the analyze command has been run at
least once on this table.

To determine if an index is analyzed, check the COLUMN_LENGTH column
of the USER_IND_COLUMNS table. If it is non-zero, the analyze command
has been run at least once on this index.

If you analyze a table, then its current indexes are automatically analyzed too.

If you analyze a index, then the table is not analyzed.

For tables and indexes where the data is highly skewed, it is worth creating
histogram statistics. The database usually assumes there is an even spread
of values between the highest and lowest value found in a column. If this is
not true, the data is skewed. For example, in England, there are many people
with surnames of Smith and Jones and hardly any starting with the letter Z.
This means a surname column has skewed values. Another example might
be a column containing the year of the sales order. If a ten year old company
is growing rapidly, it might find that the last year includes 60 percent of sales
orders - this is highly skewed. To create a histogram to document the history,
for example:

ANALYZE TABLE orders COMPUTE STATISTICS FOR COLUMN release_date

The default number of the histogram buckets is 75. For table columns with a
large ranges and large numbers of clustered values, having a higher number
of buckets can be useful.

To investigate the histograms on the system, use the USER_HISTOGRAMS
table. For example:

SELECT * FROM USER_HISTOGRAMS;

Collecting the full statistics via the analyze table <name> compute statistics

on large tables takes a lot of time and space in the system - roughly the cost
Oracle tuning 301

of a full table scan and sort operation. For tables with an even distribution of
data in the columns, this will yield little extra value over an estimated analyze
using a sample of the rows. This is performed with analyze table <name>

estimate statistics. We recommend an estimate of 5 percent of the rows as
a minimum for large tables and their indexes. For example:

ANALYZE TABLE orders ESTMATE STATISTICS SAMPLE 5 PERCENT

With the cost based optimizer, there is a further choice to make about the way
the database is requested to provide the results. If your application can make
use of the first few rows of the SQL statement, for example, displaying them
on the users screen, then the OPTIMIZER_GOAL of FIRST_ROWS can make
the application look faster to the user. This is set at the session level with:

ALTER SESSION SET OPTIMIZER_GOAL = FIRST_ROWS

In general, it is hard to code an application this way; so, it is not common.
Otherwise, the OPTIMIZER_GOAL of ALL_ROWS will finish the query in the
shortest possible time. This changes the access method the optimizer will
choose, as some techniques provide the first rows earlier than others. The
default is to maximize throughput of the system. We recommend using the
default unless early screen updates are coded into the application.

13.5 Tuning hint categories for AIX and Oracle used in this chapter

The following sections contain tuning hints, and it is assumed you are a
Database Administrator (DBA) or AIX System Administrator (SA).

We have categorized these tuning hints in the following way to highlight the
performance difference you might expect and the risks involved.

Performance impact or benefit:

low A 5 percent or less improvement

medium Between 5 percent to 25 percent improvement

high 25 percent or more improvement

very high More than 100 percent improvement might be possible

Performance risk - This is to cover the fact that some hints must be used with
care, while others are only going to improve things and should always be
used:

none This is not expected to cause any problems.

low Safe change to make.
302 Database Performance on AIX in DB2 UDB and Oracle Environments

medium You need to check this actually improves performance.

high This can cause problems or reduce performance.

The hints in the following parts of this chapter are divided into the following
groups:

• Evaluate the top ten Oracle parameters

• Other key Oracle parameters

• The iterative fine tuning steps

• AIX hints

• Advanced AIX hints

• Oracle hints

• Other tuning hints (for network and compiling)

13.6 Evaluate the top 10 Oracle parameters

The non-default Oracle parameter values are worth investigating. Of course,
many of them have to be non-default for the system to run at all. See
10.1.2.4, “The UTLBSTAT/UTLESTAT monitoring tool” on page 217. The
parameters that make the biggest difference (and should, therefore, be
investigated in this order) are listed in the following sections.

13.6.1 db_block_size
This cannot be changed after the database has been created. It is vital to get
this correct before you start. As AIX does all I/O at a minimum of 4 KB, we do
not recommend any sizes that are smaller than this, as it will be slower. There
are reasons for using different block sizes:

• Smaller sizes

• If the SQL statement needs just one row in a block, it is better to read a
small block. If the blocks are larger, then unwanted data is read from
disk, and this takes up additional memory.

• Larger blocks

• If the typical SQL statement results in a full table scan, then larger
blocks will read in more rows per disk I/O. This means more data is
available for processing by the RDBMS. Note: An 8 KB read only takes
a few percent longer than a 4 KB read from disk.

• A row has to fit inside a single data block. This means the end of each
block has some wasted space (because a row will not fit in exactly).
Oracle tuning 303

With larger blocks, there are less blocks and, therefore, less wasted
space, for example, if the rows are 250 bytes and the last 200 bytes of
a block cannot be used. With 4 KB blocks, there is 4.9 percent wastage,
and with 32 KB blocks, only 0.6 percent wastage.

We recommend for the block size:

• For OLTP type workloads - 4 KB.

• For DSS workloads - 8 KB. Commonly, sites use 4 KB, 8 KB, or 16 KB.

• For very large databases (200 GB or more) - 16 KB.

• For mixed workloads - 4 KB.

For more details, see 13.11.5, “Oracle block size” on page 334

Performance benefit is medium and no risk.

13.6.2 db_block_buffers
This value is the number of disk blocks stored in the SGA. This is the largest
part of the SGA. The memory size allocated will be:

db_block_buffers * db_block_size

If you have no idea how large to set the parameter (which is typical on a new
system until you start running tests), then set it so that the SGA is roughly 40
percent to 50 percent of memory.

If your database data is in a Journaled File system (JFS), then you will need
to allocate space in real memory for the AIX buffer cache. The AIX buffer
cache is dynamically controlled, but you should make sure sufficient memory
is available for it. However, if your data is held on raw devices, then disk I/O
does not use the AIX buffer cache, and, therefore, it does not need to be
large, and more memory can be allocated to the Oracle buffers. Figure 43
shows this difference.
304 Database Performance on AIX in DB2 UDB and Oracle Environments

Figure 43. Different SGA buffer cache memory sizes for raw device and JFS databases

If you can estimate how much memory is left after allowing for

• AIX (32MB)

• The basic Oracle process

• The Oracle Servers

• The user application processes

then we recommend to allocate the following amount of the remaining
memory:

• For JFS based databases, 75 percent

• For raw devices, 90 percent

Once the system is running, make sure it is not paging (in this case reduce
the SGA size) or if there is free memory (make the SGA larger). The aim with
the number of buffers is to have a very high buffer cache hit ratio (greater than
95 percent).

Performance benefit is very high, and there is no risk.

In Oracle 8, there are two more parameters that allocate space from within
this set of buffers. These parameters are:

• BUFFER_POOL_KEEP - Blocks in this pool are not flushed out but kept
indefinitely. This is used for tables that are vital to be cached in memory at

AIX Kernel

File Systemcache

SGA

Oracle processes

User processes

JFS database

75%

AIX Kernel

File Systemcache

SGA

Oracle processes

User processes

Raw device database

100% 90%
Oracle tuning 305

all times. For example, small look up tables of tables that are frequently
accessed.

• BUFFER_POOL_RECYCLE - Blocks in this pool are instantly flushed, and
the space is reused. This is used for tables that would rarely benefit from
caching and only waste CPU resources by searching for cached blocks.
For example, this is useful in DSS workloads where full table scans of
extremely large tables would flush more useful data out of the cache and
also when rarely accessed tables are used.

The defaults for these parameters are zero.

To get tables allocated to these two pools (rather than the standard pool)
requires the DBA to use the new storage option for the table. For example:

ALTER TABLE EMP STORAGE (BUFFER_POOL KEEP)
ALTER TABLE EMP STORAGE (BUFFER_POOL RECYCLE)

The time during the preparation of this redbook did not allow further
investigation of these new Oracle 8 features. Therefore, we recommend only
using these extra pool parameters:

• Once the system is fully tuned using the top 10 Oracle parameters.

• If you fully understand the use of particular tables and can decide that the
standard pool would not be as efficient.

• You have a test system to experiment with these pool parameters.

• You have read and understood the full Oracle documentation on these new
features.

Otherwise, tune using only the db_block_buffers parameter.

13.6.3 use_async_io or disk_asynch_io
AIX fully supports the asynchronous I/O for both JFS and raw devices. Many
sites do not know this and fail to use this feature.

On Oracle 7, this parameter is called use_async_io.
On Oracle 8, this parameter was renamed to disk_asynch_io, and the default
is set to TRUE.

Set this parameter to TRUE, and magically your database will work faster, but
note that the AIX asynchronous I/O feature must also be configured. See
13.9.1, “AIX asynchronous I/O” on page 318.

Performance benefit is very high and no risk.
306 Database Performance on AIX in DB2 UDB and Oracle Environments

13.6.4 db_writers, db_writer_processes and dbwr_io_slaves
In Oracle 7, the name of the parameter is db_writers.

This parameter decides how many database writer processes are used to
update the database disks when disk block buffers in the SGA are modified.
Multiple database writers are often used to get around the lack of
asynchronous I/O in some operating systems, although it still works with
operating systems that fully support asynchronous I/O, such as AIX.

We have recommended, in the previous section, that asynchronous I/O is
used; so, we recommend you use a single database writer to keep things
simple.

Therefore, set this parameter to 1 to reduce the database writer overhead.

In Oracle 8, this functionality is covered by two parameters called
db_writer_processes and dbwr_io_slaves.

The db_writer_processes parameter specifies the initial number of database
writer processes for an instance. In most cases, one database writer process
is enough, but it is recommended to use multiple processes to improve
performance for a system that writes a lot of data. The dbwr_io_slaves
parameter is similar to the Oracle 7 db_writers parameters. However, if the
dbwr_io_slaves parameter is used, then only one database writer will be used
regardless of the setting for db_writer_processes.

Therefore, set the db_writer_processes parameter to 1 to reduce the
database writer overhead and leaving dbwr_io_slaves at the default value.

Performance benefit is medium and no risk.

13.6.5 shared_pool_size
This parameter is very hard to determine before statistics are gathered about
the actual use of the shared pool. The shared pool includes the data
dictionary cache (the tables about the tables and indexes), the library cache
(the SQL statements and execution plans), and also the session data if the
multi-threaded server (MTS) is used. Its size can vary from a few MBs to very
large like 100 MB, depending on the applications’ use of SQL statements.
Many application vendors will give guidelines on the minimum size. It
depends mostly on the number of tables in the databases - the data
dictionary will be larger for a lot of tables and on the number of the different
SQL statements that are active or used regularly.

If you have no information, start using the following:
Oracle tuning 307

• For smaller systems (128 MB to 512 MB of memory) - shared_pool_size =
3MB

• For system with more than 1 GB - shared_pool_size = 30 MB

Note: Some applications that make heavy use of the this area have a
shared_pool_size of up to 200 MB.

Performance benefit is medium and needs tuning based on measured
statistics (see 13.11.17, “Oracle shared pool size” on page 339).

13.6.6 sort_area_size
This parameter sets the size of memory used to do in-memory sorts. In OLTP
environments, sorting is not common or does not involve large numbers of
rows. In Batch and DSS workloads, this is a major task on the system, and
larger in-memory sorts areas are needed. Unlike the other parameters, this
space is allocated in the user process and not just once in the SGA. This
means that if 100 processes start a sort, then there is 100 times
sort_area_size space allocated in memory; so, you need to be careful, or you
will run out of memory and start paging.

Set sort_area_size to be 200 KB on a small system with a lot of users, and at
2 MB on larger systems.

Performance benefit is medium and needs tuning based on measured
statistics.

13.6.7 sql_trace
This parameter makes Oracle collect information about performance. This
creates an extra load on the system. Unless you require the information for
tuning, this should be set to FALSE.

Performance benefit is medium, and there is no risk.

13.6.8 timed_statistics
This parameter makes Oracle collect timing information about response
times. This creates an extra load on the system. Unless you require the
information for tuning, this should be set to FALSE.

Performance benefit is medium, and there is no risk.

13.6.9 optimizer_mode
If the application provider recommends to set this to RULE, do so.
308 Database Performance on AIX in DB2 UDB and Oracle Environments

Otherwise, you should set this to CHOOSE (which is the default for newer
versions of Oracle).

See 13.4.4, “Analyze database tables and indexes” on page 300 for more
information.

Performance benefit is high, and the risk is low.

13.6.10 log_buffer
The redo log buffer is used to store the information to be sent to the redo log
disk. This buffer speeds up the database performance by allowing
transactions to record the updates to the database but not send nearly empty
log records to the redo log disk. If there are many transactions added to the
log buffer, faster than they can be written to disk, then the buffer can get filled
up. This is very bad for performance.

We recommend a minimum of 128 KB, but many DBAs just set this to 1 MB to
make it extremely unlikely to ever fill up.

Performance benefit is medium, and there is no risk.

13.6.11 rollback_segments
This is an odd Oracle parameter because it is a comma separated list of the
rollback segment names. The rollback segments contain the original contents
of blocks that are updated during of a transaction. There are two aspects to
rollback segments:

• The number of rollback segments - Listed in this parameter.

• The size of each rollback segment defined when the rollback segment was
created - Not listed in this or any other parameter.

For good OLTP workload performance, rollback segments are vital.

For DSS workloads:

• Large read only queries do not really use rollback segments, so they are
unimportant.

• Updates to summary tables or updates during data loading the rollback
segments are important.

A transaction has to place all the information into a single roll back. The roll
backs can be shared between transactions, but if too many transactions
share a roll back, there can be locking problems.
Oracle tuning 309

We recommend a lot of small roll backs. For systems with less that 32 active
concurrent transactions at one time updating rows, create eight rollback
segments. However, working out the number of transactions in advance is
nearly impossible. If you have higher numbers of active transactions, then
Oracle recommends one rollback segment per four transactions but do not go
higher than 50 rollback segments.

Once the system is running you can monitor to roll back contention. See
13.11.19, “Number of Oracle rollback segments” on page 339.

Often a special large roll back is used for large batch type transactions that
update large quantities of rows.

Performance benefit is medium, and there is no risk.

13.7 Other key Oracle parameters

If the above parameters are correct, then it is worth noting and investigating
the below parameters in further detail. We do not intend to explain what all
these parameters do in detail (unless they are covered in a later tuning
section). These parameters are listed because they are the ones proven to
make useful performance improvement out of the hundreds that are available.
These are in roughly alphabetical order, but we have grouped some together.

1. db_block_lru_latches - Logical resources within Oracle

2. db_file_multiblock_read_count - Encourages read-ahead on sequential
reads

3. dml_locks - Logical resources within Oracle

4. enqueue_resources - Logical resources within Oracle

5. hash_area_size - Similar to sort_area_size

6. log_archive_start - Archiver process, saves the redo log files to disk or
tape

7. log_archive_dest - Where to copy the log to

8. checkpoint_process * - Forces database blocks to disk at a point in time

9. log_checkpoint_interval - When to force disk up-to-date based on activity

10.log_checkpoint_timeout - When to force disk up-to-date based on time

11.log_simultaneous_copies * - Controls redo log

12.mts_ - Many multi-threaded server options

13.log_small_entry_max_size * - Controls redo log
310 Database Performance on AIX in DB2 UDB and Oracle Environments

14.open_cursors - A limit

15.parallel_server - Parallel query option

16.parallel_max_servers - Parallel query option

17.parallel_min_servers - Parallel query option

18.processes - A limit

19.recovery_parallelism - Speeds up cache recovery

20.sessions - A limit

21.sort_area_retain_size - Reduces sort area dynamic resizing

22.timed_os_statistics - More performance information

23.transactions - A limit

24.transactions_per_rollback_segment - Limits roll back use

Note that parameters marked with an asterisk (*) have been removed in later
versions of Oracle; so, check the documentation for your Oracle release.

There are 200 further Oracle parameters that could be investigated, but the
majority of them are for special cases. These cases are when the RDBMS is
not being used for a typical workload, and the standard parameters do not
work well. If you suspect this is the true for your database, then you have to
read the documentation in great detail before making changes, and it is wise
to have some repeatable test to determine if the parameter improved
performance. We do not advise changing from the default values unless you
have a verifiable performance effect.

If you work through all of these parameters, there are a further 250
undocumented parameters (in Oracle 8.1.5).

13.8 Iterative fine tuning steps

In this section, we follow the Oracle guideline for the order of fine tuning the
database. In the initial checking of the database, we should have already
eliminated many possible causes of problems and poor performance.
However, tuning is an iterative process; so, fine tuning, for example, the
memory use might effect disk I/O. This means these have to be rechecked on
each iteration.

13.8.1 Access method tuning
The first step is to understand the SQL statements running on the RDBMS.
Tuning this can have the largest impact on performance once all the common
Oracle tuning 311

mistakes have been removed by the previous stages of tuning. Without
knowing the SQL running on the system, you are tuning in the dark.

13.8.1.1 Tuning SQL
Although we have explicitly excluded the tuning of SQL statements from this
redbook, this is the tuning step at which it should be attempted. The tools
covered in 10.1.2, “Oracle monitoring tools” on page 215 give an overview of
how to investigate SQL statements. In addition, the TKPROF facility along
with EXPLAIN PLAN can help isolate the worst SQL statements in the
system.

Please refer to the Oracle manuals and the various books on tuning SQL for
further explanations of TKPROF, EXPLAIN PLAN, and UTLBSTAT/UTLESTAT.

13.8.1.2 Transaction rates
There is a simple way to find the transaction rate of the system that seems to
be hard to find in the manuals and books. The v$sysstat table includes the
total count of commits and roll backs the database has performed since
startup. So, periodically saving the counts will allow the calculation of the
transaction rates. Use the SQL statement from B.2.1, “Oracle number of
transactions” on page 374.

13.8.1.3 Parallelization for large query sorts and indexing
Both of these operations benefit from parallelization, provided there is space
and capacity on the machine. This is particularly likely on SMP machines.
Large queries can be parallelized via SQL hints or parallelization set on the
tables. The index parallelization is set on the create index command, and
often large indexes are created at off-peak times when the whole power of the
machine is available.

Please refer to the Oracle reference material for further explanations of SQL
hints and the create index command.

To use TKPROF, the trace options SQL_TRACE and TIMED_STATISTICS
have to be enabled, and this can have a large impact on the performance of
the database in terms of CPU utilization to capture the data and disk I/O to
write the trace files to disk. So, remember to set these to false once tuning
is complete.

Attention
312 Database Performance on AIX in DB2 UDB and Oracle Environments

13.8.1.4 CREATE TABLE AS SELECT with unrecoverable option
This CREATE TABLE AS SELECT SQL statement is often referred to a CTAS.
Oracle allows parallelization of the SELECT and of the CREATE TABLE commands.
This is an excellent way to generate one table from another at high speed.

Please refer to the Oracle reference manuals for further explanations of the
CREATE TABLE AS SELECT command.

13.8.2 Memory tuning
Once the access methods have been investigated (see previous section) the
use of memory is next. This involves checking the sizes and use of memory.

13.8.2.1 Paging
Check the system is not paging.

See 13.9.9, “AIX paging rate” on page 324 for more details.

13.8.2.2 SGA db_block_buffers
This Oracle parameter decides the size of the largest part of the Oracle SGA.
It is the most important parameter for Oracle performance.

See 13.11.6, “Oracle SGA size” on page 334 for SGA size and 13.11.8,
“Oracle buffer cache hit ratio tuning” on page 336 for setting this parameter.
There is also a discussion about this in 6.5.3, “RDBMS cache and structures”
on page 109.

13.8.2.3 SGA redo log buffers
Check if the size of the redo log buffer is sufficient by checking the redo log
space request row of the v$sysstat table.

See 13.11.16, “Oracle redo buffer size” on page 338

13.8.2.4 SGA shared pool
This is really an internal scratch pad area of Oracle, but it can cause
problems. If not sufficiently large, this will cause poor performance. If far too
large, it wastes space that the buffer cache could use.

See 13.11.17, “Oracle shared pool size” on page 339 for more details.

The dictionary cache and library cache are parts of the shared pool.
Oracle tuning 313

13.8.3 Disk I/O tuning
Use the standard AIX tools, such as iostat, to monitor disk activity or
advanced tools, such as filemon or the graphical Performance Toolbox/6000
for tuning data. Alternatively, use one of the unsupported but useful tools,
such as nmon (see A.15, “nmon - online monitor” on page 361).

13.8.3.1 Redo log
In systems with more than a handful of disks plus high insert and update
rates to the database (which means most databases), it is recommended to
dedicate a disk for the redo log.

See 13.11.10, “Oracle redo log should have a dedicated disk” on page 337 for
more details.

13.8.3.2 Balanced disks and hot Oracle files
Disks are the biggest area of tuning because there are a lot of options. If you
have followed the advice of this redbook, you should have avoided the
majority of performance problems with disks. The following are areas to check
and correct once the system is running with a real workload.

• Which method of disk balancing is in use - See 13.9.2, “AIX Logical
Volume Manager or Oracle files” on page 318.

• If a hot disk is detected, how to reduce the impact - See 13.9.10, “Hot disk
removal” on page 325.

• To never have one hot disk - See 13.9.11, “Disk sets for hot disk
avoidance” on page 325.

• To see Oracle’s view of hot files in the system, see the output from
UTLBSTAT and UTLESTAT - See 10.1.2.4, “The UTLBSTAT/UTLESTAT
monitoring tool” on page 217.

13.8.3.3 RAID 5
If it turns out that the there is a lot more write to disk than expected, RAID 5
performance can be an issue if the fast-write cache option is not used.

13.8.3.4 Double check asynchronous I/O
It is worth double checking the asynchronous I/O is in use.

See 13.9.1, “AIX asynchronous I/O” on page 318 and Part 13.11.7, “Oracle
database writers” on page 335.
314 Database Performance on AIX in DB2 UDB and Oracle Environments

13.8.3.5 Fragmentation on extents and tablespaces
As databases get bigger, the extents, tablespaces, and files get bigger. The
extent fragmentation problem has become much less important.

For a detailed output of the extents in the database, use the sample script in
B.2.12, “Oracle report on extents” on page 378.

13.8.3.6 Use raw devices
If the database is JFS based, and there are still disk I/O issues, it is worth
considering moving to raw devices.

See 13.9.4, “AIX JFS or raw devices” on page 320.

13.8.4 CPU tuning
Next, there are some things that can be checked and tried to reduce CPU
problems. Also, note that reducing disk I/O saves CPU power because the
disk device drivers are called less - this is why CPU tuning is after disk tuning.

13.8.4.1 Balanced SMP
Check that all the CPUs on an SMP machines are actually being used.

See 13.9.12, “SMP balanced CPU utilization” on page 326 for more
information.

13.8.4.2 Parallelism
Over use of parallelization can cause large CPU problems.

See 13.11.20, “Oracle parallelization” on page 340 for more details.

13.8.4.3 Time slice
Altering the time slice of the machine can help by reducing the CPU cycles
required to reschedule processes.

See 13.10.8, “AIX process time slice” on page 329 for more information.

13.8.4.4 Balance the users
One approach that is often missed out is trying to organize the users and
tasks of the system better. Ask these questions:

• Can the users spread out their workload during the day to avoid high
peaks in computer workload?

• Can they request reports overnight or at low priority?

• Can reports be generated from a queue to stop them flooding the system?
Oracle tuning 315

• Are there better ways to look up customer accounts and avoid full table
searches?

These question require that user behavior is observed and careful
suggestions are made. Surprisingly, many users are willing to participate,
give ideas, and change work patterns if this might help them to avoid waiting
for the computer and make their working day more pleasant.

13.8.4.5 Processor affinity
On an SMP machine, the processes are scheduled to run on the next
available CPU. If possible, they run on the same CPU, as this increases
performance because the CPU level 1 and level 2 caches already contain
code and data for that process. This results in less calls to load from main
memory. Improved scheduling algorithms mean the chances of running on
the same CPU are increased. The alternative is forcing the process to always
run on a particular CPU.

See 13.10.5, “AIX processor binding on SMP” on page 328 for more
information.

13.8.4.6 Move the application
Oracle is fully client server enabled; so, to reduce the CPU used on the
database server some applications can be moved to other, existing systems,
or a new machine can be used. This can be effective if:

• The application is implemented on AIX (rather than directly on the PC).

• The PC version of the application can be used instead.

• The application is a batch process that can be moved to a new machine.

Moving to client/server may mean slower performance for the application, but
the database server should run faster.

13.8.5 Contention tuning
Contention is the result of processes fighting for resources. This can simply
be called an internal Oracle problem. Fortunately, there are Oracle tuning
options to allow this to be monitored and controlled.

Contention is hard to spot on a system but is typically highlighted by poor
performance when the machine does not really look or feel particularly busy.
This means that tasks are being serialized rather than being concurrent, or
processes are waiting for each other and relying on time-outs to resolve the
problem.
316 Database Performance on AIX in DB2 UDB and Oracle Environments

The utlbstat and utlestat scripts report the important information from the
v$system_event table (see 10.1.2.4, “The UTLBSTAT/UTLESTAT monitoring
tool” on page 217 for more information). See the Oracle manuals and Oracle
8 Server Tuning for more details. A few of the important contention areas are
covered in the following sections.

13.8.5.1 Roll back contention
Roll backs contain the before images of rows while a transaction is running.
There can be problems with these roll backs when too many processes try to
access them.

See 13.11.19, “Number of Oracle rollback segments” on page 339 for more
information.

13.8.5.2 Redo log buffer latch contention
The redo log buffer holds the information to be written out to the redo log disk,
but if many transactions are trying to add details at the same time, this can
cause a bottleneck.

See 13.11.15, “Oracle redo buffer latch” on page 338 for more information.

13.8.5.3 Parallel query server contention
If the database is using the parallel query option, then it is possible to either
run out of parallel query servers or overdo the parallelization and try to run
too many processes.

See 13.11.20, “Oracle parallelization” on page 340 for more details.

13.8.5.4 Spin count
When Oracle has to wait for a resource, it can either go to sleep and be
restarted when the resource is free, or it can just keep retrying repeatedly, but
this takes up CPU time. Retrying only makes sense on SMP machines and
assumes the resource is locked for very short periods of time and it is worth
waiting. The spin count is the number of retries before sleeping.

See 13.10.6, “AIX spin count on SMP” on page 328 for more information.

13.9 Tuning AIX for Oracle hints

This section contains the most common AIX tuning hints that should be
considered as normal operation. They are not in any particular order.
Oracle tuning 317

13.10, “Advanced AIX tuning hints” on page 326 includes advanced AIX hints
that must be used with caution.

13.9.1 AIX asynchronous I/O
In the Oracle init.ora configuration file, set this to TRUE. For Oracle 7:

use_async_io = true

and for Oracle 8:

disk_asynch_io = true

Then set the minservers and maxservers using the AIX smit command
SMIT->Devices->Asynchronous I/O->Change/Show Characteristics of
Asynchronous I/O (or just type smit aio) to:

• MaxServers = 10 * number of disks but with a maximum of 10 times the
number of processors in the machine.

• MinServers = MaxServers /2

For example, on a machine with 30 disks, then Max Servers = 300 and
MinServers should be 150, but if this machine only has four CPUs, the
MaxServers = 40 and MinServers = 20 is sufficient. Higher numbers will not
hurt performance, as it only results in more kernel processes running that do
not actually get used.

Using asynchronous I/O is likely to increase performance. There is no risk of
reducing performance; so, it should always be used.

Performance benefit is high and no risk.

13.9.2 AIX Logical Volume Manager or Oracle files
To spread out the data and disk workload across disks, you have two choices:

1. Use Oracle - As the Oracle DBA, use a lot of Oracle files and place them
onto disk by creating a logical volume on a particular disk, then monitor
the database objects (tables and indexes) in the files and move objects
between files to balance disk use. In this case, the AIX System
Administrator simply creates each Oracle file (JFS or raw logical volume)
on a separate disk.

2. Use AIX - As the AIX system administrator, use the AIX Logical Volume
Manager (LVM) to create each JFS or raw logical volume on multiple disks.
Use striping to spread data across disks and then monitor the AIX physical
volumes. In this case, the Oracle DBA does not have to balance disk use
between Oracle files and, therefore, disks.
318 Database Performance on AIX in DB2 UDB and Oracle Environments

These two options might sound similar, but there is one main point. Either AIX
spreads the disk work out across the disks, or the Oracle DBA has to do it.
That is, either a human does it, or the computer does it automatically. Sites
and people familiar with Oracle tend to avoid using AIX LVM. This is a
mistake.

It is strongly recommended by IBM and Oracle that the benefits of the
AIX LVM are fully used.

The AIX LVM has a number of options, and striping data across disks is very
effective, as it makes full use of the disks in usage terms, makes excellent
use of read-ahead for sequential I/O, and spreads disk I/O evenly for better
performance. For striping, use the following:

• Stripe unit size = 32 KB or 64 KB

• max_coalesce = 64 KB

• minpgahead = 2

• maxpgahead = 16

For a full explanation of these parameters, see the AIX documentation or the
redbook RS/6000 Performance Tools in Focus, SG24-4989.

Note:

• The striped LV size must be a multiple number of the drives used. For
example, if the strip size is 32 KB, and the LV is spread across eight disks,
then the size of the LV must be a multiple of 32 * 8 K. This allows the LVM
to create the LV with a complete number of stripes and avoid the case that
the last stripe does not cover all the disks.

• It is recommended that striped data and the database logs are on different
sets of disks.

• Before AIX Version 4.3.3, striped logical volumes could not be mirrored.
This resulted in striping not being used or sites opting for RAID
configurations. There is an alternative that gives the load balancing effect
of striped and mirrored disks that can still be used, called PP level striping,
that works for large files (large being over 100 MB). The logical volume is
created on a set of disks with the INTER-POLICY set to maximum. This
results in the Physical Partitions (typically 4 or 8 MB chunks) being spread
across the disks one after the other.

• After AIX 4.3.3, the LVM does allow striping and mirroring at the same
time. This has been tested for performance and works well.
Oracle tuning 319

Benchmarks have shown using AIX LVM to stripe data can increase
performance on disk bound systems by as much as a factor of three. Disk
bound batch workloads particularly benefit from this. Using the LVM to spread
and stripe data across disks reduces hot disks and reduces DBA man-power
in monitoring and moving data within the database.

Performance benefit is high and no risk.

13.9.3 Create logical volumes at a standardized size
When creating logical volumes in order to use them as Oracle files, create all
of them with standard size. You might decide on two or three standard sizes,
but make sure they are multiples of each other and will fit nicely into the
standard disk sizes on the system.

For example, a standard 4.5 GB disk drive, when assigned to a volume group
with a Physical Partition (PP) of 8 MB, contains 537 PPs, which means 4296
MB of space for logical volumes. This would make four logical volumes of 134
PPs each, which is 1072 MB. These disks are then grouped together for
striping and mirroring. In practice, you might like to use a binary number, such
as 128 PPs and 1 GB files.

We recommend making all the files 1 GB or 2 GB is size on large machines.
This size of file does not cause large file problems and can be copied or
moved around the system. It is worth staying under the 2 GB limit because
larger files can still cause problems and lower performance. Some
applications, tools, and commands have problems with files larger than 2 GB
because they have not been re-coded to make use of the 64 bit file system
calls required to handle larger file sizes. To hold files larger than 2 GB in a
JFS requires the use of the large file support version of the JFS. This is not
as efficient as the regular JFS. There are occasions when smaller files are
needed in the database, and we recommend using 64 MB as a minimum.

These sizes will mean the number of files is kept down to a reasonable limit
and are still usable.

On small machines, try using 256 MB files.

Performance benefit is medium, and there is no risk.

13.9.4 AIX JFS or raw devices
This is a much discussed subject with arguments in favor of both sides. In the
books and manuals, there are almost religious opinions that are completely
opposite. The two options are:
320 Database Performance on AIX in DB2 UDB and Oracle Environments

• JFS - If your database is not I/O bound, that is, your applications do a lot
of computation on small or infrequently retrieved data, then the JFS is a
good choice because its simpler to create, work with, administer, and back
up/recover.

Reading a block from a JFS file means it is moved from disk to the AIX
buffer cache and is then copied from the AIX buffer cache to the Oracle
SGA for the process to access the data.

Because there is a copy in the AIX buffer cache, disk I/O may be avoided
in the case where the SGA copy was removed (reused for other
purposes), but the AIX buffer cache copy survived.

Note that when Oracle writes data to the database, in most cases, it has to
force the data to disk, which results in a copy from SGA to AIX buffer
cache and then moving the block out to the actual disk drive.

The extra overhead is incurred because the block is in the JFS cache
(taking up memory), and AIX has to lock the data structures and maintain
the inode details and indirect block structures (taking more CPU cycles).

• Raw devices (also called raw logical volumes, raw partitions, or raw disks)
are harder to work with, as they do not appear in the file system and, for
example, the files cannot simply be copied with the cp command. They are
harder to back up and recover, as the dd command has to be used. Raw
devices avoid the double buffering of data. This means the data is read
from disk straight to the Oracle SGA. The same is true for writing to a raw
device. Because the database does not use the AIX buffer cache for data
access, the AIX buffer cache size can be a lot smaller, and, thus, memory
is freed up and can be used to support a much larger Oracle SGA. For
example, memory with a JFS based database might be:

• 33 percent for processes

• 33 percent for SGA

• 33 percent for AIX buffer cache

For raw device databases, this might be:

• 33 percent for processes

• 60 percent for SGA

• six percent for AIX buffer cache

But, and it is a big BUT, raw devices are faster (see 8.10, “Disk
performance measurements and observations” on page 178).

The number of databases that cannot benefit from faster disk access is small.
Therefore, raw devices are recommended for performance reasons.
Oracle tuning 321

The main problem is that some backup systems do not directly support the
backing up of raw devices. Before moving to raw devices, check that you can
back the files up to tape or disk using your backup method.

From benchmark experience, moving to raw disks for disk I/O bound systems
is likely to increase performance by 0 - 50 percent provided the SGA size is
also adjusted to counteract that the AIX buffer cache is no longer used.

Performance benefit is high and no risk.

13.9.5 AIX disk geometry considerations
With the AIX LVM, you can place data (logical volumes for JFS use or raw
devices) on particular positions of the disk. These position on the disk are
called:

• (outer) edge

• (outer) middle

• center

• inner middle

• inner edge

The center part of the disk is the fastest because, on average, the seek time
to the center position is less than a seek to or from the edges of the disk,
which causes higher head movements. Use the -a option of the mklv

command to set this or, in smit it is the POSITION on physical volume option
see 8.4.2, “Use of LVM policies” on page 156).

If the disk center position is the only part of the disk that is used, then the disk
average seek times will be much faster. This means the disk will appear to
have lower seek times than the average quoted for the entire disk. This option
should be considered if you:

• Do not need the unused edge parts of the disk (you have spare disk
capacity).

• Have highly performance critical parts of the RDBMS where maximum
performance outweighs the extra costs.

Also the move from JFS to Raw devices is a simple process and does not
require exporting and importing the whole database but can be done file by
file.

Note
322 Database Performance on AIX in DB2 UDB and Oracle Environments

This may increase performance by up to 10 percent.

The performance benefit is medium and no risk.

13.9.6 Naming convention
When creating volume groups, logical volumes, and file systems, decide on a
naming convention and stick to it. We recommend creating all these via
scripts to make sure mistakes are unlikely. Any clear and consistent policy is
better than none at all. Many sites only allow one person (or group) to create
logical volumes to make sure the policy is adhered to.

Most people end the volume group name with vg.

For logical volumes, include something in the name to indicate the owning
subsystem and the purpose, such as ora for Oracle and data, idx, tmp, or log
for the various parts of the database. This makes performance tuning much
simpler, as the logical volume name tells you what sort of data it contains,
and the system characteristics are simpler to monitor.

The performance benefit is zero, but it makes tuning simpler, and there are no
risks.

13.9.7 AIX sequential read ahead
This only affects JFS file system based database files.

The Virtual Memory Manager spots sequential reading of JFS based
database files by watching the access pattern of read system calls. After a
number of sequential reads are noticed, it will attempt to read up to the
maxphahead blocks of the file in advance. By default these, are:

• minpgahead 2

• maxpgahead 8

These can be increased to increase sequential reading ahead of data and;
so, speed up sequential reads using vmtune. For example:

vmtune -r 512 -R 1024

When creating a database, create the performance critical logical volumes
first and in the center of the disks to ensure they get the best possible
performance.

Logical Volume placement
Oracle tuning 323

Keep the numbers powers of 2.

For a full explanation of these parameters, see the AIX documentation or the
redbook RS/6000 Performance Tools in Focus, SG24-4989.

The performance benefit is medium, and risks are low.

13.9.8 AIX paging space
Never run out of paging space.

Use: lsps -a to determine the size and usage of the current paging space.

We also recommend spreading out paging space onto multiple disks. As a
rule of thumb, only put 1 GB of paging space on any one disk. If the system
starts to heavily use paging space, having 9 GB of paging on one disk means
it instantly has a disk I/O problem, but by having nine times 1 GB paging area
on nine disks means the temporary paging problem will be sorted out nine
times faster.

The performance benefit is low, and there are no risks unless you run out of
paging space, at which time, it can be very bad.

13.9.9 AIX paging rate
Paging in any UNIX is very bad news. It can very seriously reduce
performance. If paging gets bad, AIX will start swapping processes out too.
Ideally, paging should be completely avoided. When users start and stop
large processes, there is likely to be some limited paging (this is how AIX gets
the program into memory). But, this paging should be limited and short lived,
and no paging for long periods is the best.

Check to see what is in memory with ipcs and ps aux (check the RSS column
values) and use the vmstat command to monitor paging. See Appendix A,
“AIX performance tools summary” on page 353 for more details or the AIX
manuals.

The vmtune command can adjust AIX paging parameters.

Also refer to the redbook Understanding IBM RS/6000 Performance and
Sizing, SG24-4810, for more information on monitoring paging.

In large configurations, such as the RS/6000 S Series with 12 to 24 CPUs,
AIX can support thousands of users and their processes. With large numbers
of programs running, there is a high chance that they are going to change
their working sets. This causes regular paging. So, for this size of machine,
324 Database Performance on AIX in DB2 UDB and Oracle Environments

benchmark people use the rule 10 pages per second per CPU. So, for a 12
way machine, 120 pages per second is acceptable - zero is preferred.

The performance benefit is high, and the risks are medium.

13.9.10 Hot disk removal
First, always know where you have spare capacity for both disk space and
spare disk I/O capability. When an emergency happens, you can avoid having
to work this out, and the knowledge about it will save you time.

Once you have determined (use the filemon command, see A.2, “filemon -
File I/O Monitor” on page 354 for details) which is the hot disk, you have to
find out which file on that disk is causing the I/O and whether it is read or
write or both. The choices are then to:

• Move that file completely to a new disk with space capacity.

• Move part of that file. AIX allows the Physical Partitions (PP) of a logical
volume to be moved to alternative disks. So, either the raw device can be
partially moved to alternative disks, or the JFS containing the file can be
partially moved.

• Move the contents of that file (in Oracle terms, you could move the table to
a different tablespace or recreate the table in alternative extents).

• Stripe the data across multiple disks to spread the I/O between disks
rather than just moving the problem. Use striping and mirroring in AIX
4.3.3. Before this release, you can use PP level striping and mirroring.

The performance benefit is high, and the risks are low.

13.9.11 Disk sets for hot disk avoidance
This redbook consistently recommends disk protection and avoiding hot disks
within the database.

For both RAID 5 and striped mirror disk protection, the data is spread across
multiple disks:

• For RAID 5, we recommend seven disks plus one parity disk for an eight
disk RAID 5.

• For striped mirror (both PP level or fine stripe on AIX 4.3.3), we
recommend spreading across eight or 16 disks.
Oracle tuning 325

The result is that a single hot disk is impossible, but you can still have hot
eight or 16 disk sets. But, the performance problems will be eight (or 16)
times smaller as a result.

It is traditional, and Oracle’s recommendation, to split index, data, and
temporary tablespaces onto different sets of disks. This means we should
have these groups of eight (or 16) disks assigned to one purpose or another.

The performance benefit is high, and the risks are low.

13.9.12 SMP balanced CPU utilization
Most large systems are now SMP machines, as this allows multiple fast
processors to scale up to higher power machines. There is one small
drawback in that the application and database must have enough processes
to keep all the CPUs busy. If only one process is used, only one CPU can be
used (assuming it is a single threaded application), and, therefore, only a
fraction of the available power of the machine is used.

Fortunately, Oracle has multiple processes (one per user as a default) and for
large tasks allows it to be parallelized to make it effective on an SMP.

It is worth checking that this is actually happening, particularly for batch jobs
that have, in the past, often been implemented as a single process.

Use the sar -P ALL 1 10 command to check if all CPUs are busy.

The performance benefit is high, and there is no risk.

13.10 Advanced AIX tuning hints

This section includes hints for advanced AIX options. You are normally not
expected to use these unless:

• You have tried everything else.

• You fully understand what these option do.

• You are running a benchmark and need the last one percent in
performance.

13.10.1 AIX readv() feature
This option is not available in Oracle 8.

Using the readv() feature of AIX can improve performance, but it can also
reduce performance. The actual effect must be tested before this can be
326 Database Performance on AIX in DB2 UDB and Oracle Environments

recommended on your system. In the Oracle Version 7 init.ora configuration
file, set:

use_readv = TRUE

This effectively asks the AIX kernel not to buffer reads (particularly JFS files)
and should increase performance. Because of the risk of reduced
performance, it is recommended only to try this feature when desperate for
extra performance.

The performance benefit is low, and the risk is high.

13.10.2 AIX direct I/O
This is available in AIX but not implemented within Oracle. We put this in here
because other platforms that run Oracle do use this feature, and, at least, you
know that this is not an option on AIX.

13.10.3 AIX write behind
This only effects JFS file system based database files.

This effects the way AIX writes JFS files to disk. Disable the AIX feature by
setting the AIX parameter using:

vmtune -c 0

Note: To set the AIX parameter back to normal, use:

vmtune -c 8

Do not use this feature unless the machine is a dedicated database server.

For a full explanation of these parameters, see the AIX documentation or the
redbook RS/6000 Performance Tools in Focus, SG24-4989

The performance benefit is low, and the risk medium.

13.10.4 AIX disk I/O pacing
Disk I/O pacing is an AIX feature that stops disk I/O intensive applications
flooding the CPU and disks. This is changed via the low and high watermarks
via:

SMIT->System Environment->Change/Show Characteristics of OS.

If not set correctly, this can reduce performance. Test the effect of disk I/O
pacing before and after changing from the default values.
Oracle tuning 327

The performance benefit is medium, and risk is low.

13.10.5 AIX processor binding on SMP
A process (for example, Oracle processes or the application process) can be
forced to run on only one particular CPU of an SMP machine. The benefit is
increased CPU cache memory hits. The down side is that the process then
cannot be dispatched to an unused CPU. If the CPU to which it is allocated is
busy running another process at the same priority, then the process cannot
(as is normally the case) be allocated to another CPU.

Use the bindprocessor command.

This feature is only available on AIX Version 4 and above. You can use this
feature to bind the main Oracle processes to different processors with good
effect. Also, if the SQL*Net listener is bound, all the processes it creates (for
example the Oracle servers used to connection the remote application
process) are also bound to that CPU. This can be used to limit remote
connects to particular processors.

This may increase performance by 15 percent.

Note, this is rarely done on production machines because it can also reduce
performance unless carefully and permanently monitored and measured. For
a full explanation of these parameters see the AIX documentation or the
redbook RS/6000 Performance Tools in Focus, SG24-4989.

The performance benefit is medium, and the risk is medium.

13.10.6 AIX spin count on SMP
This parameter was removed in Oracle 8.1.5 (it is a hidden parameter, and we
recommend that it is not changed). It can reduce, in earlier Oracle versions,
internal latch contention. In the Oracle init.ora configuration file, the default is:

spin_count = 2000

In AIX 4.3.3, many improvements have been made regarding processor
affinity within AIX to improve performance, and also Workload
Management has been introduced. Therefore, the bindprocessor

command is hardly of any benefit any more with AIX Versions from
4.3.3. onwards.

Note
328 Database Performance on AIX in DB2 UDB and Oracle Environments

Increasing this means the process will spin longer waiting for the process on
other processors to free the latch so that it can immediately continue. Setting
this to zero can help when CPU usage is very high. The latest and fastest
processors can benefit from a large spin_count (because they spin faster,
and, therefore, a higher count is needed to make the waiting for the latch
duration to be the same time as on slower machines). In this case, doubling
the spin count can increase throughput.

The performance benefit is medium, and the risk is medium.

13.10.7 AIX process priority

Only the root user can set this using the setpri() system call. Normally, you
need to be a C programmer to use this option.

The performance benefit is medium, and the risk high. Therefore, we do not
recommend to use this functionality.

13.10.8 AIX process time slice
Only the root user can set the process time slice value using the schedtune

command. This is found in the bos.adt.samples fileset and will be
/usr/samples/kernel/schedtune. This command can increase the time a
process is allowed to run on a CPU before the scheduler removes it in favor of
another runable process.

If it is found on a very busy system with hundreds of processes in which many
Oracle or application tasks nearly finished but then get taken off the CPU and
have to wait to be scheduled again to finish the task. In this case, letting the
process run a little longer would mean the task is finished and, thus, reduce
response times. This is not easy to determine. The best way is to increase the
time slice and try to measure the effect on performance.

Getting this wrong may crash your machine.

Increasing the priority (reducing the number) can improve performance if
there are a lot (hundreds) of runnable processes on the machine. Oracle
Version 7 provides a setorapri command to do this:

setorapri 39

This may increase performance by 15 percent. This is not available for
Oracle 8.

Attention
Oracle tuning 329

We do not recommend to test this on production systems. Check the AIX
documentation or the redbook RS/6000 Performance Tools in Focus,
SG24-4989, for further information.

The performance benefit is low, and the risk medium.

13.10.9 AIX free memory
For JFS database files, there can be a copy of the disk block in both the
Oracle SGA buffer cache and in the AIX buffer cache. This double buffering
can affect performance and cause disk I/O bottlenecks. There are two AIX
buffer cache tuning parameters that determine the size of the free list:

• minfree - Below this limit, page stealing starts trying to reclaim memory
pages.

• maxfree - Above this limit, page stealing stops.

The numbers are the number of pages. For a full explanation of these
parameters, see the AIX documentation or the redbook RS/6000
Performance Tools in Focus, SG24-4989

Increase minfree and maxfree using the vmtune command. This way, the read
page ahead algorithm does not reduce the amount of free memory pages all
the way down to zero so that there is always free memory for disk I/O. AIX
naturally tries to keep used memory pages for as long as possible in case the
contents can be reused and; so, disk I/O can be avoided. This means the
memory free list on AIX is always small (after the system has been running
for a while).

On machines with large memory (512 MB or more), you should try to keep a
small amount of free memory. Making minfree and maxfree larger should
increase the free memory slightly. This means always wasting a little memory,
but also means disk I/O is not delayed. For example, keeping 128 pages free
by using:

vmtune -f 128 -F 144

On machines with less memory (less than 512 MB), do not change these
parameters.

We recommend that only experienced AIX administrators change these limits,
as it can, if set wrong, cause a system to perform slowly or strangely.

The performance benefit is medium, and the risk is medium.
330 Database Performance on AIX in DB2 UDB and Oracle Environments

13.10.10 AIX buffer cache size
This depends much on the workload and I/O characteristics of your database
and whether you are using a JFS file system based database or raw devices.

There are two AIX buffer cache tuning parameters that determine the AIX
buffer cache size:

• minperm - Below this limit, file and code pages are stolen.

• maxperm - Above this limit, only file system pages are stolen.

The numbers are pages of memory used by the buffer cache. A simplistic way
of remembering this is that AIX will try to keep the AIX buffer cache size
between minperm and maxperm percentage of memory. Use the vmtune

command with no parameters to determine the current values of the minperm
and maxperm. At the bottom of the output is the total pages in the system.
Look for:

number of valid memory pages = [number]

Also, at the bottom of the output is the percentages of memory that the values
of minperm and maxperm work out too, which is often more helpful. To
change minperm and maxperm, you have to work out the actual number of
pages that will work out to the percentages you are aiming for.

The defaults should work out to approximately 20 percent and 80 percent of
memory.

13.10.10.1 Buffer cache size for a JFS based database
For JFS based databases, you are using the AIX buffer cache.

On machines with large memory (1 GB or more), you will find that 20 percent
of memory is not available for file system cache (200 MB). This is a large
amount of memory. There are two cases to consider:

• On systems that have only a few or small applications, this memory is not
all used up by the application or RDBMS code. In this case, raising
maxperm will make more of this memory available for AIX buffer cache
use. For example, change maxperm to 95 percent of memory.

• On systems with very large applications, you might find that AIX keeps
stealing application code pages, which results in continuous paging of
application code. In this case, lowering maxperm will allow higher
percentage of memory to be allocated to application code and; therefore,
reduce paging. For example, change maxperm to 70 percent of memory.
Oracle tuning 331

On machines with less memory, do not change these parameters or be very
careful, as the default values have been found to work well.

13.10.10.2 Buffer cache size for a raw device based database
For raw device (also called raw disk, partition, or logical volume) based
databases, you are not using the AIX buffer cache to any great extent. It is
actually being used for disk I/O for AIX processes and, for example, RDBMS
error log files, but the bulk of the RDBMS disk I/O is bypassing the AIX buffer
cache (that is a major point of using raw devices).

On machines with large memory (say 1 GB or more), that are only running an
RDBMS, you will find that between 20 percent and 80 percent of memory has
been earmarked for the AIX buffer cache. But the Oracle SGA is occupying a
large part of memory. For example, the SGA might be 50 percent of memory;
so, the other 50 percent is used shared between processes and buffer cache.
This means the values of 20 percent to 80 percent are not a sensible setting.
We might page out process memory (code or data) from memory
unnecessarily.

When the system is running normally, use the vmtune command with no
parameters to determine the amount of memory used for the buffer cache. At
the end of the output, you will find a line like:

number of file memory pages=[number] numperm=[num] percent of real
memory

The second number (the numperm percentage) is the one to think about. If
this is less than the minperm (on the line above), then we have the memory
pages being stolen from code and file system buffer cache equally. This
results, probably, in unnecessarily paging out processes.

Another way to look at this is to say that the file system buffer cache should
be 20 percent to 80 percent of the memory not occupied by the Oracle SGA.
If, for example, the SGA is 50 percent of memory, then the buffer cache
should be 10 percent to 40 percent. The important value is that of minperm.
You could never reach the 80 percent default value of maxperm because the
SGA is taking up a large part of memory.

There are a number of cases to consider:

• If minperm is greater than 20 percent of the non-SGA memory, set
minperm to be this value and reconsider once the system has settled
down.

• If the numperm number is greater than minperm, you should consider
allocating more memory to the Oracle SGA.
332 Database Performance on AIX in DB2 UDB and Oracle Environments

• If numperm is smaller than minperm, you are freeing processes
memory and should reduce minperm. For example, change minperm to
2 percent of memory.

The performance benefit is medium, and the risks are low.

13.11 Oracle tuning hints

This section contains tuning hints for Oracle itself but specifically running on
AIX.

13.11.1 Oracle installed according to Oracle Flexible Architecture
Oracle has defined a standard way to install Oracle on UNIX systems and
how to layout the directory structure. This is called the Oracle Flexible
Architecture (OFA). This should be followed closely. It has been developed
from a great deal of experience. Many DBA tasks are simplified by using this
standard, and it will help anyone joining the team to understand where
everything is placed.

The performance benefit is medium, and there are no risks.

13.11.2 Oracle ARCHIVEMODE
Never ever run your database in NOARCHIVEMODE, as it cannot be
recovered.

The performance benefit is none. It is a recovery issue, and there are no
risks.

13.11.3 Oracle control files
Always have three control files on different disks. This might be a case for
having one of them on the AIX operating system disk just to make sure you
always have one available for emergencies.

Performance benefit is none as it is a recovery issue and there are no risks.

13.11.4 Oracle post-wait kernel extension for AIX
This reduces the overhead of semaphore operations for interprocess
communication and locking resources internally to Oracle processes. This is
mandatory to use, or Oracle will not even start. The extension is loaded as
part of the AIX initialization at boot time and is loaded via the /etc/inittab file
and the init process.
Oracle tuning 333

Make sure the correct version is installed, that is, the one supplied with your
current version of Oracle and not from a older version of Oracle or the one
found on the machine. This file is placed in the AIX /etc directory with the
name /etc/pw-syscall (or /etc/pw-syscall4.1 with older versions of Oracle).

The performance benefit is high, and it is mandatory.

13.11.5 Oracle block size
The block size is set at create database time and cannot be altered at a later
date without exporting the entire database, re-creating it, and reloading the
database.

We recommend the following Oracle block sizes:

db_block_size=4096 for:

• Small databases (less than 10 GB).

• JFS based databases (because AIX does 4 KB pages).

• OLTP workloads where you typically only want one row in the block and
reading an extra block would not help.

• Mixed workload (OLTP and DSS) databases to assist OLTP performance.

db_block_size=8192 for:

• Large database (greater than 10 GB)

• DSS workload where reading more rows in one go can help.

• Large rows where most of the rows of the database are large, and you will
get less wastage at the end of blocks with larger blocks.

• Databases with batch workloads where the dominant database load
involves using large table scans (and not indexed single row accesses).

db_block_size=16384 for:

• For very large databases (greater than 200 GB) with DSS workloads.

The performance benefit is medium, and there are no risks.

13.11.6 Oracle SGA size
The Oracle SGA is a group of shared memory structures that contain the
database buffer cache, the shared pool, the log buffer, and the data
dictionary. The Oracle SGA cache size parameters (db_block_buffers and
shared_pool_size) are the two most critical parameters in the Oracle system.
334 Database Performance on AIX in DB2 UDB and Oracle Environments

They set the sizes on the two important caches within the Oracle SGA. These
caches make a large contribution to the RDBMS performance by saving the
machine from having to do disk I/O and from having to work out how to
perform a particular SQL statement more than once.

The golden rule is that the SGA must not be paged or swapped out. The
amount of memory that can be allocated to the SGA depends on:

• The number of users. High numbers of users need more SGA but also
require memory for their processes.

• The actual memory available.

• If the machine is a DB server or stand-alone.

Set the Oracle init.ora parameters:

• db_block_buffers

• shared_pool_size

For example, as a rough guide for initial sizing, see Table 17.

Table 17. SGA memory sizes

The performance benefit is high, and there is no risk.

13.11.7 Oracle database writers
In the AIX hint for asynchronous I/O, it is recommended that this is switched
on, but then you should set the Oracle parameters to:

For Oracle 7: db_writers=1

For Oracle 8: dbwr_io_slaves=1

Please refer to 13.6.4, “db_writers, db_writer_processes and dbwr_io_slaves”
on page 307 for more information.

The performance benefit is medium and no risk.

System type Stand-alone
percent of memory

Server only
percent of memory

OLTP 30 percent 40 percent to 60 percent

DSS 40 percent to 70 percent 50 percent to 80 percent
Oracle tuning 335

13.11.8 Oracle buffer cache hit ratio tuning
To tune the Oracle SGA buffer cache you need to know the buffer cache hit
ratio.

This can be determined by using the utlbstat.sql and utlestat.sql scripts.
See 10.1.2, “Oracle monitoring tools” on page 215 for more information.
Within the report.txt file, you will find all the statistics needed.

Then, calculate the hit ratio as:

1 - (physicalreads/(db block gets + consistent gets)) *100

As an alternative to the utlbstat and utlestat scripts to just get the statistics
needed to do this calculation, use the SQL statement found in B.2.2, “Buffer
cache hit ratio - manual” on page 374.

If you want to get Oracle to do the mathematics for you, then run the SQL
statement found in B.2.3, “Buffer cache hit ratio - automatic” on page 374.

To change the size of the buffer cache, change the db_block_buffers Oracle
parameter and restart Oracle.

If the cache hit ratio is low (below 80 percent), then increasing the buffers
should increase performance.

The report.txt file also includes estimates on the effect of changes to the
buffer cache.

Some DSS databases that read vast quantities of data into the cache may
never have high cache hit ratios. Using the sort_direct_writes,
sort_write_buffers, and sort_write_buffer_size parameters can help increase
the hit ratio.

The performance benefit is high, and there is no risk.

13.11.9 Split the database disks from the AIX disks
The disk access patterns of a database, and that of the various parts of the
AIX operating system, are very different. If they share disks, the database
performance will slow down for unexpected reasons, such as users copying
files or some paging taking place. If a disk contains both AIX and the
database files, it also makes it much harder to identify the cause of a
problem, and more advanced tools will be needed.

The performance benefit is high, and there is no risk.
336 Database Performance on AIX in DB2 UDB and Oracle Environments

13.11.10 Oracle redo log should have a dedicated disk
For databases that update and insert a large number of records, the redo log
can rapidly become the bottleneck. The redo log is unique in the database
because it is only a serial write I/O activity (the rest of the database tends to
do random read and write). The log benefits from having a dedicated disk so
that the disk heads are always at the right place.

The performance benefit is high, and there is no risk.

13.11.11 Mirror the redo log or use RAID 5 fast-write cache option
The redo log is vital for all recovery of the database in the case of a disk
failure but is, in itself, a single point of failure, unless it has some sort of disk
protection. It is write only. This is not suitable for a RAID 5 without the
fast-write cache option. The other alternative is a disk mirror.

The performance benefit is high and no risk.

13.11.12 Oracle redo log groups or AIX mirrors
There are two methods of protecting the redo log for recovery purposes.

The first, historically, is using Oracle redo log groups. Oracle saves the log
data to two or three different logs. Each log is identical, but this works on any
Oracle supported platform. If one redo log disk fails, the other is available for
recovery. See the Oracle Concepts manual for the full details.

The other way is to just use one redo log group (so Oracle only outputs one
log), but protect this with AIX mirroring for recovery purposes.

Some sites use both, for example, three redo log groups each of which are
mirrored. This results in six copies of the log, which seems like overkill and
paranoia. This can be the results from physical layout policies that do not
make sense for advanced operating systems, such as AIX. The argument is it
protects from corruption from both Oracle and AIX, but, in most cases, the
corruption would be found in all six copies.

We recommend only using AIX mirroring to protect the redo log. Using the
Oracle redo log groups results in Oracle making multiple write system calls
(one for each redo log group), which is less efficient.

The performance benefit is low, both methods work fine, and there are no
risks.
Oracle tuning 337

13.11.13 Oracle parallel recovery
In the Oracle init.ora configuration file, set:

recovery_parallelism=[number of processors but not less than 2]

This means that the recovery, as the result of a system or Oracle failure, will
be faster, as it will make use of all the processors on an SMP machine.

The performance benefit during recovery is high and no risk.

13.11.14 Oracle db_file_multiblock_read_count parameter
This feature is used by Oracle to read-ahead blocks when it is doing a
sequential read through a file, such as full table scans. For example, if the file
has one table in it or is within a range of blocks on the disk (the table was
loaded that way), then a full table scan does sequential reads. AIX will also
attempt read-ahead for JFS based files but not for raw device.

For OLTP type workloads that do random read and write disk I/O, this
parameter will have no effect and is best left at the default value.

In the Oracle init.ora configuration file, set:

db_file_multiblock_read_count = [8, 16 or 32]

This should be set so that db_block_size * db_file_multiblock_read_count is
greater than the LVM stripe size.

The performance benefit is medium, and there is no risk.

13.11.15 Oracle redo buffer latch
Set the following init.ora file parameters:

log_small_entry_max_size= 0 (removed in later versions of Oracle)

log_simultaneous_copies=[3 times the number of processors]

The performance benefit is medium, and there is no risk.

13.11.16 Oracle redo buffer size
Use the utlbstat and utlestat scripts to determine if the redo buffer has filled
up and transactions have to wait for free space. See 10.1.2.4, “The
UTLBSTAT/UTLESTAT monitoring tool” on page 217.
338 Database Performance on AIX in DB2 UDB and Oracle Environments

Look for the line with redo log space requests. If it is not there, then the value
is zero, and the size is large enough. If this is more then 10, then it is
important to increase the buffer size.

Alternatively, run the SQL statement in B.2.5, “Redo log buffer too small” on
page 375.

The performance benefit is low unless the buffer is too small and no risk.

13.11.17 Oracle shared pool size
Run the SQL statement in B.2.4, “Shared pool free memory” on page 374 and
check the amount of shared pool free memory in the SGA. Often the
shared_pool is too large, as DBAs like to play safe.

If it is zero, then the dictionary cache and library cache hit ratios need to be
determined. The library cache and dictionary cache are part of the shared
pool, and the statistics are reported in the utlbstat and utlestat scripts (see
10.1.2, “Oracle monitoring tools” on page 215).

Understanding these ratios is complex, and the best reference is the Oracle 8
Server Tuning manual. If in doubt, make the shared pool size larger.

The performance benefit is medium and medium risk.

13.11.18 Oracle tablespace and table creation
Always create the tablespaces and tables with the optional storage options
and, in particular, the INITIAL and NEXT options.

Always set the PCTINCREASE option to zero to stop new extents from being
created with ever bigger sizes. Otherwise, this will eventually both waste disk
space and make the next extent size so large it will not fit in the tablespace
and cause a transaction insert to fail or data loads to fail unexpectedly.

Old rumors about keeping the number of extents to one or a low number for
performance reasons are no longer true (within reason). Anything below 100
extents for large files (512 MB or more) is fine.

The performance benefit is medium and no risk.

13.11.19 Number of Oracle rollback segments
For OLTP systems, each transaction has to have an allocated rollback
segment space to hold older copies of rows for database consistency during
Oracle tuning 339

the transaction and to roll back the transaction if it aborts. Investigate the roll
back with the SQL statement in B.2.6, “Rollback segment” on page 375.

This details the active transactions using the roll back (XACTS) and the
number of waits (WAITS) that transactions have had to endure.

Zero WAITS is the goal. This would mean no transaction have been blocked
due to this resource. WAITS higher than zero indicates there are not enough
rollback segments.The active transactions help you to decide if they are
overused. Just one user is great, up to four is okay, but over that, it is likely to
cause more problems.

Deciding the number of rollback segments to create is difficult. See 13.6.11,
“rollback_segments” on page 309 for a little more information.

The performance benefit is medium and no risk.

13.11.20 Oracle parallelization
High parallelization and high numbers of users can cause a major bottleneck
in the system, as too many processes are all requiring CPU, memory, and
Disk I/O. If parallel queries are being used, then the amount of parallelization
has to be predetermined and decided at the table or SQL level. However,
when running, the effect can be monitored. If:

• Too low

This results in the CPU and disks not reaching high utilization, and the
response times are longer than necessary.

When users are making peak use of parallel queries, check the CPU
usage to determine if there is spare capacity and increase
parallel_max_servers to suit.

• About right

Look for nicely balanced system utilization - All the CPUs are 70 percent
busy, no or little paging occurs, and the disks are less than 40 percent
busy.

• Too high

This results in CPU 100 percent utilized or disks above 60 percent utilized,
poor response times for other work, and running out of parallel servers.

The numbers of parallel servers is controlled with the parallel_min_servers
and parallel_max_servers init.ora parameters.

Check the use of parallel query servers with the following SQL:
340 Database Performance on AIX in DB2 UDB and Oracle Environments

select *
from v$pq_sysstat;

If the Servers Busy value is the same as parallel_max_servers, then this
needs tuning. In this case, the amount of parallelization needs to be
reduced.

The performance benefit is medium, and the risks are low.

13.11.21 Oracle archiver buffers
The log_archive_buffer_size effects the performance of the archiver, which is
used to copy log files to other resources; so, redo log space can be reused
later. Set the Oracle init.ora file parameters:

log_archive_buffer_size=[upto 128]
log_archive_buffer=[default of 4]

If the archive process uses large, and many, buffers, then its speed can be
increased, but it can then take large amounts of CPU, memory, and disk I/O.
This may effect the online user response time; so, be careful and monitor the
effect of the archiver on performance of the system as a whole.

This may give 20 percent better performance of the archiver.

The performance benefit is medium, and the risks are low.

13.11.22 Oracle use TRUNCATE rather than DELETE all rows
If you need to remove all the rows from a table, it can take a long time to do
this as part of a transaction with the DELETE statement. Oracle has the
TRUNCATE statement that does this by removing all the extents from the table,
which is an extremely efficient and fast way to remove the rows.

The performance benefit is large, and there are no risks.

13.11.23 Oracle marking and batch deleting rows
Many databases do not remove rows from the database, as this historical
information can be useful, for example, for further sales and marketing
analysis. Deleting rows can result in a database full of blocks that are not full
of data any longer - a form of fragmentation.

One technique is not to remove rows at all but to have an extra column that
signifies the row is no longer needed. Some databases use a deleted date
and a column for who deleted it or why it should be deleted. Then, a batch job
runs later to remove or achieve the data.
Oracle tuning 341

The performance benefit using this technique is small, and there are no risks.

13.11.24 Oracle SQL*Loader I/O buffers
While loading data with SQL*Loader, it ends up waiting for the disk I/O to
complete. Increasing the SQL*Loader BUFFERS parameter will greatly
improve load performance.

The performance benefit is high, and there are no risks.

13.12 Other tuning hints

This section includes a few further tuning hints for networking and compiling.

13.12.1 Network TCP/IP
SQL*Net V2 uses 2 KB packet sizes. The underlying packet size is 1 KB for
most installations. The packet size can be changed with SQL*Net connection
string parameters.

The performance benefit is medium, and the risks are high.

13.12.2 Compiling programs with embedded Oracle SQL
When compiling programs with embedded SQL statements (for example,
Pro*C), use the best optimization level provided by the compiler. For AIX and
the C compiler use: -O. This is the same as the -O2 optimization level.
Although -O3 is available, it can make small code order changes and requires
extra detailed application testing.

If you are compiling an application on one machine to run on that same
machine or identical machines at the same AIX and Oracle version, we
recommend you to use the default compiler options. If, however, you are
compiling for many different RS/6000 machines (which may not be under your
control), we recommend compiling for common mode. Use:

-qarch=COM for common mode (this will runs all RS/6000s)

Only use the following if you need that last 2 percent in performance and
know that the code will never run on alternative hardware.

-qarch=PWR for POWER only machines

-qarch=PWRX for POWER2 only machines

-qarch=PPC for POWERPC only machines
342 Database Performance on AIX in DB2 UDB and Oracle Environments

The performance benefit is medium, and the risks are low.

13.13 Books for Oracle database administration and tuning

The aim of this section is to give you some comments on the Oracle books
that are listed in the bibliography.

• Oracle 8 Server Concepts Volume 1 and 2 from Oracle Corporation,
A54646, explains Oracle well.

• Oracle 8 Server Tuning from Oracle Corporation, A54638 is a good start in
tuning Oracle but very theoretical and general.

• Oracle Performance Tuning - Tips and Techniques, ISBN 0-0788-2434-6,
has excellent coverage, a lot of hands-on examples, and includes Oracle
8.

• Oracle for AIX Performance Tuning Tips from Oracle Corporation, A32146
is excellent for covering AIX specifics but was published in 1995.

• Oracle 7 Performance Tuning Tips for UNIX from Oracle Corporation, part
number A22535 is a good summary of tuning Oracle plus the Oracle
Flexible Architecture.

• Oracle 8 & UNIX Performance Tuning by Ahmed Alomari from Prentice
Hall, ISBN 0-1390-7676-X. 310 pages. A good hands on tuning book with
large OLTP and DSS tuning sections but does not cover AIX.

• Oracle Performance Tuning by Peter Corrigan and Mark Gurry from
O’Reilly, ISBN 1-5659-2048-1, 600 pages. Good book covering application
tuning too

• Oracle Backup and Recovery Handbook by Rama Velpuri from
Osbourne/McGraw-Hill, ISBN 0-0788-2106-1. 380 pages. All you need to
know about the subject.

• OCP Training Guide: Oracle DBA by Willard Baird II from New Riders,
ISBN 1-5620-5891-6. 500 pages. Good all round coverage of DBA role
including performance tuning.
Oracle tuning 343

344 Database Performance on AIX in DB2 UDB and Oracle Environments

Chapter 14. Austin - we have a problem!

In this chapter we detail what to do in case of a performance problem that you
cannot solve or you think is not going to be solved by performance tuning of
the RS/6000 hardware, the AIX operating system, the database or the
application.

The structure is as follows

1. How to get and use perfpmr to collect performance data.

2. What you can do today in order to drastically reduce the time it will take to
resolve a performance problem.

3. Information about how to raise a PMR in the most effective. way.

4. A list of common issues that cause problems.

The aim is to reduce the chances of a problem and to get the problem
resolved sooner.

14.1 Perfpmr - the performance data collection tool

As most performance problems are complex, support will want a lot of
information to allow them to check all the likely causes. To help in this AIX has
a tool used to collect this data called perfpmr. Until AIX 4.3.2 this was
supplied with your copy of AIX and can be found in the bos.perf.pmr fileset.
Improvements are made to this tool regularly, based on experience of tracking
down performance problems. From AIX 4.3.3 on perfpmr has to be obtained
from the ftp site as described in the following section.

14.1.1 Get the latest version of perfpmr
To get the latest copy of perfpmr go to the following URL with your Internet
browser:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/

Then take the link to the version of AIX which is on the machine with the
problem. Read the readme file and print it. Then download the perfpmr

This chapter assumes you have a support contract with IBM or an IBM
Business Partner, so that you can open a Problem Management Record
(PMR) to resolve the problem.

Note
© Copyright IBM Corp. 1999 345

package, it is roughly 150 KB in size. Copy these to the problem machine and
follow the instructions in the readme file.

Some parts of the perfpmr data collection will only work if the
bos.adt.samples and perfagent.tools filesets are loaded onto the machine. If
these are missing (check with lslpp -l bos.adt.samples perfagent.tools) then
less information will be collected. This fileset can be found on your AIX media
and can be installed via smitty installp. We recommend loading this fileset.

If you are running the version from the ftp site, place the downloaded file in a
sensible directory as the root user before running perfpmr. Uncompress the
file with the uncompress, unpack the files with the tar command and add that
directory to your PATH variable. Also, note this version is executed with the
perfpmr.sh command and the output goes into the current directory.

A simple collect for 10 minutes (600 seconds) would need the following:

mkdir /tmp/perfdata
cd /tmp/prefdata
perfpmr.sh 600

Please make sure that there is enough space in the filesystem where you
collect the performance data in (in our example it would be /tmp). Especially
trace outputs can get huge, particularly on busy SMP systems. Allow a
minimum of 25 MB up to 50 MB. On very large and busy systems you might
need to allow more space.

Once finished it is worth looking in the *.sum files as these are the summary
of the configuration and performance data. The config.sum file has the
configuration details and can be useful in disaster recovery as it has all the
filesystems, volume group and logical volume details. The monitor.sum file
contains a summary of the performance data.

14.1.2 AIX media supplied version
If you are using the AIX media supplied version then do the following as the
root user before running perfpmr:

export PATH=$PATH:/usr/sbin/perf/pmr

This version is executed via the perfpmr command and will place the results in
/var/tmp/perf.

However, it is not recommended to use this version of perfpmr because it
collects less data than the latest version from the ftp server. The shipment of
the bos.perf.pmr fileset is discontinued with AIX 4.3.3 and further releases.
346 Database Performance on AIX in DB2 UDB and Oracle Environments

14.2 Before you have a problem

One of the hardest issues in resolving a performance problem is determining
what has changed on the machine that has caused the problem. This can be
made simple by comparing the configuration and performance data of the
machine with and without the problem. This can only be achieved when you
have captured the performance data before the problem arises.

The Austin Performance team therefore recommends that customers collect
perfpmr data before and after making changes to the system. Any change to
the following can effect performance:

• Hardware configuration - adding, removing or changing things such as
how the disks are connected

• AIX - installing or updating a fileset, installing PTFs and changing
parameters

• Database - installing new versions and fixes

• Database - configuration or changing data placement

• Database tuning

• Application changes

• Tuning options in AIX, RDBMS or application

One option is to run perfpmr before and after each change. The alternative is
running perfpmr at regular intervals like once a month and save the output.
When a problem is found, the previous capture can be used for comparison. It
is worth collecting a series of perfpmr outputs in order to support the
diagnostics of a possible performance problem.

The Austin Performance team also recommends collecting perfpmr data for
various periods of the working day, week or month when performance is likely
to be an issue. For example you may have workload peaks:

• in the middle of the mornings for online users

• during a late night batch run

• during the end of month processing

• during major data loads.

Collect perfpmr data for each of these peak in workload as a performance
problem might only cause problems during one of these periods and not
during other times.
Austin - we have a problem! 347

14.3 Raising a Problem Management Record (PMR)

If you are going to raise a problem via your support channel then it is worth
preparing, in advance, the information that you will be asked to supply to
allow the problem to be investigated. Your local support people will attempt to
solve your performance problem directly with you and quickly. But if it is a
complex problem (and performance problems frequently are) then it will
eventually be escalated to IBM Austin - the home of the RS/6000 and AIX
development.

First, note that PMRs will be given a severity:

Severity 1 The production system is not available and someone, for
instance the system administrator, has to be available for
assistance 24 hours a day.

Severity 2 The system has reduced function and someone will be
available during the day.

Severity 3 All other problems.

Severity 4 Requests for information.

So only request a Severity 1 problem if you are willing to have people
available 24 hours a day to assist the gathering of information and
implementing tools and a solution. Also make sure that you supply:

• the name of the technical person working on this problem who has root
access to the machine involved

• the telephone number

• an e-mail address

• that you have FTP access to the Internet for downloading updates

• access to fixdist for downloading PTFs

Next get the latest version of perfpmr see Part 14.1, “Perfpmr - the
performance data collection tool” on page 345 and collect the performance
information. You can then supply this data when requested and even
volunteer to provide this information when opening the PMR in order to save
time. Often support will ask you to ftp the perfpmr output to them.

Three further ways you can help to get the problem resolved faster are:

1. Provide a clear written statement of the problem but be sure to separate
the symptoms and facts from the theories, ideas and your own
conclusions. PMRs that report - "the system is slow" are going to require a
348 Database Performance on AIX in DB2 UDB and Oracle Environments

lot further investigation to simply workout what you mean by slow, how it is
measured, and what is acceptable performance.

You should try to provide all the information detailed in the Table 18 on
page 349 at the start. This will save a great deal of time.

2. Confess immediately everything that has changed on the system in the
weeks before the problem - missing out something that changed will block
a possible directions for the team to investigate and will only delay finding
a resolution. Do not hide facts because you think they should not effect
performance until later. If all the facts are available, the performance team
can eliminate the unimportant ones quickly.

3. Supply information on the correct machine. In very large sites it is easy to
accidentally collect the data on the wrong machine - this makes it very
hard to investigate the problem.

14.3.1 PMR information
This table is to help you gather all the information about the machine,
configuration and performance to allow the experts to investigate the problem
without spending time asking lots of questions. You might want to photocopy
this table and filling in the answers.

Table 18. PMR basic information

Area Details Your answers

RS/6000 Basics Model

RAM

Number and type of disks
(include any documentation
you have on the disk layout)

Versions AIX

Database

Application

Workload type OLTP, DSS, Batch, Web, other

Network Number and type of networks
Austin - we have a problem! 349

Symptoms System error log entries

Database error log entries

Error messages

Original response time and
current response time

Is everything slow or just
some things?

Does the slow behavior also
occur when the system is idle?

Original throughput and
current throughout

Do processes hang?

Does the system hang or did it
crash? How did you recover
from this situation?

Can the problem be demonstrated with the execution of a specific command or sequence of events?
If client/server, can the problem be demonstrated when run just locally on the server?

System dump Setup a system dump or even
have one available

Normal behavior State what you normally
expect

Performance CPU percent busy

SMP - are all CPUs used?

Disks average percent busy

Disks top disk percent busy

Area Details Your answers
350 Database Performance on AIX in DB2 UDB and Oracle Environments

14.4 Most common sources of database performance PMRs

Below are the causes of the most common issues raised as database
performance PMRs to the IBM Austin team. We include this list as it might
help you avoid one of these problems:

• Maximize the database’s use of real memory but do not cause paging on
the system. Also lowering the AIX filesystem buffer cache maximum size
can help.

• Incremental upgrades and changes allow the quickest diagnosis.

• Do not upgrade AIX, the database and the application all together.

• Do not change software at the same time as changing hardware
configurations such as the disk layout.

• Do not change software at the same time as changing database
parameters or data placement.

• AIX databases generally benefit from using raw devices, if this does not
cause backup problems.

• SSA disks are not faster than SCSI disks. The SSA subsystem supports
more disks, are easier to configure and manage, and the interface allows
more thoughput, but the disks are the same.

• RAID 5 frequently has poor write performance but may be difficult to notice
initially because the write cache on the device might help for a certain
amount of updates. However, this problem is solved, to a large extent, if
the latest SSA Advanced RAID adapters with the fast-write cache option
are used.

• SMP systems allow higher capacity but single threaded transactions will
run no faster than 1 processor allows. To make use of SMP systems,

Actions What you have tried?

Anything you changed?

Any ideas you have

Anything unusual you have
seen

Does rebooting the system
make the problem disappear
for a while?

Area Details Your answers
Austin - we have a problem! 351

single large tasks need to be broken down into parts that can be executed
concurrently to make use of the whole machine.

14.5 Avoiding the next performance crisis

Once the problem is resolved, try to think of a way in which this situation can
be avoided next time.

For example:

• a test system to check software combinations and tuning options

• a better regression test after loading new versions, features or bug fixes

• the means to quickly remove a change to the system

• extra disk space to allow two versions to co-exist

• better change control procedures

• collecting before and after performance data (see Part 14.2, “Before you
have a problem” on page 347)

• further education and training to enhance skills
352 Database Performance on AIX in DB2 UDB and Oracle Environments

Appendix A. AIX performance tools summary

This appendix is a summary, meant as a quick reference, of the most
important AIX commands that can help in monitoring and tuning RDBMS
performance on AIX. Many of these commands, including the commands that
update AIX parameters, require root permission to run. Only the most
commonly used options are provided for each command. Please consult the
following references for more detailed information related to monitoring AIX
system performance:

• AIX V 4.3 Commands Reference, SBOF-1877

• AIX Performance Tuning Guide, SC23-2365

• Understanding IBM RS/6000 Performance and Sizing redbook,
SG24-4810

• RS/6000 Performance Tools in Focus redbook, SG24-4989

AIX standard documentation can be found at:
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

IBM Redbooks can be found at:
http://www.redbooks.ibm.com

A.1 Summary of performance bottlenecks

The guidelines contained in Table 19 can be used to determine potential
bottlenecks on your system and the referenced tools can be used to
determine the current values of the thresholds. If the values are over one of
the listed thresholds, it is possibly a feature of your configuration or
application, so do not assume that a performance problem exists. The most
reliable input on system response times most often comes from the users of
the system.

Table 19. Performance bottleneck thresholds

CPU bound when %user + %sys greater than 80% (vmstat)

Disk I/O bound when %iowait greater than 40%1 (AIX 4.3.3 or later) (vmstat)

Application disk
bound

when %tm_act greater than 70% (iostat)

Paging space low when paging space greater than 70% active (lsps -a)
© Copyright IBM Corp. 1999 353

A.2 filemon - File I/O Monitor

The filemon command is used to monitor the performance of the file system
and report the I/O activity on behalf of files, virtual memory segments, logical
volumes, and physical volumes. The global reports list the most active files,
segments, logical volumes, and physical volumes during the measured
interval. They are shown at the beginning of the filemon report. By default,
the logical file and virtual memory reports are limited to the 20 most active
files and segments, respectively, as measured by the total amount of data
transferred. If the -v flag has been specified, activity for all files and segments
is reported. All information in the reports is listed from top to bottom as most
active to least active.

Syntax: filemon -i file -o file -d -Tn -P -v _O levels

Example:filemon -O all -o file.out

Start workload (in a production system workload is usually already present)
and then stop trace activity with trcstop.

Paging bound paging logical volumes %tm_act greater than 30% of the I/O
(iostat) and paging activity greater than 10 * the number of
CPUs (vmstat)

Thrashing rising page outs, CPU wait and run queue high (vmstat and
sar)

1Advanced performance tools like filemon should be used in order to determine if the
system is really I/O bound.

Most Active Files report

Column Description

#MBS Total number of megabytes transferred to/from file. The rows are
sorted by this field, in decreasing order.

#opns Number of times the file was opened during measurement period.

#rds Number of read system calls made against the file.

#wrs Number of write system calls made against the file.

file Name of the file (the full path name is in the detailed report).

volume:inode Name of the logical volume that contains the file, and the file's
i-node number. This field can be used to associate a file with its
corresponding persistent segment, shown in the virtual memory
I/O reports. This field may be blank; for example, for temporary
files that are created and deleted during execution.
354 Database Performance on AIX in DB2 UDB and Oracle Environments

Most Active Segments report

Column Description

#MBS Total number of megabytes transferred to/from segment. The
rows are sorted by this field, in decreasing order.

#rpgs Number of 4096-byte pages read into segment from disk
(page in).

#wpgs Number of 4096-byte pages written from segment to disk (page
out).

segid Internal ID of segment.

segtype Type of segment: working segment, persistent segment (local
file), client segment (remote file), page table segment, system
segment, or special persistent segments containing file system
data (log, root directory, .inode, .inodemap, .inodex, .inodexmap,
.indirect, .diskmap).

volume:inode For persistent segments, name of logical volume that contains the
associated file, and the file's inode number. This field can be used
to associate a persistent segment with its corresponding file,
shown in the file I/O reports. This field is blank for non-persistent
segments.

Most Active Logical Volumes report

Column Description

util Utilization of the volume (fraction of time busy). The rows are
sorted by this field, in decreasing order.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total transfer throughput, in Kilobytes per second.

volume Name of volume.

description Contents of volume: either a file system name, or logical volume
type (paging, jfslog, boot, or sysdump). Also, indicates if the file
system is fragmented or compressed.

Most Active Physical Volumes report

Column Description

The virtual memory analysis tool, svmon can be used to display more
information about a segment, given its segment ID (segid), as follows:
svmon -S <segid>.

Note
AIX performance tools summary 355

A.3 iostat - Disk I/O Statistics

The iostat command is used to report CPU and I/O statistics for TTY devices,
disks, and CD-ROMs. It is used to generate reports that can be used to
change the system configuration to better balance the input/output load
between physical disks.

Syntax: iostat interval count

A.4 lsattr - List attributes

The lsattr command lists the attributes of AIX resources. The sys0 resource
includes performance statistics.

util Utilization of the volume (fraction of time busy). The rows are
sorted by this field, in decreasing order.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total volume throughput, in Kilobytes per second.

volume Name of volume.

description Type of volume, for example, 120MB disk, 355MB SCSI, or
CDROM SCSI

Flag Meaning
interval number of second between outputs

count number of times to output

Examples:

iostat 10 20 20 lines output with 10 seconds between each

Report Output:

%tm_act Percentage of time active

Kbps Kilobytes per second transferred

tps Transfers per second

msps Milliseconds per seek (if available)

Kb_read Total Kilobytes read (likewise for write)

Most Active Physical Volumes report
356 Database Performance on AIX in DB2 UDB and Oracle Environments

Syntax: lsattr -El sys0

A.5 lscfg - List configuration

The lscfg command lists the details of the machine.

Syntax: lscfg [-v]

A.6 lsdev - List devices

The lsdev command lists the details of the devices in the machine.

Syntax: lsdev -C

Syntax: lsdev -Cc class

A.7 lslpp - List licensed program produce

The lslpp command lists the packages, filesets and files loaded in the AIX
system.

Syntax: lslpp [-lLa <fileset>] [-f <fileset>] [-w <filename>]

Examples:

lsattr -El sys0 outputs details of AIX parameters including minpout
and maxpout

Flag Meaning

-v outputs the full details

Examples:

lscfg outputs details of the machine

lscfg -v outputs the full details, part numbers and levels

Flag Meaning

-Cc outputs device details for one class only

Examples:

lsdev -C outputs details of all devices

lsdev -Cc class output of a particular class (memory, disk, tape, ...)

Flag Meaning
AIX performance tools summary 357

A.8 lslv - List logical volume

The lslv command lists the details of the logical volume and their placement
on the disks.

Syntax: lslv [-l] <volume group name>

A.9 lsps - List Paging Space

The lsps command displays the characteristics of paging spaces, such as the
paging space name, physical volume name, volume group name, size,
percentage of the paging space used and whether the space is active or
inactive.

Syntax: lsps -a -s [paging space]

-l <fileset> outputs the most recent levels of the fileset

-La <fileset> outputs the full details and updates of the fileset

-f <fileset> outputs the files within a fileset

-w <file> outputs the fileset the file belongs too

Examples:

lslpp -l “bos.rte.*” outputs levels of this fileset

lslpp -La “bos.rte*” outputs above plus update information

lslpp -f “bos.rte” outputs the files of this fileset

lslpp -w “/usr/bin/vi” outputs the fileset this file belongs too

lslpp -w “*installp*” outputs the files that contain any filename that
includes the directory or f ilename installp

Flag Meaning

-l outputs the placement on the disks

Examples:

lslv lv00 outputs details of the logical volume

lslv -l lv00 outputs the placement of the logical volume on disks
(physical volumes)

Flag Meaning

-a displays all paging spaces
358 Database Performance on AIX in DB2 UDB and Oracle Environments

A.10 lspv - List physical volume

The lspv command lists the details and contents of physical volumes (disks).

Syntax: lsvg [-p] [-l] <hdisk name>

A.11 lsvg - List volume group

The lsvg command lists the names of the volume group, their contents and
their details.

Syntax: lsvg [-i] [-l] <volume group name>

A.12 ncheck - Inode Check

The ncheck command is used to display the i-node numbers and path names
for filesystem files.

-s displays summary of all paging spaces

Examples:

lsps -a lists the characteristics of all paging spaces

Flag Meaning

-p outputs contents and placement

-l outputs contents of the physical volume

Examples:

lspv hdisk0 outputs volume group names only

lsvg -l hdisk22 outputs details about disk hdisk22

lsvg -p hdisk22 outputs more details about disk hdisk22

Flag Meaning

-i takes volume group names from standard input

-l outputs the details of a volume group

Examples:

lsvg outputs volume group names only

lsvg rootvg outputs the details of the volume group called rootvg

lsvg -l rootvg outputs details of volume group called rootvg
AIX performance tools summary 359

Syntax: ncheck [-a][-i inodenumber...] [-s] [filesystem]

A.13 netpmon - Network Monitor

The netpmon command is used to monitor and report on network activities and
network related CPU usage. It uses the AIX system trace to gather
information.

Syntax: netpmon -o file -Tn -P -v -O report-type

Example: netpmon -O all -o net.out

Start workload (see filemon) and then stop trace activity with trcstop.

A.14 nfsstat - Network File System statistics

The nfsstat command lists the NFS details.

Syntax: nfsstat

Flag Meaning

-a lists all filesystems including those starting with ’.’
and ’..’

-i inode finds the file(s) with these inode numbers

-s lists special and set UID files

Examples:

ncheck -a / lists all files in the ’/’ filesystem

ncheck -i 2194 /tmp finds the name for inode 2194 in /tmp

Flag Meaning

-o outputfile puts the output to a file, not stdout

-T n sets the output buffer size (default 64000)

-P forces the monitor process into pinned memory

-v Verbose (default only top 20 processes)

-O Allows the selection of one of the following options:
cpu, dd(device driver), so(socket), nfs, all

Examples:

nfsstat outputs all NFS statistics
360 Database Performance on AIX in DB2 UDB and Oracle Environments

A.15 nmon - online monitor

The nmon command is used to display all the AIX statistics on one screen and
updates them every 2 seconds. When running hit h for further help on the
options or hit q to quit. An alternative mode saves the same data to a file that
can be loaded into a spreadsheet.

Syntax: nmon [-?][-fdt]

Note: this tool is not supported by IBM and no warranty is given or implied by
including this tool in this redbook. It is available to IBM at:

http://w3.aixncc.uk.ibm.com

and to IBM Business Partners via PartnerInfo.

A.16 no - Network options

The no command lists the details of the network options.

Syntax: no -a

A.17 ps - Process State

The ps command is used to display the status of currently active processes.

Syntax: ps -a -e -f -l -p plist -u user -x .

Flag Meaning

-? output help information on running nmon

-fdt run in file output mode, including disk and top pro-
cess statisitics

Flag Meaning

-a outputs all options

Examples:

no -a outputs all network options

Flag Meaning

-a writes information about all processes, except the
session leaders and processes not associated with a
terminal to standard output
AIX performance tools summary 361

-e lists every user’s process

-f full listing

-l long listing

-p pid lists the process number N

-u user lists the specified user's processes (-u fred)

Examples:

ps -fu jim Lists user jim’s processes in full

ps -lt 04 List all processes on terminal tty04

ps -fe List all processes

Report column headings Meaning

PID/PPID Process IDentity & Parent Process IDentity

S State= Running, Sleeping, Waiting, Zombie, Termi-
nating, Kernel, Intermediate

UID/USER User IDentity/User name

C CPU recent use value (part of priority)

STIME Start time of process

PRI Priority (higher means less priority)

NI NIce value (part of priority) default 20

ADDR ADDRess, of stack (segment number)

SZ SiZe of process in 1K pages

CMD Command the user typed (-f to display more)

WCHAN Event awaited for (kernel address)

TTY Terminal processes connected to (- = none)

TIME Minutes and Seconds of CPU time consumed by the
process

SSIZ Size of kernel stack

PGIN # of pages paged in

SIZE Virtual size of data section in 1K's

RSS Real memory (resident set) size of process 1K's

LIM Soft limit on memory xx=none

TSIZ Size of text (shared text program) image

TRS Size of resident set (real memory)
362 Database Performance on AIX in DB2 UDB and Oracle Environments

A.18 rmss - Reduced Memory System Simulator

The rmss command is used to simulate a system with various sizes of real
memory that are smaller than the actual amount of physical memory installed
on the machine.

Syntax: rmss -p -c M -r

A.19 sar - System Activity Reporter

The sar command is a standard UNIX command, used to gather statistical data
about the system.

Syntax: sar -A -o savefile -f savefile -i secs -s HH[:MM[:SS]] -e

HH[:MM[:SS]] -P ALL interval number

%CPU Percentage of CPU used since started

%MEM Percentage of real memory used

Flag Meaning

-p print the current value

-c M changes to size M (in Mbytes)

-r restores all memory to use

Examples:

rmss -c 32 Change available memory to 32 Mbytes

rmss -r Undo the above

Flag Meaning

-A All stats to be collected/reported

-o savefile Collect stats to binary file

-f savefile Report stats from binary file

-i secs Report at secs interval from binary file

-s and -e Report stats only between these times

-P ALL Report on all CPU stats

CPU related output

%usr %sys Percent of time in user / kernel mode
AIX performance tools summary 363

%wio %idle Percent of time waiting for disk io/idle

Buffer Cache related output

bread/s bwrit/s Block I/O per second

lread/s lwrit/s Logical I/O per second

pread/s pwrit/s Raw disk I/O (not buffer cached)

%rcache %wcache Percentage hit on cache

Kernel related Output

exec/s fork/s sread/s swrite/s
rchar/s wchars/s scall/s

Calls of these system calls per second
exec and fork are used for process creation
sread/swrite system calls (files, raw, tty or network).
rchar/wchar the numbers of characters transferred
scall is the total number of system calls per second

msg/s sema/s Inter-process communication (IPC) for messages and
semaphores

kexit/s ksched/s kproc-ov/s Process exits, process switches and process overload
(hit proc thresholds)

runq-sz Average process on run queue

%runocc Percentage of time with process on queue

swap-sz Avgerage process waiting for page in

%swap-occ Percentage of time with process on queue

cycles/s # of page replace search of all pages

faults/s # of page faults

slots # of free pages on paging spaces

odio/s # of non-paging disk I/O per second

file-ov, proc-ov # of times these tables overflow per second

file-sz inode-sz proc-sz Entries in the tables

pswch/s Process switches per second

canch/s outch/s rawch/s Characters per second on terminal lines

rcvin/s xmtin/s Receive and transmit interrupts per second

Examples:

sar 10 100 Reports now at 10 second intervals
364 Database Performance on AIX in DB2 UDB and Oracle Environments

A.20 schedtune - Process Scheduling Tuning

The schedtune command is used to set the parameters for the CPU scheduler
and Virtual Memory Manager processing.

Syntax: schedtune -h sys -p proc -w wait -m multi -e grace -f ticks -t

time_slice -D (default)

A.21 svmon - System Virtual Memory Monitor

The svmon command is used to capture and analyze a snapshot of virtual
memory.

Syntax: svmon -G -Pnsa pid... -Pnsa[upg][count] -S sid... -i secs count

sar -A -o fred 10 6 >/dev/null Collects data into fred

sar -A -f fred Reports on the data

sar -A -f fred -s 10:30
-e 10:45

Reports for 15 minutes starting at 10:30 a.m.

sar -A -f fred -i60 Reports on a 1 minute interval rather that 10 seconds
as collected

sar -P ALL 1 10 Reports on each CPU or the next 10 seconds

Flag Meaning

-h 6 Sets system wide criteria for when process suspension begins
and ends (thrashing)

-p 4 Sets per-process criteria for determining process
suspension begins and end

-w 1 Seconds to wait before trashing ended

-e 2 Seconds exempt after suspension

-f 10 Clock tick waited after fork failure

-t 0 Clock tick interrupts before dispatcher called

-D Restore default values

Examples:

schedtune -t5 set time slice to 50 ticks

schedtune Report current settings

Flag Meaning
AIX performance tools summary 365

A.22 vmstat - Virtual Memory Management Statistics

The vmstat command is used to report statistics about kernel threads in the
run and wait queues, memory, paging, disks, interrupts, system calls, context
switches, and CPU activity. If the vmstat command is used without any
options or only with the interval and optionally, the count parameter, like
vmstat 2, then the first line of numbers is an average since system reboot.

-G Global report

-P[nsa] pid.. Process report n=non-sys s-system a=both

-S[nsa][upg][x] Segment report nsa as above plus
u = real memory, p = pinned,
g = paging, x = top x items

-S sid... Segment report on particular segments

-i secs count Repeats report at interval second & count times

-D sid... Detailed report

Detailed Report Output:

Report column headings Description

size in pages (4096)

inuse in-use

free not inuse included rmss pages

pin pined (locked by application)

work pages in working segments

pers pages in persistent segments

clnt pages in client segments

pg space paging space

Note: pages can be in more than one process

Examples:

svmon -G Global / General statistics

svmon -Pa 215 Processes report for process 215

svmon -Ssu 10 Top ten system segments in real-mem order

svmon -D 340d Detailed report on a particular segment
366 Database Performance on AIX in DB2 UDB and Oracle Environments

Syntax: vmstat interval count

Special Considerations about vmstat on AIX V4.3.2 and earlier
versions and AIX V4.3.3

AIX 4.3.3 contains an enhancement to the method used to compute the
percentage of CPU time spent waiting on disk I/O (wio time). The method
used in AIX 4.3.2 and earlier versions of AIX can give an inflated view of wio
time on SMPs in some circumstances. The wio time is reported by the
commands sar (%wio), vmstat (wa) and iostat (%iowait).

Flag Meaning

interval number of seconds between outputs

count number of times to output

Report column headings Description

r # of processes on run queue per second

b # of processes awaiting paging in per second

avm active virtual memory pages in paging space

fre real memory pages on the free list

re Page reclaims, free but claimed before reused

pi paged in (per second)

po paged out (per second)

fr pages freed (page replacement per second)

sr pages per second scanned for replacement

cy complete scans of page table

in device interrupts per second

sy system calls per second

cs CPU context switches per second

us User CPU time percentage

sys System CPU time percentage

id CPU idle percentage (nothing to do)

wa CPU waiting for pending local Disk I/O

Examples:
vmstat 10 20 20 lines output with 10 seconds between each
AIX performance tools summary 367

Method used in AIX 4.3.2 and earlier AIX versions
At each clock interrupt on each processor (100 times a second in AIX), a
determination is made as to which of four categories (usr/sys/wio/idle) to
place the last 10 ms of time. If the CPU was busy in usr mode at the time of
the clock interrupt, then usr gets the clock tick added into its category. If the
CPU was busy in kernel mode at the time of the clock interrupt, then the sys
category gets the tick. If the CPU was NOT busy, then a check is made to see
if ANY I/O to disk is in progress. If any disk I/O is in progress, then the wio
category is incremented. If NO disk I/O is in progress and the CPU is not
busy, then the idl category gets the tick. The inflated view of wio time results
from all idle CPUs being categorized as wio regardless of the number of
threads waiting on I/O. For example, RS/6000 with just one thread doing I/O
could report over 90 percent wio time regardless of the number of CPUs it
has.

Method used in AIX 4.3.3
The change in AIX 4.3.3 is to only mark an idle CPU as wio if an outstanding
I/O was started on that CPU. This method can report much lower wio times
when just a few threads are doing I/O and the system is otherwise idle. For
example, an RS/6000 with four CPUs and one thread doing I/O will report a
maximum of 25 percent wio time. An RS/6000 with 12 CPUs and one thread
doing I/O will report a maximum of 8.3 percent 'wio' time.

A.23 vmtune - Virtual Memory Tuning

The vmtune command is used to modify the AIX Virtual Memory Manager
(VMM) parameters for the purpose of changing the behavior of the memory
management subsystem.

Syntax: vmtune -p min -P max -f min -F max -r min -R max

Flag Meaning

-p min min percentage of memory reserved for file pages (default 20 percent)

-P max max percentage of memory reserved for file pages (default 80
percent)

-f min number of pages on free list, below which page stealing starts (default
120)

-F max number of pages on free list, above which page stealing stops (default
128)

-r min min number of pages to be read ahead after sequential access is detected

-R max max number of pages to be read ahead after sequential access is detected
368 Database Performance on AIX in DB2 UDB and Oracle Environments

AIX performance tools summary 369

370 Database Performance on AIX in DB2 UDB and Oracle Environments

Appendix B. Vital SQL

This appendix contains a list of vital Oracle and DB2 UDB SQL commands
commonly used on a day-by-day monitoring task. These commands do not
represent all the possible combinations, but they suggest the easiest way to
collect the basic information on an RDBMS.

B.1 DB2 UDB

DB2 UDB provides several commands that query the catalog tables and the
control files in order to retrieve a fast and valuable information output for the
database administrator.

B.1.1 List the existing tables on a database

list tables for all

or

Select substr(tabschema,1,8) as "Qualified Name",
substr(tabname,1,50) as "Table name",
CASE type

WHEN 'A' THEN 'Alias'
WHEN 'H' THEN 'Hierarchy Table'
WHEN 'N' THEN 'Nickname'
WHEN 'S' THEN 'Summary Table'
WHEN 'T' THEN 'Table'
WHEN 'U' THEN 'Typed Table'
WHEN 'V' THEN 'View'
WHEN 'W' THEN 'Typed View'

END as "Table Type",
CASE status

WHEN 'N' THEN 'Normal'
WHEN 'C' THEN 'Check Pending'
WHEN 'X' THEN 'Inoperative'

END as "Table Status"
from syscat.tables

B.1.2 Describe the structure of the columns in a table

describe table schema.table_name show detail

B.1.3 Describe the indexes defined in a table and their structure

describe indexes for table schema.table_name show detail
© Copyright IBM Corp. 1999 371

B.1.4 Describe structure of the columns within a SELECT statement

describe select column1, column2,..., columnX from schema.table_name

B.1.5 List all the tablespaces of a database

list tablespaces

or

Select tbspace as "Table Space Name",
tbspaceid as "Identifier",
CASE tbspacetype

WHEN 'S' THEN 'System Managed Space'
WHEN 'D' THEN 'Database Managed Space'
END as "Table Space Type",

CASE datatype
WHEN 'A' THEN 'Permanent Data'
WHEN 'L' THEN 'Long Data'
WHEN 'T' THEN 'Temporary Table'
END as "Type of Data Stored"
from syscat.tablespaces

B.1.6 List tablespace name, Id number, size, and space consumption

list tablespaces show detail

B.1.7 List the tablespace containers

list tablespace containers for tablespace_id show detail

B.1.8 Enable all monitor switches

UPDATE MONITOR SWITCHES USING bufferpool on;
UPDATE MONITOR SWITCHES USING lock on;
UPDATE MONITOR SWITCHES USING sort on;
UPDATE MONITOR SWITCHES USING statement on;
UPDATE MONITOR SWITCHES USING table on;
UPDATE MONITOR SWITCHES USING uow on;

B.1.9 Disable all monitor switches

UPDATE MONITOR SWITCHES USING bufferpool off;
UPDATE MONITOR SWITCHES USING lock off;
UPDATE MONITOR SWITCHES USING sort off;
UPDATE MONITOR SWITCHES USING statement off;
UPDATE MONITOR SWITCHES USING table off;
UPDATE MONITOR SWITCHES USING uow off;
372 Database Performance on AIX in DB2 UDB and Oracle Environments

B.1.10 Check the monitor status

get monitor switches

B.1.11 Reset the monitor counters for a specific database

reset monitor for database database_name

B.1.12 Show the locks existing on a database

get snapshot for locks on database_name

B.1.13 List application number, status, idle time, and AIX processes

db2 get snapshot for application on database_name | grep -E
"handle|thread|idle|status"

or

list applications show detail

Lists the aplication number, the current status, the idle time, and the
associated AIX processes.

B.1.14 List connected and effectively executing users

db2 get snapshot for database manager | grep connections

Lists the users that are connected to a database and that are effectively
executing.

B.1.15 Display the amount of memory being used for sort operations

db2 get snapshot for database manager | grep Sort

B.1.16 Display the number of deadlocks and lock escalations

db2 get snapshot for applications on database_name | grep -E "Application
Handle|Deadlock|escalation"

Displays the number of deadlock and lock escalations for each application.

B.1.17 Display the number of attempted SQL COMMIT statements
db2 get snapshot for all on database_name | grep "Commit statements
attempted"
Vital SQL 373

B.2 Oracle

Oracle SQL commands can be issued directly using Server Manager or
SQLPlus. An other way is to use predefined input files, that generate reports
which make the output easier to read and understand, and thus facilitate the
monitoring process.

B.2.1 Oracle number of transactions

SELECT value,name
FROM v$sysstat
WHERE statistic# <7 ;

This query gives you the number of transaction commits/aborts and other useful
data from this well hidden internal Oracle table.

B.2.2 Buffer cache hit ratio - manual

select name, value
from v$sysstat
where name in (’db block gets’, ’consistent gets’, ’physical reads’);

Then calculate: hit ratio as:

1 - (physicalreads/(db block gets + consistent gets)) *100

B.2.3 Buffer cache hit ratio - automatic

select (1 - (sum(decode(name, ’physical reads’, value, 0))/
(sum(decode(name, ’db block gets’, value, 0)) +
sum(decode(name, ’consistent gets’, value, 0)))))

* 100 "Hit Ratio"
from v$sysstat;

This outputs the Hit Ratio directly but please use a script to run this SQL
statement as it is complex and hard to type in correctly.

B.2.4 Shared pool free memory

select *
from v$sgastat
where name = ’free memory’;

This outputs used memory from the shared pool, so compare it to the
shared_pool_size init.ora parameters.
374 Database Performance on AIX in DB2 UDB and Oracle Environments

B.2.5 Redo log buffer too small

select name, value
from v$sysstat
where name = ’redo log space requests’;

This outputs the number of times the redo log buffer was found to be full and
the transaction waited for free space.

B.2.6 Rollback segment

select name, extents, rssize, xacts, waits, gets, optsize, status, status
from v$rollname a, v$rollstat b
where a.usn = b.usn;

This outputs the number of extents, their size, and the usage of the rollback
segments. If WAITS is more than one then more rollback segments are
needed. XACTS is the number of transactions actually using the rollback.

B.2.7 Oracle nested explain plan

select lpad(' ',2*level)||operation||' '||options||' '||object_name
query_plan
from plan_table where statement_id = 'xx'
connect by prior id = parent_id and statement_id = 'xx'
start with id =1;

B.2.8 Oracle report on tablespaces

spool tablespace.lst
set pagesize 999;

ttitle center ’TableSpaces’ skip 1 -
center ’===========’ skip 2;

column tablespace_name heading ’TableSpace’ format A12;
column initial_extent heading ’Initial|Extent’ format 999,999,999;
column next_extent heading ’Next|Extent’ format 999,999,999;
column min_extents heading ’Min|Extent’ format 999;
column max_extents heading ’Max|Extent’ format 999;
column pct_increase heading ’%|Increase’ format 999;
column status heading ’Status’ format A8;

select
TABLESPACE_NAME,
INITIAL_EXTENT,
NEXT_EXTENT,
MIN_EXTENTS,
MAX_EXTENTS,
Vital SQL 375

PCT_INCREASE,
STATUS
from user_tablespaces;
ttitle off;

ttitle center ’TableSpaces Sizes’ skip 1 -
center ’=================’ skip 2;

select TABLESPACE_NAME,sum(BYTES) from dba_data_files group by
TABLESPACE_NAME;

B.2.9 Oracle report on tables

spool table.lst
set pagesize 999;

ttitle center ’Table Sizes’ skip 1 -
center ’===========’ skip 2;

column table_name heading ’Table’ format A18;
column tablespace_name heading ’TableSpace’ format A10;
column initial_extent heading ’Initial|Extent’ format 999,999,999;
column next_extent heading ’Next|Extent’ format 999,999,999;
column NUM_ROWS heading ’Num_rows’ format 9,999,999,999;
column AVG_ROW_LEN heading ’Avg-Len’ format 99,999;
column BLOCKS heading ’Blocks’ format 99,999,999;
column EMPTY_BLOCKS heading ’Empties’ format 999,999;
column DEGREE heading ’Degree’ format A10;
column INSTANCES heading ’Instances’ format A10;
column min_extents heading ’Min|Extent’ format 999;
column max_extents heading ’Max|Extent’ format 999;
column pct_increase heading ’%|Increase’ format 999;
column status heading ’Status’ format A8;

select
TABLE_NAME,
TABLESPACE_NAME,
NUM_ROWS,
BLOCKS,
EMPTY_BLOCKS,
AVG_ROW_LEN
from user_tables;
ttitle off;

ttitle center ’Tables Defaults’ skip 1 -
center ’===============’ skip 2;

select
TABLE_NAME,
DEGREE,
376 Database Performance on AIX in DB2 UDB and Oracle Environments

INSTANCES,
INITIAL_EXTENT,
NEXT_EXTENT
from user_tables;
ttitle off;

B.2.10 Oracle report on indexes

spool index.lst
set pagesize 999;

column index_name heading ’Index’ format A20;
column table_owner heading ’Owner’ format A10;
column table_name heading ’Table’ format A18;
column table_type heading ’TableType’ format A18;
column tablespace_name heading ’TableSpace’ format A12;
column Uniqueness heading ’Unique’ format A10;
column Blevel heading ’Blevel’ format 999;
column Leaf_blocks heading ’Leaf|blocks’ format 99999999;
column distinct_keys heading ’Distinct|Keys’ format 9999999999;
column Status heading ’Status’ format A8;
column column_name heading ’Column’ format A18;
column column_position heading ’Position’ format 999;
column column_length heading ’Length’ format 999;

ttitle center ’Indexes - Info’ skip 1 -
center ’==============’ skip 2;

select INDEX_NAME,
--TABLE_OWNER,
TABLE_NAME,
TABLE_TYPE,
TABLESPACE_NAME
from user_indexes
order by TABLE_NAME;

ttitle center ’Indexes - Sizes’ skip 1 -
center ’===============’ skip 2;

select INDEX_NAME,
BLEVEL,
UNIQUENESS,
LEAF_BLOCKS,
DISTINCT_KEYS,
STATUS
from user_indexes
order by TABLE_NAME;

ttitle center ’Indexes - Columns’ skip 1 -
Vital SQL 377

center ’=================’ skip 2;
select
INDEX_NAME,
TABLE_NAME,
COLUMN_NAME,
COLUMN_POSITION,
COLUMN_LENGTH
from user_ind_columns
order by TABLE_NAME,index_name,COLUMN_POSITION;
ttitle off;

B.2.11 Oracle report on database files

spool file.lst
set pagesize 999;

ttitle center ’Database Files’ skip 1 -
center ’==============’ skip 2;

column tablespace_name heading ’TableSpace’ format A12;
column file_name heading ’File’ format A30;
column bytes heading ’Bytes’ format 999,999,999,999;
column blocks heading ’Blocks’ format 999,999,999;
column status heading ’Status’ format A12;

select
TABLESPACE_NAME, FILE_NAME, BYTES, STATUS
FROM DBA_DATA_FILES
ORDER BY TABLESPACE_NAME;

ttitle off;

B.2.12 Oracle report on extents

spool extents.lst
set pagesize 999;

ttitle center ’Tablespace Extents’ skip 1 -
center ’==================’ skip 2;

column tablespace_name heading ’TableSpace’ format A12;
column segment_name heading ’Segment|Name’ format A20;
column segment_type heading ’Seg.|Type’ format A9;
column extent_id heading ’ID’ format 999;
column bytes heading ’Bytes’ format 9999999999;
column blocks heading ’Blocks’ format 999999;

select
TABLESPACE_NAME,
SEGMENT_NAME,
378 Database Performance on AIX in DB2 UDB and Oracle Environments

SEGMENT_TYPE,
EXTENT_ID,
BYTES,
BLOCKS
from user_extents
order by TABLESPACE_NAME;
ttitle off;

B.2.13 Oracle report on parameters
spool parameter.lst
set pagesize 999;

ttitle center ’Non-Default Parameters’ skip 1 -
center ’======================’ skip 2;

col num format 9999 head ’Param#’
col name format a45 head ’Name’ wrap
col type form 9999 head ’Type’
col value form a45 wrap head ’Value’
col isdefault form a9 head ’Default?’

select name, value
from v$parameter where isdefault = ’FALSE’
order by name;
ttitle off;

B.2.14 Oracle report on free space
spool free.lst
set pagesize 999;

ttitle center ’Free Space’ skip 1 -
center ’==========’ skip 2;

column tablespace_name heading ’TableSpace’ format A12;
column file_id heading ’File|id’ format 999999;
column block_id heading ’Block|id’ format 999999;
column bytes heading ’Bytes’ format 999,999,999,999;
column sum(bytes) heading ’Bytes’ format 999,999,999,999;
column blocks heading ’Blocks’ format 999,999,999;
column sum(blocks) heading ’Blocks’ format 999,999,999;

select
TABLESPACE_NAME,
sum(BYTES),
sum(BLOCKS)
from user_free_space
group by TABLESPACE_NAME;
Vital SQL 379

ttitle off;

rem Full details but could be a large output
select
TABLESPACE_NAME,
FILE_ID,
BLOCK_ID,
BYTES,
BLOCKS
from user_free_space;
380 Database Performance on AIX in DB2 UDB and Oracle Environments

Appendix C. Reference sheets

The sections in this chapter contain reference sheets for standard SQL
syntax, as well as for specific Oracle and DB2 UDB database commands.
These reference sheets are not meant to serve as definitive references on
their particular subject areas, but merely provide an overview of the use and
syntax of some of the most commonly used SQL statements and database
administration commands.

C.1 SQL reference sheet

This is a reference sheet for Structure Query Language (SQL). It contains
numerous examples of SQL constructs and syntax with comments to explain
what each SQL command does. SQL is a fairly straight forward, simple and
readable language but still immensely powerful.

Rather than including dozens of pages in this redbook as a basic introduction
to SQL, we have opted for this concise section to act as a reference and a
reminder of SQL syntax. If you need an introduction to or advanced material
on SQL, please refer to the section “Other resources” on page 415 for some
excellent references to books on the subject.

These examples are based on the following sample tables:

create table emp(
ename varchar2(30),
job varchar2(20),
loc number(10),
deptno number(5),
salary number(12)
);

create table dept(
deptno(5),
dname varchar2(25),
);

C.1.1 Data Definition Language (DDL) commands

Data Definition Language commands allow you to create, alter and delete
database objects. They also allow you to grant and revoke certain database
level authorities and privileges.
© Copyright IBM Corp. 1999 381

C.1.1.1 CREATE TABLE
Creates a database table consisting of one or more columns to contain user
data.

create table anytable (col1 char(8) not null, col2 number(10), col3 date);

• char = Datatype

• not null = Constraints

• (8) = Length

create table localemp as select * from emp where deptno = 50;

Create table as select : results from the select clause are used to create the
new table.

Data types
Char: character values

Varchar2: same as char without padding out of defined column length with
blanks

Number: numerical values

Date: date values

Constraints
Integrity constraints restrict the value for one or more columns in a table.

Not Null - after a column definition specifies that the column must have a
value for every row.

Primary Key - one column per table that must have a unique non-null value for
that row.

C.1.1.2 CREATE VIEW
Creates alternate view of selected data or stores a complex query, which can
be queried with a select statement.

create view bigbucks as select ename employee, job, sal from emp
where sal >= 3000;

C.1.1.3 CREATE INDEX
Indexes are used to speed up access to rows in a table. They are created on
one or more columns of a table. The RDBMS decides when to use the index
based on internal optimization techniques.
382 Database Performance on AIX in DB2 UDB and Oracle Environments

Primary Key: create index empidx on emp(empno);

Foreign key: create index empdeptno on emp(deptno);

Two Part Key: create index emp2idx on emp(ename, sal);

C.1.1.4 DROP
Used to delete an object from the database, such as a table, index or view.

drop view bigbucks;
drop table emp;
drop index emp_idx;

C.1.2 Data Manipulation Language (DML) commands

Data Manipulation Language commands are used to query and manipulate
data contained in the database tables.

C.1.2.1 SELECT
Used to retrieve data from a table, view, or snapshot.

select * from emp; : retrieves all columns of data from the EMP table
select ename, job from emp; : retrieves only selected columns ename, job
select ename "Employee", job from emp; : provides alias name for column
name
select distinct job from emp; : retrieves only distinct values (no duplicates)

WHERE clause
Used to restrict the rows returned in a query based on specific criteria. The
WHERE clause is used in SQL SELECT, INSERT, UPDATE, and DELETE statements.
Compound WHERE clauses are formed by using logical operators between
clauses.

select deptno, dname, loc from dept where loc = 'Dallas';

Sub-queries
Allows a where clause to use a query result as criteria.

select ename, job from emp where deptno = (select deptno from emp where
ename = 'Smith');

Join query
Allows columns to be joined together from two or more tables in a query.

select ename, job, loc from emp, dept where emp.deptno = dept.deptno;
select ename, job, loc from dept, emp where dept.deptno = emp.deptno and
dname = 'RESEARCH';
Reference sheets 383

ORDER BY clause
Used to order or sort the data returned by the query.

select ename, job from emp order by sal; : sorts rows by sal in ascending
order

select ename, job, deptno from emp order by deptno, sal desc; : sorts by
depno and sal in descending order

GROUP BY clause
Used to group selected rows and return summary information.

select job, avg(sal) from emp group by job; : returns average salary per job

HAVING clause
Used to restrict the groups returned by the GROUP BY clause.

select job, avg(sal) from emp group by job having avg(sal) < 2000;

C.1.2.2 INSERT
Used to add rows to a table.

insert into dept (deptno, dname, loc) values (50, 'IS', 'San Francisco');

Note: character strings or dates must be enclosed in single quotes.

insert into dept values (50, 'IS', 'San Francisco'); : inserts values into all
columns in correct order
insert into newdept [col1, col2] select col1, col2 from dept [where ...]; :
insert from other tables

C.1.2.3 DELETE
Used to remove rows from a table.

delete from dept; : deletes all rows in dept table
delete from dept where deptno = 50; : deletes rows based on where clause

C.1.2.4 UPDATE
Used to change existing column values in a table.

update dept set dname = 'Networking'; : changes dname field in all rows
update dept set dname = 'Networking' where deptno = 50; : changes cols that
meet where clause criteria

C.1.3 Operators

Used to manipulate individual data items within a query and return a result.
384 Database Performance on AIX in DB2 UDB and Oracle Environments

C.1.3.1 Relational operators
Used to compare one value within an expressions to another

Table 20. Relational operators.

C.1.3.2 Logical operators
Used to create a compound where clauses using AND or OR

select ename, job from emp where job = 'CLERK' and hiredate > '03-DEC-81';
select ename, job from emp where job = 'CLERK' or job like '%MAN%';

NOT - negates conditional expression, also used in single expressions

select ename, job from emp where sal >= 3000 and NOT job = 'PRESIDENT';

C.1.3.3 ANY or ALL operators
Used when sub-queries return more than one row.

• ANY returns any true result from the sub-query back to the main query.

• ALL returns results back to the main query only when all the sub-query
results will cause the where clause to evaluate as true.

= equal to and

!= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

in matches rows that have at least one value of a defined set
select * from abc where a in ('a','b');

null matches rows that have a null value (that is no value) in the
column

not null matches rows that do not have a null value in the column

like character pattern matching - "_" (underscore) matches any
single character per underscore.
select ename, job from emp where job like
'ANALY__'; (varchar2);
select ename, job from emp where job like
'ANALY____'; (char(9));

% (percent sign) matches any number of characters at or after
its position in the value.
select ename, job from emp where job like ’AN%';
Reference sheets 385

C.1.3.4 Set operators
Used to combine the results of two component queries into a single result.

UNION : merges two result sets into one combined set

INTERSECT : selects just the common values of two result sets

MINUS : selects values in the first result set not present in the second

C.1.3.5 Expression operators
Used to perform an operation on the underlying data before returning the
result.

Arithmetic: + (plus), - (minus), * (multiply), / (divide)

Character: || (concatenate)

select firstname | ' ' | lastname from

C.1.4 SQL functions

These SQL functions are used to modify or format the data that is returned by
SQL statements. They are used to make the data more readily understood so
that the data (in the new format) can be used in the SQL WHERE clause.

C.1.4.1 Aggregate group functions
Used to select on columns to provide group summary information.

count(sal): returns count of non-null rows (numeric, character or date)

count(*): returns count of all rows (numeric, character or date)

min(sal): returns minimum value (numeric, character or date)

max(sal): returns maximum value (numeric, character or date)

avg(sal): returns average value (numeric only)

sum(sal): returns sum of rows (numeric only)

C.1.4.2 Common functions (Oracle only)
These are shorthands to use in the following section:

• f = function

• c = char values or column

• n = numeric values
386 Database Performance on AIX in DB2 UDB and Oracle Environments

Single row character functions
initcap - f(c): capitalizes the first letter of a word leaving the rest lowercase

upper - f(c): changes a string to all UPPERCASE letters

lower - f(c): changes a string to all lowercase letters

length - f(c): returns the character length of a string

lpad - f(c1,n,c2): pads c1 with n characters to the left. c2=pad character

rpad - f(c1,n,c2): pads c2 with n characters to the right. c2=pad character

substr - f(c,n1,n2): extracts a sub-string starting at n1. n2=substring length

instr - f(c1,c2,n1,n2): returns position of c2 in c1, n1=starting position in c1
n2=occurrence of c2

decode - f(expr,c1,trans1,c2,trans2,...,default): evaluates expression and
substitutes 'translation' if 'c' is present. 'default' returned if no match.

decode(salecode, 1, 'books', 2, 'toys', 'misc');

Single row number functions
Used to manipulate numeric input.

round - round(n1,n2): rounds n1 to n2 precision of decimal places

trunc - trunc(n1,n2): truncates n1 to n2 decimal places

abs - abs(n): returns the absolute value of n

nvl - nvl(expr1,expr2): if a value is null then expr2 is substituted for expr1. If
not, expr1 is used. expr1 must be the same datatype as expr2.

Conversion functions
Used to convert data types from one type to another.

to_char - to_char(expr, format mask): to_char(hiredate, 'MM/DD/YY') will
change standard DD-MON-YY output to "10/07/93" style.

to_date - to_date(chardate, format mask): to_date('10/07/93','MM/DD/YY')will
convert to a date datatype that can be stored in the database.

to_number - f(c): converts a char numeric value to numeric.
Reference sheets 387

Date functions
Used to operate on values of datatype DATE.

add_months(date, n) - add_months(sysdate, +2): returns current month + 2

last_day(date) - last_day('07-OCT-93'): returns last day in date's month

next_day(date, day) - next_day('07-OCT-93', 'Sat'): returns date of next day
after date

months_between(date1, date2): returns number of months between two dates

C.2 Oracle SQLplus extensions reference sheet

This section is a reminder of how to use one of the most useful additions to
SQL available within Oracle: the interactive monitor called sqlplus

(sometimes printed SQL*Plus).

C.2.1 Running files and editing

• @filename.sql runs file containing SQL commands

• run runs the SQL commands currently in the buffer

• ed starts the editor (vi by default) on the current buffer

• parameters: using &number in a SQL file for parameter substitution when
using start to run the script)

select * from emp where mgr = &1

then use: @myscript 7698 and sqlplus will substitute the first parameter

C.2.2 Line editing commands

Most people prefer using the editor (use ed command) provided you are
familiar with the UNIX editor vi. This will work with SQL commands only.
SQL*PLUS commands are not captured in buffer.

• list (l): list the current SQL commands in the buffer. The current line is
marked with an asterisk.

• change (c): c /old/new - changes current line. - c /typo/ deletes the
string typo from current line.

• append (a): a from emp - appends to end of current line.

• input (i): add more command lines after the current line. Hit return on a
line by itself to end.

• del: delete the current line from the buffer.
388 Database Performance on AIX in DB2 UDB and Oracle Environments

• n "text": replaces text on the command line "n".

• clear buffer (cl buff): clears contents of SQL command buffer.

C.2.3 Report/formatting commands

• describe (object): describes columns, data types in order defined.
desc emp - describe the emp column

• column: formats column display with heading and format specification
column loc format a8 heading 'City'

column sal format 9999 heading 'Bucks'

• ttitle: provides report title information at the top of each page
ttitle [left|center|right] 'text' skip [left|center|right] 'text'

ttitle 'My Report on EMP' skip '============='

Note: skip forces 'text' to skip to next line

• btitle: same syntax as ttitle - provides report title at bottom of page

• break: defines a control break where values in a column change from the
previous row - used to perform some formatting actions.
Note: for the output to be meaningful, the column should be sorted.
break on {expr|col} [skip n| skip page] [duplicates|nodup]

break on job skip 2

select job, ename from emp order by job;

Will skip 2 lines between jobs & not show duplicates (default)

• compute: performs a calculation at a defined control break. Standard group
functions can be used for the calculation type
compute count of ename on job

select job, ename from emp order by job;

Performs the count calculation when a break is detected for the job
column. The result is printed on a separate line before the break skip.

C.2.4 Miscellaneous

set pause {on | off}; : Set on to stop scrolling returned rows off the screen.

set linesize N; : Sets the width of the screen to stop wrapping space filled. -
set linesize 200;

set pagesize N; : Sets how often column headings are output (default 24) use
with spool.

set prompt { on | off | 'string' }; : Sets the next command prompt

set time { on | off }; : The prompt now includes the time.
Reference sheets 389

set timing { on | off }; : After each SQL statement the time taken is
reported

set termout { on | off }; : Stops the output to the screen (assuming you
used spool already)

spool [filename] {on | off}; : Toggles capturing SQL*PLUS output to a file.
Default .lst file.
spool mysession

....

spool off

host <ls>" or "!<dir>"; : Execute the host operating system command.

exit or ^D to stop

C.2.5 Help and additional settings

Enter Help commands or help menu for an overview of SQL, SQL*PLUS and
PL/SQL topics.

Setting option for all SQL*PLUS sessions:
$ define _EDITOR=<host_editor_name>

login.sql = file with commands to execute when SQL*PLUS starts

C.3 Oracle DBA reference sheet

This section contains selected Oracle DBA commands. Please consult one of
the references listed in Appendix F.3, “Other resources” on page 415 for more
definitive explanations of the commands listed in this section.

C.3.1 Storage-Clause

This clause is used in many places. For an example see the CREATE TABLESPACE

section.

(INITIAL integer [K|M] | NEXT integer [K|M]
| MINEXTENTS integer | MAXEXTENTS integer
| PCTINCREASE integer
| OPTIMAL [NULL | integer [K|M]] -- rollback only
| FREELISTS integer -- tables and indexes only
|FREELIST GROUPS integer -- tables only
)

390 Database Performance on AIX in DB2 UDB and Oracle Environments

C.3.2 ALTER DATABASE

To alter an existing database in one of these ways:

• mount the database

• open the database

• archivelog or noarchivelog mode for redo log groups

ALTER DATABASE mydb MOUNT EXCLUSIVE;
ALTER DATABASE mydb OPEN;
ALTER DATABASE mydb ARCHIVELOG;
ALTER DATABASE mydb NOARCHIVELOG;

C.3.3 ALTER INDEX

To change future storage allocation for data blocks in an index.

ALTER INDEX empidx STORAGE storage_clause;

C.3.4 ALTER ROLLBACK SEGMENT

To alter a rollback segment in one of these ways:

• by bringing it online

• by taking it offline

• by changing its storage characteristics

ALTER ROLLBACK SEGMENT rollback1 ONLINE;
ALTER ROLLBACK SEGMENT rollback1 OFFLINE;
ALTER ROLLBACK SEGMENT roll1 STORAGE storage_clause;

C.3.5 ALTER SESSION

To alter your current session in one of these ways:

• to enable or disable the SQL trace facility

• to change the goal of the cost-based optimization approach

ALTER SESSION SET SQL_TRACE = TRUE;
ALTER SESSION SET SQL_TRACE = FALSE;
ALTER SESSION NLS_DATE_FORMAT = 'fmt';
ALTER SESSION OPTIMIZER_GOAL = RULE;
possible GOALs are RULE, ALL_ROWS, FIRST_ROWS or CHOOSE

C.3.6 ALTER SYSTEM

To dynamically alter your Oracle instance in one of these ways:

• to explicitly switch redo log file groups
Reference sheets 391

• to explicitly perform a checkpoint

• to manually archive redo log file groups or to enable or disable automatic
archiving

ALTER SYSTEM CHECKPOINT;
ALTER SYSTEM SWITCH LOGFILE;
ALTER SYSTEM ARCHIVE LOG STOP;
ALTER SYSTEM ARCHIVE LOG START;

C.3.7 ALTER TABLE

To alter the definition of a table in one of these ways:

• to add a column

• to modify storage characteristics or other parameters

• to explicitly allocate an extent

ALTER TABLE emp ADD column (newcol varchar2(10));
ALTER TABLE emp PCTFREE 10 PCTUSED 60 [STORAGE storage_clause];
ALTER TABLE emp ALLOCATE EXTENT SIZE 200K DATAFILE '/dev/lv_emp3';
ALTER TABLE table PARALLEL (DEGREE 8);

C.3.8 ALTER TABLESPACE

To alter an existing tablespace in one of these ways:

• to add data file(s)

• to change default storage parameters

• to take the tablespace online or offline

ALTER TABLESPACE myts ADD DATAFILE (filespec [, filespec] ...);
ALTER TABLESPACE myts DEFAULT STORAGE (storage_clause);
ALTER TABLESPACE myts ONLINE;
ALTER TABLESPACE myts OFFLINE;
ALTER TABLESPACE myts BEGIN BACKUP;
ALTER TABLESPACE myts END BACKUP;

14.5.1 ALTER USER
To change any of these characteristics of a database user:

• password

• default tablespace for object creation

• tablespace for temporary segments created for the user

ALTER USER fred IDENTIFIED BY funny DEFAULT TABLESPACE usr;
TEMPORARY TABLESPACE bigsort;
392 Database Performance on AIX in DB2 UDB and Oracle Environments

ALTER USER fred IDENTIFIED EXTERNALLY;

C.3.9 ANALYZE

Validate the index, table and collect the cost based optimizer statistics.

ANALYZE TABLE emp COMPUTE STATISTICS;
ANALYZE TABLE emp ESTIMATE STATISTICS SAMPLE 1000 ROWS;
ANALYZE TABLE emp ESTIMATE STATISTICS SAMPLE 10 PERCENT;
ANALYZE INDEX empidx COMPUTE STATISTICS;

C.3.10 CREATE DATABASE

To create a database, making it available for general use, with these options:

• to establish a maximum number of instances, data files, redo log files
groups, or redo log file members

• to specify names and sizes of data files and redo log files

• to choose a mode of use for the redo log

CREATE DATABASE model CONTROLFILE REUSE
DATAFILE '/dev/rsystem' SIZE 255M
LOGFILE '/dev/rredo1' SIZE 255M,'/dev/rredo2' SIZE 255M
MAXINSTANCES 1
MAXLOGFILES 255
MAXDATAFILES 1022
ARCHIVELOG
CHARACTER SET "US7ASCII";

C.3.11 CREATE INDEX

To create an index on one or more columns of a table or a cluster. An index is
a database object that contains an entry for each value that appears in the
indexed column(s) of the table and provides direct, fast access to rows.

CREATE INDEX empidx ON emp (empno)
TABLESPACE index_ts
STORAGE storage_clause]
PARALLEL (DEGREE 8);

This command prepares a database for initial use and erases any data
currently in the specified files. Only use this command when you
understand its ramifications.

Attention
Reference sheets 393

C.3.12 CREATE ROLLBACK SEGMENT

To create a rollback segment. A rollback segment is an object that is used by
Oracle to store data necessary to reverse, or undo, changes made by
transactions.

CREATE ROLLBACK SEGMENT roll1 TABLESPACE rb
STORAGE (
INITIAL 2M
NEXT 2M
MINEXTENTS 10
MAXEXTENTS 249
OPTIMAL 20M
);

C.3.13 CREATE TABLE

To create a table, the basic structure to hold user data, specifying this
information:

• column definitions

• integrity constraints

• the table's tablespace

• storage characteristics

• data from an arbitrary query

CREATE TABLE ORDERS (O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE FLOAT NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMENT VARCHAR(79) NOT NULL)

TABLESPACE other
STORAGE (INITIAL 100M

NEXT 100M
PCTINCREASE 0
FREELISTS 40
FREELIST GROUPS 2)

PARALLEL (DEGREE 8);

CREATE TABLE new_emp AS select * from emp;

CREATE TABLE emp2 (
empno number(6),
394 Database Performance on AIX in DB2 UDB and Oracle Environments

deptno number(5),
ename varchar2(30),

salary number(10)) CONSTRAINT uni1 UNIQUE (empno);

CREATE TABLE emp2 (
empno number(6),
deptno number(5),
ename varchar2(30),
salary number(10))

CONSTRAINT emp_pk PRIMARY KEY (empno)
CONSTRAINT emp_fk1 FOREIGN KEY (deptno) REFERENCES dept (deptno)
USING INDEX TABLESPACE indexts;

C.3.14 CREATE TABLESPACE

To create a tablespace. A tablespace is an allocation of space in the database
that can contain objects.

CREATE TABLESPACE empts DATAFILE '/dev/rdata1' SIZE 1023M REUSE
DEFAULT STORAGE (

INITIAL 100M
NEXT 100M
PCTINCREASE 0
MINEXTENTS 1
MAXEXTENTS 249

);

C.3.15 CREATE USER

To create a database user, or an account through which you can login to the
database, and establish the means by which Oracle permits access to the
database by the user.

CREATE USER fred IDENTIFIED BY funny DEFAULT TABLESPACE usr;
TEMPORARY TABLESPACE bigsort;
CREATE USER fred IDENTIFIED EXTERNALLY;

C.3.16 CREATE VIEW

To define a view, a logical table based on one or more tables or views.

CREATE VIEW view AS subquery;

C.3.17 DROP

To delete an object within the database.

DROP INDEX index;
DROP ROLLBACK SEGMENT rollback_segment;
DROP TABLE table [CASCADE CONSTRAINTS];
Reference sheets 395

DROP TABLESPACE tablespace [INCLUDING CONTENTS [CASCADE CONSTRAINTS]] ;
DROP USER user [CASCADE];
DROP VIEW view;

C.3.18 EXPLAIN PLAN

To determine the execution plan Oracle follows to execute a specified SQL
statement. This command inserts a row describing each step of the execution
plan into a specified table. If you are using cost-based optimization, this
command also determines the cost of executing the statement.

EXPLAIN PLAN;
SET STATEMENT ID = 'myplan'];
FOR SQLstatement;

C.3.19 RENAME

To rename a table, view, sequence, or private synonym.

RENAME old TO new;

C.3.20 TRUNCATE

To remove all rows from a table or cluster.

TRUNCATE TABLE table;
TRUNCATE TABLE table DROP STORAGE;

C.3.21 Useful Oracle internal tables

DBA_CONSTRAINTS
DBA_CONS_COLUMNS
DBA_DATA_FILES
DBA_EXTENTS
DBA_FREE_SPACE
DBA_INDEXES
DBA_IND_COLUMNS
DBA_ROLLBACK_SEGS
DBA_SEQUENCES
DBA_TABLES
DBA_TABLESPACES
DBA_TAB_COLUMNS
DBA_USERS
DBA_VIEWS

USER_CONSTRAINTS
USER_CONS_COLUMNS
USER_EXTENTS
USER_FREE_SPACE
396 Database Performance on AIX in DB2 UDB and Oracle Environments

USER_INDEXES
USER_IND_COLUMNS
USER_SEQUENCES
USER_TABLES
USER_TABLESPACES
USER_TAB_COLUMNS
USER_VIEWS

Use sqlplus describe to find out the details of these tables:
sqlplus> desc user_tables;

C.4 DB2 UDB DBA reference sheet

This section contains selected DB2 UDB DBA commands. Please consult one
of the references listed in Appendix F.3, “Other resources” on page 415 for
more definitive explanations of the commands listed in this section.

C.4.1 ALTER BUFFERPOOL

To alter the buffer pool in one of the following ways:

• modify the size of the buffer pool on all partitions (or nodes) or on a single
partition

• turn on or off the use of extended storage

• add this buffer pool definition to a new nodegroup.

ALTER BUFFERPOOL bufferpoolname;
ALTER BUFFERPOOL bufferpoolname NOT EXTENDED STORAGE;
ALTER BUFFERPOOL bufferpoolname ADD NODEGROUP nodegroupname;

C.4.2 ALTER TABLE

To alter an existing table in one of the following ways:

• Adding one or more columns to a table

• Adding or dropping a primary key

• Adding or dropping one or more unique or referential constraints

• Altering the length of a VARCHAR column

• Altering a reference type column to add a scope

• Adding or dropping a partitioning key

• Setting the table to not logged initially state

ALTER TABLE emp ADD column (newcol varchar2(10));
Reference sheets 397

ALTER TABLE emp ALTER column SET DATA TYPE VARCHAR (integer);
ALTER TABLE emp ADD PARTITIONING KEY (column-name);
ALTER TABLE emp DROP CONSTRAINT (contraint-name);

C.4.3 ALTER TABLESPACE

To alter an existing tablespace in one of these ways:

• Add a container to a DMS table space (that is, one created with the
MANAGED BY DATABASE option).

• Add a container to a SMS tablespace on a partition (or node) that currently
has no containers.

• Modify the PREFETCHSIZE setting for a tablespace.

• Modify the BUFFERPOOL used for tables in the tablespace.

• Modify the OVERHEAD setting for a tablespace.

• Modify the TRANSFERRATE setting for a tablespace.

ALTER TABLESPACE myts ADD (DEVICE ’/dev/rhdisk9’ 10000);
ALTER TABLESPACE myts PREFETCHSIZE 64 OVERHEAD 19.3;
ALTER TABLESPACE myts BUFFERPOOL bufferpoolname;
ALTER TABLESPACE myts SWITCH ONLINE;
ALTER TABLESPACE myts OVERHEAD milliseconds;

C.4.4 CREATE DATABASE

Initializes a new database with an optional user-defined collating
sequence,creates the three initial table spaces, creates the system tables,
and allocates the recovery log.

CREATE DATABASE model;

C.4.5 CREATE INDEX

To create an index on one or more columns of a table or a cluster. An index is
a database object that contains an entry for each value that appears in the
indexed column(s) of the table and provides direct, fast access to rows.

CREATE INDEX empidx ON emp (empno);

C.4.6 CREATE TABLE

To create a table, the basic structure to hold user data, specifying this
information:

• column definitions

• integrity constraints
398 Database Performance on AIX in DB2 UDB and Oracle Environments

• the table's tablespace

• storage characteristics

• data from an arbitrary query

CREATE TABLE ORDERS (O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE FLOAT NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMENT VARCHAR(79) NOT NULL)
in TSMED
INDEX in TSMED;

CREATE TABLE new_emp AS select * from emp;

CREATE TABLE emp2 (
empno number(6),
deptno number(5),
ename varchar2(30),

salary number(10)) CONSTRAINT uni1 UNIQUE (empno);

CREATE TABLE emp2 (
empno number(6),
deptno number(5),
ename varchar2(30),
salary number(10))

CONSTRAINT emp_pk PRIMARY KEY (empno)
CONSTRAINT emp_fk1 FOREIGN KEY (deptno) REFERENCES dept (deptno)
INDEX IN indexts;

C.4.7 CREATE TABLESPACE

To create a new tablespace within the database, assigns containers to the
tablespace, and records the tablespace definition and attributes in the
catalog.

CREATE TABLESPACE empts MANAGED BY SYSTEM
USING ('/DB2DATA/FSEMP10/CONT1',

'/DB2DATA/FSEMP11/CONT2',
'/DB2DATA/FSEMP12/CONT3',
'/DB2DATA/FSEMP13/CONT4')
EXTENTSIZE 32
PREFETCHSIZE 128;
Reference sheets 399

C.4.8 CREATE VIEW

To define a VIEW statement that creates a view on one or more tables, views or
nicknames.

CREATE VIEW view AS subquery;

C.4.9 DROP

To delete an object within the database.

DROP ALIAS alias;
DROP INDEX index;
DROP TABLE table;
DROP TABLESPACE tablespace;
DROP VIEW view;

C.4.10 EXPLAIN PLAN

The EXPLAIN statement captures information about the access plan chosen for
the supplied explainable statement and places this information into the
Explain tables. An explainable statement is a DELETE, INSERT, SELECT, SELECT

INTO, UPDATE, VALUES, or VALUES INTO SQL statement.

EXPLAIN PLAN
SET QUERYNO = integer
FOR SQLstatement;

C.4.11 RENAME TABLE

To rename an existing table.

RENAME oldname TO newname;

C.4.12 Useful DB2 UDB internal catalog views

SYSCAT.TABAUTH
SYSCAT.TABLES
SYSCAT.TABLESPACES
SYSCAT.INDEXES
SYSCAT.COLUMNS
SYSCAT.VIEWS
SYSSTAT.COLUMNS
SYSSTAT.INDEXES
SYSSTAT.TABLES
400 Database Performance on AIX in DB2 UDB and Oracle Environments

Appendix D. The Model Database used for testing in this redbook

For the purposes of this redbook we used a database that is refered to as the
Model Database.This database’s schema, tables, indexes, tools and
application are described in this appendix. The Model Database is based on
the well known database used within the computer industry standard
benchmark from the Transaction Processing Performance Council1 (TPC) for
decision support systems. In 1999 the TPC created two decision support
benchmarks (based on the older TPC-D) called TPC-H (for ad-Hoc queries)
and TPC-R (for Reporting queries). For more information on these
benchmarks please refer to URL:

http://www.tpc.org

The Model Database is based on the database defined in these benchmarks.
But note that our Model Database does not have a standard size for reporting
TPC results, not all the queries were used and the results were not audited.
All of these are mandatory for official TPC results.

This particular database is used because it is:

• well known to many people

• fairly typical of an order processing system

• simple enough to be quickly build, the data generated, the data loaded
and then indexed

• available with a database data generator that can create any size of
database from one MB to GBs and even up to a TB

• suitable for very complex decision support queries

To this standard database we have added:

• a typical set of indexes

• an application that can generate OLTP type workloads of various SQL
statements and that reports on the transaction rates achieved

• scripts to create the disk space, tablespaces, tables, indexes and statistics

1 TPC, TPC-D, TPC-H and TPC-R are copyrights of the Transaction Processing Performance Council.

Results from this exercise cannot be compared to any official TPC results.

This Model Database is used purely to compare the relative performance of
various RS/6000 hardware, AIX operating system and database
configuration options.

Test results
© Copyright IBM Corp. 1999 401

• monitoring tools for analyzing the database and AIX performance

The result is a practical and useful database for investigating performance
issues and options. It is also excellent for skills development.

D.1 Schema

The database has eight objects (tables) and models a typical but simple order
processing system with customers, parts, supplier and sales details. This
schema is sufficiently complex and life like to make any of the SQL
statements that you find in a production system available within this test
database. The following diagram shows the tables and relationships between
tables. The sizes of the boxes try to highlight the size of the tables (but are
not strictly to scale) and the arrows show the one to many relationships.

Figure 44. The Model Database Schema

Linetem

PartSuppParts

Supplier

Region

Nation

Customer Orders
402 Database Performance on AIX in DB2 UDB and Oracle Environments

D.2 The model database tables

The tables of the model database are straight forward and detailed below.
The size scales depending on the size of the generated database. The below
assumes a data size of 1 GB .

Table 21. Model database tables and their sizes

From this you can see the majority of the database data volume is contained
in the lineitem table. On average there are six lineitem rows for each row in
the orders table. Note that the orders table has plural. This is to avoid
possible confusion as some vendors use the word order as a keyword in the
create table command. To model a real production database, it is necessary
to have some tables that are much larger than the available memory, so that
there is no possibility that the complete table can be loaded into the shared
memory cache of the database. The large size of the orders and lineitem
tables does this, as they are a large proportion of the total database data
volume.

D.3 The model database indexes

A typical set of database indexes were created for the database based on:

• primary keys

• foreign keys

Table Row size Rows Size in Mbytes Percentage of
database

supplier 147 10,000 1.4 0.1

parts 133 200,000 25.37 2.4

partsupp 146 800,000 111.39 10.6

customer 162 150,000 23.17 2.2

orders 113 1,500,000 161.65 15.3

lineitem 128 6,000000 732.57 69.4

nation 1 109 25 0 0.0

region 1 116 5 0 0.0

Totals 8,661,245 1055.55 100

Note 1 These tables do not scale for larger database sizes.
The Model Database used for testing in this redbook 403

• typical look up requirements like: customer/supplier name and dates for
date range queries.

The indexes used are created as below:

Primary keys

CREATE INDEX pk_p_partkey ON parts (p_partkey)
CREATE INDEX pk_s_suppkey ON supplier (s_suppkey)
CREATE INDEX pk_ps_partsupp ON partsupp (ps_partkey,ps_suppkey)
CREATE INDEX pk_c_custkey ON customer (c_custkey)
CREATE INDEX pk_o_orderkey ON orders (o_orderkey)
CREATE INDEX pk_l_okeyline ON lineitem (l_orderkey,l_linenumber)

The nation and region tables are too small to require indexes

Foreign keys

CREATE INDEX fk_o_ckey ON orders (o_custkey)
CREATE INDEX fk_l_pkey ON lineitem (l_partkey)
CREATE INDEX fk_l_skey ON lineitem (l_suppkey)

Useful date fields as they are often used in the SQL

CREATE INDEX o_odate ON orders (o_orderdate)
CREATE INDEX l_sdate ON lineitem (l_shipdate)
CREATE INDEX l_rdate ON lineitem (l_receiptdate)
CREATE INDEX l_cdate ON lineitem (l_commitdate)

D.4 OLTP workload generation

The transaction generating tool, called oltp, can repeatedly start
transactions. This tool can:

• Start transactions, one immediately after the other or with a user think
time interval between transactions.

• Report to the user performance statistics on a regular basis including

• run time so far

• number of transaction finished so far

• the transaction rate per second- so far

• the transaction rate per second - recently

• the minimum, average and maximum time the transaction took down to
the nearest millisecond

• Stop after a fixed time
404 Database Performance on AIX in DB2 UDB and Oracle Environments

• Use a number of widely varying different transactions including

• simple one row select

• 2 table join select

• 4 table join select

• cursors

• inserts

• simple and complex updates

• select with sub-query

• complex transactions (multiple selects, inserts and updates)

To avoid the problem of deciding the rate at which users start transactions,
the tool normally uses a continuously running mode (meaning with no user
think time). As a result, this gives the transaction rate that the system can
deliver. To achieve this transaction rate, more than the number of processors
in the system simultaneous oltp programs must be run at the same time. This
ensures that there is always a transaction being performed by the database at
any one particular time. This OLTP transaction generating program is written
in the C language with embedded SQL and is available for IBM internal use.

As a rough guide a user could initiate one transaction every 30 seconds. So
for example, the user would be inputting data at the PC based application for
30 seconds and then request the database to save the data or alternatively
the user requests data from the database and then takes 30 seconds to read
and review the data before requesting more. This means the number of active
users the system can support would be estimated as 30 times the transaction
rates in seconds. For example, if the machine can do 100 transactions a
second and the user would do a transaction every 30 seconds then the
number of users it can support is:

100 transactions/second * 30 seconds/transaction = 3000 users

The oltp command interface is:

oltp [-d] -s <1-17> [-t <seconds>] -f <filename> -u <user/pass> [-r
seed] [-m max-seconds] [-i idle-seconds]
Version 10.1
-s n = which sql to use (mandatory)
-f f = file of valid orderkeys (mandatory)
-u u/p = username and password (i.e. scott/tiger mandatory)
-t s = seconds between reporting transaction rates (default 30)
-h = full help info
-? = summary help info
The Model Database used for testing in this redbook 405

-d = verbose output
-r s = set random seed value
-m s = maximum seconds of run time before existing

The OLTP SQL transactions are as follows:

Figure 45. OLTP transaction summary

D.5 DSS workload generation

Only four standard queries were used to make up the decision support
system (DSS) test. These were a range of query types including:

• fairly simple SQL statements which would require scanning entire tables

• joining two very large tables with restrictions

Name Description

sql1 one row select (all columns) from the orders table

sql2 two tables join and select limited columns from the orders and lineitems
tables

sql3 five tables join and select limited columns from orders, lineitems, parts,
supplier and customer

sql4 use cursor to select master and multiple slave rows from orders and
lineitems

sql5 use cursor to select master and multiple slave rows with an ’order by’
from orders and lineitems

sql6 insert rows in the orders and lineitem tables

sql7 find the number of rows in each table

sql8 update one row in the orders table

sql9 update two rows in the orders table within one transaction

sql10 update the same row in the orders table over and over again

sql11 repeatedly update one row from a small set of rows in the orders table

sql13 select four columns from the customer table

sql14 select four columns from the supplier table

sql15 select min(value) from parts using a subquery

sql16 large transaction using sql13, sql14, sql15, sql8 sql16
406 Database Performance on AIX in DB2 UDB and Oracle Environments

• joining many very large tables with restrictions

• extremely complex queries involving sub-queries

Each SQL statement was run one at a time with an RBDMS restart between
each test to eliminate the benefits of preloading the RDBMS disk cache so
that each test run was consistent. In a production database significant
performance gains would be made be if the RDBMS disk cache already
contained the entire contents of smaller tables.

The complex queries used to generate decision support workloads are below:

D.5.1 Query 2

SELECT
S_ACCTBAL,S_NAME,N_NAME,P_PARTKEY,P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM PARTS, SUPPLIER, PARTSUPP, NATION, REGION
WHERE

P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY
AND P_SIZE = 15
AND P_TYPE LIKE '%BRASS'
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R_NAME = 'EUROPE'
AND PS_SUPPLYCOST = (SELECT

MIN(PS_SUPPLYCOST)
FROM PARTSUPP, SUPPLIER, NATION, REGION

WHERE
P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R_NAME = 'EUROPE')

ORDER BY
S_ACCTBAL DESC, N_NAME,S_NAME,P_PARTKEY;

D.5.2 Query 6

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE
FROM LINEITEM
WHERE

L_SHIPDATE >= TO_DATE('1994-01-01')
AND L_SHIPDATE < ADD_MONTHS(TO_DATE('1994-01-01'),12)
AND L_DISCOUNT BETWEEN 0.06 - .01 AND 0.06 + .01
AND L_QUANTITY < 24;
The Model Database used for testing in this redbook 407

D.5.3 Query 13

SELECT TO_CHAR(O_ORDERDATE,'YYYY'), SUM(L_EXTENDEDPRICE * (1-L_DISCOUNT))
FROM LINEITEM, ORDERS
WHERE

O_ORDERKEY = L_ORDERKEY
AND O_CLERK = 'Clerk#000000088'
AND L_RETURNFLAG = 'R'

GROUP BY TO_CHAR(O_ORDERDATE,'YYYY')
ORDER BY TO_CHAR(O_ORDERDATE,'YYYY');

D.5.4 Query 17

SELECT SUM(L_EXTENDEDPRICE)/7.0
FROM LINEITEM, PARTS
WHERE

P_PARTKEY = L_PARTKEY
AND P_BRAND = 'Brand#23'
AND P_CONTAINER = 'MED BOX'
AND L_QUANTITY < (SELECT

0.2*AVG(L_QUANTITY)
FROM LINEITEM
WHERE
L_PARTKEY = P_PARTKEY);

D.6 Model Database physical layout

For the purposes of the redbook a particular database size and disk layout
was used in all the tests. The data was generated to provide 5 GB of raw data
(five times the sizes in Table 21 on page 403). Sixteen disks were used for the
database as follows:

Table 22. Physical layout

Use Number of Disks Approximate disk size GB

data 4 8 1

index 4 8

Results from this exercise cannot be compared to any official TPC results.

This Model Database is used purely to compare the relative performance of
various RS/6000 hardware, AIX operating system and database
configuration options.

Test Results
408 Database Performance on AIX in DB2 UDB and Oracle Environments

The 5 GB of raw data size was chosen as the machines were 4 way SMP
RS/6000s and all have 1 GB of memory. This database size means the
RDBMS disk cache was typically 512 MB in size (based on the rule of thumb
where 50% of memory is allocated to the shared memory). The raw data plus
indexes were approximately 8 to 10 GB in size. Therefore the disk size to
cache size ratio was between 15:1 to 20:1.This makes sure that in our tests
the RDBMS will be forced to use the disks. This ratio is similar to many
production systems.

The separation of data, index and tmp/sort areas is often found in production
systems but there is also the approach of mixing these to even out the I/O
workload across the maximum number of disks. However, in these tests the
separation is useful because it becomes very simple to determine which part
of the database is in use. For example, some SQL statements can be
answered by only using the index (where all columns of interest are in the
index). This can clearly be seen when monitoring which disks are in use.

There are many ways of creating the logical volumes/partitions with AIX
within the above physical layout, including, RAID 5, striping and mirroring or
straight logical volume per disk

tmp/sort 4 8

RDBMS code 1 2

logs 1 2

redo 1 2

system/catalog 1 2

Totals 16 32

Note 1 5 GB of data was placed within 8 GB of disk space. This avoids any possible
problems loading the data into the database due to database overhead in storing data
and space limitations on the disks.

Use Number of Disks Approximate disk size GB

Results from this exercise cannot be compared to any official TPC results.

This Model Database is used purely to compare the relative performance of
various RS/6000 hardware, AIX operating system and database
configuration options.

Test Results
The Model Database used for testing in this redbook 409

410 Database Performance on AIX in DB2 UDB and Oracle Environments

Appendix E. Special notices

This publication is intended as a guideline for System Designers and
Architects to design a well performing RDBMS on an IBM RS/6000. It also
helps System Administrators and Database Administratorson to setup, use,
tune and maintain an RDBMS for optimal performance. See the
PUBLICATIONS section of this redbook for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
© Copyright IBM Corp. 1999 411

guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

AIX AS/400
AT CT
DB2 IBM
Netfinity RS/6000
System/390 XT
400
412 Database Performance on AIX in DB2 UDB and Oracle Environments

Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix E. Special notices 413

414 Database Performance on AIX in DB2 UDB and Oracle Environments

Appendix F. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 IBM Redbooks publications

For information on ordering these publications see “How to get IBM
Redbooks” on page 419.

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• RS/6000 Performance Tools in Focus, SG24-4989

• A Practical Guide to Serial Storage Architecture for AIX, SG24-4599

• From Multiplatform Operational Data to Data Warehousing and Business
Intelligence, SG24-5174

• Data Modeling Techniques for Data Warehousing, SG24-2238

F.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

F.3 Other resources

These publications are also relevant as further information sources:

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 415

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

• IBM DB2 Universal Database Administration Guide: Design and
Implementation Version 6, SC09-2839

• IBM DB2 Universal Database Administration Guide: Performance
Version 6, SC09-2840

• IBM DB2 Universal Database Database System Monitor Guide and
Reference Version 6, SC09-2849

• IBM DB2 Universal Database SQL Reference, Volume 1, Version 6,
SC09-2847

• IBM DB2 Universal Database SQL Reference, Volume 2, Version 6,
SC09-2848

• IBM DB2 Universal Database Command Reference Version 6, SC09-2844

• A Complete Guide to DB2 Universal Database, ISBN 1-5586-0482-0

• Oracle 8 Administrator’s Guide, A58397-01

• Oracle 8 Performance Tuning Workshop, 15108

• Oracle 8 Server Concepts, A54646-01

• Oracle 8 Server Tuning, A54638-01

• Oracle Performance Tuning - Tips and Techniques, ISBN 0-0788-2434-6

• Oracle for AIX Performance Tuning Tips, A32146-2

• Oracle 7 Performance Tuning Tips for UNIX, A22535-2

• Oracle 8 & UNIX Performance Tuning, ISBN 0-1390-7676-X

• Oracle Performance Tuning, ISBN 1-5659-2048-1

• Oracle Backup and Recovery Handbook, ISBN 0-0788-2106-1

• OCP Training Guide: Oracle DBA, ISBN 1-5620-5891-6

• The Relational Model for Database Management, E.F. Codd

• Providing OLAP (On-line Analytical Processing) to User-Analysts: AN IT
Mandate (IBM White-Paper, E.F.Codd)

• AIX Version 4.3 Commands Reference, SBOF-1877

• AIX Version 4.3 System Management Guide: Operating System and
Devices, SC23-4126

• AIX Logical Volume Manager, from A to Z: Introduction and Concepts,
SG24-5432 (to be published at a later date)

• AIX Logical Volume Manager, from A to Z: Troubleshooting and
Commands, SG24-5433 (to be published at a later date)
416 Database Performance on AIX in DB2 UDB and Oracle Environments

F.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen

• http://www.tpc.org

• http://www.software.ibm.com/data

• http://www.db2mag.com

• http://www.idug.org

• http://w3.aixncc.uk.ibm.com

• ftp://ftp.software.ibm.com/ps/products/db2/fixes/english-us/db2aixv61/

• USENET NewsGroup: comp.databases.ibm-db2

• IBM DB2 NewsGroups: news.software.ibm.com

• http://w3.developer.ibm.com/depts/spra/ORACLE/downloads/Oracle_Stor.PDF
Appendix F. Related publications 417

418 Database Performance on AIX in DB2 UDB and Oracle Environments

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 419

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
420 Database Performance on AIX in DB2 UDB and Oracle Environments

List of abbreviations

ACID Atomic, Consistent,
Independent and
Durable

ADSM ADstar Storage
Manager

AIX Advanced Interactive
Executive

ANSI American National
Standards Institute

API Application
Programming Interface

AS/400 Application System/400

ASCII American National
Standard Code for
Information Exchange

ATM Automated Teller
Machine

BI Business Intelligence

BPS Bufferpool Services

CICS Customer Information
and Control Program

CLP Command Line
Processor

CPU Central Processing Unit

CWS Control Workstation

DARI Database Application
Remote Interface

DASD Direct Access Storage
Device

DAT Digital Audio Tape

DB Database

DBA Database Administrator

DBIA Dynamic Bit-Mapped
Indexing Anding

DBM Database Manager
© Copyright IBM Corp. 1999
DDL Data Definition
Language

DLM Distributed Lock
Manager

DML Data Manipulation
Language

DMS Database Managed
Space

DSS Decision Support
System

EE Enterprise Edition

EEE Enterprise-Extended
Edition

ERP Enterprise Resource
Planning

FCAL Fiber Channel
Arbitrated Loop

FCM Fast Communication
Manager

FDDI Fiber Distributed Data
Interface

GB Gigabyte

GUI Graphic User Interface

HACMP High Availability
Clustered Multiple
Processing

HAGEO HACMP for Large
Geographies

HPS High Performance
Switch

HW Hardware

IBM International Business
Machines Corporation

IT Information Technology

ITSO International Technical
Support Organization

I/O Input/Output
421

IPC Inter-Process
Communication

ISO International Standards
Organization

JBOD Just a Bunch Of Disks

JDBC Java Database
Connectivity

JFS Journaled File System

JM Joao Marcos

KB Kilobyte

LAN Local Area Network

LOB Large Object

LPP Licensed Program
Product

LRU Least Recently Used

LTG Logical Track Group

LUN Logical Unit Number

LV Logical Volume

LVM Logical Volume
Manager

MB Megabyte

MCA Micro Channel
Architecture

MPP Massively Parallel
Processors

MTS Multi-Threaded Server

MWC Mirrored Write
Consistency

NVS Non-Volatile Storage

OEM Oracle Enterprise
Manager

OFA Oracle Flexible
Architecture

OLAP Online Analytical
Processing

OLTP Online Transaction
Processing

OPQ Oracle Parallel Query

OPS Oracle Parallel Server

OS Operating System

PC Personal Computer

PCI Peripheral Component
Interconnect

PGA Program Global Area

PL/SQL Procedural Language
for SQL

PMR Problem Management
Record

PP Physical Partition

PSSP Parallel System
Support Programs

PTF Program Temporary Fix

PV Physical Volume

RAID Redundant Array of
Independent Disks

RDBMS Relational Database
Management System

RS/6000 Risc System/6000

RTFM Read The Flaming
Manual

SA System Administrator

SAT SATisfy itself (SSA
token)

SCN System Change
Number

SCSI Small Computer
System Interface

SGA System Global Area

SID System Identifier

SMIT System Management
Interface Tool

SMP Symmetric Multi
Processor

SMS System Managed
Space
422 Database Performance on AIX in DB2 UDB and Oracle Environments

SP Scalable Parallel

SQL Structured Query
Language

SSA Serial Storage
Architecture

SW Software

TCP/IP Transmission Control
Protocol/Internet
Protocol

TPC-C Transaction Processing
Council - for Online
Transaction Processing

TPC-D Transaction Processing
Council - for Decision
Support Systems

TPC-H Transaction Processing
Council - for ad-Hoc
Queries

TPC-R Transaction Processing
Council - for Reporting
Queries

TTY Teletype Terminal

UDB Universal Database

UDF User Defined Functions

UOW Unit of Work

UP Uniprocessor

UPS Uninterruptible Power
Supply

VG Volume Group

VLDB Very Large Database

VMM Virtual Memory
Manager

VSD Virtual Shared Disk

VSS Versatile Storage
Server
423

424 Database Performance on AIX in DB2 UDB and Oracle Environments

Index

Numerics
4 GL 111

A
Abort 24
ACID 10
Aggregates 29
AIX 4.3.3 mirroring + striping 179
AIX buffer cache 109
AIX check list 186
AIX commands

bindprocessor 328
cp 242
dd 192
errpt 245
iostat 246
lsattr 244, 246
lscfg 245
lslv 246
lspv 246
lsvg 246
no 245
vmstat 246, 251
vmtune 244, 246, 332

AIX configuration mistakes 295
Asynchronous I/O 296
Change control 295
Disk features 297
Disk subsystem installation 296
Disks - hot disks 298
Memory allocation 297
Paging space 296
Redo log disks 296

AIX features and fixes 122
AIX filesystem cache 109
AIX installation media 189
AIX level 190
AIX manuals 189
AIX operating system - space requirement 121
AIX parameters

maxperm 331
maxpout 242
minperm 331
minpout 242

AIX performance tools 353
© Copyright IBM Corp. 1999
filemon 354
iostat 246, 356
lsattr 244, 246, 356
lscfg 245, 357
lsdev 357
lslpp 357
lslv 246, 358
lsps 358
lspv 246, 359
lsvg 246, 359
ncheck 360
netpmon 360
nfsstat 360
nmon 246, 254, 361
no 245, 361
perfpmr 345
ps 361
rmss 363
sar 363
schedtune 365
svmon 366
vmstat 246, 251, 367
vmtune 246, 332, 369

AIX PTF’s 196
AIX resources 121
AIX system administrator 33
AIX tuning hints - advanced 326
AIX upgrades 146
AIX version 186
ALTER BUFFERPOOL 397
ALTER DATABASE 391
ALTER INDEX 391
ALTER ROLLBACK SEGMENT 391
ALTER SESSION 391
ALTER SYSTEM 391
ALTER TABLE 392
ALTER TABLESPACE 392
ALTER USER 392
ANALYZE 393
ANY or ALL operators 385
Application installation media 190
Application resources 122
ARCH 75
Archival logging 122
Archive mode 134
Archived logs 134
ARCHIVELOG mode 134
425

Asynchronous I/O 296, 318
Availability 31, 102, 143
Availability versus performance 142, 149

B
Backup 108

Backup and performance 35
Backup and recovery test 200
Backup server machine 137
Database can be stopped daily 136
Database can be stopped once a week 136
Database cannot be stopped 136
Full or total 133
Media 35
Online 143
Partial 133
Recommendations 40

Backup and performance 256
Backup Space 126
Balanced systems 119, 255
Balancing workloads 256
Bandwidth performance considerations 150
Batch jobs 108, 132
Batch workload 107, 156, 236, 334
Bottlenecks 224, 353
Buffer cache 25, 160
Buffer pool 25, 129
Business Intelligence 48
Business transaction 23

C
C 65, 111
Change control 295
Change records 347
Circular logging 122
CKPT 75
Cobol 65
Column 26
Commit 24
Common data 5
Complex and large objects 5
Container 57
Control files 125
Cost 150
Cost limits 102
Costs - used to balance a system 119
CPU 224
CPU goals 106

CPU sizing 106
CPU tuning 249
CPU utilization 108
Crash recovery 134
CREATE 29
CREATE DATABASE 393, 398
CREATE INDEX 382, 393, 398
CREATE ROLLBACK SEGMENT 394
CREATE TABLE 382, 394, 398
CREATE TABLESPACE 395, 399
CREATE USER 395
CREATE VIEW 382, 395, 400
CTAS 313
CURRENT DEGREE register 285

D
Data

Placement policy 256
Data Definition Language (DDL) 30
Data dictionary tablespace 152
Data disk 32
Data files 123, 125
Data loading 108
Data Mart 47
Data Mining 48
Data placement policy 197
Data safety 31
Data source 192
Data striping techniques 154
Data Warehouse 47, 113
Database

Administrator 33
Backup 35
Components 15
Data 191
Datafile distribution 152
Datafiles 152
Development database 145
Growing areas 141
Growth 137
Growth - unexpected huge growth 140
Hybrid systems 146
Implementation 185
Implementation check list 186
Implementation summary 189
Installation 185
Installation manual 190
Installing the code 195
426 Database Performance on AIX in DB2 UDB and Oracle Environments

Larger than 10 GB 199
Layout considerations 151
Level 190
Log book 200
Log disk 32
Performance 13
Physical layout 196
Production database 144
Reorganization - avoiding 139
Replication 34
Resources 122, 126
Schema diagram 191
Size from raw data 113
Test database 146
Tools 203
Transaction 22
Upgrade 146

DB2 UDB
Administration tools 66
Agent Private Memory 56
Alert Center 67
API 265
Application Global Memory 56
Archived logs 134
Backup/restore 133
Basic resources 122
Bufferpool Services (BPS) 270
Client Configuration Assistant 68
CLUSTERRATIO 138
Command Line Processor 204, 265
Control Center 66, 204, 208, 265
Control Files 123
Crash recovery 134
Data files 61
Database 58
Database Architecture 55
Database Global Memory 56
Database Managed Space (DMS) 57
Database Manager 62, 261
Database Manager Shared Memory 56
db2look 289
DB2MEMDISCLAIM 269, 286
DB2MEMMAXFREE 269, 286
DMS tablespaces 62
Error log (db2diag.log) 279
Event Analyzer 68
Event Monitor 68
Fast communications manager daemon 64
Global daemon spawner 64

Governor 262
IBMDEFAULTBP 271
Index Advisor 208
Index reorganization 138
Information Center 67
Instance 58
Internal catalog views 400
Internal Files 59
Intra-partition parallelism 62, 262
Journal 67
License Center 67
Listeners 63
Load utility 142
Log Files 60
Log retention logging 134
Logical Storage Structures 56
Memory requirements 129
Memory Structures 55
Memory usage by Database Manager 263
Monitoring tools 203

Alert Center 208
Direct query to explain tables 213
Event monitor 203, 207
Event types 207
Explain 208
Explain tables 208, 213
Explain tools - text-based 209
Performance Monitor 203, 208
Snapshot monitor 203
Snapshot monitoring levels 204
Snapshot monitoring switches 204
Visual Explain 208

Nodegroups 58
NPAGES/FPAGES 138
Panic agent 64
Parallel system controller 64
Performance Monitor 67
Physical Storage Structures 59
Prefetchers 273
Primary key 86
Primary log 60
Process Model 63
Processes 62
Redirected restore 61
Reorganization - avoiding 139
Reorganization method 138
Resync agent 64
Roll-forward recovery 134
Script Center 67
427

Secondary log 60
SmartGuides 67
SMS tablespaces 61
Snapshot monitoring 204
SQL access strategy 208
SQL extensions 65
SQLDBCON 267
Stored procedures 65
SYSCAT 261
SYSCATSPACE tablespace 152
SYSSTAT 261
System Managed Space (SMS) 57
Tablespaces 57
Temporary space 61
Timerons 208
Tuning

See also Tuning DB2 UDB
Types of columns 56
Version recovery 134
Visual explain 68
Watchdog 64

DB2 UDB commands
ALTER BUFFERPOOL 272, 397
ALTER TABLE 397
ALTER TABLESPACE 398
CREATE BUFFERPOOL 272
CREATE DATABASE 398
CREATE INDEX 398
CREATE TABLE 398
CREATE TABLESPACE 399
CREATE VIEW 400
db2exfmt 209
db2expln 209
db2set 269, 286
DROP 400
dynexpln 209
EXPLAIN PLAN 400
get snapshot 206
LIST APPLICATIONS 214
RENAME TABLE 400
REORG 287
REORGCHK 287
reorgchk 138
RUNSTATS 261

DB2 UDB EEE
Batch jobs 84
Broadcast join 86
Catalog node 85
Collocated join 86

Concepts and functionality 84
Coordinator node 85
Data redistribution 85
Database partition 84
Directed join 86
Dynamic Bit-Mapped Indexing ANDing (DBIA)
86
Fast Communication Manager (FCM) 85
Function shipping 87, 97
Hardware implementation 87
Hashing strategy 85
Hash-value 86
Inter-node communication 97
Inter-partition parallelism 87
Inter-query parallelism 86
Intra-partition parallelism 87
Intra-query parallelism 86
Logical nodes 84
Nodegroups 85
OLAP extensions 86
Optimizer 86
Partitioning key 86
Partitioning map 85
SQL extensions 86
SQL query rewrite 86

DB2 UDB EEE on SMP 89
DB2 UDB EEE on SP 87
DB2 UDB Enterprise - Extended Edition (EEE) 84
DB2 UDB parameters

agentpri 265
app_ctl_heap_sz 268
applheapsz 268
aslheapsz 265
audit_buf_sz 266, 268
avg_appls 267, 282
backbufsz 266
buffpage 267, 270, 274
catalogcache_sz 268, 280, 281
chngpgs_thresh 268, 272, 274, 276
comm_bandwidth 266
conn_elapse 266
DB2_AVOID_PREFETCH 269
DB2_BINSORT 269
DB2_DARI_LOOKUP_ALL 269
DB2_MMAP_READ 269
DB2_MMAP_WRITE 269
DB2_NO_PKG_LOCK 270
DB2_OVERRIDE_BPF 269
DB2_PARALLEL_IO 286
428 Database Performance on AIX in DB2 UDB and Oracle Environments

DB2_RR_TO_RS 270
DB2_SORT_AFTER_TQ 270
DB2_STRIPED_CONTAINERS 286
DB2CHKPTR 269
DB2PRIORITIES 270
dbheap 268, 272, 280, 281
dft_degree 262, 268, 285
dft_extent_sz 268
dft_loadrec_ses 268
dft_monswitches 266
dft_prefetch_sz 268, 274
dft_queryopt 268
dir_cache 264, 266
discover 266
discover_db 268
dlchktime 268
dos_rqrioblk 266
estore_seg_sz 268
fcm_num_anchors 266
fcm_num_buffers 266
fcm_num_connect 266
fcm_num_rqb 266
federated 266
indexrec 266, 268
initdari_jvm 266
intra_parallel 262, 266, 278, 285
java_heap_sz 266
keepdari 266
locklist 268, 282, 283, 285
locktimeout 268
logbufsz 268, 280, 281
logfilsiz 268
logprimary 269
LOGRETAIN 60, 133
logsecond 269
max_connretries 266
max_coordagents 266, 282, 283
max_querydegree 262, 266, 285
max_time_diff 267
maxagents 266, 282
maxappls 269, 282, 283, 284, 285
maxcagents 266, 283
maxdari 267, 283
maxfilop 269
maxlocks 268, 282, 284
maxtotfilop 267
min_priv_mem 267, 283
mincommit 268, 281
MINPCTUSED 140

num_estore_segs 269
num_initagents 267
num_initdaris 267
num_iocleaners 268, 272, 274, 276
num_ioservers 268, 273
num_poolagents 266, 283
Parameter levels 264
Parameter scope 264
pckcachesz 268, 279
PCTFREE 139
priv_mem_thresh 267
query_heap_sz 267
restbufsz 267
rqrioblk 266
seqdetect 268, 274
sheapthres 266, 276, 277
SKIP_INDEX_MAINTENANCE 142
SKIP_UNUSABLE_INDEXES 142
softmax 269
sortheap 264, 268, 276, 277, 278
spm_log_path 267
stmtheap 269, 278
util_heap 264

DB2 UDB processes
db2agent 62, 282
db2agntp 62
db2cc 66
db2dari 62
db2dlock 64
db2fcmdm 64
db2gds 64
db2ipccm 64
db2loggr 64
db2panic 64
db2pclnr 64
db2pdbc 64
db2pfchr 64
db2resyn 64
db2snacm 64
db2sysc 64
db2tcpcm 64
db2tcpdm 64
db2udfp 62
db2wdog 64

DBA tasks 108
DBWn 74
DDL 30
DDL commands 381

CREATE INDEX 312, 382
429

CREATE TABLE 382
CREATE TABLE AS SELECT 313
CREATE VIEW 382
DROP 383
GRANT 30
REVOKE 30

Deadlocks 226
Decision Support Systems 46, 107, 236
DEGREE- bind option 285
DELETE 28, 384
Describe 371
Designing

AIX resources 121
Application resources 122
Backup 133
Backup Space 126
Backup/restore scenario for DB2 UDB 133
Backup/restore scenario for Oracle 134
Bandwidth performance considerations 150
Bufferpool 129
Control files 125
Data dictionary tablespace 152
Data distribution in an SSA loop 174
Data files 123, 125
Data striping techniques 154
Database datafiles 152
Datafile distribution 152
DB2 UDB Control Files 123
DB2 UDB memory requirements 129
DB2 UDB resources 122
Device position in SSA loop 175
Disk adapters 151
Disk devices 150
Disk space allocation 127
Disk subsystem 149
Disk subsystem selection 181
General considerations 135
Index files 123, 125
Initialization file 125
Integrated disk storage systems 175
Inter-disk allocation policy 157
Intra-disk allocation policy 156
JFS versus raw LV 160
Log Files 122
Logical partitions 154
Logical volumes 154
LVM concepts 153
LVM policies 156
Memory and database considerations 129

Mirror Write Consistency (MWC) 167
Network considerations 128
Oracle memory requirements 130
Oracle resources 124
Physical database layout 151
Physical partitions 153
Physical volumes 153
RAID 5 versus AIX LVM mirroring 166
Raw LV versus JFS 160
RDBMS resources 122
Redo log files 124, 152
Reorganization Space 124
Restore 133
Rollback segments 125
Rollback segments tablespace 152
Serial Storage Architecture (SSA) 171
SGA 130
Sort Space 123
SSA disks per loop or adapter 172
SSA performance considerations 172
System bus 151
System resource utilization 131
Temporary tablespace 152
Volume group 153
Working space 121
Workload considerations 128
Write-scheduling policy 158
Write-verify policy 159

Designing a system for an RDBMS 121
Development system 145
Dimension tables 81
Disk 36, 120, 225

Adapters 151
Burn-in 195
Crash 32
Dedication 256
Devices 150
Drives 188
Error 245
Features 297
Goals 112
Hot disks 298
I/O 252
Performance 178
Protection 34, 116, 143
Size 113, 115
Sizing 112
Space 150
Space growth rates 127
430 Database Performance on AIX in DB2 UDB and Oracle Environments

Storage systems - integrated 175
Subsystem design 149
Subsystem installation 296
Subsystem selection 181
Subsystem throughput 150

Distributed Lock Manager (DLM) 90, 95
DML Commands 383

DELETE 384
INSERT 384
SELECT 383
UPDATE 384

DMS tablespaces 62
DROP 29, 383, 395, 400
DSS 46, 113, 132, 133, 156, 180, 249, 334, 335,
336

E
E-Business 51
Enterprise Resource Planning 49
Enterprise Storage Server 176
ERP 49
Ethernet 129
EXPLAIN PLAN 219, 396, 400
Expression operators 386

F
Fact table 81
Failure analysis 194
Fast commit 75
FastSize 105
FCAL 188
FDDI 129
Fibre Channel Arbitrated Loop (FC-AL) 177
filemon 354
Filesystem caching 160
Fine striping 155
FlashCopy 178
Foreign key 27
Forms 111
Full backup 37
Function shipping 87

G
General database sizing 112
GRANT 30
GROUP BY clause 384
Growth 102

H
HACMP 34, 143, 144, 147
Hardware check list 186
Hardware failure 33
Hardware sign off 188
Hardware testing 194
HAVING clause 384
host adapters 176
Hot tables 192
Hybrid systems 146

I
I/O tuning 252
I/O wait 160, 242, 252
I/O wait method AIX 4.3.2 and earlier 368
I/O wait method AIX 4.3.3 368
Index disk 32
Index files 61, 123, 125
Indexes 27
Initialization file 125
INSERT 28, 384
Installation - post installation 199
Installation documentation 199
Installation summary 199
Installing the RDBMS code 195
Instance 24
Integrated disk storage systems 175
Interactive monitor 20
Inter-disk allocation policy 157
Inter-partition parallelism 87
Inter-query parallelism 86
Intra-partition parallelism 87
Intra-query parallelism 86
iodone 169
iostat 356
IPC Services 19

J
JAVA 65
JFS versus raw logical volumes 160, 179
JOIN 28
Join query 383
Journaled File Systems 122

K
Keys 26
431

L
Latent demand 249
LCKn 76
LGWR 75
LIST APPLICATIONS 214
Load method 193
Loading data - large amounts 142
Locks 28, 226
Log disk 14
Log Files 122
Log retention logging 134
Log Structured File (LSF) 178
Logging 14, 122
Logical backup 37
Logical operators 29, 385
Logical resource access tuning 255
Logical resources 257
Logical Track Group 168
Logical Volume placement 323
Logs 28
Logs - archived 134
lsattr 356
lscfg 357
lscfg command 173
lsdev 357
lslpp 357
lslv 358
lsps 358
lspv 359
lsvg 359
LV 154
LVM 153

Concepts 153
Fine striping versus Physical Partition striping
154
Mirroring 159
Mirroring versus RAID 5 166
Policies 156
Striping 155

M
Massively Parallel Processors (MPP) 83
Media devices 188
Media Recovery Disabled 135
Memory 120, 225

Allocation 297
Goals 108
Sizing 108

Tuning 251
Memory and database considerations 129
Minimum disks for small databases 117
Mirror breaking 36
Mirror Write Consistency (MWC) 167
Mirrored writes 158
Mistake list 257
Model Database 401

DSS workload generation 406
Indexes 403
OLTP workload generation 404
Physical layout 408
Schema 402
Tables 403

Monitoring
Analyzing definition 221
Monitoring an RDBMS 203
Monitoring methods 220

Ad-hoc 222
Alert 222
Regular 221

Objectives definition 221
Process 224
Scripts 222
Task 220
Tools 221

Multi-part key 27
Multiple user access 188
MWC 157, 167
MWC cache record 168
MWC log 168

N
Naming convention 323
ncheck 360
netpmon 360
Network 37

Considerations 128
Failure 32
Resource tuning 254

nfsstat 360
nmon 361
no 361
NOARCHIVELOG mode 134
Non-relational database 8

O
OEM 78
432 Database Performance on AIX in DB2 UDB and Oracle Environments

Offline backup 38
OLAP 44, 249
OLTP 43, 107, 113, 132, 133, 164, 180, 235, 236,
249, 252, 334, 335, 338, 339
Online Analytical Processing 44
Online backup 38
Online manuals 122
Online Transaction Processing 43
Operators 384
Optical 37
Optimizer 28
Oracle

Access plan 300
Administration tools 77
Archive mode 134
ARCHIVELOG mode 135
Background processes 74
Backup/restore 134
BLEVEL value 139
Books 343
Cache Fusion 96
Commit record 75
Control file 73
Conventional path 142
Data (highly skewed) 301
Data blocks 71
Data dictionary cache 70
Data segments 71
Database Architecture 68
Database buffer cache 69, 70
Datafiles 72
Dedicated server 74
Direct path 142
Empty blocks 138
Execution plan 70
Export utilities 78
Extents 71
Import utilities 78
Incremental extent 71
Initial extent 71
Instance 69
JDBC 77
Logical Storage Structures 70
LRU list 70
Memory requirements 130
Memory Structures 68
Migrated rows 138
Monitoring tools 215

EXPLAIN PLAN 219

Oracle Diagnostic Pack 215
Oracle Enterprise Manager (OEM) 215
Oracle Expert 216
Oracle Performance Manager 215
Oracle SQL Analyze 216
Oracle Top Sessions 215
Oracle Tuning Pack 216
PLAN_TABLE 220
UTLBSTAT/UTLESTAT 217

Multithreaded server 74
NOARCHIVELOG mode 135
OFA 195
Oracle Enterprise Manager (OEM) 78
orainst 185
Partitioned tables 141, 142
PCTINCREASE 339
PGA 68
Physical Storage Structures 72
PL/SQL 76
Private SQL areas 70
Processes 73
Redo log buffer 69, 70
Redo logs 73
Reorganization - avoiding 140
Reorganization method 138
Resources 124
Roll forward 135
Rollback segments 71
Schema objects 72
Segment 71
Serializable transactions 71
Server Manager 78
Server processes 74
Session 73
SGA 68
Shared pool 69
Shared pool area 70
Shared SQL areas 70
SQL extensions 76
SQL*Loader 78, 142
SQLJ 77
Stored procedures 77
System change number (SCN) 75
SYSTEM tablespace 152
Tablespaces 72
Temporary segments 72
Transaction-level read consistency 71
User processes 73
utlbstat 338
433

utlestat 338
utlxplan.sql 219

Oracle commands
ALTER DATABASE 391
ALTER INDEX 391
ALTER ROLLBACK SEGMENT 391
ALTER SESSION 391
ALTER SYSTEM 391
ALTER TABLE 392
ALTER TABLESPACE 392
ALTER USER 392
ANALYZE 300, 393
ANALYZE INDEX 139
ANALYZE TABLE 138
CREATE DATABASE 393
CREATE INDEX 393
CREATE ROLLBACK SEGMENT 394
CREATE TABLE 394
CREATE TABLESPACE 395
CREATE USER 395
CREATE VIEW 395
DROP 395
exp 78
EXPLAIN PLAN 219, 396
imp 78
RENAME 396
setorapri 329
svrmgrl 294
TRUNCATE 396

Oracle DBA reference sheet 390
Oracle Enterprise Manager (OEM) - comments 216
Oracle Flexible Architecture 195
Oracle internal tables 396
Oracle Parallel Query (OPQ) 90
Oracle Parallel Server 89

Architecture 90
Block pinging 97
Database 90
Degree 93
Distributed Lock Manager (DLM) 90, 92, 95
I/O shipping and locking 97
Instance 90, 91, 93
Oracle Parallel Query (OPQ) 90
Virtual Shared Disk (VSD) 90, 92, 94

Oracle parameters
checkpoint_process 310
db_block_buffers 70, 313, 335, 336
db_block_lru_latches 310
db_block_size 70, 303, 334

db_buffers 304
db_file_multiblock_read_count 310, 338
db_writer_processes 307
db_writers 307, 335
dbwr_io_slaves 307
disk_asynch_io 306
dml_locks 310
enqueue_resources 310
hash_area_size 310
log_archive_buffer 341
log_archive_buffer_size 341
log_archive_dest 310
log_archive_start 310
log_buffer 70, 309
log_checkpoint_interval 310
log_simultaneous_copies 310, 338
log_small_entry_max_size 338
log_small_enty_maxsize 310
mts_* 310
open_cursors 311
optimizer_mode 308
parallel_max_servers 311, 340
parallel_min_servers 311, 340
parallel_server 311
PCTFREE 140
PCTUSED 140
processes 311
recovery_parallelism 311, 338
rollback_segments 309
sessions 311
shared_pool_size 307, 308, 335
sort_area_retain_size 311
sort_area_size 299, 308
sort_direct_writes 336
sort_write_buffer_size 336
sort_write_buffers 336
sql_trace 308
timed_os_statistics 311
timed_statistics 308
transactions_per_rollback_segment 311
use_async_io 306

Oracle parameters - key parameters 310
Oracle processes

Archiver (ARCH) 75
Checkpoint Process (CKPT) 75
Database Writer (DBWn) 74
Dispatcher(Dnnn) 76
LOCK (LCKn) 76
Log Writer (LGWR) 75
434 Database Performance on AIX in DB2 UDB and Oracle Environments

Process Monitor (PMON) 76
Recover (RECO) 76
System Monitor (SMON) 75

Oracle SQLplus extensions 388
Help and additional settings 390
Line editing commands 388
Miscellaneous 389
Report/formatting commands 389
Running files and editing 388

Oracle tuning
See also Tuning Oracle

Oracle tuning parameters 303
ORDER BY clause 384

P
Paging space 121, 187, 225, 296
Parallel concepts 81
Parallel databases 81

Advantages 96
Disadvantages 96

Parallel mirrored writes 159
Partial backup 37
PCI bus 151
PCTFREE 139
Peer-to-Peer-Remote-Copy (PPRC) 178
Performance bottlenecks 224, 353
Performance data collection 345
Performance data collection - before problem 347
Performance monitoring scripts 222
Performance optimization 159
Performance problems - avoiding 352
Performance problems - most common sources
351
Performance versus availability 142, 149
PGA 68
Physical backup 37
Physical Partition mapping 157
Physical Partition striping 155
Physical Partition striping versus LVM fine striping
154
PMON 76
PMR 345
PMR - raising a 348
PMR information table 349
Poor application modules and SQL statements 256
Power loss 31
PP 153
Pre-starting check list 189

Primary key 27, 191
Process resident set 110
Process working set 110
Processes - number of 187
Production system 144
Program Global Areas (PGA) 68
Proof of concept programs 147
Prototype system 199
ps 361
PV 153

R
RAID 5 versus AIX LVM mirroring 166
RAID levels 161

Comparison 166
RAID 0+1 165
RAID Level 0 162
RAID Level 1 163
RAID Level 4 164
RAID Level 5 164
RAID Levels 2 and 3 163

RAID performance considerations 161
Range 157
Raw data 104
Raw data size 112
Raw devices versus JFS 179
Raw logical volumes versus JFS 160
RDBMS 9, 24

See also Database
RDBMS - What is an RDBMS 5
RDBMS Sizer 105
RECO 76
Recovery plan 200
Redo log disks 296
Redo log files 124, 152
Referential integrity policy 191
Relation 26
Relational database system concepts 5
Relational operators 29, 385
Relationships 26
RENAME 396
RENAME TABLE 400
Reporting 52
Reporting performance problems 224
Resident set 110
resilvering 36
Response time requirements 106
Responsibilities 223
435

REVOKE 30
rmss 363
Rollback segments 125
Rollback segments tablespace 152
Roll-forward recovery 134
Row 26
RS/6000 SP 83

S
Safety 31
SAN Data Gateway 177
sar 363
schedtune 365
Scripting the build 197
SCSI 150, 188
Security 27
SELECT 28, 383
Sequential mirrored writes 158
Sequential read ahead 156
Serial Storage Architecture (SSA) 171
Set operators 386
SGA 25, 68, 130
Shared disks 82
Shared Memory 25
Shared nothing 83
SID 69
Singleton select 29
Site disaster 33
Sizing 101, 112

AIX 109
AIX buffer cache 109
AIX filesystem cache 109
Constraints 101
CPU 106
Database connections 110
Disks 112
For a particular application 106
From data size 104
From transaction rates 104
From user numbers 105
Indexes 114
Memory 108
Mirrors 117
RAID 5 117
RDBMS cache and structures 109
SMP systems 107
Sort space 115
Table by table - detailed level 113

Tables 114
Techniques 103
Temporary space 115
UP systems 107
User applications 110

Small databases - minimum disks 117
SMON 75
SMP 132, 256, 257, 285
SMS tablespaces 61
Sort Area 27
Sort Area disk 32
Sort operation 225
Sort Space 123
SP 132
SQL 29
SQL functions 28, 386

Aggregate group functions 386
Common functions (Oracle only) 386

Conversion 387
Date 388
Single row character 387
Single row number 387

SQL Procedure 65
SQL reference sheet 381
SQL terms

Aggregates 29
CREATE 29
DELETE 28
DROP 29
Functions 28
JOIN 28
Logical operators 29
Relational operators 29
SELECT 28
Singleton select 29
Sub-query 29
Tablespace 29
UPDATE 28

SSA 150, 171, 177, 188
Adapters 151
Data distribution in loop 174
Device position in loop 175
Disk Characteristics 172
Disks per loop or adapter 172
Drive Type information 173
Initiator node 171
Performance considerations 172
Spatial reuse 174
Target node 171
436 Database Performance on AIX in DB2 UDB and Oracle Environments

Technology overview 171
Standby machine 34
Storage-Clause 390
StorWatch ESS Specialist 178
Strict option 158
Structured Query Language (SQL) 29
Sub-queries 383
Sub-query 29
Super Strict option 158
svmon 366
Symmetric Multi Processor (SMP) 81
SYSCATSPACE 57
System burn-in 195
System bus 151
System components 101
System Global Area (SGA) 68
System log book 200
System resource utilization 131

T
Tables 25
Tablespace 29
Tape 36
Temporary disk 32
Temporary storage 27
Temporary tablespace 152
TEMPSPACE1 57
Test results 178
Test system 146, 199
Tmp Area 27
TPC 401
TPC-C 105
TPC-D 401
TPC-H 401
TPC-R 401
TRUNCATE 396
Tuning

Activity limitation 233
AIX system tunable parameters 244
AIX tuning hints 326
AIX virtual memory parameters 244
Application design 230
Approaches

All guns firing approach 232
Maximum performance approach 227
Minimum man-power approach 227

Balanced disk I/O 253
Balancing 247

Batch workload 236, 249
Books 230
Bottlenecks 247
Check for errors 245
Classic mistake list 257
CPU 249
Database design 230
Deciding priorities 235
Decision Support Systems 236
Definition of success criteria 233
Direct I/O 327
Disk geometry considerations 322
Disk I/O 252
Disk I/O pacing 327
Document RDBMS parameters 245
Documentation 238
DSS workload 249
Emergency 227
Gathering information 243
Generated warning 227
Hardware configurations 245
Hot disk avoidance 325
Hot disk removal 325
Hot spots 235
I/O 252
I/O wait 242, 252
Important areas 236
Improvement verification 239
Instrumentation and measurement 238
Investigating the system 246
Iteration 234
Latent demand 249
Logical resource access 255
Machine details 243
Measuring response time 237
Memory 251
Memory - free memory 330
Methods

Change all at once 241
Formal fine tuning 232

Network 254
Parameters 245
TCP/IP 342

New system 228
OLAP 249
OLTP 236, 249, 252
One change at a time 234
Overworked system 250, 252
Paging rate 324
437

Paging space 324
Performance improvement process 259
Poor tuning 248
Process priority 329
Process time slice 329
Processor binding on SMP 328
Programming 230
RDBMS tuning 230
readv() feature 326
Reference manuals and books 229
Regular task 227
Reproducible workloads 236
Resources 247
Response times 233
Rumors 242
Scheduling the tests 239
Sequential read ahead 323
SMP balanced CPU utilization 326
Spin count on SMP 328
SQL 230
System change 228
Top performance parameters 246
Tuning log recommendations 239
Tuning skills 228
Tuning strategy 231
Tuning team 240
Tuning window 257
Upgrade to latest fix levels 245
Utilization 247
What can we tune? 255
Workload details 244
Write behind 327

Tuning AIX for Oracle 317
Tuning an RDBMS system 227
Tuning DB2 UDB

Access paths 288
Access plan 288
Agents - maximum number of 282
Application 260
Application rebind 273, 277
Applications - db2agent usage 282
Applications - maximum number of active 282
Buffer pool 274
Buffer pool hit ratio 273
Buffer pool size 270
Bufferpool Services 270
Catalog cache size 280
Changed pages threshold 276
Configuration scaling 262

Control block information memory area 280
Database heap 273, 280, 281
Database heap size 280
dbheap size 273
DDL statements - catalog cache size impact
280
Deadlocks 284
Dirty pages 274
DMS tablespace container 286
DSS environment 273, 275
Environment 260
Event monitor buffers 280
Governor 262
I/O servers - number of 273
Intra-partition parallelism - maximum degree
285
Isolation level

Cursor Stability 284
Uncommitted Read 284

Lock escalation 283
Lock list

Maximum contents before escalation 284
Maximum storage 283

Locks 283
Log buffer size 281
Log records buffer 281
Memory allocation 286
Memory disclaiming 286
Memory usage 262
OLTP environment 272, 275, 276, 279, 281
Operational performance 260
Optimizer 288
Package cache size 279
Page cleaners - number of asynchronous 274
Parallel I/O 286
Parameters

Configurable 264
Database 267
Database manager 265
Informational 264

Process private memory 276
Reorganizing tables 287
Simulating through SYSSTAT views 288
Sort heap threshold 277
Sort tables - temporary 277
Sort time 277
Sorts - private 277
Sorts - shared 278
SQL compiler 261
438 Database Performance on AIX in DB2 UDB and Oracle Environments

SQL compiler workspace - size of 278
SQL Explain facility 261
SQL statement caching 279
Statement heap size 278
SYSCAT 261
SYSSTAT 261, 289
System catalog statistics 261
Tablespace page size 287
Tablespace single containers 286
Transaction commit 281
Tuning elements 260
Variables 269
What makes a difference? 264

Tuning hint categories for AIX and Oracle 302
Tuning Oracle 291

Access method tuning 311
AIX buffer cache 304
AIX configuration mistakes 295
AIX LVM 318
Analysis 299
Application apart from database 316
ARCHIVEMODE 333
Archiver buffers 341
Asynchronous I/O 314, 318
Basic parameters 300
Batch workloads 308
Block size 334
Books 343
Buffer cache

Hit ratio 336
Size 331
Size for a JFS based database 331

Buffer cache size for a raw device based data-
base 332
Change control 295
Common Oracle mistakes 299
Compiling programs with embedded Oracle
SQL 342
Contention tuning 316
Control files 333
Cost based optimizer 300
CPU tuning 315
CREATE TABLE AS SELECT 313
create table as select 313
Database writers 335
Disk balancing 314
Disk geometry considerations 322
Disk I/O tuning 314
Disks - separate AIX and database disks 336

DSS workloads 304, 308, 309
EXPLAIN PLAN 312
Extents fragmentation 315
Fine tuning steps 311
Histogram statistics 301
Hot disk

Avoidance 325
Removal 325

Hot Oracle files 314
Indexes 299
Indexing parallelization 312
Installation according to OFA 333
JFS 304
JFS or raw devices 320
Logical volume creation 320
Memory tuning 313
Naming convention 323
OLTP workloads 304, 309
Optimizer 299
Oracle files 318
Oracle tuning hints 333
Paging 313

Paging rate 324
Paging space 324

Parallel queries 340
Parallel query server contention 317
Parallel recovery 338
Parallelism 315
Parallelization 340
Parameters 303
Performance impact or benefit 302
Performance risk 302
Post-wait kernel extension for AIX 333
Processor affinity 316
RAID 5 314
Raw devices 315
Raw devices or JFS 320
Read ahead 338
Redo buffer latch 338
Redo buffer size 338
Redo log 314
Redo log buffer latch contention 317
Redo log disk 296, 337
Redo log groups or AIX mirrors 337
Redo log mirroring 337
Redo log space requests 339
Rollback contention 317
Rollback segments - number of 339
Rows - marking and batch deleting 341
439

Sequential read ahead 323
SGA 332

Buffer cache 305
db_block_buffers 313
Memory size 335
Redo log buffers 313
Shared pool 313
Size 81, 334

Shared pool size 339
SMP balanced CPU utilization 326
SMP balancing 315
SORT_AREA_SIZE 299
Sorts parallelization 312
Spin count 317
SQL*Loader I/O buffers 342
Tables and indexes analysis 300
Tablespace and table creation 339
Tablespace fragmentation 315
Time slice 315
Top 10 Oracle parameters 303
Transaction rates 312
TRUNCATE rows 341
Tuning hint categories 302
Tuning levels 291
Tuning sequence 292
Tuning sequence - change all at once 293
User balancing 315
What can you change to make a difference?
291

U
UPDATE 28, 384
Upgrades 119, 255

AIX 146
RDBMS 146

User defined data 5
Users - number of 187
USERSPACE1 57
UTLBSTAT 217
UTLESTAT 217

V
Version recovery 134
VG 153
View 26
Virtual Shared Disk (VSD) 90, 94
Vital SQL 371

DB2 UDB 371

Application details 373
Column structure within SELECT 372
Column structure within table 371
COMMIT attempts 373
Database locks 373
Deadlocks and lock escalations 373
Index structure 371
Memory used for sort operations 373
Monitor counter resetting 373
Monitor status 373
Monitor switches disabling 372
Monitor switches enabling 372
Table listing 371
Tablespace containers 372
Tablespace details 372
Tablespace listing 372
Users connected and executing 373

Oracle 374
Buffer cache hit ratio - automatic 374
Buffer cache hit ratio - manual 374
Database files 378
Explain plan, nested 375
Extents 378
Free space 379
Indexes 377
Parameters 379
Redo log buffer full 375
Rollback segments 375
Shared pool free memory 374
Tables 376
Tablespaces 375
Transactions 374

VLDB 15, 81
VMM 156
vmstat 367
vmtune 369
VSD 94

W
Web application server 51
Web hit 51
Web server 108, 132
WHERE clause 28, 383
Working set 110
Working space 121
Workload 43, 150
Workload considerations 128
Write-scheduling policy 158
440 Database Performance on AIX in DB2 UDB and Oracle Environments

Write-verify policy 159
441

442 Database Performance on AIX in DB2 UDB and Oracle Environments

© Copyright IBM Corp. 1999 443

IBM Redbooks evaluation

Database Performance on AIX in DB2 UDB and Oracle Environments
SG24-5511-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other Redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Printed in the U.S.A.

SG24-5511-00

D
atabase

P
erform

ance
on

A
IX

in
D

B
2

U
D

B
and

O
racle

E
nvironm

en
ts

S
G

24-5511-00

®

	Contents
	Preface
	How this book is organized
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to this redbook
	Chapter 2. Introduction into relational database system concepts
	2.1 What is an RDBMS?
	2.2 What does an RDBMS provide?
	2.3 The database performance trick
	2.4 What are the components of an RDBMS?
	2.5 Defining the RDBMS terms and ideas
	2.5.1 RDBMS terms

	2.6 Structured Query Language
	2.7 How do we make the data safe?
	2.8 Backup and performance
	2.8.1 Backup media
	2.8.2 Full or partial backup
	2.8.3 Physical and logical backup
	2.8.4 Online and off-line backup
	2.8.5 Backup recommendations

	Chapter 3. Types of workload
	3.1 Online Transaction Processing (OLTP)
	3.2 Online Analytical Processing (OLAP)
	3.3 Decision Support Systems (DSS)
	3.3.1 Data warehouse
	3.3.2 Data mart
	3.3.3 Business Intelligence (BI)
	3.3.4 Data mining

	3.4 Enterprise Resource Planning (ERP)
	3.5 e-Business
	3.6 Reporting

	Chapter 4. Specific databases
	4.1 DB2 UDB Database architecture
	4.1.1 Memory structures
	4.1.2 Logical storage structures
	4.1.3 Physical storage structures
	4.1.4 Processes
	4.1.5 SQL extensions - Stored procedures
	4.1.6 Administration tools

	4.2 Oracle database architecture
	4.2.1 Memory structures
	4.2.2 Logical storage structures
	4.2.3 Physical storage structures
	4.2.4 Processes
	4.2.5 SQL extensions - Stored procedures
	4.2.6 Administration tools

	Chapter 5. Parallel databases
	5.1 Parallel concepts in database environments
	5.1.1 Shared memory
	5.1.2 Shared disks
	5.1.3 Shared nothing

	5.2 DB2 UDB Enterprise - Extended Edition (EEE)
	5.2.1 Concepts and functionality
	5.2.2 Optimizer
	5.2.3 Inter-partition and intra-partition parallelism
	5.2.4 Hardware implementation

	5.3 Oracle Parallel server
	5.3.1 Parallel Oracle architecture
	5.3.2 Virtual Shared Disk (VSD)
	5.3.3 Distributed Lock Manager (DLM)

	5.4 Advantages and disadvantages of parallel databases

	Chapter 6. Sizing a database system
	6.1 Sizing constraints
	6.2 Sizing techniques
	6.2.1 Sizing from the data size
	6.2.2 Sizing from transaction rates
	6.2.3 Sizing from user numbers

	6.3 Sizing for a particular application
	6.4 CPU goals and sizing
	6.4.1 Uniprocessor (UP) Systems
	6.4.2 Symmetric Multiprocessor (SMP) Systems
	6.4.3 CPU utilization

	6.5 Memory goals and sizing
	6.5.1 AIX operating system
	6.5.2 AIX file system cache (AIX buffer cache)
	6.5.3 RDBMS cache and structures
	6.5.4 User applications and database connections

	6.6 Disk goals and sizing
	6.6.1 General database sizing - High-level
	6.6.2 Specific table by table sizing - Detailed level
	6.6.3 Which disk size to choose
	6.6.4 Disk protection

	6.7 Balancing a system via the component costs

	Chapter 7. Designing a system for an RDBMS
	7.1 Working space
	7.1.1 Basic and future AIX resources
	7.1.2 Basic and future application resources
	7.1.3 Basic RDBMS resources
	7.1.4 Future RDBMS resources

	7.2 Workload considerations
	7.3 Network considerations
	7.4 Memory and database considerations
	7.4.1 DB2 UDB memory requirements
	7.4.2 Oracle memory requirements

	7.5 System resource utilization
	7.6 Can the database be backed up and restored?
	7.6.1 DB2 UDB backup/restore scenario
	7.6.2 Oracle backup/restore scenario
	7.6.3 General backup considerations

	7.7 Coping with growth
	7.7.1 DB2 UDB reorganization method
	7.7.2 Oracle reorganization method
	7.7.3 When and how to avoid database reorganization
	7.7.4 Coping with large, unexpected growth
	7.7.5 Expected growth areas
	7.7.6 Loading large amounts of data

	7.8 Performance versus availability
	7.9 Production, development, and testing on the same machine
	7.9.1 Production
	7.9.2 Development
	7.9.3 Testing
	7.9.4 Hybrid machines

	7.10 AIX and RDBMS upgrades

	Chapter 8. Designing a disk subsystem
	8.1 Disk subsystem design approach
	8.2 Bandwidth related performance considerations
	8.3 Physical database layout considerations
	8.3.1 Database datafile distribution

	8.4 Logical Volume Manager (LVM) Concepts
	8.4.1 Physical Partition striping versus LVM fine striping
	8.4.2 Use of LVM policies

	8.5 Raw logical volumes versus Journaled File Systems (JFS)
	8.6 RAID Levels overview and performance considerations
	8.6.1 RAID Level 0
	8.6.2 RAID Level 1
	8.6.3 RAID Level 2 and Level 3
	8.6.4 RAID Level 4
	8.6.5 RAID Level 5
	8.6.6 RAID 0+1
	8.6.7 Comparison of RAID Levels
	8.6.8 RAID 5 versus AIX LVM mirroring

	8.7 Use of Mirror Write Consistency (MWC)
	8.8 Serial Storage Architecture (SSA)
	8.8.1 Technology overview
	8.8.2 SSA specific performance considerations

	8.9 Integrated disk storage systems
	8.9.1 IBM Enterprise Storage Server (ESS)

	8.10 Disk performance measurements and observations
	8.11 Choosing your disk subsystem

	Chapter 9. Implementing your database
	9.1 Hardware and AIX ready check list
	9.2 Pre-starting check list
	9.3 Database data
	9.4 Hardware testing
	9.5 Installing the RDBMS code
	9.6 Physical layout of the database
	9.7 Scripting the build
	9.8 Build a small cut down system
	9.9 After installation
	9.10 Backup and recovery test

	Chapter 10. Monitoring an RDBMS system for performance
	10.1 RDBMS tools
	10.1.1 DB2 UDB monitoring tools
	10.1.2 Oracle monitoring tools

	10.2 Regular monitoring, ad-hoc, or alert method usage
	10.2.1 Regular monitoring method
	10.2.2 Ad-hoc monitoring method
	10.2.3 Alert monitoring method

	10.3 Performance monitoring scripts
	10.4 Monitoring and tuning responsibilities
	10.5 When should a performance problem be reported and to whom?
	10.5.1 What are you looking for?

	Chapter 11. Tuning an RDBMS system
	11.1 Tuning skills
	11.2 Reference manuals and books
	11.2.1 About RDBMS tuning and RDBMS performance tuning books

	11.3 Tuning strategy
	11.4 Formal fine tuning method
	11.4.1 Clear definition of the success criteria
	11.4.2 Limiting the activity
	11.4.3 Iteration
	11.4.4 One change at a time
	11.4.5 Deciding priorities
	11.4.6 Hot spots
	11.4.7 Well known important areas
	11.4.8 Reproducible workloads
	11.4.9 How to measure response time
	11.4.10 Careful instrumentation and measurement
	11.4.11 Documentation
	11.4.12 Scheduling the tests
	11.4.13 Verifying the improvement
	11.4.14 The tuning team

	11.5 Change all at once method
	11.5.1 Ignore the rumors
	11.5.2 Gathering the information
	11.5.3 Check for errors
	11.5.4 Upgrade to the latest fix levels
	11.5.5 Investigating the system
	11.5.6 Check and set top performance parameters

	11.6 Bottlenecks, utilization, and resources
	11.6.1 Utilization goals
	11.6.2 Insufficient CPU and latent demand
	11.6.3 Insufficient memory
	11.6.4 Insufficient disk I/O
	11.6.5 Insufficient network resources
	11.6.6 Insufficient logical resource access

	11.7 What can we tune?
	11.7.1 Tuning window

	11.8 Classic mistake list

	Chapter 12. DB2 UDB tuning
	12.1 Performance improvement process
	12.2 General tuning elements
	12.2.1 Operational performance considerations
	12.2.2 Environmental considerations
	12.2.3 Application considerations
	12.2.4 System catalog statistics
	12.2.5 SQL compiler
	12.2.6 SQL Explain facility
	12.2.7 Using the DB2 UDB governor
	12.2.8 Scaling the configuration
	12.2.9 Memory usage by DB2 UDB

	12.3 What can you change to make a difference?
	12.4 What are the options?
	12.4.1 Database manager configuration parameters
	12.4.2 Database parameters
	12.4.3 DB2 UDB registry variables

	12.5 Which options will make a large difference?
	12.5.1 Buffer pool size (buffpage)
	12.5.2 Number of I/O servers (num_ioservers)
	12.5.3 Number of asynchronous page cleaners (num_iocleaners)
	12.5.4 Changed pages threshold (chngpgs_thresh)
	12.5.5 Sort heap size (sortheap)
	12.5.6 Sort heap threshold (sheapthres)
	12.5.7 Statement heap size (stmtheap)
	12.5.8 Package cache size (pckcachesz)
	12.5.9 Database heap size (dbheap)
	12.5.10 Catalog cache size (catalogcache_sz)
	12.5.11 Log buffer size (logbufsz)
	12.5.12 Maximum number of agents (maxagents)
	12.5.13 Maximum storage for lock list (locklist)
	12.5.14 Maximum percent of lock list before escalation (maxlocks)
	12.5.15 Maximum query degree of parallelism (max_querydegree)
	12.5.16 DB2MEMDISCLAIM and DB2MEMMAXFREE
	12.5.17 DB2_PARALLEL_IO
	12.5.18 DB2_STRIPED_CONTAINERS
	12.5.19 Reorganizing tables

	12.6 Simulating through SYSSTAT views

	Chapter 13. Oracle tuning
	13.1 What can you change to make a difference?
	13.2 Oracle tuning order
	13.3 Check the most common AIX configuration mistakes
	13.3.1 Change control
	13.3.2 Failure to use asynchronous I/O
	13.3.3 Poor disk subsystem installation
	13.3.4 Redo log disks
	13.3.5 Paging space and monitoring paging
	13.3.6 Not allocating enough memory to Oracle
	13.3.7 Poor use of AIX disk features
	13.3.8 Busy disks

	13.4 Check the most common Oracle mistakes
	13.4.1 Indexes
	13.4.2 Analysis
	13.4.3 Basic Oracle parameters
	13.4.4 Analyze database tables and indexes

	13.5 Tuning hint categories for AIX and Oracle used in this chapter
	13.6 Evaluate the top 10 Oracle parameters
	13.6.1 db_block_size
	13.6.2 db_block_buffers
	13.6.3 use_async_io or disk_asynch_io
	13.6.4 db_writers, db_writer_processes and dbwr_io_slaves
	13.6.5 shared_pool_size
	13.6.6 sort_area_size
	13.6.7 sql_trace
	13.6.8 timed_statistics
	13.6.9 optimizer_mode
	13.6.10 log_buffer
	13.6.11 rollback_segments

	13.7 Other key Oracle parameters
	13.8 Iterative fine tuning steps
	13.8.1 Access method tuning
	13.8.2 Memory tuning
	13.8.3 Disk I/O tuning
	13.8.4 CPU tuning
	13.8.5 Contention tuning

	13.9 Tuning AIX for Oracle hints
	13.9.1 AIX asynchronous I/O
	13.9.2 AIX Logical Volume Manager or Oracle files
	13.9.3 Create logical volumes at a standardized size
	13.9.4 AIX JFS or raw devices
	13.9.5 AIX disk geometry considerations
	13.9.6 Naming convention
	13.9.7 AIX sequential read ahead
	13.9.8 AIX paging space
	13.9.9 AIX paging rate
	13.9.10 Hot disk removal
	13.9.11 Disk sets for hot disk avoidance
	13.9.12 SMP balanced CPU utilization

	13.10 Advanced AIX tuning hints
	13.10.1 AIX readv() feature
	13.10.2 AIX direct I/O
	13.10.3 AIX write behind
	13.10.4 AIX disk I/O pacing
	13.10.5 AIX processor binding on SMP
	13.10.6 AIX spin count on SMP
	13.10.7 AIX process priority
	13.10.8 AIX process time slice
	13.10.9 AIX free memory
	13.10.10 AIX buffer cache size

	13.11 Oracle tuning hints
	13.11.1 Oracle installed according to Oracle Flexible Architecture
	13.11.2 Oracle ARCHIVEMODE
	13.11.3 Oracle control files
	13.11.4 Oracle post-wait kernel extension for AIX
	13.11.5 Oracle block size
	13.11.6 Oracle SGA size
	13.11.7 Oracle database writers
	13.11.8 Oracle buffer cache hit ratio tuning
	13.11.9 Split the database disks from the AIX disks
	13.11.10 Oracle redo log should have a dedicated disk
	13.11.11 Mirror the redo log or use RAID 5 fast-write cache option
	13.11.12 Oracle redo log groups or AIX mirrors
	13.11.13 Oracle parallel recovery
	13.11.14 Oracle db_file_multiblock_read_count parameter
	13.11.15 Oracle redo buffer latch
	13.11.16 Oracle redo buffer size
	13.11.17 Oracle shared pool size
	13.11.18 Oracle tablespace and table creation
	13.11.19 Number of Oracle rollback segments
	13.11.20 Oracle parallelization
	13.11.21 Oracle archiver buffers
	13.11.22 Oracle use TRUNCATE rather than DELETE all rows
	13.11.23 Oracle marking and batch deleting rows
	13.11.24 Oracle SQL*Loader I/O buffers

	13.12 Other tuning hints
	13.12.1 Network TCP/IP
	13.12.2 Compiling programs with embedded Oracle SQL

	13.13 Books for Oracle database administration and tuning

	Chapter 14. Austin - we have a problem!
	14.1 Perfpmr - the performance data collection tool
	14.1.1 Get the latest version of perfpmr
	14.1.2 AIX media supplied version

	14.2 Before you have a problem
	14.3 Raising a Problem Management Record (PMR)
	14.3.1 PMR information

	14.4 Most common sources of database performance PMRs
	14.5 Avoiding the next performance crisis

	Appendix A. AIX performance tools summary
	A.1 Summary of performance bottlenecks
	A.2 filemon - File I/O Monitor
	A.3 iostat - Disk I/O Statistics
	A.4 lsattr - List attributes
	A.5 lscfg - List configuration
	A.6 lsdev - List devices
	A.7 lslpp - List licensed program produce
	A.8 lslv - List logical volume
	A.9 lsps - List Paging Space
	A.10 lspv - List physical volume
	A.11 lsvg - List volume group
	A.12 ncheck - Inode Check
	A.13 netpmon - Network Monitor
	A.14 nfsstat - Network File System statistics
	A.15 nmon - online monitor
	A.16 no - Network options
	A.17 ps - Process State
	A.18 rmss - Reduced Memory System Simulator
	A.19 sar - System Activity Reporter
	A.20 schedtune - Process Scheduling Tuning
	A.21 svmon - System Virtual Memory Monitor
	A.22 vmstat - Virtual Memory Management Statistics
	A.23 vmtune - Virtual Memory Tuning

	Appendix B. Vital SQL
	B.1 DB2 UDB
	B.1.1 List the existing tables on a database
	B.1.2 Describe the structure of the columns in a table
	B.1.3 Describe the indexes defined in a table and their structure
	B.1.4 Describe structure of the columns within a SELECT statement
	B.1.5 List all the tablespaces of a database
	B.1.6 List tablespace name, Id number, size, and space consumption
	B.1.7 List the tablespace containers
	B.1.8 Enable all monitor switches
	B.1.9 Disable all monitor switches
	B.1.10 Check the monitor status
	B.1.11 Reset the monitor counters for a specific database
	B.1.12 Show the locks existing on a database
	B.1.13 List application number, status, idle time, and AIX processes
	B.1.14 List connected and effectively executing users
	B.1.15 Display the amount of memory being used for sort operations
	B.1.16 Display the number of deadlocks and lock escalations
	B.1.17 Display the number of attempted SQL COMMIT statements

	B.2 Oracle
	B.2.1 Oracle number of transactions
	B.2.2 Buffer cache hit ratio - manual
	B.2.3 Buffer cache hit ratio - automatic
	B.2.4 Shared pool free memory
	B.2.5 Redo log buffer too small
	B.2.6 Rollback segment
	B.2.7 Oracle nested explain plan
	B.2.8 Oracle report on tablespaces
	B.2.9 Oracle report on tables
	B.2.10 Oracle report on indexes
	B.2.11 Oracle report on database files
	B.2.12 Oracle report on extents
	B.2.13 Oracle report on parameters
	B.2.14 Oracle report on free space

	Appendix C. Reference sheets
	C.1 SQL reference sheet
	C.1.1 Data Definition Language (DDL) commands
	C.1.2 Data Manipulation Language (DML) commands
	C.1.3 Operators
	C.1.4 SQL functions

	C.2 Oracle SQLplus extensions reference sheet
	C.2.1 Running files and editing
	C.2.2 Line editing commands
	C.2.3 Report/formatting commands
	C.2.4 Miscellaneous
	C.2.5 Help and additional settings

	C.3 Oracle DBA reference sheet
	C.3.1 Storage-Clause
	C.3.2 ALTER DATABASE
	C.3.3 ALTER INDEX
	C.3.4 ALTER ROLLBACK SEGMENT
	C.3.5 ALTER SESSION
	C.3.6 ALTER SYSTEM
	C.3.7 ALTER TABLE
	C.3.8 ALTER TABLESPACE
	14.5.1 ALTER USER
	C.3.9 ANALYZE
	C.3.10 CREATE DATABASE
	C.3.11 CREATE INDEX
	C.3.12 CREATE ROLLBACK SEGMENT
	C.3.13 CREATE TABLE
	C.3.14 CREATE TABLESPACE
	C.3.15 CREATE USER
	C.3.16 CREATE VIEW
	C.3.17 DROP
	C.3.18 EXPLAIN PLAN
	C.3.19 RENAME
	C.3.20 TRUNCATE
	C.3.21 Useful Oracle internal tables

	C.4 DB2 UDB DBA reference sheet
	C.4.1 ALTER BUFFERPOOL
	C.4.2 ALTER TABLE
	C.4.3 ALTER TABLESPACE
	C.4.4 CREATE DATABASE
	C.4.5 CREATE INDEX
	C.4.6 CREATE TABLE
	C.4.7 CREATE TABLESPACE
	C.4.8 CREATE VIEW
	C.4.9 DROP
	C.4.10 EXPLAIN PLAN
	C.4.11 RENAME TABLE
	C.4.12 Useful DB2 UDB internal catalog views

	Appendix D. The Model Database used for testing in this redbook
	D.1 Schema
	D.2 The model database tables
	D.3 The model database indexes
	D.4 OLTP workload generation
	D.5 DSS workload generation
	D.5.1 Query 2
	D.5.2 Query 6
	D.5.3 Query 13
	D.5.4 Query 17

	D.6 Model Database physical layout

	Appendix E. Special notices
	Appendix F. Related publications
	F.1 IBM Redbooks publications
	F.2 IBM Redbooks collections
	F.3 Other resources
	F.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	List of abbreviations
	Index
	IBM Redbooks evaluation

