
Developing Cross-Platform DB2 Stored Procedures:
SQL Procedures and the DB2 Stored Procedure Builder

Patrick Dantressangle, Debra Eaton, Mark Leung, Ricardo D. Macedo, Ling Tay
Maria Sueli Almeida, Jarek Miszczyk

International Technical Support Organization

SG24-5485-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5485-00

Developing Cross-Platform DB2 Stored Procedures:
SQL Procedures and the DB2 Stored Procedure Builder

November 1999

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 1999)

This edition applies to DB2 for OS/390 Version 5 and Version 6 with applied service maintenance, for DB2 for AS/400
V4R2 and beyond, and for DB2 for UNIX, Windows, and OS/2 for the release after Version 6, and other current
versions and releases of IBM products. Make sure you are using the correct edition for the level of the product. This
edition is based on the latest beta version of SQL Procedures language support and IBM Stored Procedure Builder.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix B,
“Special notices” on page 223.

Take Note!

Contents

Figures . vii

Tables . ix

Preface . xi
The team that wrote this redbook . xi
Comments welcome . xiii

Chapter 1. Introduction .1
1.1 DB2 stored procedures — evolution .1
1.2 Cross-platform support of stored procedures written entirely in SQL6
1.3 Building DB2 stored procedures from your workstation6
1.4 Concepts and terminology. .7

Chapter 2. The SQL Procedures language .9
2.1 What is it?. .9
2.2 Planning to use the SQL Procedures language .10

2.2.1 Why use it? .10
2.2.2 When to use them? .13

2.3 Comparing SQL stored procedures and external stored procedures16
2.3.1 Development .16
2.3.2 Runtime .17

2.4 Current implementation of SQL Procedures language17
2.4.1 How does this work in general? .18
2.4.2 Declaring SQL local variables .19
2.4.3 Language Elements .20
2.4.4 Returning result sets .29
2.4.5 Handling errors in an SQL stored procedure33
2.4.6 Current restrictions .36

2.5 SQL Procedures portability .36
2.6 New error messages .39
2.7 Migrating from OEM DBMS .40

2.7.1 Migrating the database structure .40
2.7.2 Migrating the database data .41
2.7.3 Migrating the business logic .41
2.7.4 Comparison with Sybase/Microsoft SQL Server Transact-SQL43
2.7.5 Comparison with Oracle PL/SQL .48
2.7.6 Comparison with Informix SPL .55

Chapter 3. The DB2 Stored Procedure Builder .57
3.1 DB2 Stored Procedure Builder — overview .57

3.1.1 What is it? .57
3.1.2 Programming languages supported .58

3.2 Product Installation on Windows NT .60
3.2.1 Prerequisites for SPB .60
3.2.2 Installing the SPB .61

3.3 Advanced configuring of the SPB .65
3.3.1 Concepts and terminology .75
3.3.2 What are its components? .77
3.3.3 Working with SPB projects .79

3.4 Using the Stored Procedure Builder .83
© Copyright IBM Corp. 1999 iii

3.4.1 Viewing existing stored procedures . 83
3.4.2 Creating new stored procedures . 85
3.4.3 Building stored procedures . 101
3.4.4 Modifying existing stored procedures . 102
3.4.5 Copying and pasting stored procedures across connections 104
3.4.6 Debugging stored procedures . 105

Chapter 4. SQL Procedures for DB2 UDB for OS/390 109
4.1 General considerations . 109
4.2 System requirements and planning . 109

4.2.1 Requirements for DB2 for OS/390 Version 5 109
4.2.2 Requirements for DB2 UDB for OS/390 Version 6 111
4.2.3 Remote Debugger and Debug tool . 112
4.2.4 Creating non-catalog DB2 tables . 112
4.2.5 WLM requirements for OS/390 Procedure Processor 114

4.3 Coding considerations . 115
4.3.1 Length and size limits . 115
4.3.2 Parameters and variables . 115
4.3.3 Handling SQLCODE and SQLSTATE values 117
4.3.4 SQL statements . 117
4.3.5 Client application . 118

4.4 Stored procedure preparation . 118
4.4.1 Process . 119
4.4.2 Authorization . 120

4.5 Setting up DSNTPSMP . 120
4.5.1 Using the SPB . 122
4.5.2 Using OS/390 Procedure Processor (DSNTPSMP) 125
4.5.3 Using JCL . 136

4.6 Stored procedure debugging . 142
4.6.1 Process . 143
4.6.2 If the debugger does not start . 143

Chapter 5. SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 . . . 145
5.1 General considerations . 145
5.2 Supported platforms . 146
5.3 System requirements and planning . 146

5.3.1 Requirements for the Windows NT platform 146
5.3.2 Requirements for the UNIX platform . 148
5.3.3 Changing compiler options. 149
5.3.4 Retaining intermediate files . 150

5.4 Coding considerations . 151
5.4.1 Recommendations for writing portable stored procedures 151
5.4.2 Structure of SQL stored procedures . 151
5.4.3 Coding the SQL stored procedures body . 152

5.5 Stored procedures preparation . 159
5.5.1 Privileges required to prepare an SQL stored procedure 161
5.5.2 Preparing an SQL stored procedure from the DB2 CLP 162
5.5.3 Preparing an SQL stored procedure from the DB2 tools. 162
5.5.4 Preparing an SQL stored procedure from application programs . . . 164
5.5.5 Preparing an SQL stored procedure from the SPB. 164
5.5.6 Copying SQL stored procedures between DB2 UDB servers 165

5.6 Stored procedure debugging . 166
5.6.1 Platforms supported for remote debugging 166
iv Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

5.6.2 The DB2DBG.ROUTINE_DEBUG debugger table166
5.6.3 DB2 environment variables for debugging .167
5.6.4 Starting the debugger client .168
5.6.5 Debugging stored procedures through SPB.168

Chapter 6. SQL Procedures for DB2 UDB for AS/400169
6.1 General Considerations .169
6.2 System requirements and planning .169
6.3 System Catalog Tables .169
6.4 Creating an SQL stored procedure .170

6.4.1 Creating an SQL SP with traditional tools .170
6.4.2 Creating an SQL SP with Operations Navigator GUI174
6.4.3 Creating an SQL SP with the Run SQL Scripts utility.176
6.4.4 Verifying the stored procedure properties .179

6.5 Deleting or replacing the SQL stored procedure180
6.6 Debugging SQL stored procedures .181

6.6.1 The ILE Source Debugger .181
6.6.2 Preparing the SQL stored procedure for debugging.182
6.6.3 Testing the SQL stored procedure in traditional environment184
6.6.4 Testing the SQL stored procedure in client/server environment188

Appendix A. Sample SQL stored procedure programs 195
A.1 Naming convention . 195
A.2 OS/390 samples . 195

A.2.1 DSN8ES1 . 195
A.2.2 SDK0LMS . 197
A.2.3 SDK1LMS . 198
A.2.4 SDK2LMS . 199
A.2.5 SDK3LMS . 199
A.2.6 SDK4LMS . 200
A.2.7 SDK5LMS . 201
A.2.8 SDK6LMS . 201
A.2.9 SDK7LMS . 202
A.2.10 SDK8LMS . 203
A.2.11 SDK9LMS . 204
A.2.12 SMP0LMS. 204
A.2.13 SMP1LMS. 205
A.2.14 SMP2LMS. 205
A.2.15 SMP3LMS. 206
A.2.16 SMP4LMS. 206
A.2.17 SMP5LMS. 207
A.2.18 SMP5LMS2. 207
A.2.19 SMP7LMS. 207
A.2.20 SMP8LMS. 208
A.2.21 SMP8LMS2. 209

A.3 NT and AIX samples . 209
A.3.1 SDK0LNS . 209
A.3.2 SDK1LNS . 210
A.3.3 SDK2LNS . 211
A.3.4 SDK3LNS . 211
A.3.5 SDK4LNS . 212
A.3.6 SDK5LNS . 213
A.3.7 SDK6LNS . 213
v

A.3.8 SDK7LNS. .214
A.3.9 SDK8LNS. .215
A.3.10 SDK9LNS. .216
A.3.11 SDKALNS .216
A.3.12 SMP1LNS .217
A.3.13 SMP2LNS .218
A.3.14 SMP3LNS .218
A.3.15 SMP4LNS .219
A.3.16 SMP5LNS .219
A.3.17 SMP7LNS .219
A.3.18 SMP8LNS .220
A.3.19 SMP9LNS .220
A.3.20 SMPALNS .221

Appendix B. Special notices .223

Appendix C. Related publications .227
C.1 International Technical Support Organization publications227
C.2 Redbooks on CD-ROMs .227
C.3 Other publications .227

How to get ITSO redbooks . 229
IBM Redbook Fax Order Form .230

List of abbreviations . 231

Index . 233

ITSO redbook evaluation . 237
vi Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figures

1. The usual SQL client, where the logic sends many SQL queries 12
2. SQL client using the same logic, but within an SQL stored procedure. 12
3. An example of shielding tables from users . 13
4. Behavior summary of different condition handlers . 34
5. SPB environment . 57
6. Invoking SPB through VisualAge for Java . 62
7. Specify Database Connection Window . 63
8. SPB main frame invoked through VA Java Workbench. 64
9. Customizing Microsoft Visual Studio . 65
10. Stored Procedure Builder . 67
11. SPB: Previous Projects . 68
12. Environment Properties: Connection . 68
13. Environment Properties: Editor . 69
14. Environment Properties: Assistance . 69
15. Environment Properties: Output . 70
16. Environment Properties: Debug . 70
17. Environment Properties: OS/390 Options . 71
18. Environment Properties: SQL Types . 71
19. Environment Properties: Type Mapping. 72
20. SPB main panel . 77
21. The New Stored Procedures SmartGuide . 78
22. SQL Assistant window . 79
23. SPB projects (*.spp), connections and stored procedures. 80
24. Creating new project "ITSO SG245485" . 81
25. Tree view of existing stored procedures . 83
26. Detailed view of existing stored procedures. 84
27. Filtering the list of stored procedures . 84
28. The Filter dialog window . 85
29. Creating a new SQL stored procedure. 86
30. The Name panel of the New Stored Procedures SmartGuide 87
31. The Pattern panel of the New Stored Procedures SmartGuide 88
32. The SQL Query panel of the New Stored Procedures SmartGuide 90
33. The Parameters panel of the New Stored Procedures SmartGuide 91
34. The Define Parameter dialog . 91
35. The Options panel of the New Stored Procedures SmartGuide 92
36. The Advanced options for DB2 for OS/390 SQL stored procedures 93
37. The Advanced build options for DB2 for OS/390 SQL stored procedures 94
38. The Tables panel of the SQL Assistant . 95
39. The Join panel of the SQL Assistant . 96
40. Changing the type of Join created by SQL Assistant . 96
41. The Conditions panel of the SQL Assistant . 97
42. Specifying a variable for a condition . 97
43. The Columns panel of the SQL Assistant . 98
44. The Sort panel of the SQL Assistant . 99
45. The SQL panel of the SQL Assistant . 100
46. Entering values for variables in the SQL statement . 101
47. Displaying the results of the SQL Statement . 101
48. Modifying an existing stored procedure . 103
49. Copying one SQL stored procedure. 104
50. Paste the stored procedure at the target server. 105
© Copyright IBM Corp. 1999 vii

51. Debugging process .106
52. IBM Distributed Debugger daemon. .106
53. IBM Distributed Debugger main window .107
54. Monitoring variables .108
55. Multiple WLM environments .114
56. Three methods for preparing SQL stored procedures119
57. Build Name field on OS/390 Options .122
58. OS/390 Options from SPB — 1/2 .123
59. OS/390 Options from SPB — 2/2 .123
60. SQL Costing Information panel .125
61. Input / Output for SQL Procedures Processor .126
62. The BUILD process. .130
63. The DESTROY process .131
64. DSNHSQL process .137
65. Using the same name for variables and parameters154
66. Using variables with the same name as a column .154
67. Assigning special registers to variables .155
68. Assigning results of built-in functions to variables. .156
69. Setting both SQLCODE and SQLSTATE variables to program variables . . .157
70. Nested compound statement .157
71. Setting a SAVEPOINT .158
72. Ways to create SQL stored procedures in DB2 UDB160
73. Preparation steps for SQL stored procedures in DB2 UDB161
74. STP.DB2 file containing SQL stored procedures using $ as a delimiter162
75. Changing the terminating character for the DB2 Command Center163
76. Changing the termination character for DB2 tools .164
77. Using SPB to prepare SQL stored procedures .165
78. Entering source code .172
79. Creating the SQL stored procedure .172
80. Working with spool files. .173
81. Displaying SQL precompiler error messages .174
82. Parameters definition for SQL stored procedure. .175
83. Entering SQL statements .176
84. Creating SQL SP with script utility .177
85. Job log window .178
86. Saving SQL Script File .179
87. Displaying the stored procedure properties .180
88. Deleting a stored procedure .181
89. RUNSQLSTM command. .183
90. Specifying the DBGVIEW and OUTPUT parameters184
91. Starting a debug session. .185
92. Debug session .186
93. INVDSK2LMS source code. .187
94. Running Java client. .188
95. Finding the database server job .189
96. Job log for a database server job .189
97. Calling the stored procedure from Java .190
98. Naming convention for samples .195
viii Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Tables

1. SQL Procedures portability across DB2 platforms . 36
2. RDBMS Stored Procedure language comparison . 42
3. Comparison between SQL/PSM and T/SQL control statements 44
4. Comparison between DB2 and Sybase SQL Server . 45
5. Comparison between SQL/PSM and PL/SQL control statements 49
6. Comparison between DB2 and Oracle. 50
7. Comparison between SQL/PSM and SPL control statements 55
8. DB2SPB.INI file sections and keywords . 72
9. SYSIBM.SYSPSM . 113
10. SYSIBM.SYSPSMOPTS . 113
11. SYSIBM.SYSPSMOUT . 114
© Copyright IBM Corp. 1999 ix

x Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Preface

This redbook is intended for DB2 application developers who are familiar with
Structured Query Language (SQL) and stored procedures, and who want to learn
about developing stored procedures in the SQL Procedures language, as well as
using and exploring the Stored Procedure Builder (SPB). Our discussion
particularly applies to Version 6 of DB2 Universal Database Server for OS/390,
for AS/400, and for distributed platforms, Version 5 of DB2 Server for OS/390,
and other current versions and releases of IBM products.

First, we present the evolution of the IBM stored procedures support, describing
in detail the new stored procedures language, SQL Procedures; and the new tool,
Stored Procedure Builder.

In addition, we cover the implementation of these new features across platforms
such as OS/390, Windows, and UNIX. The sample SQL stored procedures
programs implemented during this project are documented in detail. Most of
those samples are delivered with the SPB product. The sample SQL stored
procedures programs illustrate the theory discussed in this redbook. These
programs are useful for getting started with the SQL Procedures language in your
own environment and gaining some hands-on experience on whatever platform
you may have.

The support for the SQL Procedures language provides the customer with the
facility for developing their stored procedures in a standard and portable
language across the DB2 family and OEM DBMSs.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Patrick Dantressangle is an advisory software engineer working for IBM Santa
Teresa Laboratory, San Jose, CA. He joined IBM in 1996 to work for the Net.Data
development team, where he modified Net.Data V2 to perform flawlessly for all
the 645.9 millions hits of the Nagano Winter Olympic Games Web server. Since
1998, he has been involved in DB2 UDB Stored Procedures enhancements.
Since 1999, he has been working with Toronto teams on SQL Procedures
implementation on DB2 UDB distributed platform version 6.1 and version 7.
He has 15 years of experience in different fields such as client/server project
management and application development, high performance Web development,
and security software (smart cards).

Debra Eaton is a Field Technology Sales Specialist working at the IBM Software
Migration Project Office in Chicago, IL, USA. She has 10 years of experience in the
application development field. She has worked at IBM for 10 years. Her areas of
expertise include database management and application development. She has
written extensively on migrating from non-DB2 databases to DB2 databases.
© Copyright IBM Corp. 1999 xi

Mark Leung is a systems specialist in Australia. He has 11 years of experience in
the OS/390 field, and has worked at IBM for 11 years. His areas of expertise
include application performance testing and DB2 connectivity. He is also a
co-author of the redbook, Getting Started with DB2 Stored Procedures,
SG24-4693.

Ricardo Darriba Macedo is a Senior DB2 Product Specialist, working at the IBM
Software Business Unit, in Rio de Janeiro, Brazil. He joined IBM in 1987, and
since then has been responsible for supporting customers in the database and
application development areas. Ricardo has helped implement DB2 for many
large customers in Brazil. He is also a co-author of the redbooks Getting Started
with DB2 Stored Procedures, SG24-4693 and DB2 DRDA Supports TCP/IP,
SG24-2212.

Ling Tay is DB2 technical support in Australia. She has 6 years of experience in
DB2, mainly working on the OS/390 platform. Her areas of expertise are in
application development, as well as DB2 system and application tuning.

Maria Sueli Almeida is a Certified I/T Specialist - Systems Enterprise Data, and
is currently a DB2 for OS/390 and Distributed Relational Database System
(DRDS) specialist at the International Technical Support Organization, San Jose
Center. Before joining the ITSO in 1998, Maria Sueli worked at IBM Brazil
assisting customers and IBM technical professionals on DB2, data sharing,
database design, performance, and DRDA connectivity.

Jarek Miszczyk is an international Technical Support Organization specialist for
the AS/400 system at the International Technical Support Organization,
Rochester Center. He writes extensively and teaches IBM classes worldwide on
all areas of AS/400 database. Before joining the ITSO, he worked in IBM Poland
as a Systems Engineer and AS/400 Sales Specialist. He has over 10 years
experience in the computer field and his areas of expertise include cross-platform
database programming, SQL, and object-oriented (OO) programming.

Thanks to the following people for their invaluable contributions to this project:

Bob Carr
Thomas Eng
Marion Farber
Gerry Fisher
Greg Kim
Susan Malaika
Rick Mandel
Bruce McAlister
Claire McFeely
Jessica Mignone
Katherine A Morgan
Connie Nelin
Eugene Phu
Marichu Scanlon
Judy Tobias
Ronald Trueblood
Dirk Wollscheid

IBM Santa Teresa Laboratory
xii Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Gustavo Arocena
Serge Boivin
Judy Chan
Serge Rielau
Dan Scott

IBM Toronto Laboratory

Mark Anderson
Kathy Passe

IBM Rochester

Luca Montini

IBM Italy

Paolo Bruni
Joerg Reinschmidt

IBM International Technical Support Organization, San Jose Center

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO redbook evaluation” on page 237 to the
fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xiii

xiv Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Chapter 1. Introduction

In this chapter we discuss the evolution of DB2 cross-platform stored procedures
support, leading up to the delivery of these two new features: SQL Procedures
language and the Stored Procedure Builder — which are the main content of this
redbook.

1.1 DB2 stored procedures — evolution

Stored procedures are user-written programs that are stored at the database
server and can be invoked by client applications using SQL statements.

Stored procedures are predefined processes that execute the DB2 server side of
applications. They can be called locally, on the same system where the
application runs, or remotely from a different system. The SQL CALL statement is
used to invoke a stored procedure. A stored procedure can send and/or receive
parameters from the calling program.

The main goal of the stored procedure is the reduction of network message flow
between the requester (the application) and the data server (DB2) in a distributed
environment. Another usage of stored procedures is to have functions callable
from any application on any platform.

Your programming productivity can be improved using stored procedures when
you develop client/server applications. Stored procedures are the easiest way to
perform a remote call and to distribute the logic of an application program.

Using stored procedures gives two main advantages to Information Technology
departments:

• The application development department needs to maintain only one source of
each function, even if applications calling the functions are executed in a
different environment, such as transactional, distributed, batch, or distributed
access. Source languages can be mixed between the calling application and
the stored procedures, which permits the applications designer to chose the
right language at the right place.

• Management rules are enforced by the centralization and uniqueness of
function using stored procedures. In case of new application development, the
developer can call stored procedures already developed easily without the
burden of integrating these functions into the new source.

Since the stored procedure support by the DB2 family has been available, it has
been enhanced to meet the pace of our customers and business. One of the most
important enhancements is the support for a new stored procedure programming
language: SQL Procedures. This support allows SQL-only stored procedures
based on the ISO/ANSI standard SQL/PSM. This makes it possible to port the
same stored procedure to any member of the DB2 family. It also simplifies the
process of migrating stored procedures between other DBMSs and the DB2
family.
© Copyright IBM Corp. 1999 1

The implementation of SQL stored procedures is based on the SQL standard,
and supports constructs that are common to most programming languages. This
support has been available on DB2 UDB for AS/400 for more than one year, and
now has been deployed for other members of the DB2 family, which will be
covered in this book.

This is part of what has been known as SQL 3, and will shortly be called SQL 99 as it
becomes a formal international standard. DB2 has adopted this SQL Procedures
language from the SQL standard. We believe that customers will find value in using a
standard compliant stored procedures language rather than proprietary stored
procedures languages invented by other database vendors.

It is important to emphasize that the Database Language SQL - Part 4:
Persistent Stored Modules of ISO/IEC 9075 specifies the syntax and semantics of
a database language for declaring and maintaining persistent database language
routines in SQL-server modules. The scope of the current implementation is
limited to SQL Procedures and does not include support for SQL functions and
Feature P01, "Stored Modules". See 2.4, “Current implementation of SQL
Procedures language” on page 17.

The following sections describe the evolution of the stored procedure support by
the DB2 family.

DB2 for OS/390
Stored procedures support was introduced in DB2 for OS/390, Version 4.
In this first deployment, stored procedures support was focused on application
programming; for example:

• Improving the application security

• Sensitive business logic run on DB2 server

• End users do not need to have table privileges

• Improving application maintenance

• Business logic is centralized

• Online changes to application code

• Client systems not sensitive to underlying tables

• Good integration with desktop tools

• Improving performance

In DB2 for OS/390 Version 5, stored procedures take advantage of the DRDA
related enhancements introduced in this version of DB2, such as: native TCP/IP
support, which improves the connectivity for workstation users; direct connection
to DB2 for Windows through DB2 Connect for Windows; and many other
performance improvements. From the stored procedures point of view, the main
enhancements in this version were:

• Returning one or more query result sets

• Multiple DB2 stored procedure address spaces, managed by OS/390
Workload Manager (WLM)

• Ability to invoke utilities from a stored procedure, which means you can invoke
utilities from an application that uses the SQL CALL statement
2 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• Support to IMS Open Database Access (ODBA), which means that a DB2
stored procedure can directly connect to IMS DBCTL and access IMS data.

DB2 for OS/390 Version 6 deploys considerable enhancements for stored
procedures, such as:

• SQL capability

• CREATE and ALTER SQL statements and enhancements to the DROP
statement for creating, modifying, and deleting stored procedure definitions

• GRANT and REVOKE SQL statements to manage execution privileges for
stored procedures

• CURRENT PATH special register and PATH bind option to implicitly qualify
stored procedures names in CALL statements

• Improved data transfer, allowing the DRDA server to send multiple DRDA
query blocks

• Support for nested calls for stored procedures, so a stored procedure can call
another stored procedure

• CALL SQL statement embedded in application programs or dynamically
invoked from IBM’s ODBC and CLI drivers

• Support for new data types on CALL SQL statement

DB2 for UNIX, Windows, and OS/2
The history of DB2 on the PC and UNIX platforms starts with DB2 Common
Server Version 2, then DB2 Universal Database Version 5, and then DB2
Universal Database Version 6. The following paragraphs describe the
development of stored procedures for DB2 Universal Database Version 6.

Below is a list of the stored procedures features supported in DB2 Common
Server, Version 2:

• The external stored procedure programming technique can be used for
database manager applications running in a client/server environment.

• Stored procedures invoked through DB2 CLI provide the capability to return
one or more result sets to the client applications.

• The stored procedure must be written in one of the supported languages
(C, C++, COBOL, Fortran, REXX) for that database server.

• A special table, DB2CLI.PROCEDURES (a pseudo-catalog table), which is
defined by DB2, lists and describes the available stored procedures, along
with the associated parameters of those stored procedures.

• Stored procedures stored at the location of the database are invoked from the
client application via the SQL CALL statement.

• The SQL CALL statement can accept a series of host variables or an SQLDA
structure.

• The SQL_API_FN macro is required when you write stored procedures.

• The client procedure should set the indicator for output-only SQLVARs to -1.

• The server procedure should set the indicator for input-only SQLVARs to -128.
Introduction 3

Below is a list of the stored procedures features supported in DB2 Universal
Database, Version 5 (see DB2 UDB Version 5 Embedded SQL Programming
Guide, S10J-8158):

• The external stored procedure programming technique can be used for
database manager applications running in a client/server environment.

• Stored procedures invoked through DB2 CLI provide the capability to return
one or more result sets to the client applications.

• The stored procedure must be written in one of the supported languages
(C, C++, Java, COBOL, Fortran, REXX) for that database server.

• When creating a stored procedure in the Java language, the CREATE
PROCEDURE statement is used to register the procedure to the system
catalog table SYSCAT.PROCEDURES.

• The SYSCAT.PROCEDURES table is defined by DB2, and it lists and
describes available stored procedures, along with the associated parameters
of those stored procedures.

• Stored procedures stored at the location of the database are invoked from the
client application via the SQL CALL statement.

• The SQL CALL statement can accept a series of host variables or an SQLDA
structure.

• The SQL_API_FN macro is required when you write stored procedures.

• The client procedure should set the indicator for output-only SQLVARs to -1.

• The server procedure should set the indicator for input-only SQLVARs to -128.

Below is a list of the stored procedures features supported in DB2 Universal
Database, Version 6 (see DB2 UDB Version 6 Application Development Guide
Embedded SQL, SC09-2845):

• The external stored procedure and SQL stored procedure programming
techniques can be used for database manager applications running in a
client/server environment.

• Stored procedures invoked through DB2 CLI, ODBC, JDBC and SQLJ clients
provide the capability to return one or more result sets to the client
applications.

• The stored procedure must be written in one of the supported languages
(C, C++, Java, COBOL, Fortran, REXX) for that database server.

• Stored procedures stored at the location of the database are invoked from the
client application via the SQL CALL statement.

• The parameter style with which you register the stored procedure in the
database manager with the CREATE PROCEDURE statement determines
how the stored procedure receives data from the client application. The
parameter styles are GENERAL, GENERAL WITH NULLS, JAVA, DB2SQL,
DB2DARI and DB2GENERAL.

• For LANGUAGE C stored procedures with a PARAMETER TYPE of
GENERAL, GENERAL WITHNULLS, or DB2SQL, you have the option of
writing your stored procedure to accept parameters like a main function in a
C program (MAIN) or like a subroutine (SUB).
4 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• You must declare every parameter passed from a client application to the
stored procedure, and from the stored procedure back to the client application,
as either an IN, OUT, or INOUT parameter.

• For Fortran or REXX stored procedures, you must write the stored procedure
as a DB2DARI stored procedure.

• The SQL Procedures language is used to create the SQL stored procedure
CREATE PROCEDURE statement with a procedure body.

• The two ways to create an SQL stored procedure are to use the IBM DB2
Stored Procedure Builder or to write a CREATE PROCEDURE statement for
the SQL stored procedure manually.

• The SQL CALL statement can accept a series of host variables or an SQLDA
structure.

• The SQL_API_FN macro is required when you write C/C++ stored procedures.

• The CREATE PROCEDURE statement is used to register the procedure to the
system catalog table SYSCAT.PROCEDURES.

• A SYSCAT.PROCEDURES table, is defined by DB2, and lists and describes
available stored procedures, along with the associated parameters of those
stored procedures.

• The C/C++ client procedure should set the indicator for output-only SQLVARs
to -1.

• The C/C++ parameter style DB2DARI server procedure should set the
indicator for input-only to -128.

DB2 UDB for AS/400
From the AS/400 point of view, there are two ways to implement stored
procedures:

• External stored procedures

When stored procedure support was delivered in V3R1, the SQL standards for
procedural extensions were still unclear and not well defined. Thus, DB2 for
AS/400 first delivered support for external stored procedures. An external
stored procedure can be written in any high level language available on the
AS/400 platform, including CLI and REXX. This approach gives you the
flexibility to use a programming language you are most comfortable with. The
external stored procedure may contain SQL statements (embedded SQL), or it
may perform only native access to the database. The following steps illustrate
the typical scenario for using external stored procedure in your client SQL
application:

• Code your business logic in the high level language of your choice.

• Define the store procedure through the DECLARE PROCEDURE or
CREATE PROCEDURE SQL statement.

• Invoke the stored procedure using the SQL CALL statement, passing
parameters.

• Check the completion status of the stored procedure.
Introduction 5

• SQL stored procedures:

In the years that have passed since V3R1, the SQL standards have matured,
and now include an entire addendum defining the procedural language
extensions for SQL. Starting with V4R2, the AS/400 programmers have the
option of writing an entire program in SQL. Some SQL programmers new to
the AS/400, were not comfortable learning how to use AS/400 compilers and
how to embed SQL in a C program. The SQL procedural language gives them
a way to produce DB2 for AS/400 stored procedures without having to learn
these system-specific operations.

The SQL procedural language also makes it easier to port stored procedures
from other databases to the AS/400. For example, Oracle and Microsoft have
created their own proprietary languages (PL/SQL and T/SQL) for SQL stored
procedures.

The SQL procedural language should not be considered a new language for
the AS/400 like RPG or COBOL. Stored Procedures can be leveraged the
most in network computing environments where processing is divided
between the client and the server. They provide an easy way to package
related database operations into a single object to reduce network traffic.

To create a SQL stored procedure on the AS/400 system you can use either
native interface using the RUNSQLSTM command or the GUI interface
provided by the Operations Navigator.

1.2 Cross-platform support of stored procedures written entirely in SQL

With SQL Procedures, you can now write stored procedures consisting entirely of
SQL statements. SQL Procedures functionality has been supported by DB2 UDB
for AS/400 for more than one year, and support has recently been rolled out
across all members of the DB2 Universal Database Family, as well as to DB2
Server for OS/390 Version 5.

SQL Procedures functionality provides you the benefit of writing stored
procedures in a standard, portable language. An SQL stored procedure consists
of a CREATE PROCEDURE statement to define the procedure and a single or
compound SQL statement. A compound SQL statement can include declarations
(of variables, conditions, cursors, and handlers), flow control, assignment
statements, and traditional SQL for defining and manipulating relational data.
These extensions provide a procedural language for writing stored procedures,
and they are consistent with the Persistent Stored Modules (PSM) portion of the
SQL standard.

1.3 Building DB2 stored procedures from your workstation

The IBM DB2 Stored Procedure Builder (SPB) provides an easy-to-use
development environment for creating, installing, and testing stored procedures.
With the DB2 SPB, you can focus on creating your stored procedure logic rather
than on the details of registering, building, and installing stored procedures on a
DB2 server.

With DB2 Stored Procedure Builder, you can develop stored procedures on one
operating system, such as Windows NT, Windows 98, or Windows 95, and deploy it
on any DB2 platform on any operating system that supports DB2, such as DB2 for
6 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

AIX, DB2 for Sun Solaris, or DB2 for OS/390.

The Stored Procedure Builder allows you to create stored procedures in Java
(dynamic SQL through JDBC support, or Static SQL through SQLJ support) and
the SQL Procedures language. Creating stored procedures in Java and entirely in
SQL produces stored procedures that are highly portable among operating
systems.

Using the Stored Procedure Builder, you can perform a variety of tasks that are
associated with stored procedures, such as:

• Viewing existing stored procedures

• Modifying existing stored procedures

• Creating new stored procedures

• Running existing stored procedures

• Copying and pasting stored procedures across connections

• One-step building of stored procedures on target databases

• Customizing the settings to enable remote debugging of installed stored
procedures

1.4 Concepts and terminology

This section describes the terms and concepts used during the development of
this book.

Stored procedure, or external stored procedure
This is a program developed in embedded SQL or in CLI, using host programming
language such as C, C++, COBOL, Fortran, Java or REXX. The executable as
well as the source code is stored as files in the file system.

SQL stored procedure
This is a program developed using the SQL Procedure language, according to the
standard definition of SQL3. SQL stored procedures programs are made of a
collections of SQL statements and control-of-flow language written by program
developers. They are stored at the database and can be invoked by client
applications.

SQL function
This is a program for user-defined-function, developed entirely using the SQL
Procedure language. The SQL function is not supported by this first delivery of
SQL Procedure language support on DB2 across platforms.

SQL/PSM
PSM means Persistent Stored Module. It is the SQL3 definition of a procedural
language for relational databases.

The following chapters of this book cover in detail the SPB and SQL Procedures
language support across platforms.
Introduction 7

8 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Chapter 2. The SQL Procedures language

The SQL Procedures language is a common programming language across the
DB2 family for writing stored procedures. The use of SQL Procedures provides to
customers the benefit of writing their stored procedures in a standard and
portable language. This chapter describes in detail the SQL Procedures
programming language.

Any differences in current releases are due to differences in how we roll out features
for a given platform. However, DB2 will be continuing to enhance the SQL
Procedures language on all platforms and reduce any current platform differences.

2.1 What is it?

The SQL Procedures language is based on SQL extensions as defined by the
SQL/PSM (Persistent Stored Modules) standard. SQL/PSM (an ISO/ANSI
standard for SQL3) is a high level language — similar to other RDBMS languages
such as Transact SQL (T/SQL) from Sybase, and Procedural Language (PL/SQL)
from Oracle — that extends SQL to procedural support.

The ISO/ANSI SQL3 is an open solution for SQL among database management
system vendors that support the SQL ISO/ANSI standard.

Modules are collections of SQL stored procedure and function declarations that
are stored “persistently” inside the database (more likely, inside the SQL system
for a possible dependency checking between the procedures and functions and
the database objects). Inside SQL/PSM modules, one can specify the character
set, the default schema name to be prepended to unqualified names in SQL
statements in the module, the search path within schemas, and temporary table
declarations.

Following is an example of a CREATE MODULE statement:

CREATE MODULE mymodule
CHARACTER SET "latin-1"
SCHEMA MYSCHEMA
PATH ’SCHEMA1,SCHEMA2’
create procedure mySQLprocedure1(out parm1 integer)

begin
SET parm1 = select max(id) from mytable;

end;
create function mySQLfunction1 returns integer

begin
return(select max(id) from mytable);

end;
END MODULE;

Where:

• "latin-1" is the character set.

• MYSCHEMA is a default schema name to be prepended to unqualified names in
SQL statements in the module.

• ’SCHEMA1,SCHEMA2’ is the search path within schemas SCHEMA1 and
SCHEMA2.
© Copyright IBM Corp. 1999 9

In the first releases of DB2 UDB SQL Procedures support, SQL/PSM modules
and SQL functions are not implemented. Only SQL stored procedures are
implemented.

A DB2 UDB SQL stored procedure can be created without being part of a module.
The SQL stored procedure source code, that is the CREATE PROCEDURE
statement, is stored in the database after a successful compilation and
registration of the SQL stored procedure in the appropriate DB2 tables (see
chapter for specific platform).

As explained later, SQL stored procedures are different from external stored
procedures that are written in a third generation language like C, COBOL, or
Java.

Local client as well as remote client applications, connected to the DB2 server
through network stacks (for example, TCP/IP), can invoke an SQL stored
procedure by executing the SQL CALL statement. The SQL CALL statement is
also part of ISO/ANSI SQL3.

The ability to write stored procedures greatly enhances the power, efficiency, and
flexibility of SQL. The client program can pass parameters to the SQL stored
procedure and receive parameters from it, as well as result sets. The SQL CALL
statement can be executed as either static or dynamic SQL. Parameters in the
CALL statement, including the stored procedure name, can be supplied at
execution time. The SQL CALL statement can be used to invoke dynamically any
SQL stored procedure supported by DB2.

The following DB2 servers currently support SQL stored procedures:

• DB2 UDB for UNIX, Windows, and OS/2

• DB2 UDB for AS/400

• DB2 UDB for OS/390

2.2 Planning to use the SQL Procedures language

This section contains information about planning for the use of DB2 stored
procedures, and provides specific information to help you develop stored
procedures using the SQL Procedures language. For more information about
specific hardware and software requirements, see the chapter in this book that
covers the specific platform you are planning to use.

2.2.1 Why use it?
This section describe the benefits of using SQL stored procedures.

Consistency with the data
In theory, SQL stored procedures are fully SQL, which means that they are
written using only SQL statements. Like other SQL objects, and because they are
part of module statements, they are always stored in the database system in
which they are used and for which they were developed. Storing SQL stored
procedures within the database system allows dependencies to be checked
between the SQL schema objects (tables, views, and so on) and the procedure,
as soon as a manipulation is done (like dropping or altering an object). An SQL
10 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

stored procedure must not get out of sync with the SQL schema objects it works
with.

On the other hand, this out of sync status can happen with external stored
procedures, where the executable is stored at the system level, away from the
database data management system. The backup and restore operations could be
done out of sync with the backup and restore of the data, leading to
inconsistencies in the processing.

The actual DB2 UDB support for SQL Procedure translates an SQL stored
procedure into an external stored procedure, allowing potential inconsistencies.
However, the source code of each stored procedure is stored inside the database
itself, making possible to recreate the correct executable of the procedure.

Modular programming
An SQL stored procedure can be created once and then stored in the database.
Any userid with the necessary authorization can access the stored procedure
through the CALL SQL statement. For instance, an SQL stored procedure could
be created or modified by a specialist in SQL stored procedure language
programming, and be called by client programs developed by other programmers.
This allows the DBA to control the development of the business logic at the
server, which is a very sensitive area.

Faster execution
If an operation requires a large number of SQL statements or is performed
repetitively, an SQL stored procedure can be faster than an SQL query sent
directly from a client program, because it may be already loaded in memory (or
cached) after the first execution.

The benefit of SQL stored procedures is even greater if the client expects to send
dynamic SQL to the server. The compilation of the dynamic SQL statements in an
SQL stored procedure would be done at the first execution and would stay in the
DB2 cache as long as the memory space is not needed.

In addition, the fact that SQL stored procedures are translated to C is another
performance advantage.

Network traffic reduction
An operation requiring many SQL statements can be performed through a single
CALL statement that executes the same SQL code inside a procedure, rather
than sending every individual SQL query over the network. For instance, Figure 1
shows what a client application written in C or CLI or any other embedded SQL
language has to send and receive through the network to execute two SQL
statements.

Figure 2 shows the same logic embedded in an SQL stored procedure. The client
has to send one SQL CALL statement to the server. The results sent back are the
same. As you can see, the two SQL statements from Figure 1 are reduced to one
SQL CALL statement.

The savings can be important. The SQL CALL statement is a very short network
message. On the contrary, a single SQL statement with many synchronized
queries could be a few kilobytes long, up to 32k or 64k, depending of the version
of DB2 UDB installed, and this could result in many network messages sent to the
server. The savings are greater if the logic you want to execute requires many
The SQL Procedures language 11

SQL statements or many network messages, like the FETCH operation with
cursors. The network transfer time between the client and the server could
become longer than the execution of the SQL statement themselves, depending
on network availability.

Figure 1. The usual SQL client, where the logic sends many SQL queries

Figure 2. SQL client using the same logic, but within an SQL stored procedure.

Another point to be considered is that, while the client based query must return
every row across the network, a stored procedure can return only a subset of the
rows, or potentially none at all, and can return values derived from subsequent
logic.

Can be used as a security/shield mechanism
It is often useful to shield the data and the tables from developers and database
users. This can be done by restricting access to tables to only a few trusted
users, and by granting the right to execute specific stored procedures, developed
for updating, inserting or deleting rows to less trusted users. This can ensure that
applications cannot execute direct SQL statements against important data, but
must make modifications only through the filter of stored procedures.

These stored procedures can even have more complex logic than just basic SQL
statements. One stored procedure that deletes one customer could also update
other tables related to that customer to keep information for audit or further
references. Referential integrity should be able to do this, but sometimes, it is
easier and faster to use a stored procedure, because depending on the context of
the modification, different actions will have to be executed. Triggers or referential
integrity constraints on a table are not context sensitive, because only the data in
the rows are available. There is no possibility to have a specific DELETE,
UPDATE or INSERT operation according to the current context of the application.
12 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

For example, for the following SQL statement:

DELETE CUSTOMER WHERE CUSTID=11111

You may want to take one of the following actions:

• Delete this customer, but insert a log record of it in the custlog table for audit
later

• Delete this customer, but keep the statistics in the custstats table until end of
year

• Delete this customer, but also delete corresponding rows in custlog and
custstats tables

Note: The custlog and custstats tables mentioned here are tables you created for
your application design.

The delete trigger on the customer table will not be able to choose one of these
different actions because it has to be generic. When you delete the customer, you
cannot specify another action along with the delete SQL statement. A stored
procedure would be able to decide what to do, according to an input parameter
value.

Another example is shielding tables from users. Figure 3 shows that the
developer shielded the tables A, B and C from the client applications Cl1, Cl2,

Cl3 and Cl4 by inserting a layer of SQL stored procedures SP1, SP2 and SP3.

These SQL stored procedures can execute complex SQL queries like insert,
update and delete on one or more tables. When called, SP1 will modify only table
A, SP2 will modify table A and table C, and SP3 will modify table B and table C.

Figure 3. An example of shielding tables from users

2.2.2 When to use them?
In general, SQL stored procedures can be used as soon as a client application
needs to send dynamic SQL statements, or multiple SQL operations, like FETCH,
to the server. Grouping the same functional SQL statements in an SQL stored
procedure allows performance and network bandwidth improvement. It also
simplifies programming, improves maintainability, and facilitates deployment of
applications.

Table A Table B Table C

SP3SP2SP1

Cl 1 Cl 2 Cl 3 Cl 4

D
B

2
U

D
B

S
er

ve
r

L
O

G
IC

D
A

T
A

The SQL Procedures language 13

The following sections describe in more detail why SQL stored procedures are
really useful:

• Easier and faster to program than external stored procedure

SQL stored procedures are very similar to SQL. The control-flow statements
are really simple, and the programmer does not need to understand C or
COBOL.

SQL stored procedures are the perfect solution for business logic, since they
can be totally developed with SQL statements and control-flow logic. That is,
you do not need to access any other external resource besides the RDBMS.
They are fast to develop and maintain.

• No use of specific system services or resources

If the business logic needs to access system services or external resources,
or call other external programs, SQL stored procedures may not be
applicable. In fact, there is no possibility yet, in the SQL/PSM standard, to call
a shared library, execute a system command, or send e-mail.

For the time being, the only solution is to use external stored procedures
written in C or COBOL. For instance, a stored procedure that has to send an
e-mail to the credit manager every time a credit limit is exceeded, or execute a
system command when a threshold is reached, has to be an external stored
procedure developed in C or COBOL.

Note: This is true except for the Windows platforms. DB2 UDB for Windows
allows OLE stored procedures which can invoke operating system and other
platform capabilities like email through the use of OLE services. Refer to the
DB2 UDB for Windows manuals for more details on use of OLE automation. So
you can use more than C or COBOL stored procedures when you need system
services and are running on Windows.

• No vital performance needed

Due to the actual implementation of SQL stored procedures, the execution
performance may not be as fast as an optimized external stored procedure
written in C or COBOL. Although the difference is very small for most of the
business logic functionality, some applications may need the extra time
difference that can be gained only by using an optimized procedure
programmed in C or COBOL language.

How do we choose, then? Usually, only a few parts of a company business
logic application needs real performance. The designer of the application
should find the right compromise between development time and
maintainability versus execution performance.

• Lots of business logic

The more business logic you have, the more you will save in development,
maintenance, and execution time. The modularity allowed by stored

SQL stored procedures are not interpreted. They are translated to C, so the
build process has more steps, but the resulting procedure is compiled. The
preprocessors and translators also add optimization.

Important:
14 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

procedures is certainly a gain in maintenance, especially when the client
programs are developed in different languages.

Changing some business logic does not mean changing all the different
COBOL and C or Visual Basic (VB) clients that were executing these SQL
statements. Only the stored procedure involved in this business logic needs to
be changed, assuming that the signature — which means the list of
parameters and types of the stored procedure — is still the same.

• Highly distributed application (deployment)

Deployment of clients having business logic embedded is hard to maintain.
Every time the business logic change or an error is fixed, all the clients have to
be updated again. This can lead to out of sync clients accessing good data in
the wrong way.

However, fixing one stored procedure fixes all the clients at once. The
maintenance is faster, and problems arise less often.

• What partition of business logic should reside on the server?

Lots of documents have been written on this subject, and not everybody
agrees on the conclusions. But let us consider the two major solutions that are
seen most often.

Usually, the two rules of 80% on client 20% and on server, or 20% on client
and 80% on server, could apply for most applications, depending on the level
of risk the developers and company expect.

• 80%-20% client to server ratio:

This corresponds to applications that do not want to rely too heavily on
specific stored procedure languages. The 20% consists mainly of SQL
statements. This is typically the case for most independent software
vendors (ISVs) that want to deal with a minimum of different stored
procedures languages (T/SQL or PL/SQL ,or even DB2 SQL Procedures
language) because their programs will have to be ported on different
RDBMSs. They are usually constrained to a subset of SQL, portable across
all the RDBMSs. The counterpart of this solution is that this kind of
application cannot use the full possibilities of an RDBMS, and would
usually not perform as well as a 20%-80% solution (because of using more
network bandwidth, for instance).

• 20%-80% client to server ratio:

This kind of application is tuned to access business logic on the server,
mainly as stored procedures. This application will rely heavily on RDBMS
features, and should hopefully be more efficient than an 80%-20% solutio,n
by optimizing bandwidth, deployment, and development time. This is
typically the kind of application developed by a company for itself. The
drawback of this type of application is that the company relies on one
RDBMS, which could be troublesome for future migrations.

Of course, all kind of partitions can be seen, and the company’s final choice
will depend only on the evaluation between level of risk/RDBMS dependency
versus application performance/savings during the development and
maintenance phase.
The SQL Procedures language 15

2.3 Comparing SQL stored procedures and external stored procedures

External stored procedures are stored procedures developed using host
programming language such as C, C++, COBOL, Fortran, Java, and REXX. This
was the original way to develop stored procedures with DB2, which means that
stored procedures could not be written totally in SQL, on all platforms (except for
DB2 UDB on AS/400). Such stored procedures are stored in files on the machine
where the database server is located and not in the database itself. That is why
they are named external stored procedures.

2.3.1 Development
SQL stored procedures are stored procedures written in the SQL Procedures
programming language. An SQL stored procedure is developed totally in SQL,
and its source code is stored in the database, so it can be executed directly within
the DBMS environment.

2.3.1.1 Lower the development cost
External stored procedures are developed in a procedural language such as C,
Java or COBOL. Using programming languages for database programming
requires much experience and a deep understanding of how the SQL data types
and database engine features are mapped to the host language.

For example, in the C language, an SQL VARCHAR variable called myvar would
have to be represented as a structure like the following:

struct {

short len;
char data[31];
} myvar;

You would represent the same VARCHAR variable like this, using SQL
Procedures language:

DECLARE myvar VARCHAR;

As you can see, it is simpler in SQL Procedures language to declare variables of
an SQL type.

The conceptual differences between SQL and host languages adds complexity to
the programming of external stored procedures, making them longer in the
number of lines, with more possibilities for mistakes, and making them more
difficult to debug. Programmers of external stored procedures must be well
trained database SQL programmers as well as having extensive experience
working with third generation languages.

On the other hand, SQL Procedures rely on SQL. Variable handling is fully SQL
(no structures to deal with VARCHAR) and the procedural extensions use an
easy common syntax very close to BASIC or PASCAL. The benefit of
programming with SQL Procedures language is immediate. Once you know SQL,
you can learn the SQL Procedures language in a matter of hours. You do not
have to deal with obscure representation and manipulation of your variables, but
can just use them directly.
16 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

For example, assuming that two VARCHAR variables v1 and v2 are declared, the
code in SQL Procedures language is as follows to assign v2 to v1:

/* in SQL Procedures language*/
SET v1 = v2;

The same code in C is as follows:

/* in C */
memcpy(v1.data, v2.data, v2.len);
v1.len=v2.len;

As you can see, you need to know the internal representation of a VARCHAR
variable in C, to be able to copy it into a C program.

Another advantage of using SQL Procedures is that you can develop them
anywhere, as soon as you have a DB2 UDB connection ready. The source code
is stored in the database, allowing the programmer to fetch it back for
modification. Unlike external stored procedures, there is no need to access the
file system. This simplifies the development by focusing only on the DB2 UDB
functionality, that is, programmers do not have to learn system tools such as file
transfer protocols, system specific editors or compiler options. They just learn
SQL and its procedural extensions.

The Stored Procedure Builder, provided with DB2 UDB, relies on this feature,
allowing the same easy, graphical interface to build SQL or Java stored
procedures on any DB2 UDB platforms with nothing more needed than a DB2
UDB connection. (See Chapter 3, “The DB2 Stored Procedure Builder” on page
57 for details.)

2.3.1.2 Leverage programming skills
By using SQL Procedures, you leverage the programming skills needed in your
company, lowering the cost of development of application. For example, the same
person that knows SQL can also be the programmer.

It also makes things easier for porting, maintaining the source code, and
deployment (same code everywhere). This can be an important saving for
companies that have many programmers.

2.3.2 Runtime
Calling an SQL stored procedure is no different than calling an external stored
procedure. The same SQL CALL statement works for both of them.

Because the SQL Procedures language is higher level, it may have to do more
tasks for the programmer (like checking for exception condition after every SQL
stored procedure statement). Also, it may be slower to execute than the usual C
or COBOL stored procedure written by a specialist or expert (which may bypass
some error checking). But the cost performance is justified because of the
savings that can be obtained during development and maintenance.

2.4 Current implementation of SQL Procedures language

The actual choice made by IBM is to translate an SQL Procedures language
program into an external C stored procedure. This is done under-the-covers by
the engine, and the programmer does not need to understand how it is done. The
The SQL Procedures language 17

only thing needed is a C or C++ compiler to be installed along with the DB2 UDB
server on the server machine.

2.4.1 How does this work in general?
Once you send the SQL stored procedure source code (the CREATE
PROCEDURE statement) to the DB2 UDB engine from the Stored Procedure
Builder or from the DB2 UDB command line, the DB2 UDB engine processes it,
creates a C file with embedded SQL, compiles it and installs it in the right place
for its first execution. The implementation is slightly different on OS/390, as
compared to AS/400 and distributed platforms due to platform differences.
For details on each platform, see Chapter 4, “SQL Procedures for DB2 UDB for
OS/390” on page 109; Chapter 5, “SQL Procedures for DB2 UDB for UNIX,
Windows, OS/2” on page 145; and Chapter 6, “SQL Procedures for DB2 UDB for
AS/400” on page 169.

Note: When you build your SQL stored procedures with the DB2 Stored Procedure
Builder, of course, all the application developer needs to do is press the "Build"
button. All the work is done for you, and any differences in processing between
platforms is handled for you. We recommend that approach for building stored
procedures in the SQL Procedures language.

2.4.1.1 Statements supported
The Database Language SQL - Part 4: Persistent Stored Modules of ISO/IEC
9075 specifies the syntax and semantics of a database language for declaring
and maintaining persistent database language routines in SQL-server modules.
The scope of the current implementation is limited to SQL stored procedures and
does not include support for SQL functions and Feature P01, "Stored Modules".
The following stored database language capabilities are supported:

• Statements to direct flow control:

• CASE statement

• IF statement

• ITERATE statement

• FOR statement

• LEAVE statement

• LOOP statement

• REPEAT statement

• WHILE statement

• Compound statement:

• BEGIN

• END

• Assignment statement:

• SET

• Specification of condition handlers:

• DECLARE.....HANDLER.....FOR.....

• DECLARE.....CONDITION.....
18 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• Specification of statements to signal and resignal conditions:

• SIGNAL

• RESIGNAL (on Workstation only)

• Declaration of SQL local variables

• DECLARE.....DEFAULT.....

• SQL statements

• Dynamic SQL (Extension to the SQL/PSM language standard)

• PREPARE

• EXECUTE

• EXECUTE IMMEDIATE

2.4.2 Declaring SQL local variables
To store data that you use only within an SQL stored procedure, you can declare
SQL local variables. The SQL local variables can have the same data types and
lengths as DB2 table columns. The general form of an SQL variable declaration
is:

DECLARE SQL-variable-name data-type;

DB2 folds all SQL variable names to uppercase. Thus, you cannot declare two
SQL variables named varx and VARX. You cannot declare an SQL variable with a
name that is the same as a parameter name or an SQL reserved word. However,
you can declare an SQL variable name that is the same as a DB2 column name.

If a name in an SQL statement can be either a column name or an SQL variable
name, DB2 UDB will verify first if it is a column name, and then verify if it is a SQL
variable name. You can also specify which scope, that is, the compound
statement label the variable was declared into, by qualifying the variable name
with the scope name. This is useful for nested scopes, where it may be needed to
refer to variables declared in a "higher" scope, or to avoid conflicts between
variables and column names in SQL statements.

In the SQL Procedures language there are no host variables; all variables are
considered SQL variables. So, you cannot put colons in front of variables in the
SQL Procedures language.

Another important remark about SQL variables declaration is the order that they
are declared. All variable and condition declarations must precede handler
declarations.

Below is an example of declarations for the most common data type supported.

CREATE PROCEDURE p1()
LANGUAGE SQL
BEGIN
declare c1 integer;
declare c2 CHAR(30);
declare c3 VARCHAR(30);
declare c31 VARCHAR(30);
declare c34 LONG VARCHAR default'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxa';
The SQL Procedures language 19

declarecdate DATE default '03/01/1999';
declare ctime TIME default '11:11:22';
declare cstamp TIMESTAMP default '1990-01-01-12.01.00.000000';
declare c4 REAL default 12345.456;
declare c5 DECIMAL(9,2) default 12345.456 ;
declare c6 BIGINT default 1234567890123456789;
declare LOC1 result_set_locator varying;

SET c1 = (select count(*) from employee);
SET c2 = (select max(empno) from employee);
SET c3 = (select min(empno) from employee);
insert into result(proc,res)
values ('exec P1','C1='||CHAR(C1)||' C2='||C2||' C3='||C3);
insert into result(proc,res)
values ('exec P1','date='|| CHAR(cdate));
insert into result(proc,res)
values ('exec P1','time='|| CHAR(ctime));
insert into result(proc,res)
values ('exec P1','timestamp='|| CHAR(cstamp));
insert into result(proc,res)
values ('exec P1','REAL='|| CHAR(c4));
insert into result(proc,res)
values ('exec P1','decimal(9,2)='|| CHAR(c5));
insert into result(proc,res)
values ('exec P1','LONG VARCHAR='||c34);
insert into result(proc,res)
values ('exec P1','BIG INT='||CHAR(c6));
END

2.4.3 Language Elements
The following sections describe and show examples of each type of statement
and language element.

The examples shown assume that a table result is created in the database that
keeps an execution trace of the SQL stored procedure. The following is the DDL
used to create the table result:

create table result (proc char(22), res varchar(128))

Note that, because the SQL Procedures language is SQL, names (variables,
labels, etc.) are not case sensitive.

2.4.3.1 Assignment statement
The assignment statement assigns a value to an output parameter or to an SQL
variable, which is a variable that is defined and used only within a procedure
body.

CREATE PROCEDURE B(OUT var1 INTEGER,OUT var2 INTEGER)
LANGUAGE SQL

OS/390 does not have a BIGINT data type, or RESULT SET LOCATOR.

The example shows SET varname = (SELECT ...) - which is not yet supported on
OS/390.

Important:
20 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

BEGIN
SET var1 = 10;
SET var2 = (SELECT count(*) FROM customer);

END

2.4.3.2 CASE statement
The CASE statement selects an execution path based on the evaluation of one or
more conditions. This statement is similar to the CASE expression, which is
described in the SQL Reference of DB2 UDB, Chapter 3, Language Elements,
topic CASE expression.

CREATE PROCEDURE I1(IN var1 CHAR(3))
LANGUAGE SQL
BEGIN
CASE var1

WHEN 'AAA' THEN
insert into result(proc,res) values ('exec of I1','AAA found.');

WHEN 'BBB' THEN
insert into result(proc,res) values ('exec of I1','BBB found.');

WHEN 'CCC' THEN
insert into result(proc,res) values ('exec of I1','CCC found.');

ELSE
insert into result(proc,res) values ('exec of I1','default case

value=' || CHAR(tt));
END CASE;

END

Here is another example of a CASE statement:

CREATE PROCEDURE I6(IN var1 CHAR(3),IN var2 CHAR(3))
LANGUAGE SQL
BEGIN

CASE
WHEN var1='AAA' THEN

INSERT INTO result(proc,res) VALUES ('exec of I6','var1=AAA');
WHEN var2=’AAA’ THEN

INSERT INTO result(proc,res) VALUES ('exec of I6','var2=AAA');
END CASE;

END

2.4.3.3 IF statement
The IF statement selects an execution path based on the evaluation of a
condition.

CREATE PROCEDURE B1(IN v CHAR(1))
LANGUAGE SQL

BEGIN
IF (v >'F') THEN

INSERT into result(proc,res) VALUES ('exec of B1',' v > F v='|| v);
ELSEIF (v >'D') THEN

INSERT INTO result(proc,res) VALUES ('exec of B1',' v > D v='|| v);
ELSEIF (v >'B') THEN

INSERT INTO result(proc,res) VALUES ('exec of B1',' v > B v=' || v);

The assignment statement: SET var2 = (SELECT count(*) FROM customer);

shown in the example above is not yet supported on the OS/390 platform.

Important:
The SQL Procedures language 21

ELSEIF (v >'A') THEN
INSERT INTO result(proc,res) VALUES ('exec of B1',' v > A v=' || v);

ELSE
INSERT INTO result(proc,res) values ('exec of B1','Else branch

done.');
END IF;

END

Here is another example of an IF statement:

CREATE PROCEDURE MM (in PA INTEGER)
LANGUAGE SQL
BEGIN

IF (PA in (12,13,10)) THEN
INSERT INTO result(proc,res) VALUES ('exec of MM',' PA='|| CHAR(PA)

|| ' found in (12,13,10)');
ELSE

INSERT INTO result(proc,res) VALUES ('exec of MM',' PA='|| CHAR(PA)
|| ' not found in (12,13,10)');

END IF;
END

2.4.3.4 LEAVE statement
The LEAVE statement transfers program control out of a loop or a block of code
(see statement LEAVE myloop in the sample below). When a LEAVE statement
transfers control out of a compound statement, all open cursors in the compound
statement, except cursors that are used to return result sets, are closed.

In addition, the LEAVE statement can be used to exit the stored procedure (see
statement LEAVE PP in the sample below).

CREATE PROCEDURE F (IN ASSEMBLY_NUM CHAR(10))
LANGUAGE SQL
PP:BEGIN
DECLARE a INTEGER DEFAULT 0;

myloop:LOOP
INSERT INTO result(proc,res) VALUES ('proc F', 'LOOP '|| CHAR(a));
IF (a> integer(assembly_num)) THEN

LEAVE myloop;/* exit the loop */
ELSE

SET a = a + assembly_num;
IF (a> 1000)) THEN

LEAVE PP;/* exit the procedure*/
END IF;

END IF;
END LOOP myloop;

END

2.4.3.5 ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a
labelled loop.

CREATE PROCEDURE E()
LANGUAGE SQL
BEGIN

DECLARE zz INTEGER DEFAULT 11;
xx1: while (zz < 5) do
22 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

INSERT INTO result(proc,res) VALUES ('proc E','ascending=
'||CHAR(zz));

SET zz = zz +1;
ITERATE xx1;
INSERT INTO result(proc,res) VALUES ('proc E', 'iterate not done=

'||CHAR(zz));
end while;

END

2.4.3.6 FOR statement
The FOR statement executes a group of statements repeatedly. It must be
associated with a query expression and terminates after the group of statements
is executed for every row in the result of query expression.

The FOR statement is a labelled statement. The following example shows FOR
usage in SQL stored procedures:

DECLARE X INTEGER DEFAULT 0;
FOR L1 AS SELECT balance FROM accounts DO

SET X = X + balance;
END FOR;

The body of a FOR statement is not allowed to contain a LEAVE statement that
refers to L1. But cursor columns can be prefixed with the name of the FOR
statement L1. This is also valid.

SET X=X+L1.balance.

It is very useful to refer to variables in nested FOR loops that access the same
table, as in this example:

DECLARE X INTEGER DEFAULT 0;
FOR L1 AS SELECT balance FROM accounts WHERE DEP > ’C02’ DO

FOR L2 AS SELECT balance FROM accounts WHERE DEP<’D01’ DO
SET X = L2.balance + L1.balance;

END FOR;
/* do something here with X*/
END FOR;

A cursor is implicitly opened at the beginning of execution; closed automatically
at the end of execution. In the preceding example, a cursor is created for the SQL
statement SELECT balance FROM accounts and for each line of the result set
instruction SET X= L2.balance + L1.balance is executed.

It is also possible to specify a name for the implicit cursor as in the following
example:

FOR L1 AS curs1 CURSOR FOR
SELECT * FROM accounts WHERE balance = 0 DO

DELETE FROM accounts WHERE CURRENT OF curs1;
END FOR;

The body of a FOR statement is not allowed to contain an OPEN, FETCH, or
CLOSE statement that refers to curs1.

The FOR statement is not yet supported on the OS/390 platform.

Important:
The SQL Procedures language 23

2.4.3.7 LOOP statement
The LOOP statement executes a group of statements repeatedly until a LEAVE
statement transfers program control out of the loop. The ITERATE statement
causes the flow of control to return to the beginning of the loop.

CREATE PROCEDURE F (IN ASSEMBLY_NUM CHAR(10))
LANGUAGE SQL
BEGIN
DECLARE a INTEGER DEFAULT 0;

myloop:LOOP
INSERT INTO result(proc,res) VALUES ('proc F', 'LOOP '|| CHAR(a));
IF (a> integer(assembly_num)) THEN

LEAVE myloop;
ELSE

SET a = a +1;
END IF;

END LOOP myloop;
END

2.4.3.8 REPEAT statement
The REPEAT statement executes a group of statements until a search condition
is true.Within the group of statement of a REPEAT statement, a LEAVE statement
transfers program control out of the REPEAT and an ITERATE statement causes
the flow of control to return to the beginning of the REPEAT.

CREATE PROCEDURE F (IN ASSEMBLY_NUM CHAR(10))
LANGUAGE SQL
BEGIN

DECLARE b INTEGER DEFAULT 0;
REPEAT

INSERT INTO result(proc,res) VALUES ('proc F','REPEAT '|| CHAR(b));
SET b = b +1;

UNTIL (b>5)
END REPEAT;

END

2.4.3.9 WHILE statement
The WHILE statement repeats the execution of a statement or group of
statements while a specified condition is true. The LEAVE statement transfers
program control out of the WHILE. The ITERATE statement causes the flow of
control to return to the beginning of the WHILE.

CREATE PROCEDURE E()
LANGUAGE SQL
BEGIN

DECLARE aaa char(30);
DECLARE zz INTEGER DEFAULT 11;

-- THIS WHILE LOOP WILL TEST THE WHILE STATEMENT ITSELF

while (zz > 0) do

INSERT INTO result(proc,res) VALUES('proc E','descending =
'||CHAR(zz));

SET zz = zz -1;
end while;
--
-- THIS WHILE LOOP WILL TEST THE LEAVE STATEMENT
24 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

--
xx:while (zz < 5) do

INSERT INTO result(proc,res) VALUES ('proc E','ascending=
'||CHAR(zz));

SET zz = zz +1;
LEAVE xx;
INSERT INTO result(proc,res) VALUES ('proc E','leave not done=

'||CHAR(zz));
end while;
--
-- THIS WHILE LOOP WILL TEST THE ITERATE STATEMENT
--
SET zz = 0;
xx1: while (zz < 5) do

INSERT INTO result(proc,res) VALUES ('proc E','ascending=
'||CHAR(zz));

SET zz = zz +1;
ITERATE xx1;
INSERT INTO result(proc,res) VALUES ('proc E', 'iterate not done=

'||CHAR(zz));
end while;

INSERT INTO result(proc,res) VALUES ('proc E', 'end ');
END

2.4.3.10 Dynamic SQL statements
The dynamic SQL statements, that is, PREPARE, EXECUTE and EXECUTE
IMMEDIATE, are allowed in an SQL stored procedure code. The following is an
example of the use of those statements:

CREATE PROCEDURE H1()
LANGUAGE SQL

BEGIN
declare stmt varchar(254);
declare v1 varchar(20) default 'foofoo';
insert into result(proc,res) values('exec H','Start');

SET stmt = 'insert into result (proc,res) values (''exec H'', ''this is
the parameter marker ''||?)';
prepare s2 from stmt;
execute s2 using v1;

SET stmt = 'create table mytab (c integer) ';
execute immediate stmt;
set stmt='insert into mytab values (1)';
execute immediate stmt;
insert into result(proc,res) select 'exec H',CHAR(c) from mytab;
insert into result(proc,res) values('exec H','End');
SET stmt = 'drop table mytab ';
execute immediate stmt;

END

2.4.3.11 SIGNAL statement
The SIGNAL statement signals an exception condition:

• If at least one handler in all the nested compound statements is defined to
handle this exception, it will be called immediately by the SIGNAL statement,
as in the example below:
The SQL Procedures language 25

CREATE PROCEDURE G10()
LANGUAGE SQL
BEGIN

DECLARE C1 CONDITION FOR SQLSTATE '04000';
DECLARE EXIT HANDLER FOR C1

INSERT INTO result(proc,res) VALUES ('exec of G','EXIT handler fired’);

BEGIN /* nested compound statement*/
INSERT INTO result(proc,res) VALUES ('exec of G','This line should stay here');
SIGNAL SQLSTATE '04000';/*the handler will be fired here*/
INSERT INTO result(proc,res) VALUES ('exec of G','This line shouldn’t be

here');
END;

INSERT INTO result(proc,res) VALUES ('exec of G','This lines is executed after the
handler is fired’);

INSERT INTO result(proc,res) VALUES ('exec of G','aEND of Proc');
END

• If no handler is defined to catch the SQLSTATE in the SIGNAL statement, the
exception will be propagated to the caller, as in the example below:

CREATE PROCEDURE G11()
LANGUAGE SQL
BEGIN
DECLARE C1 CONDITION FOR SQLSTATE '04000';
INSERT INTO result(proc,res) VALUES ('exec of G', 'START: This line should stay
here');
SIGNAL C1;/*exit the procedure with SQLSTATE=C1=04000*/

INSERT INTO result(proc,res) VALUES ('exec of G', 'END of Proc');
END

2.4.3.12 RESIGNAL statement
The RESIGNAL statement resignals an exception condition, and it can only be
coded as part of a condition handler.

The use of a RESIGNAL statement without an operand causes the identical
condition to be passed outwards, while a RESIGNAL statement with an operand
causes the original condition to be replaced with the new condition you have
specified.

Following is an example using the RESIGNAL statement:

CREATE PROCEDURE G8 ()
LANGUAGE SQL
BEGIN

DECLARE not_found condition for SQLSTATE '02000';
DECLARE found condition for SQLSTATE '01000';

DECLARE CONTINUE HANDLER FOR SQLSTATE '12345' BEGIN
RESIGNAL SQLSTATE '22345';
RESIGNAL ;
RESIGNAL not_found;

END;

insert into result(proc,res) values ('exec of G8','Start');
SIGNAL SQLSTATE '12345';
insert into result(proc,res) values ('exec of G8','After signal 123245');
SIGNAL found;
insert into result(proc,res) values ('exec of G8','After signal Found');
insert into result(proc,res) values ('exec of G8','End');

END
26 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

2.4.3.13 Compound statement
Roughly, we can say that a compound statement is a set of one or more SQL
statements between the BEGIN and END keywords.

A compound statement may contain SQL variable declarations, condition
handlers declaration, or cursor declarations. The order of statements in a
compound statement is:

1. SQL variable and condition declarations

2. Cursor declarations

3. Handler declarations

4. Assignment statements, control-flow statements such as CASE, IF, LOOP,
REPEAT, and WHILE, and SQL statements such as SELECT, INSERT,
UPDATE, DELETE, CALL, CREATE TABLE, etc.

A compound statement may be declared as:

• ATOMIC, which means that all actions performed by the compound statement
must succeed, or the entire set of database modifications made by those
actions are rolled back. The following is an example of an ATOMIC compound
statement:

CREATE PROCEDURE D(PARM1 char(10))
LANGUAGE SQL
BEGIN
SC:
BEGIN ATOMIC
DECLARE zz iNTEGER DEFAULT 11;
INSERT INTO result(proc, res)

VALUES('exec of D','In atomic block before error test:'||PARM1);

IF (Parm1 = '1') THEN
SET aaa = (select job from employee);

ELSE
SET aaa = (SELECT job FROM employee WHERE empno = '000020');

END IF;
INSERT INTO result(proc, res)

VALUES('exec of D','In atomic block after error test:'|| aaa);
END;

END

• NOT ATOMIC, which means that an error occurring within the compound
statement does not cause all actions performed by the compound statement to
be rolled back. The NOT ATOMIC string is optional. It is the default for a
compound statement. The following is an example of a NOT ATOMIC
compound statement:

CREATE PROCEDURE D(PARM1 char(10))
LANGUAGE SQL
BEGIN

The SIGNAL and RESIGNAL statements are not yet supported on the OS/390
platform.

Important:
The SQL Procedures language 27

SC:
BEGIN NOT ATOMIC
declare zz integer default 11;
insert into result(proc, res)

values ('exec of D', ' In non atomic block before error test
:' || PARM1);

if (Parm1 = '1') then
set aaa = (select job from employee);

else
set aaa = (select job from employee where empno = '000020');

end if;
insert into result(proc, res)

values ('exec of D', ' In non atomic block after error test :'
|| aaa);
END;

END

2.4.3.14 SQL statements
Following is a list of SQL statements that may be used in an SQL stored
procedure body. Refer to the SQL Reference Guide for your platform for a more
detailed explanation of these SQL statements. Keywords are not case sensitive.

• ALLOCATE

• ASSOCIATE

• CALL

• CLOSE

• COMMENT ON

• CREATE

• DECLARE CURSOR

• DECLARE GLOBAL TEMPORARY TABLE

• DELETE

• DROP

• EXECUTE

• EXECUTE IMMEDIATE

• FETCH

• GRANT

• INSERT

• LABEL ON

• LOCK TABLE

• OPEN

• PREPARE FROM

ATOMIC compound statements are not yet supported on the OS/390 platform.

Important:
28 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• RELEASE

• RENAME

• RELEASE SAVEPOINT

• REVOKE

• ROLLBACK TO SAVEPOINT

• ROLLBACK

• SAVEPOINT

• SELECT INTO

• UPDATE

• VALUES INTO

2.4.4 Returning result sets

2.4.4.1 Creating result sets in an SQL stored procedure
Passing back a result set to a calling application (an embedded SQL application
or an SQL stored procedure) is done by declaring with a SELECT statement a
cursor on the rows that are to be passed back. Many result sets can be returned,
but each requires an independent DECLARE CURSOR statement.

If the caller is an application, the cursor declaration has to use a "WITH RETURN
TO CLIENT" clause, as in the following example:

CREATE PROCEDURE sp_called_from_app
LANGUAGE SQL
BEGIN

DECLARE result_set_1 cur1 CURSOR WITH RETURN TO CLIENT FOR
Select empno,firstnme from employee ;

OPEN result_set_1;
END

If the result set has to be passed back to another stored procedure, the cursor
declaration has to specify a "WITH RETURN TO CALLER" clause, as in the
example below:

CREATE PROCEDURE sp_called_from_sp
LANGUAGE SQL
BEGIN

DECLARE result_set_1 cur1 CURSOR WITH RETURN TO CALLER FOR
Select empno,firstnme from employee ;

OPEN result_set_1;
END

ASSOCIATE, ALLOCATE, ROLLBACK (except ROLLBACK TO SAVEPOINT),
VALUES INTO are not yet supported on the OS/390 platform.

REVOKE is supported on the OS/390 platform.

LABEL ON is supported on the OS/390 platform.

Important:
The SQL Procedures language 29

2.4.4.2 Retrieving result sets in the caller
To retrieve the result sets properly, the caller (embedded SQL application or
another SQL stored procedure) must perform certain operations. We will focus on
the SQL stored procedure syntax only, but the steps are similar in embedded
SQL or CLI applications using host variables.

Here is a high level view for retrieving a result set in the caller:

• Declare a result set locator for each result set expected (DECLARE RESULT
SET LOCATOR...).

• CALL the stored procedure.

• ASSOCIATE each locator to the procedure.

• ALLOCATE each cursor for each result set locator.

• FETCH the data for each cursor.

• CLOSE each cursors opened with the ALLOCATE statement.

Every step is detailed below.

Following is an example of an SQL stored procedure Y4 that retrieves one result
set from a SQL stored procedure Y41.

CREATE PROCEDURE Y41 (IN parm1 INTEGER)
LANGUAGE SQL
BEGIN

DECLARE cur1 CURSOR WITH RETURN TO CALLER
FOR Select empno,firstnme from employee ;

OPEN cur1 ;
END

In the following procedure Y4, note the use of the CONTINUE HANDLER declaration
to detect the end of the result set using the NOT FOUND condition. When this
handler is fired, it sets the RESULT_SET_END variable to 1. After the execution
of this handler, execution resumes after the FETCH statement, and the loop will
finally terminates.

CREATE PROCEDURE Y4(IN parm1 INTEGER)
LANGUAGE SQL
BEGIN

DECLARE LOC_RES1 RESULT_SET_LOCATOR VARYING;
DECLARE rc1,rc2 CHAR(20);
DECLARE RESULT_SET_END integer default 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND
BEGIN

SET RESULT_SET_END = 1;
END;

WITH RETURN TO CLIENT or TO CALLER syntax in DECLARE CURSOR are
not yet supported on the OS/390 platform.

Important:
30 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

CALL Y41(parm1);
ASSOCIATE RESULT SET LOCATOR(LOC_RES1) WITH PROCEDURE Y41;
ALLOCATE RES1 CURSOR FOR RESULT SET LOC_RES1;
SET RESULT_SET_END = 0;
WHILE(RESULT_SET_END = 0) DO
FETCH FROM RES1 INTO rc1,rc2;
IF(RESULT_SET_END=0) THEN

insert into result(proc,res)values('exec Y4','rc1='||rc1||'rc2='||rc2);
END IF;

END WHILE;
CLOSE RES1;

END

2.4.4.3 CALL statement
This statement is the regular CALL SQL statement, which calls a stored procedure. It
can be an external stored procedure (C, Java, COBOL) or a SQL stored procedure.

CREATE PROCEDURE F (IN ASSEMBLY_NUM CHAR(10))
LANGUAGE SQL
BEGIN

CALL MYSP2(ASSEMBLY_NUM);
END

The CALL statement accepts only parameters that are variables or constants.
Expressions are not allowed.

2.4.4.4 ASSOCIATE statement
The ASSOCIATE LOCATORS statement gets the result set locator value for each
result set returned by a stored procedure. One result set locator variable is
required for each result set that the stored procedure will return.

When the ASSOCIATE LOCATORS statement is executed, the procedure name
or specification must identify a stored procedure that the requester has already
executed using the CALL statement. The procedure name in the ASSOCIATE
LOCATORS statement must be specified in the same way that it was specified on
the CALL statement. For example, if a two-part name was specified on the CALL
statement, you must use a two-part name in the ASSOCIATE LOCATORS
statement. If the CALL statement was made with a three-part name and the
current server is the same as the location in the three-part name, you can omit
the location name and specify a two-part name.

In the following example, two result sets locators (LOC1,LOC2) are associated
with the stored procedure P1.

DECLARE LOC1 RESULT_SET_LOCATOR VARYING;
DECLARE LOC2 RESULT_SET_LOCATOR VARYING;
CALL P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2) WITH PROCEDURE P1;

2.4.4.5 ALLOCATE statement
The ALLOCATE CURSOR statement defines a cursor and associates it with a
result set locator variable. The cursor name must not identify a cursor that has
already been declared in the source program.

The result set locator variable must contain a valid result set locator value, as
returned by a ASSOCIATE LOCATOR statement.
The SQL Procedures language 31

The following rules apply when you use an allocated cursor:

• You cannot open an allocated cursor with the OPEN statement.

• You can close an allocated cursor with the CLOSE statement. Closing an
allocated cursor closes the associated cursor in the stored procedure.

• You can allocate only one cursor to each result set.

The life of an allocated cursor is: a rollback operation, an implicit close, or an
explicit close that destroys allocated cursors.

For example, define and associate cursor C1 with the result set locator variable
LOC1 for the first result set returned by the stored procedure, cursor C2 with
result set locator LOC2 for the second result set returned by the stored
procedure:

DECLARE LOC1 RESULT_SET_LOCATOR VARYING;
DECLARE LOC2 RESULT_SET_LOCATOR VARYING;
CALL P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2) WITH PROCEDURE P1;
ALLOCATE C1 CURSOR FOR RESULT SET LOC1;
ALLOCATE C2 CURSOR FOR RESULT SET LOC2;

2.4.4.6 Processing the result set
Once the ASSOCIATE and ALLOCATE statements are done, processing a results
set in the stored procedure is achieved by FETCHing the result set rows into an
SQL variable until the end of the result set is reached. After a result set is
processed, a CLOSE cursor statement must be executed.

In the example below, the SQL stored procedure processes two result sets by
inserting each row into the result table.

CREATE PROCEDURE P1()
LANGUAGE SQL

BEGIN
DECLARE LOC1 RESULT_SET_LOCATOR VARYING;
DECLARE LOC2 RESULT_SET_LOCATOR VARYING;
DECLARE AT_END INTEGER DEFAULT 0;
DECLARE column1,columns2 VARCHAR(30);
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET AT_END = 1;

CALL P1;/*retrieve 2 results sets,both of them with 2 varchar(30)
columns*/

ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2) WITH PROCEDURE P1;
ALLOCATE C1 CURSOR FOR RESULT SET LOC1;
ALLOCATE C2 CURSOR FOR RESULT SET LOC2;
SET AT_END=0;

WHILE (AT_END = 0) DO /* processing result set #1 */
FETCH C1 INTO column1, columns2;
INSERT INTO RESULT(proc,res) VALUES (’result

1’,column1||columns2);
END WHILE;

CLOSE C1;

SET AT_END=0;
32 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

WHILE (AT_END = 0) DO /* processing result set #1 */
FETCH C2 INTO column1, columns2;
INSERT INTO RESULT(proc,res) VALUES (’result

1’,column1||columns2);
END WHILE;
CLOSE C2;

END

2.4.5 Handling errors in an SQL stored procedure
You cannot use the WHENEVER statement in an SQL stored procedure body.
Instead, you can declare handlers to tell the SQL stored procedure what to do
when an SQL error or an SQL warning occurs, or when no more rows are
returned from a query. In addition, you can declare condition handlers for specific
SQLSTATE values like ’22000, ’2300’ or whatever you like.

You can refer to an SQLSTATE by its number in a condition handler, or you can
declare a name for the SQLSTATE, then use that name in the condition handler.

A condition handler must specify:

• A set of conditions it is prepared to handle.

• Action to perform to handle the condition.

• Where to resume the execution after handling the condition.

The action specified in a condition handler can be any SQL statement, including a
compound statement.

A condition handler gets executed automatically when a condition it is prepared
to handle is detected anytime during the execution of the containing compound
statement.

The general form of a handler declaration is:

DECLARE handler-type HANDLER FOR condition SQL-procedure-statement;

Conditions specified in a condition handler can be:

• SQLSTATE value

• Condition name (user defined)

• SQLEXCEPTION (all SQLSTATE values with class other than 00, 01, or 02)

• SQLWARNING (all SQLSTATE values with class 01)

• NOT FOUND (all SQLSTATE values with class 02)

From sections 2.4.4.2, “Retrieving result sets in the caller” on page 30
to 2.4.4.6, “Processing the result set” on page 32:

The OS/390 platform does not support result set locators yet
(DECLARE xx RESULT SET LOCATOR, ASSOCIATE, ALLOCATE).

The example shown in section 2.4.4.2, “Retrieving result sets in the caller” on page
30 with CONTINUE HANDLER shows a compound statement in the handler,
which is not supported on OS/390.

Important:
The SQL Procedures language 33

In general, the way that a handler works is that when an error occurs that
matches the condition, the SQL-procedure-statement executes. When
SQL-procedure-statement completes, DB2 performs the action that is indicated
by the handler-type.

There are three types of handlers:

• CONTINUE

Specifies that after SQL-procedure-statement completes, execution continues
with the statement after the statement that caused the error.

• EXIT

Specifies that after SQL-procedure-statement completes, execution continues
at the end of the compound statement that contains the handler.

• UNDO

Specifies that all the SQL statements done from the beginning of the
containing compound statement, until the error point, are rolled back, and
then, after the SQL-procedure-statement completes, execution continues at
the end of the compound statement that contains the handler.

Figure 4 shows the behavior of each condition handler, when the statement-2

reaches the condition:

• CONTINUE: after the execution of the handler-action is successful, the
execution of the stored procedure will resume at the next statement (the
CONTINUE point) which in this case is statement-3.

• EXIT: after the execution of the handler-action is successful, the execution of
the stored procedure will resume at the end of the continuing compound
statement (EXIT point).

• UNDO: after the execution of the handler-action is successful (including the
rollback of statement 1), the execution of the stored procedure will resume at
the UNDO point, the end of the continuing compound statement.

Figure 4. Behavior summary of different condition handlers

The following is a short example that will trigger an exception handler because
the variable mydate is not correct (missing the ’/’ character).
34 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

CREATE PROCEDURE G3()
LANGUAGE SQL
BEGIN

declare mydate DATE;
DECLARE C1 condition for SQLSTATE '22007';
DECLARE C2 condition for SQLSTATE '22017';
DECLARE EXIT HANDLER FOR SQLEXCEPTION

insert into result(proc,res)
values ('exec of G3','EXIT HANDLER fired:SQLSTATE='||SQLSTATE||'
SQLCODE='||CHAR(SQLCODE));

DECLARE EXIT HANDLER FOR C1, SQLSTATE '22008', SQLSTATE '22006', C2
insert into result(proc,res) values ('exec of G3','EXIT HANDLER

fired:SQLSTATE='||SQLSTATE||' SQLCODE='||CHAR(SQLCODE));

insert into result(proc,res)
values ('exec of G3','start of procedure');

SET mydate = '12' || '13' || '99';

END

The following is another example that uses exception handlers.

CREATE PROCEDURE PSM031 (IN NUM_PARTS CHAR(10))
LANGUAGE SQL
BEGIN

DECLARE lc1,i, nb, lc2,lc1c2 integer default 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND BEGIN

insert into result(proc,res)
values ('exec from PSM031', 'NOT FOUND Handler fired');

END;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN

insert into result(proc,res)
values ('exec from PSM031', 'SQLEXCEPTION handler fired

SQLCODE='||CHAR(SQLCODE));
END;
DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN

insert into result(proc,res)
values ('exec from PSM031', 'SQLWARNING handler fired');

END;

DECLARE cur1 CURSOR FOR Select c1,c2 from t1;
delete from t1;
insert into t1(c1,c2) values (1,1);
insert into t1(c1,c2) values (1,2);
set nb = (select count(*) from t1);
OPEN cur1;
set i = 0;
while (i < nb) do

FETCH FROM cur1 INTO lc1,lc2;
insert into result(proc,res) values ('exec from PSM031',

'row:'||CHAR(i)||' c1='|| CHAR(lc1) || ' c2='|| CHAR(lc2));
set i=i+1;

end while;
CLOSE cur1;

END
The SQL Procedures language 35

2.4.6 Current restrictions
The first release of SQL Procedures support on all DB2 platforms does not
implement the following SQL/PSM features:

• Persistent modules

• Nested condition handlers

• Nested ATOMIC compound statements

• SQL functions

2.5 SQL Procedures portability

It is our intention to provide SQL Procedures support across the DB2 Universal
Database family of products using a common SQL Procedures language and a
common application development tool, the DB2 Stored Procedure Builder on every
platform. We also expect that a significant number of customers will want to develop
their stored procedures on an individual workstation, for example, a PC running
Windows NT, using a local database, for example, DB2 for Windows NT; and as they
move that application and its stored procedures into production, they will deploy it on
DB2 for Windows NT on a different server or a DB2 for OS/390 platform.

Some customers will initially use their stored procedures against a departmental
server running DB2 for AIX or DB2 for Sun Solaris, and then as usage scales up and
more capacity is needed, they will consider moving their stored procedures to DB2
for OS/390. We will support these development and usage scenarios by providing
common SQL Procedures language and Stored Procedure Builder support across all
platforms.

Because of differences in release cycles and platform priorities, it is not always
possible (or desirable) to deliver the same functionality on all platforms at exactly
the same time. To help application developers identify and use the very large set
of SQL Procedures language features that are common across all of the DB2
platforms, we have produced the following portability matrix (see Table 1). It is
important to emphasize, however, that DB2 will be continuing to enhance the SQL
Procedures language on all platforms and reduce any current platform
differences.

Table 1 shows the potential differences between each of the IBM platforms.

Table 1. SQL Procedures portability across DB2 platforms

Functional Item Windows, UNIX, and
OS/2

OS/390 AS/400

Savepoint Named savepoints.
single, non-nested

Not supported in V5
Supported in V6
(Multiple)

Not yet supported

Source code size limit 64K size limit in 12/99 32K 32K

UNDO handlers are not yet supported on the OS/390 platform.

Important:
36 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Authorization behavior with
dynamic SQL statements;
will use Executor's authority
for both DML and DDL

Supported Supported Supported only through
RUNSQLSTM command

Nested NOT ATOMIC
compound statement

Supported Not yet supported Not yet supported

Nested ATOMIC compound
statements

Not yet supported Not yet supported Not yet supported

Nested stored procedure
calls

Supported Not supported in V5
Supported in V6

Supported

Returning result sets Supported Supported Supported

ALLOCATE CURSOR
statement for processing
result sets from nested
procedures

Supported Not yet supported Supported

Dynamic SQL statement
within an SQL stored
procedure

Supported
(CALL statement
supported in V8)

Supported Supported

Multi-rowed result sets Supported Supported Supported from a client via
Client Access ODBC and Java
Toolbax JDBC.

Supported from the server
through CLI and JDBC.

COMMIT Not yet supported Not yet supported Supported
(only allowed for NOT ATOMIC
procedures that are NOT
invoked through DRDA)

ROLLBACK Supported Not yet supported Supported
(only allowed for NOT ATOMIC
procedures that are NOT
invoked through DRDA)

CONNECT Not yet supported Not Supported in V5
Supported in V6

Supported

FOR Supported Not yet supported Supported

GRANT statement in
procedure

Supported Supported Supported

REVOKE statement in
procedure

Not yet supported Supported Supported

SIGNAL Supported Not yet supported Not yet supported

RESIGNAL statement Supported Not yet supported Not yet supported

Stand-alone
SQLCODE/SQLSTATE

Supported Supported Supported

Functional Item Windows, UNIX, and
OS/2

OS/390 AS/400
The SQL Procedures language 37

CREATE PROCEDURE
statements

Not yet supported Supported Supported

Static DDL Supported Supported Supported

Single statement procedure Supported Supported Supported

ITERATE statement
(not in PSM-96)

Supported Not yet supported Not yet supported

GOTO (extension to the
standard)

Not yet supported Not yet supported Not yet supported

C comment Supported Not yet supported Supported

Overriding of PREP and
compile options

Supported Supported Supported via options in Client
Access. Supported on the
RUNSQLSTM interface

New line stored in the catalog
- consistency

Supported Newline markers are
stored in
SYSIBM.SYSPSM for
SPB to recover the initial
"look" of the SP.
The debugger will
display PSM source as
80 byte wide lines (a
DB2 OS/390
precompiler restriction)

Currently strip out all extra
blanks and control characters.
This is partially because the
catalog column is
VARCHAR(18432), but a
procedure body can be larger
than that.

Ambiguous names resolved
in the following sequence:
1) Check if it is a column
name (table exists),
2) Check if it is a SQL
variable/parameter name;
3) Assume to be a column
name (table does not exist
and VALIDATE RUN option is
used).

Supported Not yet supported Supported

Parameter names 128 8 characters in V5
18 characters in V6

128

Max length of character
variable

254 bytes for VARCHAR
32 Kbytes for LONG
VARCHAR

255 bytes 32 Kbytes

DATE arithmetic
(for example:
mydate+5 days)

Supported Supported Supported

SELECT statement on right
hand side of SET statement

Supported Not yet supported Supported

DECIMAL data types Not yet supported Supported Supported

Functional Item Windows, UNIX, and
OS/2

OS/390 AS/400
38 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

2.6 New error messages

Below we provide a short description of the new error messages that will be
provided by the precompiler when errors occur during the SQL stored procedure
program preparation.

The error messages will be prefixed with the specific platform precompiler
identification. For example, for error code -775, DB2 for OS/390 will send
DSNH29775I.

-060 Data-type was specified in the definition of object-name. object-type in an
SQL stored procedure parameter or variable. data-type is not supported for SQL
stored procedure parameters or variables.

-061 One unexpected reason code was returned from Language Environment.

-775 In an SQL stored procedure, compound SQL statement contains an SQL
stored procedure statement that is not allowed.

-776 In an SQL stored procedure, a FOR statement contains an OPEN, FETCH,
or CLOSE statement for cursor cursor-name. Cursor operations are no allowed in
FOR statement.

-777 An SQL stored procedure contains nested compound statements, which
are not allowed.

-778 An SQL stored procedure statement contains an ending label and a
beginning label that do not match.

-779 In an SQL stored procedure, the label on a LEAVE statement does not
match the label for a block of code or loop that contains the LEAVE statement.

-780 An SQL stored procedure specifies an UNDO statement for a handler, and
the ATOMIC statement was not specified.

-781 In an SQL stored procedure, a handler is declared for condition
condition-name, but the SQL stored procedure does not contain a condition
declaration statement that defines condition-name.

-782 In an SQL stored procedure, a condition handler is not valid for one of the
following reasons:

• The handler specifies an SQLSTATE value that is not valid.
• The handler specifies duplicate conditions.
• The handler specifies SQLWARNING, SQLEXCEPTION, or NOT FOUND with

other condition.

-783 An SQL stored procedure contains a FOR in which the select list in the
cursor declaration has a column that is not valid. That column is a duplicate of
another column in the select list, or the column is not named.

-785 In an SQL stored procedure, the name SQLCODE or SQLSTATE is used in
one of the following invalid ways:

• An SQLCODE is declared as an SQL variable with a data type other than an
INTEGER.
The SQL Procedures language 39

• An SQLSTATE is declared as an SQL variable with a data type other than
CHAR(5).

• An SQLCODE or SQLSTATE is declared as an SQL variable with DEFAULT
NULL.

• An SQLCODE or SQLSTATE is assigned the value NULL in an assignment
statement.

• An SQLCODE or SQLSTATE is the same as an SQL stored procedure
parameter.

2.7 Migrating from OEM DBMS

The SQL Procedures language is at the same conceptual level as the T/SQL of
Sybase/Microsoft SQL Server, PL/SQL of Oracle, or SPL from Informix. Migrating
the business logic, programmed in stored procedures language from another
database vendor, to DB2 UDB SQL Procedures, should be easy. Most of the time,
every stored procedure statement in the Oracle, Sybase, and Informix stored
procedure language has an equivalent in the DB2 stored procedure language.
Some differences in concepts, like error handling or result sets processing, may
be the most difficult things to migrate.

But migration from another RDBMS implies many phases, not only business
logic. The following sections briefly discuss all of these considerations before
focusing on the business logic and stored procedures migration.

Note: Refer to the URL http://www.ibm.com/solutions/softwaremigration, for
assistance with migrations.

2.7.1 Migrating the database structure
This is usually the easiest part. The data definition language between RDBMSs is
quite similar. A few differences exist, though, most often on referential integrity
constraint declarations, domain declarations, and storage management
directives. There are tools that actually that convert structures rather well, with a
minimum need for the DBA to intervene.

Some of these tools are:

• Platinum ERwin ERX v3.5. This one appears to be the favorite in this area.

• InfoModelers InfoModeler v3.1.

• DataJunction v6.5, which is primarily a data movement tool, but also provides
support for DDL.

. Error code -061 is specific for OS/390 platform.

. -775 is not defined for distributed platforms because they support nested
compound statements.

. -780 is not defined for OS/390 because UNDO is not currently supported on
OS/390 platform.

Important:
40 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

2.7.2 Migrating the database data
This can be pretty complex if transformation or conversion of the data is needed,
because certain data types do not exist in the target RDBMS. This could result in
complex and expensive operations, for instance on Binary Large Objects (BLOB).
Another problem is the format of the export or import files. Every vendor uses
different ones, and an extra conversion of the data files may be needed. Most of
the time, import/export files have binary proprietary formats that allow fast
load/unload of data for the same kind of RDBMS. They have to win load/unload
benchmarks, and any trick is valuable. These binary files are usually incompatible
between different RDBMS.

Fortunately, most of the actual RDBMSs can usually create SQL scripts, which
means files with SQL statements, or tabulated text files, to transfer data to disk.
This method is slower and requires more space on disk, but usually will work
without too many manipulations. Some tools exists on the marketplace that
handle data migration for you. Some of them even allow you to transfer and
transform the data before saving it to disk. This can be really helpful if you have to
change data types or format between the two RDBMS.

Some of these tools are:

• DataJunction v6.5.

• IBM DataJoiner allows you to copy data from any RDBMS (Sybase, Oracle,
Informix) seamlessly into your DB2 UDB, exactly as if all the other databases
were all on the same machine. Using it can be a good solution for long
projects, where customers have to deal with different RDBMS for a long period
of time.

• SQL Conversion Workbench (SQL-CW), from Mantech Systems Solutions
Corporation, allows you migrate database objects and contents.

2.7.3 Migrating the business logic
This is the most complex part, depending on how much business logic has been
is developed in a language different from the target one.

2.7.3.1 The client applications
If the client application relies on a 4GL tool such as PowerBuilder or SQL
Windows, which accepts different RDBMSs, it is usually enough to change the
data source in the project, recompile the application, and fix the errors that show
up. But sometimes, differences in the SQL syntax, incompatibilities between data
types for parameters and variables, transaction control, and locking model may
be difficult issues to solve, and may require longer investigations to find solutions
that work on the new RDBMS.

There are some migration processing tools available that accept one language such
as T/SQL and generate stored procedures in another language such as SQL
Procedures. These tools generally perform some significant percentage of the work
automatically but typically require some manual effort for conversion as well.

Proprietary 4GL tools do not usually connect to other databases, such as Oracle
FORMS, and migrating that kind of application may require more manual effort for
conversion.
The SQL Procedures language 41

If the client application uses a 3GL tool like C with ODBC (standard API) it will
probably be relatively easy to migrate to DB2 UDB. That is because DB2 UDB
supports ODBC as well as supporting IBM CLI (an IBM ODBC layer that has the
same APIs as ODBC, but is optimized for DB2 UDB). In fact, ODBC was designed
to be insensitive to different RDBMSs. Unfortunately, because of the different
implementations by the ODBC resellers, most ODBC flavors have minor
portability issues.

If the client application was developed using Oracle proprietary APIs, or
proprietary Sybase APIs (CT-LIB) or some other proprietary API on other
RDBMSs, then more work will have to be done, that is, the part of the application
that deals with those API will have to be rewritten, because the API calls will
probably not have any corresponding calls in DB2 UDB APIs.

Because this is a lot of work, tools should be available to ease the process of
converting client applications. Unfortunately, no tools really do this kind of
conversion automatically. It is really too difficult, and human intervention is
required.

2.7.3.2 The stored procedures
Other RDBMS vendors did not choose the SQL Procedures language, which is a
standard. Since each database vendor has a different implementation of stored
procedure programming languages, migration of stored procedures can become
an important issue, depending on the extent of them in the application. The future
of stored procedures in the area of relational databases is currently at a turning
point, as Java is being considered as a possible solution to the portability and
flexibility. Java is a full programming language, and people who are familiar with
writing in simple languages such as PL/SQL or T/SQL prefer to move to another
language like SQL procedures language that is much easier to learn. For many
customers, Java is an interesting programming language for experienced
programmers, but is not necessarily for developers who only know T/SQL, for
example.

It is still much easier and faster to migrate to SQL stored procedures from other
RDBMS than migrating to C or Java external stored procedures. Not only will the
training cost of the teams involved in development be reduced (a few hours are
enough to learn the SQL Procedures language if you know T/SQL or PL/SQL),
but also, the development cost itself will go faster by reducing the amount of code
written.

To ease the migration, some help can be found with tools like the SQL
Conversion Workbench (SQL-CW) from Mantech Systems Solutions Corporation,
that can translate most simple procedures from other RDBMSs. For more
complex stored procedures, which often rely heavily on engine features, it may
sometimes be necessary to redesign the application itself, instead of spending
time to mimic a behavior that cannot be created on the new DB2 UDB engine.
(See Table 2.)

Table 2. RDBMS Stored Procedure language comparison

RDBMS Vendor Language Benefits Drawbacks

Oracle V7.x / V8.x PL/SQL ease of use
used in Ad
tools (Forms)

proprietary, flexibility
42 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Migrating the control statements from other RDBMS stored procedures
languages manually is usually not that difficult. The most difficult part of this is
dealing with engine-specific features not available on the target platform.

For example, until recently, temporary tables like those found in Sybase and
Informix (check DECLARE GLOBAL TEMPORARY TABLE statement) were not
supported in any version of DB2 UDB on any platform, and simulating them with
base tables can lead to poor performance in the migrated applications because of
the catalog contention. This can also lead to expensive development costs during
the migration phase, sometimes requiring a thorough redesign of the business
logic itself, and resulting in a slower implementation of the new application.

To lower the cost of migration from other RDBMSs, DB2 UDB version 7.x will
implement a full set of new features in the engine, such as temporary tables,
savepoints, identity columns, and nested stored procedure calls, which will be
incorporated in the new releases.

Although all these new features will ease migration, some stored procedures
logic will have to be redesigned to fit in the new engine. That is, there may be
changes needed in naming conventions or reengineering what modules work
best for a given RDBMS.

2.7.4 Comparison with Sybase/Microsoft SQL Server Transact-SQL
The SQL Procedures language is very similar to T/SQL, and in fact, most of the
T/SQL control flow statements represent a subset of the SQL Procedures
language control flow statements. However, there are some differences; for
example, T/SQL does not have support for:

• Error handler statements

• LOOPs

• FOR loops

• REPEAT UNTIL

• ELSEIF

• ATOMIC blocks

Sybase SQL Server V
10.x & V11.x

Transact SQL ease of use proprietary, flexibility

Microsoft SQL Server
V6.5 / V7.0

Transact SQL ease of use proprietary, flexibility

Informix v7.x Informix SPL ease of use proprietary, flexibility

DB2 UDB V6.x / DB2
Server for OS/390 V5
SQL stored procedure

SQL Procedures
language

ease of use,
standard
compliant

flexibility

DB2 UDB V5.x / V6.x
external SP

C, COBOL, Java flexibility,
power

skill require, complex

RDBMS Vendor Language Benefits Drawbacks
The SQL Procedures language 43

Table 3 shows the SQL/PSM (standard) control statements and Sybase/Microsoft
T/SQL control statements.

Table 3. Comparison between SQL/PSM and T/SQL control statements

SQL/PSM control statements Sybase/Microsoft SQL Server T/SQL control
statements

CALL EXECUTE

Result set processing after a CALL statement No equivalent

LEAVE <procedure-body-name> RETURN

BEGIN (Compound statements)
END

BEGIN
END

Handler declaration No equivalent

Condition declaration No equivalent

SQL variable declaration
declare <var-name> <datatype> default <defvalue>

declare <var-name> <datatype>

Assignment declaration
SET <var-name> = <expression>

SELECT <var-name> = <expression>

IF <expression> THEN...ELSEIF...ELSE...END IF; IF <expression> ...ELSE...
(no THEN, no ELSE IF, no END IF)

CASE statement No equivalent

LEAVE statement BREAK

LOOP No equivalent

WHILE statement WHILE statement

REPEAT No equivalent

FOR statement No equivalent
equivalent done by tricks with WHILE, temporary table and
set rowcount=1 and 0.

SIGNAL <sqlstate> statement RAISERROR <error-number>

RESIGNAL statement No equivalent

ITERATE Continue

GET DIAGNOSTICS <varname>=ROWCOUNT SELECT <varname>=rowcount

No equivalent goto <label>

No equivalent waitfor DELAY ’time’
waitfor TIME ’time’

No equivalent SET options
44 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Table 4 shows a quick comparison between DB2 and Sybase/Microsoft SQL
Server.

Table 4. Comparison between DB2 and Sybase SQL Server

DB2 Sybase/Microsoft SQL Server

ATAN ATAN

-- comment -- comment

/* comment */ /* comment */

ABS ABS

ABSVAL ABS

ACOS ACOS

AND AND

ASCII ASCII

ASIN ASIN

ATAN2 ATAN2

AVG AVG

BLOB CONVERT(IMAGE, ...)

CALL statement execute

CEILING CEILING

CHAR CONVERT(CHAR,...)

CLOB CONVERT(TEXT, ...)

CLOSE CLOSE

COALESCE ISNULL(...,...)

COMMIT (no nested commits) COMMIT savepoint_name

Compound ATOMIC statement Begin tran xx.... commit tran xx

Compound SQL statement Begin ... End block

COS COS(:1P)

COT COT(:1P)

COUNT COUNT

COUNT DISTINCT COUNT DISTINCT

Create temporary table *** Select <expression> into table

cursor with hold HOLDLOCK

DATE CONVERT(DATETIME, ...)

DAY DATEPART(DAY,CONVERT(DATETIME,...))

DAYNAME DATENAME(DAY, CONVERT(DATETIME,...))

DAYOFWEEK DATEPART(DAY,CONVERT(DATETIME,...))
The SQL Procedures language 45

DAYOFYEAR DATEPART(YEAR, CONVERT(DATETIME,...))

DB2 allows setting transaction isolation level to RR, RS,
CS, UR at package bind

SET TRANSACTION isolation level <n>

DB2 ordinarily runs under transaction control BEGIN Transaction <transaction name> or <savepoint
name>

DDL for create table, create index, grant, revoke,* DDL for create table, create index, grant, revoke,

DECIMAL CONVERT(DECIMAL(..,..),..)

DECIMAL CONVERT(DECIMAL(...,..),...)

DECLARE Cursor DECLARE Cursor

DEGREES DEGREES(...)

DELETE DELETE

DELETE WHERE CURRENT OF cursor delete where current of

DIFFERENCE DIFFERENCE(...,...)

DOUBLE_PRECISION CONVERT(FLOAT(2),...)

EXP EXP(...)

FETCH FETCH

FLOOR FLOOR(...)

GROUPBY (ROLLUP(...)) COMPUTE

HOUR DATEPART(HOUR, CONVERT(DATETIME,...))

IDENTITY COLUMN IDENTITY COLUMNS

IF cd1 THEN St1 ELSE St2 END IF IF cd1 THEN st1 ELSE st2

INSERT INSERT

INT CONVERT(INT,...)

IS NOT NULL IS NOT NULL

IS NULL IS NULL

ITERATE continue

LCASE LOWER(...)

LEAVE statement break

LENGTH DATALENGTH(...)

LIKE LIKE

LN LOG(...)

LOCATE PATINDEX(...,...)

LOG LOG(...)

LOG10 LOG10(...)

DB2 Sybase/Microsoft SQL Server
46 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

LTRIM LTRIM(...)

MAX MAX

MICROSECOND DATEPART(MILLISECOND, ...)

MIN MIN

MINUTE DATEPART(MINUTE, CONVERT(DATETIME, ...))

MOD %

MONTH DATEPART(MONTH, CONVERT(DATETIME,...))

MONTHNAME DATENAME(MONTH,CONVERT(DATETIME,...))

NOT NOT

OPEN OPEN

OR OR

POSSTR CHARINDEX(...,...)

QUARTER DATEPART(QUARTER,CONVERT(DATETIME,...))

RADIANS RADIANS(...)

REPEAT REPLICATE(...,...)

RETURN statement RETURN integer

RIGHT RIGHT

ROLLBACK TO SAVEPOINT <savepoint-name> ROLLBACK <savepoint-name>

ROLLBACK WORK ROLLBACK WORK

RTRIM RTRIM

SAVEPOINT <savepoint-name>** SAVE transaction savepoint-name

SECOND DATEPART(SECOND, CONVERT(DATETIME,...))

SELECT SELECT

SET statement(into many vars) SELECT var1=column1,var2=columns2,....

SET var=statement SELECT var = statement

SIGN SIGN

SIGNAL sqlstate RAISERROR error-number

SIN SIN

SMALLINT CONVERT(SMALLINT, ...)

SOUNDEX SOUNDEX

SPACE SPACE

SQL variable declaration declare @variable-name data-type

SQRT SQRT

STDDEV No equivalent

DB2 Sybase/Microsoft SQL Server
The SQL Procedures language 47

2.7.5 Comparison with Oracle PL/SQL
The SQL Procedures language is also very similar to PL/SQL. But, just as with
T/SQL, there are some differences between SQL Procedures and PL/SQL; for
example:

• PL/SQL does not have the same error handling, although it does have
exceptions

• Does not support compound atomic

• Does not have result sets, although can still use the dbms_output package to
send information back to the client application

• PL/SQL has features such as:

• %TYPE,

• %ROWTYPE,

• %TABLE,

• SQL%ROWCOUNT,

• SQL%FOUND,

• SQL%NOTFOUND,

SUM SUM

TAN TAN

TIME CONVERT(DATETIME, ...,108)

UCASE UPPER

UNION UNION

UPDATE UPDATE

UPDATE WHERE CURRENT OF cursor update where current of

VARCHAR CONVERT(VARCHAR, ...)

VARIANCE No equivalent

WEEK DATEPART(WEEK, CONVERT(DATETIME,...))

WHILE statement while expression statement

YEAR DATEPART(YEAR, CONVERT(DATETIME,...))

|| — (string concat) +

No equivalent @@rowcount

No equivalent bitwise operations (^ & | ~)

No equivalent deallocate

No equivalent goto label

No equivalent LIKE 'regular_expression'

No equivalent PRINT ...

No equivalent SET ROWCOUNT

DB2 Sybase/Microsoft SQL Server
48 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• ROWID

• Packages (that should look similar to SQL PSM modules)

Table 5 shows the SQL/PSM (standard) control statements and Oracle PL/SQL
control statements.

Table 5. Comparison between SQL/PSM and PL/SQL control statements

SQL/PSM control statements Oracle PL/SQL control statements

CALL No equivalent

result set processing after a CALL statement No equivalent

LEAVE <procedure-body-name> RETURN

BEGIN (Compound statements)
END

BEGIN
END

Handler declaration EXCEPTION (differences)

Condition declaration exception-name EXCEPTION
PRAGMA
EXCEPTION_INIT(exception-name,error-number)
(no SQLSTATE values)

SQL variable declaration
declare <var-name> <datatype> default <defvalue>

declare <var-name> <datatype>

Assignement declaration
SET <var-name> = <expression>

<var-name> = <expression>

IF <expression> THEN ...
ELSEIF...THEN ...
ELSE...
END IF;

IF <expression> THEN..
ELSIF...THEN...
ELSE...
END IF;

CASE statement No equivalent

LEAVE statement EXIt <label>

LOOP LOOP

WHILE statement WHILE statement
or
FOR <indx-name> IN lowerbound..upperbound
LOOP.....END LOOP

REPEAT No equivalent

FOR statement FOR <record-name> IN <cursor-name> LOOP
....
END LOOP

SIGNAL <sqlstate> statement RAISE <error-number>

RESIGNAL statement RAISE

ITERATE continue

GET DIAGNOSTICS <varname>=ROWCOUNT <varname>=SQL%ROWCOUNT

No equivalent goto <label>
The SQL Procedures language 49

Table 6 shows a comparison between DB2 and Oracle:

Table 6. Comparison between DB2 and Oracle

DB2 Oracle

-- comment -- comment

/* comment */ /* comment */

ABS ABS

ABSVAL ABS

ACOS ACOS

AND AND

ASCII ASCII

ASIN ASIN

ATAN ATAN

ATAN2 ATAN2

AVG AVG

AVG AVG

BLOB LONG()

BLOB RAW()

CALL statement CALL statement

CASE (expr) WHEN..THEN..ELSE..END DECODE(expr,...,...,...)

CEILING CEIL

CHAR() CHAR()

CHAR() TO_CHAR()

CLOB LONG()

CLOSE CLOSE

COALESCE ISNULL(..., ...)

COMMIT (no nested commits) COMMIT savepoint_name

Compound ATOMIC statement Begin tran xx.... commit tran xx

Compound SQL statement Begin ... End block

CONTINUE/EXIT/UNDO handlers EXCEPTION

COS COS

COT COT

COUNT COUNT

COUNT DISTINCT COUNT DISTINCT

cursor with hold HOLDLOCK

DATE TO_DATE()
50 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

DAY TO_CHAR(....,DD)

DAYNAME TO_CHAR(....,DAY)

DAYOFWEEK TO_CHAR(....,D)

DAYOFYEAR TO_CHAR(....,DY)

DB2 allows setting transaction SET TRANSACTION

DB2 ordinarily runs under transaction control BEGIN Transaction <transaction name> or <savepoint
name>

DDL for create table, create index, grant, revoke,* DDL for create table, create index, grant, revoke,

DECIMAL () DECIMAL()

DECIMAL () NUMBER()

DECIMAL() DEC()

DECLARE Cursor DECLARE Cursor

DEGREES DEGREES

DELETE DELETE

DELETE WHERE CURRENT OF cursor delete … where current of

DOUBLE() DOUBLE_PRECISION()

EXP EXP

FETCH FETCH

FLOAT() FLOAT()

FLOOR FLOOR

FOR rec IN csr LOOP ...END LOOP FOR rec IN csr LOOP ...END LOOP

GENERATE_UNIQUE (slightly different) ROWID

GROUPBY (ROLLUP(...)) No equivalent

HOUR TO_CHAR(....,HH)

IDENTITY COLUMN CREATE SEQUENCE xx START WITH yy

IF cd1 THEN St1 ELSE St2 END IF IF cd1 THEN st1 ELSE st2 END IF

INSERT INSERT

INT BINARY_INTEGER()

IS NOT NULL IS NOT NULL

IS NULL IS NULL

isolation level to RR,RS,CS,UR at No equivalent

LCASE LOWER

LEAVE EXIT

LEAVE statement EXIT WHEN ...

DB2 Oracle
The SQL Procedures language 51

LENGTH LENGTH()

LIKE LIKE

LN LN

LOCATE INSTR()

LOG LOG

LOG10 LOG10

LOOP..... END LOOP LOOP..... END LOOP

LTRIM LTRIM

MAX MAX

MIN MIN

MINUTE TO_CHAR(....,MI)

MOD MOD

MONTH TO_CHAR(....,MM)

MONTHNAME DATENAME(MONTH,CONVERT(DATETIME,...))

NOT NOT

OPEN OPEN

OR OR

package bind No equivalent

POWER **

POWER POWER

QUARTER DATEPART(QUARTER,CONVERT(DATETIME,...))

RADIANS RADIANS

REPLACE REPLACE

RESIGNAL RAISE

RETURN statement return integer

RIGHT RIGHT

ROLLBACK TO SAVEPOINT <savepoint-name> ROLLBACK <savepoint-name>

ROLLBACK WORK ROLLBACK WORK

ROUND(m,n) ROUND(m,n)

RTRIM RTRIM

SAVEPOINT <savepoint-name>** SAVE transaction savepoint-name

SECOND TO_CHAR(....,SS)

SELECT SELECT

SET var=(statement) var := (statement)

DB2 Oracle
52 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

SIGN SIGN

SIGNAL RAISE exception_name

SIN SIN

SINH SINH

SMALLINT SMALLINT

SOUNDEX SOUNDEX

SPACE SPACE

SQL variable declaration declare variable-name data-type

SQRT SQRT

STDDEV(exp) STDDEV(exp)

SUBSTR SUBSTR

SUM SUM

TAN TAN

TANH TANH

TIME TO_DATE()

TRANSLATE() TRANSLATE()

UCASE UPPER

UNION UNION

UPDATE UPDATE

UPDATE WHERE CURRENT OF cursor update … where current of

USER UID

VALUE(exp1,exp2) NVL(exp1,exp2)

VARCHAR() VARCHAR2()

VARIANCE VARIANCE

WEEK DATEPART(WEEK, CONVERT(DATETIME,...))

WHILE statement WHILE expression statement

YEAR TO_CHAR(....,IYY), TO_CHAR(.....,YYYY)

|| — (string concat) || (string concat)

No equivalent %ISOPEN

No equivalent %TYPE

No equivalent BOOLEAN()

No equivalent COSH()

No equivalent COUNT

No equivalent CREATE PACKAGE

DB2 Oracle
The SQL Procedures language 53

No equivalent CURRVAL

No equivalent dbms_output_package.print()

No equivalent deallocate

No equivalent define RECORD Type

No equivalent DELETE

No equivalent EXISTS

No equivalent FIRST

No equivalent GREATEST or GREATEST_LB

No equivalent HEXTORAW()

No equivalent INITCAP()

No equivalent LAST

No equivalent LAST_DAY

No equivalent LEAST or LEAST_UB

No equivalent LEVEL

No equivalent LPAD

No equivalent MONTHS_BETWEEN

No equivalent nested RECORD

No equivalent NEW_TIME

No equivalent NEXT

No equivalent NEXT_DAY

No equivalent NEXTVAL

No equivalent NLSSORT

No equivalent PRINT ...

No equivalent PRIOR

No equivalent ROUND(date)

No equivalent RPAD()

No equivalent SINH()

No equivalent SQL%FOUND

No equivalent SQL%NOTFOUND

Get DIAGNOSTIC <varname> = ROWCOUNT SQL%ROWCOUNT

No equivalent TANH()

No equivalent CONVERT()

DB2 Oracle
54 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

2.7.6 Comparison with Informix SPL
Table 7 shows the SQL/PSM (standard) control statements and Informix SPL
control statements.

Table 7. Comparison between SQL/PSM and SPL control statements

SQL/PSM control statements Informix SPL control statements

CALL CALL
EXECUTE

result set processing after a CALL statement No equivalent

LEAVE <procedure-body-name> RETURN

BEGIN (Compound statements)
END

BEGIN
END

Handler declaration ON EXCEPTION (but differences)

Condition declaration No equivalent

SQL variable declaration
declare <var-name> <datatype> default <defvalue>

define <var-name> <datatype>

Assignement declaration
SET <var-name> = <expression>

LET <var-name> = <expression>

IF <expression> THEN ...
ELSEIF...THEN ...
ELSE...
END IF;

IF <expression> THEN..
ELIF...THEN...
ELSE...
END IF;

CASE statement No equivalent

LEAVE statement EXIt <loop-type>

LOOP No equivalent

WHILE statement WHILE statement
or
FOR <indx-name> IN <criteria> END FOR

REPEAT No equivalent

FOR statement FOREACH <cursor-name> FOR <select-stmt>
....END FOREACH

SIGNAL <sqlstate> statement RAISE EXCEPTION <error-number>

RESIGNAL statement RAISE

ITERATE CONTINUE

No equivalent SYSTEM

No equivalent goto <label>
The SQL Procedures language 55

56 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Chapter 3. The DB2 Stored Procedure Builder

This chapter describes the new DB2 Stored Procedure Builder (SPB) tool, and
explains how it can be used to help with the development and maintenance of
stored procedures for both DB2 for OS/390 and DB2 Universal Database (UDB)
environments.

3.1 DB2 Stored Procedure Builder — overview

This section describes the DB2 SPB, its main components, prerequisites,
installation, and customization.

3.1.1 What is it?
The DB2 SPB is a graphical tool designed to help with the development of DB2
stored procedures. It provides all the functions required to create, build, test, and
deploy new stored procedures. It also provides functions to work with existing
stored procedures.

The SPB provides a single development environment that supports the entire
DB2 family ranging from the workstation to System/390. Figure 5 shows the
environment for development and deploy stored procedures with SPB. With the
SPB you can focus on the logic of your stored procedure rather than on the
process details of creating stored procedures on a DB2 server.

Figure 5. SPB environment

The SPB supports two languages for the development of new stored procedures:
Java, and SQL Procedures language.

It is important to notice that the SPB is not a prerequisite to write stored
procedures for DB2 servers. The support for stored procedures, even for the SQL
Procedures language, is built-in to the DB2 base code. For more details on the
new SQL Procedures language, refer to Chapter 2, “The SQL Procedures
language” on page 9. For details on the implementation of SQL stored
procedures in different DB2 servers, refer to Chapter 4, “SQL Procedures for DB2
UDB for OS/390” on page 109, Chapter 5, “SQL Procedures for DB2 UDB for
UNIX, Windows, OS/2” on page 145, and Chapter 6, “SQL Procedures for DB2
UDB for AS/400” on page 169.

D eve lop D ep loy

D B 2
S erver

N T ,95 ,98 ,
A IX , S olaris
O S /2
...
O S /39 0

N T ,95 ,9 8 F ro m :
M icroso ft V isua l Bas ic
M icroso ft V isua l S tud io
S tand-a lone

IB M V isua lA ge fo r Java

jd bc
© Copyright IBM Corp. 1999 57

In summary, using the SPB you can perform a variety of tasks associated with
stored procedures, such as:

• Creating new stored procedures

• Listing existing stored procedures

• Modifying existing stored procedures (Java and SQL stored procedures)

• Running existing stored procedures

• Copying and pasting stored procedures across connections

• One-step building of stored procedures on target databases

• Customizing the settings to enable remote debugging of installed stored
procedures

3.1.2 Programming languages supported
The SPB supports both Java and SQL Procedures languages to create, build,
and debug stored procedures on DB2 UDB servers. For Java stored procedures,
SPB allows the use of both supported Java interfaces: JDBC and SQLJ. The main
difference between JDBC and SQLJ is that JDBC stored procedures execute as a
dynamic SQL program, while SQLJ stored procedures execute as a static SQL
program.

Following are examples of the same stored procedure written in SQL Procedures
language, Java with JDBC, and Java with SQLJ.

Procedure STP using SQL Procedures language:

CREATE PROCEDURE DRDARES1.STP (IN v_id int)
SPECIFIC DRDARES1.S5521448
RESULT SETS 1
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.STP
--
P1: BEGIN

-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT
DRDARES1.STAFF.ID,
DRDARES1.STAFF.NAME,
DRDARES1.STAFF.DEPT,
DRDARES1.STAFF.JOB,
DRDARES1.STAFF.YEARS,
DRDARES1.STAFF.SALARY,
DRDARES1.STAFF.COMM

FROM
DRDARES1.STAFF

WHERE
(

(
DRDARES1.STAFF.ID > v_id

)
);

-- Cursor left open for client application
OPEN cursor1;
58 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

END P1

Procedure STP using JDBC:

/**
* JDBC Stored Procedure DRDARES1.STP
*/
import java.sql.*; // JDBC classes

public class STP
{

public static void sTP (short v_id,
ResultSet[] rs) throws SQLException, Exception

{
// Get connection to the database
Connection con =

DriverManager.getConnection("jdbc:default:connection");
PreparedStatement stmt = null;
String sql;

sql = "SELECT"
+ " DRDARES1.STAFF.ID,"
+ " DRDARES1.STAFF.NAME,"
+ " DRDARES1.STAFF.DEPT,"
+ " DRDARES1.STAFF.JOB,"
+ " DRDARES1.STAFF.YEARS,"
+ " DRDARES1.STAFF.SALARY,"
+ " DRDARES1.STAFF.COMM"
+ " FROM"
+ " DRDARES1.STAFF"
+ " WHERE"
+ " ("
+ " ("
+ " DRDARES1.STAFF.ID > ? "
+ ")"
+ ")";

stmt = con.prepareStatement(sql);
stmt.setShort(1, v_id);
rs[0] = stmt.executeQuery();
if (con != null) con.close();

}
}

Procedure STP using SQLJ:

/**
* SQLJ Stored Procedure DRDARES1.STP
*/
import java.sql.*; // JDBC classes
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

#sql iterator Stp_Cursor1 (short, String, short, String, short,
java.math.BigDecimal, java.math.BigDecimal);

public class Stp
{

public static void stp (short v_id,
The DB2 Stored Procedure Builder 59

ResultSet[] rs) throws SQLException,
Exception

{
Stp_Cursor1 cursor1 = null;
#sql cursor1 =
{

SELECT
DRDARES1.STAFF.ID,
DRDARES1.STAFF.NAME,
DRDARES1.STAFF.DEPT,
DRDARES1.STAFF.JOB,
DRDARES1.STAFF.YEARS,
DRDARES1.STAFF.SALARY,
DRDARES1.STAFF.COMM

FROM
DRDARES1.STAFF

WHERE
(

(
DRDARES1.STAFF.ID > :v_id

)
)

};
rs[0] = cursor1.getResultSet();

}
}

Note: For DB2 for OS/390 servers, SPB supports only the SQL Procedures
language. SPB does not yet support Java stored procedures for DB2 for OS/390,
and it does not yet support SQL Procedures for DB2 UDB for AS/400.

Existing stored procedures written in any supported language, and registered in
the DB2 server, are also listed. However, stored procedures written in other
languages can only be executed from SPB. You will not be able to modify, build,
get source for, or debug these procedures.

3.2 Product Installation on Windows NT

The following sections describe the prerequisites and the steps required to install
SPN in the Windows NT environment.

3.2.1 Prerequisites for SPB
There are a few requirements to run the SPB in your workstation. If you plan to
develop stored procedures for remote DB2 servers, you have to define the
connection to the server. To access DB2 UDB servers, you only need to catalog
the remote database in your workstation.

To access a DRDA server (only DB2 for OS/390 is supported at this time), you
need to install the DB2 Connect product in your workstation or in a gateway, and
catalog the remote database. To work with SPB and DB2 Server for OS/390
Version 5, you must also ensure that APARs PQ29866, PQ24199, and PQ29706
are installed in your system.
60 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

SPB is implemented in Java, and all database connections are managed by using
Java Database Connectivity (JDBC). To write stored procedures with SPB, you
only need to be able to connect to a local or remote DB2 database alias.

3.2.2 Installing the SPB
The SPB is included with the DB2 Software Developer’s Kit (SDK) and is
available for the Windows 95, 98, and NT environments. The DB2 SDK is
included with DB2 UDB server editions (Workgroup Edition, Enterprise Edition,
and Enterprise-Extended Edition), DB2 Developers editions (Personal Edition,
and Universal Edition), and DB2 Connect. You can install SDK together with DB2
UDB server or in a separate client workstation.

DB2 for OS/390 users can also get the SPB from the DB2 Management Tools
Package.

Although the SPB executes only in Windows systems, it can be used to develop
stored procedures for any DB2 UDB platform and for DB2 for OS/390. Support for
the development of DB2 UDB for AS/400 stored procedures should be available
soon.

If you are using SPB to develop stored procedures for a DB2 UDB server, before
you run SPB, you must configure the DB2 UDB server in the following ways:

• Set the path for the Java Development Kit (JDK) by entering the following
command from the DB2 Command Window:

DB2 UPDATE DATABASE MANAGER CONFIGURATION USING JDK11_PATH
x:\sqllib\java\jdk

where x: is the drive on which you installed DB2 UDB

• We recommend that you set the Java heap size to 4096 bytes. From the DB2
Command Window, enter the following command:

DB2 UPDATE DATABASE MANAGER CONFIGURATION USING JAVA_HEAP_SZ 4096

• We recommend that you set the application heap size to 1024 bytes. From the
DB2 Command Window, enter the following command:

DB2 UPDATE DATABASE MANAGER CONFIGURATION FOR database_name USING
APPLEHEAPSZ 1024

• Set the DB2 parameter KEEPDARI to NO if you are frequently rebuilding and
testing stored procedures. In the DB2 Command Window, enter the following
command:

DB2 UPDATE DATABASE MANAGER CONFIGURATION USING KEEPDARI NO

For these configuration settings described above, you must stop and restart the
database server before the new settings will take effect.

If you are planning to use SPB to develop stored procedures for a DB2 for OS/390
server, see Chapter 4, “SQL Procedures for DB2 UDB for OS/390” on page 109
for detailed information.

When you install the SDK in your machine, a path to SPB is automatically
included in the DB2 UDB program group. You can launch the SPB from the DB2
UDB program group, or you can launch SPB as an add-in tool from any of the
following applications:
The DB2 Stored Procedure Builder 61

• IBM VisualAge for Java

• Microsoft Visual Studio Version 5 and Version 6

• Microsoft Visual Basic Version 5 and Version 6

3.2.2.1 Starting SPB from IBM VisualAge for Java
The integration of SPB and VisualAge for Java that is currently available is:
VisualAge for Java 3.0. The SPB that is integrated with VA Java 3.0 is the DB2
UDB version 6 code base.

Follow the steps below to invoke the Stored Procedure Builder driver:

1. Right-click the VisualAge for Java project you want to use the Stored
Procedure Builder with.

2. Select Tools from the menu.

3. Select IBM DB2 Stored Procedure Builder.

SPB projects save connection information and stored procedure objects that
have not yet been built to a database.

Figure 6 shows how to invoke the SPB through VA Java Workbench.

Figure 6. Invoking SPB through VisualAge for Java

If the SPB project file is NOT found in the VisualAge for Java that you use to
invoke SPB, then the "Specify Database Connection" dialog appears (Figure 7).

If the SPB project file is found in the VisualAge for Java that you use to invoke
SPB, then the "Specify Database Connection" does not appear (since we use the
62 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

connection information stored in the SPB project file found in the VA Java
project).

Figure 7. Specify Database Connection Window

The SPB main frame is displayed once you have specified the connection
information (see Figure 8).
The DB2 Stored Procedure Builder 63

Figure 8. SPB main frame invoked through VA Java Workbench

3.2.2.2 Starting SPB from Microsoft Visual Studio
If Microsoft Visual Studio was not installed when you installed DB2 SDK, you
must perform one of the following steps to register the add-in with Visual Studio. If
Microsoft Visual Studio was installed when you installed DB2 SDK, you should
skip these steps.

• If you have Visual Studio 5, copy the file DB2SSPB.DLL from the directory
x:\sqllib\bin to y:\Program Files\DevStudio\SharedIDE\AddIn, where x: is the
drive on which you have installed DB2 SDK, and y: is the drive on which you
have installed Visual Studio 5.

• If you have Visual Studio 6, copy the file DB2SPBVS.DLL from the directory
x:\sqllib\bin to y:\Program Files\Microsoft Visual Studio\Common\
MSDev98\AddIns, where x: is the drive on which you have installed DB2 SDK,
and y: is the drive on which you have installed Visual Studio 6.

To launch SPB from Microsoft Visual Studio, you have to enable the SPB add-in.
This can be done using the following steps:

1. From the main Visual Studio window select Tools --> Customize... The popup
window showed in Figure 9 is displayed.
64 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 9. Customizing Microsoft Visual Studio

2. Select the Add-ins and Macro Files tab, and click on the check box near the
IBM DB2 Stored Procedure Builder add-in. Close the window.

You should now have a fast path for SPB in your Microsoft Visual Studio desktop.

3.2.2.3 Starting SPB from Microsoft Visual Basic
If Microsoft Visual Basic was not installed when you installed DB2 SDK, you must
perform the following steps to register the add-in with Visual Basic:

1. Open a DOS command prompt and change to the directory x:\sqllib\bin, where
x: is the drive on which you have installed DB2 SDK.

2. Enter the following command:

db2spbvb -addtoini

To launch SPB from Microsoft Visual Basic, you have to enable the SPB add-in.
This can be done using the following steps:

1. Select Add-Ins --> Add-In Manager. The Add-In Manager window opens.

2. Select IBM DB2 Stored Procedure Builder and click OK.

The SPB is added to the Add-Ins menu.

3.3 Advanced configuring of the SPB

You can customize your SPB environment by using a Windows initialization (INI)
file. SPB uses the DB2SPB.INI file to save information about your preferences
and environment. The DB2SPB.INI file is located in the SPB subdirectory
x:\sqllib\spb, where x: is the drive on which you have installed DB2 SDK.

You need to edit the DB2SPB.INI file to change stored procedure option defaults.
You can also use the Environment Properties notebook in SPB to change all
other defaults.
The DB2 Stored Procedure Builder 65

3.3.0.1 The DB2SPB.INI file
The DB2SPB.INI file contains several sections marked by a section name
surrounded by brackets ([]). The entries in each section contain keynames and
their associated values. Following is an example of the DB2SPB.INI file we used
in our project:)

[IBM DB2 Stored Procedure Builder 2.1.0b] (1) (see Figure 10)
ENABLE_STDERR_CONSOLE = FALSE
BUILD_KEEP_TMPDIR_AFTER_FAILURE = FALSE

[Previous projects]--------- (see Figure 11)
MRU_FILE1 = D:\SQLLIB\spb\projects\sg245485.spp
MRU_FILE0 = D:\SQLLIB\spb\projects\sueli.spp

[Debug information]--------- (see Figure 16)
DEBUG_PORT = 8000
DEBUG_IPADDR = 9.1.151.109

[Logon information]--------- (see Figure 12)
DEFAULT_JDBC_CLASS = COM.ibm.db2.jdbc.app.DB2Driver
DEFAULT_JDBC_DRIVER = 378
DEFAULT_JDBC_DATABASE = SAMPLE
DEFAULT_JDBC_URL = jdbc:db2:SAMPLE

[Data type preferences]----- (see Figure 18 and Figure 19)
TYPE_MAP_BYTES = 7
TYPE_MAP_STRING_MAGNITUDE =
TYPE_MAP_BYTES_LENGTH = 254
TYPE_MAP_DEFAULT_LENGTH = 254
TYPE_MAP_DEFAULT = 7
TYPE_SYNONYM_7 = varchar
TYPE_SYNONYM_6 = char
TYPE_SYNONYM_4 = double
TYPE_SYNONYM_2 = dec
TYPE_MAP_BYTES_MAGNITUDE = B
TYPE_SYNONYM_1 = int
TYPE_CASE = LOWER
TYPE_MAP_DEFAULT_BITDATA = FALSE
TYPE_MAP_STRING_LENGTH = 254
TYPE_MAP_STRING = 7

[Output preferences]----- (see Figure 15)
OUTPUT_COMMIT_RUN = FALSE
OUTPUT_MAX_ROWS =
OUTPUT_MAX_COLWIDTH =
OUTPUT_ALL_ROWS = TRUE
OUTPUT_ALL_COLWIDTH = TRUE
OUTPUT_STATEMENT_SEPARATOR = @

[User-assistance preferences]----- (see Figure 14)
ASSISTANCE_BEEPS = TRUE
ASSISTANCE_WINDOW SIZE_WIDTH = 660
ASSISTANCE_BORDERS = TRUE
ASSISTANCE_SPLIT_HORZ_LOCATION = 339
ASSISTANCE_SPLIT_VERT_LOCATION = 163
ASSISTANCE_WINDOW SIZE_HEIGHT = 350
ASSISTANCE_TIPS = TRUE
ASSISTANCE_INFOPOPS = TRUE
66 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

[Stored-procedure options] (2) (see Figure 17)
SPOPTION_COMPILE_TEST_OPTION = NOTEST(block,noline,nopath)
SPOPTION_WLM_ENVIRONMENT = wlmenv1
SPOPTION_SQLPROC_BUILDER = DSNTPSMP
SPOPTION_EXTERNAL_SECURITY = DB2
SPOPTION_STAY_RESIDENT = FALSE
SPOPTION_LINK_OPTIONS =
SPOPTION_LE_TEST_OPTION = NOTEST(ALL,*,,VADTCPIP&9.1.151.109:*)
SPOPTION_COMPILE_OPTIONS = list,longname
SPOPTION_LE_OPTIONS =
SPOPTION_TEST = FALSE
SPOPTION_COLLID = TEST
SPOPTION_PRELINK_OPTIONS = nomap
SPOPTION_PSM_PRECOMPILE = source
SPOPTION_BIND_OPTIONS =

[Editor preferences]----- (see Figure 13)
EDITOR_LINE_NUMBERS = TRUE
EDITOR_FONT_SIZE = 12
EDITOR_TAB_SIZE = 4
EDITOR_LANGUAGE_PARSING = TRUE

The first section (1), IBM DB2 Stored procedure Builder 2.1.0b, is internal only
and must not be modified.

The Stored Procedure Option (2) is for OS/390 only. Part of the information will
be externalized in a future release of SPB to facilitate updating via the
Environment Properties dialog.

Figure 10 through Figure 19 show the various menus of the SBP.

Figure 10. Stored Procedure Builder
The DB2 Stored Procedure Builder 67

Figure 11. SPB: Previous Projects

Figure 12. Environment Properties: Connection
68 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 13. Environment Properties: Editor

Figure 14. Environment Properties: Assistance
The DB2 Stored Procedure Builder 69

Figure 15. Environment Properties: Output

Figure 16. Environment Properties: Debug
70 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 17. Environment Properties: OS/390 Options

Figure 18. Environment Properties: SQL Types
The DB2 Stored Procedure Builder 71

Figure 19. Environment Properties: Type Mapping

3.3.0.2 Entries in the DB2SPB.INI file
Each section of the DB2SPB.INI file contains keywords that affect the behavior of
SPB. Table 8 shows the keywords associated with each section, their possible
values, and a description of each keyword.

Table 8. DB2SPB.INI file sections and keywords

Section Keyname Possible Values Description

[Most recently
used projects]

MRU_FILE<number> <project-file-name-with-abs
olute-path>

Specifies absolute path of an SPB
project file. The number appended to
the keyname represents how recently
the file was used; for example,
MRU_FILE0 is the most recently
used file.

[Stored
procedure
options]

SPOPTION_STAY_RESIDE
NT

TRUE | FALSE OS/390 only: Specifies whether the
stored procedure load module remains
in memory when the stored procedure
ends

SPOPTION_EXTERNAL_S
ECURITY

DB2 | USER | DEFINER OS/390 only: Specifies the type of
external security environment for the
stored procedure

SPOPTION_COLLID <collection-ID> | <user-ID> OS/390 only: Specifies the package
collection used when the stored
procedure is executed

SPOPTION_LE_OPTIONS <Language-Environment-op
tions>

OS/390 only: Specifies Language
Environment run-time options
72 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

SPOPTION_WLM_ENVIRO
NMENT

<Work-Load-Manager-envir
onment>

OS/390 only: Specifies the MVS
workload manager (WLM)
environment where the stored
procedure runs

SPOPTION_PSM_PRECO
MPILE

<PSM-precompile-options>
| CONNECT(1),
DATE(LOC), DEC(31),
FLAG(I), HOST(SQL),
LINECOUNT(0),
MARGINS(0), NOSOURCE,
SQLFLAG(STD),
TIME(LOC)

OS/390 only: Specifies precompilation
options for building SQL stored
procedures on a DB2 for OS/390
server

SPOPTION_TEST TRUE | FALSE Specifies whether or not to build the
Java or SQL stored procedure for
debugging

[User-Assista
nce
preferences]

ASSISTANCE_INFOPOPS TRUE | FALSE Specifies whether pop-up help for
interface controls is on or off

ASSISTANCE_BEEPS TRUE | FALSE Specifies whether the system beep for
input constraint violations is on or off

ASSISTANCE_TIPS TRUE| FALSE Specifies whether pop-up information
for fields with constraint checking are
on or off

ASSISTANCE_BORDERS TRUE | FALSE Specifies whether the blue or red
border around constraint checking
fields is on or off

[Output
preferences]

OUTPUT_ALL_COLWIDTH TRUE | FALSE Specifies whether all columns in a
stored procedure result set display

OUTPUT_ALL_ROWS TRUE | FALSE Specifies whether all rows in a stored
procedure result set display

OUTPUT_MAX_COLWIDT
H

<maximum-column-width> |
20

Specifies maximum number of
characters displayed per column in a
stored procedure result

OUTPUT_MAX_ROWS <maximum-row_count> | 10 Specifies maximum number of rows
displayed in a stored procedure result

[Debug
information]

DEBUG_IPADDR <your-IP-address> Specifies IP address of the workstation
on which SPB is installed

DEBUG_PORT <your-port> | 8000 Specifies port number which the
debugger can use to connect to the
client workstation

[Logon
information]

DEFAULT_JDBC_DRIVER app | net | odbc | other Specifies the default driver used to
establish a database connection

DEFAULT_JDBC_DATABA
SE

<database-or-alias> |
<first-alias>

Specifies the name of the database
with which to establish a connection

DEFAULT_JDBC_HOST <host> | <empty> Specifies the host name of the DB2
server

Section Keyname Possible Values Description
The DB2 Stored Procedure Builder 73

DEFAULT_JDBC_PORT <port> | <empty> Specifies the port defined by the DB2
server

DEFAULT_JDBC_URL <connection-URL> |
jdbc:db2:<first-alias>

Specifies the location path of the
database

DEFAULT_JDBC_CLASS <driver-class> |
COM.ibm.db2.jdbc.app.DB2
Driver

Specifies the driver class associated
with the chosen driver

[Data type
preferences]

TYPE_SYNONYM_7 varchar | char varying |
character varying

Specifies default synonym for SQL
data type varchar

TYPE_SYNONYM_6 char | character Specifies default synonym for SQL
data type char

TYPE_SYNONYM_4 double | double precision Specifies default synonym for SQL
data type double

TYPE_SYNONYM_2 decimal | dec | numeric |
num

Specifies default synonym for SQL
data type dec

TYPE_SYNONYM_1 int | integer Specifies default synonym for SQL
data type int

TYPE_CASE INITIAL | UPPER | LOWER Specifies default type case settings for
SQL data type names

TYPE_MAP_STRING 6 | 7 | 8 | 9 | 10 | 11 | 12 | 132 Specifies default SQL type mapped to
the Java type string

TYPE_MAP_STRING_LEN
GTH

<length> | 256 Specifies default SQL type length for
the Java type string

TYPE_MAP_STRING_MAG
NITUDE

B | K | M | G3 Specifies default SQL type unit size for
the Java type string

TYPE_MAP_BYTES 6 | 7 | 8 | 172 Specifies the default SQL type
mapped to the Java type string

TYPE_MAP_BYTES_LENG
TH

<length> | 256 Specifies default SQL type length for
the Java type byte

TYPE_MAP_BYTES_MAG
NITUDE

B | K | M | G3 Specifies default SQL type unit size for
the Java type byte

TYPE_MAP_DECIMAL_PR
ECISION

<precision> | 5 Specifies the default precision for the
SQL type mapped to Java type
decimal

TYPE_MAP_DECIMAL_SC
ALE

<scale> | 0 Specifies the default scale for the SQL
type mapped to Java type decimal

TYPE_MAP_DEFAULT 6 | 7 | 8 | 9 | 10 | 11 | 12 | 132 Specifies default SQL type mapped to
unknown Java and JDBC types (for
SQL written outside of SQL Assistant)

TYPE_MAP_DEFAULT_LE
NGTH

<length> | 256 Specifies default SQL type length

TYPE_MAP_DEFAULT_MA
GNITUDE

B | K | M | G3 Specifies default SQL type unit size

Section Keyname Possible Values Description
74 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

3.3.1 Concepts and terminology
SPB uses some terms to define objects and operations related to the creation
and maintenance of stored procedures. Following are some of the most important
terms associated with SPB objects and operations:

3.3.1.1 Project
When using SPB, you must create a project. A project stores the connection
information to the databases you are accessing and stored procedures sources
that have not been build to the DB2 server. The connections information specified
in the project file is used for all the functions performed by SPB.

3.3.1.2 Create
The create function is associated with the creation of new stored procedures
using the New Stored Procedures SmartGuide. At the end of the creation of the
stored procedure you can choose to generate the stored procedure, or to
generate and build the stored procedure.

3.3.1.3 Generate
The process of generating a new stored procedure is started by the New Stored
Procedures SmartGuide. The generate option creates a base skeleton for your
stored procedure based on the information provided through the SmartGuide.
Note that the generate function runs locally and does not include any information
about the stored procedure on the DB2 server, that is, the source code is
generated in memory.

TYPE_MAP_DEFAULT_PR
ECISION

<precision> | 5 Specifies the default precision for the
SQL type mapped to unknown Java
and JDBC types

TYPE_MAP_DEFAULT_MA
GNITUDE

B | K | M | G3 Specifies default SQL type unit size

TYPE_MAP_DEFAULT_PR
ECISION

<precision> | 5 Specifies the default precision for the
SQL type mapped to unknown Java
and JDBC types

TYPE_MAP_DEFAULT_SC
ALE

<scale> | 0 Specifies the default scale for the SQL
type mapped to unknown Java and
JDBC types

TYPE_MAP_DEFAULT_BIT
DATA

TRUE | FALSE Specifies whether SQL types use the
bit data subtype for character strings

[Editor] EDITOR_TAB_SIZE <width> | 4 Specifies the default tab width in
character spaces

EDITOR_FONT_SIZE <size> | 12 Specifies the default font size in points

EDITOR_LINE_NUMBERS TRUE | FALSE Specifies whether line number display
is on or off

EDITOR_LANGUAGE_PAR
SING

TRUE | FALSE Specifies whether color-coded text is
on or off

Section Keyname Possible Values Description
The DB2 Stored Procedure Builder 75

If the stored procedure is in Java, the Build action compiles the source in local
temporary directories, creates a jar file to contain the executables, and then calls
the sqlj_install.jar() utility to add the jar file to the server. When developing SQL
stored procedures, the source is generated in local memory, and the CREATE
PROCEDURE statement is compiled and processed on the server.

3.3.1.4 Build
The build function is responsible for performing all the tasks necessary to create
and register the stored procedure on the DB2 server. Only when you build the
stored procedure does it become available for use at the DB2 server.

3.3.1.5 Register
Inserting the row for a stored procedure into the DB2 table for stored procedures,
along with the associated parameters of those stored procedures.

3.3.1.6 Run
After building the stored procedure, the SPB allows you to execute the stored
procedure without writing a client program. The run function invokes the stored
procedure on the DB2 server, prompts for parameters, and display the results of
the stored procedure. You can use the run function to execute any stored
procedure registered at the DB2 server, regardless of the language of the stored
procedure.

3.3.1.7 Get Source
Stored procedures written in Java or SQL Procedures language have their source
codes stored at the DB2 server in control tables. When working with SPB, you
can request the stored procedure source code from the DB2 server by using the
get source function.

With DB2 UDB, procedures written in SQL Procedures language always have
their source stored in the DB2 tables, even if they were created outside SPB,
however, Java procedures created outside SPB may not have their sources
stored in the DB2 tables. In this case, if the procedures were registered with
LANGUAGE JAVA and PARAMETER STYLE JAVA, when SPB cannot find the
source code in the DB2 tables, a popup window is displayed and you can
associate a file with the Java procedure source code, and this source code will be
stored by SPB in the DB2 tables.

With DB2 for OS/390, your SQL stored procedures may not have their source
codes in DB2 tables if they were not created using SPB. In this case, when SPB
cannot find the source code in the DB2 tables, a popup window is displayed and
you can associate a file with the SQL stored procedures source code, and this
source code will be stored by SPB in the DB2 tables. The file with the source
code must be downloaded from the mainframe, and has to reside on a disk that
can be accessed by SPB.

3.3.1.8 Modify
Once you have the stored procedures source code available in SPB, you can
change the stored procedure using the stored procedures editor, or the SPB
assistants, such as the SQL Assistant. You can only modify stored procedures
written in Java or SQL Procedures language.
76 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

3.3.1.9 Dirty Procedures
A dirty procedure is indicated in SPB by having its name in bold. A stored
procedure is considered dirty if you have made modifications to the stored
procedures source code that have not been built back to the DB2 server.

3.3.1.10 Database Connection
SPB can be used to develop stored procedures to access many servers. Within a
project, you can have different database connections to the DB2 servers being
accessed.

3.3.2 What are its components?
The SPB has many components to help you create, build, and debug your stored
procedures. The SPB main panel, shown in Figure 20, provides icons and fast
paths to other components.

Figure 20. SPB main panel

Following is a description of the main components of SPB.

3.3.2.1 New Stored Procedure SmartGuide
The New Stored Procedures SmartGuide is a graphical user interface that helps
you to create a new stored procedure written in Java or SQL Procedures
language. The SmartGuide helps you to specify the name, the general pattern for
the source code, the query to run, the SQL data types for the parameters, and the
build options for a new stored procedure.
The DB2 Stored Procedure Builder 77

You can start the New Stored Procedures SmartGuide by clicking on the Insert
Java Procedure icon or the Insert SQL Procedure icon. You can also start the
SmartGuide by right-clicking the entry Stored Procedures, in the tree-view, and
choosing Insert Java Stored Procedure or Insert SQL Stored Procedure.
Figure 21 shows the initial window of the New Stored Procedures SmartGuide.

Figure 21. The New Stored Procedures SmartGuide

The SmartGuide has many features to help you build your stored procedure:

• Field Sensitive Help: You can click on any object in the SmartGuide windows
and press F1. Help information and tips are presented in a yellow box near the
object.

• Smart Fields: Whenever you need to type information in the SmartGuide,
smart input fields will help you. If the border is blue, the field is selected and
contains valid information. If the border turns red, the SmartGuide has found a
problem with your input. When a problem is detected, a grey popup message
appears showing the error. If you press F1, a tip with a possible solution is
displayed.

3.3.2.2 The SQL Assistant
The SQL Assistant is a SmartGuide that steps you through the processing of
creating SQL statements. You can select tables on which to run queries, join
tables, enter conditions and columns, determine how to sort the result, and
display the SQL statement so that you can copy or test the SQL query. In SQL
Assistant, the tables that you can view and build queries from are listed from the
catalog tables of the current database alias.
78 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

The SQL Assistant can be invoked from the editor, or from the New Stored
Procedure SmartGuide dialogs. Figure 22 shows the first window of the SQL
Assistant.

Figure 22. SQL Assistant window

3.3.2.3 Client Configuration Assistant
The DB2 Client Configuration Assistant SmartGuide can be invoked from SPB to
catalog new databases, if necessary. During the creation of a new project or
when inserting a new database connection, if you click on the Create... button
near the database alias pulldown, the Client Configuration Assistant is started.

3.3.2.4 IBM Distributed Debugger
The IBM Distributed Debugger, also referred as VisualAge Remote Debugger, is
the client debugger application running on your workstation that allows you to
remotely debug a stored procedure executing on the server. The client debugger
must be connected to the debugger backend on the DB2 server. You can debug
stored procedures written in Java or SQL Procedures language executing on DB2
servers on Windows NT, AIX, or OS/390. Other platforms will be added in the
future for remote debugging.

3.3.3 Working with SPB projects
SPB manages the work by using projects. A project stores the information about
the databases you are working and also stored procedures that have not yet been
built into the DB2 server. A project can contain many connections to different DB2
databases or servers; each of these databases can contain many stored
procedures. Figure 23 shows the relationships among projects, connections, and
stored procedures.
The DB2 Stored Procedure Builder 79

The SPB does not control concurrent access on a project file and/or stored
procedures. You must be careful when many developers are working with the
same databases, to avoid unintentional destruction of stored procedures or
changes.

Figure 23. SPB projects (*.spp), connections and stored procedures

When SPB starts, it prompts you to either create a new project, or work with an
existing project. The following sections describe how to create and manage SPB
projects.

3.3.3.1 Creating Stored Procedure Builder projects
The first thing you have to do when working with SPB is to specify your project.
You can open an existing project or create a new one. When creating a new
project, you have to provide some initial information about the project, such as
the project name, and the database being accessed. Figure 24 shows the New
Project window used to create a new project.

Project (proj.spp)

Connection 1
Database DB2Aspjdbc1

spsqlj2

spsqlp3

spcobol4

Connection 2
Database DB2B

Stored Procedures
80 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 24. Creating new project "ITSO SG245485"

Note the following items in Figure 24:

1. Project name. This is the name of your new project. The project name can be
up to 256 characters, and can contain any alphanumeric character and the
underscore ’_’ character. If you violate any of these rules, when you click OK,
a popup window with an error message is displayed. SPB will save your
project in a file with extension .spp and the same name as the project. This
.spp file is created in the project path.

2. Project path. The project path defines the location of your project in your
workstation or in a shared disk. By default, the project path points to
x:\sqllib\spb\projects, where x: is the drive on which you have installed DB2
SDK.

3. Driver. Select the appropriate driver for your connection to the database on
which you want to build stored procedures. When you install the DB2 SDK, the
following IBM DB2 drivers are installed on your workstation. When you select
one of these drivers for a new SPB project, the JDBC URL and driver class are
automatically entered for you. In this release of the product, only the following
driver is supported:

• IBM DB2 alias — When the DB2 database to which you want to connect is
defined as an alias in your DB2 database client, select the IBM DB2 alias
driver. When you use the IBM DB2 alias driver, you do not need to enter
the host name and port for the DB2 database in SPB. By default, SPB
selects the IBM DB2 alias driver for a connection. You may also click on the
Create pushbutton; this will invoke the DB2 Client Configuration Assistant,
and allow you to create a new alias to a database.

1 - Creating new project "ITSO SG245485"

2
3

4

5

6

7

The DB2 Stored Procedure Builder 81

4. Alias. Select the database alias you plan to use. You may also click on the
Create pushbutton; this will invoke the DB2 Client Configuration Assistant,
and allow you to create a new alias to a database. After you create your
project, you will be able to insert connections to other databases, in the same
project, by using the Insert Connection dialog.

5. Userid and Password. Type the userid and password for accessing the DB2
server database. For security reasons, even if you specify your password here,
whenever you open your project, you will be prompted for the password to
access remote DB2 servers.

6. Use your current user ID and password check box. Select this if you want to
use the current window userid and password to connect to the DB2 server.

7. Filter. If the database you are connecting to contains a large number of
existing stored procedures and you want to limit the stored procedures
displayed in the tree view, you may click on the Filter... pushbutton. You will
be able to filter the procedures displayed using the name, the schema, or the
collection id (OS/390 only) of the stored procedure.

3.3.3.2 Managing SPB projects
After creating your SPB projects you are ready to start working with SPB. You
may change your project properties such as name and description using the
Project Properties dialog clicking on File --> Project Properties. You cannot
change the path of you project.

When you first create your project, only one database connection is defined. You
may however, define other connections using the Insert Connection dialog. If
you right-click on the connection at any time, you will also be able to delete,
refresh, filter, or change properties of your connections.

A good practice is to refresh your connections periodically to check changes that
other users of the database might have made.

You can save your project at any time you want. If you have made changes to
stored procedures, but have not built them to the database, the changes are
saved with your project, so you can continue working with them later.

Note: Other developers working in different projects with connections to the same
database will not be able to see your changes until you build them to the
database.

3.3.3.3 Sharing SPB projects
The way that SPB currently works is not suitable for a team development
environment. The current version of SPB does not control concurrence in projects
and does not provide check-in/check-out mechanisms, versioning, or any other
feature to control accesses in your project.

Saving a project in a shared disk is possible, and may be helpful when more than
one developer wants to copy a project with changes from another developer.
However, you should not have one project file being used by many developers,
since this may lead to unintentional destruction of changes not built into the
database.

When sharing SPB projects, it is important to have the same database aliases
pointing to the same database servers in all the developers’ workstations.
82 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

3.4 Using the Stored Procedure Builder

The SPB provides you a single development environment for your stored
procedures. You will be able to perform all tasks related to the creation and
maintenance of stored procedures in both DB2 for OS/390 and DB2 UDB servers.
In the future, SPB will also work with DB2 UDB for AS/400, but not in the current
version.

3.4.1 Viewing existing stored procedures
The SPB allows you to view all the stored procedures that are registered in the
DB2 server catalog tables for stored procedures. Regardless of the language in
which the stored procedure was written, you can view the existing procedures
and parameters being passed; however, you can only get the source, modify, or
rebuild existing stored procedures written in SQL Procedures language or Java.

Since only SQL stored procedures and Java stored procedures are mandatory to
be registered in the DB2 UDB catalog, it is possible that you have stored
procedures in other languages that will not be shown, because they were not
registered in the DB2 UDB catalog using the CREATE PROCEDURE statement.

When you create or open an SPB project, all the registered stored procedures in
the defined database connections are displayed in the SPB main window tree
view. Figure 25 shows the tree view of existing stored procedures in SPB.

Figure 25. Tree view of existing stored procedures

Note that in the tree view, the stored procedures are not presented in alphabetical
order, and also, the parameters are not shown. You can easily access detailed
information on the existing stored procedures, such as parameter lists, specific
name, and language, by double-clicking the folder Stored Procedures in the tree
view. A detailed list of the stored procedures, in alphabetical order, is displayed in
The DB2 Stored Procedure Builder 83

the list view part of the SPB main window. Figure 26 shows the detailed view of
the existing registered stored procedures.

Figure 26. Detailed view of existing stored procedures

If you have a large number of registered stored procedures, you can filter the list
of the stored procedures to be displayed. To open the filter dialog, right-click on
the Stored Procedures folder in the tree view, and choose Filter, as shown in
Figure 27.

Figure 27. Filtering the list of stored procedures
84 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

The Filter dialog window is displayed, and you can filter the list of stored
procedures based on the name or the schema of the registered stored
procedures. You can filter using the complete name of the stored procedure or
schema or just a substring of the name or schema. If you are using a substring,
you can choose to list procedures that start or end with the substring, or that
contains the substring. Figure 28 shows the Filter dialog window, and some of
the filter options.

Figure 28. The Filter dialog window

3.4.2 Creating new stored procedures
Using SPB, you can create new stored procedures in the SQL Procedures or Java
languages. The New Stored Procedures SmartGuide helps you in creating the
base skeleton of the stored procedure, so you can later include your business
logic in it. For DB2 for OS/390 servers, SPB can only create new SQL stored
procedures. Support for Java stored procedures for DB2 for OS/390 through SPB
is not yet available.

To invoke the New Stored Procedures SmartGuide to create a new SQL stored
procedure, right click on the Stored Procedures folder, and choose Insert SQL
Stored Procedure, as shown in Figure 29. You can also click on the Insert SQL
Procedure icon in the SPB toolbar.
The DB2 Stored Procedure Builder 85

Figure 29. Creating a new SQL stored procedure

The New Stored Procedures SmartGuide guides you through 5 steps to create
your stored procedure, as follows:

1. Name: In this step, you provide the name of the new stored procedure.

2. Pattern: In this step, you provide the characteristics that describe the pattern
of your stored procedure, such as, if your stored procedure returns a result
set, or if your stored procedure runs a single SQL.

3. SQL Query: In this step, you can type one SQL query to be run by your stored
procedure. If in the Pattern panel, you have chosen Run one query from a
set of queries, you can specify multiple queries in the SQL Query panel.
From the SQL Query panel, you can also invoke the SQL Assistant
SmartGuide to help you build your query, by clicking on the Define SQL
button.

4. Parameters: In this step, you provide the parameters and associated
datatypes being passed to or from your stored procedure. This step is
optional, and if your stored procedures do not expect parameters, you may
skip this panel.

5. Options: In this panel, you specify options for generating the basic skeleton of
you SQL stored procedure, and for building your stored procedure at the DB2
server.

3.4.2.1 The New Stored Procedures SmartGuide
When you start the New Stored Procedures SmartGuide, the Name panel
appears, as shown in Figure 30. In any panel of the SmartGuide, if you position
your mouse cursor on any field, a popup window appears with more information
related to that field. This can be very helpful when you are in doubt of the
meaning of the fields in a specific panel.
86 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 30. The Name panel of the New Stored Procedures SmartGuide

When you are creating a new SQL stored procedure for a DB2 UDB server, the
name of the stored procedure is presented already prefixed with your userid as
the schema name. If you are creating a new SQL stored procedure for a DB2 for
OS/390 server, the name of the stored procedure is not prefixed, and the default
schema SYSPROC is used. If you want, you can type a new entry or change the
schema in the stored procedure name field.

After providing a name to your stored procedure, you can click on the Next
pushbutton. The Pattern panel is displayed, as shown in Figure 31.
The DB2 Stored Procedure Builder 87

Figure 31. The Pattern panel of the New Stored Procedures SmartGuide

The Pattern panel is divided into three sections: Query, Output, and Errors.

The Query section allows you to specify if your stored procedure executes only
one query or a set of queries. If you specify that your stored procedure executes
a set of queries, the SQL Query panel will allow multiple SQL statements to be
defined, and your skeleton source code will include a CASE statement and an
input parameter to select which SQL statement to run. If you specify that your
stored procedure executes a single query, only one SQL statement will be
allowed in the SQL Query panel. However, even if you specify a single query,
after the SQL stored procedure skeleton code is generated, you can modify it to
include other SQL statements required for your stored procedure function.

In fact, usually stored procedures execute more than one SQL statement
throughout the procedure logic. For these cases, you can select the Run a single
query radio button, and later modify your procedure to include the additional
statements.

The Output section allows you to specify if your stored procedure returns a result
set to the calling application. If you select the Return a result set checkbox, a
RESULT SETS 1 parameter is included in the CREATE PROCEDURE statement
for your stored procedure. If your stored procedure returns more than one result
set, you can change the numbers of result sets in the CREATE PROCEDURE
statement manually after the source code generation.

The Errors section allows you to specify how you want your stored procedure to
handle errors. For SQL stored procedures, the first option Generate
SQLEXCEPTION does not generate any code in the source, and if an SQL error
occurs, the stored procedure will be terminated.
88 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

The second option, Output arguments for SQLSTATE and SQLCODE, includes
output parameters and a handler in your SQL stored procedure source code to
provide the client application with the values of SQLSTATE and SQLCODE
variables. SQL stored procedures can return SQLSTATE and SQLCODE
information, but not SQLMESSAGE.

Following is an example of the code generated by this option:

CREATE PROCEDURE DRDARES1.PROC3 (OUT SQLSTATE_OUT char(5),
OUT SQLCODE_OUT int)

SPECIFIC DRDARES1.S1022844
RESULT SETS 1
LANGUAGE SQL

P1: BEGIN
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE INT DEFAULT 0;

DECLARE EXIT HANDLER FOR SQLEXCEPTION

IF (1 = 1) THEN
SET SQLSTATE_OUT = SQLSTATE;
SET SQLCODE_OUT = SQLCODE;

END IF;

END P1

At the time we were writing this book, the above code would only work properly
with DB2 for OS/390 servers. In DB2 UDB, the values of SQLCODE and
SQLSTATE variables are set after every statement, and in the above generated
example, the IF and the SET statements would reset the original SQLCODE and
SQLSTATE values. For more information on handling errors in SQL stored
procedures running on DB2 UDB, refer to Chapter 5, “SQL Procedures for DB2
UDB for UNIX, Windows, OS/2” on page 145.

After choosing your options in the Pattern panel, when you click the Next
pushbutton, the SQL Query panel is displayed, as shown in Figure 32.
The DB2 Stored Procedure Builder 89

Figure 32. The SQL Query panel of the New Stored Procedures SmartGuide

The SQL Query panel allows you to create one or multiple SQL statements to be
included in your SQL stored procedures code. You can type your SQL statement
in the left area of the panel, or you can use the SQL Assistant SmartGuide. The
Define SQL pushbutton invokes the SQL Assistant SmartGuide, that helps you
to create SELECT, INSERT, UPDATE, and DELETE statements through dialogs
that access the DB2 catalog. For more information on the SQL Assistant
SmartGuide, refer to “SQL Assistant” on page 94.

The Actual Costs pushbutton is only available when you are creating an SQL
stored procedure for a DB2 for OS/390 server. After you define your SQL
statement, if you click the Actual Costs pushbutton, the stored procedure
DSNWSPM is invoked at the DB2 for OS/390 server to evaluate the cost of your
SQL statement and the results are presented by SPB.

Click on the Next pushbutton, and the Parameters panel is displayed, as shown
in Figure 33.
90 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 33. The Parameters panel of the New Stored Procedures SmartGuide

In the Parameters panel, you define the parameters that are sent to, or received
from, the SQL stored procedure. If you click on the Add pushbutton, the Define
Parameter dialog is displayed, as shown in Figure 34.

Figure 34. The Define Parameter dialog
The DB2 Stored Procedure Builder 91

In the Define Parameter dialog, you specify the characteristics of your SQL
stored procedure parameters. The parameter mode defines if a parameter is
used as an input, output, or input/output for the stored procedure. In this dialog,
you also define the name and SQL type of the parameter. The length, unit,
precision, and scale fields are requested according to the SQL type of the
parameter. You cannot use user defined datatypes as SQL types for SQL stored
procedures parameters.

The parameters you define in the Parameters panel are included in the
generated CREATE PROCEDURE statement for the SQL stored procedure.
Before generating the code for your SQL stored procedure, you can also change,
delete, or change the order of the parameters in the Parameters panel. After the
code is generated, you can change the definition of your parameters by editing
the CREATE PROCEDURE statement.

After you define your stored procedure parameters, you can click on the Next
pushbutton to go to the last panel of the New Stored Procedures SmartGuide,
the Options panel, as shown in Figure 35.

Figure 35. The Options panel of the New Stored Procedures SmartGuide

The Options panel allows you to specify options for generating and building your
stored procedure. The options available are different for DB2 for OS/390 and DB2
UDB servers.

The Options panel displayed in Figure 35 is for DB2 UDB servers. For DB2 UDB
servers, you may define the specific name of your SQL stored procedure. The
specific name you type in the input field is included in the generated CREATE
PROCEDURE statement.
92 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

In the Completion area of the panel, you can specify if you want to generate the
source code and automatically build the procedure at the DB2 server, or if you
want only to generate the source code. In most cases, you should choose the
Generate only option, to add specific logic to your SQL stored procedure. After
the generation, you will be able to change the SQL stored procedure source to
include your changes, and then build the procedure.

The Build the stored procedure for debugging checkbox should be selected if
you want to use the IBM Distributed Debugger to debug your procedure. When
selected, this option includes an entry in the DB2 UDB debugger table.

The Options panel for DB2 for OS/390 SQL stored procedures allows you to
specify the collection id and load module name for the SQL stored procedure in
entry fields. For DB2 for OS/390, the Options panel also includes an Advanced
options pushbutton. If you click on the Advanced pushbutton, the OS/390
Options window is displayed, as shown in Figure 36 and Figure 37. In this
window, you can specify parameters used during the build process, that are
passed to the DSNTPSMP stored procedure in the mainframe.

Figure 36. The Advanced options for DB2 for OS/390 SQL stored procedures
The DB2 Stored Procedure Builder 93

Figure 37. The Advanced build options for DB2 for OS/390 SQL stored procedures

Note that in the OS/390 Options, you can also specify the name of the stored
procedure to be invoked for the build process in the Build name entry field. By
default, SPB invokes the DSNTPSMP REXX stored procedure, but you can
change this procedure for your installation, and specify the name of your
customized build procedure in the OS/390 options.

3.4.2.2 SQL Assistant
The SQL Assistant is a SmartGuide that steps you through the processing of
creating SQL statements. You can select tables on which to run queries, join
tables, enter conditions and columns, determine how to sort the result, and
display the SQL statement so that you can copy or test the SQL query.

You can invoke the SQL Assistant during the creation of a new stored
procedure, by clicking on the Define SQL pushbutton in the SQL Query panel of
the New Stored Procedures SmartGuide. You can also invoke the SQL
Assistant when modifying your stored procedure by clicking on the Insert SQL
icon from the SPB toolbar.

The SQL Assistant guides you through a series of steps to create your SQL
statement. In the first step, you choose the type of SQL statement being
generated and the tables that are referenced by your statement, as shown in
Figure 38.
94 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 38. The Tables panel of the SQL Assistant

In the Tables panel of the SQL Assistant, you can choose if you want to generate
a SELECT, INSERT, UPDATE, or DELETE statement. However, if you select
more than one table from the list, the SQL Assistant only allows SELECT
statements to be generated. You can refine the list of tables being presented by
using the View schemas and the Filter tables pushbuttons.

After selecting the tables for your SQL statement, the Join panel of the SQL
Assistant is displayed, as shown in Figure 39.
The DB2 Stored Procedure Builder 95

Figure 39. The Join panel of the SQL Assistant

In the Join panel, you can click on the columns on each table that are used to
join the tables to highlight them. After that, you can click on the Join pushbutton
to create the join. By default, an inner join is created, but if you click on the
Options pushbutton, you can change the type of the join being created, as shown
in Figure 40. In the Join properties panel, you can choose if you want to create
an inner join, a left outer join, or a right outer join between the selected tables.

Figure 40. Changing the type of Join created by SQL Assistant

The next panel of the SQL Assistant is the Conditions panel. In this panel you can
specify search conditions that are included in the WHERE clause of your SQL
statement. The Conditions panel is shown in Figure 41.
96 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 41. The Conditions panel of the SQL Assistant

In the Conditions panel, you can include search conditions based in any column
of any of the tables included in your SQL statement. Just select the table you
want to add the condition, click on the column name and operator you want to
highlight them. Then, in the Values section of the panel, type the search value for
your condition. To check the existing values for the column you are defining your
condition, just click on the Find pushbutton below the Values section. If you
want, you can click on the Variables pushbutton to define a variable for your
search condition as shown in Figure 42.

Figure 42. Specifying a variable for a condition

You can define as many conditions as you want. To define new conditions for your
SQL statement, just click on the Find on another column pushbutton.

The next panel of the SQL Assistant is the Columns panel, as shown in Figure
43.
The DB2 Stored Procedure Builder 97

Figure 43. The Columns panel of the SQL Assistant

In the Columns panel, just select the columns of each table that you want to
include in your SQL statement, by highlighting the column name and then clicking
on the Add pushbutton.

After selecting the columns for your SQL statement, you can specify one or more
columns to be used to sort the output of your statement, using the Sort panel, as
shown in Figure 44.
98 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 44. The Sort panel of the SQL Assistant

In the Sort panel, you can select the columns of any of the referenced tables to
be used for sorting the output. The columns you select are included in the
ORDER BY clause of your SQL statement.

The last panel of the SQL Assistant is the SQL panel, as shown in Figure 45.
The DB2 Stored Procedure Builder 99

Figure 45. The SQL panel of the SQL Assistant

The SQL panel displays the generated SQL statement that will be included in
your stored procedure. If you click on the Finish pushbutton, the SQL Assistant
ends and the SQL statement is inserted in the stored procedure source code.
Before closing the SQL Assistant, in the SQL panel you have three pushbuttons
that you can use.

The Copy to clipboard pushbutton copies the generated SQL statement to the
Windows clipboard, so you can paste it in any application that has access to the
Windows clipboard. The Save SQL pushbutton saves the generated SQL
statement to a file in your hard disk. The Run SQL pushbutton allows you to test
the generated SQL statement, before inserting the statement in your SQL stored
procedure code.

If your SQL statement is expecting variables, when you click on the Run SQL
pushbutton, you are prompted to enter the values for the variables, as shown in
Figure 46.
100 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 46. Entering values for variables in the SQL statement

Enter the values for the variables and click on Run SQL pushbutton again. The
results of your SQL statement are displayed as shown in Figure 47. You can copy
these results to the clipboard, or save them to a file if you want. Click on the OK
pushbutton to return to the SQL panel of the SQL Assistant.

Figure 47. Displaying the results of the SQL Statement

3.4.3 Building stored procedures
The process of building a stored procedure is different between DB2 for OS/390
and DB2 UDB servers. SPB handles this difference and builds the stored
procedure according to the DB2 server being accessed.

For DB2 for OS/390 servers, the current version of SPB only supports creation
and building of stored procedures written in the SQL Procedures language. The
build process of SPB, by default, invokes the OS/390 Procedure Processor,
The DB2 Stored Procedure Builder 101

which is a REXX stored procedure (DSNTPSMP), in the mainframe to build the
new or changed stored procedure. You can customize the DSNTPSMP procedure
at the mainframe to better fit the needs of your environment, and change SPB
parameters, so it will invoke your customized procedure instead of the default
DSNTPSMP.

For DB2 UDB (Windows, UNIX), the build process invokes the command
processor of DB2 to build the new or changed procedure.

For DB2 UDB for AS/400, you cannot use SPB, however, if you have an local
database with tables defined with the same structure of your AS/400 database,
you can create the procedure with SPB working with the local database. You can
then, save the stored procedure in a sequential file and upload it to AS/400. The
stored procedure can be built using AS/400 commands with minimum changes.
That was what we did in this project. Refer to Chapter 6, “SQL Procedures for
DB2 UDB for AS/400” on page 169 for detailed information about how to build an
SQL stored procedure for DB2 UDB for AS/400.

In both cases, prior to building the stored procedure, SPB drops the existing
version of the stored procedure on the DB2 server.

The process of building an SQL stored procedure involves the creation of the
executable file and the registration of the stored procedure at the DB2 server.

To create the executable file, both DB2 UDB and DB2 for OS/390 engines
generate an intermediate C source code that is precompiled, compiled, and
linked at the DB2 server. For more information refer to Chapter 4, “SQL
Procedures for DB2 UDB for OS/390” on page 109, Chapter 5, “SQL Procedures
for DB2 UDB for UNIX, Windows, OS/2” on page 145 and Chapter 6, “SQL
Procedures for DB2 UDB for AS/400” on page 169.

3.4.4 Modifying existing stored procedures
Using SPB you can easily modify SQL stored procedures already built in the DB2
for OS/390 or DB2 UDB servers.

To modify an existing stored procedure, double-click on the name of the stored
procedure. SPB gets the SQL stored procedure source from the DB2 server and
opens the edit window, as shown in Figure 48.
102 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 48. Modifying an existing stored procedure

For DB2 UDB servers, the source of the SQL stored procedure is saved in the
SYSIBM.SYSPROCEDURES table, regardless of the method used to create the
procedure. In this case, SPB always find the source code on the DB2 server and
displays it for your modifications.

For DB2 for OS/390 servers, when you create your SQL stored procedure using
SPB, the source code is stored in the SYSIBM.SYSPSM table. However, if you
did not use the SPB to build your procedure, it is possible that the source code is
not stored in the server. In this case, when you try to get the source of your SQL
stored procedure, SPB displays a window prompting you to specify a file, residing
on your workstation, containing the source code.

After the source code is displayed in the edit window, you can type any
modifications you want to your stored procedure. The current version of the SPB
editor does not check the syntax of the statements you are including or changing.
Syntax errors are only detected during the build process of the stored procedure.

Any changes you do to your stored procedure are not included in the DB2 server
until you build it again. While you are changing the SQL stored procedure, the
name of the procedure is shown in bold characters in the tree view part of the
SPB main window. In this case, the procedure is referred as a dirty procedure,
meaning that the code you have in SPB is not the same as in the DB2 server.

If you make changes to your SQL stored procedures, and do not build the
procedure back to the DB2 server, when you close SPB you are prompted to save
your changes locally, so you do not lose any of your modifications. Remember
that other developers will not be able to see your changes until you build them to
the DB2 server, and that SPB does not control concurrent access to the same
SQL stored procedure.
The DB2 Stored Procedure Builder 103

3.4.5 Copying and pasting stored procedures across connections
You can copy your stored procedures from one DB2 server to another. SPB
provides a copy and paste facility to help you copy individual procedures. In
future releases of SPB, an import/export utility for bulk copy of stored procedures
will be available.

To copy one SQL stored procedure to another DB2 server, you can right-click on
the procedure name in the tree view of SPB, and select Copy procedure as
shown in Figure 49.

Figure 49. Copying one SQL stored procedure

When you click on Copy Procedure, SPB gets the source of the stored
procedure from the DB2 server tables, and copies the source to the SPB
clipboard.

To copy the procedure to another DB2 server, in the SPB tree view, right click on
the Stored Procedures folder of the connection to the target DB2 server, as
shown in Figure 50.
104 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 50. Paste the stored procedure at the target server

When pasting the stored procedure at the target server, you have two options. If
you choose Paste Procedure, the procedure is created only in SPB but not on
the target DB2 server. In this case, you can change the stored procedure code
before building it to the DB2 server. If you do not plan to change the stored
procedure, you can select Paste and Build Procedure, that copies the
procedure and builds it to the DB2 server without any changes to the original
source code.

3.4.6 Debugging stored procedures
The DB2 SPB can help you to debug your SQL stored procedures. The IBM
Distributed Debugger is shipped with DB2 SDK, and can be used to debug SQL
stored procedures.

There are a few tasks to perform at both the DB2 server and client workstations.
If you plan to debug your stored procedure, it has to be prepared with parameters
that will trigger the debugging process during the execution of the stored
procedure. The steps to prepare the SQL stored procedure at the DB2 server for
debugging are different for DB2 UDB and DB2 for OS/390 servers. For more
information on how to prepare your DB2 for OS/390 SQL stored procedures for
debugging, refer to 4.6, “Stored procedure debugging” on page 142. For more
information on how to prepare your DB2 UDB for UNIX, Windows, and OS/2 SQL
stored procedures for debugging, refer to 5.6, “Stored procedure debugging” on
page 166.

The client workstation for debugging remote stored procedures must be
executing a Windows NT environment. During our project, we worked with a beta
version of the IBM Distributed Debugger.

The DB2 SPB is not a prerequisite for debugging your SQL stored procedures.
You can debug your SQL stored procedures even if you did not create them with
The DB2 Stored Procedure Builder 105

SPB. The SPB can help you with panels to customize the DB2 server for
debugging, but the process of debugging is independent of SPB. Figure 51 shows
how the debugger process is triggered for stored procedures.

Figure 51. Debugging process

SPB also avoids the need to create a client application to debug your stored
procedure. You can invoke your procedure from SPB and the debugging process
is triggered.

To be able to debug remote stored procedures, you must have the IBM
Distributed Debugger client daemon executing on your workstation. To start the
debugger client daemon, you can issue the following command:

idebug -qdaemon -quiport=8000

The above command starts the debugger client listener in TCP/IP port 8000. In
your DB2 server running the procedure, you need to inform this port and the IP
address of your client machine, so when the stored procedure executes on the
server, the debugger is started in your workstation. Figure 52 shows the IBM
Distributed Debugger daemon window, when waiting for a remote connection.

Figure 52. IBM Distributed Debugger daemon

When your procedure starts in the DB2 server, the debugger code in the server,
sends a message to the debugger client, and the IBM Distributed Debugger main
window is started. Figure 53 shows the IBM Distributed Debugger main window.
106 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 53. IBM Distributed Debugger main window

The IBM Distributed Debugger main window is divided into three main parts: one
containing the source code of your stored procedure, one with monitors, and one
with stacks. On the top of the window, you have controls that allow you to
manage the execution of your procedure, step-by-step if you want.

In the source code part of the main window, an arrow shows the current
statement being executed. Due to the fact that SQL Procedures generates a C
code, during our project with the beta version of the debugger, we had to step
many times to go from one SQL stored procedure statement to the following,
because it was actually stepping on the C code generated. This may change
when the final version is released.

You can also set breakpoints in your source code, indicated by a red dot next to
the line number. To set breakpoints, all you have to do is double-click next to the
line number and the breakpoint is set. You can only set breakpoints in lines that
actually execute some code, so you will not be able to set breakpoints in lines
with comments, for example.

In the monitor part of the main window, you can monitor and change values of
variables and parameters of your stored procedure. To start monitoring the values
of a variable, just click on Monitor -> Add variable to program monitor. The
Monitor Expression window appears and you can type the name of the variable
you want to monitor. Figure 54 shows the Monitor Expression window.
The DB2 Stored Procedure Builder 107

Figure 54. Monitoring variables

Remember that during the generation of the C code your parameters are prefixed
with the procedure name, and your variables declared within a compound
statement are prefixed with the label of the compound statement. You must
remember to type the prefixed name of the variable, or you will not be able to add
the variable to the monitor. In our example, this is the name of the stored
procedure, DEBUG, as typed before the name of the parameter we wanted to
monitor, EMPNUM.

After you have added your variable or parameter to the monitor, you can easily
change the contents of it, by simply double clicking on the name.

With the IBM Distributed Debugger graphical interface, it is very easy to
understand and debug the logic of your stored procedures running in any DB2
server in your network.
108 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Chapter 4. SQL Procedures for DB2 UDB for OS/390

In this chapter, we explain how to code SQL Procedures for DB2 UDB for OS/390
version 5 and version 6 servers. We focus on system requirements and planning,
as well as the rules for writing, preparing, and debugging an SQL Procedures
program. Also, we show how the new tool, Stored Procedure Builder (SPB), can
be used in conjunction with the SQL Procedures support on OS/390.

4.1 General considerations

The SQL Procedures language support on the OS/390 platform has been
implemented for DB2 for OS/390 version 5 and DB2 UDB for OS/390 version 6.

The SQL Procedures support improves the development and usability of stored
procedure, ensures the portability of SQL stored procedures across DB2
platforms, and simplifies migration to DB2 from other environments through the
use of a translation tool (expected to be made available by first quarter of 2000).

There are three main methods, describe in detail in this chapter, for developing of
SQL stored procedures on OS/390:

• Method 1 — Using the Stored Procedure Builder (SPB) tool, which runs on all
current Windows platforms, and later will be made available on UNIX. The
SPB invokes the OS/390 SQL Procedure Processor for building the stored
procedure.

• Method 2 — Using the OS/390 SQL Procedure Processor (DSNTPSMP).

• Method 3 — Using Job Control Language (JCL) or Command List (CLIST).

For most situations, we recommend that you use Method 1, because the SPB tool
helps you in coding, testing and debugging of your stored procedure, thereby
improving the development process (see Chapter 3, “The DB2 Stored Procedure
Builder” on page 57 for more information about the SPB). However, you should
also read the section for each corresponding method and choose the one that fits
best in your environment.

4.2 System requirements and planning

If you already have version 6 already installed, or if you are still using version 5
and are planning to use this new stored procedure programming language, you
need to follow the steps below, which describe the prerequisites for this support.
Otherwise, this support will be provided as part of installing or migrating to
version 6.

4.2.1 Requirements for DB2 for OS/390 Version 5
The trial beta version of the SQL Procedures language support is shipped as a
zip file, sqlproc1.zip, which you can download from:

http://www.software.ibm.com/data/db2/os390/sqlproc
© Copyright IBM Corp. 1999 109

This Web download includes the following software, which you will need to apply
to your OS/390 environment:

• Load modules for SQL Procedures language support

• JCL and SQL samples, including DSNHSQL, used to create your SQL stored
procedures

• A readme file, which contains detailed installation instructions

Once you have done this, you will be able to develop and prepare stored
procedures written in the SQL Procedures language. At this point, the preparation
process for your SQL stored procedures can be done manually, that is, through
JCL, as described in 4.5.3, “Using JCL” on page 136.

If you plan to use the OS/390 Procedure Processor, either directly or through the
SPB, you must download an additional zip file, sqlprocp.zip. This additional zip file
includes the following software:

• PTF for DB2 APAR PQ24199 — Dynamic invocation of the bind

• PTF for DB2 APARs PQ29706 and PQ32467— REXX stored procedure
support

• REXX exec DSNTPSMP — The OS/390 Procedure Processor

• JCL job DSNTIJSQ, which must be manually customized by the user.
Directions are provided in the JCL prologue. This job performs the following:

• Creates and defines the DSNTPSMP stored procedure to DB2 and grants
EXECUTE to PUBLIC.

• Executes the DDL to create the SQL Procedures database, tablespaces,
tables and indexes. See 4.2.4, “Creating non-catalog DB2 tables” on page
112 for details about this database.

• Grants SELECT access to the SQL Procedures tables.

• JCL and samples, including DSNWLMP, which is a sample JCL procedure to
start the WLM-managed stored procedures address space required by
DSNTPSMP. Customize this procedure for your site by following the directions
in the prologue, and then copy it to your system PROCLIB.

• A readme file, which contains detailed instructions.

The REXX language support feature must also be installed if you plan to use the
OS/390 Procedure Processor. The following feature numbers are orderable
through your IBM Representative:

• 5861 for install using 6250 tape

• 5862 for install using 3480 cartridge

• 5275 for install using 4mm DAT

If you plan to use the OS/390 Procedure Processor through the SPB, then you
need to install the SPB product on your PC (see Chapter 3, “The DB2 Stored
Procedure Builder” on page 57). If you want to use the SPB SQL Costing
Information, you need to install the following PTFs on your OS/390 system:

• PTF for DB2 APAR PQ23162

• PTF for DB2 APAR PQ24230
110 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Note: For detailed information about how to install the SQL Procedures code,
refer to the document DB2 for OS/390 Version 5 Preview of SQL Procedures,
available at the following URL (download site):

http://www.software.ibm.com/data/db2/os390/sqlproc

Details will also be available in the readme file that is downloaded with the zip files.

4.2.2 Requirements for DB2 UDB for OS/390 Version 6
The following PTFs must be applied in your environment:

• PTF for DB2 APARs PQ29782 and PQ30467 — SQL Procedures support for
DB2 pre-compiler

• PTF for DB2 APAR PQ24199 — Dynamic invocation of the bind

• PTF for DB2 APAR PQ30219 — REXX stored procedure support

• PTF for DB2 APAR PQ30492 — This includes the following components:

• Modifications to DB2 Install parts in support of SQL Procedures

• JCL and SQL samples

• Jobs to create the SQL Procedures database

• The OS/390 Procedure Processor (DSNTPSMP)

• JCL job DSNTIJSQ, a post-install job that creates objects required for DB2
SQL Procedures. This job must be manually customized by the user.
Directions are provided in the JCL prologue. This job performs the
following:

• Creates and defines the DSNTPSMP stored procedure to DB2 and
grants EXECUTE to PUBLIC.

• Executes the DDL to create the SQL Procedures database,
tablespaces, tables, and indexes. See 4.2.4, “Creating non-catalog DB2
tables” on page 112 for details about this database.

• Grants SELECT access to the SQL Procedures tables.

• Copies JCL procedure DSNHSQL to the system PROCLIB.

• Copies DSNTPSMP to prefix.NEW.SDSNCLST, where the WLM Startup
procedure for DSNTPSMP will expect to find it.

• A sample JCL procedure (DSN8WLMP), which starts the WLM-managed
stored procedures address space required by DSNTPSMP. Customize this
procedure for your site by following the directions in the prologue, and then
copy it to your system PROCLIB.

• The REXX language support feature is a prerequisite for REXX stored
procedure and must also be installed if you plan to use the OS/390 Procedure
Processor.

• PTF for DB2 APAR PQ30439 — External Savepoint support

• PTF for DB2 APAR PQ32670 — Declared Temporary Table support

• PTF for DB2 APARs PQ30684 and PQ30652 — Identity Columns support

• PTF for DB2 APAR PQ24891 - SPB SQL Costing Information
SQL Procedures for DB2 UDB for OS/390 111

Further components will be forthcoming through APARs as they become
available.

Note: For detailed information about how to install the version 6 SQL Procedures
code, refer to the document DB2 UDB for OS/390 Version 6 Preview of SQL
Procedures, available at the URL:

http://www.software.ibm.com/data/db2/os390/spb

4.2.3 Remote Debugger and Debug tool
If you plan to use the Remote Debugger and the Debug tool to debug your stored
procedures (see 4.6, “Stored procedure debugging” on page 142), you need to:

• Apply DB2 PTF APAR PQ30773 (for DB2 version 5 and version 6).

• Install the Remote Debugger on your PC (see 3.4.6, “Debugging stored
procedures” on page 105).

• Install the Debug tool on your OS/390 system.

The beta for the Debug tool code and information can be downloaded from the
following Web site:

http://www.software.ibm.com/ad/c390/cmvsbeta.htm

Following are the requirements to install the Debug tool on your OS/390
system environment:

• TCP/IP version 3.2

• LE/390 base C compile with debug (OS/390 optional feature codes 5962,
5963, 5712).

• 5655-B85 IBM C/C++ Productivity Tools for OS/390 Release 1.

Once you have installed the Debug tool, you have to:

• Apply the PTF for Debug tool APARs PQ27247 and PQ25905, on your
OS/390 system. These PTFs contain additions to the Debug tool for stored
procedure debugging.

4.2.4 Creating non-catalog DB2 tables
The SQL Procedures database DSNDPSM contains the tablespace DSNSPSM,
the three non-catalog DB2 tables SYSIBM.SYSPSM, SYSIBM.SYSPSMOPTS,
and SYSIBM.SYSPSMOUT, and the indexes DSNPSMX1, DSNPSMX2, and
DSNPXMOX1. These are required for the OS/390 Procedures Processor. You do
not need to create these if you are planning to build your SQL stored procedures
using JCL only (see 4.5.3, “Using JCL” on page 136).

This SQL Procedures database is created by:

• For customers using version 5: Running the job DSNTIJSQ when installing
from the sqlprocp.zip download.

This is the site to use to get the trial code for SQL Procedures and the Stored
Procedure Builder:

ftp://ftp.software.ibm.com/software/os390/db2server/fixes/db2apars/

Important:
112 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• For customers installing a new DB2 version 6 system: Running the normal
installation scenario, using the DB2 install CLIST and customized install and
sample jobs.

• For customers migrating to version 6: Running installation job DSNTIJSG.

• For customers who have already installed or migrated to version 6: Running
post-installation job DSNTIJSQ, which is delivered with the PTF for APAR
PQ30492.

4.2.4.1 Creating SYSIBM.SYSPSM
Table 9 shows the definition of SYSIBM.SYSPSM, which stores the unmodified
source code of the SQL stored procedure.

Table 9. SYSIBM.SYSPSM

4.2.4.2 Creating SYSIBM.SYSPSMOPTS
Table 10 shows the definition of SYSIBM.SYSPSMOPTS, which stores the
precompile, compile, prelink, link and bind options.

Table 10. SYSIBM.SYSPSMOPTS

Column name Format(Length) Description Nullable Default

SCHEMA CHAR(8) Owner ID Y Y

PROCEDURENAME CHAR(18) SQL stored procedure
name

N N

SEQNO SMALLINT Used to sequence lines for
SQL stored procedure
source code greater than
3800 characters

N N

PSMDATE DATE Creation date N N

PSMTIME TIME Creation time N N

PROCCREATESTMT VARCHAR(3800) SQL stored procedure
source

N N

Column name Format(Length) Description Nullable Default

SCHEMA CHAR(8) Owner ID Y Y

PROCEDURENAME CHAR(18) SQL stored procedure
name

N N

BUILDSCHEMA CHAR(8) Owner ID of build module.
Usually SYSPROC

Y Y

BUILDNAME CHAR(18) Build module name. Usually
DSNTPSMP.

Y Y

BUILDOWNER CHAR(8) Builder ID of SQL stored
procedure (current SQLID)

Y Y

PRECOMPILE_OPTS VARCHAR(255) Precompile options Y Y

COMPILE_OPTS VARCHAR(255) Compile options Y Y

PRELINK_OPTS VARCHAR(255) Prelink options Y Y

LINK_OPTS VARCHAR(255) Link options Y Y
SQL Procedures for DB2 UDB for OS/390 113

4.2.4.3 Creating SYSIBM.SYSPSMOUT
Table 11 shows the definition of SYSIBM.SYSPSMOUT, which is a global
temporary table for DSNTPSMP.

Table 11. SYSIBM.SYSPSMOUT

Refer to 4.4, “Stored procedure preparation” on page 118 for details about how
these tables are updated.

4.2.5 WLM requirements for OS/390 Procedure Processor
The OS/390 Procedure processor (DSNTPSMP) should be set up in a WLM
environment of its own. It is recommended that no other stored procedure should
be defined to this environment. The OS/390 Procedure Processor requires that
the NUMTCB in the WLM managed region be 1, which means that only one
instance of DSNTPSMP will be able to execute in its own WLM environment at
any time.

The main consequence is that only one SQL stored procedure can be built in
each WLM environment at one time, but it is possible to have more than one
WLM environment, each running its own version of DSNTPSMP. See Figure 55.

Figure 55. Multiple WLM environments

See 4.5, “Setting up DSNTPSMP” on page 120 for more details on how to set up
the OS/390 Procedure Processor.

BIND_OPTS VARCHAR(1024) Bind options Y Y

SOURCEDSN VARCHAR(255) Data set name of SQL
stored procedure source
code

Y Y

Column name Format(Length) Nullable Default

STEP VARCHAR(16) Y Y

FILE VARCHAR(8) Y Y

SEQN INTEGER Y Y

LINE VARCHAR(255) Y Y

Column name Format(Length) Description Nullable Default

W L M 1
runn ing

D SN T P SM P
N U M T C B= 1

W LM 2
runn ing

D S N T PSM P
N U M T C B =1

W LM 3
run n ing

D SN T PS M P
N U M T C B =1

.......
114 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

4.3 Coding considerations

In this section we document some of the issues that we found while creating SQL
stored procedures on the OS/390 platform.

4.3.1 Length and size limits
The size of your SQL stored procedure code is limited to 32K. Note that if you are
using DSNTPSMP, the tables SYSIBM.SYSPSM, SYSIBM.SYSPSMPOPTS, and
SYSIBM.SYSPSMOUT will be updated. Although the field PROCCREATESTMT
in SYSIBM.SYSPSM, which contains the source code, is limited to 3800
characters, DSNTPSMP will break up your source into 3800 character "chunks"
and use the SEQNO field to sequence these lines to keep the order of your
source code.

When creating your SQL stored procedure using the SPB, the width of your
statements must be limited to 72 bytes. Although the edit screen in SPB is wider
than this, the DB2 pre-compiler will only read a width of 72 bytes.

The name of the SQL stored procedure can be a maximum of 18 characters, but
due to OS/390 limitations, the member name created at the DBRMLIB, LOADLIB,
and other libraries is limited to 8 bytes. If you are creating your SQL stored
procedure through the SPB or calling the OS/390 Procedure Processor directly,
and your procedure name is longer than 8 characters, DSNTPMSP will generate
an 8-character name for you, consisting of the characters "SP" followed by 6
random alphameric characters. We recommend that the first 8 characters be
unique within one project, and that you limit your procedure name to 8 characters
when building it, using the JCL batch job.

4.3.2 Parameters and variables
To store data used within an SQL stored procedure, you can declare SQL
variables. SQL variables can have the same data types and lengths as SQL
stored procedures parameters.

SQL stored procedures parameters and variables have the following restrictions:

• Since the precompiler folds all SQL variables to uppercase, two variables
cannot be declared the same except for their case. For example, variables
VAR1 and var1 declared in the same SQL stored procedure will receive a
compile error.

• Variable and parameter names cannot be the same name. The following error
message is issued:

DSNH590I Name <name> is not unique

• An SQL reserved word cannot be used as a parameter or variable.

• Do not precede the variable name with a colon.

• In version 5, parameters cannot contain underscores (in version 6 this
restriction is removed).

Currently, this restriction is not picked up by the compiler; you will only see the
error message when the START PROCEDURE command is issued. For
example:

STC00044 DSNX904E . DSNX9CAT THE NAME DEPT_NUM IN THE PARMLIST
SQL Procedures for DB2 UDB for OS/390 115

FOR PROCEDURE
GETMEDIANSALARY CONTAINS AN INVALID CHARACTER. REASON CODE IS 000.
STC00044 DSNX948I . DSNX9ST2 START PROCEDURE FAILED FOR *, DUE
TO PREVIOUSLY
REPORTED ERROR CONDITION

• In version 5, parameter names must be 8 bytes or less (in version 6 this
restriction is removed).

Currently, this restriction is not picked up by the compiler; you will only see the
error message when the START PROCEDURE command is issued. For
example:

STC00044 DSNX903E . DSNX9CAT THE NAME MEDIANSALARY IN THE
PARMLIST COLUMN OF
SYSIBM.SYSPROCEDURES FOR PROCEDURE GETMEDIANSALARY IS TOO LONG.
STC00044 DSNX948I . DSNX9ST2 START PROCEDURE FAILED FOR *, DUE
TO PREVIOUSLY
REPORTED ERROR CONDITION

The following items should be qualified to avoid ambiguity and also prevent
compilation or bind errors:

• When using a parameter in the procedure body, qualify the parameter name
with the procedure name.

• Qualify variable names with the label of the compound statement in which the
variables appear.

• Qualify column names with the table name. For example:

SELECT STAFF.ID INTO V_ID
FROM DB2RES1.STAFF WHERE STAFF.ID = V_ID;

• A parameter name can be the same as a column name, but the column name
must be qualified with the table name.

• If you qualify a parameter with a misspelled procedure name, the following
error message is issued:

DSNH312I Undefined or unusable host variable

This is also true of variables qualified with misspelled label names.

In version 5, although the maximum length of the parameter list (PARMLIST)
column is defined as 3000 in SYSIBM.SYSPROCEDURES, you are limited to a
maximum of 254 bytes, because when your SQL stored procedure is defined to
DB2, it issues an INSERT statement containing a literal to update the
SYSIBM.SYSPROCEDURES table. You will receive an SQLCODE -102 if the
literal string to be inserted to PARMLIST is longer than 254. This limitation does
not apply when using a host variable.

In version 6, the previous limitation does not apply, because a DDL CREATE
PROCEDURE statement is executed to define your SQL stored procedure to
DB2.

If you are planning to use the SPB to test your SQL stored procedures, we
recommend that you prefix any table referenced in your SQL stored procedure
code with the owner ID. Otherwise, the owner of the OS/390 Procedure
Processor, which is a REXX stored procedure, will be assumed as the owner of
the tables.
116 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

4.3.3 Handling SQLCODE and SQLSTATE values
The sample A.2.19, “SMP7LMS” on page 207 of Appendix A, “Sample SQL stored
procedure programs” on page 195 shows how the SQLCODE and SQLSTATE values
can be captured and handled in an SQL stored procedure. But it is important to be
aware of the following warning when trying to capture BOTH the SQLCODE and
SQLSTATE values:

4.3.4 SQL statements
To define your SQL stored procedure to DB2 in version 5, an INSERT DML
statement is made to SYSIBM.SYSPROCEDURES. This INSERT statement is
created for you from the SQL Procedures pre-compiler in ddname SYSUT1. In
version 6 this is kept as a CREATE PROCEDURE DDL statement and will be
generated for you from the SQL Procedures precompiler in ddname SYSUT2.

If you are building your SQL stored procedure through JCL, you need to execute
this generated statement through DSNTIAD to define your SQL stored procedure
to DB2. If you are using the SPB or calling DSNTPSMP directly, this will be
automatically executed for you.

Currently, in SQL Procedures for OS/390, you can have only one compound
statement (see 2.4, “Current implementation of SQL Procedures language” on
page 17). But you can overcome this limitation by coding all the compound
statements within a single simple statement, for example in a LOOP or IF
statement. The example below shows that the compound statements test and
test2 are contained within the loop1 loop statement:

CREATE PROCEDURE spmd0211
(INOUT ps1 SMALLINT, inout ps2 smallint,inout pc1 char(20))
LANGUAGE SQL
WLM ENVIRONMENT WLMENV1
COLLID CLMD02

loop1: loop
test: BEGIN

DECLARE i1 INT;
DECLARE p1 DOUBLE PRECISION;
...
delete from tsttab11

where num = test.n2;
end if;
set spmd0211.ps1 = spmd0211.ps1 + 10; -- ps1 is 80

end test;
test2: begin

Since a SET statement is an SQL statement, the SQLCODE and SQLSTATE
are set to the values returned by the SELECT generated under-the-covers for
the SET statement. So, in the example A.2.19, “SMP7LMS” on page 207, when
you say SET PSQLST = SQLSTATE, it will set PSQLST to the SQLSTATE
returned by the previously-executed statement, which is what you would
expect. However, when you follow that with SET PSQLCO = SQLCODE, it will
set PSQLCO to the SQLCODE returned by the SET PSQLST = SQLSTATE,
which will be most certainly zero. You will not get the SQLCODE you expect,
that is, from the statement executed just before the handler was invoked.

Important:
SQL Procedures for DB2 UDB for OS/390 117

DECLARE s1 smallINT default 0;
DECLARE c1, c2 CHAR (5);
..
close cursor1;
set spmd0211.ps2 = test2.s1;

END test2;
leave loop1;

end loop

This method can also be used within handlers which cannot currently support
nested compound statements. For example, you can have a block of statements
by using the IF statement as below:

DECLARE CONTINUE HANDLER FOR NOT FOUND
IF (1=1) THEN
SET ENDTABLE = 1;
SET OUTCODE = SQLCODE;

END IF;

4.3.5 Client application
No major change is needed in the way the client application is coded, or the way
it calls a stored procedure written with the SQL Procedures programming
language.

Note: Following the SQL/PSM standard, DB2 supports only the parameter style
GENERAL WITH NULLS linkage convention for SQL stored procedures. This
means that you should include a null indicator variable for each of the parameters
that will be returned from the SQL stored procedure. Refer for DB2 for OS/390 V5
Application Programming and SQL Guide, SC26-8958, or DB2 UDB for OS/390
V6 Application Programming and SQL Guide, SC26-9004, for detailed
information about linkage conventions.

4.4 Stored procedure preparation

There are three methods available for preparing a stored procedure written in
SQL Procedures language as shown in Figure 56:

1. The Stored Procedure Builder (SPB) Tool, which invokes the OS/390
Procedure Processor, can be used to build your SQL stored procedures.

2. The OS/390 Procedure Processor, called DSNTPSMP, can be used to build
your SQL stored procedures.

3. All steps required to build an SQL stored procedure can be run using JCL. You
can use the DB2-supplied JCL procedure (DSNHSQL). The option to compile
using the DB2 Interactive (DB2I) panels will be available from version 6.
118 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 56. Three methods for preparing SQL stored procedures

4.4.1 Process
The process involved in the creation of the SQL stored procedure is as follows:

1. The user creates the SQL stored procedures source (either manually or
through prompted help via the SPB).

2. The source is then precompiled resulting in a C language program complete
with SQL and logic.

3. The generated C program is then precompiled by the normal DB2 precompiler
(DSNHPC) as per any other program using parameter of HOST(C).

4. The modified C source is then compiled and linkedited

5. The DBRM is bound.

6. The following tables might be updated when an SQL stored procedure is
created successfully:

• SYSIBM.SYSPROCEDURES (in version 5) or SYSIBM.SYSROUTINES
and SYSIBM.SYSPARMS (in version 6)

• SYSIBM.SYSPSM

• SYSIBM.SYSPSMOPTS

• SYSIBM.SYSPSMOUT

Note: If you are using Method 1 or 2, a DML INSERT statement to populate
the SYSIBM.SYSPROCEDURES (if against DB2 version 5), or a DDL
CREATE PROCEDURE statement (against DB2 version 6), will be

normal precompile

compile

prelink

bind

SQL Precompile

link

3
21

update DB2 tables

SPB Using JCL
OS/390

Procedures
Processo
SQL Procedures for DB2 UDB for OS/390 119

automatically executed for you. But if you are using Method 3, you need to
execute these statements to define the procedure to DB2.

4.4.2 Authorization
The authorization needed to build SQL stored procedures in DB2 version 5 differs
from that in version 6. In version 5, there is no explicit security for stored
procedures, because they are not recognized as DB2 resources or objects, as
they are in version 6.

The authorization used for DB2 when generating and binding the SQL stored
procedure is the current SQLID or submitter of the job.

The extra privileges needed by the person requesting the build of the SQL stored
procedure in version 5 and version 6 are:

• DB2 version 5 — SELECT, DELETE and INSERT from tables
SYSIBM.SYSPROCEDURES, SYSIBM.SYSPSM, SYSIBM.SYSPSMOPTS,
and SYSIBM.SYSPSMOUT.

• DB2 version 6 — CREATEIN, DROPIN or ALTERIN to the SCHEMA name
under which you will be creating your SQL stored procedure.

• DB2 version 6 — (if using SPB or DSNTPSMP), you need EXECUTE ON
PROCEDURE DSNTPSMP.

• Alternatively, you need SYSADM or SYSCTRL authority.

The normal privileges are needed to bind to the collection being used for your
SQL stored procedure and any privileges to tables referenced in your SQL stored
procedure.

Please also note that update access needs to be given on the datasets
referenced in the WLM region, to the userid running the WLM.

4.5 Setting up DSNTPSMP

Since the OS/390 Procedure Processor itself is a stored procedure, it is
associated with a particular WLM environment. The JCL to run this WLM
environment is, therefore, set up with ddnames referencing a single set of
application libraries.

The DSNTPSMP is written using REXX, and it was designed to attend customers
in general. When you install the SQL Procedures support, you get the source
code of the DSNTPSMP, which can be customized to a specific environment.

In addition, you might want the processor to be able to use more than one WLM
environment, so that a different set of libraries can be referenced. You might do
this if, for example, you are building SQL stored procedures for different projects,
or if you want to set up different environments for test and production, or even if
you just want to be able to test in a WLM environment without affecting or being
affected by other people who may be testing.

To be able to set up your environment so that DSNTPSMP can be used in more
than one WLM environment, you need to do the following:

• Define a new stored procedure based on the existing DSNTPSMP, but:
120 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• Use a different procedure name.

• Use a different WLM environment.

Here is an example of defining a new OS/390 Procedure Processor called
NEWTPSMP to use a WLM region called WLMENV2:

(version 5)

INSERT INTO SYSIBM.SYSPROCEDURES
VALUES('NEWTPSMP',

' ',
' ',
'DSNTPSMP',
' ',
'DSNREXCS',
'REXX',
0,
' ',
'N',
'TRAP(OFF),MSGFILE(SYSPRINT)',
'VARCHAR(20) IN, VARCHAR(18) IN, VARCHAR(32672) IN, VARCHAR(10

24) IN, VARCHAR(255) IN, VARCHAR(255) IN, VARCHAR(255) IN, VARCHAR(255)
IN, VARCHAR(254) IN, VARCHAR(80) IN, VARCHAR(8) IN, VARCHAR(18) IN, VARC
HAR(255) OUT',

1,
'WLMENV2', 'M','N','N');

(version 6)

CREATE PROCEDURE NEWTPSMP
(IN P1 VARCHAR(20),
IN P2 VARCHAR(8),
IN P3 VARCHAR(32672),
IN P4 VARCHAR(255),
IN P5 VARCHAR(255),
IN P6 VARCHAR(255),
IN P7 VARCHAR(255),
IN P8 VARCHAR(255),
IN P9 VARCHAR(254),
IN P10 VARCHAR(80),
OUT P11 VARCHAR(255))

EXTERNAL NAME DSNREXCS
PARAMETER STYLE GENERAL
WLM ENVIRONMENT WLMENV2
PROGRAM TYPE MAIN
LANGUAGE REXX
RESULT SETS 1
RUN OPTIONS 'TRAP(OFF),MSGFILE(SYSPRINT)';

• Note that the other definitions should be the same as what was originally
defined for DSNTPSMP.

• Register the new WLM environment.

• Set up the JCL for the WLM started task JCL to reference the other set of
libraries.

To make the SPB recognize this new procedure name for the DSNTPSMP, you
have to change the Build utility field. This field is located from the "Advanced"
button from the "Options" tab when building SQL Procedures for the OS/390
environment. It is also available from the Properties option when you click on the
SQL Procedures for DB2 UDB for OS/390 121

procedure with the right mouse button. See Figure 57 for an example where we
changed the Build utility to NEWTPSMP.

Figure 57. Build Name field on OS/390 Options

When you generate and build this new SQL stored procedure using NEWTPSMP,
the dbrm, load, and source modules will be placed in the data sets referenced by
the ddnames in the WLM environment associated with NEWTPSMP.

If you are building your SQL stored procedure by calling the procedure processor
directly, it is just a simple matter of changing the called procedure name from
DSNTPSMP to NEWTPSMP.

4.5.1 Using the SPB
The easiest method of creating, generating, and testing your SQL stored
procedure is to use the Stored Procedure Builder Tool. Only the OS/390 related
options will be discussed here. See Chapter 3, “The DB2 Stored Procedure
Builder” on page 57 for a general description of using the SPB to build your SQL
stored procedure.

The OS/390 Options screen is available from the Advanced button on the Options
tab when using the SmartGuide to create your SQL stored procedure. See Figure
58 and Figure 59. It is also available from the Properties option when you
right-click on your procedure name.
122 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 58. OS/390 Options from SPB — 1/2

Figure 59. OS/390 Options from SPB — 2/2
SQL Procedures for DB2 UDB for OS/390 123

You specify on this panel the options that will be used when SPB builds your
procedure.

The Build utility name needs to be changed if you are running the OS/390
Procedure processor in multiple WLM environments. See 4.5, “Setting up
DSNTPSMP” on page 120 for more details about this.

Once you have successfully generated and built your SQL stored procedure, you
can then choose to test it by clicking the Run button from the main panel.

4.5.1.1 SQL costing information
The SPB tool allows you to measure the costing of the SQL statements in your
SQL stored procedure. This functionality is only available for the OS/390
environment.

From the SPB tool, click on the Actual Costs button to get the costs of running the
SQL stored procedure against the OS/390 environment. This button is located on
the SQL Query tab when generating your SQL stored procedure using the
SmartGuide. For this release of the SPB, the actual costs will only be calculated
for the whole SQL stored procedure, but in future releases you will be able to get
the cost of each SQL statement by highlighting it.

The SPB calls the stored procedure monitor program DSNWSPM which starts the
monitor trace and formats the output. From the output you can then view and sort
by different columns. Note that the first time this is called, the number of
GETPAGEs is higher because the module needs to be loaded into the buffer.

Stored procedure monitor program
The stored procedure monitor program DSNWSPM (which itself is an assembler
stored procedure) returns CPU time and other DB2 costing information for the
thread on which it is running. A client program can connect to DB2 on OS/390,
execute SQL and then call DSNWSPM to find out how much CPU time it took.

DSNWSPM works on either a local or remote thread.

The instrumentation values that DSNWSPM provides are:

• CPU time in external format

• Latch/lock contention wait time, external format

• CPU time as an integer in hundredths of a second

• Latch/lock contention wait time

• Number of GETPAGEs in integer format

• Number of read I/Os in integer format

• Number of write I/Os in integer format

Figure 60 shows an output of the SQL Procedures monitor program. You can sort
the information shown by clicking on the columns. Additionally, if you place your
mouse pointer over any SQL statement, it will be expanded for you.
124 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 60. SQL Costing Information panel

Setup and security
An accounting trace needs to be started on the host for this option to be
successfully executed. The command to start the accounting trace is:

start trace(acctg) class(1,2,3)

The monitor trace also has to be on, but DSNWSPM starts that internally.

The authority you need to execute the stored procedure is:

• For version 5: MONITOR1 and TRACE

• For version 6: MONITOR1, TRACE, and EXECUTE ON PROCEDURE

For example, to allow USRT011 to execute DSNWSPM on version 6:

GRANT TRACE TO USRT011;

GRANT MONITOR1 TO USRT011;

GRANT EXECUTE ON PROCEDURE SYSPROC.DSNWSPM TO USRT011;

Invoking the stored procedure monitor program (DSNWSPM)
You can call DSNWSPM in two ways:

1. Before and after executing the SQL

2. Only after executing the SQL

The preferred way to use DSNWSPM is the first method, because the time values
are more accurate, as they are the delta values between beginning and ending
time. If you call DSNWSPM using the second method, after executing the SQL
only, the beginning CPU time returned to you will include the thread setup time,
and may include the times for SQL that you have previously executed on the
same thread.

4.5.2 Using OS/390 Procedure Processor (DSNTPSMP)
After coding the SQL stored procedure you can choose to prepare it using the
OS/390 Procedure Processor (method 2). The processor automates and
performs all the steps required to generate and build your SQL stored procedure.

The way to do this is to code a client program (coded in any language), which
invokes the OS/390 Procedure Processor. The processor (DSNTPSMP) itself is a
stored procedure which has input and output parameters. You pass to it the
function that you wish performed on your SQL stored procedure source. The
functions are: Build, Destroy, Rebuild, Rebind and Alter LE Run Options (see
4.5.2.4, “DSNTPSMP functions” on page 129).
SQL Procedures for DB2 UDB for OS/390 125

Using this method, your client program will invoke DSNTPSMP and pass to it the
parameters which it needs to completely build your stored procedure.

One of the reasons for coding a client program rather than using the SPB Tool is
that the project administrator or DBA might wish to standardize the bind, link, or
compile options within a project. One way of doing this is to only allow the
programmer to pass a few parameters, for example: function, SQL stored

procedure name, SQL stored procedure source. The other options can then be
hardcoded in your client program and therefore "hidden" from the SQL stored
procedure developer. See 4.5.2.5, “Example of a client program” on page 131 for
a sample client program written in PL/1, which does this.

Figure 61 shows the input and output to DSNTPSMP. The WLM environment
defined to be used by DSNTPSMP must be available before you call DSNTPSMP.

Figure 61. Input / Output for SQL Procedures Processor

4.5.2.1 Input parameters for DSNTPSMP
The parameters passed to DSNTPSMP must be in this order:

1. Function: The action that you want DSNTPSMP to perform on your SQL
stored procedure. See 4.5.2.4, “DSNTPSMP functions” on page 129 for a
description of each function.

DSNTPSMP

Datasets referenced in WLM DB2 tables
updated

Procedure Name

Source Code

Bind Options

Compiler Options

Link Options

Input Dataset

Build Schema

LE Runtime Options

Prelink OptionsFunction

Precompiler Opts Build Name

1

12

11

10

9

8

7

6

5

4

3

2

Input Parameters

D

CA B

Result Set

Output
string
126 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

2. Procedure Name: The name of your SQL stored procedure (maximum 18
characters). This needs to be the same as the name you specify in your
CREATE PROCEDURE statement. In version 6, the procedure name can be up
to 27 characters (8-byte schema, 1-byte dot, 18-byte routine name).

3. Source Code: The SQL stored procedure source code. This is not needed if
you pass the source via an Input File data set. But if both parameters are
passed, source will be taken from this parameter in preference to source from
the data set. In version 6, source code passed in as a parameter can be 32K. If
using a dataset for the input, there is no limit.

4. Bind Options: The options with which you wish to bind your SQL stored
procedure package. The maximum length is 1024 characters.

5. Compiler Options: The options which you want to pass for use in compiling
your SQL stored procedure module, for example, TEST/NOTEST. The
maximum length is 255 characters.

6. Precompiler Options: The options to be used during pre-compilation of your
SQL stored procedure. Maximum length is 255 characters.

7. Prelink Options: The options to be used to pre-link your module. Maximum
length is 255 characters.

8. Link Options: The options passed to the linkage editor. Maximum length is
255 characters.

9. LE Runtime Options: The options to be passed to the Language Environment
for execution of your module. Input passed here will be ignored for other
functions. The maximum length is 254 characters.

10.Input Dataset: The data set containing the SQL stored procedure source
code. If you pass this parameter, then you do not need to pass the source in
the Source Code parameter. But if both parameters are passed, the source in
the Source Code parameter is used in preference.

11.Build Schema: This contains the schema name for the procedure name you
pass in the Build Name (parameter 12). Usually this is SYSPROC for version
5, and could be any name in version 6.

12.Build Name: A name for the OS/390 Procedures Processor, usually
DSNTPSMP. The maximum length is 18 characters.

4.5.2.2 DDNAMES used by DSNTPSMP on WLM
The DDNAMES for the permanent datasets referenced on the WLM region that
are used by DSNTPSMP are described here. They are used for both input and
output:

• SQLDBRM — Your SQL stored procedure DBRM module

• SQLCSRC — Your SQL stored procedure precompiled C source code
generated by DSNTPSMP

• SQLLMOD — SQL stored procedure generated load module

• SQLLIBC — Language C header files

• SQLLIBL — Link libraries, run libraries, DB2 load libraries

• SYSMSGS — SCEEMSG "C" messages library for prelinker

Other ddnames are also used, but permanent datasets do not need to be
allocated to them.
SQL Procedures for DB2 UDB for OS/390 127

Following is part of the JCL used in our WLM environment, which was set up for
executing DSNTPSMP, showing the relevant ddnames :

//**
//**** Data sets required by the SQL Procedures Processor ****
//**
//SQLDBRM DD DISP=SHR, <== DBRM Library
// DSN=DSN.DBRMLIB.DATA
//SQLCSRC DD DISP=SHR, <== Generated C Source
// DSN=DSN.SRCLIB.DATA
//SQLLMOD DD DISP=SHR, <== Application Loadlib
// DSN=DSN.RUNLIB.LOAD
//SQLLIBC DD DISP=SHR, <== C header files
// DSN=CEE.SCEEH.H
// DD DISP=SHR,
// DSN=CEE.SCEEH.SYS.H
//SQLLIBL DD DISP=SHR, <== Linkedit includes
// DSN=CEE.SCEELKED
// DD DISP=SHR,
// DSN=DSN.SDSNLOAD
//SYSMSGS DD DISP=SHR, <== Prelinker msg file
// DSN=CEE.SCEEMSGP(EDCPMSGE)
//**
//**** Workfiles required by the SQL Procedures Processor ****
//**
//SQLSRC DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=FB,LRECL=80)
//SQLPRINT DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=VB,LRECL=137)
//SQLTERM DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=VB,LRECL=137)
//SQLOUT DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=VB,LRECL=137)
//SQLCPRT DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=VB,LRECL=137)
//SQLUT1 DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=FB,LRECL=80)
//SQLUT2 DD UNIT=SYSDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=FB,LRECL=80)
//SQLCIN DD UNIT=SYSDA,SPACE=(32000,(20,20))
//SQLLIN DD UNIT=SYSDA,SPACE=(8000,(30,30)),
// DCB=(RECFM=FB,LRECL=80)
//SQLWORK1 DD UNIT=SYSDA,SPACE=(16000,(20,20)), <= Work C source
// DCB=(RECFM=FB,LRECL=80)
//SQLWORK2 DD UNIT=SYSDA,SPACE=(16000,(20,20)), <= Work LOADMOD
// DCB=(RECFM=U)
//SYSMOD DD UNIT=SYSDA,SPACE=(16000,(20,20)), <= PRELINKER
// DCB=(RECFM=FB,LRECL=80

4.5.2.3 Output parameters of DSNTPSMP
Depending on whether your SQL stored procedure was successfully generated,
the output from your call to DSNTPSMP will be as follows:

• If your SQL stored procedure was successfully generated, the DBRM and load
module members are placed into the data sets referenced by the ddnames on
the WLM started task JCL. See "A" in Figure 61 on page 126.
128 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• If your SQL stored procedure was successfully generated, the caller of
DSNTPSMP (which might be SPB or your own client) must commit the
changes made to the DB2 tables. See "B" in Figure 61 on page 126. If there
are any problems found by DSNTPSMP, and rows are returned in the result
set, the caller must issue a ROLLBACK.

• When an unrecoverable error was received, DSNTPSMP will store all
diagnostic information into a temporary table and return these as a result set
to the calling application (SPB Tool or your own) indicating the failing step and
a return code. See "C" in Figure 61 on page 126. You need to code the normal
result set processing to process the messages received. For example:

• DESCRIBE PROCEDURE

• ASSOCIATE LOCATORS

• ALLOCATE CURSOR

• DESCRIBE CURSOR

See 4.5.2.5, “Example of a client program” on page 131 for a sample
written in PL/1.

• Output received via the Output String (outstring) parameter. This contains the
results of your call to DSNTPSMP. You should pass an output parameter
(empty variable) of length 255 when you invoke DSNTPSMP. The outstring
parameter returns with zero condition code or error messages (see "D" in
Figure 61 on page 126). For the time being, the outstring returned is only an
integer such as 0, 4, 8, and 999. No text is returned. This may be enhanced in
the future. Below, the text after the = sign is an explanation or programmer
action:

outstring: 0 = successful operation

4 = successful operation with warnings, look at result set

8 or higher = failure, look at result set

999 = severe internal error look at result set

Note: If you are using DSNTPSMP directly, the input source string should be
broken up into lines of code <=80 , with the separating character being an
EBCDIC newline ('15'x) or linefeed ('25'x).

4.5.2.4 DSNTPSMP functions
Following are the functions performed by the OS/390 Procedure Processor:

• BUILD

This function goes through all the necessary steps for preparing an SQL
stored procedure. The build process will terminate if the build is requested for
an SQL stored procedure which already exists:

MEDSALRY already exists in SQLDBRM.

Figure 62 shows the steps executed in a BUILD process. Given the SQL
stored procedure source as input:

1. DSNTPSMP defines the SQL stored procedure to DB2 by updating the
DB2 tables SYSIBM.SYSPROCEDURES (v5) or SYSIBM.SYSROUTINES
and SYSIBM.SYSPARMS (v6). The unmodified SQL stored procedure
source is stored in the SYSIBM.SYSPSM table, and the process options
are stored in SYSIBM.SYSPSMOPTS.
SQL Procedures for DB2 UDB for OS/390 129

2. For DB2 version 5, the SQL Procedures pre-compiler is invoked to
translate the source to a C host language stored procedure with embedded
SQL.

3. A "normal" precompile is then done to produce a DBRM and a modified
source.

4. A bind is done to create a stored procedure package.

5. The modified source is compiled with the C compiler, pre-linked and
linkedited to produce an executable load module.

If BUILD abends halfway through this process, the caller (SPB or own client)
must issue a ROLLBACK to back out of the updates made to the DB2 tables.

Figure 62. The BUILD process

Below is an example of a call to DSNTPSMP to perform a BUILD:

EXEC SQL
CALL DSNTPSMP(:func,:proc-name,:PSM-source,:bnd-opt,
:comp-opt, :pcomp-opt,:plnk-opt,:link-opt, :lert-opt,
:in-dsname, :build-schema, :build-name, :out-var)
END-EXEC.

• DESTROY

This function cleans up the definitions in the catalog and the members in the
libraries which are associated with the SQL stored procedure.

Figure 63 on page 131 shows the actions taken for the destroy process.

1. First the definition of the stored procedure is deleted from
SYSIBM.SYSPROCEDURES (v5) or dropped from
SYSIBM.SYSROUTINES and SYSIBM.SYSPARMS (v6).

2. The SQL stored procedure source is then deleted from SYSIBM.SYSPSM
and SYSIBM.SYSPSMOPTS.

3. A drop package is done for the stored procedure package.

SQL procedure
source

SQL
precompiler

C
precompiler

C source + embedded SQL

bind

PLAN

compile/pre-link

link

LOAD module

DB2 tables

1

2

3

4
5

130 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

4. The load module, DBRM, and C source are deleted from the relevant
libraries referenced in the ddnames on the WLM JCL.

Figure 63. The DESTROY process

The parameters that need to be passed to DSNTPSMP are the function and
the procedure name. The other parameters can be empty (nulls).

CALL DSNTPSMP(:func,:proc-name,,,,,,,,,)

• REBUILD

Performs the same functions as BUILD but will overwrite any DB2 rows and
library members if necessary. It is generally performed against an existing
SQL stored procedure but is also allowed for new non-existent routines. The
parameters passed are the same as for Build function.

• REBIND

This function will be used against an existing SQL stored procedure to change
bind options and rebind the stored procedure package.

4.5.2.5 Example of a client program
Below is a sample of a PL/1 program which calls DSNTPSMP to perform a build
of an SQL stored procedure.

It can be coded generically enough so that only three parameters need to be
passed: function, procedure name, and the SQL stored procedure source data
set.

You would only need to compile it once. Using this program, the DBA or project
administrator can control the compile, link, and bind options being used to create
SQL stored procedures for their project.

PL/1 sample client program
//***
//PSMBUILD JOB 'USER=JONATHAN','JONATHAN',CLASS=K,
// MSGCLASS=H,MSGLEVEL=(1,1)
//***
//* COMPILE/LINK THE CALLING APPLICATION
//***
//STEPPROC EXEC PROC=DSNHPLIA,DB2LEV=DB2A,MEM=STUBPGM
//PC.SYSIN DD *
STUBPGM: PROCEDURE(PARMS) OPTIONS(MAIN);

EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;

/**/
/* INPUT PARAMETERS
/**/

Delete
from

ddnames

Delete or
Drop

procedure

Delete from
SYSPSM&

SYSPSMOPTS

Drop
package
SQL Procedures for DB2 UDB for OS/390 131

DECLARE PARMS CHAR(100) VARYING ;

DECLARE WHATTODO CHAR(8) VARYING;
DECLARE SPNAME CHAR(8) VARYING;
DECLARE SRCDSN CHAR(80) VARYING;

DECLARE space1 BIN FIXED(15);
DECLARE space2 BIN FIXED(15);
DECLARE parm_len BIN FIXED(15);

DECLARE action CHAR(20) VARYING;
DECLARE member_name CHAR(18) VARYING;
DECLARE psm_program CHAR(32672) VARYING;
DECLARE bind_opts CHAR(1024) VARYING;
DECLARE comp_opts CHAR(255) VARYING;
DECLARE precomp_opts CHAR(255) VARYING;
DECLARE prelink_opts CHAR(255) VARYING;
DECLARE link_opts CHAR(255) VARYING;
DECLARE le_opts CHAR(254) VARYING;
DECLARE input_dsn CHAR(80) VARYING;
DECLARE buildschema CHAR(8) VARYING;
DECLARE buildname CHAR(18) VARYING;
DECLARE out_string CHAR(255) VARYING;

DECLARE SP1RS SQL TYPE IS RESULT_SET_LOCATOR VARYING;
DECLARE STEP CHAR(16);
DECLARE FILE CHAR(8);
DECLARE SEQN BIN FIXED(31);
DECLARE LINE CHAR(255);

action = '';
member_name = '';
psm_program = '';
bind_opts = '';
comp_opts = '';
precomp_opts = '';
prelink_opts = '';
link_opts = '';
le_opts = '';
input_dsn = '';
buildschema = '';
buildname = '';
out_string = '';

buildschema='SYSPROC'; /* Schema name of builder */
buildname='DSNTPSMP'; /* Builder name */

/**/
/* parse the input parameter to get - */
/* function */
/* SQL Procedure module name */
/* SQL Procedure source dataset */
/**/
parm_len = length(parms);
space1 = index(parms,' ');
space2 = index(substr(parms,space1+1,parm_len-space1),' ');
132 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

WHATTODO = SUBSTR(PARMS,1,space1-1);
SPNAME = SUBSTR(PARMS,space1+1,space2-1);
SRCDSN = SUBSTR(PARMS,space1+space2+1,parm_len-space1-space2);

PUT SKIP LIST('######################');
PUT SKIP LIST('Function=',WHATTODO) ;
PUT SKIP LIST('Progname=',SPNAME) ;
PUT SKIP LIST('Dataset =',SRCDSN);
PUT SKIP LIST('######################');
CLOSE FILE(SYSPRINT) ;

SELECT (WHATTODO);
WHEN('BUILDT') CALL program1; /* BUILD for debug */
WHEN('BUILD') CALL program2; /* BUILD normally */
WHEN('DESTROY') CALL program3; /* DESTROY */
WHEN('REBUILD') CALL program4; /* REBUILD */
WHEN('REBIND') CALL program6; /* REBIND */
OTHERWISE
DO;
PUT SKIP LIST('** NO ACTION SPECIFIED, EXITING **');
EXIT;

END;
END;

/***/

EXEC SQL
CALL :BUILDNAME (:action,

:member_name,
:psm_program,
:bind_opts,
:comp_opts,
:precomp_opts,
:prelink_opts,
:link_opts,
:le_opts,
:input_dsn,
:buildschema,
:buildname,
:out_string)

;

IF SQLCODE¬=0 THEN
call Print_SQLCA;

PUT SKIP LIST ('*** SQLCODE from call == ',sqlcode);

PUT SKIP LIST('** STUBPGM Call return from REXX stored proc **');
PUT SKIP LIST ('REXX output parm follows.....');
PUT SKIP EDIT('Returned outstring =', out_string) (A,A(100));

/* Will get result set only if errors received */
PUT SKIP LIST ('Doing associate locators....');
EXEC SQL
ASSOCIATE LOCATORS (:SP1RS) WITH PROCEDURE DSNTPSMP;
IF (SQLCODE ¬=0) & (SQLCODE ¬= -482)THEN
call Print_SQLCA;
SQL Procedures for DB2 UDB for OS/390 133

PUT SKIP LIST ('Doing allocate cursors....');
EXEC SQL
ALLOCATE C1 CURSOR FOR RESULT SET :SP1RS;
IF (SQLCODE¬=0) & (SQLCODE ¬= -423) THEN
call Print_SQLCA;

PUT SKIP LIST ('** Result set follows **');
do while (sqlcode=0);
EXEC SQL FETCH C1 INTO :STEP, :FILE, :SEQN, :LINE ;

PUT SKIP DATA (LINE);
end;
PUT SKIP LIST ('** End of result set **');

program1: procedure;

comp_opts='LIST,TEST,LONGNAME';
precomp_opts='SOURCE';
prelink_opts='NOMAP,DEBUG(SHOWIO)';
link_opts='AMODE=31,MAP,LIST=ALL';
le_opts='TRAP(OFF),RPTOPTS(ON)';
input_dsn=SRCDSN;
action='BUILD';
psm_program = '';
bind_opts='PACKAGE(COLLID) ACT(REP) ISO(CS)';
member_name=SPNAME;

end;

program2: procedure;

comp_opts='LIST';
precomp_opts='SOURCE';
prelink_opts='NOMAP';
link_opts='AMODE=31,MAP';
le_opts='TRAP(OFF),RPTOPTS(ON)';
input_dsn=SRCDSN;
action='BUILD';
bind_opts='PACKAGE(COLLID) ACT(REP) ISO(CS)';
member_name=SPNAME;

end;

program3: procedure;

action='DESTROY';
member_name=SPNAME;

end;

program4: procedure;

call program1;
action='REBUILD';

end;
134 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

program6: procedure;

action='REBIND';
comp_opts='LIST,TEST,LONGNAME';
precomp_opts='SOURCE';
prelink_opts='NOMAP,DEBUG(SHOWIO)';
link_opts='AMODE=31,MAP,LIST=ALL';
le_opts='TRAP(OFF),RPTOPTS(ON)';
input_dsn=SRCDSN;
psm_program = '';
bind_opts='PACKAGE(COLLID)';
member_name=SPNAME;

end;

Print_SQLCA: procedure;
PUT SKIP EDIT('DUMP SQLCA BY FIELDS') (A);
PUT SKIP EDIT('SQLCAID=',SQLCAID) (A,A(8));
PUT SKIP EDIT('SQLCABC=',SQLCABC) (A,F(11));
PUT SKIP EDIT('SQLCODE=',SQLCODE) (A,F(11));
PUT SKIP EDIT('SQLERRM=',SQLERRM)(A,A(LENGTH(SQLERRM)));
PUT SKIP EDIT('SQLERRP=',SQLERRP) (A,A(8));
PUT SKIP EDIT('SQLERRD(1)=',SQLERRD(1)) (A,F(11));
PUT SKIP EDIT('SQLERRD(2)=',SQLERRD(2)) (A,F(11));
PUT SKIP EDIT('SQLERRD(3)=',SQLERRD(3)) (A,F(11));
PUT SKIP EDIT('SQLERRD(4)=',SQLERRD(4)) (A,F(11));
PUT SKIP EDIT('SQLERRD(5)=',SQLERRD(5)) (A,F(11));
PUT SKIP EDIT('SQLERRD(6)=',SQLERRD(6)) (A,F(11));
PUT SKIP EDIT('SQLWARN0=',SQLWARN0) (A,A(1));
PUT SKIP EDIT('SQLWARN1=',SQLWARN1) (A,A(1));
PUT SKIP EDIT('SQLWARN2=',SQLWARN2) (A,A(1));
PUT SKIP EDIT('SQLWARN3=',SQLWARN3) (A,A(1));
PUT SKIP EDIT('SQLWARN4=',SQLWARN4) (A,A(1));
PUT SKIP EDIT('SQLWARN5=',SQLWARN5) (A,A(1));
PUT SKIP EDIT('SQLWARN6=',SQLWARN6) (A,A(1));
PUT SKIP EDIT('SQLWARN7=',SQLWARN7) (A,A(1));
PUT SKIP EDIT('SQLWARN8=',SQLWARN8) (A,A(1));
PUT SKIP EDIT('SQLWARN9=',SQLWARN9) (A,A(1));
PUT SKIP EDIT('SQLWARNA=',SQLWARNA) (A,A(1));
PUT SKIP EDIT('SQLSTATE=',SQLSTATE) (A,A(5));

end;

END STUBPGM;
//LKED.SYSIN DD *
INCLUDE SYSLIB(DSNELI)
INCLUDE SYSLIB(DSNTIAR)
NAME STUBPGM(R)
//***
//* BIND THE CALLING APPLICATION
//**
//STEPBND EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(V51A)

FREE PACKAGE(COLLID.STUBPGM)
FREE PLAN(SPMAINT)
SQL Procedures for DB2 UDB for OS/390 135

BIND PACKAGE(COLLID) MEMBER(STUBPGM)
BIND PLAN(SPMAINT) PKLIST(DSNREXCS.DSNREXX, COLLID.STUBPGM)

//**
//* INVOKE THE CALLER
//**
//STEPRUN EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(V51A)

RUN PROGRAM(STUBPGM) -
PLAN(SPMAINT) -
PARMS('/BUILD MEDIANSALARY SG245485.SAMPLES.SOURCE(MEDSAL)')
//*
//* PARMS('/DESTROY MYTEST2 DUMMY')
//* PARMS('/BUILD LT1PSM1 SG245485.SAMPLES.SOURCE(LT1PSM1)')
//* PARMS('/REBUILD LT1PSM1 SG245485.SAMPLES.SOURCE(LT1PSM1)')

Once the calling program is compiled, the SQL stored procedure developer only
needs to execute STEPRUN when they want to generate their own SQL stored
procedure.

Below is the output received from the program above for a successful REBUILD
of an SQL stored procedure:

######################
Function= REBUILD
Progname= MEDSAL
Dataset = SG245485.SAMPLES.SOURCE(MEDSAL)
######################
*** SQLCODE from call == 0
** STUBPGM Call return from REXX stored proc **
REXX output parm follows.....
Returned outstring =0
Doing associate locators...
Doing allocate cursors....
** Result set follows **
** End of result set **

Now that your SQL stored procedure is built, you can test it by building the client
application to call it, or testing it through the SPB Tool.

Note: DB2 delivers a sample C-language caller of DSNTPSMP called DSN8ED5.
The sample job DSNTEJ65 shows how to prepare and run DSN8ED4 to call
DSNTPSMP to prepare a sample SQL stored procedure called DSN8ES2.
DSNTEJ65 also prepares and invokes a sample C-language caller of DSN8ES2
called DSN8ED5.

4.5.3 Using JCL
The SQL stored procedure can also be prepared by invoking the DB2 supplied
JCL procedure DSNHSQL (4.5.3.2, “JCL for DSNHSQL procedure” on page 140).

See 4.5.3.1, “JCL for building an SQL stored procedure” on page 139 for a
version 5 example of the steps mentioned here:
136 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• DELCATG — Executes DSNTEP2. If definitions already exist for the stored
procedure, that is, you have already built it, this step deletes it from
SYSIBM.SYSPROCEDURES. If not, you will not need to execute this step.

In version 6, a DROP PROCEDURE is executed instead of the delete. This
removes the definition of your SQL stored procedure from
SYSIBM.SYSROUTINES and SYSIBM.SYSPARMS. An example of this
statement follows:

DROP PROCEDURE SMP1LMS RESTRICT;

• PROCESS — Calls the DSNHSQL procedure which executes the following
steps:

Figure 64. DSNHSQL process

1. For version 5, DSNHPSM is executed to convert your SQL stored
procedure source module into an equivalent C language program which
contains the embedded SQL calls. In version 6, normally the precompiler
DSNHPC is executed twice instead. The parameter used when calling
DSNHPC for the first run is PARM='HOST(SQL)'.

Note: In version 6 for compatibility purposes, it will still be possible to run
DSNHPSM instead of DSNHPC with PARM='HOST(SQL)'

2. DSNHPC is called with PARM=’HOST(C)’ to precompile the C source
generated by the previous step to process the embedded SQL calls.

3. C compiler CBCDRVR is called to perform a normal C compile.

4. EDCPRLK is called to perform a normal pre-linkedit.

DSNHSQL process

DSNHPC converts SQL procedure source to
C language source with embedded SQL

DSNHPSM converts SQL procedure source
to C language source with embedded SQL

DSNHPC to process embedded SQL calls

CBCDRVR to compile the C program

EDCPRLK to pre-linkedit object module

IEWL to linkedit the pre-linked module

Step for v5
(acceptable in v6)

Step for v6 only
(if previous step
not executed)
SQL Procedures for DB2 UDB for OS/390 137

5. IEWL is called to perform a normal linkedit.

• ISRTCATG — Executes DSNTIAD to register the definition for your SQL
stored procedure to DB2. The statements generated are from the step which
executes the DSNHPSM precompile.

For DB2 version 5, a DML INSERT statement is generated to update the
SYSIBM.SYSPROCEDURES table. For example:

INSERT INTO SYSIBM.SYSPROCEDURES
(PROCEDURE, AUTHID, LUNAME, LOADMOD, LINKAGE, COLLID,
LANGUAGE, ASUTIME, STAYRESIDENT, IBMREQD,
RUNOPTS, PARMLIST, RESULT_SETS, WLM_ENV,
PGM_TYPE, EXTERNAL_SECURITY, COMMIT_ON_RETURN)

VALUES(
'MEDSALRY','','','MEDSALRY','N','',
'SQL',0,' ','N',
'',
'DEPTNUM SMALLINT IN, MEDSALY SMALLINT OUT',
0,'WLMENV1','M','N','N')

For DB2 version 6, a DDL CREATE PROCEDURE statement is generated to
define the procedure to SYSIBM.SYSROUTINES and SYSIBM.SYSPARMS.
For example:

CREATE PROCEDURE SMP0LMS6
(IN EMPLOYEE_NO CHAR (6) ,
OUT EMP_FIRSTNAME VARCHAR (12) ,
OUT EMP_LASTNAME VARCHAR (15) ,
OUT SQLCPARM INTEGER)
FENCED RESULT SET 0 LANGUAGE SQL
DETERMINISTIC MODIFIES SQL DATA NO DBINFO COLLID SG245485
WLM ENVIRONMENT WLMENV1 ASUTIME NO LIMIT STAY RESIDENT NO
PROGRAM TYPE MAIN SECURITY DEFINER COMMIT ON RETURN NO

One row which defines your procedure is created in SYSIBM.SYSROUTINES.

The SYSIBM.SYSPARMS catalog table will contain one row for each input or
output parameter required by your SQL stored procedure. In the example
above, four rows will be added.

• BINDSP — Binds the DBRM for your SQL stored procedure.

Note: If you did not specify the collection id in the CREATE PROCEDURE
statement, DB2 will not execute your SQL stored procedure even if you
subsequently bind the DBRM to a specific collection id in this step. If you wish
to use the collection id of the client, specify NO COLLID. Later when you bind
the client package, you can then bind the SQL stored procedure package to
the same collection id and your SQL stored procedure will be executed
successfully.

• SELCATG — Executes DSNTEP2 to select from SYSIBM.SYSPROCEDURES
to view the inserted values for the new procedure.

Note: DB2 delivers a sample job called DSNTEJ63 that demonstrates how to use
DSNHSQL to prepare a sample SQL stored procedure called DSN8ES1. The
sample job DSNTEJ64 prepares and calls a sample caller of DSN8ES1 called
DSN8ED3.
138 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

4.5.3.1 JCL for building an SQL stored procedure
This is the JCL used in DB2 version 5 to manually create stored procedures using
the SQL Procedures language. The SQL stored procedures source is input in
ddname PC.SYSIN.

//BUILDER JOB 'USER=KATHLEEN','KATHLEEN',CLASS=A,
// MSGCLASS=H,REGION=4096K
//*----------------------------------
//* BUILDING SOURCE -> BASECASE
//*----------------------------------
//JOBLIB DD DSN=CEE.SCEERUN,DISP=SHR <- IBM LE RUNTIME
// DD DSN=DB2A.DSNEXIT,DISP=SHR <- DB2 USER EXITS
// DD DSN=DB2A.DSNLOAD,DISP=SHR <- DB2 LOAD MODS
//***
//* DELETE FROM CATALOG THIS PROCEDURE
//***
//DELCATG EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(V51A)
RUN PROGRAM(DSNTEP2)
//SYSIN DD *
DELETE FROM SYSIBM.SYSPROCEDURES WHERE

PROCEDURE LIKE 'BASECASE%';
//*
//PROCESS EXEC DSNHSQL,MEM=BASECASE,
// COND=(4,LT),
// PARM.PC='HOST(SQL),SOURCE,XREF,MAR(1,72),STDSQL(NO)',
// PARM.PCC='HOST(C),SOURCE,XREF,MAR(1,80),STDSQL(NO)',
// PARM.C='SOURCE LIST MAR(1,80) NOSEQ LO RENT',
// PARM.LKED='AMODE=31,RMODE=ANY,MAP,RENT'
//PC.SYSUT1 DD DSN=&&SPDML,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,1),
// DCB=(RECFM=FB,LRECL=80)
//PC.SYSIN DD DISP=SHR,DSN=USER.SAMPLES.SOURCE(&MEM.)
//LKED.SYSLMOD DD DSN=USER.RUNLIB.LOAD(&MEM.),
// DISP=SHR
//LKED.SYSIN DD *
INCLUDE SYSLIB(DSNRLI)
NAME BASECASE(R)
//ISRTCATG EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(V51A)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIAD)
END
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD DSN=&&SPDML,DISP=(OLD,DELETE) <-FROM PRECEDING STEP
//**
//* BIND STEP
//**
//BINDSP EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(V51A)
BIND PACKAGE(COLLID) MEMBER(BASECASE) ACT(REP) ISO(CS)
//***
//* SELECT FROM CATALOG THIS PROCEDURE
SQL Procedures for DB2 UDB for OS/390 139

//***
//SELCATG EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(V51A)
RUN PROGRAM(DSNTEP2)
//SYSIN DD *
SELECT * FROM SYSIBM.SYSPROCEDURES WHERE

PROCEDURE LIKE 'BASECASE%';

4.5.3.2 JCL for DSNHSQL procedure
A sample of the JCL for DSNHSQL which was executed against a DB2 version 5
environment is shown below. This JCL is supplied when you install the SQL
Procedures support. It performs the steps described in Figure 64 on page 137.

//***
//*
//DSNHSQL PROC WSPC=500,MEM=TEMPNAME,USDN=USER
//*
//***
//* PC: Precompile the PSM source
//***
//PC EXEC PGM=DSNHPSM,PARM='HOST(SQL)',REGION=4096K
//STEPLIB DD DISP=SHR,DSN=DB2A.DSNEXIT
// DD DISP=SHR,DSN=DB2A.DSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSCIN DD DSN=&&DSNHSQL,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(&WSPC,&WSPC))
//SYSLIB DD DISP=SHR,DSN=&USDN..SRCLIB.DATA
//SYSUT1 DD DUMMY <-- DML to register PSM SP (V5 only)
//SYSUT2 DD DUMMY <-DDL to register PSM SP (V6 and subsequent)
//*
//***
//* PCC: Precompile C source generated by the previous step
//***
//PCC EXEC PGM=DSNHPC,REGION=4096K,
// PARM='HOST(C),MAR(1,80)',
// COND=(4,LT,PC)
//DBRMLIB DD DISP=SHR,DSN=&USDN..DBRMLIB.DATA(&MEM)
//STEPLIB DD DISP=SHR,DSN=DB2A.DSNEXIT
// DD DISP=SHR,DSN=DB2A.DSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD DSN=&&DSNHSQL,DISP=(OLD,DELETE)
//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(&WSPC,&WSPC))
//SYSLIB DD DISP=SHR,DSN=&USDN..SRCLIB.DATA
//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=SYSDA
//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=SYSDA
//*
//***
//* C: Compile the output from the precompiler
//***
//C EXEC PGM=CBCDRVR,REGION=4096K,
// PARM=('MAR(1,80) NOSEQ LO RENT'),
// COND=((4,LT,PC),(4,LT,PCC))
140 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

//STEPLIB DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=DB2A.SDSNC.H,DISP=SHR
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSTERM DD DUMMY
//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT2 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT3 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//*
//***
//* PLKED: Pre-linkedit the object module from the C compiler
//***
//PLKED EXEC PGM=EDCPRLK,REGION=2048K,
// COND=((4,LT,PC),(4,LT,PCC),(4,LT,C))
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DUMMY
//SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSMOD DD DSN=&&PLKSET,UNIT=SYSDA,DISP=(MOD,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
SQL Procedures for DB2 UDB for OS/390 141

//***
//* LKED: Linkedit the output from the pre-linkeditor
//***
//LKED EXEC PGM=IEWL,PARM='MAP',
// COND=((4,LT,PC),(4,LT,PCC),(4,LT,C),(4,LT,PLKED))
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=DB2A.DSNLOAD,DISP=SHR
//SYSLIN DD DSN=&&PLKSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&USDN..RUNLIB.LOAD(&MEM),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(32000,(30,30)),UNIT=SYSDA
//*
//DSNHSQL PEND

Once the SQL stored procedure is created and its definition registered in DB2,
you can test it by invoking it from a client application or by using the SPB Tool.
Through the SPB Tool, all you need to do is to insert a connection to the OS/390
database, highlight the relevant procedure, and choose the RUN button.

Note: If your SQL stored procedure does not return any output, you must check if
it was linked and bound correctly.

If the procedure is created manually (not using the OS/390 Procedures
Processor), the definition for your SQL stored procedure will not be inserted into
the tables SYSIBM.SYSPSM or SYSIBM.SYSPSMOPTS. Therefore, the source
cannot be viewed through the SPB Tool automatically.

If you wish to view the source using the SPB Tool, you need to download the SQL
stored procedure source to the workstation environment, where the SPB is
installed, and save it in any directory. After that, when you choose the Get Source
option, you can then point to where you have saved it. See Chapter 3, “The DB2
Stored Procedure Builder” on page 57 for more details on this option.

You can even choose to save all your SQL stored procedure source for your
project in a shared drive. This could be important in an environment where the
DB2 application developer or DB2 administrator wishes to keep track of the
stored procedures for tuning or maintenance purposes through the SPB Tool.

4.6 Stored procedure debugging

Regardless of the method used to build your SQL stored procedure, you can
invoke the Debug tool to debug it.

To debug your SQL stored procedure on OS/390, you need to install the Remote
debugger client code on your workstation. Refer to 3.4.6, “Debugging stored
procedures” on page 105, for detailed information about how to install and
activate the client debugger.
142 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

4.6.1 Process
On the OS/390 side, you need to perform the following steps:

• Concatenate the debug load modules in the STEPLIB within your WLM region.

• Create your SQL stored procedure specifying the RUN OPTIONS keyword in
your SQL source:

CREATE PROCEDURE MYPROC
(INOUT P1 CHAR(6), IN P2 DATE, IN P3 TIME, IN P4 TIMESTAMP)
LANGUAGE SQL
RUN OPTIONS ’POSIX(ON),TEST(ALL,*,,VADTCPIP&9.112.111.13:*)’
LABEL1: BEGIN

........
END LABEL1

In this example, 9.112.111.13 is the IP address of the workstation where you
will be monitoring the debugger output of your SQL stored procedure. It will be
the machine on which you have activated the listener. The debugger screens
will be activated on this machine.

• Compile your SQL stored procedure with the TEST compile option and OPT(0).
We recommend that you do not compile using options TEST and OPT(1) or
OPT(2). Programs compiled with both the TEST option and either the OPT(1) or
OPT(2) options do not have line hooks, block hooks, path hooks or a symbol
table generated, regardless of the TEST suboptions specified. Refer to Debug
Tool: User's Guide and Reference, SC09-2137.

• Ensure that your input C file (not output listing) to the C compile is created on
a permanent data set. When using batch JCL to create your SQL stored
procedure, this will be the dataset (in the sample JCL procedure DSNHSQL)
called &&DSNHOUT which is normally allocated as a temporary dataset. When
creating your SQL stored procedure using SPB or DSNTPSMP, this dataset is
permanently allocated anyway.

• Run the SQL stored procedure and the debugger screens will appear on the
machine identified by the TCPIP address selected above.

4.6.2 If the debugger does not start
If your debugger does not start, check that the following things have been done:

• The client listener has been started.

• The correct SPAS or WLM JCL is being used.

• IP address is correct.

• The RUN OPTIONS are specified correctly (for example, a wrong number of
commas might have been used).

• The TEST option has been specified on the C compile.

• The input C file to the C compile has been made a permanent dataset (please
note that it is the input file that is required — not the output listing).
SQL Procedures for DB2 UDB for OS/390 143

144 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Chapter 5. SQL Procedures for DB2 UDB for UNIX, Windows, OS/2

This chapter describes the support for the new SQL Procedures language in DB2
UDB servers. During this project we use Windows NT and UNIX platforms.

5.1 General considerations

SQL Procedures is an easy-to-use, simple language, which provides a series of
language elements that allow you to develop block-structured stored procedures,
with exception handling, flow control, variable declarations, and so on. Using the
SQL Procedures language, you have the same functions and performance as
when using other supported languages, such as multiple parameters (input,
output, input/output), returning multiple output result sets, and so on. However,
the SQL Procedures language is easier for all developers to use, and is
especially easy to learn for those developers familiar with Sybase, Oracle,
Informix, and Microsoft SQL Server proprietary languages.

SQL stored procedures are created using the CREATE PROCEDURE statement
and are registered in the DB2 catalog. There are four tables in the DB2 UDB
catalog that contain information related to stored procedures:

• SYSIBM.SYSPROCEDURES: Contains a row for each stored procedure that
is created

• SYSIBM.SYSPROCPARMS: Contains a row for each parameter of every
stored procedure.

• SYSIBM.SYSPROCOPTIONS: Each row contains procedure-specific option
values.

• SYSIBM.SYSPROCPARMSOPTIONS: Each row contains procedure
parameter specific option values.

The source code of SQL stored procedures is stored in the DB2 catalog. The
TEXT column of SYSIBM.SYSPROCEDURES table contains the source of your
SQL stored procedure. You can easily access the source code using a SELECT
statement.

There are no changes related to coding client programs to invoke SQL stored
procedures. The syntax of the SQL CALL statement is the same regardless of the
language being used at the server stored procedure.

The support for SQL stored procedures in DB2 UDB is implemented through the
generation of an intermediary C code. This C code is precompiled, compiled, and
link-edited automatically, and an executable file (.DLL in Windows NT) is
generated for the stored procedure. For more details, refer to 5.5, “Stored
procedures preparation” on page 159.

The IBM Distributed Debugger can be used to remotely debug SQL stored
procedures executing on the DB2 UDB server. With the IBM Distributed
Debugger you can follow the execution of your SQL stored procedure using the
source code, verify and change values for variables, etc. For more information on
debugging, refer to 5.6, “Stored procedure debugging” on page 166.

Stored procedures written in the SQL Procedures language are portable to DB2
servers in other platforms with no changes or minimal changes to the sources.
© Copyright IBM Corp. 1999 145

When other database management systems (DBMS) implement languages
compatible with the SQL/PSM standard, it should be possible to port stored
procedures from DB2 to other DBMSs and vice versa.

5.2 Supported platforms

SQL Procedures language will be supported in all DB2 UDB platforms: UNIX,
Windows and OS/2. However, the first releases (beta code) of SQL Procedures
are only supported on Windows NT, AIX, and Sun Solaris. The support for other
platforms will follow shortly.

The remote debugging of DB2 UDB stored procedures is only available for
servers on Windows NT, AIX, Sun Solaris, and OS/2. The IBM Distributed
Debugger client executes only on Windows NT.

5.3 System requirements and planning

This section describes the requirements for using SQL Procedures with DB2 UDB
servers.

Before creating SQL stored procedures, you must ensure that DB2 SDK is
installed on your DB2 UDB server. This is required because the process that
creates the SQL stored procedures on the server generates a C source that must
be prepared using SDK functionality. You do not need to have DB2 SDK installed
in the developer’s client workstation, unless you plan to use SPB to build your
stored procedures. It is recommended that you install SDK in the developer’s
workstation so they can benefit from the samples and manuals included in SDK,
and also, to allow the developers to create client applications running on their
workstations. Refer to Chapter 3, “The DB2 Stored Procedure Builder” on page
57 for more information about DB2 SPB.

Note that SPB is not a prerequisite to work with SQL stored procedures. The SQL
Procedures language support is built into DB2 UDB base code, and you can
create your SQL stored procedures using only the DB2 command line, or any
other user interface that allows you to issue a CREATE PROCEDURE command.

5.3.1 Requirements for the Windows NT platform
To work with SQL Procedures, you must ensure that a C compiler supported by
DB2 SDK is installed in your DB2 UDB server. For DB2 UDB servers executing
on Windows NT platforms, initially the only C compiler supported is:

• Microsoft Visual C++ Version 5.0 and 6.0

The IBM VisualAge C compiler should be supported in future releases.

Some customization in the C environment is required to use SQL Procedures.
On the Windows NT platform, there are two possible ways to customize your
C environment: using DB2 registry variables, or using NT system variables.

5.3.1.1 Customizing the C environment using the DB2 registry
DB2 UDB has a registry variable DB2UDP_COMPILER_PATH that can be set,
when you plan to use SQL Procedures. This registry variable should contain the
name of a script file that initializes the C compiler environment. DB2 UDB
146 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

executes the command stored in the DB2UDP_COMPILER_PATH automatically,
when you issue a CREATE PROCEDURE statement for an SQL stored
procedure.

You can set the DB2UDP_COMPILER_PATH DB2 registry variable using the
db2set command, as follows:

db2set DB2UDP_COMPILER_PATH=initscript

In our project, we used the sample udpprof.bat file for initialization. This file is
located in x:\sqllib\samples\udp, where x: is the drive on which you have
installed DB2 SDK. If you plan to use the sample script, you can issue the
following:

db2set DB2UDP_COMPILER_PATH=c:\sqllib\samples\udp\udpprof.bat

You must customize the sample udpprof.bat script according to your development
environment. If the initialization script does not contain the correct settings, or the
DB2UDP_COMPILER_PATH does not point to the right script, you will not be able
to create SQL stored procedures. For example, the following shows the
udpprof.bat file used in our project:

udpprof.bat
set VC_DRIVE=c:\progra~1\devstu~1
set include=%VC_DRIVE%\vc\include;%VC_DRIVE%\vc\atl\include;
%VC_DRIVE%\vc\mfc\include;%include%
set lib=%VC_DRIVE%\vc\lib;%lib%
set path=%VC_DRIVE%\sharedide\bin\ide;%VC_DRIVE%\sharedide\bin;
%VC_DRIVE%\vc\bin;%path%

5.3.1.2 Customizing the C environment using system variables
On the Windows NT environment, instead of using the
DB2UDP_COMPILER_PATH DB2 registry variable, you have the option of using
NT system environment variables. SQL Procedures support requires the
following variables to be at system level for the DB2 server operating
environment:

• INCLUDE

• LIB

• PATH

When you install Microsoft Visual C++, it defines these variables as user
variables. For SQL Procedures, you must define these variables as system
variables. To copy from a user variable into a system variable follow the steps
below:

1. Start -> Settings -> Control Panel -> System -> Environment tab
2. Click on the required variable name in the User Variables list box
3. Highlight the entry in the Value entry field and click Edit -> Copy
4. Click on the required variable name in the System Variables list box
5. Check the differences between user and system variable values and modify

the values in the system variable as appropriate in the Value entry field

Once this has been done for all the three variables required, reboot the machine.
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 147

5.3.2 Requirements for the UNIX platform
To work with SQL Procedures, you must ensure that a C compiler supported by
DB2 SDK is installed in your DB2 UDB server. For DB2 UDB servers executing
on the UNIX platform, to create SQL stored procedures, you must:

• Install the DB2 SDK on your DB2 server.

Ensure that the C compiler supported by the DB2 SDK on your platform is
installed and configured on your DB2 server.

• Install a supported C compiler.

• SQL Procedures support is available for the following C compilers on AIX
Version 4.2 and later:

• IBM C for AIX Version 3.1.4 and 3.6.4

• SQL Procedures support is available for the following C compilers on Sun
Solaris Version 2.5.1, 2.6, and 2.7 (Solaris 7):

• SPARCompiler C Version 4.2

• SPARCompiler C Version 5.0

• Initialize the environment for SQL Procedures.

To enable the DB2 server to create SQL stored procedures, you must set the
DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable. When you issue a
CREATE PROCEDURE statement for an SQL stored procedure, DB2
executes the command stored in the DB2_SQLROUTINE_COMPILER_PATH registry
variable to initialize the C compiler environment. You can store the command
to call an initialization script in the DB2_SQLROUTINE_COMPILER_PATH using the
following syntax:

db2set DB2_SQLROUTINE_COMPILER_PATH="<initscript>"

where <initscript> represents the command you use to call an initialization
script for the C compiler on your platform.

• Set up the environment for SQL Procedures

The Solaris and AIX platforms contain a sample initialization script called
udppro in the $DB2PATH/samples/sqlproc directory, where $DB2PATH represents
the directory in which you have created your DB2 instance. For example, if
you create a DB2 instance in the /home/db2inst1 directory, you can set the
DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable to call the sample
initialization script with the following command:

db2set DB2_SQLROUTINE_COMPILER_PATH=". $DB2PATH/samples/sqlproc/udpprof"

where $DB2PATH represents the directory in which you have created your
DB2 instance.

Note: You should use the udpprof sample script only as a basis for
developing your own initialization script. You must customize the script to
correspond to your own operating system and compiler environment. If the
initialization script contains the wrong settings, does not have executable
permissions, or if the DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable is
not set to run the script, you will not be able to create SQL stored
procedures.
148 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

5.3.3 Changing compiler options
If you want to customize your C compiler options for SQL Procedures, you must
store the entire command line, including all options, in the DB2 registry variable
with the following command:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=<compiler_command>

where <compiler_command> represents the C compiler command and all of the
options and parameters required to create SQL stored procedures.

5.3.3.1 Windows NT
On Windows NT, the default value for DB2_SQLROUTINE_COMPILE_COMMAND is:

"cl -0d -W2 /TC -D_X86_=1
-IE:\SQLLIB\include sqlroutine_filename.c /link -dll
-def:sqlroutine_filename.def /out:sqlroutine_filename.dll
E:\SQLLIB\lib\db2api.lib"

Note: To return debug information, you must set this variable using a command
such as the following:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="cl -0d -W2 /TC -D_X86_=1 -Z7
-IE:\SQLLIB\include sqlroutine_filename.c /link -dll
-def:sqlroutine_filename.def /out:sqlroutine_filename.dll
-debug:full -pdb:none -debugtype:cv E:\SQLLIB\lib\db2api.lib"

where:

sqlroutine_filename represents the placeholder for the filename used in the
generated files such as SQC, C, PDB DEF files, EXP
files, messages log, and DLL files

sqlroutine_entry represents the entry point name

E:\ represents the location of the instance directory

To return to the default compiler options, clear the DB2 registry value for
DB2_SQLROUTINE_COMPILE_COMMAND with the following command:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=

5.3.3.2 AIX
On AIX, the default value for DB2_SQLROUTINE_COMPILE_COMMAND is:

"xlC_r -+ -H512 -T512 -I/home/myusr/sqllib/include
sqlroutine_filename.c -bE:sqlroutine_filename.exp -e
sqlroutine_entry -o sqlroutine_filename -L/home/myusr/sqllib/lib -lc -ldb2"

Note: To return debug information, you must set this variable using a command
such as the following:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="xlC_r -+ -H512 -T512 -g
-I/home/myusr/sqllib/include sqlroutine_filename.c
-bE:sqlroutine_filename.exp -e sqlroutine_entry
-o sqlroutine_filename -L/home/myusr/sqllib/lib -lc -ldb2"
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 149

where:

sqlroutine_filename represents the placeholder for the filename used in the
generated files such as SQC, C, PDB DEF files, EXP
files, messages log, and shared library files

sqlroutine_entry represents the entry point name

home/myusr/ represents the location of the instance directory

5.3.3.3 Solaris
On Solaris, the default value for DB2_SQLROUTINE_COMPILE_COMMAND is:

"cc -# -Kpic
-I/disks/home1/myusr/sqllib/include sqlroutine_filename.c
-G -o sqlroutine_filename -L/disks/home1/myusr/sqllib/lib
-R/disks/home1/myusr/sqllib/lib -ldb2"

Note: To return debug information, you must set this variable using a command
such as the following:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="cc -# -Kpic -g
-I/disks/home1/myusr/sqllib/include sqlroutine_filename.c -G -o
sqlroutine_filename -L/disks/home1/myusr/sqllib/lib
-R/disks/home1/myusr/sqllib/lib -ldb2"

where:

sqlroutine_filename represents the placeholder for the filename used in the
generated files such as SQC, C, PDB DEF files, EXP
files, messages log, and shared library files

sqlroutine_entry represents the entry point name

/disks/home1/myusr/ represents the location of the instance directory

5.3.4 Retaining intermediate files
Issuing an SQL Procedures CREATE PROCEDURE statement, DB2 creates a
number of intermediate files that are normally deleted if DB2 successfully
completes the statement. If an SQL stored procedure does not perform as
expected, you might find it useful to examine the SQC, C, PDB, and message log
files created by DB2. To keep the files that DB2 creates during the successful
execution of a CREATE PROCEDURE statement, you must set the value of the
DB2_SQLROUTINE_KEEP_FILES DB2 registry variable to 1. This can be done through
the following command:

db2set DB2_SQLROUTINE_KEEP_FILES=1

The intermediate files will be retained by DB2 in the following directories:

• Windows NT

%DB2PATH%\function\routine\udp\%$DATABASE%\%SCHEMA%

where:

%DB2PATH% represents the instance directory

%DATABASE% represents the database name

%SCHEMA% represents the schema name with which the SQL stored
procedures were created
150 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• AIX, Solaris

$DB2PATH/function/routine/sqlproc/$DATABASE/$SCHEMA

where:

$DB2PATH represents the instance directory

$DATABASE represents the database name

$SCHEMA represents the schema name with which the SQL stored
procedure were created

5.4 Coding considerations

This section presents some considerations on coding SQL stored procedures for
DB2 UDB. Most of the considerations and techniques described here are valid for
Windows and UNIX servers, and any topic that applies only to one type of server
will be clearly identified.

This section does not provide detailed information about the syntax of the SQL
Procedures language. Some examples are provided, but for more information on
the SQL Procedures language refer to Chapter 2, “The SQL Procedures
language” on page 9.

5.4.1 Recommendations for writing portable stored procedures
Make sure that the builtin functions you use in your stored procedure are
supported on all the target DB2 platforms you will use.

5.4.2 Structure of SQL stored procedures
An SQL stored procedure consists of two main blocks:

• A CREATE PROCEDURE statement to define the procedure

• A procedure body with SQL statements and SQL control statements

5.4.2.1 The CREATE PROCEDURE statement
The CREATE PROCEDURE statement is used to register a stored procedure in
the DB2 server. For SQL stored procedures, most of the options of the CREATE
PROCEDURE statement are not valid, because these options are related to
external stored procedures.

For SQL stored procedures, using the CREATE PROCEDURE statement, you
can specify the list of parameters being passed to or from the stored procedure,
an specific name for the procedure, the number of result sets being returned, and
if the stored procedure reads or modifies SQL data. Following is a typical
CREATE PROCEDURE statement for an SQL stored procedure:

CREATE PROCEDURE SQL1LNS (IN PARM1 CHAR(10), OUT PARM2 INTEGER) SPECIFIC
S4141979 RESULT SETS 1 READS SQL DATA LANGUAGE SQL BEGIN END

With DB2 UDB, you can have various procedures with the same procedure name,
as long as they have different specific names, and a different number of
parameters. DB2 UDB recognizes which of the procedures with the same name
you are actually calling, by comparing the number of parameters being passed
and the number of parameters defined in the catalog. Note that DB2 UDB only
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 151

counts the number of parameters; that is why you must have a different number of
parameters for procedures with the same name.

For SQL stored procedures, you cannot specify the following options of the
CREATE PROCEDURE statement:

• NO SQL

• FENCED/NOT FENCED

• DETERMINISTIC/NOT DETERMINISTIC

• CALLED ON NULL INPUT

• DBINFO/NO DBINFO

• EXTERNAL

• PARAMETER STYLE

• PROGRAM TYPE

The above options can only be used with external stored procedures. If you try to
code your CREATE PROCEDURE statement for an SQL stored procedure using
any of the above options, you will receive the following message:

SQL0628N Multiple or conflicting keywords involving the "<invalid attribute
for SQL procedure>" clause are present. SQLSTATE=42613

SQL stored procedures execute as NOT FENCED, unless they are returning
result sets to the calling program. If the SQL stored procedure returns result sets,
it executes as a FENCED stored procedure. This is done internally, and you
cannot change the mode of execution of your SQL stored procedure.

5.4.2.2 Defining parameters
If your SQL stored procedure needs to send/receive parameters from the client
program, you must define them in the CREATE PROCEDURE statement.

You can define input, output, or input/output parameters of any supported SQL
data types. The following data types are not supported:

• VARGRAPHIC

• LONG VARGRAPHIC

• BLOB

• CLOB

• DBCLOB

• DATALINK

User Defined Data types (UDTs) are not supported, even if they are based on
supported SQL data types.

5.4.3 Coding the SQL stored procedures body
The stored procedures body in an SQL stored procedure contains the source
statements for the stored procedure. The stored procedures body can contain a
single SQL statement or a compound SQL statement. Following is an example of
an SQL stored procedure with a single SQL statement:

CREATE PROCEDURE SQL2LNS (OUT PARM1 CHAR(10))
152 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

LANGUAGE SQL
SET PARM1=’FELIPE’

A stored procedures body with a compound SQL statement must be delimited by
a BEGIN and an END statement. Following is an example of an SQL stored
procedure with a compound SQL statement:

CREATE PROCEDURE SQL3LNS (OUT PARM1 CHAR(10), OUT PARM2 CHAR(10))
LANGUAGE SQL
P1:BEGIN

SET PARM1=’ALINE’
SET PARM2=’RICARDO’

END P1

A compound SQL statement may have a label associated to it. In the above
example, the label P1 was set for the compound SQL statement. The labels in
your SQL stored procedures body must be unique, and must not be the same as
the name of the stored procedure. Any variables within a labeled compound SQL
statement may be prefixed with the label, if necessary. See 5.4.3.2, “Defining
variables in SQL stored procedures” on page 153 for more details.

5.4.3.1 Statements in the stored procedures body
The SQL stored procedures body may contain SQL statements and SQL control
statements. All executable SQL statements can be contained within an SQL
stored procedures body, with the exception of the following:

• COMMIT

• CONNECT

• DISCONNECT

• RELEASE

• SET CONNECTION

• REVOKE

Note: The above restrictions are intended to be removed in future releases of
SQL Procedures support in DB2 UDB. Check your DB2 UDB manuals, to verify if
these restricitions still apply.

SQL control statements can be assignment statements, CASE statements, IF
statements, LOOP statements, and others, as defined in SQL Procedures. For
more information regarding the syntax of the different SQL Procedures control
statements, please refer to Chapter 2, “The SQL Procedures language” on page
9.

5.4.3.2 Defining variables in SQL stored procedures
Within a compound SQL statement you can declare SQL variables that can be
referenced in other statements in the stored procedure using the DECLARE
statement.

Recommended naming for parameters and variables:
You do not need to declare your parameters as variables within your stored
procedure. Your parameter description provides DB2 enough information to
understand what the names and datatypes of the parameters are.
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 153

Name your local variables with different names than the parameters to your
stored procedure. If you choose not to do this, then references to the ambiguous
name will be interpreted as the local variable and not the parameter. To reference
a parameter in this situation, you must qualify it with the stored procedure name.
Figure 65 is an example of using variables and parameters with the same name.

Figure 65. Using the same name for variables and parameters

Note that the variable v_var2 does not have the same data type as the parameter,
but DB2 handles data type conversions whenever possible.

You should avoid variables with the same name as DB2 table columns. If you
have a variable with the same name as a table column, you must also qualify the
variable in SQL statements with the compound statement label. If you do not
qualify the variable, DB2 will interpret that variable as the column name. Figure
66 is an example of using a variable and a column with the same name.

Figure 66. Using variables with the same name as a column

Note that it is not necessary to qualify the variable in the INTO clause, only in the
WHERE condition.

Naming your parameters and your local variables with the same name.

Avoid:

CREATE PROCEDURE DRDARES1.SMP4LNS (out v_var1 integer, out
v_var2 double)

SPECIFIC DRDARES1.S1473953
LANGUAGE SQL

P1: BEGIN
declare v_var1 integer;
declare v_var2 smallint;

set v_var1 = 10;
set smp4lns.v_var1 = p1.v_var1;
set v_var2 = 20;
set smp4lns.v_var2 = p1.v_var2;

END P1

CREATE PROCEDURE DRDARES1.SMP5LNS (out p_id integer)
LANGUAGE SQL

P1: BEGIN
declare id integer;
set id = 100;
select id into id from staff where id=p1.id;
set p_id = id;

END P1
154 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

In variable declarations you can specify a default value. If a default value is not
specified, the variable is initialized to NULL.

5.4.3.3 Assigning values to variables
The SET statement is used to assign values to variables and parameters. With
DB2 UDB, the value being assigned to the variable may be a constant, an
expression, a DB2 special register, a result of a SELECT statement, and so on.
Figure 67 is an example of assigning special register values to parameters in
SQL stored procedures.

Figure 67. Assigning special registers to variables

You can also assign the result of DB2 UDB built-in functions or User Defined
Functions(UDFs) to variables or parameters. However, you should keep in mind
that using DB2 UDB functions, may limit the portability of your SQL stored
procedures, since some of the built-in functions or UDFs might not be available in
other DB2 servers, such as DB2 for OS/390 Version 5. Figure 68 is an example of
assigning results of built-in functions to variables.

CREATE PROCEDURE DRDARES1.SMP2LNS (out v_user char(8), out
v_date1 date,
out v_date2 date, out v_days1 integer, out v_time1 time,
out v_time2 time, out v_timest1 timestamp, out v_timest2
timestamp)

SPECIFIC DRDARES1.S5336343
LANGUAGE SQL

P1: BEGIN
set v_user = user;
set v_date1 = current date;
set v_date2 = v_date1 - 10 days + 3 years;
set v_days1 = days(v_date2);
set v_time1 = current time;
set v_time2 = v_time1 +1 hour - 30 minutes;
set v_timest1 = current timestamp;
set v_timest2 = v_timest1 - days(v_date1 - 10 days) days;

END P1
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 155

Figure 68. Assigning results of built-in functions to variables

5.4.3.4 Handling errors
In DB2 UDB SQL stored procedures, you can make references in your stored
procedures body code to SQLCODE or SQLSTATE. All you need to do is to
declare them previously in your stored procedures body.

We strongly recommend that you use handlers for finding and handling error
conditions in your SQL stored procedure. This is the only choice you should make
if you intend for your SQL stored procedure to be portable across DB2 platforms.
Here is an example of how to do this:

CREATE PROCEDURE PROC1()
LANGUAGE SQL
BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;

.......
END

Avoid checking SQLCA or SQLSTATE values. This is a tricky area and there are
some platform differences. If you do use SQLSTATE or SQLCA checks explicitly
in your SQL stored procedure, please note that you can only check one of these
values.

You can declare program variables to hold the SQLCODE or the SQLSTATE for
different tests. Keep in mind that you have to choose one of these variables,
SQLCODE or SQLSTATE, because the second assignment statement will not get
the return code of the original statement, but from the previous one. Figure 69
shows an example of trying to set both variables in an SQL stored procedure.

CREATE PROCEDURE DRDARES1.SMP8LNS (out v1 double, out v2 double,
out v3 integer, out v4 integer , out v5 integer,
out v6 integer , out v7 char (5),out v8 char(10), out v9
char(10), out v10 char (20), out v11 char(5), out v12 char(10))

SPECIFIC DRDARES1.S8389109
LANGUAGE SQL
P1: BEGIN

set v1 = tan(.5) - (sin(.5)/cos(.5));
set v2 = exp(sin(.3)) + exp(cos(.3));
set v3 = rand();
set v4 = ceil(5.2) + floor(4.3);
set v5 = quarter(current date);
set v6 = week(current date);
set v7 = repeat('*',5);
set v8 = lcase('ALINE');
set v9 = replace('a1b1c1','1','2');
set v10 = monthname(current date) || dayname(current date);
set v11 = ltrim('felipe ');
set v12 = substr('abcdefghijklmnopq',5,10);

END P1
156 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 69. Setting both SQLCODE and SQLSTATE variables to program variables

Note that in Figure 69, when you execute the SELECT statement: (1) if the row is
not found, automatically DB2 UDB sets SQLCODE to 100 and SQLSTATE to
’02000’. The SET stament (2) sets the program variable SQLC correctly to the
value of SQLCODE, then SQLC is set to 100. However, the SET statement also
resets the values of SQLCODE and SQLSTATE, and since the command
executed successfully, they are both set to 0. When you execute the second SET
statement (3), the SQLSTATE you get no longer refers to the SQLSTATE of the
SELECT statement (1), but to the SQLSTATE of the SET statement (2). This is
the reason why you can only work with one of the variables.

The best way to write portable SQL stored procedures is to perform error
handling using the DECLARE CONDITION and the DECLARE HANDLER
statements in your SQL stored procedures. This will ensure portability of your
SQL stored procedures among different DB2 platforms.

Nested condition handlers are not supported in the SQL stored procedures body.
For more information on declaration of handlers, refer to Chapter 2, “The SQL
Procedures language” on page 9.

5.4.3.5 Nested compound statements
SQL Procedures support implemented by DB2 UDB allows you to have nested
compound statements in your SQL stored procedures body. However, you cannot
have ATOMIC compound statements nested. Figure 70 shows an example of a
nested compound statement in an SQL stored procedure.

Figure 70. Nested compound statement

Another example:

P1: BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;
DECLARE SQLC INTEGER DEFAULT 0;
DECLARE SQLST CHAR(5) DEFAULT ’00000’;
....

SELECT ID INTO VID FROM STAFF WHERE ID = 13; (1)
SET SQLC = SQLCODE; (2)
SET SQLST = SQLSTATE; (3)
....

P1: BEGIN
DECLARE CONTINUE HANDLER FOR NOT FOUND
BEGIN
SET SQLC=SQLCODE;
SET VAR1=1;

END;

SELECT id into vid FROM STAFF where id = vid;

END P1
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 157

DECLARE CONTINUE HANDLER FOR NOT FOUND
IF (1 = 1) THEN

SET SQLC=SQLCODE;
SET VAR1=1;

END IF;
SELECT id into vid FROM STAFF where id = vid;
END P1

In addition, the code generator supplies the following if SQLCODE and
SQLSTATE radio buttons are selected in the wizard:

DECLARE EXIT HANDLER FOR SQLEXCEPTION
IF (1 = 1) THEN

SET SQLSTATE_OUT = SQLSTATE;
SET SQLCODE_OUT = SQLCODE;

END IF;

The "IF (1 = 1)" gets around the compound statement limitation.

Since you cannot have ATOMIC nested compound statements, if you want to be
able to undo the changes performed only in the nested compound statement, you
can set a SAVEPOINT before the nested compound statement.

5.4.3.6 Savepoints
Savepoints are points within an SQL stored procedure, that you can set to be able
to rollback your transaction to that savepoint. A savepoint is set using the
SAVEPOINT statement, and may have a name associated to it. (See Figure 71.)

Figure 71. Setting a SAVEPOINT

In your SQL stored procedures, if you detect an error, you can use the
ROLLBACK TO SAVEPOINT statement to rollback changes performed after the
savepoint was set. A rollback to a savepoint rolls back just the work done after
the savepoint, the savepoint itself still exists. You can rollback to it again, if
necessary. A rollback to a savepoint undoes any changes, and also closes all
open cursors.

The first implementation of savepoints in DB2 UDB SQL Procedures does not
allow nested savepoints. If you plan to build portable SQL stored procedures, you
must be aware that DB2 for OS/390 V5 and DB2 for AS/400 do not support
savepoints, but DB2 UDB for OS/390 V6 does.

P1: BEGIN
UPDATE... ;
INSERT... ;
...
SAVEPOINT S1;
BEGIN
SET VAR1=1;
DELETE... ;
INSERT ... ;

END;
.....
END P1
158 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

5.4.3.7 Considerations for comments and blank lines
Neither blank lines or comments are tolerated before the actual start of the stored
procedure code, that is not in or before the CREATE PROCEDURE DDL
statement. For example, the comments below are placed as early as they could
possibly appear in the code.

CREATE PROCEDURE TEAM.Proc1 (OUT SQLSTATE_OUT char(5),
OUT SQLCODE_OUT int)

SPECIFIC TEAM.S1036175
RESULT SETS 1
LANGUAGE SQL

--
-- SQL stored procedure TEAM.Proc1
--
P1: BEGIN

DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE INT DEFAULT 0;

-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT * FROM SYSCAT.PROCEDURES;

DECLARE EXIT HANDLER FOR SQLEXCEPTION
IF (1 = 1) THEN

SET SQLSTATE_OUT = SQLSTATE;
SET SQLCODE_OUT = SQLCODE;

END IF;

-- Cursor left open for client application
OPEN cursor1;

SET SQLSTATE_OUT = SQLSTATE;
SET SQLCODE_OUT = SQLCODE;

END P1

5.5 Stored procedures preparation

In DB2 UDB, there are many different ways to build your SQL stored procedures
into your server. You can use the Stored Procedures Builder tool, the DB2
Command Line Processor, the DB2 Command Center, or any application program
issuing the CREATE PROCEDURE statement. Figure 72 shows different ways to
create your SQL stored procedures.
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 159

Figure 72. Ways to create SQL stored procedures in DB2 UDB

It is important to notice that, regardless of the method used to start the creation of
the stored procedure, the process that is used by DB2 UDB internally is always
the same, and the results obtained are equal.

When you submit a CREATE PROCEDURE statement, DB2 UDB performs a
series of steps to build your procedure in the server. These steps are always the
same, and involve the creation of a C source from your SQL stored procedures
source. This C source is precompiled, compiled, and linkedited to generate a DLL
for your SQL stored procedures. So, your SQL stored procedures are not
interpreted during execution, which is important in terms of performance. The last
step in the preparation of your SQL stored procedures is registering the
procedure and parameters in the DB2 catalog tables
SYSIBM.SYSPROCEDURES and SYSIBM.SYSPROCPARMS.

Figure 73 shows the steps involved in the preparation of an SQL stored
procedure.

Press
Build

SQL
Procedure
Definition
Compiled

(1) Stored Procedure
Builder Tool
(Window s)

(2) Com mand Line
Processor

(3) Any Client
Application

(Comm and Center/
Script Center)
160 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 73. Preparation steps for SQL stored procedures in DB2 UDB

Note that as a result of the first step, SQL Parsing and Generation, an SQC file with
a C source for your stored procedure is generated. This file also contains, as
comments, your SQL stored procedures source. If you use the IBM Distribute
Debugger for debugging your procedure, you will be able to debug using your
SQL stored procedures source contained in the C source file. The #lines

generated perform the mapping between the C statements being executed and
the corresponding SQL Procedures statement. For more information on
debugging your SQL stored procedures, refer to 5.6, “Stored procedure
debugging” on page 166.

The executable files (DLLs in Windows NT) are created in the directory
/sqllib/function/routines/udp/schema_name. The specific name of the stored
procedure is used as the name for the executable file. As an example, if you have
an SQL stored procedure named PROC1 with an specific name S4231567, an
executable named S4231567 (S4231567.DLL in NT) will be created for your stored
procedure.

An SQL stored procedure executes as a static application. A package is also
bound as one of the steps of the preparation process. The specific name of the
procedure is used as the package name.

5.5.1 Privileges required to prepare an SQL stored procedure
To issue a CREATE PROCEDURE statement that creates an SQL stored
procedure, the authorization ID executing the statement must have at least one of
the following privileges:

• SYSADM or DBADM authority

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the procedure does not exist

SQL Parsing
&generation

Input

SQL
Precompilation

CREATE PROCEDURE
SQLPROC
LANGUAGE SQL
P1: BEGIN
DECLARE cur1 CURSOR

WITH RETURN FOR
SELECT*

FROMemployee;
OPENcur1;

END P1

C source

C
precompile

listing
with

messages

Package
CCompile and

Link

DB2 UDBcatalog
SYSCAT.PROCEDURES,
SYSCAT.PROCPARMS

.o object installed in
/function/routines/udp/schema_name/...

.SQCsource
with SQLand

#line
statements
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 161

• CREATIN privilege on the schema, if the schema name of the procedure
refers to an existing schema

If the authorization ID has insufficient authority to perform the operation, an
SQLSTATE 42502 is raised.

5.5.2 Preparing an SQL stored procedure from the DB2 CLP
To create an SQL stored procedure from the DB2 CLP, you must create the
source of your stored procedure in a file.

The CREATE PROCEDURE statement must be interpreted by the DB2 CLP as a
single SQL statement. However, DB2 CLP uses the semicolon (;) as the default
delimiter for statements. When your stored procedures have compound
statements, the statements within the compound statement are also terminated
with semicolons, causing the DB2 CLP to interpret that as the end of the CREATE
PROCEDURE statement, and a syntax error is raised.

To avoid this, you must use an alternative terminating character in your file, and
change the DB2 CLP invocation command to identify this new character as the
terminating character. The samples SQL stored procedures shipped with DB2
SDK use the $ symbol as a terminating character.

Figure 74 shows a sample file, STP.DB2, containing a simple SQL stored
procedure using the $ symbol as terminating character.

Figure 74. STP.DB2 file containing SQL stored procedures using $ as a delimiter

To execute the above file, you must invoke the DB2 CLP with the -td parameter
to specify the $ as the terminating character, as follows:

db2 -td$ -fSTP.DB2

5.5.3 Preparing an SQL stored procedure from the DB2 tools
If you plan to use DB2 tools such as the Command Center or the Script Center to
submit your CREATE PROCEDURE statements, you must also change the

STP.DB2

CONNECT TO SAMPRES1$

CREATE PROCEDURE DRDARES1.PROC1 ()
SPECIFIC DRDARES1.S3710781
RESULT SETS 1
LANGUAGE SQL

P1: BEGIN
-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT * FROM STAFF;

-- Cursor left open for client application
OPEN cursor1;

END P1 $

CONNECT RESET$
162 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

termination character for SQL statements, since the default for DB2 tools is also
the semicolon (;) character.

To change the termination character for the DB2 Command Center, click on
Script->Options... then check the Use statement termination character
checkbox, and specify the character you want to use, for example, the $.

Figure 75 shows the Options window of DB2 Command Center.

Figure 75. Changing the terminating character for the DB2 Command Center

To change the termination character for scripts submitted using the DB2 Script
Center, click on Tools->Tools Settings then check the Use statement
termination character checkbox, and specify the character you want to use, for
example, the $.

Figure 76 shows the Tools Settings window for DB2 tools.
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 163

Figure 76. Changing the termination character for DB2 tools

5.5.4 Preparing an SQL stored procedure from application programs
The CREATE PROCEDURE statement may be invoked from an application
program written in CLI, ODBC, JDBC, or embedded SQL. It can be invoked in the
application as a dynamic or a static SQL statement. However, if the bind option
DYNAMICRULES BIND applies, the statement cannot be dynamically prepared.

5.5.5 Preparing an SQL stored procedure from the SPB
If you create or change an SQL stored procedure with SPB, to prepare the stored
procedure, all you have to do is right-click on the procedure name and then click
on the Build option; or you can select the stored procedure and click on the Build
icon. For more information about SPB, please refer to Chapter 3, “The DB2
Stored Procedure Builder” on page 57.
164 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 77. Using SPB to prepare SQL stored procedures

5.5.6 Copying SQL stored procedures between DB2 UDB servers
When the support for SQL Procedures become available for DB2 UDB, it is
possible that a utility to generate the source CREATE PROCEDURE statements
for the SQL stored procedures will be included. However, since the source is
available in the DB2 UDB catalog, it is very simple to generate a sequential file
with the CREATE PROCEDURE statements and then submit this file to another
DB2 UDB server to replicate the stored procedures.

To generate a sequential file, after connecting to the DB2 server, issue the
following command, from the DB2 Command Window:

db2 SELECT TEXT CONCAT ’$’ FROM SYSIBM.SYSPROCEDURES WHERE LANGUAGE = ’SQL’
> sqlp.ddl

The above command generates a file sqlp.ddl, that contains the CREATE
PROCEDURE statements for all the SQL stored procedures in your database.
You can include more conditions in the WHERE clause if you want to filter the
procedures you want to copy. You can edit the file generated to remove the initial
and final lines, and do any kind of changes you want, such as bulk changes to the
schema name of the procedures, or table names.
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 165

After changing the file, you may submit it to another DB2 UDB server, by
connecting to the server, and then issuing the following command:

db2 -td$ -fsqlp.ddl

The above command creates all the SQL stored procedures in the sqlp.ddl file at
the remote DB2 UDB server.

5.6 Stored procedure debugging

The support for SQL Procedures implemented in DB2 UDB allows you to
remotely debug stored procedures executing on the DB2 UDB server. The remote
debug is already available for Java stored procedures. However, at the time of
writing this redbook, remote debugging for SQL stored procedures (and C/C++)
was still being developed, so we could not test this support.

In this section, we describe the steps required to remotely debug SQL stored
procedures executing on a DB2 UDB server, based on the steps required for
debugging Java stored procedures. Note that since we did not have the final
version of the product, these steps may be different when the support for SQL
Procedures is available.

5.6.1 Platforms supported for remote debugging
Although the support for SQL Procedures is implemented in all DB2 UDB server
platforms, remote debugging of SQL stored procedures is only available for DB2
UDB servers executing on Windows NT, OS/2, AIX, and Sun platforms.

The IBM Distributed Debugger client must also be executing in a Windows NT
system connected to the DB2 UDB server. The IBM Distributed Debugger client is
included with DB2 UDB.

5.6.2 The DB2DBG.ROUTINE_DEBUG debugger table
DB2 UDB holds information about the stored procedures you want to debug in a
table named DB2DBG.ROUTINE_DEBUG. You must create this table in every DB2 UDB
server database that you plan to debug stored procedures.

The file db2debug.ddl contains all the DDL to create the DB2DBG.ROUTING_DEBUG

table. This file is located in the \SQLLIB\MISC directory. To create the table, you
must connect to the DB2 UDB server database and issue the following command:

db2 -tf x:\sqllib\misc\db2debug.ddl

The current version of the db2debug.ddl file creates the DB2DBG.ROUTINE_DEBUG

table, a view named DB2DBG.ROUTINE_DEBUG_USER, and two triggers on the base
table. The DB2DBG.ROUTINE_DEBUG_USER view, limits the access to the table only to
rows belonging to the user connected to the database. The definition for the
triggers is going to change, since the current triggers are used to ensure that the
stored procedure being inserted in the table is a Java stored procedure.

The DB2DBG.ROUTINE_DEBUG table must be populated using INSERT, UPDATE, and
DELETE SQL statements, or using the SPB Debug Properties dialog. Every
stored procedure you want to debug must contain a row in the
DB2DBG.ROUTINE_DEBUG table. Following is an example of an INSERT statement to
include an entry in the debug table:
166 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

DB2 INSERT INTO db2dbg.routine_debug (AUTHID, TYPE, ROUTINE_SCHEMA,
SPECIFICNAME, DEBUG_ON, CLIENT_IPADDR, CLIENT_PORT) VALUES ('DRDARES1', 'S',
'DRDARES1', 'S2351892', 'Y', '9.179.186.15',8000)

You must provide values for the columns of the table as follows:

• AUTHID: This contains the authorization id that is associated with the
debugging of the stored procedure. DB2 UDB will search the debug table
using the authorization id passed in the connect statement.

• TYPE: In the current version, the only value supported for this column is ’S’ for
stored procedures. In future versions, when the debugging facilities become
available for other DB2 objects, such as functions, other values will be valid.

• ROUTINE_SCHEMA: This is the schema associated with the stored
procedure that you want to debug.

• SPECIFICNAME: This is the specific name of the stored procedure. If you do
not know the specific name of the stored procedure you want to debug, you
can check the SYSIBM.SYSPROCEDURES table to get the specific name.

• DEBUG_ON: This column can contain a ’Y’ to turn debugging for the stored
procedure on, or a ’N’ to turn off the debugging.

• CLIENT_IPADDR: contains the IP address of the client workstation running
the IBM Distributed Debugger client. When the stored procedure starts on the
DB2 server, the debugger client will be started in the machine specified here.
Note that this machine must be executing the IBM Distributed Debugger client
daemon for receiving the debugger requests.

• CLIENT_PORT: This contains the port number for the IBM Distributed
Debugger client. This port number is specified when starting the debugger
client in the client workstation.

There are two additional columns, DEBUG_STARTN and DEBUG_STOPN, that
are not used in the current version.

5.6.3 DB2 environment variables for debugging
DB2 UDB has two environment variables that are used for the debugging of
stored procedures.

The DB2ROUTINE_DEBUG variable enables debugging for stored procedures in
your DB2 UDB server instance. To debug your stored procedures, you must set
this variable to ON, as follows:

db2set DB2ROUTINE_DEBUG=ON

To turn off debugging for your DB2 instance, reset the value of the
DB2ROUTINE_DEBUG variable, as follows:

db2set DB2ROUTINE_DEBUG=

The DER_DBG_PATH environment variable is used if the source code for the
stored procedure resides on the client. This variable should be set at the client
machine, and must provide the path where the source code resides on the client.
In case of SQL stored procedures where the code resides in the DB2 tables, this
variable is not used.
SQL Procedures for DB2 UDB for UNIX, Windows, OS/2 167

5.6.4 Starting the debugger client
After you perform the previous steps in the DB2 UDB server, you are ready to
debug your stored procedure. You must ensure that the IBM Distributed
Debugger client is installed and started in the client workstation specified in the
debugger table. To start the IBM Distributed Debugger client, you can use the
following command:

idebug.exe -qdaemon -quiport=8000

You can invoke the stored procedure from any client workstation, using a client
program, SPB, or the PCALL generic client program provided with DB2. When
the stored procedure starts at the DB2 server, the debugging process begins in
the client workstation.

For more information about the IBM Distributed Debugger client, refer to 3.4.6,
“Debugging stored procedures” on page 105.

5.6.5 Debugging stored procedures through SPB
Following is what needs to be done for debugging your stored procedure through
the SPB, which provides an easy way to debug it:

• On the server side:

1. Set the following: db2set DB2ROUTINE_DEBUG=on

• On the client side:

1. Start the debugger daemon: idebug.exe -qdaemon -quiport=8000

2. Start SPB, write your stored procedure, select the stored procedure,
right-click -> "Debug Properties" -> "Add" (the values for the IP address are
taken from the SPB machine) -> "OK"

3. Run the stored procedure through the SPB.

The SPB will take care of creating the debugger table and
inserting/deleting/updating the entries.
168 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Chapter 6. SQL Procedures for DB2 UDB for AS/400

This chapter describes the SQL Procedures language support available for DB2
UDB for AS/400. The SQL Procedures language was introduced in V4R2.

6.1 General Considerations

An SQL stored procedure is created with the CREATE PROCEDURE statement
that includes a procedure body written in SQL or more precisely in SQL
Procedures language. For SQL naming convention, the procedure will be created
in the collection or library specified by the implicit or explicit qualifier. For system
naming, the procedure will be created in the collection or library specified by the
qualifier. If no qualifier is specified, the procedure will be created in the current
library (*CURLIB).

Stored procedures are automatically registered in the system catalog, when the
procedure is created or restored onto another system. Client applications (ODBC,
JDBC, ADO based) cannot invoke stored procedures unless they are registered
in the database catalogs.

The DB2 UDB for AS/400 does not provide an SQL stored procedure statement
debugger, so the ILE C program debugger must be used for any debug that is
needed on the stored procedure program.

6.2 System requirements and planning

Before you start to develop the SQL stored procedures on the AS/400 system,
make sure that you are running on V4R2 or a higher release of the OS/400 with
the latest CUMPTF loaded.

When you execute the CREATE PROCEDURE statement for the SQL stored
procedure, DB2 UDB for AS/400 walks through a multiphase process to create an
ILE C program object (*PGM). During this process DB2 UDB for AS/400
generates an intermediary ILE C code with embedded SQL statements. This ILE
C code is then precompiled, compiled, and linked automatically. This means that
the SQL Development Kit for AS/400, and the ILE C compiler, need to be installed
on the system where you plan to develop SQL stored procedures. Once the ILE C
object is created, it can be restored onto any V4R2 or higher system and run
without the SQL Development Kit and ILE C compiler.

Please note that, for performance reasons, the ILE C program object is created
with Activation Group parameter set to *CALLER.

6.3 System Catalog Tables

The database catalog tables contain information about tables, parameters,
procedures, packages, views, indexes, and constraints on the AS/400 system.

The database manager provides views over the catalog tables. The views provide
more consistency with the catalog views of other IBM SQL products and with the
catalog views of the ANSI and ISO standard. Tables and views in the catalog are
the same as any other database tables and views. If you have the authorization,
© Copyright IBM Corp. 1999 169

you can use SQL statements to look at data in the catalog views in the same way
that you retrieve data from any other table in the AS/400 system. The database
manager ensures that the catalog contains accurate descriptions of the objects in
the database at all times.

When you create an SQL stored procedure or an external procedure, there are
two catalog tables in QSYS2 that are updated: SYSROUTINES and SYSPROCS.

The SYSPROCS table contains one row for each procedure created by the
CREATE PROCEDURE statement. Some of the fields are:

• Name of the collection or library where the procedure is created
• Name of the procedure
• Type of routine body (External or SQL)
• Language of the procedure (SQL, C, CL, RPG...)
• Number of input parameters
• Number of output parameters
• Number of input-output parameters
• The source code of an SQL stored procedure

Note: If the source of the SQL stored procedure is more than 18K, the source code is
not stored in SYSPROCS.

The SYSPARMS table contains one row for each parameter of a procedure
created by the CREATE PROCEDURE statement. Some of the fields of this table
are:

• Name of the collection or library where its created
• Name of the procedure
• Type of parameter (IN, OUT, INOUT)
• Name of the parameter
• Data type of the parameter
• Data scale of the parameter
• Data precision of the parameter

6.4 Creating an SQL stored procedure

In this section, we document the steps required to edit and compile an SQL
stored procedure (SP). On the AS/400 system there are many different ways to
built your SQL stored procedure. You can use following methods:

• Traditional 5250 programming using Source Entry Utility (SEU) and
RUNSQLSTM utilities. This gives the best control over the compiler
parameters and allows you to debug the ILE C program object.

• Operations Navigator GUI

• Operations Navigator SQL script utility

6.4.1 Creating an SQL SP with traditional tools
The steps required to create your SQL stored procedures with traditional 5250
tools are outlined in the following list:

• Create a library if you do not have one already.

• Create a source physical file; this is the file where all the SQL source
members are going to be stored.
170 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

• Start a Source Entry Utility (SEU) editing session.

• Enter the SQL stored procedure source code.

• Create the SQL stored procedure using the RUNSQLSTM command to issue
a CREATE PROCEDURE command. This creates a C program object that
runs when the procedure is called. If there are problems generating the
procedure, there is a listing that shows the syntax errors of the source.

• Invoke the stored procedure through the SQL CALL statement passing the
parameter list.

• Check for the completion status of the SQL stored procedure.

Let’ s see how to implement this scenario. First, create a library, a source file, and
start an editing session.

1. To create a library called SQLPROCS, type the following CL command at the
5250 emulation prompt:

CRTLIB LIB(SQLPROCS)

2. To create a source physical file called QSQLSRC, type the following
command:

CRTSRCPF FILE(SQLPROCS/QSQLSRC) RCDLEN(112) TEXT(’ Source physical file for
SQL Procedures’)

The CRTSRCPF command creates a source physical file QSQLSRC in
SQLPROCS library.

3. To start an editing session and create a source member, named SDK2LMS,
type the following command:

STRSEU SRCFILE(ORDAPPLIB/QSQLSRC) SRCMBR(SDK2LMS) TYPE(TXT) OPTION(2)

Entering OPTION(2) indicates that you want to start a session for a new
member. The STRSEU command creates a new member, SDK2LMS, in the
QSQLSRC file in the SQLPROCS library and starts an edit session.

4. Use SEU to enter the procedure’s source code as shown in Figure 78.
SQL Procedures for DB2 UDB for AS/400 171

Figure 78. Entering source code

Note: 1 We intentionally omitted a comma, which should separate the parameters
to produce an error listing in the next step.

5. Run the RUNSQLSTM command to create the procedure. We recommend
using the Debugging view option *LIST and Listing output *PRINT. It is useful
for debugging and testing purposes. Refer to section 6.6.2, “Preparing the
SQL stored procedure for debugging” on page 182 for more details.

Figure 79. Creating the SQL stored procedure

6. If there are syntax errors in your source code, the SQL9010 ’RUNSQLSTM
command failed’ message appears on your screen. To check for possible
errors, you need to look at the spool file created by the precompiler. Type
following CL command at the command prompt:

CREATE PROCEDURE SDK2LMS
(IN empnum CHAR(6) 1
INOUT rating SMALLINT)

LANGUAGE SQL
- The procedure’s body begins here
BEGIN

DECLARE not_found CONDITION FOR '02000';
DECLARE EXIT HANDLER FOR not_found
SET rating = -1;

IF rating = 1
THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = empnum;

ELSEIF rating = 2
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = empnum;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = empnum;

END IF;
END;

Run SQL Statements (RUNSQLSTM)

Type choices, press Enter.

Source file > QSQLSRC Name
Library > SQLPROCS Name, *LIBL, *CURLIB

Source member > SDK2LMS Name
Commitment control > *NONE *CHG, *ALL, *CS, *NONE...
Naming *SYS *SYS, *SQL

Additional Parameters

Debugging view > *LIST *STMT, *LIST, *NONE
Listing output > *PRINT *NONE, *PRINT

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
172 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

WRKSPLF

The list of your spool files appears. Find the spool file named SDK2LMS and
User Data value SQL. To display the spool file contents, use option 5 as
shown in Figure 80.

Figure 80. Working with spool files

7. The SQL stored procedure listing appears. Scroll down and find the SQL
messages section as shown in Figure 81.

Work with All Spooled Files

Type options, press Enter.
1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages
8=Attributes 9=Work with printing status

Device or Total Cur
Opt File User Queue User Data Sts Pages Page Copy
5 SDK2LMS JAREK QPRINT SQL RDY 3 1

Bottom
Parameters for options 1, 2, 3 or command
===>
F3=Exit F10=View 4 F11=View 2 F12=Cancel F22=Printers F24=More keys
SQL Procedures for DB2 UDB for AS/400 173

Figure 81. Displaying SQL precompiler error messages

8. In the preceding listing, there is a syntax error that probably generated the
other ones. Correct the syntax error using the SEU utility and execute the
RUNSQLSTM command again. This time the command should complete
successfully.

After the procedure has been successfully created, two system catalog tables are
updated: SYSROUTINES and SYSPARMS. The SYSROUTINES view contains
one row for each procedure or User Defined Function. The SYSPARMS table
contains one row for each parameter of a procedure or UDF. If you intend to work
only with stored procedures, you can also use a catalog view called SYSPROCS,
which presents information pertaining to the stored procedures. The system
catalog includes also a view called SYSFUNCS, which shows the information for
the UDFs.

Once the procedure has been created, it can be invoked with the SQL call
statement using any interface that supports SQL (embedded SQL, ODBC, JDBC,
SQLJ, CLI, and so on).

6.4.2 Creating an SQL SP with Operations Navigator GUI
The Operations Navigator provides an attractive graphical interface that allows
you to perform typical database administration tasks. It allows easy access to all
server administration tools, gives a clear overview of the entire database system,

Display Spooled File
File : SDK2LMS
Page/Line 2/17
Control
Columns 1 - 130
Find

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8..
..+....0....+....1....+....2....+....3

13 WHERE empno = empnum;
14 ELSEIF rating = 2
15 THEN UPDATE employee
16 SET salary = salary * 1.05, bonus = 500
17 WHERE empno = empnum;
18 ELSE UPDATE employee
19 SET salary = salary * 1.03, bonus = 0
20 WHERE empno = empnum;
21 END IF;
22 END;

* * * * * E N D O F S O U R C E * * * * *
RCHASM20 - V04R04M00 - 471125

5769ST1 V4R4M0 990521 Run SQL Statements SDK2LMS
09/14/99 13:52:46 Page
Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
SEQNBR Last change
MSG ID SEV RECORD TEXT
SQL0199 30 3 Position11KeywordINOUTnotexpected.Validtokens:),

.
SQL0104 30 8 Position20TokenHANDLERwasnotvalid.Validtokens:

SCROLL.

More...
174 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

enables remote database management, and provides assistance for complex
tasks.

In this section, you will learn how to efficiently use the GUI administration tools
offered by Client Access Express to work with SQL stored procedures on the
AS/400 system. We assume that you already know how to set up the Operations
Navigator connection to your AS/400.

The steps below show you how to create an SQL stored procedure using the
Create New SQL Procedure dialog:

1. Double click the Operations Navigator icon on your desktop. In the main
panel right-click on the library, which contains your database. In our case the
name of the library is SAMPLE. Select New ->Procedure-> SQL. The New
SQL Procedure dialog appears.

2. Enter the following for the stored procedure name: SDK2LMS.

3. For the description, type the following: Increase salary depending on rating.

4. Click on the Parameters tab.

5. Click the Insert button. For the first parameter name, type the following:
empnum. From the type drop down list, select CHARACTER. In the parameter
length box, enter the number ’6’. Change the parameter style to IN/OUT.

6. Insert the second parameter as shown in Figure 82.

Figure 82. Parameters definition for SQL stored procedure
SQL Procedures for DB2 UDB for AS/400 175

7. Click on SQL Statements tab. Type the procedure body as shown in Figure 83.

Figure 83. Entering SQL statements

8. Click the OK button. The stored procedure is now created.

6.4.3 Creating an SQL SP with the Run SQL Scripts utility
The Run SQL Script utility is yet another interface that you can use on the AS/400
system to create a stored procedure. The script utility is available through the
Operations Navigator GUI. It allows you to you create, edit, run, and troubleshoot
scripts of SQL statements. You can also save the scripts with which you work on
your PC.

The steps below show you how to create an SQL stored procedure using the SQL
Script utility.

1. Double click the Operations Navigator icon on your desktop. In the main
panel right-click the Database object and select Run SQL Script. The Run
SQL Scripts windows appears.

2. Type the procedure body as shown in Figure 84.
176 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 84. Creating SQL SP with script utility

3. To run the CREATE PROCEDURE statement, select Run->All from the Run
pull down menu. If the syntax of your SQL statement is correct, the SQL
stored procedure is created in the SAMPLE library on your AS/400 system.
Check for the completion status in the run history panel of the Run SQL Script
window. The last message displayed in this panel should read:

Statement ran successfully

If the run history panel does not supply sufficient information about the execution
of the SQL statements, you can view the AS/400 job log to get additional, more
specific information. From the View drop down menu, select Job Log. A job log
window appears as shown in Figure 85.
SQL Procedures for DB2 UDB for AS/400 177

Figure 85. Job log window

Note: You may not have the same messages in the job log.

To view a second level message in the job log, double click on the item you wish
to view. A dialog window appears with all of the information for that message.

To save the script that contains the source code for the SDK2LMS stored
procedure, select File->Save As from the script utility menu bar. The Save As
dialog is displayed. In the Save in list combo, open the directory you wish to use
as your SQL script repository. In our case we use
d:\sg24_5485\work_in_progress directory. Enter sdk2lms in the file name input
field.
178 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 86. Saving SQL Script File

Click Save to return to the Run SQL Script dialog.

The Run SQL Script utility proved to be very useful when we ported the SQL
stored procedures from other DB2 UDB platforms to the AS/400. All we had to do
was to copy the scripts to our working directory,and change the file extension
from .stp to .sql. Then we could double click a stored procedure file from the
Windows Explorer window to load the script into the Run SQL Script utility.

6.4.4 Verifying the stored procedure properties
Once the stored procedure has been successfully created, you can verify its
properties by using the Operations Navigator interface:

1. In the main Operations Navigator window double click the SAMPLE library
icon. The right-hand panel displays now all DB2 UDB for AS/400 objects in
this library.

2. Find the SDK2LMS stored procedure icon and right-click it. The context menu
for this object appears. Select Properties. The SDK2LMS Properties window
shows up. It has three tabs:

• The General page specifies the name by which the procedure is known to
SQL programs and the number of result sets it should return. If you want to
call an external program as a procedure, you need to define the program as
a procedure before you can call it from an SQL program.

• The Parameters page specifies the parameters that the procedure uses.

• The SQL Statements page contains the code for the external SQL
program that you are defining as a procedure. You can use the SQL
statement examples and fill in the necessary information to make coding
SQL easier. After an SQL stored procedure has been created, the SQL
statements cannot be changed.

The Parameters page for the SDK2LMS stored procedure is shown in Figure 87.
SQL Procedures for DB2 UDB for AS/400 179

Figure 87. Displaying the stored procedure properties

6.5 Deleting or replacing the SQL stored procedure

When you create a procedure, its library and name must be unique to register the
SQL stored procedure in the catalogs. However, the CREATE PROCEDURE
statement does not have a replace option. For this reason, if you want to
re-create or delete an existing procedure, use the DROP PROCEDURE
statement. If you try to create a stored procedure that already exists in a given
library, you will receive an error return code SQL0454.

For example, when we tried to re-run the CREATE PROCEDURE statement for
the SDK2LMS stored procedure the following error message was displayed in the
run history panel of the SQL Script utility:

SQL0454 - ’Function SDK2LMS in SAMPLE with the same signature already
exists’.

There are several ways to drop a stored procedure from the AS/400 system:

• In the traditional "green screen" environment, start the interactive SQL session
with the STRSQL command, and at the ISQL prompt, type the following SQL
statement:

DROP PROCEDURE library/procedure-name

• In the Operations Navigator environment, in the right panel of the main
Operations Navigator window, right-click the procedure you want to drop and
select the Delete option. A window appears with the stored procedure object
selected for deletion. Confirm that this is the procedure you want to delete,
and click the Delete button, as shown in Figure 88.
180 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 88. Deleting a stored procedure

• In the Run SQL Script utility, insert the DROP PROCEDURE procedure-name

statement in the workable area and then select Run->All from the menu bar.

The system catalog tables, SYSROUTINES and SYSPARMS, are updated when
a DROP PROCEDURE statement is executed. In the SYSROUTINES table, a
row is deleted corresponding to the information of the deleted procedure. In
SYSPARMS table, the number of rows deleted depends on the number of
parameters defined in the procedure.

6.6 Debugging SQL stored procedures

In this section we show how to debug an SQL stored procedure on the AS/400
system. DB2 UDB for AS/400 does not provide a native SQL debugger, so the
processes of eliminating run-time errors requires a certain level of programming
skills in the AS/400 Integrated Language Environment (ILE). As discussed in 6.2,
“System requirements and planning” on page 169, when you create an SQL
stored procedure, under the covers, the system is creating an ILE C program
object, which implements the procedure. The ILE C programs, in turn can be
debugged with the ILE Source Debugger. We start this section with a brief
description of the basic ILE Source Debugger functions.

6.6.1 The ILE Source Debugger
The ILE source debugger is used to detect errors in and eliminate errors from
program objects and service programs. By using debug commands with any ILE
program, you can:

• View the program source or change the debug view
• Set and remove conditional and unconditional breakpoints
• Step through a specified number of statements
• Display or change the value of fields, structures, and arrays
• Equate a shorthand name with a field, expression, or debug command

Many debug commands are available for use with the ILE source debugger.
These debug commands and their parameters are entered on the debug
command line displayed in the bottom of the Display Module Source display and
the Evaluate Expression display. These commands can be entered in uppercase,
lowercase, or mixed case.
SQL Procedures for DB2 UDB for AS/400 181

Note: The debug commands on the debug command line are not CL commands.

The most important debug commands are briefly described in the following list:

Command Description

ATTR Permits you to display the attributes of a variable. The attributes
are the size and type of the variable.

BREAK Permits you to enter either an unconditional or conditional
breakpoint at a position in the program being tested. Use BREAK
line-number WHEN expression to enter a conditional breakpoint.

CLEAR Permits you to remove conditional and unconditional breakpoints.

DISPLAY Allows you to display the names and definitions assigned by using
the EQUATE command.

EQUATE Allows you to assign an expression, variable, or debug command
to a name for shorthand use.

EVAL Allows you to display or change the value of a variable or to
display the value of expressions, records, structures, or arrays.

QUAL Allows you to define the scope of variables that appear in
subsequent EVAL commands.

STEP Allows you to run one or more statements of the procedure being
debugged.

FIND Searches forwards or backwards in the module currently
displayed for a specified line number or string or text.

UP Moves the displayed window of source towards the beginning of
the view number of lines entered.

DOWN Moves the displayed window of source towards the end of the
view number of lines entered.

LEFT Moves the displayed window of source to the left.

RIGHT Moves the displayed window of source to the right by the number
of characters entered.

TOP Positions the view to show the first line.

BOTTOM Positions the view to show the last line.

NEXT Positions the view to the next breakpoint in the source currently
displayed.

PREVIOUS Positions the view to the previous breakpoint in the source
displayed.

HELP Shows the online help information for the available source
debugger commands.

6.6.2 Preparing the SQL stored procedure for debugging
A program or module must have debug data available if you are to debug it. Since
debug data is created during compilation, you need to specify the DBGVIEW
parameter on the RUNSQLSTM command. The DBVIEW parameter specifies the
type of source debug information to be provided by the SQL precompiler. The
default value for this parameter is *NONE, so no debugging information is
included in the program object.
182 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

To create the SQL stored procedure with the debug data follow the steps outlined
below:

1. At the CL command prompt type RUNSQLSTM and press F4 for prompting.
Provide the source file name, library, and source member as shown in Figure
89 for our SDK2LMS example.

Figure 89. RUNSQLSTM command

2. Press the Page Down key to scroll to the DBGVIEW parameter. Set the
parameter value to *LIST as shown in Figure 90. We also recommend that you
set the OUTPUT parameter to *PRINT. The OUTPUT parameter specifies
whether the precompiler listing is generated.

Note: In our example we use the system naming convention, which gives much
more naming flexibility on the AS/400 system than the SQL naming convention. In
the SDK2LMS SQL source, we did not qualify the procedure name with a library
name, so it is going to be created in the current library. If you want the stored
procedure to be created in the SAMPLE library, make sure it is your current
library at the time you run the RUNSQLSTM command. You can use the Display
Library List (DSPLIBL) command to display your library list, and the Change
Current Library (CHGCURLIB) command to change the current library for your
AS/400 job.

Run SQL Statements (RUNSQLSTM)

Type choices, press Enter.

Source file > QSQLSRC Name
Library > SQLPROCS Name, *LIBL, *CURLIB

Source member > SDK2LMS Name
Commitment control *CHG *CHG, *ALL, *CS, *NONE...
Naming *SYS *SYS, *SQL

Additional Parameters

Severity level 10 0-40
Date format *JOB *JOB, *USA, *ISO, *EUR...
Date separator character *JOB *JOB, /, ., ,, -, ' ', *BLANK
Time format *HMS *HMS, *USA, *ISO, *EUR, *JIS
Time separator character *JOB *JOB, :, ., ,, ' ', *BLANK
Default collection *NONE Name, *NONE
IBM SQL flagging *NOFLAG *NOFLAG, *FLAG
ANS flagging *NONE *NONE, *ANS

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
SQL Procedures for DB2 UDB for AS/400 183

Figure 90. Specifying the DBGVIEW and OUTPUT parameters

The possible values for the Debugging view parameter are:

*STMT Allows the compiled module object to be debugged using program
statement numbers and symbolic identifiers.

*NONE The debug view is not be generated.
*LIST Generates the listing view for debugging the compiled module

object.

The possible values for the Listing output parameter are:

*PRINT The precompiler listing is generated.
*NONE The precompiler listing is not generated.

You must specify *STMT or *LIST if you want debugging data to be saved in the
program. After the RUNSQLSTM command has successfully created the
procedure, we are ready to test it.

6.6.3 Testing the SQL stored procedure in traditional environment
As you have probably realized by now, the SQL control statements do not include
the PRINT or DISPLAY statements. Therefore, the easiest way to test the
execution of the procedure is to use ILE C source code debugging.

While debugging and testing your program, ensure that your library list is
changed to direct the programs to a test library containing the test data so that
any existing real data is not affected.

To start a debugging session, type the SRTDBG command at the CL prompt and
press F4 for prompting. Provide the program name and the library. Make sure that
you change the Update production files parameter to *YES. Even if you work with
the test data the library attribute is set to PROD, and your procedure will fail
miserably the first time you try to access the data. An example of the STRDBG
command is shown in Figure 91.

Run SQL Statements (RUNSQLSTM)

Type choices, press Enter.

Decimal Point *JOB *JOB, *SYSVAL, *PERIOD...
Sort sequence *JOB Name, *HEX, *JOB...
Library Name, *LIBL, *CURLIB

Language id *JOB *JOB, *JOBRUN...
Print file QSYSPRT Name
Library *LIBL Name, *LIBL, *CURLIB

Statement processing *RUN *RUN, *SYN
Allow copy of data *OPTIMIZE *OPTIMIZE, *YES, *NO
Close SQL cursor *ENDACTGRP *ENDMOD, *ENDACTGRP
Allow blocking *ALLREAD *ALLREAD, *NONE, *READ
Delay PREPARE *NO *YES, *NO
Debugging view > *LIST *STMT, *LIST, *NONE
User profile *NAMING *NAMING, *USER, *OWNER
Dynamic user profile *USER *USER, *OWNER
Listing output > *PRINT *NONE, *PRINT
Target release *CURRENT *CURRENT, VxRxMx

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
184 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 91. Starting a debug session

Note: When your session is in debug mode, the job log of the session saves a lot
of information related to the SQL statements being executed. The application
developer can use this information for problem detection and performance tuning.

Once you have filled all the required parameters, press Enter to initialize the
debug session. The ILE Source Debugger loads the ILE C source created for your
SQL stored procedure. At the debug prompt, type the following command: find

main and hit ENTER. This positions you at the main function as shown in Figure
92. Now you can set a breakpoint. It always a good idea to check, at the
beginning of a stored procedure execution, whether the parameters were passed
correctly, so set the breakpoint at line 110. You are all set now — just press F12
to return to the command line prompt.

Start Debug (STRDBG)

Type choices, press Enter.

Program > SDK2LMS Name, *NONE
Library > SAMPLE Name, *LIBL, *CURLIB

+ for more values
*LIBL

Default program *PGM Name, *PGM, *NONE
Maximum trace statements 200 Number
Trace full *STOPTRC *STOPTRC, *WRAP
Update production files > *YES *NO, *YES
OPM source level debug *NO *NO, *YES
Service program *NONE Name, *NONE
Library Name, *LIBL, *CURLIB

+ for more values

More...
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
SQL Procedures for DB2 UDB for AS/400 185

Figure 92. Debug session

The next step in the stored procedure testing is to actually invoke the procedure.
As mentioned earlier, you cannot invoke the stored procedure from the command
prompt; you need to use the SQL call.

To test the SDK2LMS stored procedure, we coded a small embedded SQL ILE C
program that calls the procedure and displays the results. The source code for
the INVSDK2LMS is shown in Figure 93. You can compile this program with the
following CL command:

CRTSQLCI OBJ(SQLPROCS/INVSDK2LMS) SRCFILE(SQLPROCS/QCSRC)
OBJTYPE(*PGM) OUTPUT(*PRINT) DBGVIEW(*SOURCE)

Display Module Source

Program: SDK2LMS Library: SAMPLE Module: SDK2LMS
101 void main(int argc, char* argv[]) {
102 1 SQLP_IND = (short int*) argv[3];
103 2 sqlcap = (SQLCA*) argv[4];
104 3 SQLInitSQLCA((SQLCA*)&sqlca);
105 4 SDK2LMS.SQLP_I1 = *(SQLP_IND+0);
106 5 if (SDK2LMS.SQLP_I1 != SQLP_NULLIND)
107 6 strcpy(SDK2LMS.EMPNUM, argv[1]);
108 7 SDK2LMS.SQLP_I2 = *(SQLP_IND+1);
109 8 if (SDK2LMS.SQLP_I2 != SQLP_NULLIND)
110 9 SDK2LMS.RATING = * (short *) argv[2];
111 10 for (; ;) {
112 SQLP_L2:
113 11 sqlca.sqlcaid[6] = 0x00;
114 12 SQLP_RC1 = 0;
115 if (SQLP_RC1 != -1 &&

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
186 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Figure 93. INVDSK2LMS source code

To run the INVSDK2LMS program, call the program from the command prompt,
passing two required parameters as shown below:

CALL PGM(SQLPROCS/INVSDK2LMS) PARM('000010' 1)

The INVSDK2LMS program, in turn invokes the stored procedure and passes the
control to it. The stored procedure hits the breakpoint, and the debugger session
is activated. On the debugging line, you can enter any of the debug commands.
In this way, you can display the content of any variable, check the SQL return
code and so on. You can also step through the program using the F10 key.

Since your session is in debug mode, the job log has all the messages related to
the execution of the procedure. We highly recommend that, while developing
stored procedures, you always check the joblog messages inserted by the DB2
UDB for AS/400 optimizer.

Note: If your stored procedure is defined with only IN parameters and it does not
return any results sets, you can test it very easily using the Interactive SQL. Let’s
suppose you created a stored procedure called setSalary, which takes two input
parameters: employee_number of type char(6) and salary of type decimal(11,2). You
could test this procedure from the ISQL session by typing the following statement:

CALL setSalary (’000010’, 65000.00)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
char Employee_Number??(6 ??);
short Rating;

EXEC SQL END DECLARE SECTION;

void main(int argc, char **argv)
{

/* copy the paremters to the host variables */
strcpy(Employee_Number, argv??(1??));
Rating = (short)*argv??(2 ??);

/* any sql errors at the call time? */
EXEC SQL WHENEVER SQLERROR GOTO badnews;

EXEC SQL CALL SAMPLE/SDK2LMS(:Employee_Number,
:Rating);

if(Rating != -1)
printf("Stored Procedure ran successfully...\n");

else
printf("Error in Stored Procedure.\n");
exit(0);

badnews:
printf("Error occured in invoking program. SQLCODE = %5d\n", SQLCODE);
exit(1);

}

SQL Procedures for DB2 UDB for AS/400 187

6.6.4 Testing the SQL stored procedure in client/server environment
Testing and debugging of SQL stored procedures in the client/server environment
maybe a little bit more tricky than in the traditional AS/400 environment. In this
section we will outline the steps required to debug an SQL stored procedure
called from the Java client. The combination of Java running on the client and
SQL running on a powerful database server like the AS/400 can result in a highly
scalable and robust software solution.

In our test scenario, we coded a Java client, which uses the AS/400 JDBC driver,
to send the SQL request to DB2 UDB for AS/400. In the AS/400 client/server
architecture, a JDBC client communicates with a corresponding AS/400 server
job, which runs the SQL requests on behalf of this client. In other words, when we
call a stored procedure from the Java client, there is an AS/400 server job that
actually invokes the stored procedure on the server and then passes back the
results to the client. The AS/400 server jobs associated with the database access
are named QZDASOINIT, and run in the QSERVER subsystem. At any given
time, there maybe a large number of database server jobs active in the
QSERVER subsystem, so the first step in our debug procedure is to find the
server job, which serves our client. The Java client code we used to debug the
SDK2LMS stored procedure is listed in section 6.6.4.1, “Java client calling the
stored procedure on the AS/400 server” on page 190.

1. Start the Java code in debug mode and set the breakpoint at the line just
below the invocation of the getConnection method, as shown in Figure 94.

Figure 94. Running Java client

Note: The AS/400 server job is assigned to your client after the connection was
established; that is why you need to set the breakpoint below the getConnection
method invocation.
188 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

2. Switch to the AS/400 session. To find the QZDASOINIT job serving your Java
client, run the following CL command:

WRKOBJLCK OBJ(TEAMXX) OBJTYPE(*USRPRF)

where TEAMXX is the user profile you use to log into the AS/400 system.

The Work with Object Locks dialog appears. There should be one job named
QZDASOINIT listed. Type 5 in the Option field next to this job, as shown in
Figure 95, and hit Enter.

Figure 95. Finding the database server job

On the Work with Job dialog, select Option 10 ’Display job log, if active or on job
queue’. The Display Job Log screen appears. Find the first message in the joblog
and write down the fully qualified job name for your database server job, as
shown in Figure 96.

Figure 96. Job log for a database server job

In our case, the fully qualified name is: 064728/QUSER/QZDASOINIT.

3. Return to the command prompt and run following CL command:

STRSRVJOB JOB(064728/QUSER/QZDASOINIT)

Note: The Start Service Job (STRSRVJOB) command starts the remote service
operation for a specified job so that other service commands can be entered to
service the specified job. Any dump, debug, and trace commands can be run in
that job until service operation ends.

Work with Object Locks
System: AS20

Object: TEAMXX Library: QSYS Type: *USRPRF

Type options, press Enter.
4=End job 5=Work with job 8=Work with job locks

Opt Job User Lock Status Scope Thread
5 QZDASOINIT QUSER *SHRRD HELD *JOB

Bottom
F3=Exit F5=Refresh F12=Cancel

Display Job Log
System: AS20

Job . . : QZDASOINIT User . . : QUSER Number . . . : 064728

Job 064728/QUSER/QZDASOINIT started on 09/28/99 at 15:38:56 in subsystem
QSERVER in QSYS. Job entered system on 09/28/99 at 15:38:56.

Printer device QPRINT not found.
Servicing user profile TEAMXX.
Servicing user profile TEAMXX from client 10.10.10.10
SQL Procedures for DB2 UDB for AS/400 189

4. Start the ILE C Source Debugger for your server job with the following CL
command:

STRDBG PGM(SAMPLE/SDK2LMS) UPDPROD(*YES)

The ILE Source Debugger loads the ILE C source created for your SQL stored
procedure. Set the breakpoint and return to the command line.

5. Switch back to the Java client session and set the breakpoint at the statement
that calls the stored procedure on the AS/400 system, as shown in Figure 97.

Figure 97. Calling the stored procedure from Java

Run the statement at the breakpoint. The execution of the client code is now
suspended, since the control was passed to the stored procedure on the AS/400
system.

6. Switch to the AS/400 session. The ILE C Source Debugger was activated, and
you can step through your stored procedure on the server. Run the procedure
to the completion. The control returns to the client, and you can continue to
work with the Java code.

6.6.4.1 Java client calling the stored procedure on the AS/400 server
The following example Java program shows you how to use the AS/400 JDBC
driver to connect to the AS/400 system and call a stored procedure. It also
teaches you how to bind IN and INOUT parameters to the CallableStatement
class. You need to pass two arguments: employee’s number and rating, to the
program, when calling it from the command line, as shown in the example below:

java TestStoredProcedure 000010 1
190 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Note: Make sure the host server is up and running on the AS/400 system and that
jt400.zip is in your classpath on the client. Refer to "AS/400 Toolbox for Java
Setup Guide", SC41-5438 for more details.

import java.io.*;
import java.util.*;
import java.sql.*;
import com.ibm.as400.access.*;
import java.math.*;

class TestStoredProcedure {

// declaration of instance vars
private Connection conn;
private CallableStatement callableStmt;

public String connectToDB() {

String dbDriver = null;
String dbURL = null;
String rtnValue = null;

String uid = null;
String pwd = null;

try {
//Retrieve driver name and url from config.properties file

dbDriver = "com.ibm.as400.access.AS400JDBCDriver";
dbURL = "jdbc:as400://as20";
uid = "TEAMXX";
pwd = "TEST26T";

// Register driver
try {

DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());

} catch (Exception ex) {
System.out.println("cannot register JDBC driver: " + dbDriver);
ex.printStackTrace();
return "cannot register JDBC driver";

}

// Get Connection to DB, passing in properties
conn = DriverManager.getConnection(dbURL, uid, pwd);

// Create a callable statement
callableStmt = conn.prepareCall("CALL SAMPLE.SDK2LMS(?, ?)");
rtnValue = ("Connected To "+ dbURL);

}
catch (Exception e) {

System.out.println("Connection Failed.");
System.out.println(e);

}

return (rtnValue);
}

public void dispose() {
SQL Procedures for DB2 UDB for AS/400 191

try {
// close the the statement, the lastly the connection

if (null != callableStmt) {
callableStmt.close();

}
if (null != conn) {

conn.close();
}
System.exit(0);

}
catch (Exception e) {

System.out.println("Error while closing...");
System.out.println(e);

}
}

public void setSalary(String empnum, short rating) {
try{

// take over commitment control within getInfo method
conn.setAutoCommit(false);

// set the input parameters
callableStmt.setString(1, empnum);
callableStmt.setShort(2, rating);
//register the output parameter
callableStmt.registerOutParameter(2,java.sql.Types.SMALLINT);

// execute Stored Procedure
callableStmt.executeUpdate();

// retrieve the values of the output parameter
short returnCode = callableStmt.getShort(2);
// print out the result of the call
if(returnCode != -1)
System.out.println("Stored Procedure ran successfully");
else
System.out.println("ERROR in Stored Procedure");

// commit and give back commitment control
conn.commit();
conn.setAutoCommit(true);

}
catch (Exception e) {

System.out.println("Error while retrieving information from " +
"Database.");

System.out.println(e);
try {

// error -> rollback and give back commitment control
conn.rollback();
conn.setAutoCommit(true);

} catch (Exception e2) {
System.out.println("Error in rollback");
System.out.println(e2);

}
}

192 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

return;
}
/**
* Starts the application.
* @param args an array of command-line arguments
*/
public static void main(java.lang.String[] args) {

String empnum = args[0];
short rating = new Short(args[1]).shortValue();
String connect = null;
TestStoredProcedure jsp = new TestStoredProcedure();

try {
//connect to Database
connect = jsp.connectToDB();
System.out.println(connect);

//Retrieve information from Database
jsp.setSalary(empnum, rating);

//clean up
jsp.dispose();

}
catch (Exception e){

System.out.println(e);
}

}

SQL Procedures for DB2 UDB for AS/400 193

194 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Appendix A. Sample SQL stored procedure programs

This appendix shows examples illustrating SQL stored procedures for each DB2
release. The same samples were executed against OS/390, NT, and AIX. The
sample SQL stored procedure programs illustrate the theory discussed in this
redbook and are useful for getting started with the SQL Procedures language in
your own environment and gaining some hands-on experience, whatever platform
you have.

A.1 Naming convention

We used the following naming convention shown in Figure 98 for these sample
SQL stored procedures:

Figure 98. Naming convention for samples

The only exception is the sample called DSN8ES1, which will be a sample
included in the delivery of the PTF for SQL Procedures language support for
OS/390.

The samples beginning with SDK are included when you install the DB2 Software
Developer’s Kit (SDK) on the workstation platform. They have been customized
for use in the OS/390 platform.

A.2 OS/390 samples

A.2.1 DSN8ES1

This sample shows the use of: cursors, handlers, WHILE, IF (nested within the
WHILE).

CREATE PROCEDURE DSN8ES1
(IN DEPTNO CHAR(3),
OUT DEPTSAL DECIMAL(15,2),
OUT BONUSCNT INT)

FENCED
RESULT SET 1
LANGUAGE SQL

NOT DETERMINISTIC
MODIFIES SQL DATA

NO DBINFO
COLLID DSN8ES51

NO WLM ENVIRONMENT

xxxxLEP
Environment: N - Windows NT

M - OS/390
X - AIX

Purpose: C - Client, S - SQL procedure

Language: L - SQL Procedures language

Uniquely identifies sample
© Copyright IBM Corp. 1999 195

ASUTIME NO LIMIT
STAY RESIDENT NO
PROGRAM TYPE MAIN

SECURITY DB2
COMMIT ON RETURN NO

P1: BEGIN NOT ATOMIC
DECLARE EMPLOYEE_NUMBER CHAR(6);
DECLARE EMPLOYEE_FIRSTNME CHAR(12);
DECLARE EMPLOYEE_LASTNAME CHAR(15);
DECLARE EMPLOYEE_SALARY DECIMAL(15,2) DEFAULT 0;
DECLARE EMPLOYEE_BONUS DECIMAL(15,2) DEFAULT 0;
DECLARE TOTAL_SALARY DECIMAL(15,2) DEFAULT 0;
DECLARE BONUS_COUNTER INT DEFAULT 0;
DECLARE ENDTABLE INT DEFAULT 0;

-- Cursor for result set of employees who got a bonus
DECLARE DSN8ES1_RS_CSR CURSOR WITH RETURN WITH HOLD FOR

SELECT RS_SEQUENCE,
RS_EMPNO,
RS_FIRSTNME,
RS_LASTNAME,
RS_BONUS

FROM DSN8ES1_RS_TBL
ORDER BY RS_SEQUENCE;

-- Cursor to fetch department employees
DECLARE C1 CURSOR FOR

SELECT EMPNO,
FIRSTNME,
LASTNAME,
SALARY,
BONUS

FROM EMP
WHERE WORKDEPT = DEPTNO;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET ENDTABLE = 1;

DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET DEPTSAL = NULL;

-- Clean residual from the result set table
DELETE FROM db2res1.DSN8ES1_RS_TBL;

OPEN C1;

FETCH C1
INTO EMPLOYEE_NUMBER,

EMPLOYEE_FIRSTNME,
EMPLOYEE_LASTNAME,
EMPLOYEE_SALARY,
EMPLOYEE_BONUS;

WHILE ENDTABLE = 0 DO
SET TOTAL_SALARY = TOTAL_SALARY

+ EMPLOYEE_SALARY
+ EMPLOYEE_BONUS;
196 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

IF EMPLOYEE_BONUS > 0.00 THEN
SET BONUS_COUNTER = BONUS_COUNTER + 1;

-- Add the employee's data to the result set
INSERT INTO db2res1.DSN8ES1_RS_TBL

(RS_SEQUENCE,
RS_EMPNO,
RS_FIRSTNME,
RS_LASTNAME,
RS_SALARY,
RS_BONUS)

VALUES(P1.BONUS_COUNTER,
P1.EMPLOYEE_NUMBER,
P1.EMPLOYEE_FIRSTNME,
P1.EMPLOYEE_LASTNAME,
P1.EMPLOYEE_SALARY,
P1.EMPLOYEE_BONUS);

END IF;

FETCH C1
INTO EMPLOYEE_NUMBER,

EMPLOYEE_FIRSTNME,
EMPLOYEE_LASTNAME,
EMPLOYEE_SALARY,
EMPLOYEE_BONUS;

END WHILE;

CLOSE C1;
SET DEPTSAL = TOTAL_SALARY;
SET BONUSCNT = BONUS_COUNTER;

-- Open the cursor to the result set
OPEN DSN8ES1_RS_CSR;

END P1

A.2.2 SDK0LMS

This sample shows the use of result sets.

CREATE PROCEDURE SDK0LMS (OUT MEDSAL DOUBLE)
RESULT SETS 2
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL STORED PROCEDURE SDK0LNS
--
BEGIN

DECLARE V_NUMRECORDS INT DEFAULT 1;
DECLARE V_COUNTER INT DEFAULT 0;
DECLARE C1 CURSOR FOR
SELECT INTEGER(SALARY) FROM DB2RES1.STAFF
ORDER BY SALARY;

-- USE WITH RETURN IN DECLARE CURSOR TO RETURN A RESULT SET
DECLARE C2 CURSOR WITH RETURN FOR
Sample SQL stored procedure programs 197

SELECT NAME, JOB, INTEGER(SALARY)
FROM DB2RES1.STAFF
WHERE SALARY > MEDSAL
ORDER BY SALARY;

-- YOU CAN RETURN AS MANY RESULT SETS AS YOU LIKE, JUST
-- ENSURE THAT THE EXACT NUMBER IS DECLARED IN THE RESULT SETS
-- CLAUSE OF THE CREATE PROCEDURE STATEMENT
-- USE WITH RETURN IN DECLARE CURSOR TO RETURN ANOTHER RESULT SET
DECLARE C3 CURSOR WITH RETURN FOR
SELECT NAME, JOB, INTEGER(SALARY)
FROM DB2RES1.STAFF
WHERE SALARY < MEDSAL
ORDER BY SALARY DESC;

DECLARE EXIT HANDLER FOR NOT FOUND
SET MEDSAL = 6666;

-- INITIALIZE OUT PARAMETER
SET MEDSAL = 0;
SELECT COUNT(*) INTO V_NUMRECORDS FROM DB2RES1.STAFF;
OPEN C1;
WHILE V_COUNTER < (V_NUMRECORDS / 2 + 1) DO
FETCH C1 INTO MEDSAL;
SET V_COUNTER = V_COUNTER + 1;

END WHILE;
CLOSE C1;
-- RETURN 1ST RESULT SET, DO NOT CLOSE CURSOR
OPEN C2;

-- RETURN 2ND RESULT SET, DO NOT CLOSE CURSOR
OPEN C3;

END

A.2.3 SDK1LMS

This sample shows the use of the CASE statement. Note that the SPECIFIC
keyword used for the other samples is not valid in OS/390.

CREATE PROCEDURE SDK1LMS (IN empnum char(6),
IN rating INT, OUT omsg char(20))

-- SPECIFIC DRDARES1.S1156162
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

BEGIN
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found
SET omsg = 'not found';

CASE rating
WHEN 1 THEN
UPDATE db2res1.employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = empnum;

WHEN 2 THEN
UPDATE db2res1.employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = empnum;

ELSE
198 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

UPDATE db2res1.employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = empnum;

END CASE;
END

A.2.4 SDK2LMS

This sample shows the IF statement.

CREATE PROCEDURE SDK2LMS (IN empnum CHAR(6),
IN rating SMALLINT)

COLLID SG245485
LANGUAGE SQL
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK2LNS
--

BEGIN
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found
SET rating = -1;

IF rating = 1
THEN UPDATE db2res1.employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = empnum;

ELSEIF rating = 2
THEN UPDATE db2res1.employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = empnum;

ELSE UPDATE db2res1.employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = empnum;

END IF;
END

A.2.5 SDK3LMS

This sample shows the use of the RUN OPTIONS debug line and DYNAMIC SQL
statements.

CREATE PROCEDURE SDK3LMS
(IN deptnum CHAR(3), OUT tabname CHAR(31))
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1
RUN OPTIONS 'POSIX(ON),TEST(ALL,*,,VADTCPIP&9.112.16.127:*)'

--
-- SQL stored procedure SDK3LMS
--
BEGIN
DECLARE stmt VARCHAR(1000);
-- continue if sqlstate 42704 ('undefined object name')
DECLARE CONTINUE HANDLER FOR SQLSTATE '42704'
SET stmt = '';

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET tabname = 'PROCEDURE_FAILED';
Sample SQL stored procedure programs 199

SET tabname = 'DEPT_'||deptnum||'_T';
SET stmt = 'CREATE TABLE '||tabname||
'(empno CHAR(6) NOT NULL, '||
'firstnme VARCHAR(12) NOT NULL, '||
'midinit CHAR(1) NOT NULL, '||
'lastname CHAR(15) NOT NULL, '||
'salary DECIMAL(9,2))' ||
'IN DATABASE RUNNING' ;
PREPARE s2 FROM STMT;
EXECUTE s2;
SET stmt = 'INSERT INTO '||tabname||
' SELECT empno, firstnme, midinit, lastname, salary '||
' FROM db2res1.employee e '||
' WHERE workdept = ?';

PREPARE s3 FROM stmt;
EXECUTE s3 USING deptnum;

END

A.2.6 SDK4LMS

This sample shows use of the LOOP and LEAVE statements. Note that the
ITERATE keyword is not valid for OS/390.

CREATE PROCEDURE SDK4LMS ()
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK4LMS
--
BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE c1 CURSOR FOR
SELECT deptno, deptname, admrdept
FROM db2res1.department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
ins_loop:
LOOP
FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN
LEAVE ins_loop;

-- ELSEIF v_dept = 'D11' THEN
-- ITERATE ins_loop;

END IF;
INSERT INTO db2res1.department (deptno, deptname, admrdept)
VALUES ('NEW', v_deptname, v_admdept);

END LOOP;
CLOSE c1;

END
200 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

A.2.7 SDK5LMS

This sample shows use of the IF statement nested within the LOOP statement.

CREATE PROCEDURE SDK5LMS (OUT counter INT)
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK5LMS
--
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found
CONDITION for SQLSTATE '02000';

DECLARE c1 CURSOR FOR
SELECT firstnme, midinit, lastname
FROM db2res1.employee;

DECLARE CONTINUE HANDLER for not_found
SET at_end = 1;

-- initialize OUT parameter
SET counter = 0;
OPEN c1;
fetch_loop:
LOOP
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

IF at_end <> 0 THEN LEAVE fetch_loop;
END IF;
SET counter = counter + 1;

END LOOP fetch_loop;
CLOSE c1;

END

A.2.8 SDK6LMS

This sample also shows LEAVE and IF statements within a loop.

CREATE PROCEDURE SDK6LMS (OUT counter INT)
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK6LMS
--
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR
SELECT firstnme, midinit, lastname
FROM db2res1.employee;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET counter = -1;

-- initialize OUT parameter
Sample SQL stored procedure programs 201

SET counter = 0;
OPEN c1;
fetch_loop:
LOOP
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

IF v_midinit = ' ' THEN
LEAVE fetch_loop;

END IF;
SET counter = counter + 1;

END LOOP fetch_loop;
CLOSE c1;

END

A.2.9 SDK7LMS

This sample shows nested CASE statements.

CREATE PROCEDURE SDK7LMS (IN deptnum SMALLINT)
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK7LMS
--
BEGIN

DECLARE v_salary DOUBLE;
DECLARE v_id SMALLINT;
DECLARE v_years SMALLINT;
DECLARE at_end INT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE C1 CURSOR FOR
SELECT id, FLOAT(salary), years
FROM db2res1.staff
WHERE dept = deptnum;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN C1;
FETCH C1 INTO v_id, v_salary, v_years;
WHILE at_end = 0 DO
CASE
WHEN (v_salary < 2000 * v_years)
THEN UPDATE db2res1.staff
SET salary = 2150 * v_years
WHERE id = v_id;

WHEN (v_salary < 5000 * v_years)
THEN CASE
WHEN (v_salary < 3000 * v_years)
THEN UPDATE db2res1.staff
SET salary = 4000 * v_years
WHERE id = v_id;

ELSE UPDATE db2res1.staff
SET salary = v_salary * 1.10
WHERE id = v_id;

END CASE;
ELSE UPDATE db2res1.staff

SET job = 'PREZ'
202 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

WHERE id = v_id;
END CASE;
FETCH C1 INTO v_id, v_salary, v_years;

END WHILE;
CLOSE C1;

END

A.2.10 SDK8LMS

This sample shows use of nested WHILE and IF statements.

CREATE PROCEDURE SDK8LMS (IN deptnum SMALLINT)
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK8LMS
--
BEGIN

DECLARE v_salary DOUBLE;
DECLARE v_id SMALLINT;
DECLARE v_years SMALLINT;
DECLARE at_end INT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';
-- CAST salary as DOUBLE because SQL procedures do not support DECIMA
DECLARE C1 CURSOR FOR
SELECT id, FLOAT(salary), years
FROM db2res1.staff
WHERE dept = deptnum;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN C1;
FETCH C1 INTO v_id, v_salary, v_years;
WHILE at_end = 0 DO
IF (v_salary < 2000 * v_years)
THEN UPDATE db2res1.staff
SET salary = 2150 * v_years
WHERE id = v_id;

ELSEIF (v_salary < 5000 * v_years)
THEN IF (v_salary < 3000 * v_years)
THEN UPDATE db2res1.staff
SET salary = 3000 * v_years
WHERE id = v_id;

ELSE UPDATE db2res1.staff
SET salary = v_salary * 1.10
WHERE id = v_id;

END IF;
ELSE UPDATE db2res1.staff

SET job = 'PREZ'
WHERE id = v_id;

END IF;
FETCH C1 INTO v_id, v_salary, v_years;

END WHILE;
CLOSE C1;

END
Sample SQL stored procedure programs 203

A.2.11 SDK9LMS

Sample which uses the REPEAT statement.

CREATE PROCEDURE SDK9LMS (OUT counter INT)
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SDK9LMS
--
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found
CONDITION FOR SQLSTATE '02000';

DECLARE c1 CURSOR FOR
SELECT firstnme, midinit, lastname
FROM db2res1.employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

-- initialize OUT parameter
SET counter = 0;
OPEN c1;
fetch_loop:
REPEAT
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

SET counter = counter + 1;
UNTIL at_end <> 0

END REPEAT fetch_loop;
SET counter = counter - 1; -- count is 1 more than actual for repeat
CLOSE c1;

END

A.2.12 SMP0LMS

This sample returns RESULT SETS using CURSOR WITH RETURN.

CREATE PROCEDURE SMP0LMS (IN PID INT)
RESULT SETS 1
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL STORED PROCEDURE SMP0LMS
--
P1: BEGIN

-- DECLARE CURSOR
DECLARE CURSOR1 CURSOR WITH RETURN FOR

SELECT * FROM DB2RES1.STAFF WHERE ID > PID;
OPEN CURSOR1;

END P1
204 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

A.2.13 SMP1LMS

This sample shows use of the IF statement nested within LOOP statement.

CREATE PROCEDURE SMP1LMS ()
LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL STORED PROCEDURE SMP1LMS
--
P1: BEGIN

DECLARE V_DEPT CHAR(3);
DECLARE V_DEPTNAME VARCHAR(29);
DECLARE V_MGRNO CHAR(6);
DECLARE V_ADMDEPT CHAR(3);
DECLARE AT_END SMALLINT DEFAULT 0;
DECLARE NOT_FOUND CONDITION FOR SQLSTATE '02000';
-- DECLARE CURSOR
DECLARE C1 CURSOR FOR

SELECT
db2res1.DEPARTMENT.DEPTNO,
db2res1.DEPARTMENT.DEPTNAME,
db2res1.DEPARTMENT.MGRNO,
db2res1.DEPARTMENT.ADMRDEPT
FROM

db2res1.DEPARTMENT;
DECLARE CONTINUE HANDLER FOR NOT_FOUND
SET AT_END = 1;

OPEN c1;
loop1:
LOOP
FETCH c1 into v_dept, v_deptname, v_mgrno, v_admdept;
IF at_end = 1 THEN
LEAVE loop1;

ELSEIF v_mgrno is null THEN
UPDATE db2res1.department
set mgrno = '000000' where deptno = v_dept;

ELSEIF v_mgrno = '000000' THEN
UPDATE db2res1.department
set mgrno = null where deptno = v_dept;

END IF;
END LOOP;

END P1

A.2.14 SMP2LMS

This sample was created to test various date and time values being returned.

CREATE PROCEDURE SMP2LMS (out vuser char(8), out vdate1 date,
out vdate2 date, out vdays1 integer, out vtime1 time,
out vtime2 time, out vtimest1 timestamp, out vtimest2 timestamp)

LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SMP2LMS
--
P1: BEGIN
Sample SQL stored procedure programs 205

set vuser = user;
set vdate1 = current date;
set vdate2 = vdate1 - 10 days + 3 years;
set vdays1 = days(vdate2);
set vtime1 = current time;
set vtime2 = vtime1 +1 hour - 30 minutes;
set vtimest1 = current timestamp;
set vtimest2 = vtimest1 - days(vdate1 - 10 days) days;

END p1

A.2.15 SMP3LMS

This sample was created to test the settings of null and zero.

CREATE PROCEDURE SMP3LMS
(out msg1 char(20), out msg2 char(20), out msg3 char(20))

LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SMP3LMS
--
P1: BEGIN

declare v_var1 integer;
if v_var1 is null then

set msg1 = 'is null';
elseif v_var1 = 0 then

set msg1 = 'is zero';
end if;

set v_var1 = null;

if v_var1 is null then
set msg2 = 'is null';

end if;
set v_var1 = 0;
if v_var1 is not null then

set msg3 = 'not null';
end if;

END p1

A.2.16 SMP4LMS

This is the equivalent sample when run on NT, which allows parameter and
variable names to be the same. On OS/390 it was invalid, even when we prefixed
the parameter name with the procedure name, and the variable name with the
label name. To make it work, we had to have unique parameter and variable
names.

CREATE PROCEDURE SMP4LMS
(out pvar1 integer, out pvar2 double)

LANGUAGE SQL
COLLID SG245485
WLM ENVIRONMENT WLMENV1

--
-- SQL stored procedure SMP4LMS
--
206 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

BEGIN
declare vvar1 integer;
declare vvar2 smallint;

set vvar1 = 10;
set pvar1 = vvar1;
set vvar2 = 20;
set pvar2 = vvar2;

END

A.2.17 SMP5LMS

This sample shows that variable and column names could be the same, but you
need to qualify the variable name with the label name (P1) and the column name
with the table name (staff).

CREATE PROCEDURE SMP5LMS
(out pid integer)

LANGUAGE SQL
COLLID SG245485

--
-- SQL stored procedure smp5LMS
--

P1: BEGIN
declare id integer;
set id = 100;
select staff.id into p1.id from db2res1.staff where staff.id=p1.id;
set pid = p1.id;

END P1

A.2.18 SMP5LMS2

This sample shows that parameter and column names could be the same, but
you need to qualify the column name with the table name (staff).

CREATE PROCEDURE SMP5LMS
(inout id integer)

LANGUAGE SQL
COLLID SG245485

--
-- SQL stored procedure SMP5LMS
--

L1: BEGIN
SELECT staff.id INTO id
FROM db2res1.staff WHERE staff.id=id;

END L1

A.2.19 SMP7LMS

This sample shows how to return the SQLSTATE and SQLCODE as parameters
from the SQL procedure. Note the use of IF (1=1) within the handler declaration.

CREATE PROCEDURE SMP7LMS (OUT PSQLST char(5),
Sample SQL stored procedure programs 207

OUT PSQLCO int)
RESULT SETS 1
LANGUAGE SQL
COLLID SG245485
ASUTIME NO LIMIT

--
-- SQL stored procedure SYSPROC.SMP7LMS
--
P1: BEGIN

DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE INT DEFAULT 0;

-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT * FROM db2res1.STAFF;

DECLARE EXIT HANDLER FOR SQLEXCEPTION
IF (1 = 1) THEN

SET PSQLST = SQLSTATE;
SET PSQLCO = SQLCODE;

END IF;
-- Cursor left open for client application
OPEN cursor1;
SET PSQLST = SQLSTATE;
SET PSQLCO = SQLCODE;

END P1

A.2.20 SMP8LMS

This sample was used to test most column and scalar functions for version 5.

CREATE PROCEDURE DRDARES1.SMP8LMS (out v1 double,out v2 integer,
out v3 integer,
out v4 integer ,out v5 integer,out v6 char(15),out v7 char (5),
out v8 decimal(15),out v9 char(10), out v10 double,
out v11 char(5), out v12 integer, out v13 integer, out v14 char(5))

COLLID SG245485
WLM ENVIRONMENT WLMENV1
LANGUAGE SQL

--
-- SQL stored procedure SMP8LMS
--
P1: BEGIN

SELECT AVG(SALARY),COUNT(*),MAX(SALARY),MIN(SALARY),SUM(SALARY)
INTO v1,v2,v3,v4,v5
FROM DB2RES1.STAFF;
set v6 = char(current date);
set v7 = coalesce('hello','');
set v8 = decimal(10);
set v9 = digits(12345);
set v10 = float(123);
SELECT HEX(ID),INTEGER(SALARY), LENGTH(NAME)
INTO v11,v12,v13
FROM DB2RES1.STAFF WHERE ID = 100;
set v14 = nullif('hello','HELLO');

END P1
208 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

A.2.21 SMP8LMS2

This sample was created to test the column and scalar functions for version 6.

CREATE PROCEDURE ADMF001.SMP8LMS2 (out v1 double,out v2 double,
out v3 integer, out v5 decimal(10), out v7 varchar (27),
out v8 integer,out v9 integer, out v10 integer,
out v12 char(8), out v13 char(3), out v14 integer,
out v15 integer, out v16 integer, out v17 char(12), out v18 integer)

COLLID SG245485
WLM ENVIRONMENT WLMENV1
LANGUAGE SQL

--
-- SQL STORED PROCEDURE ADMF001.SMP8LMS2
--
P1: BEGIN

SELECT STDDEV(SALARY),VAR(SALARY) INTO v1,v2 FROM DB2RES1.STAFF;
SET v3 = ABS(-4356);
SELECT CEIL(MAX(SALARY)/12) INTO v5 FROM DSN8710.EMP;
SELECT CONCAT(FIRSTNME,LASTNAME) INTO v7 FROM DSN8710.EMP

WHERE EMPNO = '000140';
SELECT DAYOFWEEK(HIREDATE) INTO v8 FROM DSN8710.EMP

WHERE EMPNO = '000140';
SELECT AVG(DAYOFYEAR(HIREDATE)) INTO v9 FROM DSN8710.EMP;
SELECT FLOOR(MAX(SALARY)/12) INTO v10 FROM DSN8710.EMP;
SET v12 = LCASE('KATHLEEN');
SET v13 = LEFT('JONATHAN',3);
SELECT MIDNIGHT_SECONDS('24:00:00'),MIDNIGHT_SECONDS('00:00:00')

INTO v14,v15 FROM SYSIBM.SYSDUMMY1;
SET v16 = QUARTER('1999-09-09');
SET v17 = REPEAT('KATH',3);
SET v18 = SIGN(-1000);

END P1

A.3 NT and AIX samples

A.3.1 SDK0LNS

This sample shows how RESULT SETS can be returned to the client.

CREATE PROCEDURE DRDARES1.SDK0LNS (OUT medianSalary DOUBLE)
RESULT SETS 2
SPECIFIC DRDARES1.S0265192
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK0LNS
--
BEGIN

DECLARE v_numRecords INT DEFAULT 1;
DECLARE v_counter INT DEFAULT 0;

DECLARE c1 CURSOR FOR
SELECT CAST(salary AS DOUBLE) FROM staff
ORDER BY salary;

-- use WITH RETURN in DECLARE CURSOR to return a result set
DECLARE c2 CURSOR WITH RETURN FOR
SELECT name, job, CAST(salary AS INTEGER)
FROM staff
Sample SQL stored procedure programs 209

WHERE salary > medianSalary
ORDER BY salary;

-- you can return as many result sets as you like, just
-- ensure that the exact number is declared in the RESULT SETS
-- clause of the CREATE PROCEDURE statement

-- use WITH RETURN in DECLARE CURSOR to return another result set
DECLARE c3 CURSOR WITH RETURN FOR
SELECT name, job, CAST(salary AS INTEGER)
FROM staff
WHERE salary < medianSalary
ORDER BY SALARY DESC;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

-- initialize OUT parameter
SET medianSalary = 0;

SELECT COUNT(*) INTO v_numRecords FROM STAFF;

OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO
FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

-- return 1st result set, do not CLOSE cursor
OPEN c2;

-- return 2nd result set, do not CLOSE cursor
OPEN c3;

END

A.3.2 SDK1LNS

This sample shows the CASE statement.

CREATE PROCEDURE DRDARES1.SDK1LNS (IN employee_number CHAR(6),
IN rating INT)

SPECIFIC DRDARES1.S1156162
RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found
SIGNAL SQLSTATE '02444';

CASE rating
WHEN 1 THEN
UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

WHEN 2 THEN
UPDATE employee
SET salary = salary * 1.05, bonus = 500
210 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

WHERE empno = employee_number;
ELSE
UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END CASE;
END

A.3.3 SDK2LNS

This sample is similar to the one above, but it is implemented using the IF
statement.

CREATE PROCEDURE DRDARES1.SDK2LNS (IN employee_number CHAR(6), IN rating
SMALLINT)

SPECIFIC DRDARES1.S030109
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK2LNS
--

BEGIN
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found
SET rating = -1;

IF rating = 1
THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF rating = 2
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

A.3.4 SDK3LNS

This sample shows use of DYNAMIC SQL statements.

CREATE PROCEDURE DRDARES1.SDK3LNS (IN deptNumber CHAR(4), OUT table_name
CHAR(31))

SPECIFIC DRDARES1.S041662
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK3LNS
--

BEGIN
DECLARE stmt VARCHAR(1000);

-- continue if sqlstate 42704 ('undefined object name')
DECLARE CONTINUE HANDLER FOR SQLSTATE '42704'
SET stmt = '';

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
Sample SQL stored procedure programs 211

SET table_name = 'PROCEDURE_FAILED';

SET table_name = 'DEPT_'||deptNumber||'_T';
SET stmt = 'DROP TABLE '||table_name;
PREPARE s1 FROM stmt;
EXECUTE s1;
SET stmt = 'CREATE TABLE '||table_name||
'(empno CHAR(6) NOT NULL, '||
'firstnme VARCHAR(12) NOT NULL, '||
'midinit CHAR(1) NOT NULL, '||
'lastname CHAR(15) NOT NULL, '||
'salary DECIMAL(9,2))';
PREPARE s2 FROM STMT;
EXECUTE s2;
SET stmt = 'INSERT INTO '||table_name ||
'SELECT empno, firstnme, midinit, lastname, salary '||
'FROM employee '||
'WHERE workdept = ?';

PREPARE s3 FROM stmt;
EXECUTE s3 USING deptNumber;

END

A.3.5 SDK4LNS

This sample shows the LOOP, LEAVE and ITERATE statements.

CREATE PROCEDURE DRDARES1.SDK4LMS ()
SPECIFIC DRDARES1.S0202895
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK4LMS
--

BEGIN
DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INT DEFAULT 0;

DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE c1 CURSOR FOR
SELECT deptno, deptname, admrdept
FROM department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
ins_loop:
LOOP
FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN
LEAVE ins_loop;

ELSEIF v_dept = 'D11' THEN
ITERATE ins_loop;

END IF;
INSERT INTO department (deptno, deptname, admrdept)
212 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

VALUES ('NEW', v_deptname, v_admdept);
END LOOP;
CLOSE c1;

END

A.3.6 SDK5LNS

This sample shows the LOOP and IF statements.

CREATE PROCEDURE DRDARES1.SDK5LNS (OUT counter INT)
SPECIFIC DRDARES1.S0214278
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK5LNS
--
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found
CONDITION for SQLSTATE '02000';

DECLARE c1 CURSOR FOR
SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER for not_found
SET at_end = 1;

-- initialize OUT parameter
SET counter = 0;
OPEN c1;
fetch_loop:
LOOP
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

SET counter = counter + 1;
IF at_end <> 0 THEN LEAVE fetch_loop;
END IF;

END LOOP fetch_loop;
CLOSE c1;

END

A.3.7 SDK6LNS

This sample also shows the LOOP and LEAVE statements.

CREATE PROCEDURE DRDARES1.SDK6LNS (OUT counter INT)
SPECIFIC DRDARES1.S0225562
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK6LNS
--

BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR
Sample SQL stored procedure programs 213

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET counter = -1;

-- initialize OUT parameter
SET counter = 0;
OPEN c1;
fetch_loop:
LOOP
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

SET counter = counter + 1;
IF v_midinit = ' ' THEN
LEAVE fetch_loop;

END IF;
END LOOP fetch_loop;
CLOSE c1;

END

A.3.8 SDK7LNS

This sample shows nested CASE statements.

CREATE PROCEDURE DRDARES1.SDK7LNS (IN deptnumber SMALLINT)
SPECIFIC DRDARES1.S0235345
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK7LNS
--
BEGIN

DECLARE v_salary DOUBLE;
DECLARE v_id SMALLINT;
DECLARE v_years SMALLINT;
DECLARE at_end INT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

-- CAST salary as DOUBLE because SQL procedures do not support DECIMAL
DECLARE C1 CURSOR FOR
SELECT id, CAST(salary AS DOUBLE), years
FROM staff
WHERE dept = deptnumber;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN C1;
FETCH C1 INTO v_id, v_salary, v_years;
WHILE at_end = 0 DO
CASE
WHEN (v_salary < 2000 * v_years)
THEN UPDATE staff
SET salary = 2150 * v_years
WHERE id = v_id;

WHEN (v_salary < 5000 * v_years)
THEN CASE
WHEN (v_salary < 3000 * v_years)
THEN UPDATE staff
SET salary = 3000 * v_years
214 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

WHERE id = v_id;
ELSE UPDATE staff
SET salary = v_salary * 1.10
WHERE id = v_id;

END CASE;
ELSE UPDATE staff
SET job = 'PREZ'
WHERE id = v_id;

END CASE;
FETCH C1 INTO v_id, v_salary, v_years;

END WHILE;
CLOSE C1;

END

A.3.9 SDK8LNS

This sample shows nested IF statement within a WHILE statement.

CREATE PROCEDURE DRDARES1.SDK8LNS (IN deptnumber SMALLINT)
SPECIFIC DRDARES1.S0244956
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK8LNS
--
BEGIN

DECLARE v_salary DOUBLE;
DECLARE v_years SMALLINT;
DECLARE v_id SMALLINT;
DECLARE at_end INT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

-- CAST salary as DOUBLE because SQL procedures do not support DECIMAL
DECLARE C1 CURSOR FOR
SELECT id, CAST(salary AS DOUBLE), years
FROM staff;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN C1;
FETCH C1 INTO v_id, v_salary, v_years;
WHILE at_end = 0 DO
IF (v_salary < 2000 * v_years)
THEN UPDATE staff
SET salary = 2150 * v_years
WHERE id = v_id;

ELSEIF (v_salary < 5000 * v_years)
THEN IF (v_salary < 3000 * v_years)
THEN UPDATE staff
SET salary = 3000 * v_years
WHERE id = v_id;

ELSE UPDATE staff
SET salary = v_salary * 1.10
WHERE id = v_id;

END IF;
ELSE UPDATE staff
SET job = 'PREZ'
WHERE id = v_id;

END IF;
Sample SQL stored procedure programs 215

FETCH C1 INTO v_id, v_salary, v_years;
END WHILE;
CLOSE C1;

END

A.3.10 SDK9LNS

This sample shows the REPEAT statement.

CREATE PROCEDURE DRDARES1.SDK9LNS (OUT counter INT)
SPECIFIC DRDARES1.S0254846
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDK9LNS
--
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found
CONDITION FOR SQLSTATE '02000';

DECLARE c1 CURSOR FOR
SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

-- initialize OUT parameter
SET counter = 0;
OPEN c1;
fetch_loop:
REPEAT
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

SET counter = counter + 1;
UNTIL at_end <> 0

END REPEAT fetch_loop;
CLOSE c1;

END

A.3.11 SDKALNS

This sample is similar to the previous one, but it is implemented using the WHILE
statement.

CREATE PROCEDURE DRDARES1.SDKALNS (IN deptNumber SMALLINT,
OUT medianSalary DOUBLE)

SPECIFIC DRDARES1.S0304753
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SDKALNS
--
BEGIN

DECLARE v_numRecords INT DEFAULT 1;
DECLARE v_counter INT DEFAULT 0;
216 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

DECLARE c1 CURSOR FOR
SELECT CAST(salary AS DOUBLE) FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

-- initialize OUT parameter
SET medianSalary = 0;

SELECT COUNT(*) INTO v_numRecords FROM staff
WHERE DEPT = deptNumber;

OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO
FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

A.3.12 SMP1LNS

This sample shows an IF statement within a LOOP statement.

CREATE PROCEDURE DRDARES1.SMP1LNS ()
SPECIFIC DRDARES1.S4141979
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP1LNS
--
P1: BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
declare v_mgrno char(6);
DECLARE v_admdept CHAR(3);
declare at_end smallint default 0;
DECLARE not_found CONDITION FOR SQLstate '02000';

-- Declare cursor
DECLARE c1 CURSOR FOR

SELECT
DRDARES1.DEPARTMENT.DEPTNO,
DRDARES1.DEPARTMENT.DEPTNAME,
DRDARES1.DEPARTMENT.MGRNO,
DRDARES1.DEPARTMENT.ADMRDEPT
FROM

DRDARES1.DEPARTMENT;
DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
loop1:
LOOP
FETCH c1 into v_dept, v_deptname, v_mgrno, v_admdept;
IF at_end = 1 THEN
LEAVE loop1;

ELSEIF v_mgrno is null THEN
Sample SQL stored procedure programs 217

UPDATE department set mgrno = '000000' where deptno = v_dept;
ELSEIF v_mgrno = '000000' THEN
UPDATE department set mgrno = null where deptno = v_dept;

END IF;
ITERATE loop1;

END LOOP;
END P1

A.3.13 SMP2LNS

This sample shows testing of various date and time functions.

CREATE PROCEDURE DRDARES1.SMP2LNS (out v_user char(8), out v_date1 date,
out v_date2 date, out v_days1 integer, out v_time1 time,
out v_time2 time, out v_timest1 timestamp, out v_timest2 timestamp)

SPECIFIC DRDARES1.S5336343
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP2LNS
--
P1: BEGIN

set v_user = user;
set v_date1 = current date;
set v_date2 = v_date1 - 10 days + 3 years;
set v_days1 = days(v_date2);
set v_time1 = current time;
set v_time2 = v_time1 +1 hour - 30 minutes;
set v_timest1 = current timestamp;
set v_timest2 = v_timest1 - days(v_date1 - 10 days) days;

END P1

A.3.14 SMP3LNS

This sample shows testing of null and zero indicators.

CREATE PROCEDURE DRDARES1.SMP3LNS (out msg1 char(20), out msg2 char(20), out
msg3 char(20))

SPECIFIC DRDARES1.S0535160
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP3LNS
--
P1: BEGIN

declare v_var1 integer;

if v_var1 is null then
set msg1 = 'is null';

elseif v_var1 = 0 then
set msg1 = 'is zero';

end if;

set v_var1 = null;

if v_var1 is null then
set msg2 = 'is null';

end if;
218 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

set v_var1 = 0;

if v_var1 is not null then
set msg3 = 'not null';

end if;
END P1

A.3.15 SMP4LNS

This sample shows the same parameter and variable names, but they need to be
qualified.

CREATE PROCEDURE DRDARES1.SMP4LNS (out v_var1 integer, out v_var2 double)
SPECIFIC DRDARES1.S1473953
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP4LNS
--
P1: BEGIN

declare v_var1 integer;
declare v_var2 smallint;

set v_var1 = 10;
set smp4lns.v_var1 = p1.v_var1;
set v_var2 = 20;
set smp4lns.v_var2 = p1.v_var2;

END P1

A.3.16 SMP5LNS

This sample shows the same variable and column names. Only the variable
needs to be qualified in the WHERE clause.

CREATE PROCEDURE DRDARES1.SMP5LNS (out p_id integer)
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP5LNS
--
P1: BEGIN

declare id integer;
set id = 100;
select id into id from staff where id=p1.id;
set p_id = id;

END P1

A.3.17 SMP7LNS

This sample tests SQLSTATE and SQLCODE. When run for a row that was not
found, only MSG3 was set to ’NOT FOUND’.

CREATE PROCEDURE DRDARES1.SMP7LNS (OUT PARM1 INTEGER, OUT MSG CHAR(10), OUT
MSG1 CHAR(10), out msg2 char(10),
OUT MSG3 CHAR(10), IN P_ID INTEGER)

SPECIFIC S1140197
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP7LNS
Sample SQL stored procedure programs 219

--
P1: BEGIN

DECLARE VAR1 CHAR(20);
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE INT DEFAULT 0;

DECLARE NOT_FOUND CONDITION FOR SQLSTATE '02000';
DECLARE CONTINUE HANDLER FOR NOT_FOUND SET MSG3='NOT FOUND';

SELECT NAME INTO VAR1 FROM STAFF WHERE ID=P_ID;

SET PARM1 = SQLCODE;
IF SQLCODE = 100 THEN

SET MSG = 'NOT FOUND';
END IF;
IF PARM1 = 100 THEN

SET MSG1 = 'NOT FOUND';
END IF;
IF SQLSTATE = '02000' THEN

SET MSG2 = 'NOT FOUND';
END IF;

END P1

A.3.18 SMP8LNS

This sample tests various scalar functions.

CREATE PROCEDURE DRDARES1.SMP8LNS (out v1 double, out v2 double, out v3
integer,
out v4 integer , out v5 integer, out v6 integer , out v7 char (5),
out v8 char(10), out v9 char(10), out v10 char (20), out v11 char(5), out v12
char(10))

SPECIFIC DRDARES1.S8389109
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP8LNS
--
P1: BEGIN

set v1 = tan(.5) - (sin(.5)/cos(.5));
set v2 = exp(sin(.3)) + exp(cos(.3));
set v3 = rand();
set v4 = ceil(5.2) + floor(4.3);
set v5 = quarter(current date);
set v6 = week(current date);
set v7 = repeat('*',5);
set v8 = lcase('ALINE');
set v9 = replace('a1b1c1','1','2');
set v10 = monthname(current date) || dayname(current date);
set v11 = ltrim('felipe ');
set v12 = substr('abcdefghijklmnopq',5,10);

END P1

A.3.19 SMP9LNS

This sample tests the SQLCODE. It has an interesting result, in that only PARM1
and MSG1 were set correctly.
220 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

CREATE PROCEDURE DRDARES1.SMP9LNS (OUT PARM1 INTEGER, OUT MSG CHAR(10), OUT
MSG1 CHAR(10), out msg2 char(10),
IN P_ID INTEGER)
SPECIFIC S1230197
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMP7LNS
--
P1: BEGIN

DECLARE VAR1 CHAR(20);
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE INT DEFAULT 0;

SELECT NAME INTO VAR1 FROM STAFF WHERE ID=P_ID;

SET PARM1 = SQLCODE;
IF SQLCODE = 100 THEN

SET MSG = 'NOT FOUND';
END IF;
IF PARM1 = 100 THEN

SET MSG1 = 'NOT FOUND';
END IF;
IF SQLSTATE = '02000' THEN

SET MSG2 = 'NOT FOUND';
END IF;

END P1

A.3.20 SMPALNS

This sample shows the SQLCODE being passed as an output parameter.

CREATE PROCEDURE DRDARES1.SMPALNS (in vid integer, out sqlc integer, out var1
integer)

SPECIFIC DRDARES1.S1140337
LANGUAGE SQL

--
-- SQL stored procedure DRDARES1.SMPALNS
--
P1: BEGIN

DECLARE CONTINUE HANDLER FOR NOT FOUND
BEGIN
SET SQLC=SQLCODE;
SET VAR1=1;

END;

SELECT id into vid FROM STAFF where id = vid;

END P1
Sample SQL stored procedure programs 221

222 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Appendix B. Special notices

This publication is intended to help database administrators implement DB2 SQL
Stored Procedures and the Stored Procedures Builder in a client/server
environment. The information in this publication is not intended as the
specification of any programming interfaces that are provided by the DB2 family
of products. See the PUBLICATIONS section of the IBM Programming
Announcement for Stored Procedure Builder and the DB2 UDB SQL Procedures
support for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
© Copyright IBM Corp. 1999 223

environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

ACF/VTAM AD/Cycle
AIX AS/400
AT CT
CICS CICS/ESA
C/370 DATABASE 2
DataGuide DataJoiner
DataPropagator DB2
DFSMS DFSMS/MVS
DFSORT GDDM
ESCON ES/9000
Hiperspace IBM
BMLink IMS
Information Warehouse Integrated Language Environment
Intelligent Miner Language Environment
Multiprise MVS/ESA
Net.Data Netfinity
OS/2 OS/390
OS/400 Parallel Sysplex
PR/SM QMF
RACF RAMAC
RETAIN RMF
RS/6000 SP
SP1 SP2
S/390 S/390 Parallel Enterprise Server
System/390 VisualAge
VisualGen Visual Warehouse
VM/ESA VSE/ESA
VTAM WebSphere
XT 400
224 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.
Special notices 225

226 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization publications

For information on ordering these ITSO publications see “How to get ITSO
redbooks” on page 229.

• Getting Started with DB2 Stored Procedures: Give Them a Call through the
Network, SG24-4693

• DB2 Server for OS/390 Version 5 Recent Enhancements - Reference Guide,
SG24-5421

• DB2/400 Advanced Database Functions, SG24-4249

• DB2 DRDA Supports TCP/IP, SG24-2212

C.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

C.3 Other publications

These publications are also relevant as further information sources:

• DB2 for OS/390 V5 Preview os SQL Procedures, (*)

• DB2 for OS/390 V5 Application Programming and SQL Guide, SC26-8958

• DB2 for OS/390 V5 SQL Reference, SC26-8966

• DB2 UDB for OS/390 V6 Preview os SQL Procedures, (*)

• DB2 UDB for OS/390 V6 Application Programming and SQL Guide,
SC26-9004

• DB2 UDB for OS/390 V6 SQL Reference, SC26-9014

• DB2 UDB Version 6 SQL Reference, Volume 1 and Volume 2, SBOF-8923

• DB2 UDB Version 6 Application Development, SC09-2845

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 227

• Debug Tool: User’s Guide and Reference, SC09-2137

• AS/400 Toolbox for Java Setup Guide", SC41-5438

• Understanding SQL’s Stored Procedures: A Complete Guide to SQL/PSM, Jim
Melton, Norgan Kaufmann Publishers, Inc., ISBN 1-55860-461-8.

(*) download throuth the Web:

http://www.software.ibm.com/db2/os390/sqlproc
228 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks
site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 229

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
230 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

List of abbreviations

ACEE access control environment
element

ADK application development
toolkit

ADO ActiveX Data Objects

ANN artificial neural network

ANSI American National Standards
Institute

APAR authorized program analysis
report

APPC advanced program to program
communication

API application programming
interface

AR application requester

ARM automatic restart manager

ASCII American National Standard
Code for Information
Interchange

BV Business View

CAE client application enabler

CAF call attachment facility

CBIPO custom-build installation
process offering

CBPDO custom-build product delivery
offering

CCSID coded character set identifier

CFRM coupling facility resource
management

CLIST command list

DAM data access module

DARM data archive retrieval
manager

DASD direct access storage device

DBMS database management
system

DBRM database request module

DB2PM DB2 performance monitor

DCE Distributed Computing
Environment

DCL data control language

DDF distributed data facility

DDL data definition language

DES Data Encryption Standard
© Copyright IBM Corp. 1999
DLL dynamic link library

DML data manipulation language

DMS database managed
storagespace

DPropR DataPropagator Relational

DRDA distributed relational database
architecture

DUW distributed unit of work

DW data warehouse

DSS decision support system

EIS executive information system

ESO expanded service option

ERP enterprise resource planning

FTP File Transfer Protocol

GBP group buffer pool

GID group ID

GUI graphical user interface

GWAPI Domino Go Web server
application programming
interface

HLQ high level qualifier

H-OLAP hybrid OLAP

HTML hypertext markup language

IBM International Business
Machines Corporation

ICAPI internet connection
application programming
interface

ICF integrated coupling facility

IDS intelligent decision support

IFI instrumentation facility
interface

IRLM internal resource lock
manager

ISO International Organization for
Standardization

I/O input/output

IM Intelligent Miner

IMS Information Management
System

IT information technology

ITSO International Technical
Support Organization
231

JCL job control language

JDBC Java Database Connectivity

JDK Java Developers Kit

JIT just in time compiler

JRE java runtime environment

JVM Java Virtual Machine

LE Language Environment

LIS large item set

LOB large object

LPP licensed program product

LRO linked reporting object

LRU last recently used

MDIS Metadata Interchange
Specification

MLP multilayer perceptron

M-OLAP multidimensional OLAP

MPP massive parallel processing

NCF IBM Network Computing
Framework

ODBA IMS open database access

ODBC open database connectivity

OEM original equipment
manufacturer

OLAP online analytical processing

OLE object linking and embedding

OLTP online transaction processing

OMG Object Management Group

OSA open systems adapter

PSM persistent stored module

PSP preventive service planning

RACF OS/VS2 MVS Resource
Access Control Facility

RAM random access memory

RBA relative byte address

RBF radial basis function

RBFN radial basis function network

RDBMS relational database
management system

ROI return on investment

R-OLAP relational OLAP

RDS relational data system

RRS recoverable resource
manager services

RRSAF recoverable resource
manager services attachment
facility

RUW remote unit of work

SCA shared communication area

SDSF system display and search
facility

SEU source entry utility

SMP symmetrical multiprocessor

SMP/E system modification
program/enhanced

SMS storage management system

SNA systems network architecture

SQL Structured query language

SQLDA SQL descriptor area

SWA scheduler work area

TCP/IP Transmission Control
Protocol/Internet Protocol

UDA user defined attribute

UDB Universal Database

UDF user defined function

UDT user-defined type

URL Universal Resource Locator

VSAM Virtual Storage Access
Method

VWP Visual Warehouse Program

XES MVS Cross-system extended
services

XMI XML Metadata Interchange

XML extended markup language
232 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

Index

Numerics
5250 emulation 171
5250 tools 170

A
ADO 169
ALLOCATE statement 28, 30

definition 31
sample 32

ALTER 3
Ambiguous names 38
Assignment statement 18

definition 20
sample 20
SET 18

ASSOCIATE statement 28, 30
definition 31
sample 31

ATOMIC compound statement 27
Nested 37
sample 27

Authorization behavior 37
OS/390 120

B
BASIC 16
Bind

dynamic invocation 110, 111
bind option

PATH 3
Build 76

C
C 3, 7, 10, 11, 14, 15, 16, 17, 31, 42, 43

comment 38
C++ 3, 7, 16, 18
CALL statement 1, 17, 28, 30

definition 31
sample 31

CASE statement 18
definition 21
sample 21

character variable
length 38

CLI 3, 4, 7, 11, 30, 37, 42
CLOSE 28, 30
COBOL 3, 6, 7, 10, 14, 15, 16, 17, 31, 43
COMMENT ON 28
COMMIT 37
Compound statement 18

ATOMIC
definition 27
sample 27

BEGIN 18
definition 27
© Copyright IBM Corp. 1999
END 18
NOT ATOMIC

definition 27
sample 27

order of statements 27
condition handler 27, 33, 36

CONTINUE
definition 34

EXIT
definition 34

RESIGNAL statement 26
SIGNAL statement 25
specification 18
UNDO

definition 34
CONNECT 37
CREATE 3, 28
Create 75
CREATE MODULE 9
CREATE PROCEDURE 5, 38, 116, 117, 119, 127, 138

AS/400 169, 170, 171, 177, 180
CURRENT PATH 3

D
Database Connection 77
DataJunction 40, 41
DATE arithmetic 38
DB2 Connect 60, 61
DB2 SDK 61, 64, 65, 81, 105
DB2CLI.PROCEDURES 3
DB2DARI 5
DB2SPB.INI file 66
DBRM 119, 122, 127, 128, 130, 131, 138
DECIMAL data types 38
DECLARE CURSOR 28
DECLARE GLOBAL TEMPORARY TABLE 28
DECLARE PROCEDURE 5
DECLARE RESULT SET LOCATOR 30
DELETE 28
Dirty Procedures 77
DRDA 2, 3, 60
DROP 3, 28
DROP PROCEDURE

AS/400 180, 181
DSNDPSM 112
DSNHSQL 110, 118, 136, 137, 140, 143
DSNPSMX1 112
DSNPSMX2 112
DSNPXMOX1 112
DSNSPSM 112
DSNTIJSG 113
DSNTIJSQ 110, 111, 112, 113
DSNTPSMP

BUILD 129
DESTROY 130
input parameters 126
PL/1 client program 131
233

sample 131
REBIND 131
REBUILD 131
REXX 110, 120

DSNWLMP 110
DSNWSPM 124, 125
dynamic calls 37
Dynamic SQL

definition 25
EXECUTE 25
EXECUTE IMMEDIATE 25
PREPARE 25
sample 25

E
error code

-060 39
-061 39
-775 39
-776 39
-777 39
-778 39
-779 39
-780 39
-781 39
-782 39
-783 39
-785 39

error messages 39
EXECUTE 25, 28
EXECUTE IMMEDIATE 25, 28
external stored procedure 7, 10, 11, 14, 16, 17, 42

F
FETCH 28, 30
Filter 82, 84
FOR statement 18, 37

definition 23
sample 23

Fortran 3, 7, 16

G
Generate 75
Get Source 76
GOTO 38
GRANT 3, 28, 37

H
Handling errors

definition 33
NOT FOUND 33
sample 35
SQLEXCEPTION 33
SQLSTATE 33
SQLWARNING 33
WHENEVER statement 33

Handling result sets 29
DECLARE CURSOR 29

sample 29
WITH RETURN TO CALLER clause 29
WITH RETURN TO CLIENT clause 29

host variables 19

I
IBM DataJoiner 41
IBM VisualAge for Java 62
IF statement 18

definition 21
sample 21, 22

IMS
DBCTL 3
Open Database Access 3

InfoModelers InfoModeler 40
Informix 40, 41, 43, 55
INSERT 28
INVSDK2LMS 186, 187
ISO/ANSI 1, 9, 10
ITERATE statement 18, 24, 38

definition 22
sample 22

J
Java 7, 10, 16, 31, 37, 42, 43

stored procedure 17
JDBC 4, 7, 37, 169, 174, 188, 190

K
KEEPDARI 61

L
LABEL ON 28
LEAVE statement 18

definition 22
sample 22

LOCK TABLE 28
LOOP statement 18

definition 24
sample 24

M
Microsoft 6
Microsoft SQL Server 40, 43, 45
Microsoft Visual Basic 62, 65
Microsoft Visual Studio 62, 64
Migrating

business logic 41
control statements 43
database data 41
database structure 40
tools 40, 41

Module 9
module 2, 7, 10, 18, 36, 49
multi-rowed result sets 37
234 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

N
Nested

ATOMIC compound statement 37
NOT ATOMIC compound statement 37
stored procedure 37

New line markers 38
NOT ATOMIC compound statement 27

Nested 37
sample 27

O
ODBC 3, 4, 37, 42, 169, 174
OPEN 28
Operations Navigator 6
Oracle 6, 9, 40, 41, 42, 48, 49, 50

FORMS 41
OS/390 Procedures Processor 112
OS/390 SQL Procedure Processor 109

P
parameter names

length 38
PASCAL 16
PATH 3
Persistent Stored Module 6, 9
PL/SQL 6, 9, 15, 40, 42, 48
Platinum ERwin ERX 40
PowerBuilder 41
PREPARE 25
PREPARE FROM 28
Processing result sets 32

sample 32
Project 75

sharing SPB projects 82

Q
QSQLSRC 171

R
readme file 110
Register 76
RELEASE 29
RELEASE SAVEPOINT 29
RENAME 29
REPEAT statement 18

definition 24
sample 24

RESIGNAL statement 19, 37
definition 26
sample 26

result sets 2, 37
Retrieving result sets 30

sample 30
REVOKE 3, 29, 37
REXX 3, 7, 16

DSNTPSMP 110, 120
language support 110, 111

stored procedure 116
stored procedure support 110, 111

REXX stored procedure 5
ROLLBACK 29, 37
ROLLBACK TO SAVEPOINT 29
RPG 6
Run 76
RUNSQLSTM 6, 170, 171, 172, 174, 182, 183

S
SAVEPOINT 29
Savepoint 36
SDK2LMS 171, 173, 175, 178, 179, 180, 183, 186, 188
SELECT INTO 29
SET statement 38
SIGNAL statement 19, 37

definition 25
sample 26

Single statement procedure 38
SmartGuide 78, 79, 85, 86
sored procedure

processing return sets 37
SPB

concepts and terminology
Build 76
Create 75
Database Connection 77
Dirty Procedures 77
Generate 75
Get Source 76
Modify 76
Project 75
Register 76
Run 76

configuring your environment 65
CREATE PROCEDURE 83, 88, 92
DB2 parameter

KEEPDARI 61
DB2SPB.INI file 66

entries 72
sample 66

DRDA 60
DSNTPSMP 93, 94, 102
IBM VisualAge for Java 62
JDBC stored procedure

sample 59
managing projects 82
Microsoft Visual Basic 65
Microsoft Visual Studio 64
pre-requisites 60
programming languages supported 58
sharing projects 82
SQL Costing Information 111
SQL stored procedure

sample 58
SQLJ stored procedure

sample 59
supported tasks 7
tasks

actual costs 90
235

building stored procedures 101
copying and pasting stored procedures 104
creating new stored procedures 85
debugging stored procedures 105
modifying existing stored procedures 102
viewing existing stored procedures 83

SQL Assistant 74, 76, 78, 79, 86, 94, 96, 97, 99, 100,
101
SQL Conversion Workbench 42
SQL Convertion Workbench 41
SQL Costing Information 111, 124
SQL function 7
SQL local variables

declaration 19
sample 19

SQL Procedures
OS/390

Declared Temporary Table 111
External Savepoint 111
Identity Columns 111

portability across DB2 platforms 36
restrictions 36
SPB 38
statements supported 18
stored procedure builder 17, 18

SQL Script 176, 177, 179, 180, 181
SQL script 170, 178
SQL stored procedure 7

AS/400
Operations Navigator GUI 170
Operations Navigator SQL 170
Traditional 5250 170

creating result sets 29
declaring SQL local variables 19
handling errors 33
migrating from OEM DBMSs 42
OS/390

Method 1 109
Method 2 109
Method 3 109
SPB 109

processing result sets 32
retrieving result sets 30
source code size limit 36

SQL Windows 41
SQL/PSM 1, 9, 14, 19, 36, 44, 49, 55

7
SQL_API_FN 5
SQL3 7, 9, 10
SQLCODE 37
SQLDA 3, 5
SQLJ 4, 7
SQLPROCS 171
SQLSTATE 26, 33, 37, 39, 40, 49
SQLVARs 3, 4, 5
Static DDL 38
stored procedure

address spaces 2
evolution

DB2 for Distributed Platforms 3

DB2 for OS/390 2
DB2 UDB for AS/400 5

parameter
IN 5
INOUT 5
OUT 5

parameter style
DB2DARI 4
DB2GENERAL 4
DB2SQL 4
GENERAL 4
GENERAL WITH NULLS 4
JAVA 4

returning result sets 37
stored procedure monitor program 124
STRSEU 171
Sybase 9, 40, 41, 43, 45

APIs 42
SYSCAT.PROCEDURES 4, 5
SYSFUNCS 174
SYSIBM.SYSPARMS 119, 129, 130, 137, 138
SYSIBM.SYSPROCEDURES 116, 117, 119, 120, 129,
130, 137, 138, 145, 160, 167
SYSIBM.SYSPROCOPTIONS 145
SYSIBM.SYSPROCPARMS 145, 160
SYSIBM.SYSPROCPARMSOPTIONS 145
SYSIBM.SYSPSM 112, 113
SYSIBM.SYSPSMOPTS 112, 113, 119, 120, 129, 130,
142
SYSIBM.SYSPSMOUT 112, 114
SYSIBM.SYSROUTINES 119, 129, 130, 137, 138
SYSPARMS 170, 174, 181
SYSPROCS 170, 174
SYSROUTINES 170, 174, 181

T
T/SQL 6, 9, 15, 40, 42, 43, 48
TCP/IP 2

U
UPDATE 29

V
VALUES INTO 29
variables

declaration order 19
Visual Basic 15
VisualAge for Java 62
VisualAge Remote Debugger 79

W
WHILE statement 18

definition 24
sample 24

WLM
DDNAMES 127
stored procedure address space 2
236 Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder

© Copyright IBM Corp. 1999 237

ITSO redbook evaluation

Developing Cross-Platform DB2 Stored Procedures: SQL Procedures and the DB2 Stored Procedure Builder
SG24-5485-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5485-00

Printed in the U.S.A.

D
eveloping

C
ross-P

latform
D

B
2

Stored
P

rocedures:SQ
L

P
roceduresand

the
D

B
2

Stored
P

rocedure
B

uilder
SG

24-5485-00

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 DB2 stored procedures — evolution
	1.2 Cross-platform support of stored procedures written entirely in SQL
	1.3 Building DB2 stored procedures from your workstation
	1.4 Concepts and terminology

	Chapter 2. The SQL Procedures language
	2.1 What is it?
	2.2 Planning to use the SQL Procedures language
	2.2.1 Why use it?
	2.2.2 When to use them?

	2.3 Comparing SQL stored procedures and external stored procedures
	2.3.1 Development
	2.3.2 Runtime

	2.4 Current implementation of SQL Procedures language
	2.4.1 How does this work in general?
	2.4.2 Declaring SQL local variables
	2.4.3 Language Elements
	2.4.4 Returning result sets
	2.4.5 Handling errors in an SQL stored procedure
	2.4.6 Current restrictions

	2.5 SQL Procedures portability
	2.6 New error messages
	2.7 Migrating from OEM DBMS
	2.7.1 Migrating the database structure
	2.7.2 Migrating the database data
	2.7.3 Migrating the business logic
	2.7.4 Comparison with Sybase/Microsoft SQL Server Transact-SQL
	2.7.5 Comparison with Oracle PL/SQL
	2.7.6 Comparison with Informix SPL

	Chapter 3. The DB2 Stored Procedure Builder
	3.1 DB2 Stored Procedure Builder — overview
	3.1.1 What is it?
	3.1.2 Programming languages supported

	3.2 Product Installation on Windows NT
	3.2.1 Prerequisites for SPB
	3.2.2 Installing the SPB

	3.3 Advanced configuring of the SPB
	3.3.1 Concepts and terminology
	3.3.2 What are its components?
	3.3.3 Working with SPB projects

	3.4 Using the Stored Procedure Builder
	3.4.1 Viewing existing stored procedures
	3.4.2 Creating new stored procedures
	3.4.3 Building stored procedures
	3.4.4 Modifying existing stored procedures
	3.4.5 Copying and pasting stored procedures across connections
	3.4.6 Debugging stored procedures

	Chapter 4. SQL Procedures for DB2 UDB for OS/390
	4.1 General considerations
	4.2 System requirements and planning
	4.2.1 Requirements for DB2 for OS/390 Version 5
	4.2.2 Requirements for DB2 UDB for OS/390 Version 6
	4.2.3 Remote Debugger and Debug tool
	4.2.4 Creating non-catalog DB2 tables
	4.2.5 WLM requirements for OS/390 Procedure Processor

	4.3 Coding considerations
	4.3.1 Length and size limits
	4.3.2 Parameters and variables
	4.3.3 Handling SQLCODE and SQLSTATE values
	4.3.4 SQL statements
	4.3.5 Client application

	4.4 Stored procedure preparation
	4.4.1 Process
	4.4.2 Authorization

	4.5 Setting up DSNTPSMP
	4.5.1 Using the SPB
	4.5.2 Using OS/390 Procedure Processor (DSNTPSMP)
	4.5.3 Using JCL

	4.6 Stored procedure debugging
	4.6.1 Process
	4.6.2 If the debugger does not start

	Chapter 5. SQL Procedures for DB2 UDB for UNIX, Windows, OS/2
	5.1 General considerations
	5.2 Supported platforms
	5.3 System requirements and planning
	5.3.1 Requirements for the Windows NT platform
	5.3.2 Requirements for the UNIX platform
	5.3.3 Changing compiler options
	5.3.4 Retaining intermediate files

	5.4 Coding considerations
	5.4.1 Recommendations for writing portable stored procedures
	5.4.2 Structure of SQL stored procedures
	5.4.3 Coding the SQL stored procedures body

	5.5 Stored procedures preparation
	5.5.1 Privileges required to prepare an SQL stored procedure
	5.5.2 Preparing an SQL stored procedure from the DB2 CLP
	5.5.3 Preparing an SQL stored procedure from the DB2 tools
	5.5.4 Preparing an SQL stored procedure from application programs
	5.5.5 Preparing an SQL stored procedure from the SPB
	5.5.6 Copying SQL stored procedures between DB2 UDB servers

	5.6 Stored procedure debugging
	5.6.1 Platforms supported for remote debugging
	5.6.2 The DB2DBG.ROUTINE_DEBUG debugger table
	5.6.3 DB2 environment variables for debugging
	5.6.4 Starting the debugger client
	5.6.5 Debugging stored procedures through SPB

	Chapter 6. SQL Procedures for DB2 UDB for AS/400
	6.1 General Considerations
	6.2 System requirements and planning
	6.3 System Catalog Tables
	6.4 Creating an SQL stored procedure
	6.4.1 Creating an SQL SP with traditional tools
	6.4.2 Creating an SQL SP with Operations Navigator GUI
	6.4.3 Creating an SQL SP with the Run SQL Scripts utility
	6.4.4 Verifying the stored procedure properties

	6.5 Deleting or replacing the SQL stored procedure
	6.6 Debugging SQL stored procedures
	6.6.1 The ILE Source Debugger
	6.6.2 Preparing the SQL stored procedure for debugging
	6.6.3 Testing the SQL stored procedure in traditional environment
	6.6.4 Testing the SQL stored procedure in client/server environment

	Appendix A. Sample SQL stored procedure programs
	A.1 Naming convention
	A.2 OS/390 samples
	A.2.1 DSN8ES1
	A.2.2 SDK0LMS
	A.2.3 SDK1LMS
	A.2.4 SDK2LMS
	A.2.5 SDK3LMS
	A.2.6 SDK4LMS
	A.2.7 SDK5LMS
	A.2.8 SDK6LMS
	A.2.9 SDK7LMS
	A.2.10 SDK8LMS
	A.2.11 SDK9LMS
	A.2.12 SMP0LMS
	A.2.13 SMP1LMS
	A.2.14 SMP2LMS
	A.2.15 SMP3LMS
	A.2.16 SMP4LMS
	A.2.17 SMP5LMS
	A.2.18 SMP5LMS2
	A.2.19 SMP7LMS
	A.2.20 SMP8LMS
	A.2.21 SMP8LMS2

	A.3 NT and AIX samples
	A.3.1 SDK0LNS
	A.3.2 SDK1LNS
	A.3.3 SDK2LNS
	A.3.4 SDK3LNS
	A.3.5 SDK4LNS
	A.3.6 SDK5LNS
	A.3.7 SDK6LNS
	A.3.8 SDK7LNS
	A.3.9 SDK8LNS
	A.3.10 SDK9LNS
	A.3.11 SDKALNS
	A.3.12 SMP1LNS
	A.3.13 SMP2LNS
	A.3.14 SMP3LNS
	A.3.15 SMP4LNS
	A.3.16 SMP5LNS
	A.3.17 SMP7LNS
	A.3.18 SMP8LNS
	A.3.19 SMP9LNS
	A.3.20 SMPALNS

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 International Technical Support Organization publications
	C.2 Redbooks on CD-ROMs
	C.3 Other publications

	How to get ITSO redbooks
	IBM Redbook Fax Order Form

	List of abbreviations
	Index
	ITSO redbook evaluation

