
IBM SanFrancisco Performance
Tips and Techniques

Gottfried Schimunek, Thomas Fanto, Maria Cristina Filorizzo, Armin Rauch,
Roger Rolandsson, Mohit Sant, Jan Van der Sypt

International Technical Support Organization

SG24-5368-00

http://www.redbooks.ibm.com

International Technical Support Organization SG24-5368-00

IBM SanFrancisco Performance
Tips and Techniques

February 1999

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 1999)

This edition applies to IBM SanFrancisco, Version 1 Release 3 Modification 0 (V1M3M0).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix C,
“Special Notices” on page 203.

Take Note!

Contents

Figures . ix

Tables . xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xv

Chapter 1. Introduction .1
1.1 Performance in General .1

1.1.1 What Performance Is. .1
1.1.2 Why the Need for the Best Performance .1
1.1.3 What Appropriate Performance Is .2
1.1.4 Performance in a Distributed IT Environment 2

1.2 Where to Go from Here .3
1.2.1 Where You Are in the Development .3
1.2.2 What Your Job Is in the Development .3

1.3 Performance in SanFrancisco Based Applications: An Approach 5
1.4 Understanding and Solving a Performance Problem6

Chapter 2. General Performance Issues .7
2.1 Influencing Performance .7

2.1.1 Architecture. .7
2.1.2 Software Path Length .8
2.1.3 Hardware .8
2.1.4 Synchronous versus Asynchronous Processing 8
2.1.5 Communication .9
2.1.6 Caching. .9
2.1.7 Prefetching Data .10
2.1.8 Locking .10
2.1.9 Object Oriented Issues .12

2.2 Measuring Performance .13
2.2.1 Common Measurements .13
2.2.2 Capacity Planning .14
2.2.3 Analytical Modeling .15
2.2.4 Simulation Modeling .16
2.2.5 Queuing .20

Chapter 3. How to Find a Performance Problem .23
3.1 Step-by-Step Approach .23
3.2 Profiling the Application with JProbe Profiler .25

3.2.1 Checking for Streaming .25
3.2.2 Remote Method Calls .26
3.2.3 Creating Objects and Garbage Collection .28

3.3 Using Strings and StringBuffers .29

Chapter 4. Tools for Performance Analysis .31
4.1 Which Tool to Use. .32
4.2 About Timing Methods .33

4.2.1 Elapsed Time .33
4.2.2 CPU Time .34

4.3 OptimizeIt .34
© Copyright IBM Corp. 1999 iii

4.3.1 Testing a Java Program . 34
4.3.2 Testing a SanFrancisco Application . 35
4.3.3 Using the Memory Profiler . 36
4.3.4 Using the CPU Profiler . 39
4.3.5 Summary on OptimizeIt . 42

4.4 JProbe. 43
4.4.1 Testing a Java Program . 44
4.4.2 Testing a SanFrancisco Application . 47
4.4.3 The Memory Usage Window . 48
4.4.4 The Instance Summary Window. 49
4.4.5 The Call Graph Window . 50
4.4.6 The Method List Window . 52
4.4.7 The Method Detail Window . 52
4.4.8 The Source Window. 53
4.4.9 Summary on JProbe . 54

4.5 Windows NT Performance Monitor . 55
4.6 AS/400 Performance Tools . 56
4.7 The Container Cache Statistics Tool . 57

4.7.1 How to Run . 57
4.7.2 Explanation of Output . 57
4.7.3 Example Output . 57
4.7.4 What to Watch For . 58

4.8 Lock Analysis Tools . 58
4.8.1 The Lock Conflict Trace Analysis Tool . 59
4.8.2 The Lock Contention Console . 64

Chapter 5. Performance Aspects Using Design Patterns 67
5.1 What Design Patterns Are . 67
5.2 Command Pattern . 67

5.2.1 Description . 67
5.2.2 Performance Impact. 68
5.2.3 Usages of Command Objects . 69

5.3 Controller Pattern . 72
5.3.1 Description . 72
5.3.2 Performance Impact. 72
5.3.3 Controllers without ExtentCollection. 72
5.3.4 Partitioning Controlled Entities . 73
5.3.5 DController . 74

5.4 Property Container Pattern . 74
5.4.1 Description . 74
5.4.2 Performance Impact. 74

5.5 Policy Pattern . 75
5.5.1 Description . 75
5.5.2 Performance Impact. 75

5.6 Extensible Item Pattern . 77
5.6.1 Description . 77
5.6.2 Concept . 77
5.6.3 Performance Impact. 78
5.6.4 Alternative for the Extensible Item Pattern . 78
5.6.5 Replacing an Extensible Item Implementation 80

5.7 Life Cycle Pattern . 81
5.7.1 Description . 81
5.7.2 Performance Impact. 82
iv IBM SanFrancisco Performance Tips and Techniques

5.8 Cached Balances Pattern .83
5.8.1 The Basis: Keys and Keyables .83
5.8.2 Description .83
5.8.3 Performance Impact .84
5.8.4 Alternatives for the Cached Balance Pattern85

5.9 Link Pattern .87
5.9.1 Link Object .87
5.9.2 Description .88
5.9.3 Performance Impact .89

Chapter 6. Hardware and Software Configuration 91
6.1 Hardware Recommendations .91

6.1.1 Memory .91
6.1.2 Client .92
6.1.3 Server .92
6.1.4 Development .93
6.1.5 Configuration. .94

6.2 Operating System .94
6.2.1 Microsoft Windows NT Server .94
6.2.2 Microsoft Windows 95 .97
6.2.3 The AS/400 System .97

6.3 JVM Configuration .97
6.3.1 First Steps. .98
6.3.2 Fine Tuning .98
6.3.3 Timeout Setting .99
6.3.4 The AS/400 System .100
6.3.5 AIX .101

6.4 Communication .101
6.4.1 Network Drives .101
6.4.2 DNS Configuration .101

6.5 Running IBM SanFrancisco on Small Machines 105
6.5.1 IBM SanFrancisco Container Settings .106
6.5.2 JVM Settings .106

Chapter 7. LSFN Configuration .107
7.1 Configuration Settings. .107

7.1.1 Cache Threshold .107
7.1.2 Garbage Collection .108

7.2 Configuring LSFN for Small Systems .108
7.2.1 Container Settings. .109
7.2.2 JVM Settings .110

7.3 Exploring Topologies .110
7.3.1 Data Placement. .112
7.3.2 Communication Issues .116
7.3.3 Some Commonly Used Topologies .118

Chapter 8. Object Persistence, Databases, and Schema Mapping123
8.1 Schema Mapping in General .123

8.1.1 Abstract. .123
8.1.2 Introduction .124
8.1.3 Object-Relational Mediators .124
8.1.4 Achieving Performance .126
8.1.5 Optimize Object-Relational Mapping .126
8.1.6 Mapping Simple and Aggregate Classes .127
 v

8.1.7 Mapping Relationships. 128
8.1.8 Mapping Inheritance . 128
8.1.9 Multi-Class Join Queries . 130
8.1.10 Live Object Cache . 131
8.1.11 Optimizing Object Navigation . 132
8.1.12 Transaction Isolation . 133
8.1.13 Conclusion . 134

8.2 The SanFrancisco Entity Cache. 135
8.3 SanFrancisco Schema Mapping Cache . 135
8.4 The Posix Store . 135
8.5 The Rdb Store . 136

8.5.1 DSM (Default Schema Mapper) . 136
8.5.2 The Extended Schema Mapper (ESM) . 138

8.6 Legacy Data . 139
8.7 When to Use What . 140
8.8 Database Configuration . 141

8.8.1 Microsoft Windows NT DB2 5 - UDB . 141
8.8.2 IBM AS/400 DB2/400 . 142
8.8.3 Oracle on Microsoft Windows NT . 143
8.8.4 Query Pushdown . 143
8.8.5 EntityOwningExtent . 145

Chapter 9. Java Coding Tips . 147
9.1 The Idea Behind the Tips. 147
9.2 General Techniques . 149

9.2.1 Loop and Counting . 149
9.2.2 Using Buffered Data Streams. 151
9.2.3 Reduce Code Execution . 151

9.3 Memory Management . 152
9.3.1 Using Primitives . 152
9.3.2 Reusing Objects . 152
9.3.3 Reduce Object Size . 153
9.3.4 Free Resources . 154

9.4 Java-Specific Tips . 154
9.4.1 String Operations. 154
9.4.2 StringTokenizer . 155
9.4.3 Function Inlining . 155
9.4.4 Exceptions . 156
9.4.5 Hashtables. 158
9.4.6 Vectors . 158
9.4.7 Synchronization . 159
9.4.8 Casts and Instanceof Operation . 160
9.4.9 Using the API. 161
9.4.10 Use JIT and Static Compilers. 161

Chapter 10. SanFrancisco Coding Tips . 163
10.1 General Techniques . 163

10.1.1 Caching . 165
10.1.2 Object Selection. 168
10.1.3 Object Streaming . 169
10.1.4 Fast Conversions . 170
10.1.5 Tracing . 170
10.1.6 Copy versus Create . 171
vi IBM SanFrancisco Performance Tips and Techniques

10.1.7 DPC Initialization. .172
10.1.8 Transient Entities .172
10.1.9 Hashcodes .173

10.2 Foundation Layer Coding Tips .173
10.2.1 Commands .174
10.2.2 AccessMode and Locking .179
10.2.3 Iterators. .185
10.2.4 Collections .186
10.2.5 Miscellaneous .188

10.3 Common Business Objects Coding Tips .188
10.3.1 Company, Controllers, and Policies .188
10.3.2 Euro Currency .191
10.3.3 Validation .192

Appendix A. Internal SanFrancisco Tools - Schema Mapper Tool 195
A.1 Overview . 195

A.1.1 Schema Mapping Tool (SMT) . 195
A.1.2 Schema Mapping Language (SML) . 195
A.1.3 Platforms and DBMS. 195
A.1.4 Schema Mapping Interface (SMT GUI). 196
A.1.5 Schema Mapping an Object . 196
A.1.6 Using the Extended Schema Mapper . 196
A.1.7 Editing an Existing SML File . 196
A.1.8 User Preferences . 196
A.1.9 Default and Override Tables . 196
A.1.10 Functions of the SMT . 196
A.1.11 Other Considerations . 197
A.1.12 Table Schema Assistant . 197
A.1.13 Start-up Options . 198
A.1.14 Define New Schema Mapping. 198
A.1.15 Select SML File . 198
A.1.16 Select Preferences . 198
A.1.17 Mapping (User) Preferences . 198
A.1.18 Data Type Mapping Preferences - Detail . 198
A.1.19 Object Mapping . 198
A.1.20 Field Mapping - Options . 198
A.1.21 Select Query Methods. 198
A.1.22 Substitution Pattern. 198
A.1.23 Date Pattern . 199
A.1.24 Array Mapping - Options . 199
A.1.25 Defining Handles. 199
A.1.26 Mapping Handle Types . 199
A.1.27 Defining Subclasses . 199
A.1.28 Subclass Mapping. 199
A.1.29 Interface Mapping - Options . 199
A.1.30 Primary Key. 199
A.1.31 Join . 199
A.1.32 Define Join Relationship . 200
A.1.33 Multiple Rows . 200
A.1.34 Exit Options. 200

Appendix B. Modifying Generated Code . 201
B.1 When to Make the Changes . 201
 vii

B.2 Possible Changes .201
B.2.1 Method getChildControllers() on Controller Objects 201
B.2.2 Use of Iterators .201
B.2.3 Caching of Global.factory. .201
B.2.4 Use of Local Variables .202
B.2.5 Use of Helper Methods .202
B.2.6 Method addAllElements() on List Objects .202

B.3 Other Changes. .202

Appendix C. Special Notices .203

Appendix D. Related Publications .205
D.1 International Technical Support Organization Publications205
D.2 Redbooks on CD-ROMs .205
D.3 Other Publications .205

How to Get ITSO Redbooks . 207
How IBM Employees Can Get ITSO Redbooks .207
How Customers Can Get ITSO Redbooks .208
IBM Redbook Order Form .209

List of Abbreviations . 211

Index . 213

ITSO Redbook Evaluation . 217
viii IBM SanFrancisco Performance Tips and Techniques

Figures

1. Dead Lock Situation . 11
2. Simulation: Bird’s-Eye View . 17
3. Distribution of the Garbage Collection . 19
4. Distribution of the Transaction Time . 20
5. M/M/1 Queue - Response Time . 21
6. Serialization in the Profile. 26
7. Skeletons and Stubs . 27
8. The Impact of Stubs and Skeletons . 28
9. Copy and Create Objects. 29
10. Using String and StringBuffer. 30
11. Performance Pie . 31
12. Attaching to a Running Java Program from within OptimizeIt 36
13. OptimizeIts Memory Profiler . 37
14. OptimizeIts Allocation Backtrace Mode . 38
15. OptimizeIts Allocation Backtrace mode - Reverse Display 39
16. OptimizeIts CPU Profiler . 40
17. OptimizeIts Thread viewer . 42
18. JProbe Profiler Console . 44
19. JProbe Run Settings . 45
20. JProbe Advanced Run Settings - Measurement Tab. 46
21. JProbe Advanced Run Settings - Filters Tab . 47
22. JProbe Run Settings - Running the LSFN Server . 48
23. JProbe Memory Usage Window. 49
24. JProbe Instance Summary Window . 50
25. JProbe Call Graph Window . 51
26. JProbe Method List Window . 52
27. JProbe Method Detail Window. 53
28. JProbe Source Window . 54
29. Use of Command Objects . 68
30. Retrieving a Subset of Data . 70
31. Structure of Extensible Item . 77
32. Solving the Problem with Extensible Item . 79
33. Solving the Problem with Aggregation . 79
34. Adapters in the Extensible Item Pattern. 80
35. Static Implementation of the Adapter . 81
36. General View on the Life Cycle Pattern . 82
37. Performance with Cached Balances . 84
38. A Cache Manager Structure. 86
39. Object Interaction Diagram . 87
40. Example of a Link Object . 88
41. Link Objects in SanFrancisco. 88
42. The Link Pattern. 89
43. Microsoft Windows NT Task Manager . 95
44. Processes View of the Task Manager . 96
45. Select Columns View . 97
46. Example for the Output of the -verbosegc Option . 99
47. Distribution of Containers and Processes in an LSFN 112
48. Distribution of Products and Policy Information among Warehouses 114
49. Entity Lookup by a Server Process - Initiated by a getEntity() Call 117
50. Assigning Server Processes to Containers . 120
© Copyright IBM Corp. 1999 ix

51. Object/Relational Mediator .125
52. Aggregate Class Mapping. .127
53. Relationship Mapping .128
54. Inheritance Mapping .129
55. Join Queries .130
56. Object Knitting. .131
57. Live Object Cache. .132
58. Transactional Object Cache .133
59. Transaction Isolation .134
60. Simple Class Customer Mapped by Default Schema Mapper 137
61. Class Customer with Dependent Class Address Mapped by DSM.138
62. Class Customer with Dependent Class Address Mapped by ESM.139
63. Where Time is Spent in a Test Application - The GBOB Benchmark164
64. Flow Charts for Some Time Consuming Operations.165
65. An Example of Time Distribution for Foundation Layer Operations 174
66. Command Loading - Specifying the Location of Execution.175
67. Location of Execution for Different Values of Target and LocationHandle . . .176
68. Object Distribution for Default SanFrancisco AccessModes.179
69. Company Hierarchy and its Association with Controllers189
x IBM SanFrancisco Performance Tips and Techniques

Tables

1. Methods for Streaming. 27
2. Memory Requirements . 92
3. Impact of Optimization Level on AS/400 System . 100
4. DSM and ESM Advantages and Disadvantages . 140
5. Java Operations Costs. 148
6. Using int or Integer. 152
7. String versus StringBuffer . 154
8. Compare StringTokenizer with Own Implementation. 155
9. Choosing between Adding Properties to, or Extending, an Object 169
10. Summary of Pessimistic, NO_LOCK, and Optimistic Approaches. 182
11. Choice of Collections Determined by Size or Functionality Needed 186
© Copyright IBM Corp. 1999 xi

xii IBM SanFrancisco Performance Tips and Techniques

Preface

A SanFrancisco-based application can obtain good performance, but there are,
and always will be, certain limits to this performance. To make a wise decision, it
is important to have several pieces of information. First, what is the requested
appropriate performance? Second, what is the performance that SanFrancisco
can live up to for the type of application? If there is a match between these, take
into consideration that the framework constantly improves its performance and a
better performing version may be available by the time of deployment.

If the appropriate performance is reachable, and SanFrancisco is chosen for
development of the application, the real performance work begins. You can
achieve performance expectations by avoiding bad practices. A series of reasons
can lay at the basis of a poor performing application. This redbook helps you to
understand these reasons and offers solutions or alternatives when possible.

It is obvious that other characteristics and features of the framework are far more
determining factors in choosing the IBM SanFrancisco framework as a base to
build applications than its performance. Although performance should not be a
major reason to vote against it, this redbook only considers performance issues.

The redbook is primarily intended for IBM SanFrancisco application developers,
application architects, and performance consultants. It guides you through the
different areas of performance and helps you to analyze a performance problem
with the use of various tools, shows how application design patterns can
influence performance, and describes the IBM SanFrancisco environment. It also
provides suggestions for optimal performance, leads you through the technique of
mapping the relational database to objects, and provides a comprehensive list of
coding techniques for better performance of SanFrancisco applications.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Rochester Center.

Gottfried Schimunek is a certified I/T Architect at the IBM
International Technical Support Organization, Rochester
Center. He writes extensively and teaches IBM classes
worldwide on all areas of application development and
performance. Before joining the ITSO in 1997, Gottfried
worked in the Technical Support Center in Germany as a
Consultant for IBM Business Partners and Customers as well
as for the IBM Sales Force.

Thomas Fanto is a Systems Engineer at Intentia Research &
Development in Sweden. He has eight years of experience in
the OOA, OOD, and OOP field. His areas of expertise include
14 years of ERP systems development, middleware
architecture, and database systems. He has written
extensively on IBM AS/400 Systems, Microsoft Windows NT,
and Ericsson 2500.
© Copyright IBM Corp. 1999 xiii

Maria Cristina Filorizzo is an I/T Specialist at the Java
Technology Center, IBM Semea Sud, in Italy. She has three
years of experience in the OOA, OOD, and OOP field. She
holds a degree in Computer Science from University of Bari,
Italy. Her areas of expertise include intelligent software
agents, application development based on San Francisco,
and relational and OO database technology. She has written
extensively on Java, publishing a series of articles for an
Italian magazine. In 1996, she received the Outstanding
Technical Achievement Award.

Armin Rauch is a Systems Engineer and architect at IDG
Informationsverarbeitung und Dienstleistungen GmbH,
Germany. He has four years of experience in the OOA,
OOD, and OOA field. His areas of expertise include
connection between OO and legacy systems and 15 years
of application development.

Roger Rolandsson is a Systems Engineer at Intentia
Research & Development in Sweden. He has two years of
experience in the OOA, OOP, and OOD field. He holds a
Bachelor of Science in Computer Engineering from the
University of Linkoping, Sweden. His areas of expertise
include application development, database, and
object-oriented programming.

Mohit Sant is a Senior Software Engineer at IBM Global
Services, India. He has two years of experience in the OOA,
OOD, and OOP field. He holds a Bachelor of Engineering
degree in Computer Science and Engineering from Sri
Jayachamrajendra College of Engineering, Mysore. His areas
of expertise include Java applications and JavaBeans
development and networking.

Jan Van der Sypt is a SanFrancisco Support Engineer in
Belgium. He has five years of experience in Object
Technology. He holds a degree in Commercial Engineering
from the Economical Highschool Saint Aloisius in Brussels,
Belgium. His areas of expertise include Application
Development with IBM Smalltalk and Java applications, which
are based on the IBM SanFrancisco framework. He has been
instructor at the Object Technology University, La Hulpe,
Belgium.
xiv IBM SanFrancisco Performance Tips and Techniques

Thanks to the following people for their invaluable contributions to this project:

Christopher Abbey
Randy Baxter
James Carey
Adam Dirstine
Tim Graser
Steve Halter
Jay Johnson
Jim Kidd
Steve Kiss
Wilson Lee
Kenton Lynne
Mike McKeehan
Stephanie Meizer
Steve Munroe
Mark Pasch
Phil Sanders
Jim Van Oosten
IBM Rochester

Achim Nogli
IBM Object Technology Consulting Practice Germany

Nathalie Vilaine
IBM Belgium

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 217 to
the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xv

xvi IBM SanFrancisco Performance Tips and Techniques

Chapter 1. Introduction

Performance remains a hot topic. Everyone talks about it, wants the most of it,
and sometimes confuses the mechanics behind it. This introductory chapter
focuses on the question: What is meant by the best performance? It also serves
as a guide to read this book depending who the reader is, and what his or her
problem is. Two different situations may exist: the reader seeks information on
performance to use it in developing, or the reader already has a performance
problem and is looking for guidance on how to understand and solve the problem.

1.1 Performance in General

This section deals with performance in a general way and focus later on
performance in a distributed IT environment. Additional information on
performance can be found in several books in the bibliography. Chapter 2,
“General Performance Issues” on page 7 deals with the different aspects of
performance.

1.1.1 What Performance Is
Without looking for an exact, scientific definition in a reference, we all have a
certain understanding of what good performance in information technology (IT)
environments means:

 • Fast
 • Short response times, responsiveness

In general, performance is the ratio of a certain work, divided by the time it took to
complete. In a computing environment, performance is usually measured by "how
long this request needs to be serviced" or "how many requests this system can
handle in a single second." All these phrases refer to the same ratio: work divided
by time.

1.1.2 Why the Need for the Best Performance
It is a well-known fact that patience is not among the most widespread
characteristics of human beings. Waiting for a machine to deliver an expected
result is widely considered to be boring, even if only takes a short period of time.
People using computers (end-users) get easily frustrated when they have to wait
for computers to fulfill their requests.

Although this may not seem strong technical reason to invest resources to
improve performance, it is among the most important reasons. Motivation,
acceptance, and productivity largely depend on the infrastructure people use.

To be successful in a competitive market place, a company needs to be
responsive to customers and improve troughput of the services and products they
offer. Basically, companies need to be productive as much as possible. This high
performance is only obtained if the people working in this company, and the
infrastructure used, has the "best" performance.

When asked what performance people request, the usual response is "the best
performance." This can only be achieved by investing an unreasonable amount of
money. In an environment with limited financial resources, this is unrealistic. The
© Copyright IBM Corp. 1999 1

good thing about it that it may also be unnecessary. The main question becomes:
What is appropriate performance?

1.1.3 What Appropriate Performance Is
The appropriate performance for an application, or a process, is precisely that
performance is expected right from the beginning. For every situation, this may
differ.

A fighter pilot will expect his jet to be reactive within milliseconds; where, an
accounting program will attain the desired performance if an operation is finished
within three seconds. A fighter pilot cannot live with a jet that has the
performance of the accounting program, nor does it make any sense to have an
accounting program finish its operation within a couple of milliseconds, as the
operator will have to enter the necessary information anyway, which takes time.

In other words, the appropriate performance for a process is obtained if the user
of that process can continue working without being held up by the process. If
waiting times of a process are such that they are not interfering with the normal
continuation of work in process, which may consist of manipulation by the
operator or mere think time of the operator, the appropriate performance is
obtained.

It is of no use to improve the performance of a business process that already has
reached the appropriate level of performance.

Reaching the level of appropriate performance is not always easy, as an
organization has limited financial resources. Performance can be improved by
using faster machines, implementing better communication, or investing a lot of
man hours in changing the code. All this takes money, which is limited.
Compromises and wise decisions need to be made. The art is to spend the
available financial resources in a way that the largest performance improvement
is obtained.

To do so, a good understanding of the process is necessary, as the effort needs
to be focussed on the bottleneck of the process. The performance of each
process will always be determined by the point in the chain of actions that causes
delays. This point is called the bottleneck. If this slowest part can be improved,
making the delays disappear, the overall performance will improve. At the same
time, another part in the chain will become the bottleneck. To improve the
performance even more, this shift needs to be understood so that efforts can be
focused on this new bottleneck.

1.1.4 Performance in a Distributed IT Environment
Performance analysis and problem determination in large, heterogeneous, and
distributed environments is not easy. There are a number of benchmarks
available for evaluating the performance of a CPU or how fast a terminal can
display some graphics, and for many other purposes, but is it almost impossible
to define methods to measure how good a distributed computing environment
performs.
2 IBM SanFrancisco Performance Tips and Techniques

Performance tuning in a distributed environment concentrates mainly on:

 • Achieving fast response times for remote requests.

 • Circumventing bottlenecks that may slow down a whole infrastructure in any
shared resources, such as servers.

 • Providing scalability options for the expected growth of the overall system.

 • Keeping the required investments in an acceptable range.

These involve thorough planning (design), methods for evaluating, and ways to
detect and resolve performance-related problems. Every installation site needs to
investigate which functions are the most important ones, what needs to be fast,
as other people or services are waiting for the result. It must be obvious that a
distributed application can not be faster than a local one, unless remote
computing power is involved in a certain distributed transaction.

1.2 Where to Go from Here

Everybody involved in an IT development should be aware of performance issues.
It depends on the task somebody is doing at a given time to what degree
performance is an issue. The different actors in the development cycle make their
contribution to performance at a different points in time.

The way this book can be used will greatly depend on the type of reader and in
what stage of the development cycle of a SanFrancisco based application one is.

1.2.1 Where You Are in the Development
If you are unaware of the tips and techniques discussed in this book, the best
place to be, in this case, is nowhere, meaning right at beginning of the
development cycle of an application. If no work has been done so far, there is
also no work that needs to be redone in order to improve performance.
Performance tuning is an ongoing task, and the best place to start with it is
directly from the beginning. The best way to proceed, in this case, is to read the
book in a consecutive manner. Every part in this book will prove its usefulness.

If this book comes in right at the end of a development phase, where severe
performance problems are suffered, several parts of this book will not be very
useful if the application can not be reengineered. But still, many things are still
possible: by focussing on the configuration of the different components in a
SanFrancisco environment, performance can be improved. We recommend that
you read Chapter 6, “Hardware and Software Configuration” on page 91, Chapter
7, “LSFN Configuration” on page 107, and Chapter 8, “Object Persistence,
Databases, and Schema Mapping” on page 123.

1.2.2 What Your Job Is in the Development
This redbook has different audiences: decision makers, developers, architects,
and performance people. Depending on who you are, the following advice is
useful on how to proceed in reading the next chapters.
Introduction 3

1.2.2.1 IBM SanFrancisco Application Developer
A developer takes the design object model as an input for his job. He implements
the model, makes use of code generations, and plays an important role in the
deployment of the application.

Developers should be aware of performance at code level. For them, it will be
useful to focus on the chapters with coding tips and techniques on Java and
SanFrancisco: Chapter 9, “Java Coding Tips” on page 147, and Chapter 10,
“SanFrancisco Coding Tips” on page 163. These chapters will even be of interest
to people involved in an ordinary development project with Java.

Code generators lower the burden on the developers, but sometimes it may be
necessary to make changes to the generated code in order to obtain the best
performing code. For more information, see Appendix B, “Modifying Generated
Code” on page 201.

Since developers may be involved in the deployment of the application, it may
also be useful to have an understanding of the performance issues that arise
when configuring databases, configuring the Logical SanFrancisco Network and
setting up the hardware and software. The following chapters deal with these
matters: Chapter 6, “Hardware and Software Configuration” on page 91, Chapter
7, “LSFN Configuration” on page 107, and Chapter 8, “Object Persistence,
Databases, and Schema Mapping” on page 123.

1.2.2.2 IBM SanFrancisco Application Architect
Architects will especially be involved in the first phases of a development cycle.
They need to consider during analysis and design certain trade offs between
flexibility/functionality and performance. It is therefore crucial to have a good
understanding of certain constructs used in a SanFrancisco development. Some
of these constructs will have an influence on the overall performance of an
application built with SanFrancisco. Chapter 5, “Performance Aspects Using
Design Patterns” on page 67 will definitely be indispensable.

The layout of the underlying relational database is important. Normalization of the
databases tables, the choice of column types, and the choice of indexes will all be
very important in performance. Sometimes an existing relational database is
used. Also, in this case, good decisions can be made. Chapter 8, “Object
Persistence, Databases, and Schema Mapping” on page 123 gives useful
information.

1.2.2.3 IBM SanFrancisco Performance Consultant
Consultants dedicated to performance will be involved through all the different
phases of a SanFrancisco development. Their primary task will be to monitor
performance, give advise in decisions, and predict the impact on performance of
certain decisions. It is clear that they will require the broadest range of
experience possible in performance issues among their peers. The entire content
of this redbook will be of interest, including the introduction, to measuring and
mathematically approaching performance (Chapter 2, “General Performance
Issues” on page 7).
4 IBM SanFrancisco Performance Tips and Techniques

1.3 Performance in SanFrancisco Based Applications: An Approach

This section presents you with a frame that can help you in deciding how to spend
time and effort on performance issues throughout the different stages of a
development cycle:

 • Be clear about the application that needs to be built.

 • Be convinced that SanFrancisco can offer the functionality and flexibility that is
desired, now or in the future.

 • Be clear about the appropriate performance that is needed for this application.

 • Investigate whether the SanFrancisco based application will achieve these
requirements, now or in the future. An analytical model might be the correct
instrument to give the proper indications.

 • Build an analysis object model focussing primary on the business
requirements. Performance should not be an issue in this stage.

 • Build a design object model while considering design decisions and their
influence on performance. An analysis model can, in most cases, be
translated in different designs. It is important to make wise decisions at this
point, as some of them will constitute the core of the application, making them
more difficult to change after implementation.

 • In most cases, the design object model will form the input for a code
generator. Do not start changing the generated code for performance at this
time, as chances are great that it will not be the last time the code is
generated, overwriting the modified code.

 • During implementation of the business logic, remember the concept of
Commands. They will be crucial for performance. It might be that some
command object has been forgotten during design. Revisit the design model
whenever necessary for updating. Also take into account the numerous coding
tips on Java and SanFrancisco that are provided.

 • Throughout the development, performance monitoring should be performed in
order to detect, as soon as possible, shortcomings in design or
implementation. This is best done by a dedicated person not directly involved
in the coding. These tests of the code should be performed in as real
conditions as possible. If this is not feasible, a simulation model should be
developed. Performance testing should use relational databases and no posix
stores.

 • When the business logic is implemented, some modifications on the
generated code can improve performance.

 • The client code will mainly consist of GUI code that will execute commands
against the servers. GUI code is definitely an area where a big performance
hit can exist. Care should be taken to avoid too heavy and multiple reads to
the database in order to populate lists and fields. Some techniques can be
used to accommodate these requirements.

 • While deploying the application, many parameters can be tuned. These
configurations involve the database, the network, the hardware of the
machines, and the SanFrancisco environment.
Introduction 5

1.4 Understanding and Solving a Performance Problem

In the case of bad performance of a SanFrancisco based application, the first and
most important questions are: What is the cause of the performance problem,
and where does it originate? Without an answer to these questions, any changes
to the configuration or the implementation of the application will probably not
solve the problem. Chapter 3, “How to Find a Performance Problem” on page 23,
helps answer these questions. When the problem is understood, advice and tips
can be found in other chapters that helps solve the performance problem.
6 IBM SanFrancisco Performance Tips and Techniques

Chapter 2. General Performance Issues

This chapter deals with measuring performance and with the elements that
influence performance. It is not meant to offer a thorough description of all
aspects, but as an introduction, it covers the different topics. For readers already
familiar with performance issues, this chapter may not provide new information;
people that are novices in performance should read it. For a more mathematical
foundation on performance measurements, other literature can be consulted.

2.1 Influencing Performance

This section covers the most important elements that influence performance. It is
meant as an initial mindset on the different factors that play a major role in
performance issues. These topics are dealt with in detail in relation to the IBM
SanFrancisco framework in other chapters.

2.1.1 Architecture
The architecture in a distributed environment will have a significant influence on
performance. Attention should be paid to minimizing the number of possible
contention points when serializing information and while synchronizing
processes.

A contention point is a position in the chain of actions that frequently causes
waiting locks. This means that different processes would like to have an access to
a particular element in the architecture. In a distributed, object-oriented
environment, this element can be many things: a database, a harddrive, a queue,
a particular object, and so on. It is crucial to understand these contention points
in order to make them disappear. The solution to avoid contention can be to put a
process on a different server, duplicate the element that creates the contention,
or review the locking scheme.

While sending information over a communication link, the data needs to be
streamed, transformed in a long series of sequential bytes. This serialized data
needs to be transformed back by the receiver into the original data. Serializing
does not refer to TCP/IP operations where the serialized data is packed to send
over the link. Serializing refers to the operation that comes on top of TCP/IP.
Serializing can be very expensive.

When two processes run on separate threads, they normally do not know about
each other. In certain situations, they need to know. For example, a process
requiring information that another process is calculating needs to wait until the
second process comes up with an end result. If the first process needs to wait, it
also needs to know when it can proceed. It is the second process that signals to
the first one that it can proceed. When a process is put in a waiting state, it is
called "suspended". When it resumes processing, it is "resumed". The whole
mechanism of communication between processes is called "synchronization".
Synchronization implies an additional workload. It can also lead to a degrading
performance in the case of a bad architecture. It is possible that a slow thread
performing a batch job in the background might be blocking the whole system.

Further information on this can be found in 10.1, “General Techniques” on page
163.
© Copyright IBM Corp. 1999 7

2.1.2 Software Path Length
In general, when talking about the code used, an important concept needs to be
mentioned: path length. The path length of a task, or a business process, is the
number of instructions that are executed in the CPU and the number of disk
accesses that are processed in order to complete the business process.

It is obvious that the path length should be as short as possible. This will
definitely depend on other matters that are influencing the performance, for
example, caching.

2.1.3 Hardware
The faster that a machine used is, the faster the same task runs. The speed is
certainly not only determined by the CPU, other elements of the infrastructure are
important:

 • The throughput of the internal bus
 • The distance between components
 • The speed of the hard disks used
 • The number of disk arms of the hard disks
 • The number of CPUs
 • The thoughput of the network

Further information can be found in 6.1, “Hardware Recommendations” on page
91.

2.1.4 Synchronous versus Asynchronous Processing
Synchronous processing means that every step in a chain of actions is performed
one after the other, where every following step is initiated only when the previous
one has finished. This way of processing limits the throughput of the whole
system to the throughput of the slowest element in the chain. The response time
may be too long to obtain the appropriate performance.

In the example where a text editor sends a document to the printer one page at
the time and waits for the printer to finish printing this page before sending the
next one, synchronous processing is used.

In asynchronous processing, there is no handshaking between different
processes. They just keep on delivering work to one another without waiting for
acknowledgments at every turn. In order for a process to work independently, but
still delivering input to the next process in the chain. There is a need to store end
results from one process until the next process will come and pick it up as an
input for itself. The intermediate stores are often referred to as buffers.

The different processes are aware of one another but only in the sense that they
will wait when it is absolutely necessary. For example, if a buffer is full, no more
end results can be put in, and the first process needs to stop until the second
process clears the buffer during processing.

In the example where a text editor sends a document to the printer one page at
the time but does not wait for the printer to finish printing every page before
sending the next one, asynchronous processing is used. Therefore, the printer
has a buffer where all received data is stored until the printer can print it out on
paper. If too much data is received from the text editor, the printer will send a
8 IBM SanFrancisco Performance Tips and Techniques

signal that its buffer is full, which will cause the text editor to stop sending data. It
waits for a period of time, after which, it resumes sending.

Asynchronous processing can increase the performance significantly in a
distributed environment, as the different processes run on different threads. Also,
on a single machine, asynchronous processing can be interesting to use. For
example, the CPU can already process the display of the first part of the records
while another process retrieves the following parts of the records.

2.1.5 Communication
Remote calls between a client and a server, or between two servers, are very
expensive in terms of performance. They should be limited as much as possible.

A good rule of thumb should be: work with the data locally. This means it is a
better idea to move the process to the machine where the data can be accessed
directly without going over the network with the data.

In a heavily distributed environment, it is, therefore, essential to know where the
data is stored that is used in a particular process.

Additional information can be found in 6.4, “Communication” on page 101.

2.1.6 Caching
Frequently and repetitively used information should not be retrieved from the
harddisk to active memory over and over again every time it is needed. Instead, it
should remain in active memory where it can be accessed directly without the
overhead of an expensive IO operation or database access.

One must decide wisely what to cache and when. Not every piece of information
can be cached, as this would consume too much of the available active memory,
leaving too little for the actual processing.

Since a cache mechanism only has a limited amount of memory to its disposal, it
is important that the correct information be in memory. The decision to put
something in the cache and throw another piece of information out is based on an
algorithm. The better job this algorithm does, the better the overall performance
will be.

The performance gain obtained by a cache mechanism depends on:

 • The time spent on retrieving the requested information if not found in the
cache. This could be little, for example, when reading from a fast local
harddrive, or a lot, when using a slow modem connection.

 • The ratio of the number of times that requested information is actually in the
cache (a cache hit) over the number of times it is not in the cache (a cache
miss).

Using a cache mechanism that frequently encounters a cache miss will impair the
performance even more than to not using a cache. In the case of a cache miss,
the information needs to be retrieved anyhow. This makes the read in the cache
an additional operation compared to directly retrieving the information without
asking the cache first.
General Performance Issues 9

A difference needs to be made between a read cache and a write cache. A read
cache only caches information that it has read. In the case of a change made to
the information that is cached, this change is immediately written back to the
underlying persistency. When using a write cache, a change made to the
information is only written to the persistency when an explicit request is made or
prior to removing the information from the cache.

An additional problem that may exist with the use of a cache is the updating of the
cache whenever another process changes the cached information directly on the
underlying persistency. An easy way to avoid this is forcing every access to the
information to go through the caching mechanism. This is not always possible.

Additional information can be found in 10.1.1, “Caching” on page 165.

2.1.7 Prefetching Data
To limit the number of accesses to the hard disk, an algorithm can be used to
predict what information will be asked next by the process that requested
information. Instead of accessing the hard disk every time a piece of information
is requested, a system can be used that already prefetches the data that the
algorithm predicted that would be asked for later. This way, requested information
can be returned from active memory, which is far more preferable.

This mechanism resembles caching, but the difference is that this is a proactive
mechanism, where caching depends on repetitively accessing the same data.

2.1.8 Locking
Locking is the process of obtaining a right to access or to modify a component.
This component can be a database, a file, or an object. Assume the component is
an object. If there is only one process accessing or updating the object, there is
no problem possible. The lock is granted. After processing, the lock is released.
Whenever there is a second process that requests access to the same object,
there may be a problem depending on the nature of the granted locks that already
exist. If the first process gets a read lock on the object, other processes can get a
read lock afterwards as well. A read lock grants access to read the object but
does not allow any changes. A different type of lock is the write lock. This allows
updating the object that the write lock was granted. A write lock can only exist
when no other read or write locks exists. A process may request a write lock on
an object to which another process was already granted a read write. In this case,
is has to wait until this read lock was released before it is granted its write lock.

It should be clear that a bad locking scheme causes a lot of contention points that
slow the system down. Two rules of thumb are: "release a lock as soon as it is no
longer needed" and "never hold a write lock for a long time".

Other aspects need to be mentioned. A process does not always wait forever for a
lock to be granted. A timeout can be used. This is the time that a process waits for
a lock. If the time-out is too short, this may break the processing unnecessarily.
For example, if a lock is requested on an object that is accessed over a slow
communication link with a time-out of three seconds, may never result in
obtaining a lock as it is very possible that the roundtrip time is more than the
three seconds. Even if the lock could be granted, it is timed-out. A time-out period
needs to be appropriate to the environment used. This period should not be too
short to guarantee the possibility to obtain a lock. On the other hand, it should not
10 IBM SanFrancisco Performance Tips and Techniques

be too long so that the system remains responsive even if this means signaling
failure of obtaining the lock. If the time-out period is indefinite, a situation of
deadlock can occur.

A deadlock is the situation where two processes are waiting for a lock on an
object that the other process has already locked. The lock is only released after
the process gets the second lock for which it is waiting. Since both processes are
in the same situation, there is no chance that they will ever get the second lock
they want.

Figure 1. Dead Lock Situation

2.1.8.1 Optimistic versus Pessimistic Locking
When optimistic locking is used, a component is locked during read, a working
copy of the component is created, and the lock is released again. Changes are
made to the copy, and when committing these changes, the real component is
locked for write, and the changes are made. The advantage is that the component
becomes available for read access by other processes, hence limiting contention.
The disadvantage is that the component also becomes available for write access.
It is possible that another process has made a change to the real component
between the first read access and the second write access. At that point, there is
no longer any certainty on the state of the component. Different policies are
possible: start over again, or investigate whether these changes are important to
the proper modifications. It depends on the frequency that this situation occurs
and on the effort to start over again. If it rarely occurs, and the modification is
easy to do again, just start over again. In the other cases, recovery code is
needed that tries to accommodate the requested modifications on the changed
component. Sometimes this is not possible and forces the user to start over
again.

When pessimistic locking is used, a component is locked for write for the entire
duration of modifying the component. The lock is released after the changes are
made. The advantage is that there is no risk that others have modified the
component during the process. The component will always be in a coherent state.
General Performance Issues 11

There is no need for recovery code. The disadvantage is the increase in the
possibility on contention. Other process may want to access the component for
read but are locked out. Pessimistic locking is a good policy in situations where
the transactions are rather short and where there would be a high risk on conflict,
as encountered with optimistic locking.

There are some additional considerations to make when dealing with locking
issues in the SanFrancisco environment. This information can be found in 10.2.2,
“AccessMode and Locking” on page 179.

2.1.9 Object Oriented Issues
This section includes performance aspects specific to an object oriented
environment such as the SanFrancisco environment.

2.1.9.1 Garbage Collection
Memory management in Java, and in some other OO languages, is done
automatically. This means memory blocks are allocated when needed and freed
up when no longer used. The allocation is done when objects are created. The
deallocation is done periodically by a process called the Garbage Collector (GC).
This process will check for objects that are no longer referenced. If so, it
de-allocates the memory blocks occupied by that object. This process ideally
runs in a low priority thread only running when the process has idle time. On a
very busy machine, there is no idle time when the GC needs to run. In this case,
the GC takes time away from the other business processes degrading the
performance.

It is essential to limit the GC runs, definitely during heavy load periods. The best
way to limit GC runs is to limit the objects created. Creating the same objects and
abandoning them again over and over again will run the GC regularly. Reuse of
objects is preferred.

Additional information can be found in 9.3, “Memory Management” on page 152.

2.1.9.2 Synchronization
Synchronization in Java is an expensive operation. It can exist on the level of a
method or on the level of a code block. A synchronized method indicates that only
one process at the time can invoke this method. Other processes have to wait. It
is used as a kind of locking system to prevent objects getting in incoherent states.
Invoking a synchronized method is a very expensive operation and should be
used carefully. If there is no risk on incoherent state, it should not be used. An
important aspect to know is that a lot of Java base classes use synchronization
internally. The use of these classes can cause performance problems.

Additional information can be found in 9.4.7, “Synchronization” on page 159.

2.1.9.3 Exceptions
Exceptions in Java should be used only to signal real error conditions, not as a
means to put back a return value. Only the abnormal conditions, the ones that
happen rarely, should use exception throwing. Additional information can be
found in 9.4.4, “Exceptions” on page 156.
12 IBM SanFrancisco Performance Tips and Techniques

2.1.9.4 Object Creation
If possible, objects should be reused rather than recreated. Depending on the
size of the object, creation can be very expensive. Especially with the big objects,
consider reuse. An additional benefit of reusing objects is the lower cost in
garbage collection.

Additional information can be found in 9.3.2, “Reusing Objects” on page 152.

2.2 Measuring Performance

Discussion about performance does not mean anything if there is no way to use
clearly defined measurements that enable comparing performance to a standard.

You should address performance only after having a fully tested and correct
program. Complete the following steps:

1. Get agreement on the appropriate performance (see 1.1.3, “What Appropriate
Performance Is” on page 2).

2. Measure the program’s performance under realistic conditions. If it meets the
expectations, stop.

3. Determine the bottleneck part to focus on. Do not guess where it might be, but
measure where it is.

4. Improve the performance of the part that was identified as the bottleneck.

5. Go to step two.

2.2.1 Common Measurements
Different measurements can be useful while profiling performance in a distributed
environment. This section briefly describes several of the measurements.

2.2.1.1 Transactions Per Minute (TPM)
This is a measurement of raw troughput—how many transactions of a specific
type can be executed in a single minute. Typically a software testing tool is used
to generate the transactions against the server and measure the results.
Depending on the server being measured and the type of transaction,
Transactions per second (TPS) or transactions per hour (TPH) may be a more
appropriate measurement.

After measuring the peak TPM, you should be able to estimate how many users
your server can handle. For example, if tests show that a server could handle
about 50 transactions per minute, and the average user issues two transactions
per minute, the server should be able to handle approximately 25 concurrent
users. Things get more complicated to calculate if a lot of contention exists as
concurrent users need access, for example, to shared objects. In this case, the
throughput is significantly less.

In most cases, TPM is a good for measurement figure for a SanFrancisco
environment that is typically a business-oriented environment that has
transactions that take, on average, a few seconds.

2.2.1.2 Response Time
This is a measurement of how long it takes from the time a transaction is issued
until the server begins to issue results. Adequate response time varies greatly
General Performance Issues 13

depending on the type of transaction. It is best to survey the users to determine
what response time is appropriate for a given transaction. Typically, the Maximum,
the Average, and the 90th percentile measurements of response time are of
interest.

2.2.1.3 Retrieval Time
This is a measurement of how long it takes from the time the server begins to
issue results until all of the results are received. As with response time, adequate
retrieval time varies based on the type of transaction, and typically the Maximum,
Average, and 90th percentile measurements of retrieval time are of interest.

2.2.1.4 Network Time
Network time is a measurement of how long the data spends on the wire. It can
be determined using a network sniffer or by executing simple transactions (which
should have near 0 response time against the server both from the server and
from a client workstation). The network time should be roughly the difference
between both. Both response time and retrieval time are dependent, not only on
the server, but also on the network.

2.2.1.5 Transaction Time
Transaction time is the sum of the response time and retrieval time—how long it
takes from the time of initiating a transaction until the last result is provided.

2.2.1.6 Bandwidth
Bandwidth is the amount of data that can be transmitted over a channel per unit
of time. Often, the percent Bandwidth is of more interest. These measurements
apply to CPUs, networks, active memory, and so on. They are usually used to
determine bottlenecks.

2.2.2 Capacity Planning
Capacity planning is the art of managing three different variables:

 • The present and future applications
 • The appropriate performance needed
 • The configuration of the hardware and software used

It is clear that these three variables are interdependent. The applications that run
on the available configuration result in a certain service level. The concept of
service level is very much related to the appropriate performance level. The
service level that is obtained needs to map to the requested performance level. To
maintain the appropriate level of performance, forecasting methods are used to
predict the service level with a given set of applications running on a given
configuration.

There exist about three acceptable ways to predict the service level. Two of them
are based on modeling. A model is an abstract construction that incorporates all
the essentials from the real world. An ideal model simplifies the reality by taking
into account the important elements while neglecting the less important factors. A
model will represent the reality.

The two different modeling techniques used are:

 • Analytical modeling
 • Simulation
14 IBM SanFrancisco Performance Tips and Techniques

These two modeling techniques are discussed in the next sections. The third way
to predict the service level is benchmarking. Benchmarking is discussed in a
separate appendix.

In most situations, analytical modeling is the first step. It may even be a part of
the decision making. Before any work is done, it is important to have a view on
what kind of infrastructure is needed to obtain certain service level.

The next step is benchmarking. Before, and during development, benchmarks
can give indications whether the application code is reached and not a
performance level predefined by a set of standards.

In complex configurations with many interrelated influences on performance, it is
beneficial to develop a simulation model. If correctly defined, this gives the best
predictions.

2.2.3 Analytical Modeling
This method is generally accepted as a good way to predict the performance of
applications because it:

 • Deals with present and future application and systems
 • Can predict service levels
 • Is sufficiently adequate for most purposes while staying simple

An analytic model has two main components:

 • The System, which is a simplified description of the major hardware items
(processors, controllers, discs, tapes) on a configuration (real or potential).

 • The Workload, which describes the number of times each device in the system
is used by different types of transactions or jobs.

The combination of a System and a Workload is referred to as a Forecast. The
modeling tool evaluates the Forecast and predicts what service levels will be
provided by that combination of hardware and software. Hence, those three
variables, the Applications, the Hardware, and the Service Levels, can be
integrated into successful plans.

A baseline model is an analytical model built to represent the current state of the
system and workload. The model is built from a standard system and workload
monitoring sources appropriate to the hardware and operating system in use. As

It is a myth to believe that a completely reliable model can ever be developed.
The only thing that one may try to achieve is a model that minimizes it
shortcomings in a way that they become unimportant to the end result. This
end result always follows a distribution, even if the model gives exact figures.
They can never be exact but always sensitive, in a certain degree, to a fault
tolerance.

The best approach is always to validate the end results of as many methods
you can use. The more they converge, the better the view of the system
becomes.

A Word to the Wise
General Performance Issues 15

you would expect, the model predicts service levels. In this case, the predicted
service levels can be verified and tested by comparing them with the actual
service levels measured by the system monitoring tools. This allows planners to
verify the accuracy and applicability of the model before it is used to predict the
future.

By modifying a verified baseline model, one can represent changes to the
workload and to the hardware. The changed model predicts the levels of service
that can be provided under these new circumstances.

The level of detail required for successful planning may well be different from that
required to solve a performance problem. Some confusion can arise because
both activities use largely the same data. While it is possible to use Analytic
Models to resolve detailed application-specific performance problems, it is their
long-term impact that is more important.

2.2.4 Simulation Modeling
Simulation is a modeling technique that is based on statistical mathematics. The
main purpose of this section is to illustrate what simulation may encompass. A
short description of the concept of a distribution of a variable is given, followed by
describing the different steps that occur in developing a simulation model. An
explanation on how simulation might be used in SanFrancisco finishes this
section.

2.2.4.1 Distribution
The value of a variable, an element that influences the performance, can follow a
distribution. This means that the value can never be exactly predicted, but in the
mean time, it is certain that the value is always in a certain range. For example,
the number of transactions a user launches against a server each hour can vary
from 10 to 60, but every hour will be different. The value depends on coincidence,
uncertainty, risk, and so on.

The most simple distribution is the uniform distribution. The value of a variable
that follows this distribution has an equal chance on every possible outcome. For
example, there is equal change for having 10 TPH, as for 46 TPH or 58 TPH. It
should be obvious that many variables will not follow a uniform distribution. There
exist many more. Discussing these distributions is out of the scope of this book.

2.2.4.2 Simulation
In a situation in which the elements that are important to a model follow a
distribution, the model that abstracts this situation cannot be analytically
composed. A simulation model is needed. In this kind of model, the input
parameters follow a distribution, and the end result follows a distribution as well.
This entire modeling technique is based on the probability theories. Figure 2
shows the general principals from a simulation model. The parameters that follow
a distribution are fed into the model that calculates the distribution of the end
result.
16 IBM SanFrancisco Performance Tips and Techniques

Figure 2. Simulation: Bird’s-Eye View

2.2.4.3 Developing a Simulation Model
Simulation models are potentially very accurate, but they require a lot of skills and
expertise to produce good results. If defined correctly, they can have a high
forecasting value.

During the development of the simulation model, you must ensure that the model
is correctly implemented and that it is representative of the real system. These
two steps are called model verification and model validation. After the model
development is complete, the next two issues faced are those of deciding how
many of the initial observations should be discarded to ensure that the model has
reached a steady state and how long to run the simulation. These issues are
referred to as transient removal and stopping criterion.

2.2.4.4 Model Verification
The first step is needed to check whether the assumptions used in the model are
reasonable, and the second step consists of checking whether these assumptions
have been correctly implemented. Only a model that correctly implements the
right assumptions gives useful results.

Different methods can be used to verify the model. It goes beyond the scope of
this introduction to deal with them in detail, but some examples are:

 • Top-down modular design
 • Structured walkthrough
 • Deterministic modeling
 • Degeneracy tests
 • Consistency Tests

2.2.4.5 Model Validation
Validation refers to ensuring that the assumptions used in developing the model
are reasonable. That is, if they are correctly implemented, the model will produce
results close to that observed in real systems. Model validation consists of
validating the three key aspects of the model:

traffic
General Performance Issues 17

 • Assumptions
 • Input parameters and distribution
 • Output values and conclusions

Each of these three aspects may be subjected to a validity test by comparing
them with that obtained from the following three possible sources:

Expert Intuition
This is the most practical and commonly used way to validate a model. A
brainstorming meeting of the people knowledgeable with the system and with the
domain should lead to detection of counter intuitive output values that are
produced by the simulation model. If these output values are not acceptable, it
remains to be determined whether the results are caused by an implementation
error or by wrong assumptions.

Real System Measurements
Comparisons with real systems are the most reliable and preferred way to
validate a simulation model. Even one or two measurements add considerably to
the validity of a simulation. In practice, however, it is rare that these
measurements exist, since they may be too expensive to carry out, or the system
does not yet exists.

Theoretical Results
In some cases, it is possible to analytically model the system under specifying
assumptions. In such cases, the similarity of theoretical results and simulation
results are used to validate the simulation model. This comparison should be
used with care, as both may be invalid in the sense that they both may not
represent the behavior of a real system.

2.2.4.6 Transient Removal
In most situations, only the steady-state performance, that is the performance
after the system has reached a stable state, is of interest. The results of the initial
part of the simulation should not be included in the final computations. This initial
state is also called the transient state. The problem of identifying the end of the
transient state is referred to as the transient removal. Therefore, the main
difficulty is that it is almost impossible to be precise as to where the transient
state ends. All methods for transient removal will therefore be heuristic, meaning
based on a set of rules.

Certain systems never reach a stable situation. They need to be studied with
more complex methods that make use of chaos theory.

2.2.4.7 Stopping Criterion
It is important that the length of a simulation is properly chosen. If too short, the
results will be highly variable. If too long, computing resources and manpower
may be unnecessarily wasted.

2.2.4.8 Simulation in SanFrancisco
Let us consider the following situation. A list of 10 items needs to be displayed on
screen. Every row consists of one string that is retrieved from a distinct Entity
maintained by a Controller. The entities reside in a container on a server running
on a separate machine from the client machine. The container is linked with a
DB2 database.
18 IBM SanFrancisco Performance Tips and Techniques

Then, ask this important question: What are the elements that influence
performance of this operation? The performance will be measured in Transaction
Time. The following elements can be taken into account:

 • Network load : The higher the load, the slower the communication.

 • Garbage collector : When the garbage collector kicks in, time is spent.

 • Database retrieval time : Depending on the position of the disk arm, caching
schemes of the database, and so on.

 • Paging : When the operating system needs to page, time is spent.

 • Caching : When Entity is in cache, no database access is needed.

Many other elements are important and should be included to have a useful
model.

For every element, assumptions need to be made. This means that the possible
input values are determined together with the probability of happening. For
example, Garbage collection will happen occasionally but will have a big impact.
The distribution of this element could be as in Figure 3. This is an example of an
exponential distribution. It is unlikely that there will be a GC right after the
previous one. As more time passes, the more likely it becomes that a GC will
start. The impact of the Garbage Collection happening will be included in the
model itself.

Somewhere in the model a formula will exist attributing a time penalty multiplied
with the probability of the GC parameter and with the probability of the duration of
the GC.

Figure 3. Distribution of the Garbage Collection

The end result of the simulation model will also follow a distribution. This
distribution can be very similar to the one shown in Figure 4. This is an example
of a gamma distribution. A precise answer is impossible to give. Answers are in
the form of transaction time being less than 6 seconds with a probability of 90%
or a transaction time of less than 5 seconds with a probability of 85%.

Needless to say, developing a simulation model is not easy.
General Performance Issues 19

Figure 4. Distribution of the Transaction Time

2.2.5 Queuing
This section deals with different aspects of the queuing theory. It is typically a
model that describes an asynchronous I/O process. At one end, information
arrives, and at the other end, data is retrieved. In the middle, the information
needs to wait before it is retrieved; it is queuing up. The mechanics of this
process is described in a queuing model.

2.2.5.1 Introduction
As is often the case in computer systems, servers typically process many
simultaneous jobs (for example, file requests), each of which contends for various
shared resources: processor time, file access, and network bandwidth. Since only
one job may use a resource at any time, all other jobs must wait in a queue for
their turn at the resource. As jobs receive service at the resource, they are
removed from the queue. All the time, new jobs arrive and join the queue.
Queuing theory is a tool that helps to compute the size of those queues, and it
views every service or resource as an abstract system consisting of a single
queue feeding one or more servers. Associated with every queue is an arrival rate
(A)—the average rate at which new jobs arrive at the queue. The average amount
of time that it takes a server to process such jobs is the service time (Ts) of the
server, and the average amount of time a job spends in the queue is the queuing
time (Tq). The average response time (T) is simply Ts + Tq.

2.2.5.2 Stable Queues
If the arrival rate is less than the service rate (1/Ts), the queuing system is said to
be stable. All jobs are eventually serviced, and the average queue size is
bounded. On the other hand, if A > (1/Ts), the system is unstable. The queue will
grow without bound. The product of the arrival rate and service time yields the
utilization of the server (U = ATs). This is a dimensionless number between 0 and
1 for all stable systems. A utilization of 0 denotes an idle server, while a utilization
of 1 denotes a server being used at maximum capacity. If the amount of time
between job arrivals (1/A) is random and unpredictable, then the arrivals exhibit
an exponential or "memoryless" distribution. This distribution is extremely
important to queuing theory. A queue in which the inter-arrival times and the
service times are exponentially distributed is known as an M/M/c queue, where
the M's represent the Markov, or memoryless nature of the arrival and service
rates, and the c denotes the number of servers attached to the queue. When
20 IBM SanFrancisco Performance Tips and Techniques

service history of a queuing system is irrelevant to its future behavior (only the
current state of the system is important) that history can be ignored, greatly
simplifying the mathematics.

The response time curve of an M/M/1 queue as a function of utilization is shown
in Figure 5. At a utilization of 0, the response time is just the service time: no job
has to wait in a queue. As utilization increases, the response time of the queue
grows gradually. Only when the utilization approaches 1 does the response time
climb sharply toward infinity.

Figure 5. M/M/1 Queue - Response Time

2.2.5.3 Little’s Law
Little's Law (N = AT) states that the average number of jobs waiting in the queue
(N) is equal to the product of the average arrival rate and the average response
time. Little's Law is surprisingly general and applies to all queuing systems that
are both stable and conservative (no work is lost when switching between jobs).
Little's Law is especially useful when applied to queuing networks. Typically, a
single queue is insufficient for modeling a complex system, such as a Web server.
In many such cases, a system can be modeled as a graph or network in which
each queue represents one node. Such queuing networks are called open if new
jobs arrive from outside the network and eventually depart from the network.
General Performance Issues 21

22 IBM SanFrancisco Performance Tips and Techniques

Chapter 3. How to Find a Performance Problem

This chapter offers hints on how to find and resolve the performance problems of
your application. At first, you have to locate the source of the problem. After this,
you find out why it is a problem, and look for ways to solve the problem. We
provide a step by step approach to show you how to resolve it. By following this
process, you can make sure that key parameters are checked.

3.1 Step-by-Step Approach

There are some things that you want to do when encountering performance
problems. We provide you with step by step instruction to find and resolve your
problem. First, you should concentrate on the environment your application runs
in. Do not look for performance problems within your application unless you have
verified the environment configuration. If you do, you may find yourself fighting
problems that would not have occurred otherwise. The first four steps guide you
through verifying your application environment:

1. Check the availability of resources:

Your application needs several resources to function properly. It needs enough
CPU power, a certain amount of memory, and enough disk space. There are
some specific points that should be monitored over a longer time period:

 • The CPU utilization should be below 75%.

 • There should always be a considerable amount of free physical main
memory left. For Microsoft Windows NT 16 MB, free memory is a good
start.

 • There should be almost no paging activity. JVMs are greatly effected by
paging due to garbage collection. It can happen that pages are loaded in
the memory for garbage collection, which puts stress on all parts of the
system.

Refer to Chapter 6, “Hardware and Software Configuration” on page 91 for any
hints on the actual configuration and a description of the appropriate tools.
Additional information about tools for monitoring these activities can be found
in Chapter 4, “Tools for Performance Analysis” on page 31.

If you encounter a problem here, try to upgrade your machine. Do not forget to
check all involved servers and clients. A problem on only one of several
servers may be the reason for all your difficulties.

Remember that, even if you monitor over a longer time period, there is still a
good chance for some utilization peaks. Keep this in mind while planning the
configuration of your machines. It is always useful to have some free
resources left.

2. Check the configuration of your operating system and JVM:

Some settings of your operating system or JVM inflict the performance of the
application. Check if you have configured the key parameters properly. For
example, a common mistake is to have the wrong settings for the heap size.
These settings need careful adjustment. For example, normally you should
have at least 25% of free heap space. For more information, refer to Chapter
6, “Hardware and Software Configuration” on page 91.
© Copyright IBM Corp. 1999 23

3. Check the configuration of your SanFrancisco installation:

The installation and configuration of your Logical SanFrancisco Network
(LSFN) has some influence on the application. Refer to Chapter 7, “LSFN
Configuration” on page 107 for more information.

4. Check the configuration of your database:

Every database has some settings that deal with different needs of
applications. Some of these settings inflict the performance of your
application. Refer to Chapter 8, “Object Persistence, Databases, and Schema
Mapping” on page 123 for hints.

After you have successfully completed the first four steps, your application
environment should be in rather good shape. With this configuration, you can
be sure that it is possible to have a performing application. If your application
still does not show the expected performance, it is time now to look for
bottlenecks or problems within your application.

5. Profile your application:

For various reasons, an application normally spends a major amount of time in
only a small part of the code for various reasons. Use a profiling tool to find
out where the "hot spots" of your application are. A more detailed explanation
on what to look for is found in 3.2, “Profiling the Application with JProbe
Profiler” on page 25. There are some possible reasons to spend a
considerable amount of time within one method:

a. High workload:

If this part of the code has to do much work or is executed multiple times, it
is always useful to look for the best performing implementation. Refer to
Chapter 9, “Java Coding Tips” on page 147 and Chapter 10, “SanFrancisco
Coding Tips” on page 163 for some hints on performance optimized coding.

b. Bad implementation:

See above for hints on performance coding.

c. Locking problems:

Sometimes your applications waits a considerable amount of time for some
resources. If these resources are locked by any other process, check for
possible workarounds. See 10.2.2, “AccessMode and Locking” on page
179 for additional information on locking.

To find out more about profiling an application, refer to 6.3.1, “First Steps” on
page 98 and Chapter 4, “Tools for Performance Analysis” on page 31.

6. Check if you have coded correctly:

If you find possible bottlenecks of your application, refer to Chapter 9, “Java
Coding Tips” on page 147 and Chapter 10, “SanFrancisco Coding Tips” on
page 163 to check if you already used the best performing implementation.

If steps 5 through 7 do not lead you to the application performance that you want
to have, it is the time to think about the design of your application. This may lead
you to re-implement a part of your application. Sometimes you have gone the
wrong way in designing your application. There are many things that can go
wrong, for example, object distribution or data traffic. For detailed information
about these points, refer to Chapter 7, “LSFN Configuration” on page 107 and
5.2, “Command Pattern” on page 67.
24 IBM SanFrancisco Performance Tips and Techniques

7. Check the usage of design patterns:

Some problems are best solved by the usage of certain design patterns that
also have a performance impact. More about patterns and their impact on your
application can be found in Chapter 5, “Performance Aspects Using Design
Patterns” on page 67.

8. Check the overall design of your application:

The overall design of your application is beyond the scope of this book. This
also includes the object design and your application architecture. There are
several things that can go wrong with an application. For these problem
domains, you should consult books about Object Orientated Analysis and
Design to find the possible bottlenecks of your application.

9. Re-evaluate your performance requirements

After you have checked all previous points and still do not achieve a sufficient
performance, check if your wishes can be reached with the available hardware
and software. It may be the case that your application requires a completely
different approach, which also is beyond the scope of this book.

3.2 Profiling the Application with JProbe Profiler

To find the actual bottlenecks of your application, there is no way around
profiling. Do not try to guess where these bottlenecks are. Only measurement
reveals the exact location of these problems. One way of measuring, the most
common one, is profiling the application at run-time. Specific information
about performance measuring tools, such as profiling tools, is found in
Chapter 4, “Tools for Performance Analysis” on page 31. After profiling the
application, there are several topics that are worth looking at. In this section,
we use one of the profiling tools that are explained. This is the JProbe Profiler
from KL Group.

This section describes these topics and give some examples how to find these
problems.

3.2.1 Checking for Streaming
To check if you do a large amount of serialization in your application, order the
profiling results by Cumulative Time. You can do this by clicking on the
heading of the column. More information about the usage of the tool are in the
already mentioned section.

To find the amount of streaming in your application, you look for readObject
and writeObject method calls. An example for this is provided in Figure 6 on
page 26. Having too much streaming indicates that you transfer too much data
between client and server.
How to Find a Performance Problem 25

Figure 6. Serialization in the Profile

To reduce the amount of streaming, and thus the amount of transferred data, you
should run more code where the BusinessObjects you are working with actually
reside or minimize the data transfer by being more selective of what data is
streamed. You can do this by using the command pattern that is described in 5.2,
“Command Pattern” on page 67. This allows you to send a single command to a
BusinessObjectServer and perform all the work there. If you need to display
results of the work being performed, you should chose to have your command
return the minimum amount of data possible. For example, instead of returning a
BusinessObject or Entity, return a subset of its state as Strings and maybe a
handle to the Entity. By doing so, you not only decrease the amount of transferred
data, you also decrease the number of remote method calls.

3.2.2 Remote Method Calls
A common performance leak is a large amount of remote method calls. A clear
indication for this is a large number of calls to Stubs and Skeletons. These can be
identified by their name, which always includes the extension _Stub or _Skel. An
example for several Stubs is shown in Figure 7 on page 27. Remote method calls
are necessary, but checking if all of them are needed is still a good idea and
needs to be done. If possible, you should bundle multiple remote method calls in
a command.
26 IBM SanFrancisco Performance Tips and Techniques

Figure 7. Skeletons and Stubs

To show the impact of a call to a skeleton, Figure 8 on page 28 provides a more
detailed view of what is done implicitly by calling methods of a skeleton. You see
that most of the time is actually spent in the writeObject method, and thus, with
streaming. In this example, which is taken from the server side, you find the most
time spent with writeObject. There is a simple matrix that tells you the meaning of
these method calls, which is shown in Table 1.

Table 1. Methods for Streaming

By figuring out the time spent in these methods, you can check which amount of
data is transferred. If the amount of time is high, for example 10,000 ms, you have
to check your method calls for improvement. Remember, the actual scale of this
window is mentioned in the bottom left corner of the windows. In Figure 8 on page
28, this is milliseconds.

readObject writeObject

Server Parameters Results

Client Results Parameters
How to Find a Performance Problem 27

Figure 8. The Impact of Stubs and Skeletons

3.2.3 Creating Objects and Garbage Collection
Each creation of an Object takes time. Also, the destruction of the object by the
garbage collector takes additional time. To find out if you create too many objects,
instead of reusing them, look for create and copy methods of the
BaseFactoryImpl class. Remember that only transient objects are garbage
collected in a SanFrancisco environment. Figure 9 on page 29 shows some of the
possible involved methods. Methods can be easily found if you change the sorting
order of the screen by selecting the Name column.

The monitoring of how many objects are created and deleted is best done during
run-time by looking at how many objects are in the memory at any given time. If
the number of objects created is fluctuating a lot, then you should probably
consider to reuse the objects you create instead of creating new ones and letting
the garbage collector clear the unused ones. This monitoring can be done with
either the JProbe Profiler or with OptimizeIt from Intuitive Systems, both of which
are explained in Chapter 4, “Tools for Performance Analysis” on page 31. One
easy way is to compare the number of objects at a point of time with the number
of objects after garbage collection. Most profilers allow you to force a garbage
collection. If you find a large difference between both states, you know that a lot
of temporary or transient objects are created that live only for a limited time. For
more information, refer to 9.3.2, “Reusing Objects” on page 152.
28 IBM SanFrancisco Performance Tips and Techniques

Figure 9. Copy and Create Objects

3.3 Using Strings and StringBuffers

Look for methods that handle Strings or StringBuffers. To start, look for toString
methods and the append method of StringBuffer. Quite often Strings are
overused, and too much time is spent in these classes. For additional information
about this, refer to 9.4.1, “String Operations” on page 154. Figure 10 on page 30
provides an example about this.

If you find a large number of calls to these methods, check the following items:

 • Reduce the number of Strings by replacing them with StringBuffer.
 • Reduce the number of appends by trying to append larger parts.
 • Check if all appearances of String or StringBuffer are really necessary.
How to Find a Performance Problem 29

Figure 10. Using String and StringBuffer
30 IBM SanFrancisco Performance Tips and Techniques

Chapter 4. Tools for Performance Analysis

This chapter deals with aspects of how to find out how much time is spent in
different parts of your application. An overview of this can be seen as a pie chart
with different parts or slices as shown in Figure 11. There are, of course, different
sizes on the different slices from one application to another, and perhaps also the
slices differ. Slices of this pie are CPU-usage, communication time, database
processing, and waiting time.

Figure 11. Performance Pie

When you have an actual performance problem, it is vital to find where you spend
the time to find out where you can make the biggest gains. Most often, the biggest
gains can, of course, be made in the most time consuming parts. Therefore, you
start out in that part and split it up into smaller parts within the problem area.
After this, you analyze them to find out which parts that are actually tunable.

To find the different slices of the pie and split them up into even smaller parts, you
can use different kinds of tools that provide you with different amounts of
information.

This chapter contains the following sections:

 • Section 4.1, “Which Tool to Use”—We divide the pie into different problem
areas, and then, give our recommendations on which tool, or tools, to use to
find out how much time actually spent in each area.

 • Section 4.2, “About Timing Methods”—We talk about different timing methods
you can use when you are trying to find out how much time is spent and the
pros and cons of using these methods.

 • Section 4.3, “OptimizeIt”—We give you an overview on how to use the
OptimizeIt tool from Intuitive Systems.

 • Section 4.4, “JProbe”—We give you an overview on how to use the JProbe
Profiler tool from the KL Group.
© Copyright IBM Corp. 1999 31

 • Section 4.5, “Windows NT Performance Monitor”—We give you a short
overview on how to use the Microsoft Windows NT Performance Monitor that
comes with Windows NT.

 • Section 4.6, “AS/400 Performance Tools”—We give you an overview on how to
use the Performance Data Collector/Performance Monitor that is available on
the IBM AS/400 System.

 • Section 4.7, “The Container Cache Statistics Tool”—We give you an overview
on how to use the Container Cache Statistics Tool that comes with
SanFrancisco.

 • Section 4.8, “Lock Analysis Tools”—We give you an overview on how to use
two different Lock Analysis tools that come with SanFrancisco: the Lock
Conflict Trace Analysis Tool and the Lock Contention Console Tool.

4.1 Which Tool to Use

This section gives you an overview on when to use various tools and what they
can provide.

To get an overall picture of how much time is spent on the different slices, you
should preferably use a more overall system performance analyzing tool. Of the
tools that we discuss in this chapter, there is one that is for overall system
analysis. This is the Microsoft Windows NT Performance Monitor. For example,
when monitoring the processes, the NT Performance Monitor can provide you
with information on how much CPU-time the database uses at different stages of
your application. Other things that the NT Performance Monitor has information
on are memory overcommitment, I/O bottlenecks, too large/too small heap sizes,
and so on.

When digging deeper into the different slices, it is better to use tools that give you
a more detailed picture of what is really happening inside the different processes.

The first two tools that we explain are OptimizeIt, from Intuitive System, and
JProbe Profiler, from KL Group. Both of these tools are quite low-level
performance analysis tools that should be used if you want to understand and
solve performance issues in Java programs. These tools show the CPU-time
spent by a certain program and even a certain method in that program. They also
show how many instances of an object that are allocated at any given point of
time.

These tools are excellent for showing you the most CPU-expensive points in your
code. By looking at which methods are taking the most time, you can, if you have
knowledge of what is done in the methods, distinguish between how much time is
actual CPU-processing, I/O, and communication. For example, when time is
spent in the method SocketInputStream.read(), you can assume that the time
spent in this method actually was spent on communication.

These tools are also good for understanding how much memory your application
is using at different points of execution and where it is spent. You can get
indications of possible memory leaks and if your program is creating excessive
objects. Temporary objects are usually rapid to allocate, but if too many
temporary objects are allocated, the Java VM garbage collector will run more
often which, in turn, means that, with most available Java VM, any Java program
32 IBM SanFrancisco Performance Tips and Techniques

pauses while the garbage collector is running. This means that the application
will run slower, that is, the performance drops if the garbage collector runs more
often than absolutely necessary. There is another element that may impact the
performance of your application. That is, if your application uses a lot of memory,
there will be less to use for the rest of the system, which may lead to the system
starting to swap.

Since each container in SanFrancisco maintains a memory cache where it keeps
recently accessed persistent objects so that when needed, it can retrieve them
directly from memory rather than from disk. SanFrancisco provides a utility to
display cache size and cache hit and miss rates. This is the Container Cache
Statistics Tool. It can help you to optimize memory usage, and therefore, lower
the number of disk accesses.

We then go through some AS/400 performance tools. These tools are both for
overall system performance analysis and for more in depth performance analysis,
such as which methods, or even lines of code, are performance hot spots. When
it comes to waiting time, this can be caused by events, such as garbage
collection, but also locking conflicts.

SanFrancisco provides two different lock analysis tools, the Lock Conflict Trace
Analysis Tool and the Lock Contention Console. The Lock Conflict Trace Analysis
Tool should be used during the application development phase to analyze trace
data for lock conflicts. In SanFrancisco, different transactions can have read
access to the same Entity at the same time, but only one transaction can have
write access to an Entity. And while that write access is held, no other transaction
can gain read or write access to the Entity. In this case, the other transactions
must wait until the first one has released the lock.

The Lock Contention Console should be used at runtime to help isolate deadlock
conditions that are due to a lock conflict. The tool captures a snap shot of lock
data and provides options to display and analyze the data. The tool is primarily
useful during a product test phase when running with multiple clients.

4.2 About Timing Methods

Depending on your particular project, you may want to measure time using
different methods. Time could be measured in either elapsed time or CPU time.
Most often, you may want to use the CPU time.

4.2.1 Elapsed Time
Elapsed (Wall Clock) time measures, in real-time, how much each method or line
takes to complete. Elapsed time is often the most accurate measurement on your
machine for this particular run but is affected by many different variables, such as
CPU speed, other running applications, available memory, and so on. The data
you get on your computer may not necessarily reflect how a program performs on
other computers.
Tools for Performance Analysis 33

4.2.2 CPU Time
CPU time measures the number of CPU cycles spent executing code. Unlike
elapsed time, CPU time does not take into account program pauses, waiting for
I/O, and so on. Since it is not affected by as many variables as elapsed time, CPU
time usually gives a better indication of how a program will run on other
computers.

4.3 OptimizeIt

OptimizeIt, from Intuitive Systems, is a comprehensive Java profiler that allows
developers to understand and solve performance issues in their Java programs.
Much of the information in this section has been gathered from the
documentation that comes with OptimizeIt, and this is available on the Intuitive
Systems Web page.

It runs on both Microsoft Windows NT and Sun Solaris. With its advanced audit
system, OptimizeIt delves into the Java virtual machine to provide detailed
information about how a Java application, applet, or JavaBean uses memory and
CPU resources.

With hot spot detectors and method call graphs, OptimizeIt’s CPU and memory
profilers make it easy to detect excessive object allocations or time-consuming
algorithms. OptimizeIt is plug and play. There is no need to recompile your
program with a custom compiler or to modify class files before the execution.
simply run your program from OptimizeIt to start testing its performance. Because
no code modifications are required, any Java code that your program uses is
included in the profile.

OptimizeIt has two main components:

 • OptimizeIt user interface —A window that displays profiles and controls for
refining the profiles and viewing source code.

 • OptimizeIt audit system —A real-time detective that reports the activity on
the Java virtual machine back to the OptimizeIt user interface.

An evaluation copy of OptimizeIt can be downloaded from:
http://www.optimizeit.com

4.3.1 Testing a Java Program
To test a Java program, you need to launch your Java program with OptimizeIt’s
audit system. OptimizeIt’s audit system runs in the tested Java virtual machine
and reports profiling information to OptimizeIt.

Since elapsed time includes program pauses, sleeps, waiting for I/O, and so
on, using this timing method may produce unexpected results. For example, if
your program is running multiple threads, it can accumulate elapsed time
simultaneously in all active threads. So, if 100 threads are running, the total
time may be 100 times the expected time.

Note
34 IBM SanFrancisco Performance Tips and Techniques

OptimizeIt’s program chooser allows you to launch the Java virtual machine and
the audit system together for an applet or an application. The following steps
show how to launch a simple applet:

1. From the File menu, select Choose program...

2. Click on the Browse... button and select

c:\jdk1.1.6\demo\awt-1.1\lightweight\Gauge\example.html

3. Click on the Start now button to start the applet.

4.3.2 Testing a SanFrancisco Application
OptimizeIt can launch most applets or applications. However, some applications,
such as large tools or Java servers, might require some special Java arguments.
To test these applications, it is possible to run them from the command line and
then attach from OptimizeIt. This feature allows OptimizeIt to run on a different
machine than the tested Java program.

To test SanFrancisco, you have to launch it from the command line. To allow
OptimizeIt to profile SanFrancisco, you need to launch it with the OptimizeIt audit
utility.

To use the OptimizeIt audit utility, you need to add the following line in your
classpath:

<install dir>\Intuitive Systems\OptimizeIt\lib\optit.jar

You also need the following line in your path:

<install dir>\Intuitive Systems\OptimizeIt\lib

OptimizeIt’s audit utility is a set of Java classes and native code. The following
command invokes the utility without any argument to print its options:

c:\> java intuitive.audit.Main
Options: [-port <portnumber>] [-dllpath <dir>] [-pause] [-dmp] [-nostdio]
ClassName arg1, arg2,...

The elements in this command are explained here:

 • -port —Specify the port you want to use for the communication link between
the audit utility and OptimizeIt application. If not filled in, the default port,
1470, will be used.

 • -dllpath —Specify where OptimizeIt’s dlls are if you don’t want to change your
path environment variable.

 • -pause —Causes the launched program to pause immediately after launch.

 • -dmp —Disables the memory profiler.

 • ClassName —This is your application main class.

For instance, if you want to launch the Logical SanFrancisco Network server,
LSFN server with OptimizeIt, perform these steps:

1. Start OptimizeIt.

2. Start the LSFN server from the command line with:

c:\> java -ms6m -mx128m -DserverName=SFGSMProcess intuitive.audit.Main
com.ibm.sf.gf.SmServerImpl
Tools for Performance Analysis 35

3. From the Program menu, in OptimizeIt, select Attach . The Attach panel
appears (Figure 12).

If you want to launch SFBOProcess1 with OptimizeIt, perform these steps:

1. Ensure that the LSFN server is started.

2. Start OptimizeIt.

3. Start the SFBOProcess1 from the command line with:

c:\> java -ms24m -mx96m -noclassgc
-Dsfenv="%SF_BASE%\com\ibm\sf\etc\sfenv.ini" -DserverName=SFBOProcess1
-DGDPMsleepTime=60 intuitive.audit.Main
com.ibm.sf.gf.SmServerImpl -GSM_UID 1

4. From the Program menu, in OptimizeIt, select Attach . The Attach panel
appears (Figure 12).

Figure 12. Attaching to a Running Java Program from within OptimizeIt

In the "Host name" input field, type the host name of the computer running your
Java program. If it is in the same machine as OptimizeIt, leave it to "localhost".
In the "Port number" input field, type the port number you want to use for the
communication link between OptimizeIt and the audit utility. Change this value
only if you used the -port option while launching your Java program.

4.3.3 Using the Memory Profiler
The memory profiler allows developers to track down object allocations.
OptimizeIt displays. In real time, object allocations and can provide a graph
showing which line of code is responsible for excessive allocations. You must,
however, have access to the source code to view the actual lines in the code.

Replace %SF_BASE% with the directory where you installed SanFrancisco, for
example, d:\sf\sf130.

 Note

You may want to create batch files with the above Java commands.

Hint
36 IBM SanFrancisco Performance Tips and Techniques

The first time you use OptimizeIt, it does not know where the source code is. Click
on the Browse... button on the window bottom to select the correct source code.
OptimizeIt also asks you whether or not you want it to remember the source code
location. Click the Yes button.

Figure 13. OptimizeIts Memory Profiler

First, you should click on the instance count column header to sort classes by
number of allocated instances. Now, you always have the classes with the most
instances on the top of the table.

The filter on the bottom can be used to display less classes. For example, if you
want to test only SanFrancisco classes, type com.* in the Filter field , and all
other classes will disappear. This is what we have done. Figure 13 shows the
instances that are allocated after we have started the LSFN server, that is, when
the LSFN server is up and running, ready to receive requests.

To measure how many instances are allocated when you run a certain program,
such as entering a new customer to your system, you can first push the broom
icon to run the garbage collector to get rid of nonreferenced objects. Push the
pencil icon to set a mark at the number of objects you have allocated at this
moment in time. You then run your application, and the difference in how many
instances you have allocated will be shown in the "Diff" column in the table.
Tools for Performance Analysis 37

To find out where objects are allocated, you first identify a class with an excessive
number of instances. Then, identify the code or the part of the program that is
responsible for these allocations. Select the line displaying the class you want to
focus on, and click the Show Allocation Backtraces button. OptimizeIt switches
to Allocation Backtrace mode (Figure 14).

Figure 14. OptimizeIts Allocation Backtrace Mode

The top section in "Allocation Backtrace" mode traces calls from the first method
where the allocations occur. By opening nodes in this view, you can see precisely
where allocations originate. Any line with a star in front of it is a line that is
responsible for one or more object allocations. The bottom section displays the
names of methods responsible for object allocations.

By pressing the Reverse Display button in the toolbar, you can reverse the list to
display backtraces from the place where the allocations take place to the
allocated instances of the Java program (Figure 15 on page 39). This view can be
useful when you need to focus on methods or lines of code responsible for object
allocations rather than broad features of your program.
38 IBM SanFrancisco Performance Tips and Techniques

Figure 15. OptimizeIts Allocation Backtrace mode - Reverse Display

Using the memory profiler allows developers to minimize temporary object
allocations. Temporary objects are usually rapid to allocate. However, they keep
the garbage collector busy. With most available JVMs, any Java program may
freeze for several hundred milliseconds when the garbage collector is busy. If too
many temporary objects are allocated, the application can appear very slowly to
the user because of these interruptions.

OptimizeIt's memory profiler also allows developers to discover how many objects
are allocated and stay in the virtual machine. This can be very useful to verify that
a document storage, for example, is really garbage collected when a document is
closed.

4.3.4 Using the CPU Profiler
While the memory profiler allows developers to understand how to minimize
object allocations, the CPU profiler allows developers to understand where the
time goes. The CPU profiler can be seen as a recording device inside the Java
virtual machine. Developers start the profiler, exercise whatever feature is slow in
their application, then stop the CPU profiler. Precise data about where the time
goes is then displayed.
Tools for Performance Analysis 39

Figure 16. OptimizeIts CPU Profiler

When you want to run the CPU profiler, you must first click on the CPU profiler
icon to switch to the CPU profiler. Then, click the start/stop icon, which looks like
a cassette tape, to start recording the CPU. Next, run the application that you
want to test for a minute or so and do whatever you want to measure (for
instance, entering a new customer to your system from a client). When ready,
press the start/stop icon again to stop recording the CPU. Now the CPU profiler
displays some profiling information about the recorded session.

Figure 16 shows the results of where time was spent in the thread main when
running the CPU profiler at the start up of the LSFN server. We did this by first
starting the LSFN server from the command line, as in 4.3.2, “Testing a
SanFrancisco Application” on page 35, but with the -pause option set. This
started the application but paused it immediately. This gave us the possibility to
attach to the application from within OptimizeIt and then starting the CPU profiler
before we make the application resume. When the LSFN server was up and
running, that is, when it was ready to respond to client requests, we stopped the
CPU profiler in order to get the results that showed us where the CPU time was
spent during start up.

You can, by clicking the combo box under the title "CPU profiler output," look at
all the threads that where running during the session (Figure 17 on page 42), and
from these threads, choose one thread or a thread group, that you want to
examine more closely by clicking on it. Selecting a thread group shows how the
40 IBM SanFrancisco Performance Tips and Techniques

time was spent for all threads and thread groups belonging to the thread group.
When you have chosen a thread, a description of the time spent in that thread are
displayed in the CPU profiler.

In Figure 16 on page 40, the description of the time that was spent in thread main
is displayed. Here we can see that 30.7% of the time spent in this thread was
spent in the Object.wait() method. As you can see all of the methods displayed
have a clock- like icon in front of them. This means that some time actually was
consumed by this line. If, however, a method should have an arrow pointing
downwards in front of it, this would mean that the method immediately calls a
sub-method.

In the bottom of the CPU profiler, the hot spots of the displayed thread are shown.
These hot spots are the methods in which most of the time is spent. If you double
click on one of the methods in this part of the window, you get the actual code of
that method displayed.

In the combo box with all the different threads, you can see that each thread has
its execution time displayed as a dotted line. This line has different colored dots:

 • Green dots mean that the thread was using the CPU.
 • Red dots mean that the thread was waiting on a condition.
 • Gray dots mean that the thread did not exist at the sampling time.

You can easily see which threads have been active and which have not. Since we
only use monochrome pictures in this book, it may be difficult to see which color a
dot has.
Tools for Performance Analysis 41

Figure 17. OptimizeIts Thread viewer

The CPU profiler records where the time is going. The time spent by the program
waiting for a condition (I/O, monitor, and so on) is included in the data. This is
useful to understand, for example, if a cache is necessary for a resource. In the
source code, lines highlighted in yellow are the lines of code that were noticed by
the profiler during the recording session.

4.3.5 Summary on OptimizeIt
OptimizeIt is a simple tool to use, and it gives you a great view over the entire
application. OptimizeIt Version 2.01, however, has some features that may not be
desirable.

One of the problems we found was the fact that OptimizeIt measures the
CPU-time spent in elapsed time instead of CPU cycles. As discussed in 4.2,
“About Timing Methods” on page 33, elapsed time includes program pauses,
sleeps, waiting for I/O, and so on. Using this timing method may produce
unexpected results. It would have been better if we, as users of OptimizeIt, could
choose which timing method to use.

OptimizeIt also shows String objects, but not the objects underlying data held in a
char[]. This gives the impression that there is no char[] allocation for each String
42 IBM SanFrancisco Performance Tips and Techniques

allocation that is made. Also, OptimizeIt does not have any good way to save and
restore profiles.

Despite these problems, OptimizeIt is excellent for analyzing a Java application in
the case of bottlenecks. It is a simple tool to use with you can quickly become
familiar.

4.4 JProbe

JProbe Profiler, from KL Group, is a tool that helps Java programmers identify
performance bottlenecks. Much of the information in this section was gathered
from the documentation that comes with JProbe.

JProbe collects both timing and memory data. As your program executes,
memory and object creation data is collected and displayed in the Memory Usage
and Instance Summary windows. Timing information is collected either by line or
by method and is displayed in the Call Graph using one of nine available metrics.
Information can be viewed while the program is running, or it can be saved as a
profile for later analysis and playback.

JProbe stores performance data in snapshots, which is a picture of the amount of
memory and time your application is using at the time the snapshot is taken. To
create a snapshot, run your program. At the time you want a snapshot, click the
snapshot button. You can take multiple snapshots while running an application to
compare different stages in the execution of a program. These are also useful to
look at later or for comparison purposes.

JProbe uses five different windows to display data about an application. Each
window displays data differently, and they can be used together to locate trouble
areas in the application faster. The windows that can be used are:

 • The Memory Usage window graphically displays how much memory your
application has allocated at any given point of time. It also displays how much
memory is available within the JVM.

 • The Instance Summary and Instance Detail windows track real time instance
creation. You can use the Instance Detail window to view information on
instance creation of a particular class. The Instance Summary window can be
used to force garbage collection.

 • The Call Graph window displays the calling relationships between the
methods. You can choose to show only the most expensive methods,
calculated according to one of nine different metrics. You can easily locate the
methods that are taking the most time or creating the most objects.

 • The Method Detail window shows the percentage of memory and time
allocated to a particular method’s callers and descendants. This can be used
to track down the program’s most expensive methods.

 • The Source window shows how much time and how many objects your code is
using and does so on a line-by-line basis. Each method’s most expensive line
is highlighted to clarify where the problems might be located.

Further information about how to get started with JProbe Profiler and how each of
the different windows are used is available in "Getting Started with JProbe
Profiler," which can be downloaded from the same place as an evaluation copy of
JProbe Profiler, at: http://www.klg.com
Tools for Performance Analysis 43

4.4.1 Testing a Java Program
When you decide to test an application or applet using JProbe, the first thing to
do is to start JProbe. When running JProbe, you choose to run a program either
by selecting Run at the first dialog that welcomes you to using JProbe or by
selecting Run under the Program menu in the JProbe Profiler Console or by
clicking the Right Arrow button in the JProbe Profiler Console.

Figure 18. JProbe Profiler Console

When you have chosen to run an application, the Run settings dialog appears
(Figure 19 on page 45). This dialog is fairly straight forward to fill with the
necessary data in order for JProbe to be able to run the application. You have to
specify whether it is an application or an applet you are about to run. The class
file has to be supplied, if you choose to browse to the right file, then Working
Directory and Source File Path will be automatically updated by JProbe. If the
application takes any arguments, these must, of course, be filled in, and also if
you want to run the application with any Java arguments, these must be provided
(though not all Java arguments are currently supported).
44 IBM SanFrancisco Performance Tips and Techniques

Figure 19. JProbe Run Settings

If you click the Advanced... button in the Run Settings dialog, the Advanced Run
Settings dialog appears.

Use the Advanced Run Settings dialog to change JProbe’s default run settings.
The Measurement tab (Figure 20) specifies how JProbe times your Java
application and the degree of granularity. If you change any of these settings, they
are kept the next time you run an application.

If you choose Line , performance data is collected with a source line as the unit of
granularity. If you choose Method , performance data is gathered with a source
method as the unit of granularity. Using Line granularity provides more detail than
Method, but requires line information to be in the class file, which means that your
application must be compiled with the -g option.

The "How Time is Measured" section shows how JProbe is currently set to time
your application, either by elapsed time, CPU time, or simulated time.

When testing an application, we recommend that you use CPU time. As stated
previously, it gives a better indication of how your application will run on other
computers.

Since CPU time data is collected by making a Windows NT-specific call, this
method is not available on Windows 95 machines. When using CPU time, you
can only collect method-granularity profile data.

Note
Tools for Performance Analysis 45

Figure 20. JProbe Advanced Run Settings - Measurement Tab

The Filters tab (Figure 21 on page 47) specifies any filters you want to apply to
your program before running it with JProbe Profiler. By default, the times and
object counts for java.* and sun.* are tracked but are not shown in the snapshot.
Enabling the filter *.run includes all run methods in the snapshot, so you can
track each thread in your application.

You can filter any package, class, or method. To add a new pattern that you want
to filter, type it in the New Class field and click Add . Profiler applies filters to a
program in the order they are entered. For example, filter all native Java methods
except those responsible for handling I/O by hiding java.* , and then adding a filter
to show java.io .

If you want only the SanFrancisco classes, you should add a filter to show com.*
and then hide everything else. To remove a pattern from the filter list, select it by
clicking the left-most edge of the Filters table and click Remove .

JProbe adds an additional time measuring method to the two mentioned
earlier. The new one is called Simulated time. Unlike elapsed time and CPU
time, simulated time does not give timing information as such, but a relative
comparison between methods in your program. Simulation is a method of
measuring an application, where each instruction is assigned a specific time,
and the times assigned to each line are added together instead of actually
being timed.

Note
46 IBM SanFrancisco Performance Tips and Techniques

Figure 21. JProbe Advanced Run Settings - Filters Tab

4.4.2 Testing a SanFrancisco Application
JProbe, in itself, contains Jdk1.1.5, which it uses. To be able to run SanFrancisco
through JProbe with JProbe Version 1.1, you have to replace the String class that
is included in the classes.zip file that comes with Jdk1.1.5. The file classes.zip is
located in: <install dir>\JProbe\jdk115\lib

You replace the String class that comes with Jdk1.1.5 with the one that comes
with SanFrancisco, the last one is located in: <install dir>\Sf\Sf130\java\lang

Here is an explanation of how to replace the classes.zip file:

1. From within Explorer, copy the Java\lang\string.class file (located in the
SanFrancisco directory) to another drive (for example, D:).

2. Using Winzip (or another unzip program), unzip classes.zip in the
JProbe\jdk115\lib directory and delete String.class.

3. In the Winzip window, press the Add button, choose the String.class file you
copied in step 1, ensure Compression is set to None, the Save extra folder
information box is checked, and press the Add button. The String.class adds.

4. Close the Winzip window.

After replacing the String class, you run SanFrancisco by entering the correct
values in the Run Settings dialog.

For example, if you want to run the LSFN server with JProbe, you fill in the values
in the Run Settings dialog as shown in Figure 22 on page 48. The values in the
different fields are:

 • Class file: com.ibm.sf.gf.SmServerImpl

 • Working directory: D:\SF\SF130

 • Classpath: %CLASSPATH%

 • Java arguments: -ms6m -mx128m -DserverName=SFGSMProcess

 • Source file path: D:\SF\SF130
Tools for Performance Analysis 47

If you want to launch SFBOProcess1 with JProbe, fill in the following values in the
Run Settings dialog:

 • Class file: com.ibm.sf.gf.SmServerImpl

 • Application arguments: -GSM_UID 1

 • Working directory: D:\SF\SF130

 • Class path: %CLASSPATH%

 • Java arguments: -ms24m -mx96m

-Dsfenv="d:\sf\sf130\com\ibm\sf\etc\sfenv.ini" -DserverName=SFBOProcess1

-DGDPMsleepTime=60

 • Source file path: D:\SF\SF130

Figure 22. JProbe Run Settings - Running the LSFN Server

4.4.3 The Memory Usage Window
To view the Memory Usage window, select Memory Usage from the View menu
in the JProbe Profiler Console.

The Memory Usage window (Figure 23 on page 49) allows developers to view the
Java heap size and how much memory is currently allocated by the application.
This does not include the memory required for JProbe or Java objects allocated
during the initialization of the JVM itself. The status bar gives statistics on
available and allocated memory.

Depending on how large the application is, you may want to change the refresh
speed. By default, JProbe collects memory information once per second.
Changing the refresh to collect data less frequently makes data collection less
disruptive to the application.
48 IBM SanFrancisco Performance Tips and Techniques

By default, JProbe shows the application's entire memory graph. As more data is
collected, the scale changes so that the entire memory usage graph fits in the
dialog. You can choose to not change the time scale, and instead, just show the
last few minutes of data. When one of these options is selected, any data past the
selected time period scrolls off the graph.

You, as a user, can decide to start the garbage collector at any given time by
clicking the garbage can icon . The garbage collector will then remove unused
objects from the application. Removing unused objects should lower the amount
of allocated memory.

A large memory gain after performing garbage collection may indicate that your
program is creating excessive objects. If the number of objects for a given class
continues to grow, this may indicate a memory leak.

Figure 23. JProbe Memory Usage Window

If you choose not to view the entire graph and only view the last few minutes in
the Memory Usage window, you can scroll the window by clicking and holding on
the graph as you move the mouse in the direction you want to scroll.

4.4.4 The Instance Summary Window
To view the Instance Summary window, you should select Instance Summary
from the View menu in the JProbe Profiler Console.

The Instance Summary window (Figure 24 on page 50) allows developers to view
the number of live objects in the JVM while your program runs.

Since garbage collection is a time-intensive procedure, reducing unnecessary
object creation in your program can increase performance. If the number of
objects for a given class continues to grow, this may indicate a memory leak.

Use the color bars that underline the numbers in the Count and Memory columns
to quickly locate the most active classes. The brighter the color and the longer the
bar are, the more objects are created, or the more memory is used.
Tools for Performance Analysis 49

If you only want to show a subset of the data, use the Show Only field and type a
specific class name to mask, click Apply to show only the classes that match the
class name or pattern.

As well as when using the Memory Usage window, you can, at any given point of
time, click the garbage can icon to perform a garbage collection. You can also
set the refresh rate at the bottom of the window.

Figure 24. JProbe Instance Summary Window

4.4.5 The Call Graph Window
To view the Call Graph window, you should select Call Graph from the View
menu in the JProbe Profiler Console. Use the Call Graph window, as shown in
Figure 25 on page 51, to view a graph of all the methods in your program and
their parents and children. The Call Graph window is divided into two separate
panes.

The top pane shows the actual Call Graph. Select the number of top nodes you
want to display and the metric you want to use to select the top nodes. Nodes are
then colored according to the metric shown in the Color Methods By combo box.

For example, Method Time highlights those methods that spend the most time
executing. The brighter the node color, the more expensive the method.

The bottom pane shows the method list and panner. The method list shows all the
methods in your program (excluding those that were filtered at runtime). The
methods currently displayed in the Call Graph are checked. Selecting a method
50 IBM SanFrancisco Performance Tips and Techniques

from the method list highlights the appropriate node in the Call Graph, and vice
versa. Enabling a method's check box displays it in the Call Graph.

Use the Show Methods Top combo box to select how many methods you want to
display in the Call Graph. You can show up to 50 methods in your application. You
can manually add more nodes to the graph by using the right-click menu’s
Show/Hide submenu.

Figure 25. JProbe Call Graph Window

You can either exclude parts of the snapshot that you are not interested in, or
focus on the parts in which you are interested by using the Subtree commands
from the right-click menu.

Before running an application, use the Filters Tab of the Advanced Run Settings
dialog to exclude profile data collection for unneeded packages. By filtering your
profile, you can further target your search for only those methods you care about.
For example, you may not want to include third party packages when looking for
hot spots.
Tools for Performance Analysis 51

4.4.6 The Method List Window
To view the Method List window, select Method List from the View menu in the
JProbe Profiler Console.

The Method List window, as shown in Figure 26, displays all non-filtered methods
called in the application. Each of the columns represents a different metric and
gives timing and object information for each method.

Figure 26. JProbe Method List Window

The Cumulative Time column shows the combination of self time and the
combined time of all the method’s descendants and exclusive recursive calls to its
descendants.

The Method Time column shows the amount of time the method spent executing,
excluding the time spent in its descendants.

The Cumulative Objects column shows the number of objects created during the
method’s execution, including the number of objects created in all its
descendants.

The Method Objects column shows the number of objects created during the
method’s execution, excluding the number of objects created in its descendants.

4.4.7 The Method Detail Window
If you are viewing either the Method List window or the Call Graph window and
want a more detailed description of a certain method, you only have to double
click on the method of interest to have a more detailed display of the method in
the Method Detail window.
52 IBM SanFrancisco Performance Tips and Techniques

The Method Detail window, shown in Figure 27, displays time and memory
information about a specific method, including its parents and children.

Figure 27. JProbe Method Detail Window

The middle section of the Method Detail window shows information on the
selected method: the number of calls made to it from within the program, its
Method and Cumulative times, and Method and Cumulative Object counts.

The Parents section lists the selected method’s callers. The data shows how the
method’s time/memory is propagated to its parents.

The Children section shows how much of the method’s time/memory for which
each child is responsible. Double-click on a parent or child to view its Method
Detail window.

Use the Show Time and the Show Memory check boxes to display time graphs
and object creation graphs and data for the method’s parents and children. The
time graphs show how the method’s cumulative time is propagated to its parents
and children.

The object creation graph shows how the method’s cumulative object count is
propagated to its parents and children.

4.4.8 The Source Window
The Source window, shown in Figure 28 on page 54, is accessed from the Call
Graph, Method List, Method Detail, and Instance Detail windows. When you have
Tools for Performance Analysis 53

chosen method, select the View Source command by right clicking on the chosen
method. JProbe looks for the source code file from the path entered in the Run
Settings dialog and displays it automatically. If it cannot find the file, JProbe
prompts you to locate it manually.

Figure 28. JProbe Source Window

The Source window is divided into two separate panes. The right side shows the
source code. The left side shows performance data, including the line number,
number of calls, and method and cumulative times.

The most expensive line in each method is highlighted in red to allow you to
easily pinpoint problems in your code.

Time and object creation data is displayed for each line of the source and shows
the amount of time spent/number of objects created for that line of code. The
number in brackets is that line's percentage of the total method time/objects.

The example above is just a dummy example, but if you want to be able to view
the source code of your SanFrancisco application, make sure that you have the
source code available and that your application has line information, that is, that it
has been compiled with the -g option.

4.4.9 Summary on JProbe
Since JProbe is a more complicated tool than OptimizeIt, it is also somewhat
more difficult to use. It is, however, a more complete tool that includes features,
such as the availability to choose timing method and the possibility of more
careful examinations of single methods.
54 IBM SanFrancisco Performance Tips and Techniques

JProbe does, as compared to OptimizeIt, show char[] allocations in addition to
String allocations. It has a better sorting of data, and it also provides the ability to
save profiles for later use.

One disadvantage of JProbe is that it does not contain the actual Java VM that
will be used when an application deploys. This makes it difficult to choose the
JVM that you want to test your application on, which might be a big set back since
there could have been new releases of the JVM, with new capabilities that you
would want to use. Or you may even want to use a JVM that your own company
has developed. OptimizeIt does not have this limitation, because with OptimizeIt,
you can choose to use which ever JVM you want.

Besides the fact that you are bound to use the JVM that comes with JProbe,
JProbe is a more complete tool than OptimizeIt. It does, however, require a little
more effort because of its higher level of complexity.

4.5 Windows NT Performance Monitor

The Windows NT Performance Monitor is the premier system performance tool for
Windows NT (3.52 and 4.0). It automatically comes with NT, can examine a wide
range of system phenomena and is highly customizable. It can show you all kinds
of statistics (over a dozen) that will help you understand what is going on in your
system and is an excellent tool for overall system performance.

The NT Performance Monitor can be used to monitor any Windows NT system on
the network, with appropriate permissions.

The NT Performance Monitor can be used out-of-the-box to:

 • Observe current performance
 • Log performance for later perusing
 • Notify you when specified conditions occur
 • Generate reports and graphs
 • Output stats to standard spreadsheet files

You can start the NT Performance Monitor by following this path:
Start—>Programs—>Administrative Tools—>Performance Monitor . Or, enter
the command statement:

perfmon <settings file> [-c //computername]

You can choose to run the NT Performance Monitor in one of four views:

 • Chart view is used to either view current activity or a saved log.
 • Log view is used to save (log) current activity for later replay.
 • Alert view is used for setting up alerts to watch for and record particular events

and alerts you when they occur.
 • Report view is used for publishing statistics.

On each computer, you can view the behavior of objects, such as processors,
memory, cache, threads, and processes. Each of these objects has an associated
set of counters that provide information about device usage, queue lengths,
delays, and information used to measure throughput and internal congestion.

When monitoring a system, you are really monitoring the behavior of its objects.
In the Windows NT operating system, an object is a standard mechanism for
Tools for Performance Analysis 55

identifying and using a system resource. Objects are created to represent
individual processes, sections of shared memory, and physical devices.
Performance Monitor groups the counters by object type. A unique set of counters
exists for the processor, memory, cache, hard disk, processes, and other object
types that produce statistical information. Certain object types, and their
respective counters, are present on all systems.

Each object type can have several instances. For example, the Processor object
type will have multiple instances if a system has multiple processors. The
Physical Disk object type has two instances if a system has two disks. Some
object types, such as Memory and Server, do not have instances. If an object
type has multiple instances, each instance may be used with the same set of
counters. The data is then tracked for each instance.

Two object types, Process and Thread, have a particularly close relationship. A
Windows NT process is created when a program runs. A process may be either
an application (such as SanFrancisco), a service (such as the DB2 DBMS), or a
subsystem (such as the print spooler or POSIX). In addition to an executable
program, every process consists of a set of virtual-memory addresses and at
least one thread.

There is extensive Help text on using the Performance Monitor, what all the
options mean and how to use them.

A detailed description of this tool can be found in the Windows NT Resource Kit
(Microsoft Press) handbook.

4.6 AS/400 Performance Tools

There are several AS/400 performance tools on that provide everything from very
basic performance data, for example, the amount of CPU time that a given test
consumed, to very detailed performance data by method, for example, the
amount of CPU time that was spent in a method.

The Performance Data Collector/Performance Explorer (PDC/PEX) is a
comprehensive set of tools that provide the most data. When you are running
this, you can use an option, called TPROF internally, that shows the hot spots by
method, or even by statement.

A word of caution is that you have to be aware that TPROF uses a sampling
technique for collecting data. Therefore, to get valid data that shows which
statements are the hottest, the tests need to run for several seconds.

To use TPROF, perform the following steps:

1. Enable performance collection for the Java classes in the test by entering:

CRTJVAPGM CLSF(’classname’) ENBPFRCOL(*ENTRYEXIT)

For example, to enable collection for classes in /sf130/tpcc/gbof, enter:

CRTJVAPGM CLSF(’/sf130/tpcc/gbof/*.class’’) ENBPFRCOL(*ENTRYEXIT)

2. Create a PEX definition named TPROF using the following statement:

ADDPEXDFN DFN(TPROF) TYPE(*TRACE) JOB(*ALL)
MAXSTG(102400) INTERVAL(1) TRCTYPE(*SLTEVT) SLTEVT(*YES)
MCKINST(*NONE) BASEVT(*PMCO)
56 IBM SanFrancisco Performance Tips and Techniques

3. Enter the following command statement:

STRPEX SSNID(testname) DFN(TPROF)

4. Run the test.

5. Enter the following command statement:

ENDPEX SSNID(testname)

6. Collect the TPROF data by entering:

PRTPEXRPT MBR(testname) TYPE(*PROFILE) PROFILEOPT(*SAMPLECOUNT *PROCEDURE)

The output will be in a spooled file.

For a detailed description of this tool refer to AS/400 Performance Explorer —
Tips and Techniques, SG24-4781.

4.7 The Container Cache Statistics Tool

Each Container in SanFrancisco maintains a memory cache where it keeps
recently accessed persistent objects so, when needed, it can retrieve them
directly from memory rather than from disk. SanFrancisco provides a utility
starting in SanFrancisco Version 1, Release 3 to display cache size and cache hit
and miss rates. This information allows decisions for optimal entity cache
settings.

4.7.1 How to Run
You run the Container Cache Statistics Tool from the command line by typing:

java com.ibm.sf.gf.ContainerStats

Enter the desired container, delay, duration, and interval when asked. Then, let it
run to completion to get a summary report and do cleanup.

Remember that all counters that can be reset are reset on every retrieval, and for
each container, there can be only one Container Cache Statistics Collector
running at the time or unpredictable results will occur. Counters will, for example,
be reset by one user while being read by another user.

4.7.2 Explanation of Output
cpcty Maximum number of possible cache entries
size Number of current cache entries
szActv Number of current cache entries with active status
szActvH High water number of cache entries with active status since last reset
gets Total number of get requests
gNStsfd Get not satisfied because entry not in cache

4.7.3 Example Output
Container Cache Manager Statistics
time cpcty size szActv szActvH gets gNStsfd
11:11 8009 2760 0 0 0 0
11:11 8009 2760 0 1 4 0
11:11 8009 2761 0 2 10 3
11:11 8009 2761 0 0 0 0
11:11 8009 2775 59 59 2285 61
11:11 8009 2859 10 60 5583 114
Tools for Performance Analysis 57

11:11 8009 2896 47 59 5049 132
11:11 8009 2962 61 61 5701 167
11:11 8009 3003 47 119 6794 216
11:11 8009 3057 59 59 6500 177
11:11 8009 3121 41 60 5138 159
11:11 8009 3164 75 75 5969 213
11:11 8009 3198 59 119 6053 182
11:11 8009 3238 59 59 5618 136
11:11 8009 3258 0 59 2593 68

Container Statistics Collection Summary

 cpcty size szActv szActvH gets gNStsfd
Maximum 8009 5356 119 119 27862 836
Totals - - - - 355912 10561

4.7.4 What to Watch For
The main item to watch out for is if the "gets not satisfied because entry not in
cache" is growing to very large numbers. If this occurs, you should probably
consider to make the memory cache for that specific container larger.

You can, however, not set the memory cache for the different containers too large
since this would decrease the amount of memory available for the rest of the
system.

4.8 Lock Analysis Tools

IBM SanFrancisco provides tools to analyze locking problems and the
performance optimizations for lock sequences.

Before using the locking tools provided by SanFrancisco, certain terminology
must be explained.

Lock conflict
A lock ordering or upgrade problem.

Serialization point
A point at which two transactions can no longer run in parallel due to
the fact that one or both transactions are getting exclusive access to
a common entity.

Lock ordering
A process to avoid lock ordering problems in which it is important to
establish a lock hierarchy and access locks in order.

Lock Upgrade Deadlock
When two transactions are trying to make a read to write lock
upgrade on the same entity. The following example is a typical case
of lock upgrade deadlock:

 • Transaction T1 accesses entity E1 with a read lock.

 • Transaction T2 accesses entity E1 with a read lock.

 • Transaction T1 attempts to change E1, causing a read to write
lock upgrade, T1 waits for T2 to release read lock.

 • Transaction T2 attempts to change E1, causing a read to write
lock upgrade, T2 waits for T1 to release read lock.
58 IBM SanFrancisco Performance Tips and Techniques

The example above results in a deadlock where transaction T1 is waiting for
transaction T2 to finish, when at the same time, transaction T2 is waiting for
transaction T1 to finish.

4.8.1 The Lock Conflict Trace Analysis Tool
In SanFrancisco, different transactions can have read access to the same Entity
at the same time, but only one transaction can have write access to an Entity. And
while that write access is held, no other transaction can gain read or write access
to the Entity.

When deadlock occurs, a LockUnavailableException is thrown. This exception
indicates that the access mode requested for an Entity was not granted within the
specified time-out period (the default is 30 seconds). Deadlock is not the only
condition that can result in this exception. If you are running an application with
long-running transactions, you may need to increase the default time-out period
to avoid this exception.

The Lock Conflict Trace Analysis Tool should be used during application
development phase to analyze trace data for lock conflicts.

The tool highlights potential problems, such as lock upgrades, and can compare
the lock ordering between two transactions. The tool can be used proactively in
single client environments to prevent possible multiple client locking problems.
Analysis of locking data is done statically after normal execution of an application.

The analysis process includes these steps:

1. Generate lock conflict trace data.
2. Start the trace analysis tool and load the trace data files.
3. Analyze transaction sets.
4. Display entity details.
5. Compare transactions.

4.8.1.1 Generate Lock Conflict Trace Data
To generate lock conflict trace data, you must perform these procedures (details
follow):

1. Start trace on both the client and server processes.
2. Run the segment of the application that is of interest.
3. Stop trace on both the server and client processes

For more detailed information about activating lock conflict trace, look in the tool
help and in the SanFrancisco documentation.

4.8.1.2 Start the Trace Analysis Tool and Load the Trace Data Files
To start the Trace Analysis tool and to load the trace data files, perform the
following steps:

SanFrancisco does not have to be running to use the trace analysis tool.

Note
Tools for Performance Analysis 59

1. From the Command Prompt, start the tool by executing TraceAnalysisTool .

Note: The tool uses Java Swing. If Swing is not in your classpath, you will
receive an exception.

2. Select File, Open on the menu bar. The Open File dialog box appears.

3. Highlight the file to open and click the Open button.

4. Repeat steps 2 and 3 for each trace file.

5. Continue with the Analyze transaction sets procedure.

4.8.1.3 Analyze Transaction Sets
The Lock Conflict Trace Analysis Tool shows the Entity set associated with a
transaction and highlights those Entities that have lock upgrades. Here is an
example of the tool output:

Transaction 8 NoName Upgraded
Tran Id:-5487728891461103616.-2305842983292558782

 begin time: Thu May 28 10:49:26 CDT 1998

Entity Set {
T8 E1r com.ibm.sf.cf.CompanyControllerRootImpl
T8 E2r com.ibm.sf.gf.EntityOwningExtentImpl
T8 E3r com.ibm.sf.cf.EnterpriseImpl
T8 E62r com.ibm.sf.gf.EntityOwningExtentImpl
T8 E63r com.ibm.sf.gl.AnalysisGroupImpl
T8 E5r com.ibm.sf.gl.ChartOfAccountsRootImpl
T8 E95r com.ibm.sf.gl.AnalysisCodeImpl

Upgraded >> T8 E96rw com.ibm.sf.gf.CommonMapImpl
T8 E97r com.ibm.sf.gf.BTreeNodeImpl
T8 E98r com.ibm.sf.gf.BTreeLeafImpl

 } commit time: Thu May 28 10:49:27 CDT 1998

The first two lines shows the integer number the tool assigned to the transaction
ID.

The third line shows the date when the transaction was begun.

The entity set shows each entity accessed by transaction. The entity may be
accessed more than once during the same transaction and may be accessed by
other transactions.

T8 E1r com.ibm.sf.cf.CompanyControllerRootImpl

The "T8" indicates this is Transaction 8. The E1r indicates entity 1 was accessed
in read mode. Possible lock modes include "r" for read, "w" for write, "rw" for read
to write lock upgrade, "d" to indicate the lock was dropped, and "dw" to indicate a
read lock was dropped, and a write lock was accessed. The
"com.ibm.sf.cf.CompanyControllerRootImpl " is the class name associated with the
entity.

 The Tran ID field is the unique ID assigned to this transaction.

Note
60 IBM SanFrancisco Performance Tips and Techniques

4.8.1.4 Display Entity Details
Both lock upgrades, "rw", and drop and re-access, "dw", are flagged by special
keywords to indicate they require additional analysis ("Upgraded >>" and
"ReAccess >>").

In the example above, you can see that a lock upgrade is indicated like this:

Upgraded >> T8 E96rw com.ibm.sf.gf.CommonMapImpl

The trace data includes a stack dump of the code path associated with the lock
upgrade so you can modify the code to correct the problem. As shown above, the
Entity Detail for the CommonMapImpl was "Upgraded":

Tran Number : 8
Tran Id: -5487728891461103616.-2305842983292558782
Entity Number: 96
Entity Id: 218711701609080679.10995116277936
Entity Class: com.ibm.sf.gf.CommonMapImpl
Entity was first accessed in this tran at: Thu May 28 10:50:07 CDT 1998
Initial Lock: READ
Granted Lock: WRITE
Lock String: rw
Lock was Upgraded.

Stack Dump associated with Lock Upgrade.
java.lang.Exception:
at com.ibm.sf.gf.LockSet.traceLockObtained(LockSet.java:2584)
at com.ibm.sf.gf.LockSet.getWriteLock(LockSet.java:2011)
at com.ibm.sf.gf.LockSet.changeMode(LockSet.java:1486)
at com.ibm.sf.gf.LockSet.lock(LockSet.java:540)
at
com.ibm.sf.gf.PersistentContainer.getEntityNormal(PersistentContainer.java:806
)
at com.ibm.sf.gf.PersistentContainer.getEntity(PersistentContainer.java:473)
at
com.ibm.sf.gf.BaseFactoryServerImpl.getEntityFromServer(BaseFactoryServerImpl.
java:1193)
at
com.ibm.sf.gf.BaseFactoryServerImpl.getEntityRefFromServerToServer(BaseFactory
ServerImpl.java:961)
at
com.ibm.sf.gf.BaseFactoryServerImpl.getEntitiesFromServer(BaseFactoryServerImp
l.java:759)
at
com.ibm.sf.gf.BaseFactoryImpl.processServerHeldEntities(BaseFactoryImpl.java:1
605)
at com.ibm.sf.gf.BaseFactoryImpl.getEntity(BaseFactoryImpl.java:1507)
at com.ibm.sf.gf.BaseFactoryImpl.getEntity(BaseFactoryImpl.java:2255)
at com.ibm.sf.gf.Helper.getObjectFromHandle(Helper.java:423)
at
com.ibm.sf.gf.BusinessObjectImpl.getObjectFromHandle(BusinessObjectImpl.java:1
78)
at
com.ibm.sf.gl.ChartOfAccountsImpl.addOwnedPostingCombinationBy(ChartOfAccounts
Impl.java:2352)
at
com.ibm.sf.gl.ChartOfAccountsRootImpl_Skel.dispatch(ChartOfAccountsRootImpl_Sk
el.java:314)
at com.ibm.sf.gf.GFRemoteServerRef.dispatch2(GFRemoteServerRef.java:245)
at
Tools for Performance Analysis 61

com.ibm.sf.gf.SmDistributedThreadContext.serviceRequests(SmDistributedThreadCo
ntext.java:534)
at
com.ibm.sf.gf.SmDistributedThreadContext.serviceRequests(SmDistributedThreadCo
ntext.java:466)
at com.ibm.sf.gf.SmSFThread.run(SmSFThread.java:433)

Lock upgrades should be eliminated or masked. They can be eliminated by
getting a write lock first or splitting the transaction into two transactions, one that
primarily reads the Entities, and the other that changes them. Upgrades can be
masked by getting a write lock on the Entity owning the entity that is upgraded.
For the example, consider a case where an AnalysisCode Entity owns a Map, and
the AnalysisCode is initially accessed with a write lock. Calling methods that
cause the Map to have a lock upgrade would not be a problem because the write
lock on the AnalysisCode serializes the changes to the map.

4.8.1.5 Compare transactions
The order in which Entities are accessed in concurrent transactions is important.
If two transactions attempt to access the same entities in a different order,
deadlock can occur.

Consider transaction T1 that accesses Entity E1 in read mode followed by E2 in
write mode. T1 has an Entity set of { E1 (r), E2 (w) }.

Now consider transaction T2 that accesses Entity E2 in read mode followed by E1
in write mode. T2 has an Entity set of { E2 (r), E1 (w) }.

If T1 gets the read lock on E1 at the same time that T2 gets a read lock on E2,
then neither transaction will be able to gain access to the next Entity in its set
(because the other transaction has it locked). This results in deadlock.

To avoid this type of problem, establish an Entity hierarchy and lock Entities in
that order.

The lock conflict trace analysis tool can compare two transactions and identify if a
potential for deadlock exists. This is shown in the tool output here:

Comparing the lock ordering for the following transactions:
T3 NoName Thu May 28 10:47:57 CDT 1998
-5487728891461103616.-2305842991882493374
T6 NoName Thu May 28 10:48:41 CDT 1998
-5487598784016805888.-2305842991882493374

T3 T6 Class Name (associated with the 2nd transaction's entity numbers.)

E1r == E1r com.ibm.sf.cf.CompanyControllerRootImpl
E2r == E2r com.ibm.sf.gf.EntityOwningExtentImpl
E3r == E3r com.ibm.sf.cf.EnterpriseImpl
E7r == E7r com.ibm.sf.cffi.FinancialTransactionSourceControllerRootImpl
E8r == E8r com.ibm.sf.gf.EntityOwningExtentImpl
E9r == E9r com.ibm.sf.cffi.FinancialTransactionSourceImpl
E10r == E10r com.ibm.sf.cffi.TransactionTypeControllerRootImpl
E11r == E11r com.ibm.sf.gf.EntityOwningExtentImpl
E12r == E12r com.ibm.sf.cffi.TransactionTypeValueImpl
E13r == E13r com.ibm.sf.cffi.TransactionTypeValueImpl
E14r == E14r com.ibm.sf.cffi.TransactionTypeValueImpl
E15r == E15r com.ibm.sf.cffi.TransactionTypeValueImpl
E16r == E16r com.ibm.sf.cffi.TransactionTypeValueImpl
62 IBM SanFrancisco Performance Tips and Techniques

E17r == E17r com.ibm.sf.cffi.TransactionTypeValueImpl
E18r == E18r com.ibm.sf.cffi.TransactionTypeValueImpl
E19r == E19r com.ibm.sf.cffi.TransactionTypeValueImpl
E20r == E20r com.ibm.sf.gl.BudgetProfileControllerRootImpl
E21r == E21r com.ibm.sf.gf.EntityOwningExtentImpl
E22r == E22r com.ibm.sf.gl.BudgetProfileImpl
E24r == E24r com.ibm.sf.gf.LocaleControllerImpl
E25w SP E25w com.ibm.sf.gf.IdGeneratorImpl
E26r == E26r com.ibm.sf.gf.GlobalLocaleResourceControllerImpl
E27w == E27w com.ibm.sf.gf.CommonMapImpl
E28r == E28r com.ibm.sf.gf.BTreeLeafImpl
E29w == E29w com.ibm.sf.gf.DynamicMessageCatalogImpl
E30w == E30w com.ibm.sf.gf.CommonMapImpl
E31r == E31r com.ibm.sf.gf.BTreeNodeImpl
E32r == E32r com.ibm.sf.gf.BTreeNodeImpl
E33rw == E33rw com.ibm.sf.gf.BTreeLeafImpl
E34dw == E34dw com.ibm.sf.gf.EntityOwningExtentImpl
E35w != E36r com.ibm.sf.cffi.FinancialCalendarImpl
E36r != E37r com.ibm.sf.cf.FiscalCalendarImpl
E37r != E38r com.ibm.sf.gf.CommonMapImpl
E38r != E39r com.ibm.sf.gf.BTreeLeafImpl
E39r != E40r com.ibm.sf.cf.FiscalYearImpl
E40r != E41r com.ibm.sf.cf.FiscalYearImpl
E41r != E42r com.ibm.sf.cf.FiscalYearImpl
E42r != E43r com.ibm.sf.gf.CommonListImpl
E43r != E44r com.ibm.sf.gf.BTreeLeafImpl
E44r != E45r com.ibm.sf.cf.UndatedFiscalPeriodImpl
E45r != E46r com.ibm.sf.cf.DatedFiscalPeriodImpl
E46r != E47r com.ibm.sf.cf.DatedFiscalPeriodImpl
E47r != E48r com.ibm.sf.cf.DatedFiscalPeriodImpl
E48r != E50r com.ibm.sf.cf.DatedFiscalPeriodImpl
E50r != E51r com.ibm.sf.cf.DatedFiscalPeriodImpl
E51r != E54w com.ibm.sf.cf.NumberSeriesImpl
E54w != E55w com.ibm.sf.gl.GLJournalImpl
E55w != E56w com.ibm.sf.gl.GLJournalImpl
E56w != E57w com.ibm.sf.gl.GLJournalImpl
E57w != E58w com.ibm.sf.gl.GLJournalImpl
E58w != E35w com.ibm.sf.gl.GLJournalImpl

Summary of conditions:
Entities accessed in order: false (bad)
Lock upgrade before serialization point: false (good)
Serialization point exist: true (goodness depends on other conditions)

Interpretation:
Entities are accessed out of order, but it is not a problem because a
serialization point exists.

Recommendation:
Look at improving throughput by moving the serialization point later in the
transaction (but not after the out-of-order condition).

The tool shows the entities that the transactions have in common and the order in
which they are first accessed for each transaction.

 • "==" indicates the entities are accessed in order.
 • "SP" indicates this is a serialization point.
 • "!=" indicates the entities are accessed in a different order.
 • "UP" indicates one or both entities have a lock upgrade condition.
Tools for Performance Analysis 63

The tool shows the summary of three conditions, interprets those conditions, and
provides a recommendation. The conditions are:

 • Entities accessed in order : true or false
If the in-order condition is true, then the transactions can not deadlock due to
an ordering problem.

 • Lock upgrade before a serialization point : true or false
If a lock upgrade condition exists prior to a serialization point, the point at
which two transactions no longer execute in parallel, then a deadlock condition
can occur.

 • Serialization point exist : true or false
The goodness of this depends on the other conditions. If the serialization point
is prior to a lock upgrade or out of order condition, then it is preventing a
deadlock condition. Having a serialization point limits how much the two
transactions can run in parallel. This negatively effects throughput.

For out of order conditions, the tool recommends further analysis. If the entities
being accessed out of order are only accessed in read mode, a deadlock will not
occur. If write locks are involved, deadlock can occur.

A much more detailed description of how to use the Lock Conflict Trace Analysis
tool is available in the SanFrancisco documentation at:
<install dir>

\com\ibm\sf\doc\doc_de\base\ibmsf.sf.LockConflictTraceAnalysisTool.html

The same information can be found just as easily by following these steps:

1. From the Start button, select Programs—>IBM SanFrancisco—>
Information .

2. Use the search engine to locate the documentation on the Lock Conflict Trace
Analysis Tool.

4.8.2 The Lock Contention Console
The Lock Contention Console should be used at runtime to help isolate deadlock
conditions that are due to a lock conflict. The tool captures a snap shot of lock
data and provides options to display and analyze the data. The tool is primarily
useful during a product test phase when running with multiple clients.

4.8.2.1 Presettings
Before you run the Lock Contention Console tool, perform the following tasks:

Set a High Time-out Value
The time-out value determines the time a transaction will wait to acquire a lock on
an entity. To effectively use the tool, you need to set a high time-out value. The
default time-out value is 30 seconds. Once the time-out value is exceeded, the
transaction receives a lock unavailable exception. In order to isolate a deadlock
condition, you want to postpone the lock unavailable exception for a long time,
typically 24 hours.

To set the time-out value to 24 hours, perform the following steps:

1. Ensure the logical SanFrancisco network is running.

2. Start the SanFrancisco Server Management Configuration console
(SmConsole): From the Start button, select Programs, IBM SanFrancisco
64 IBM SanFrancisco Performance Tips and Techniques

(current version), Base Utilities, Server Management Configuration . Or
from a command prompt, type SmConsole or java com.ibm.sf.gf.SmConsole .

3. In the SmConsole GUI: expand the network directory tree to see the process
names.

4. Select the process you have a container configured in (usually
SFBOProcess1 , but can be different or in addition to). Information specific to
the process appears to the right.

5. Change the time-out value from 30000 (30 sec) to 86400000 (24 hr).

6. Press the OK button.

7. Press the Apply button if it is enabled (the button is located towards the top of
the window). The new time-out value is now set.

8. Continue with the Run the application procedure.

Run the Application
Run the application in a stressful way. The assumption is that you are trying to
stress the application to verify it works. If the application appears to hang, it may
be an indication that a lock conflict problem exists. Use the Lock Contention
Console tool to gather and analyze the lock data.

4.8.2.2 Using the Lock Contention Console Tool
From a command prompt window, start the tool by executing:

java com.ibm.sf.gf.LockContentionConsole.

When started the Tool window appears, including the following frames:

 • The Configuration Information frame: Not currently used

 • The Actions frame: Use to collect data
Note: Data can be collected multiple times.

 • The Objects frame: Use to analyze lock data information stored in User dump

When you start the tool, gather the lock data. Then, display it for analysis.

How this is done is thoroughly explained in the SanFrancisco documentation at:

<install dir>\com\ibm\sf\doc\doc_de\base\ibmsf.sf.LockContentionTool.html

You should change the time-out (steps 5-7 below) for each process that has a
container assigned to it as defined in [sfdriver]\com\ibm\sf\etc\Global.name file.

Note

 The Apply button is only enabled when the SFBOProcess1 is running.

Note

If the tool does not start, the application hang condition is not likely the result of
a lock conflict.

Note
Tools for Performance Analysis 65

The same information can be found just as easily by doing following this path
from the Start button: select Programs—>IBM SanFrancisco—>Information
Use the search engine to locate the documentation on the Lock Contention
Console Tool.
66 IBM SanFrancisco Performance Tips and Techniques

Chapter 5. Performance Aspects Using Design Patterns

It is said that a well designed model is the most important step towards a
successful application, and that fine tuning the application comes afterwards.
This still remains true while developing a SanFrancisco based application, but it
does not hurt to be aware of certain decisions that can have an impact on
performance.

This chapter deals with the impact design decisions will have on the performance
of a SanFrancisco based application. Different design patterns and their influence
on the overall performance are examined. Design patterns should be used wisely.
Although they offer a higher level of abstraction, they imply a certain overhead
that may lead to performance degradation.

For additional information on the design patterns in IBM SanFrancisco, the
Extension Guide should be consulted.

5.1 What Design Patterns Are

A pattern captures the most common way in which problems are solved: when a
problem is encountered for the first time, the solution has to be built up from
scratch. The next time the same, or a similar problem, is encountered again, the
experience obtained can be used to solve the problem more quickly. When a
similar solution solves different problems, but although they are alike, the
common elements of the problems, together with the solution used, forms a
pattern.

Patterns help to provide a solution when a problem is encountered a second time.
By writing it down, it provides help for someone else who encounters a similar
problem. Patterns do not directly help when unsolved problems are encountered,
but they do provide a means for thinking about and discussing the possible
solutions at a higher level. Since patterns are usually put in general terms, a
solution based on the pattern, in most cases, is more flexible.

5.2 Command Pattern

A brief description on this pattern is provided with some explanation why
Commands are very useful from a performance point of view. A practical example
on the use of patterns concludes this section.

5.2.1 Description
The command pattern encapsulates a set of actions or manipulations that need to
be done as a complete unit. This approach implements the concept of a unit of
work. All the instructions within a command are executed in one step.

The main advantage of using a Command object is that this Command object can
be executed where the objects reside. This avoids many remote method calls.
Figure 29 on page 68 illustrates this difference.
© Copyright IBM Corp. 1999 67

Figure 29. Use of Command Objects

Some additional advantages include:

 • Monitoring the changes to business objects becomes easier, as these objects
will only be changed through Command objects.

 • The notions of process and task can be directly mapped to Command objects.

 • Command objects are the owner of changes made to business objects. They
can be implemented so that inverting the changes made is possible, although
this undo function is not always needed.

 • Additional security is available for commands that execute on the server
through the concept of "server-only tasks".

5.2.2 Performance Impact
Since Command objects are atomic and "movable", it is possible to execute them
at the location where the objects are that need to be accessed: on the client or on
a server. This can result in a big performance improvements as a command is
executed in the same memory space as the other objects that are accessed.
Remote method calls can take many milliseconds to run (or even seconds if the
communication link is very slow), as where local calls will only take
microseconds.

Not only are many remote method calls avoided using Command objects
correctly, but also the associated data transfer that accompanies accessing
objects in a location other than their home is avoided. In the case of large objects,
this can substantially increase performance.
68 IBM SanFrancisco Performance Tips and Techniques

Command objects can be executed on the server by setting the target correctly. In
this case, the target must be a handle that refers to an Entity residing on the
server. All additional state is by preference set by method calls inside the doAll()
method.

There is a certain overhead in creating the Command objects. But because they
are Dependent objects, they are typically lightweight and quickly created. So they
do not imply a high level of overhead. Furthermore, a Command object can be
reused. This is typically done through a reinitialize method. This method is
specific to the Command object. The following code illustrates how an
implemention can appear as shown in the following example:

public void reinitialize(Handle financialBatchControllerHdl,
Handle[] ledgerItemHdls, boolean returnCmd) throws
com.ibm.sf.gf.SFException {

this.reset();
this.setLocationHandle(financialBatchControllerHdl);
this.setReturnCommand(returnCmd);
this.setLedgerItemHdls(ledgerItemHdls);

}

This kind of method should be used in conjunction with the reset() method on
the Command that places the Command object in the state in which it can again
execute the doAll() method.

A consistent use of Command objects has a good impact on the overall
performance because it can limit expensive remote method calls to a minimum.
The application built on top of the SanFrancisco framework will benefit from this
and so will other C/S applications, as it will lower the network traffic.

It must be mentioned that, in some cases, the use of Commands does not yield
the best performance. If in doubt whether this approach is beneficial or not, start
without the use of a Command object. Profile the operation as discussed in 3.2,
“Profiling the Application with JProbe Profiler” on page 25, and reimplement using
Commands if a performance problem is encountered.

5.2.3 Usages of Command Objects
Command objects can be useful in different operations on Entity objects. The
following sections will describe in what context it can be beneficial to use
Commands to increase performance.

Object Creation
The Command object is responsible for:

 • Accepting the necessary parameters for a particular create.
 • Allowing the user to select the necessary factory method.
 • Executing on the server.

Object Deletion
The Command object takes in the Handle of the Entity that needs to be deleted
and has one of these two actions:

 • Calling the factory delete method if the object is loosely coupled.
 • Calling the proper remove method on the owner if the object is tightly coupled.
Performance Aspects Using Design Patterns 69

Object Update
The Command object is responsible for updating the Entity on the server. It takes,
as parameters, the Handle of that Entity and the values for the fields that need to
be changed on that Entity.

Object Access
This is mainly used for viewing. The Command object retrieves the fields of an
Entity that needs to be viewed. It takes the Handle of the Entity that holds the
fields that contain the values to be displayed.

Collection Access
The Command object needs to be customized so that it can handle the different
ways a collection can be accessed. The Command object returns a collection
object that contains the useful information that can be accessed through the
access methods on this collection. This collection is accessed locally on the client
where the information is displayed. Command objects used for this purpose give
a big performance boast. The following section "Retrieving a List of Information"
illustrates the use of a Command in this context.

Example: Retrieving a List of Information
In many cases, retrieval of a set of data is needed to be displayed in a GUI.
Usually this data will be contained in Entity objects, and, in most cases, only a
small subset of the data of this object needs to be displayed. There are a couple
ways that this data can be retrieved and displayed.

Figure 30. Retrieving a Subset of Data

The first way is to retrieve a collection of the Entity objects that contain the data.
The collection will contain the handle for every object in the collection. This
collection comes to the client, and the information is displayed on the screen. For
every record displayed, the corresponding Entity object needs to be accessed
separately on its server. This means that there are a large number of remote
method calls to the server where the objects reside.
70 IBM SanFrancisco Performance Tips and Techniques

A far better approach is to use a Command object that executes on the server
and gathers all the information to be displayed from the Entity objects. This is all
done locally on the server machine. When all the information is gathered, the
Command object is streamed to the client where the information can be accessed
and displayed. Using this solution, not the entities containing the information, the
information itself is returned. To enable the possibility that the corresponding
Entity object from a record on the displayed list can be accessed, the Command
object also needs to maintain the Handle objects. Typically, only a few records are
selected requiring a remote access to the server using the Handle to retrieve the
actual object.

This can be part of the client code:

// personCtrlHdl handle for the PersonController is referenced
// It is an object on the server
LastNameRetrievalCmd cmd = LastNameRetrievalCmdFactory.

createLastNameRetrievalCmd(personCtrlHdl);
cmd.doTransaction();
Map names = cmd.getNames();
Iterator it = names.createIterator();
Vector v = new Vector();
String element;
while ((name = it.next()) != null) {

v.addElement(new UIListItemInfo(new UITextResource(
element), null, true, false));

}
UIListBox listBox = new UIListBox();
listBox.setListData(v);

This can be the implementation of the handleDo() method of the command:
LastNameRetrievalCmd :

PersonController controller = getTarget();
Iterator personIt = controller.createPersonIterator();
Person person = null;
while ((person = personIt.next()) != null)

ivNames.addElementBy(person.getLastName(),person.getHandle());
}

The real object is retrieved from the Handle. An iterator is created for the
controlled Person entity object. The iterator is used to walk through the collection
of Persons; the name of every person is stored in a map with the last name as the
element and the handle of the Person object as the key.

In case more information elements need to be retrieved, a map can not be used.
A separate display object can be used instead. The class definition can appear as
shown here:

public class PersonDisplayObject extends Object implements Externalizable {
...
String ivLastName;
String ivFirstName;
Handle ivHandle;

}

Performance Aspects Using Design Patterns 71

5.3 Controller Pattern

A brief description on this pattern is provided together with some performance
issues. An alternative to the use of Controller objects is proposed.

5.3.1 Description
Controllers provide two main functions. The first is controlling instances of objects
of a class. The controller does things such as ensuring uniqueness of the
instances. The controller also provides a central point for working with all of the
instances, such as doing queries to find instances.

The second main function of a controller is providing a view of the set of
instances of a class that are available to a particular company. Controllers isolate
their user from the complexities of how the available instances are determined.
Only during setup and maintenance, is it necessary to know what the particular
controller being used and where instances actually reside.

A controller is an object that owns a collection of other objects. The other objects
are of the same class (or at least the same superclass). A controller appears in a
similar role as the master data table in a traditional system. All SanFrancisco
controllers are implemented to hold one or several collections internally but
present an external interface that hides the complexity of the implementation
detail.

5.3.2 Performance Impact
Controllers offer a lot of functionality, but in the mean time, they also bear some
performance risks. Especially the use of aggregating controllers (the second main
function) can be very expensive to use. This functionality offers the possibility to
ascend in the company hierarchy to inquire controllers at a higher level in this
hierarchy in the case that a requested object was not found by the controller at a
lower level in the hierarchy.

In the case of aggregating controllers, the links of the chain are not direct.
Instead, an aggregating controller accesses its parent by first going to its
associated Company (for which a direct link is held), accessing the parent
Company through the organizational tree structure of Companies, and using the
PropertyContainer interface of the parent Company to request the parent
Controller.

In the case of a distributed Company hierarchy, this can be slow since it involves
a lot of remote calls. Certainly, in many cases the higher controllers need to be
accessed because the requested object is not found in the addressed controller.

5.3.3 Controllers without ExtentCollection
Controllers typically own objects that do not have a natural owner. Currency
objects are an example. They are stored in a controller, which becomes a
property on the Enterprise. In the cases where not a lot of objects will be
controlled, it is overkill to use an EntityOwningExtent as the collection type to
store the objects. Another type of collection might be more appropriate. It is easy
to replace the implementation of the controller so that it uses another collection.
What is lost is the query efficiency of normal controllers.
72 IBM SanFrancisco Performance Tips and Techniques

The steps needed to change the implementation of a normal EntityOwningExtent
to an ExtentOwningMap are included in the following section on partitioning
controlled Entities.

5.3.4 Partitioning Controlled Entities
When SanFrancisco is used in a highly distributed environment, could become
necessary to have different objects of a class reside on different servers. The
default controller pattern forces all instances that it controls to reside in the same
container, which also means on the same server. In the case of an environment
with several server nodes each representing, for example, a different company in
the same hierarchy, all these companies need to reside on just one server. Since
the other servers need frequent access to their company, this results in frequent
remote calls. This is bad for performance.

There is a way that a controller is able to control Entities that reside in different
containers. The following instructions take as an example the partioning of
Company objects. The solution involves replacing the implementation of the
CompanyControllerImpl class and replacing it with another implementation.
These are the steps to follow:

1. Create an interface called XyzCompanyController that extends
CompanyController. This class does not need to define any methods.

2. Create an implementation called XyzCompanyControllerImpl that extends
DescribableDynamicEntityImpl (this is the important part since it bypasses the
implementation provided in the com.ibm.sf.cf package) and implements
XyzCompanyController. The simplest way to create this class is to copy the
CompanyControllerImpl in a com.ibm.sf.cf package. After copying the class,
change the inheritance as previously described, change the package, and
locate all occurrences of the class EntityOwningExtent. The solution to the
partitioning problem is to replace all occurrences of EntityOwningExtent with
EntityOwningMap. Note, however, that there will be a couple of methods that
EntityOwningExtents support that EntityOwningMaps do not. Simply change
the method bodies that use these unsupported methods to empty method
bodies.

3. Create an interface called XyzCompanyControllerRoot that extends
XyzCompanyController. The simplest way to create this class is to copy the
CompanyControllerRoot in com.ibm.sf.cf package. After copying the class,
change the inheritance as previously described and change the package.

4. Create an implementation called XyzCompanyControllerRootImpl that extends
XyzCompanyControllerImpl and implements XyzCompanyControllerRoot. The
simplest way to create this class is to copy the CompanyControllerRootImpl in
com.ibm.sf.cf package. After copying the class, change the inheritance as
previously described and change the package.

5. Create a class called XyzCompanyControllerRootFactory. The simplest way to
create this class is to copy the CompanyControllerRootFactory in
com.ibm.sf.cf package. After copying the class, change the occurrences to
CompanyControllerRoot to XyzCompanyControllerRoot and change the
package.

6. Create a special factory for the CompanyFactory. Follow the directions
described in the San Francisco documentation. Note that it is important that
the location handle parameter is not ignored and is passed to the BaseFactory
Performance Aspects Using Design Patterns 73

when the Company is created. This is how the Company can be directed to the
desired Container and Server.

7. Consider defining class replacement for the CompanyControllerRoot,
specifying the XyzCompanyControllerRoot.

8. Whenever a Company is created, make sure that the location handle of the
appropriate container is passed as a parameter. This ensures the proper
placement of the Company object.

5.3.5 DController
Some objects that need to be controlled are not Entities, so they can not be held
in an EntityOwningExtent. For these objects, which are mainly Dependents, a
specialized controller is developed that uses a DMap as collection to hold these
instances. A DController does not provide any query functionality, but it does
provide keyed access. This keyed access is different from the one used by the
normal controllers, as it is based on Specification Keys instead of the
DMethodAccessKey.

Using DControllers could imply a performance risk because it uses a DMap to
store its controlled Dependents. A DMap will function well if the number of held
items remains reasonable. If too many objects are held in a DMap, performance
will degrade rapidly. Typically, they should not contain more than 50 elements.

5.4 Property Container Pattern

A brief description on this pattern is provided together with some advice on the
use of properties to get a good performance.

5.4.1 Description
The Property Container pattern is used to make it possible to dynamically add to,
and remove, attributes from an Entity. These attributes are called properties and
are accessed and maintained by an ID (String).

5.4.2 Performance Impact
The use of a property container should not be very critical from a performance
point of view; although, care should be taken when accessing the same property
over and over again. Instead of multiple access to the same property, the property
should be cached after the first retrieval if possible. Compared to accessing an
instance variable that will take some microseconds, accessing a property takes
some milliseconds.

Some considerations are important while using the property container pattern.
Properties are made persistent by streaming. There is currently no way that a
property can be individually schema mapped to the database, as a property is, by
definition, unknown to its container. As of version 130, Entities are therefore
better performing properties than Dependents and Strings, as these are
streamed, as a whole, where Entities are streamed using the Handle only.

The number of properties for a container should be limited as much as possible.
The higher the number, the longer it takes to retrieve a property. This degradation
is caused by the hashcode table implementation. It may very well be that, even for
smaller numbers, the retrieval is slow. A solution to this problem is to change the
74 IBM SanFrancisco Performance Tips and Techniques

hash codes. The better they are distributed, the faster the retrieval process is.
The easiest way to get to a better distribution is to use different and more diverse
String identifiers.

To help reduce the number of properties, they can also be grouped into a
Dependent or an Entity and added as a single property. This is an especially good
idea if there are several properties commonly used together.

5.5 Policy Pattern

A brief description on this pattern is provided. The policy pattern is used in many
different situations, some of which may be crucial for performance. A practical
example on the use of this pattern is provided.

5.5.1 Description
The policy pattern, at its core, is the Strategy pattern from the Design Patterns
book by Gamma, et al. It allows volatile business processes (or portions of the
application) supported by algorithms to be easily customized. Policies can have
different scopes, such as for the whole company or for a particular instance. The
framework always includes at least one default implementation for each Policy.

5.5.2 Performance Impact
Default policies, the ones that the framework provides and uses if not replaced,
do not always have the most appropriate implementation. In some cases, there
are checks performed that are irrelevant to a particular situation. To avoid this, it
is necessary to provide a policy that offers a more suited algorithm. Some ID
generation policies can be implemented in a better performing way.

5.5.2.1 ID Generation Policy
The number generators that provide objects with unique numbers can sometimes
be rather inefficient. Most of these implementations use a NumberSeries to
generate the numbers. Often these are synchronized, limiting the throughput in
case many objects try to access the ID generator at the same time.

To increase the throughput of a ID Generation Policy, the default implementation
can be changed. For example, instead of using a generated ID based on a
NumberSeries object, the handle of the Entity could be used. The handle, a 24
byte long unique ID, can be converted to a long instance. Of course, this trick
does not always work. Sometimes restrictions are imposed on the sequence of
the ID, as they need to follow a well-defined pattern.

In some uses of the Controller pattern, it is mandatory to have a unique key
before the Entity object is created in the Controller collection. This is the case
when the ID is the primary key in the database. It is not possible to use a ID
generation based on the Handle in this case, as the Entity does not yet exist.

The following code illustrates how an ID generation policy can be implemented
using the handle instead of a NumberSeries. The method
updateId(GLJournalDissectionController controller, GLJournal journal) is
implemented in the policy that will replace the default policy provided by the
framework.
Performance Aspects Using Design Patterns 75

public void updateId(GLJournalDissectionController controller,
GLJournal journal) throws com.ibm.sf.gf.SFException {

//only retrieve and set new id, if not already set
if (journal.getId() == null) {

// get next unique value
Handle handle = journal.getHandle();
long id = handle.hashCode();
String idAsString = FastConvert.longToString(id);
journal.setId(idAsString);

}
}

This method is called in the method updateJournalId(GLJournal journal) on the
class com.ibm.sf.gf.GLJournalDissectionControllerRootImpl .

5.5.2.2 ID Generation in Batch Process
It may be possible to postpone the ID generation until the necessary resources
become available. Consider putting the objects that request an unique ID in a
queue where they wait to be processed further. During a low utilization period, a
batch process can run that assign’s unique IDs based on a NumberSeries.

It is even possible to combine this with the fast ID generation based on the
Handle. A temporary ID can be generated from the Handle. Later on, these
Entities are retrieved and run through the batch process that will assign them a
unique ID based on a NumberSeries.

5.5.2.3 Validation policy
The validation policy is a special kind of policy. It is build into the implementation
of an business object. Normally, for many methods that are present, an additional
method is implemented that follows the naming convention
validateFor<methodName>() where <methodName> is the name of the method that this
validation method corresponds to. For example, a method
calculateMortgage(rate, amount, years) will coexist with a method called
validateForCalculateMortgage(rate, amount, years) . This validate method is
invoked right in the beginning of the code of the other method. The purpose of the
validate method is to check whether all the necessary prerequisites regarding the
parameters passed are met.

The validation method returns an DResultCollection in case of a problem and null
otherwise. It is more efficient to create this collection only in case a problem
occurs and not upfront in the implementation of the validate method. Otherwise,
the collection will never be used, as null will be returned in the case that no
problems have occurred.

Especially, the validateForInitialize(parameters) can have a serious impact on
the performance in a rather unexpected way. The initialize method is called by the
create methods of the factory. The creation of the objects can be executed on a
client process. If, for example, handle objects are passed as parameters, and the
validateforInitialize(parameters) runs checks on these objects corresponding
to the handles, a lot of remote calls can be the result, as the objects will probably
not reside on the client process. A better approach is to use a Command object
that encapsulates the creation calls and is executed on the server process that
contains the objects referred to in the parameter list.
76 IBM SanFrancisco Performance Tips and Techniques

There is a mechanism put in place that will turn the validation on or off. This is
discussed in 10.3.3, “Validation” on page 192.

5.6 Extensible Item Pattern

This pattern is heavy in use, and a good understanding of the performance
implications is important before using this construct. Therefore, the overview of
this pattern is explained. In some cases where not all the functionality of this
pattern is needed, alternatives will yield better performance.

5.6.1 Description
The Extensible Item pattern allows the dynamic modification of an Entity's
interface. This allows it to appear as if methods appear and disappear from an
Entity. Such behavior is especially useful when having an Entity that changes
responsibilities as it is processed. An area where this pattern is heavily used is
Order Management. The core of each Order object is the Extensible Item pattern.

5.6.2 Concept
There are some important consideration to make when using this pattern. Since
they can best be understood if the underlying mechanism is understood, some
explanation is necessary.

Figure 31. Structure of Extensible Item

Each DExtension maintains a Method table that is a map that holds the method
nodes that the DExtension adds to the behavior of the Extensible Item. The keys
in this map are the strings that will identify the method. These strings are used in
the invokeMethod() method to execute the requested method. The method table of
a DExtension is created the first time a method on a DExtension is called through
the invokeMethod () interface on the Extensible Item; the next instances of the
Performance Aspects Using Design Patterns 77

DExtension already have the method table. This shortens the creation time of an
extensible item that will maintain a DExtension.

The method execution follows the order that the DExtensions were added to the
Extensible Item. The string ID that identifies the method that is requested is
looked for first in the last added DExtension. This enables behavior being
changed when other DExtensions are added to the Extensible Item. In Figure 31
on page 77, DExtension2 changes behavior by overriding String1 and String4.

5.6.3 Performance Impact
The largest trade-off when using this pattern is one of flexibility versus speed. It is
a heavy construct that imposes quite some overhead. There have been internal
changes (the static method repository) made to the implementation that makes
the creation time shorter. This will definitely have a good influence on the creation
time of objects that use this pattern. In the mean time, the path length for
execution has increased slightly due to the additional level of indirection.

The fact that the method lookup goes through the stack from top to bottom can
have a serious impact. In most cases, the first DExtension implements the most
of the added behavior, so it is used the most frequent of all although it has the
longest path length. The more DExtensions are pushed on the stack, the longer it
is takes to execute a method on the first DExtension. There is no way to force a
lookup to start other than from the top of the stack. If there is no need to override
behavior, make sure that the most used DExtension is on the top of the stack.
Also remove the DExtensions that are no longer useful.

The invocation of a method on an Extensible Item, on average, is about 20 times
slower than a Direct Method call on an object. If repetitive method calls are
needed on an extensible item, caching should be used, which avoid the repetitive
slow invocation.

5.6.4 Alternative for the Extensible Item Pattern
If an object changes behavior throughout its life cycle, the Extensible Item is a
powerful mechanism to accommodate these requirements. It is probably the best
way for implementation. The Order object in the OrderManagement tower is
definitely a good example. Without the Extensible Item pattern, it is not possible
to offer all the required functionality.

There exist some situations where this pattern can be used, but are not
indispensable. Consider the example of business roles. A person object can have
the customer role and the supplier role at the same time. It is possible to design
this problem while using the Extensible Item pattern.
78 IBM SanFrancisco Performance Tips and Techniques

Figure 32. Solving the Problem with Extensible Item

There is another alternative that probably may perform better: using aggregation.
Instead of letting the Person inherit from Extensible Item and the business roles
from DExtension, Person can hold two instance variables that can contain the
business role objects if needed.

Figure 33. Solving the Problem with Aggregation

It should be clear that this design offers less flexibility but will definitely be more
performing. The lesser flexibility shows up in the addressing of the business role.
It is needed to have knowledge on the role that is played in a particular situation.
It is not possible to add different roles other than the ones designed.
Performance Aspects Using Design Patterns 79

5.6.5 Replacing an Extensible Item Implementation
This section deals with how an implementation of an Extensible Item can be
replaced by a more static approach as was described in 5.6.4, “Alternative for the
Extensible Item Pattern” on page 78, without changing the client interface to the
(alleged) Extensible Item. The recommended way of using the Extensible Item is
through the Adapter approach, which eliminates the use of the invokeMethod()

interface. This method should never be called directly by client code.

5.6.5.1 Adapters
A DExtension can hold all the functionality that is described by an Interface, but
the Extensible Item that holds that DExtension does not implement that Interface
directly. This means that an Extensible Item can not be cast to one of its
DExtensions. In the example described earlier, a Person object can not be cast to
a Supplier although it actually holds all this functionality. To solve this problem, an
Adapter class was introduced. A DExtension can hold an Adapter that
implements the proper Interface. When the Extensible Item is cast to one of its
DExtensions, this Adapter is in fact returned that will act as the Extensible Item
being this DExtension. The casting of an Extensible Item to one of its
DExtensions is done through a method castTo("DExtension_string").

Figure 34. Adapters in the Extensible Item Pattern

An example can make it more clear. When in Figure 34, the method
castTo("DSupplier") is invoked on the Person object, the object that is returned is
a DExtensibleItemAdapter object that needs to be cast to Supplier. This
DSupplierAdapter object implements the Supplier Interface that will define the
functionality that the DSupplier extension also holds.

At this point, it is possible to call methods directly on the DSupplierAdapter as if it
was the real Person object that was casted to Supplier. These calls do not use the
invokeMethod() redirection mechanism directly.
80 IBM SanFrancisco Performance Tips and Techniques

5.6.5.2 Changing the Implementation
If the Adapter approach is used for an Extensible Item implementation, it is
possible to change this implementation using a more static implementation.

Figure 35. Static Implementation of the Adapter

Figure 35 illustrates the model that implements the same behavior proposed in
Figure 34 but only without the Extensible Item pattern. The Person class needs to
implement the Supplier Interface, but redirects the actual implementation to the
contained DSupplier class. The Person class also needs to implement the
castTo(String) method that will simply return this.

A more elaborate example that contains additional instruction can be found in the
Warehouse Tower in A_Picking Extension.

This static implementation has a better performance than the implementation with
an Extensible Item. It is advisable to be sure that the Extensible Item is creating a
performance problem. Before the implementation is changed, run a profile on the
code. It may very well be that the overall performance is only slightly increased by
the static implementation, as the real bottleneck can be elsewhere.

5.7 Life Cycle Pattern

This section deals with the Life Cycle Pattern. A general overview is provided
together with some advice on using this pattern from a performance point of view.

5.7.1 Description
Certain entities in the business domain, such as orders, traverse through a set of
states during their existence. The traversal from one state to another is generally
triggered through some external event, such as an order taker confirming an
order. Quite often the states through which such a business entity may traverse
and the events that cause these traversals vary from company to company and
even within different types of the same business entity within the same company.
Modeling of such business entities in a software application requires that the
business object used to represent the business entity be flexible. It should allow
for the various state transition paths that may be valid for different variations of
Performance Aspects Using Design Patterns 81

the actual business entity as well as to allow for the various events that may
trigger these transitions.

The combination of the graph of acceptable state transitions of such a business
entity, the events that trigger each state transversal, and the effects of each state
transversal on the entity itself comprises the "lifecycle" of the business entity.
Traditional approaches for representing business entities with complex state
transitions (for example, the "State" pattern - see DesignPatterns, Gamma, et al.)
require that the lifecycle of a business entity be integral to the business object
that represents it. With this approach, changing a business object's lifecycle
requires code changes to the class of the business object. This severely restricts
the flexibility of the business object in adopting different lifecycle behavior. The
approach used in the SanFrancisco business process components allows for
flexibility in the definition and maintenance of a business object's lifecycle by
placing the lifecycle behavior into a separate, dynamically-configurable object,
thus allowing changes to the business object's lifecycle to be made independently
of the business object itself. In the business process components, business
entities with lifecycles are represented as LifeCycleManagedItem (LCMI) objects.
Each LifeCycleManagedItem is associated with a LifeCycle (LC) object that
encapsulates the lifecycle of the associated LifeCycleManagedItem objects. The
ConditionChangeResult object encapsulates the necessary actions to be
performed on the LCMI object when the corresponding event is signalled. These
actions can include invoking methods and adding or removing Extensions.

Figure 36. General View on the Life Cycle Pattern

5.7.2 Performance Impact
Although the lookup in the map to find out what changes needs to be performed
on the LCMI object when a transition event is signalled to the LC object is very
well performing, it is possible to avoid this lookup. The class that is used by
default is DConditionSetKeyedLifeCycle. This class implements the lookup using
a keyed query as described in Figure 36. It is possible to create an other subclass
of the LifeCycle class that will have all the necessary transitions hardcoded using
82 IBM SanFrancisco Performance Tips and Techniques

conditional statements. This method is only valid while using the LifeCycle
Pattern for developing additional LCMI objects. The LC, how it is used by the
framework itself, should not be changed.

The transition IDs used (known as "conditionid’s") should be selected wisely.
Unnecessary lookup needs to be avoided. Also, the methods that signal transition
events should be limited. Only the methods that actually can cause a valid
transition should include the signalling.

In the case where it is not possible to avoid signalling of unnecessary events, the
conditionid to condition map in the LC can be used as a filter to eliminate
unnecessary LC state change lookups.

5.8 Cached Balances Pattern

The Cached Balances pattern is based on an underlying pattern: Keys and
Keyables. Cached Balances are powerful but can impose a serious performance
degradation. A possible alternative for using this pattern is proposed.

5.8.1 The Basis: Keys and Keyables
An application needs to work with data that can be identified by a set of otherwise
unrelated items. This set of identifying items must be flexible so that items that
are not always available or not of interest can be excluded, and new items can be
added as additional identifying items. Within SanFrancisco, the set of unrelated
items is called an Access Key, and the unrelated items within an Access Key are
encapsulated in Access Keyables. In practice, the items are, in most cases,
related and of the same type.

In addition to needing to be able to use Access Keys with particular unrelated
items, applications also need to be able to specify groups of particular unrelated
items. This is necessary to allow specification of what particular values can be
used for each of the unrelated items. This specification is done using a
Specification Key with associated Specification Keyables.

Using this pattern yields the best performance if the size of the keys used
remains reasonable.

5.8.2 Description
The Cached Balances pattern provides the mechanism for aggregating (adding
together) a set of things and keep this aggregation around so that they can be
accessed quickly, or that aggregations that are a subset of it can be calculated
quickly.

In order to cache aggregates, some means of identifying which set of criteria are
of interest, and some means of capturing the aggregate value associated with
each set of specific criteria is needed. This is done by using key/keyables. The
Specification Key is used to define the criteria of interest. The Access Key is used
to define a set of specific criteria. The Access Keys are mapped to the
aggregated value for that specific criteria. The combination of a Specification Key,
and the map from the Access Keys to their aggregated values, is called a Cached
Balance Set.
Performance Aspects Using Design Patterns 83

5.8.3 Performance Impact
The Cached Balances pattern is a rich mechanism that offers a lot of functionality.
Some considerations and advice can be useful while using this pattern.

5.8.3.1 Number of Maintained Cached Balances
There is a minimal and a maximum amount of cached balances that will define
the useful area. Since there is a big overhead, even if there is just one Cached
Balance to maintain, a minimum number of Cached Balances is needed to
compensate the performance decrease. It is also needed to maintain them with
the increase of functionality and improvement of response time when querying
the cached balances.

On the other hand, there is also a limit on the maximum number of maintained
Cached Balances that yields good performance. The time spent in updating all
the different caches will simply become to long. The performance increase gained
from easy querying is lost due to the performance decrease suffered from
updating.

Some aggregates can be derived from others. For example, a cached balance set
that aggregates over the color and the size of a product will also be able to
calculate easily aggregates over only the color of a product. This process is
called condensation. It is a way to limit the number of maintained Cached
Balances, as some aggregates are already contained in others.

Figure 37 gives a representation of these situations. The minimal and maximal
values for the number of maintained Cached Balances are impossible to
determine empirically, as the nature of the balances and the frequency of
updating and querying are important in this matter.

Figure 37. Performance with Cached Balances

5.8.3.2 Granularity of the Cached Balances
A Cached Balance should not be too specific. The more specific it gets, the more
it starts reassembling the actual data. For example, if every product in your store
has a different color-size-weight combination, it is of no use to have a cached
balance that makes aggregates on every color-size-weight combination. This only
84 IBM SanFrancisco Performance Tips and Techniques

duplicates the information that is already present. What makes sense is to use
aggregates, for example, on the different colors.

5.8.3.3 Asynchronous Use of the Cached Balances in GL
Cached Balances are used a lot in the General Ledger tower. As they may effect
performance, a special mode of operation is introduced. It is possible to run the
Cached Balances for the Dissections in an asynchronous mode. This means that,
while posting journals, the dissections that compose these journals do not get
aggregated in the Cached Balances right away. They are queued up until the
Cached Balances are requested to synchronize.

The classes that play a major role in the way journals will be processed are:

 • GLJournalDissectionControllerRootFactory
 • GLJournalDissectionController
 • GLCachedBalances
 • DGLCachedBalancesBookingPolicy

In most cases, the GLJournalDissectionController is created before the
GLCachedBalances. So, even while the create method on the class
GLJournalDissectionControllerRootFactory takes optional parameters for the
booking policy and mode of booking, these parameters are usually not used.
These two variables will be set in the GLBalancesSetupCmd that calls the
methods setBookingPolicy(DGLJournalBookingPolicy) and
setSynchronousBooking(boolean) . When this second method passes false as a
parameter, asynchronous mode is used. In this case, the booking of Journals is
very fast, but the Cached Balances are not updated. Before the Cached Balances
can be used, the method synchronizeBalances() on the GLBalances object needs
to be called. This is a time consuming operation and should not be used in a
interactive mode.

If the GLJournalDissectionController uses a synchronous booking policy, the
synchronizeBalances() method should never be called. The balances will already
be up to date, and it still can be a very time consuming operation.

5.8.4 Alternatives for the Cached Balance Pattern
If only a small number of aggregates need to be maintained, and if they are
relatively easy to maintain, it is better to implement a proper caching system that
maintains the required aggregates.
Performance Aspects Using Design Patterns 85

Figure 38. A Cache Manager Structure

Figure 38 proposes a caching mechanism that offers far less functionality than
the Cached Balance Pattern. In certain cases, it may just be sufficient. The
CacheManager class is the central entry point for the system. The Object
Interaction Diagram in Figure 39 illustrates the flow during setup, update, and
query.

During the setup phase, the different Aggregators are registered for the different
Objects that play a role in the aggregation scheme. In the example, there are two
Aggregators that calculate aggregates based on Product objects. The
ColorAggregator maintains the amount of each product for every color. The
SizeAggregator maintains the amount of each product for every size.

Whenever the CacheManager receives the call updateCache(Object) , it
determines what aggregator objects play a role in this operation. Then it sends
the method updateAggregate(Object) to every Aggregator instance that is
registered for this type of Object. In the case of Object being a Product instance,
the method updateAggregate(Object) is called on the SizeAggregator and the
ColorAggregator.

Retrieving aggregate results from the CacheManager is done by sending the
method getAggregate(aString) . The CacheManager looks up which Aggregator
maintains the cache values for the identifier that was passed as a parameter and
send the method getAggregate(aString) to this instance.

It is clear that the caching system proposed here is far from useful off the shelf.
The main idea is to give an idea on how a proper caching mechanism could be
implemented. It can even be far simpler. An Entity object could just hold on to
cached items and keep counters internally as items are added or removed. The
mechanisms proposed here are all fixed specification models and are not able to
replace the Cached Balances used in the SanFrancisco framework itself where
there are requirements for flexibility that are only offered by the Cached Balance
pattern.
86 IBM SanFrancisco Performance Tips and Techniques

Figure 39. Object Interaction Diagram

5.9 Link Pattern

This section primarily deals with a SanFrancisco specific solution for the concept
of a link object.

5.9.1 Link Object
A link object holds information of a link between two objects, where this
information does not belong to either one of the objects but only to the
relationship between them. In the case of a many-to-many relationship between
these objects, a link object is needed. Figure 40 on page 88 illustrates a link
object. Students can be enrolled for different classes; classes can have several
students enrolled; every enrollment maintains information on its own.
Performance Aspects Using Design Patterns 87

Figure 40. Example of a Link Object

5.9.2 Description
The link pattern that is discussed in this section is based on the concept of a link
object but solves a SanFrancisco specific problem. Consider this situation.
Product objects are maintained by a controller using an EntityOwningExtent that
enables query pushdown on the ID of the instances. Warehouse objects are
maintained by a second controller using also an EntityOwningExtent that enables
query pushdown on the ID of the instances (as well as other attributes, of
course). There exists between the product and the warehouse objects a
many-to-many relationship. The following requirement exists: how to process a
query that combines a where clause based on the product objects and on the
warehouse objects. For example, retrieve the amount of all products that are in
stock in warehouse A. The number of products that are in stock in a particular
warehouse belongs to the relationship between the two objects. This is the
concept of a link object. Figure 41 illustrates this situation.

Figure 41. Link Objects in SanFrancisco
88 IBM SanFrancisco Performance Tips and Techniques

5.9.3 Performance Impact
To increase the performance of using a link object, it is important to increase the
query performance. This is accomplished through the query pushdown
mechanism that is only possible with an EntityOwningExtent. The solution
becomes clear: the link objects are maintained by a controller that uses an
EntityOwningExtent enabling query pushdown on its controlled elements. Figure
42 illustrates the concept of this Link Pattern in SanFrancisco. For implementation
details, look in the package com.ibm.sf.whs for the classes ProductWarehouseLink
and ProductWarehouseLinkController.

Figure 42. The Link Pattern
Performance Aspects Using Design Patterns 89

90 IBM SanFrancisco Performance Tips and Techniques

Chapter 6. Hardware and Software Configuration

This chapter provides information concerning the optimal configuration of your
hardware and software for running IBM SanFrancisco (SF). Because this is a
wide area, you may find additional ways to improve the performance in your own
environment. This chapter represents the experiences that have been achieved
during the development and test of the framework.

Additional information on the configuration of the LSFN (Logical SanFrancisco
Network) and databases can be found in the following chapters:

 • Chapter 7, “LSFN Configuration” on page 107
 • Chapter 8, “Object Persistence, Databases, and Schema Mapping” on page

123

This chapter is divided in five parts. The first part deals with the necessary
hardware to successfully run a SF application. The second part gives some hints
about operating systems; whereas the third part gives advice how to set your
JVM correctly. The fourth part deals with communication related topics, such as
networks and DNS. The final part of this chapter gives some hints how to run SF
on a machine that does not fit the requirements that are stated in this chapter.

6.1 Hardware Recommendations

This section provides you with information concerning the minimum hardware
requirements that we recommend for SF. You will notice that our
recommendations are different from the minimum requirements, but we find these
configurations more appropriate. If your current machine does not fit these
requirements, the software may not run smoothly. Nevertheless, there is an
additional section with information about running SF on a smaller machine. This
should be a last resort solution and is definitely not recommended.

6.1.1 Memory
IBM SanFrancisco runs better when memory that is available. Also, keep in mind
that most JVMs (Java Virtual Machine), or garbage collectors, do not tolerate
paging. It will have a major performance impact to use paging for objects that are
loaded to the memory just for garbage collection. To give you a general idea of

 • All information given in this chapter referring to Microsoft Windows 95
should also apply to Microsoft Windows 98 although we have no
experiences on this platform yet.

 • All information applies to the international English version of the operating
system. For localized versions of your operating system, please consult
your manual for the specific names used in your version.

 • All information given, referring to Microsoft Windows NT, are tested on
version 4.0. No tests have been made on version 3.51 or version 5.0. So far,
we can not see any reason why the given information should not apply to
these versions also. As mentioned before, we have no experiences on
those.

Note
© Copyright IBM Corp. 1999 91

the memory requirements, the following table of the requirements on Microsoft
Windows NT can guide you as a rule of thumb.

Table 2. Memory Requirements

In Table 2, the + sign means "more", whereas ++ means "much more". These
numbers are depending on the size of the system and the application. Some of
these features are present on every system, others are server related.

6.1.2 Client
A client is a system in a Logical SanFrancisco Network that provides access for
the end user. It is playing the client role in a client/server environment. Because
the larger part of the workload is concentrated on the server of this environment,
including databases and most processing, the requirements for this machine are
not very high. In fact, it can be a NC (Network Computer) with no permanent
storage at all. Normally, this machine will present a GUI (Graphical User
Interface) frontend to the user. For this reason, a good graphical equipment is
necessary, such as:

 • x86/Microsoft Windows 95/NT : 166MHz Pentium equivalent, 64MB RAM,
256 KB Level 2 Cache, 1024x768x256 color display

 • RS/6000/AIX: Model 340, 80MB RAM, 1024x768x256 color display

6.1.3 Server
A server is a system in a Logical SanFrancisco Network that provides the
computing power and data storage capabilities for multiple clients. To do so, the
server will need sufficient DASD (Direct Access Storage Device) and processing
resources to serve all demands. This need will increase with each additional
client. The configuration that is suggested here should be considered as the
minimum configuration for basic needs in small client/server environments.

System Memory Required

OS kernel ~16MB

File cache 20+MB

DBMS and buffers 20++MB

SF Name Server Process ~6-16MB

SF BO Process 40++MB

 • If the application uses a GUI frontend to SF, we recommend an additional
16MB of RAM.

 • Any AS/400 system can be used as a client if a GUI frontend is not used.

 • If the application uses JavaBeans, the requirements may be higher (at least
a 200 MHz Pentium equivalent with 80MB RAM).

 • If the application is designed such that most object processing occurs on
the client rather than the server, for example AccessMode is set to Local
rather than Home, then memory and processor requirements may need to
be increased.

Note
92 IBM SanFrancisco Performance Tips and Techniques

However, since it is not required to run any GUI-based programs, its display
capabilities can be less than the client system.

Capable of serving 1-10 client systems running SF applications with acceptable
response times (1-10 sec) for typical medium weight transactions, a typical
system configuration is made up of these elements:

 • x86/Microsoft Windows NT : 300 MHz Pentium II equivalent, 512MB RAM,
512KB Level 2 Cache, 1GB free DASD (preferably on a SCSI array)

 • RS/6000/AIX: Model 43P, 512MB RAM, 1GB free DASD (preferably on a SCSI
array)

 • AS/400 system : Model 170 feature 2160, 1GB RAM, 1 GB free DASD

 • HP-UX: HP9000/879/K260 Series or higher, 1GB RAM, 1GB free DASD

 • Reliant UNIX (SINIX) : RM Server with R10000 processor or equivalent, 1GB
RAM, 1GB free DASD

 • SUN Solaris : Ultra SU2-2000 or higher, 1GB RAM, 1GB free DASD

6.1.4 Development
The development system is used by professionals to develop and test SF
applications. The system should be large and fast enough to support
sophisticated stand-alone SF applications (for testing, it does not need to support
very large databases) and the use of appropriate tools such as IDEs,
performance tools, browsers, and so on. For GUI applications, it will also need a
sophisticated graphical display. Capable of developing SF applications and
functionally testing and debugging them in a limited environment for unit tests:

 • x86/Microsoft Windows 95/NT : 266 MHz Pentium II equivalent, 256MB RAM,
512 KB L2 cache, 1GB free DASD, 1024x768x256 color display

 • RS/6000/AIX: Model 43P, 256MB Ram, 1GB free DASD, 1024x768x256 color
display

 • The size of DASD is heavily dependent on the application and the amount of
data that is maintained.

 • Depending on the application, for more than 10 clients, you will probably
need to add memory on the order of 16-32MB per additional 10 clients.

 • For x86-based systems, we recommend Windows NT Server 4.0 instead of
Windows NT Client as the operating system.

 • For data distribution reasons, multiple smaller disk drives are preferred over
a single large one.

 • Consider disk "striping", which means spreading data among different
drives, either as a software, or preferably, as a hardware implementation.

Note

For x86-based systems, we recommend Microsoft Windows NT Client over
Windows NT Server as the operating system.

Note
Hardware and Software Configuration 93

6.1.5 Configuration
There is not much room for configuring the hardware. Assuming that you have the
fastest settings for your BIOS and device drivers that give you a stable
environment, the first thing is to take a look at the hard disk configuration. If you
have more than one physical disk drive, spread applications, and databases, the
operating system and swap files among the disk drives to average the disk
utilization. This means that you have the operating system on one drive, the swap
file on another, and so on. In this case, we are talking about physical drives and
not multiple partitions on one drive. You can also use a RAID Level that handles
the spreading automatically.

For heavy duty servers, you should invest in RAID SCSI controllers with a large
hardware cache with at least 32MB. For smaller systems, a cache of 4MB will be
sufficient. This controller will dramatically increase the I/O capabilities of your
system. IBM SanFrancisco applications that process a lot of persistent objects
make heavy demands on the I/O bandwidth of the server. If with a lot of clients,
performance is slow, it is probably the I/O bandwidth that needs considerations.

To detect possible hardware problems, such as "insufficient hardware", you can
consult the performance analysis tools that are shipped with your operating
system or provided by third party vendors. Analysis tools are available for nearly
every platform. Refer to the manual of your specific operating system for detailed
information. Additional information is described in the following section.

6.2 Operating System

This section outlines some optimizations that are operating system dependent for
getting the best performance possible from your IBM SanFrancisco application. In
addition, this section includes all settings that we found to have an effect on the
behavior of the software.

6.2.1 Microsoft Windows NT Server
Open the Control Panel , open Network , select the Services tab, select Server
and click on Properties . You will see radio buttons for various options. Select the
button titled "Maximize Throughput for Network Applications ". This option
prevents the file-serving cache from consuming too much of main memory.

Set the initial paging file size to at least twice the size of physical memory and the
maximum to at least three times the physical memory. To do so, open the Control
Panel , open System , select Performance and click on Change of the Virtual
Memory section. Then select the drive (please refer to 6.1.5, “Configuration” on
page 94), adjust the values, and click on Set and then OK.

For Windows NT, information about the actual utilization of your machine can be
gathered using the TaskManager (press Alt+Ctrl+Delete , click on Task Manager
and select the Performance tab). If you find insufficient memory (little or no

For the specific versions of operating systems and other necessary software
that are required by the framework, refer to your online documentation that is
shipped with IBM SanFrancisco.

Note
94 IBM SanFrancisco Performance Tips and Techniques

Physical Memory available) or processing power (CPU Usage > 70 percent), you
may want to upgrade your system. Figure 43 shows an example how the
TaskManager can appear.

Figure 43. Microsoft Windows NT Task Manager

In this window, the CPU utilization is show as the CPU Usage bar in the upper left
corner of the window. The number below the bar shows the actual amount. On
the right side of this bar, you find the history of CPU Usage. If you only have some
peaks above 75 percent, this is no problem. If the scale stays continuously above
75 percent, the system is low on CPU power. In the lower part of the window, you
find the Physical Memory on the right side. If the Available memory is below
16MB on a Windows NT platform, you should upgrade the physical memory of
your machine.

If you want to see more information about the system, select the Processes tab.
This shows you the list of current processes and some values related to those.
Figure 44 on page 96 shows an example for this view.
Hardware and Software Configuration 95

Figure 44. Processes View of the Task Manager

You find the amount of memory that is used by each process, the CPU time spent,
and by looking at the Page Faults column, you can figure out the amount of
paging. You may have to select additional columns to the default view. You can do
so by selecting the Select Columns item of the View menu. The window that
appears is shown in Figure 45. The default setting, for example, does not include
the Page Fault column.
96 IBM SanFrancisco Performance Tips and Techniques

Figure 45. Select Columns View

Furthermore, Windows NT comes with a tool called Performance Monitor that can
monitor various system parameters of your local or remote Windows NT systems.
Further information on the Performance Monitor can be found in 4.5, “Windows
NT Performance Monitor” on page 55.

6.2.2 Microsoft Windows 95
Set the minimum paging file size to at least twice the size of physical memory and
the maximum to at least three times the physical memory. To do so, open the
Control Panel , open System , select Performance and click on Virtual Memory .
Then select "Let me specify my own virtual memory settings ", select the drive
(refer to 6.1.5, “Configuration” on page 94), set the values, and click on OK.

6.2.3 The AS/400 System
Similar to Windows NT, there is a performance measuring tool set on the AS/400
system. This set consists of the Performance Data Collector (PDC) and the
Performance Explorer (PEX) and provides data on several performance issues. A
more detailed description of this tool set can be found in 4.6, “AS/400
Performance Tools” on page 56.

6.3 JVM Configuration

This section provides information about the appropriate settings for your JVM to
run SF applications. The main goal is to reduce unnecessary garbage collection.

When you run your Java program in a JVM, there are several things you can do to
improve performance:

 • You can change the amount of memory you allocate to the JVM that is
controlled by the -ms and -mx flags. By default, it is measured in bytes. You
can specify the amount in either kilobytes or megabytes by appending the
letter "k" for kilobytes or the letter "m" for megabytes.

 – The -mx flag specifies the maximum amount of memory heap Java can
use. For example: java -mx16m sets the maximum amount to 16MB.
Hardware and Software Configuration 97

 – The -ms flag specifies how much initial memory should be allocated for the
Java heap. For example: java -ms16m sets the initial amount to 16MB.

 • You can disable class garbage collection through the -noclassgc option. This
is recommended for all Business Object processes.

6.3.1 First Steps
When running IBM SanFrancisco applications, or any Java application in general,
try to avoid all paging activity caused by the JVM processes. With the current
garbage collector technology found in the base JVM, paging during garbage
collection is extremely detrimental to performance. To limit this effect, follow this
procedure to set reasonable JVM sizes:

1. Review present settings in the Global Server Manager (GSM), which are
defined in the StartLSFN.bat file.

By default, IBM SanFrancisco sets -ms to 6MB and -mx to 128MB. This value
should be acceptable for most applications.

2. Analyze Business Object Processes

Follow these steps to find appropriate -ms and -mx values for your system. For
a description on how to obtain the necessary information below, refer to the
system’s manuals or contact your system administrator.

a. Determine the main memory size of your system. For example, 128MB.

b. Determine the operating system and file cache overhead for your system.
For Windows NT, this is typically 36MB.

c. Determine the database manager (DBMS) overhead for your system. For
DB/2 on Windows NT, this is typically 12MB. For Posix, this should be
ignored.

d. Determine the size of the database buffers set for your database. For
example, 10MB. For Posix, this should be ignored.

e. Determine the size of the GSM process. For the Quick Sizing, this is 6MB.

f. Determine the size of the client process or processes running on the
server. This is typically at least 16MB for a Java Swing application. If you
run the client processes on separate systems, this should be ignored.

g. Add up the results of steps 2 through 6 and subtract from the value of step
1. Use this value for the -ms and -mx values of your Business Object
process. If you have multiple processes, split the value amongst the
processes. If this value is small (less than 48MB), see 6.5, “Running IBM
SanFrancisco on Small Machines” on page 105. Because the Cache
Threshold value has to fit into the heap size, based on the value, the Cache
Threshold value may require adjusting to keep the cache within the bounds
of the JVM heap. See Chapter 7, “LSFN Configuration” on page 107 for
more information.

Using the values in this example, 128MB - (36MB + 12MB + 10MB + 6MB +
16MB) = 48MB.

6.3.2 Fine Tuning
The values obtained in 6.3.1, “First Steps” on page 98, are sufficient to execute
IBM SanFrancisco applications; however, for maximum performance, you should
98 IBM SanFrancisco Performance Tips and Techniques

set this to the actual memory size your application will require. To determine this,
perform either of the following options:

 • Run your application for an extended period of time, specifying the -verbosegc
option when invoking the JVM. This can be done for the GSM, Business
Object, and client processes. The JVM will display information when garbage
collection is performed. If there is very little activity displayed after running the
application for an extended period of time, the -ms value used for the process
can probably be decreased. If there is an indication of the heap being
expanded, the -ms value used for the process should be increased. However,
if the activity that caused this expansion does not typically occur, the value can
be left as is.

Figure 46. Example for the Output of the -verbosegc Option

 • Run your application for an extended period of time using a Java performance
tool such as OptimizeIt (see 4.3, “OptimizeIt” on page 34) or JProbe (see 4.4,
“JProbe” on page 43). The garbage collection activity, which is indicated as a
call to Runtime.gc(), should not exceed 30-40 percent of the time. If the
percentage of time exceed this, the -ms value used for the process should be
increased. If the percentage of time spent in garbage collection is very small,
the -ms value used for the process can probably be decreased.

If your find the free heap size falling below 25 percent, increase the -mx value to
fit the needs of your application. To do so, it may be necessary to install additional
RAM. If this is not possible, you can try to decrease the Cache Threshold value.

6.3.3 Timeout Setting
The JVM always try to free resources that are needed no longer. One type of
these resources are connection. They are dropped after some time of being idle.
To use the connection again, it has to be reconnected.

Certain SanFrancisco installations may require additional adjustments to the JVM
settings due to communication latency and efficiency, especially Wide Area
Network (WAN) installations. If you observe slow response times on the client
after the client sits inactive for more than thirty seconds, and you also observe
faster response times on the client with immediately successive activity, you
might be suffering from excessive overhead in the re-establishment of the
communication layers between the involved systems. This is a result of RMI's
default behavior of closing idle RMI connections after an specified amount of
time. In JDK 1.1.6, this default timeout value is fifteen seconds.

In this case, the RMI connection timeout interval, which is defined in milliseconds,
can be adjusted when starting all client and Business Object processes in the

GC: managing allocation failure. need 7816 bytes, type=1, action=1>
GC: freed 10 objects, 2928 bytes in 4 ms, 6% free (3288/48328)>
GC: init&scan: 0 ms, scan handles: 2 ms, sweep: 0 ms,compact: 2 ms>
GC: managing allocation failure. need 7816 bytes, type=1, action=2>
GC: managing allocation failure. need 7816 bytes, type=1, action=3>
GC: managing allocation failure. need 7816 bytes, type=1, action=4>
GC: expanded object space by 24576 to 72904 bytes, 38% free>
Hardware and Software Configuration 99

network. For the client processes, the following parameter can be added to the
Java invocation:

-Dsun.rmi.transport.connectionTimeout=3600000

In this parameter, 3600000 is one hour. So, for example, the client invocation
would look like:

java -Dsun.rmi.transport.connectionTimeout=3600000 com.xyz.MyApplication

To adjust the values for autostarted Business Object processes, edit the
SFConfig.ini file in the root SanFrancisco directory. Modify (or add) a line that
defines "theJVM" so that it is similar to:

theJVM=java -Dsun.rmi.transport.connectionTimeout=3600000

Manually started servers should be started with a command line argument similar
to those for the client. It is necessary to restart the servers after setting the
system property in SFconfig.ini. If this corrects the problem, the timeout value can
be adjusted to a more suitable value. If this does not correct the problem, remove
the parameter.

6.3.4 The AS/400 System
The AS/400 system supports the -ms and -mx options differently. The GCHMAX
(Garbage Collection Heap MAXimum) parameter on the AS/400 system is
analogous to the -mx option. On the AS/400 system, this value is by default set to
*NOMAX. The GCHINL (Garbage Collection Heap INitiaL size) parameter on the
AS/400 system is analogous to the -ms option.

6.3.4.1 Optimization Levels
For best performance, compile your code at optimization level 40. You can do this
by using the CRTJVAPGM (Create Java Program) command on the AS/400
system. For example, if your class file is named "myfile.class", use the following
command:

CRTJVAPGM CLSF(myfile.class) OPTIMIZE(40)

The increased optimization level has a strong effect on the performance of the
application, especially on computing intensive applications.

Table 3. Impact of Optimization Level on AS/400 System

6.3.4.2 Heap Sizes
The AS/400 system platform has, different to most other platforms, the capability
to perform a garbage collection asynchronously without halting the execution of
your application. This reduces the impact of garbage collection on the overall
performance, but there still is an impact.

Optimization Level Relative Performance

Interpreted 12.95

10 2.65

20 2.02

30 1.73

40 1.00
100 IBM SanFrancisco Performance Tips and Techniques

Because the AS/400 system operating system does not allocate memory until
really needed, you can leave the GCHMAX parameter with its default value of no
maximum. However, if the heap size is too small, it may cause unnecessary
synchronous garbage collection and impact your performance.

In the same way, the GCHINL has a considerable performance impact. It affects
indirectly the frequency of garbage collection by initiating an asynchronous
garbage collection each time the total allocation for new objects reaches this
value. Because a larger value would increase the time for garbage collection, you
should adjust this parameter to the particular needs of your application.

6.3.5 AIX
While executing some tests on the JDK 1.1.6 version on the AIX platform, the
setting of -noasyncgc, which means no asynchronous garbage collection, helped
to increase the performance. This may also be true for your application if you
have enough memory or can control the garbage collection yourself by calling the
gc() method. Normally, this setting forces a synchronous garbage collection,
which should not occur, if possible.

6.4 Communication

The setup and installation of the communication protocol has a significant impact
on the performance of IBM SanFrancisco applications. Knowing this, analyze and
optimize your network before you run any such application.

6.4.1 Network Drives
If your application has to be installed on a network drive, you will encounter a
dramatic performance loss. This is due to the fact that every single class has to
be loaded over the network into the client’s JVM. Try avoiding this if you are
concerned about performance. Otherwise, if you have no local drive, as with a
network station, you should consider this fact during design. In this case, it would
be a good idea to reduce the amount of classes to be loaded to a minimum and
keep the workload on the server. In heterogeneous environments with both types
of machines, you can use a dynamic balance between class loading and server
utilization to have an optimal overall performance.

6.4.2 DNS Configuration
You can experience performance problems with IBM SanFrancisco that are
related to a missing or malfunctioning Domain Name Server (DNS). Symptoms of
possible problems are:

 • Every remote method call takes anywhere from seconds to minutes to
complete, making IBM SanFrancisco performance appear very poor.

 • During installation, security priming fails when the SFBOProcess1 process fails to
start.

To reduce the impact of remote calls and the network at all, use the fastest
available network topology. At the moment, this is 100 MBit Ethernet with PCI
Adapters.

Note
Hardware and Software Configuration 101

 • When the Global Server Manager (GSM) process starts, the last line shows a
short name, localhost or something else, but not the fully qualified name of the
GSM system, which should be like MySystemName.domain.com .

 • The GSM appears to start and run without problems. However, a client
periodically fails with a SmContextInvalidException, MSG_SM_210 message.

 • With the evaluator CD, Microsoft Windows 95 systems fail when installed as
servers with various symptoms. Windows 95 is not a supported server
platform on non-evaluator installs.

The cause of the problem in all of the above cases is a missing or malfunctioning
Domain Name Server.

6.4.2.1 IBM SanFrancisco with DNS
San Francisco uses RMI (Remote Method Invocation) for the communication
between different systems. In order for RMI, and thus IBM SanFrancisco, to
operate properly, the system RMI is running on must be able to resolve IP
addresses. More specifically, RMI must be able to retrieve an IP address when it
has a system name, and it must be able to retrieve a fully qualified system name
when it has an IP address. This function is normally provided by a DNS. If IBM
SanFrancisco is installed on a system where a DNS is not available on the
network, additional configuration is required.

Most TCP/IP suites include a command, nslookup, which can be used to verify
that a DNS is available and configured properly. If there are any questions about
a DNS on the network, or if strange results occur when running IBM
SanFrancisco, nslookup should be run. If nslookup fails, your network does not
have a properly configured DNS, and additional configuration is required, or a
properly working DNS must be established on the network.

Correctly Configured DNS Subsystem on a Single Host
This example is the output of a correct configured DNS subsystem on a single
computer:

c:\>nslookup
Default Server: ns.acme.org
Address: 196.162.0.1

> exit

Correctly Configured DNS Server for a Network
This test can be executed from any machine on the network and should be run for
each server in your LSFN with the following replacements made:

 • SFServer.DNS is the fully qualified name for the server. For example,
"coyote.acme.org"

 • SFServer is the short name for the server without the domain information. For
example, "coyote"

 • SFServer.IP.address is the dotted-quad IP address for the server. For example,
"10.199.17.54"

The important result from this test is that both SFServer.DNS and
SFServer.IP.address return the same, correct, name and address. That the short
name returns these correctly as well is a convenience. Deviations from correct
102 IBM SanFrancisco Performance Tips and Techniques

operation should be referred to your DNS administrator. The following example
shows a possible output of the nslookup:

c:>\nslookup
Default Server: ns.acme.org
Address 10.199.17.12

> SFServer.DNS
Server: ns.acme.org
Address 10.199.17.12

Name: SFServer.DNS
Address: SFServer.IP.address

> SFServer.IP.address
Server: ns.acme.org
Address 10.199.17.12

Name: SFServer.DNS
Address: SFServer.IP.address

> SFServer
Server: ns.acme.org
Address 10.199.17.12

Name: SFServer.DNS
Address: SFServer.IP.address

>exit

Verifying DNS without a Full TCP/IP Suite
Some TCP/IP suites, for example, Microsoft Windows 95, do not include a
nslookup program. On these systems, a similar verification can be done using the
ping command. Issue the following commands from a DOS prompt:

c:> ping SFServer.DNS
c:\> ping -a SFServer.IP.address

Both of these commands should start by printing a line similar to:

Pinging SFServer.DNS [SFServer.IP.address] with 32 bytes of data:

Again, the important result from this test is that both SFServer.DNS and
SFServer.IP.address return the same, correct, name, and address.

6.4.2.2 IBM SanFrancisco without DNS
It is possible to use IBM SanFrancisco without a DNS, but additional configuration
is required.

On systems using TCP/IP without a DNS server, there is a Hosts file that must be
updated with IP addresses and associated TCP/IP names. The syntax for the
entries in this file is shown either in a sample file or in comments in the actual file.
Updating this file allows the system to properly resolve those IP addresses. For
IBM SanFrancisco to operate properly, every server and every client must have
an entry in each system’s Hosts file for every server and client used in the LSFN.
When updating the Hosts file with system name and IP address pairs, make sure
to use the system's fully qualified name, such as MySystemName.domain.com . The
Hosts file is typically located at:
Hardware and Software Configuration 103

 • C:\WINNT\SYSTEM32\DRIVERS\ETC\HOSTS for Windows NT

 • C:\WINDOWS\HOSTS for Windows 95

 • /etc/hosts for most Unix systems

Be aware that there is also a Hosts.sam file, which is an example file and is never
used by Windows.

6.4.2.3 Tuning DNS
If you are running Windows 95 or Windows NT on a network that is heavily
loaded, you might be able to reduce the network load and speed up your IBM
SanFrancisco application at the same time by modifying your Hosts file. If TCP
cannot find the IP address there, it makes a remote call to the network DNS
server to find it. You can avoid this call to the DNS server by putting an entry for
each IBM SanFrancisco server you access from your local system into the Hosts
file.

Other platforms besides Windows have the same requirement that a DNS be
available. However, these other platforms usually use a thoroughly designed
network that almost always has a properly working DNS. Nevertheless, if a DNS
is not available, consult your operating system's network configuration
documentation on its equivalent to a Hosts file. Again, every server and client
must have a Hosts file-like entry.

6.4.2.4 Using a Microsoft DNS Server on Windows NT Server
If you plan on using Microsoft DNS Server for Windows NT Server as your DNS,
see the instructions below. There are cases where other applications function
correctly, but IBM SanFrancisco does not because special steps are required to
configure IP address to system name lookup (which is used by IBM
SanFrancisco) in Microsoft DNS Server.

Use nslookup to verify if your DNS is already working with IBM SanFrancisco. If
nslookup works, the DNS is setup correctly for use with IBM SanFrancisco. If it
does not work, the following example will help you to properly configure Microsoft
DNS Server. This is only one example of a process that was found to work. Your
installation may require a different process.

Before beginning, make sure that DNS server is installed on the Server by
opening Control Panel , selecting Network , and choosing the Services tab. If
Microsoft DNS Server is not listed under Network Services, click the Add button
and install Microsoft DNS Server, perform the following steps:

1. Under the start menu, choose programs , and then administrative tools , then
DNS Manager .

2. Under the DNS menu, choose New Server .

3. Enter the new Server name and press OK.

The Hosts file has to be maintained manually. If the information in this file is not
correct, even an installed DNS might fail. Be careful while using the Hosts file
and judge between increased performance and increased maintenance work.

Note

The Hosts file has to be maintained manually. If the information in this file is not
correct, even an installed DNS might fail. Be careful while using the Hosts file
and judge between increased performance and increased maintenance work.
104 IBM SanFrancisco Performance Tips and Techniques

4. Click on the newly created server, then go to the DNS menu, and select New
Zone .

5. Choose the Primary radio button and press next .

6. Enter the name of the new Zone and the Zone file and press Next and then
Finish .

7. Go to the Options menu and select Preferences . Make sure the Show
Automatically Created Zones box is checked and press OK.

8. Now create a Primary Zone in the in-addr.arpa Domain. To do this, click on the
server icon.

9. Choose DNS and New Zone , then click on Primary and then click Next .

10.In the space for the zone name, fill in the network (or use the subnetwork if it is
a class B- or C-sized subnet) portion of the IP address in reverse order
followed by in-addr.arpa. (For a network with an IP address of 192.168.102.0,
the zone name would be 102.168.192.in-addr.arpa)

11.Enter the name of the zone file or use the default.

12.Click on the Next button, followed by Finish .

13.Now enter host names and IP addresses into the first zone and make sure that
Create Associated PTR Record box is checked for each host.

The key for this process to make IBM SanFrancisco work involves steps 9-13.
Without a Primary Zone in the in-addr.arpa domain, the DNS will resolve host
names that allow programs like Client Access and Lotus Notes to function. It does
not, however, provide reverse lookup for IBM SanFrancisco to run properly.

For further information about TCP/IP, refer to Accessing the Internet, SG24-2597.

6.5 Running IBM SanFrancisco on Small Machines

If you have a system that has less memory than we recommend for IBM
SanFrancisco, there are currently some ways to reduce the amount of memory
required. While it is recommended that you add more memory, there are
situations, such as demonstrations, where it may be acceptable not to add
memory. Nevertheless, in this discussion we will assume that the system has at
least 64MB of RAM. If your system has more, it is possible to raise some of the
suggested settings, as will be noted. All modifications should be made before
priming the system.

The hints given in this section are for the installation phase of SF. This means
you have to do the changes before priming. If you want to change anything
after priming, you have to use the Configuration Utility. For more information
about this, refer to 7.2, “Configuring LSFN for Small Systems” on page 108.

Note
Hardware and Software Configuration 105

6.5.1 IBM SanFrancisco Container Settings
The first step for making SF run is limiting the container cache settings.

To limit the container cache, modify com\ibm\sf\etc\Global.name in the SF root
directory. To change the cache sizes, find the appropriate lines and change them,
as shown here:

[HOSTS]
 =,*,com.ibm.sf.gf.PosixContainer,*,100
[CONTAINERS]
 SFDefaultContainer=*_SFBOProcess1,com.ibm.sf.gf.PosixContainer,*,1000
 GFSecurityContainer=*_SFGSMProcess,com.ibm.sf.gf.PosixContainer,*,100

6.5.2 JVM Settings
Change the initial JVM heap size (-ms) settings. To do this, modify
com\ibm\sf\etc\Global.name in the SF root directory as follows:

Set the Processes settings.

For larger memory systems, the SFBOProcess1 initial JVM heap size should be set
higher.

[PROCESSES]
_SFGSMProcess=6000,,30000,off,off,off,off,off,default
_SFBOProcess1=12000,,30000,off,off,off,off,off,default
_SFBOProcess2=4000,,30000,off,off,off,off,off,default
_SFBOProcess3=4000,,30000,off,off,off,off,off,default
_SFBOProcess4=4000,,30000,off,off,off,off,off,default

Note

Current limitations in IBM SanFrancisco limit the container caches to a range of
100 to 1,000,000. These limitations may go away in a later release, allowing for
a further reduction on some of the container caches sizes.
106 IBM SanFrancisco Performance Tips and Techniques

Chapter 7. LSFN Configuration

This chapter discusses various strategies that can be deployed to optimally
configure a Logical SanFrancisco Network (LSFN).

This chapter has the following sections:

 • Section 7.1, “Configuration Settings” on page 107—Describes the settings
that can be done while setting up LSFN. These include settings that can be
performed with the configuration tools.

 • Section 7.2, “Configuring LSFN for Small Systems” on page 108—Describes
the changes that can be done for small memory systems by specifying
appropriate parameters for configuring containers and JVM.

 • Section 7.3, “Exploring Topologies” on page 110—Provides some insight into
the design consideration while partitioning with containers and also describes
some commonly used topologies.

7.1 Configuration Settings

This section demonstrates the configuration settings that can be done with
utilities that are a part of the SanFrancisco environment. You can make changes
with your SanFrancisco configuration that can significantly improve performance.

7.1.1 Cache Threshold
Each container in SanFrancisco maintains a memory cache where it keeps
recently accessed persistent objects so that, when needed, it can retrieve them
directly from the memory rather than from the disk. The more objects the
container can keep in the cache, the more likely it is that the particular object your
application needs will be found in the cache. This can result in dramatic
improvement of the application’s performance. The maximum number of objects a
container keeps in its cache is a configuration parameter you can control. This
can be done in the manner described below:

In the SanFrancisco Configuration Utility
(java.com.ibm.sf.gf.CgRunTimeConfigurationView), perform the following steps:

1. Go to the Configure pulldown, then pick Containers , then either Posix or
Rdb, depending upon the type of the container you want to configure. This will
bring up a window listing the various existing containers of that type.

2. Double-click the name of the container in which you wish to set the cache
threshold. This will bring up a window that contains a field for Max. cache size.

3. Set this to the maximum number of persistent objects that you want the
container to cache in the memory.
© Copyright IBM Corp. 1999 107

7.1.2 Garbage Collection
The garbage collector in JVM is automatically invoked. The user cannot control
the activation of the garbage collection. The other major drawback would be if
your JVM has a blocking garbage collector, unlike the AS/400 system, which has
a non-blocking garbage collector. In blocking garbage collectors, all the threads in
the JVM other than the garbage collector come to a halt, and nothing else can
proceed if the garbage collection is going on. This could potentially cause a
number of problems.

For example, if we run our setup on a single, large system, which contains a large
amount of memory, it will run fine for some time. After the heap is filled, and the
garbage collector is invoked, it can block the other threads in the JVM for an
unreasonable amount of time since a large amount of garbage collection would
need to be done. This implies the application will sit idle for this amount of time,
and this may not be acceptable for certain applications. In such cases, you can
consider running two smaller server processes, each with smaller amounts of
memory. In this case, even if one of the server processes were involved in
garbage collection, the other could carry on with added load.

It is important to set the correct heap size in the memory. If the heap size is
smaller, the garbage collector would very likely be invoked more often, but it
would run for fewer durations, and the blocking time would be reduced.

7.2 Configuring LSFN for Small Systems

If you have a system that has less memory than is recommended for
SanFrancisco, there are currently some ways to reduce the amount of memory
required. While it is recommended that you add more memory, there are
situations, such as demonstrations, where less memory is acceptable. As a
starting point, the remainder of this discussion assumes that the system has
64MB of RAM. If your system has more, it is possible to raise some of the
settings, as will be noted.

Keep in mind that the cache may consume virtual memory on your system but
will make it more likely that your application will be able to find the persistent
object it wants in the memory rather than having to retrieve it from the disk. It is
best to set the configuration in such a way that the container cache fits in the
heap allotted, and that the heap fits in the main memory.

Also, the logging service, and to an extent the security service, are low priority
jobs and should be allotted fewer resources than the containers.

Note
108 IBM SanFrancisco Performance Tips and Techniques

7.2.1 Container Settings

Before priming
If you have not primed your system as yet, it is possible to set the initial container
cache settings. To do this, modify the com\ibm\sf\etc\Global.name as shown here:

1. Set the HOSTS container cache sizes:

[HOSTS]
=, *, com.ibm.sf.gf.PosixContainer, *, 100

2. Set the container cache sizes:

[CONTAINERS]
SFDefaultConatiner=*_SFBOProcess1, com.ibm.sf.gf.PosixConatiner, *, 1000
GFSecurityConatiner=*_SFGSMProcess, com.ibm.sf.gfPosixConatiner, *, 100

The same changes can be made for other containers you may define. For larger
memory systems, the SFDefaultContainer cache size should be set higher using
a 2MB per 1000 increment as a rule of thumb.

After priming
If you have already primed your system, changes to the container cache size
must be either made through the Configuration tool under the Base Utilities menu
or through invoking the DOS batch file com\ibm\sf\bin\Configuration.bat

To make changes with the Configuration tool, perform the following steps:

1. Start the Configuration tool.

2. From the menu bar, select Configure , Container , Posix (or Rdb if you are
using database).

3. For each of the specified containers, double-click to edit the container
attributes.

4. Change the Max. Cache Size to 1000 for the SFDefaultContainer and 100 for
the others.

5. Restart all the SanFrancisco processes to accept the modified settings.

Current limitations in SanFrancisco (SF130) limits the container caches to a
range of 100 to 1000,000. These limitations may go away in a later release,
allowing for reduction in container cache sizes.

Note

For larger memory systems, the SFDefaultContainer cache size should be set
higher using a 2MB per 1000 increment as rule of thumb.

Note
LSFN Configuration 109

7.2.2 JVM Settings
The JVM heap size settings that can be made are discussed in this section.

Before priming
If you have not primed your system as yet, it is possible to set the initial JVM heap
size (-ms) settings. To do this, modify com\ibm\sf\etc\Global.name , modify the
Processes settings. For larger memory systems, the SFBOProcess1 initial JVM
heap size should be set higher.

[PROCESSES]
_SFGSMProcess=6000,,30000,off,off,off,off,off,default
_SFBOProcess1=12000,,30000,off,off,off,off,off,default
_SFBOProcess2=4000,,30000,off,off,off,off,off,default
_SFBOProcess3=4000,,30000,off,off,off,off,off,default
_SFBOProcess4=4000,,30000,off,off,off,off,off,default

After priming
If you prime your system, changes to the JVM heap size settings must be made
either through the Server Management Configuration Tool under the Base Utilities
menu or through invoking the DOS batch file com\ibm\sf\bin\SMConsole.bat

To make changes with the Server Management Configuration tool, complete
these steps:

1. Start up the Server Management Configuration tool.

2. Click on the + sign for each system that is defined.

3. For each of the following processes, modify the Initial Heap Size (in Kilobytes)
to the specified amount:

SMSFProcess: 6000
SFGSMProcess: 6000
SFBOProcess1: 12000

SFBOProcess2: 4000
SFBOProcess3: 4000
SFBOProcess4: 4000

4. Restart all the SanFrancisco processes to accept the modified settings.

7.3 Exploring Topologies

This section explores various topologies for setting up an LSFN and trade-offs
while making a choice for a particular configuration.

By topologies, we mean the physical layout of the Logical SanFrancisco Network
in your organization. Before you start exploring the alternatives, you need to first
understand the requirements of your application:

For large memory systems, the SFBOProcess1 initial JVM heap size should
be set larger.

Note
110 IBM SanFrancisco Performance Tips and Techniques

 • What is the size of the application?
 • What geographical boundaries does it span?
 • What are the resources (hardware, system software, communication links) at

your disposal?
 • What are the restrictions on the availability and location of data?

To rephrase these with an LSFN perspective, consider the following points for a
configuration of the LSFN:

 • How are objects distributed in the system? That is, how many containers do
you have and where are they located?

 • What are the issues in communication? This would involve communication
between objects and also communication for naming lookup and security
information, and so on.

 • Are you dealing with a single machine or with multiple machines? If you are
dealing with multiple machines, then are these machines close together in a
LAN, or are they geographically distant, connected by WAN links?

Before you proceed, a general overview of a typical LSFN will prove useful.
Figure 47 on page 112 shows such a typical layout. Each of the three big blocks
represent three separate nodes (machines) of the LSFN. There is one Global
Server Manager (GSM), which has the global naming service. The other two
nodes each have a Local Server Manager (LSM), which is for auto starting (and
stopping) the processes on the respective nodes. Each of the nodes has been
configured to run one or more server processes (BOProcess). Each node has
containers, and the containers are assigned to their respective processes. Each
server process maintains the following caches:

 • Naming Cache—Stores the container/process mapping information of entities
it has accessed recently

 • Container Cache—Caches the entities it has retrieved from its containers

With this picture in mind, we will now try to explore the answers to some of the
question we posed earlier in this section.
LSFN Configuration 111

Figure 47. Distribution of Containers and Processes in an LSFN

7.3.1 Data Placement
Data placement refers to the distribution of containers and the issues concerning
partitioning of data. There are a number of factors that need to be considered
while deciding which data goes where. Some of these include the communication
between server processes, the communication between objects, the scope of a
given object, and communication with the name server. Accordingly, the
containers have to be assigned to the server processes.

A point to keep in mind is that we cannot assume a given object as a black box
and just work with its interface. The object may internally be requiring some other
objects for a certain operation, and these objects may be located somewhere
else. In the worst case, if these objects are called in a loop, then the performance
of that operation is reduced drastically, and it may be very difficult to detect the
source of the problem.

The partitioning of data can be done based on an acceptable algorithm for
categorizing it. Which algorithm is acceptable largely depends on the application
with which you are working. Presented below are some categorization
techniques.
112 IBM SanFrancisco Performance Tips and Techniques

For information on partitioning of collection of entities, refer to 5.3.4, “Partitioning
Controlled Entities” on page 73.

This shows the typical layout of an LSFN that encompasses multiple machines. In
the TCP/IP sense, each of the three big blocks can be considered as three nodes.
Each node has an LSM.

7.3.1.1 Categorization Based on Latency and Transfer Rate
This is mainly categorization based on the communication aspects. While
distributing objects, we need to ensure that objects that work together are closely
located. Communication between the objects could be considered at various
levels of granularity:

 • Communication between objects used by same server process and held in the
same container, depending on the amount of caching, this can be of the order
of a few micro-seconds.

 • Communication between server processes that are on same machine -
effectively, between objects used by different processes, given that the
processes are in the same machine. This could be of the order of milliseconds.

 • Communication between server processes on different machines - depending
on how far the machines are located and the nature of the communication link,
this could well be of the order of a few hundred milliseconds or even seconds.

To examine this in greater detail, we have to determine what operation we are
going to perform and which objects are involved in a given process and to what
extent they are involved. The question of the extent to which an object is involved
is a good indication of its availability requirement and is determined by the role of
the object. The roles of an object for an operation can be broadly designated as:

 • Working —The object is of prime importance and needs to be in memory at all
times. The operation is being performed on this object.

 • Active —The object is involved in the operation but not at all times. It needs to
be available only for a certain intermediate period, and then it can be
released.

 • Reference —The object is of relatively less importance and is seldom used. It
would be required only in abnormal conditions if the normal course of
execution changes.

 • Archival —The object is of only historical importance and, for most of the time,
not used at all.

The role that a particular object assumes depends totally on the operation we are
performing. An object that is of referral nature for a particular operation may be
the working object for another operation. Thus, the distribution of these objects
would largely be determined by what operations we plan to carry out in a place
and what the roles of the objects are in each of those operations.

To illustrate this, consider an example of a company with a number of warehouses
with a master controlling warehouse. Each warehouse has a certain number of
products, which may be present in more than one warehouse. Now let us
consider the operation of replenishment of products in the warehouse.
Replenishment process involves determining whether a product in a warehouse is
below a certain pre-determined level (called the Re-Order Point), and if so, place
an order for a certain quantity of that product (called the Economic Order
Quantity) with the product supplier, which may be another warehouse or an
LSFN Configuration 113

external supplier. Let us say the replenishment operation is carried out at a
particular warehouse. The role of various objects involved here are as follows:

 • Working —The product that is currently being examined for replenishment, the
warehouse information, and the replenishment calculation policy

 • Active —The other products that need to replenished in this warehouse and
the replenishment source selection policy. The source selection policy
determines which supplier to place the order with.

 • Reference —The action to be taken if a product needs to be replenished but
no supplier source for the product exists

 • Archival —The past records of product delivery by the supplier of product.

Figure 48 illustrates this scenario.

Figure 48. Distribution of Products and Policy Information among Warehouses

From this classification, the placement options become easier to determine. The
working and active data should be close together; it needs to be in a single
system and should be held in main memory most of the time. The reference
information may be on a different system. For example, the policy that determines
what needs to be done if no supplier exists for a product that has to be
replenished will be common for the entire organization and, hence, can be
maintained by the master warehouse. It can be requested by the local warehouse
if the need arises. The archival information can also be maintained in the master
or relevant warehouses and can be obtained by other warehouses if ever the
need arises.
114 IBM SanFrancisco Performance Tips and Techniques

7.3.1.2 Categorization Based on Temporal Properties
Some data is inherently dynamic and some other, static. For example, consider a
case where we have a central bank server that holds customer details, and a user
needs to access this information. Now, if the user just accesses information, such
as the name and address of the customers, then this kind of data would not be
expected to change for a reasonable period of time. The user would not have to
worry about synchronizing this information with the central server data, nor have
to worry about getting the latest copy. But, on the other hand, suppose it is the
customer’s current account balance that is needed, and the user needs to debit a
certain amount from the account. Suppose also that another user may enter
some transaction that updates the customers balance between the first user
getting a copy of it and using it. This case is clearly different. The difference is
due to the different nature of data. In the first case, the data was static (historical,
unchangeable), and in the second case, it was dynamic (continuously changing)
and hence, it was vital that every user gets the latest copy of the object when
making changes. There are different kinds of data and we can categorize them as
follows:

 • Static —This data is normally read-only. This kind of data can be located and
duplicated at any number of places. There is no problem of concurrency or
integrity of data here. Duplication of such data at places where it is required
will also reduce the communication overhead that would have occurred if it
were to be kept in a single place. Examples of such data include drawings of
finished products, records of sale deeds for the past five years, and so on.

 • Pseudo-Static —This is an intermediate between the static and dynamic but
tending more to the static type. This type of data will remain mostly static, but
provision has to be made for its alterations in case the need arises. This kind
of data also does not face any concurrency problems.

 • Dynamic —This is the interactive, shared, and changing data. This needs to
be carefully handled by selecting the right kind of access mode that specifies
the access location as to whether its going to be accessed LOCAL or HOME
and what type of lock it is obtained with, and so on.

Let us examine more scenarios with regard to the placement of the dynamic kind
of data. Let us suppose a manufacturer has five warehouses and has a server at
each of them. Further, let us suppose that any user can issue stock from any
warehouse as long as the user can "see" that stock. Also, suppose the
manufacturer does not want to maintain a central server that provides stock
details to all user of all warehouses. Finally, suppose that a user at one
warehouse cannot access another warehouse’s system. This kind of scenario can
be implemented as follows:

 • Each warehouse has a stock items database that contains all the items across
all warehouses.

 • The available stock is stored as elements of an array of five values (since we
have five warehouses). Each element in the array is the available stock for that
item from one warehouse.

 • On a regular basis, a batch run is made in each warehouse. The batch run
determines the amount of stock of an item in that warehouse and how much of
this item should be "seen" by other warehouses. This information is then
transmitted to the other warehouses, and their stock item databases are
updated.
LSFN Configuration 115

The drawback of this approach is that occasionally a user may tell a customer
that a particular item is not available when in fact it may be supplied. The benefit
is that the company will be able avoid a lot of communication overhead and also
effectively partition the data. This is, of course, based on the intelligence of the
algorithm in dividing up the data.

It is also very clear that such an approach may not be workable in some different
situations. For example, suppose a bank branch were to tell you that you can
draw only $20 from your account although you have $1000, because of the way
they have designed their IT structure. The bank may soon not have the need for
an IT structure at all!

7.3.1.3 Other Categorizations
The manner of categorization discussed above was slightly tricky, in that they did
not have an inherent solution to them. The other, easier manners of
categorization are mentioned below. Many a times, these may be the most
preferred ways of partitioning data.

Categorization Based on Organizational Domains and Security
This type of categorization is based on the functional domains that an
organization is made up of. These include the finance, the human resources, the
marketing, the production, and so on. All data relevant to a department is
categorized together. The other manner of categorization would be based on
security, where you group data and define access rights for different categories of
users.

Categorization Based on Location of Use
This type of categorization determines where the data is finally going to be put to
work and places all such data at that location.

Categorization Based on Logical Domains
Data can also be very broadly classified as being local and global. But the
classification is logical in the sense that neither the physical location nor the data
are determining factors. For example, the information about family members may
be considered as local to a family, but the members of the family may themselves
be at different physical locations.

7.3.2 Communication Issues
Communication issues are very closely related to issues in data placement,
which we explored in the previous section. In fact, the first option for
categorization of data based on transfer rates and latency was a classification
based on communication issues. Issues in communication are closely tied to the
way the objects are distributed in the LSFN. However, there are some generic
issues on network traffic generated within LSFN that should be kept in mind. This
section discusses remote calls that are executed for reasons other than
inter-object communication. The rule of the thumb is to have as few remote calls
as possible.

7.3.2.1 Communication with GlobalNameService(GNS)
The flow chart in Figure 49 on page 117 shows the procedure that a server
process follows when it needs to lookup an entity in response to a getEntity()
call.
116 IBM SanFrancisco Performance Tips and Techniques

Each server process has a naming cache that holds information on containers it
has accessed in the recent past (refer to Figure 47 on page 112) and the server
processes they are configured to. When a server process needs to lookup an
entity, it uses the entity handle (which is passed as a parameter in the getEntity()
call) to check if its naming cache has information about this container. If it does
not find the information, it contacts the Global Name Service and requests for this
information. The GNS stores the container—BOProcess maps for each container.
The requesting server process caches the newly found container—process map
information in its local naming cache. It then determines if the server process of
the container is itself or a remote one. If it is a remote process, then the call is
forwarded to that process; otherwise, the entity is retrieved from the local
container cache.

Figure 49. Entity Lookup by a Server Process - Initiated by a getEntity() Call

From this, we can infer that if the objects being accessed are from the same
container or from a small set of containers. The GNS lookup is minimized since
the container information is available in the naming cache of the server process.
Therefore, the distribution of your objects has an impact on the number of the
remote calls made for naming lookup.

Also avoiding the use of user aliases for specific object instances could reduce
traffic for resolution of user aliases, which requires a contact with the GNS.

7.3.2.2 Communication for DPC, Transactions and Security
The discussion in this section applies to cases where the GSM and the server
processes are on different machines. The Distributed Process Context, which
was described briefly in the section on DPC initialization, requires a number of
remote calls to be made between the server processes and GSM. This is
LSFN Configuration 117

especially true in case a "write" operation needs to be done on the DPC, as
opposed to a "read" operation that can be avoided by maintaining a local cache.
Though operations with the DPC cannot be avoided, they should be kept at a
minimum level.

Some operations that involve transaction management also require contacting
the GSM. This is normally true in case the GSM was accessed to create or delete
a user alias for an entity. If such cases, the transaction operations, such as
commit(), rollback(), and so on would involve remote calls to the GSM. Once
again, it is the use of user aliases and distribution of the objects that determines
the number of remote calls that need to be made, even from the transactions
perspective.

One of the first tasks the system administrator performs while configuring LSFN
is to define the security policy. Among other things, this also requires them to
make a decision regarding the use of digital signatures for the objects. Digital
signing will be used to protect and verify all security objects that are passed
through the network. Specifying that all security objects be digitally signed adds
communication overhead to all client connections to servers. However, it protects
against someone from building and executing a rogue client application that can
fool a SanFrancisco client into thinking it is a legitimate one.

Therefore, the following rules should be observed as closely as possible:

 • Minimize the number of remote calls.

 • Keep the remote calls as closely packed together as possible. If a remote
operation does not require to be performed immediately, it can be saved to a
later time when all the remote operations can be performed together in a
batch.

 • Use local copies and caching wherever possible.

7.3.3 Some Commonly Used Topologies
In this section, we shall try to look at some often used topologies. For the sake of
discussion, we shall consider our LSFN to be made up of nodes, where each
node is a single machine in the TCP/IP sense. The issues we consider are the
ones for a single node system, and then the issues when we have multiple nodes.
Some of the issues for the single node system will also hold true in multi-node
systems.

The following questions guide us to the answer:

 • How many nodes does the system have, and what is the hardware/software
configuration of each of these nodes?

 • How are these nodes distributed?

 • How many containers do you have; where do they reside, and how are the
containers assigned to the server processes?

 • Which server processes need to be setup and at which node?

 • Which nodes are the LSMs, and where is the GSM located?

 • What is the amount/kind of communication between the nodes, or effectively,
the communication between the server processes?

These questions are answered for each of the above topologies.
118 IBM SanFrancisco Performance Tips and Techniques

7.3.3.1 Single Machine
This is a single node system. The server process that is mandatory is the GSM
that has the naming service and the security. There will be at least one server
process (let us call it SFBOProcess1) that provides the factory and transaction
services. Optionally, you could have the conflict service and problem logging
service too. There will be at least two containers. One container for use by the
GNS, typically a POSIX container. The GNS has been found to perform best with
a POSIX type. The other container will be the one containing your business
objects. The container is configured with the SFBOProcess1. This container can
be either POSIX or a relational database, for example DB2.

A part of this discussion related to configuration values for heaps and processes
was dealt with in 7.2, “Configuring LSFN for Small Systems” on page 108.

Before we proceed further, we shall recap some facts, which you may already be
well familiar with:

 • The mapping between server processes to containers is one to many. Many
containers can be associated with a server process; a container can be
associated with a single server process.

 • Though the mapping between containers to legacy database is many to one,
this is not at all recommended from a performance point of view. The reason is
that when your legacy databases are shared, you have to turn the caching off
and access all objects with a pessimistic lock only. This can be a major
performance hazard. As a rule of thumb, assign one container to one
database.

 • Each server process runs in its own JVM, which means it has its own heap
and garbage collector.

Server Processes
The question is whether you would want multiple server processes. This may be
true but only if you have multiple containers. You may want to assign one server
process to one container. The table of memory requirements for a single system
was given in Table 2 on page 92. Each additional process requires approximately
40MB more for an NT machine. If your server set is constrained by memory, then
you can have a single process and assign all containers to it. If your server setup
is not constrained by memory, you would be better off having multiple processes,
as shown in Figure 50 on page 120.

The advantage of having multiple processes is that memory can be managed
more efficiently. If a single process is assigned all the memory, it will work fine for
quite a while until the garbage collector is invoked, but when the garbage
collector starts, it blocks all operations, and since there will be a large amount of
garbage to be collected, the blocking time could be unacceptable. With multiple
server processes, the total heap is divided up among the server processes. Each

The discussion below assumes that your system is running only SF
applications. If you are running any other large applications, please use your
judgement before applying the hints given below.

Note
LSFN Configuration 119

one invokes the garbage collector more often, and the garbage collector does not
block for so long since the amount of garbage is less.

Figure 50. Assigning Server Processes to Containers

A minor disadvantage of working with multiple processes is that communication
between objects in different processes will involve remote calls. The
communication between objects in the same container, and also between objects
in multiple containers that are assigned to the same server process, is faster than
that between objects that are used in different server processes.

Containers
You will have multiple containers if you are going to partition your data. It is a
good idea to partition your data, and this has been discussed in 7.3.1, “Data
Placement” on page 112. On a single system, the partitioning may be for reasons
of security, for the logical divisions in your business, and so on. The partitioning
could also be done for reasons of efficient memory management by assigning a
server process for each container, as discussed above.

The questions that arise here are the number of objects each container has and
the cache size of each. It is a good idea to place frequently accessed objects in
one container and to put the less frequently accessed ones in another. The ones
with more frequently accessed elements would have to be allotted a larger cache
as compared to the one with less frequently accessed objects. Also, the size of
the containers will be decided by the average size of each entity in your system
and the number of such entities in the container.

While assigning cache amounts to the containers, be careful not to cause too
much paging in your system since that would reduce performance drastically. It is
wise to assign cache only in the main memory and not to rely on virtual memory,
as use of virtual memory results in more paging and hence, more I/O and
consequently less performance.
120 IBM SanFrancisco Performance Tips and Techniques

7.3.3.2 Multiple Machines
In multiple machines, the issues are basically the same, except that we now have
to consider communication delays too. There is a "master" system, which has the
GSM and possibly one or more server processes. The other nodes may not have
any server processes at all, they are pure clients, or may have one or more server
processes (in which case they run a Local Server Machine or LSM for auto start,
and so on). The client could be any of the nodes in the system.

Node distribution
The machines could be located close together in a LAN, or they may be in distant
geographical locations. For machines close together, the issues are the same as
that for a single machine with multiple processes. For machines distant from each
other, the following pointers may be helpful:

 • Place the GSM on the central and larger system.

 • Place the objects (containers) near the place of use. It is a good idea to place
them in the client location since that would reduce the network traffic for
accessing objects.

 • If the distant machine is a client, keep in mind that there will be a lot of
communication for retrieving objects and for performing any operations on
them. On a pure client (that is, with no server process), only the application
code exists. Everything else runs on machines with server processes.

 • Even if the client side has the containers, there will be some communication
for GNS lookup, for DPC access, and for security information. Refer to 7.3.2,
“Communication Issues” on page 116 for more details.

The issue of determining the optimal configuration for a given topology is very
specific to an application and is largely experimental. It is recommended that
you set up a test environment that models your real life application or try
different configurations in your existing application within the permissible limits.
The empirical data thus collected, and its correct interpretation, combined with
the advise given in this chapter, will help determine the optimal configuration
settings for your application. The following references can provide some
guidance in this direction:

 • Chapter 3, “How to Find a Performance Problem” on page 23.
 • Chapter 4, “Tools for Performance Analysis” on page 31.

Note
LSFN Configuration 121

122 IBM SanFrancisco Performance Tips and Techniques

Chapter 8. Object Persistence, Databases, and Schema Mapping

This chapter consists of two major parts. The first part, in a very generic way,
describes the problem domain of how to map objects to relational databases.
Every developer knows that object database mapping is a very important issue,
and here we point out why it is so important. The importance of this is
emphasized in the fact that object oriented systems have to solve a number of
problems and issues that did not occur in the procedural or data driven approach
to systems development. The approach taken here is to describe different
scenarios. The most important issues discussed here are implemented in
SanFrancisco. Some are not since they do not fit in a generic framework. Some
functionality can be achieved in other parts of the framework, and some can be
implemented by combining parts in the framework.

The second part describes the SanFrancisco way of solving some of these
issues. It describes, very shortly, the default Posix store in IBM SanFrancisco and
the RDB store in IBM SanFrancisco, including the DSM (default schema mapper)
and the ESM (extended schema mapper).

The second part also describes database configuration for DB/2 on Microsoft
Windows NT, DB2/400 on IBM AS/400 system, and Oracle on Microsoft Windows
NT. Query Pushdown and EntityOwningExtent, which is a prerequisite for Query
Pushdown to occur, are mentioned.

The purpose of this chapter is to advise the application engineer when to use
which of them and why, and of course, which one that is preferred depending on
the purpose of the kind of project the person is working with.

It will not deal with fine tuning the actual databases since this is an issue for the
DBA (data base administrator) at specific customer installations and should also
be abstracted away from the developer. It could also come into direct conflict with
the legacy system in those cases where the SanFrancisco development works
against legacy data.

8.1 Schema Mapping in General

This section describes the schema mapping issue in a very general way. Since
schema mapping has to be done when object state should be persisted, special
attention must be made to the different aspects on how to do it in Object Oriented
Development Environments.

This is a compressed version of the article Architecting Object Applications for
High Performance with Relational Databases, by Shailesh Agarwal, Ph.D. and
Arthur M. Keller, Ph. D., Persistence Software Inc. found at Web site:
www.persistence.com/products/wp_architect.html

8.1.1 Abstract
This section presents an approach for architecting object oriented applications for
high performance with relational databases. This approach enables organizations
to derive the benefits of object oriented technology while leveraging their
investments in relational technology.

The key ideas of this approach are:
© Copyright IBM Corp. 1999 123

 • Optimize business object mapping. Tune the mapping between business
objects and relational tables to leverage relational technology.

 • Perform object cache management. Use an application server object manager
to share “high activity” objects among many clients, thereby minimizing
database traffic.

8.1.2 Introduction
Object-oriented software development is rapidly becoming the leading approach
for building flexible, scalable software systems in client/server environments.
Additionally, over the past decade, relational technology has matured and has
been widely adopted for managing corporate data. Relational databases have
now become the standard data stores for online transaction processing (OLTP)
applications. These two trends are motivating the need for building
object-oriented applications that access relational databases. Developers
building such object-relational applications face such difficult problems as:

 • Mapping the objects from the application model to the relational schema in the
database

 • Managing objects in an application server to optimize performance
 • Managing the locking and transactions to ensure data integrity
 • Optimizing with consideration of the performance characteristics of relational

databases

Each of these problems present several interesting issues worthy of discussion.
However, this chapter focuses primarily on the performance issues for such
object-relational applications and presents our experiences with architecting high
performance object-relational applications.

8.1.3 Object-Relational Mediators
An object-relational application provides an object-oriented interface to relational
data. In such applications, the application object model is mapped to a relational
schema in the underlying database. Typically, such applications build or use a
mediator for transforming object operations to relational database calls and
vice-versa.
124 IBM SanFrancisco Performance Tips and Techniques

Figure 51. Object/Relational Mediator

As shown in Figure 51, the mediator maps business objects to relational tuples
and also manages business objects in a shared cache on behalf of several
applications.

The object management provided by the mediator can enhance performance
through a technique we call “live object caching.” The mediator can also ensure
data integrity with appropriate locking and transaction management. Tuples in a
relational database are presented as instances of a class, and any updates on
those instances are translated into updates of the corresponding tuples in the
database. Additionally, the mediator could also provide a client-side object cache
for enhancing performance. In a sense, such object-relational mediators enable
an OODBMS (object oriented data base management system) interface to a
legacy RDBMS (relational data base management system).

Based on over five years helping companies build large scale object-relational
systems, Agarwal and Keller have found that there are a number of “ground
rules” for achieving high performance. Developers who do not follow these rules
risk building systems that do not scale well in operation.

In one memorable example, a team ported an application from an object
database to a relational database. The port was completed without changing the
object model at all. The resulting application ran properly, but where inheritance
had assisted clustering in the object database, it imposed a high performance
penalty in the relational database. Through Agarwal and Keller’s experiences
with companies implementing large scale object systems, they have developed
an approach to architecting object applications for high performance.
Object Persistence, Databases, and Schema Mapping 125

8.1.4 Achieving Performance
Agarwal and Keller’s experiences has shown that object-relational mapping and
high performance can go together, provided proper consideration is given to
object mapping and object management issues. Developers can optimize the
mapping between a set of interrelated business objects and a relational schema
to leverage relational technology. Further developers can use a client-side object
cache to enhance application performance. The basic approaches for optimizing
object access to relational data are similar to the objectives for tuning the
relational database itself. The two approaches are:

 • Optimize object-relational mapping —Applications should be written to
ensure an efficient mapping between application business objects and
relational tables.

 • Optimize object-relational caching —Applications should be written to take
full advantage of object caching and navigation within an application server.

Architecting applications with these two approaches will enable them to achieve
high performance. The following sections discuss these approaches in greater
detail.

8.1.5 Optimize Object-Relational Mapping
The key objective of this approach is to pose only those queries and updates that
can be processed efficiently by the server. There are potentially three ways to
achieve this objective:

 • Choose the appropriate object to relational mappings.
 • Use query capabilities of relational databases.
 • Take advantage of special performance features of relational databases.

Mapping efficiency between object classes and relational tables is the most
critical factor for achieving high performance. “Pure” object models sometimes
map poorly to relational structures, for example by requiring many joins to
construct simple objects. Such a mapping can significantly deteriorate application
performance. Hence, starting with an object model and attempting to map to a
relational schema can sometimes lead to poor performance.

On the other hand, Entity-Relational (E-R) models have less semantic content
than object models but can be converted naturally to object models, mapping
entities to objects, and relationships to associations. E-R models can then be
optimized through selective denormalization based on expected usage. The
advantage of this approach is that such denormalization is well understood, while
optimizing object models is not.

The best way to achieve this efficiency is to use a normalized relational schema
(E-R model) as the basis for the corresponding object model. Developers will find
that the simplest mapping between objects and normalized tables typically
provides the best performance. Object-relational mapping requires the mapping
of the following three major modeling concepts:

 • Simple or aggregate classes or aggregation to relational rows
 • Relationships to foreign keys
 • Inheritance to relational rows or joins
126 IBM SanFrancisco Performance Tips and Techniques

8.1.6 Mapping Simple and Aggregate Classes
The most efficient mapping is most often the direct mapping of a class or
aggregation of classes to a relational table. A more complex mapping can lead to
performance penalties. Classes that represent a join between several tables can
be expensive to construct and potentially impossible to update.

A simple class contains only simple attributes, such as integer and character,
while an aggregate class can contain attributes that are themselves classes. The
following figure shows mapping an aggregation of three classes to a single table.

Figure 52. Aggregate Class Mapping

Two exceptions to this rule include creating projection objects to minimize
network traffic and view objects for decision support.

 • Projection objects —For tables with many columns, it may be efficient to map
a projection of the table to a “projection class” and retrieve a full row only
when it is needed. For example, a customer row may contain 50 columns, but
only the name and phone number are needed most of the time. By creating a
class that maps to just the needed columns, the developer can avoid having to
pass unnecessary information across the network. Such a class must contain
the primary key columns at a minimum.

 • View objects —For decision support applications, it is often useful to create a
view table that represents a database join and then map this view to an object
class. This allows developers to take full advantage of relational algebra to
hide the physical data model from the object application.
Object Persistence, Databases, and Schema Mapping 127

8.1.7 Mapping Relationships
Relationships between objects map to foreign keys between rows. How each
mapping is implemented, however, has a significant impact on the performance
and flexibility of the resulting application. Developers have several choices for
mapping object relationships to relational tables.

 • Embedded foreign key —This is the most common approach for one-one and
one-many relationships. In this case, for a given class, the primary key of a
related class is embedded in the class itself. This results in a performance
characteristic better than the “distinct table”.

Figure 53. Relationship Mapping

 • Distinct table —In this approach, the relationship is represented as a distinct
table in the database. This approach provides the most modeling flexibility
since it makes adding and removing relationships transparent to other tables.
However, this approach can be expensive if the relationship is frequently
traversed. In general, the embedded key approach is most efficient for
one-to-one relationships and one-to-many relationships, while the distinct
table approach is required for many-to-many relationships.

8.1.8 Mapping Inheritance
As with relationships, how object inheritance is mapped to the database can have
a profound impact on performance. Here, particular attention to expected query
paths plays an important role on the mapping choice. Each parent or child class
can be either abstract or concrete. An abstract class is one that will never be
instantiated on its own, and consequently, does not have any physical data
associated with it (for example, no corresponding table). A concrete class is one
that can exist on its own and typically will have its own associated table.
128 IBM SanFrancisco Performance Tips and Techniques

Developers have several choices about how to map inheritance into relational
tables.

 • Horizontal Partitioning —In this case, only leaf classes are mapped to tables
and includes all of their inherited attributes. This approach may give improved
performance since only one table needs to be accessed for instances of a
given leaf class.

Figure 54. Inheritance Mapping

 • Typed Partitioning —Another way to handle inheritance is to map all classes
in an inheritance tree to a single table using a type column to distinguish
between subclasses. This enables the retrieval of objects from multiple
classes in a single query but violates normalization.

 • Vertical Partitioning —In this type of mapping parent, classes in the object
model class maps to a corresponding table. The classic object-relational
mapping “mistake” is to create deep inheritance hierarchies that require
multi-way joins to retrieve basic object information.

Queries made at the parent class level are implemented very differently
depending on the inheritance mapping. If the parent class is concrete, a parent
class query can be efficiently handled by querying the table corresponding to the
parent class. If the parent class is abstract, the query must be run against each
child table, a potentially time consuming operation. On the other hand, retrieving
a single instance of a child class is much faster if all the parent classes are
abstract, as all necessary columns are located in the child table. Child classes
with concrete parent classes must perform expensive joins to retrieve instances.
Object Persistence, Databases, and Schema Mapping 129

8.1.9 Multi-Class Join Queries
Developers can gain significant performance benefits by using the sophisticated
querying capabilities available with relational databases for ad-hoc access of
objects. For the initial select of a set of objects, ad-hoc access through the
relational join query mechanism using indexes is significantly faster than
navigational access.

Figure 55. Join Queries

Once the data has been retrieved from the database, then in-memory
navigational queries allow efficient use of the cached object information. One
very important benefit of the object-relational mapping is that it allows developers
to create hierarchies of related objects from “flat” tables, providing an elegant
solution to the classic bill of materials problem for relational databases.

Object cache can solve “bill of materials” problems for hierarchical data.
130 IBM SanFrancisco Performance Tips and Techniques

Figure 56. Object Knitting

To take advantage of this query support, appropriate indexes should be built on
columns that are to be used for class and relationship queries. In general,
indexes to be built include all primary and foreign keys in the database schema.

8.1.10 Live Object Cache
The basic model for object management is to cache data instances read from the
database, register their primary key values, and respond to queries based on this
cached data. As tuples are retrieved from the database, they are converted to
objects and “knit” together according to the object model mapping to form a
network of in-memory objects. High activity objects include reference data as well
as core business data which is likely to be shared across transactions. High
activity objects might include data such as network elements, flights, or portfolios
that are being shared by many clients. In a live object cache, high volume
transaction data, such as accounts, tickets or trades are kept in the database and
only loaded into the cache on an as-needed basis.
Object Persistence, Databases, and Schema Mapping 131

Figure 57. Live Object Cache

Cached objects can be shared between many users without paying the repeated
overhead of querying the database. Further, navigating relationships between
cached objects are orders of magnitude faster than querying the database.
Cached objects may also be changed repeatedly without accessing the database,
holding the database update until the transaction is committed. This prevents
sending multiple updates for the same object to the database. In the case that the
transaction is aborted, no changes need to be sent to the database at all. Object
caching is also critical for ensuring object data integrity.

8.1.11 Optimizing Object Navigation
Using such an in-memory network, queries that follow foreign key pointers
(navigation queries) can be performed fully in the shared cache once the basic
object model information has been retrieved.
132 IBM SanFrancisco Performance Tips and Techniques

Figure 58. Transactional Object Cache

8.1.12 Transaction Isolation
Efficient management of a shared object cache can speed transaction throughput
greatly. In a shared object cache, however, it is critical that uncommitted object
changes from each client are isolated from other clients. Figure 59 on page 134
shows one way to achieve object isolation.
Object Persistence, Databases, and Schema Mapping 133

Figure 59. Transaction Isolation

To speed concurrence, an optimistic locking technique can be used. In an
optimistic transaction model, no database locks are placed for cached data.
Before sending the cache updates to the database, a check is performed to
ensure that the data update is valid.

8.1.13 Conclusion
Developers can achieve high performance building object systems linked to
relational databases, provided they follow a sound approach to object-relational
mapping and object caching.

Here are some design guidelines for achieving high performance in object
applications linked to relational data:

 • Classes —Keep it simple. Map simple or aggregation classes to tables where
possible.

 • Inheritance —Balance retrieval speed against query efficiency. In general,
horizontal inheritance is the best choice, as it speeds retrieval for child
classes.

 • Object caching —Optimize performance with a shared transactional cache.
Caching “high activity” objects can speed access by three orders of
magnitude.
134 IBM SanFrancisco Performance Tips and Techniques

 • Object navigation —Knit retrieved objects into an in-memory object cache.
Navigate objects within the shared cache to avoid less efficient database
joins.

By following these guidelines and using the appropriate tools, developers can
achieve the performance required for deploying large scale object systems.

8.2 The SanFrancisco Entity Cache

Each container in SanFrancisco maintains a memory cache where it keeps
recently accessed persistent objects so that, when needed, SF can retrieve them
directly from memory rather then reading them from disk. The more objects the
container can keep in its cache, the more likely that the particular object your
application needs will be in the cache, which can result in dramatic improvement
of the application performance. To measure the need of size of the cache, it is
advisible to run the Container Cache Statistics Tool described in 4.7, “The
Container Cache Statistics Tool” on page 57. If it is possible, try to reach a hit rate
of approximately 90%, so that there is always space left to use.

The maximum number of objects the container will keep in its cache is a
parameter you can control in the SanFrancisco Configuration Utility by
performing the following steps:

1. Start the SF Configuration Utility.

2. Go to the Configure pull down, pick Containers and choose Posix or Rdb,
depending on the type of container that you want to configure.

3. Double-click the name of the container for which you want to alter the
threshold. This brings up a window with a field for Max cache size.

4. Set Max cache size to the maximum number of persistent objects you want
the container to cache.

Keep in mind that the cache consumes virtual memory on your system, so the
performance gain can be a loss in other cases.

8.3 SanFrancisco Schema Mapping Cache

Each server process in SanFrancisco maintains a cache where it keeps SML
(schema mapping language) files information. The information is in memory until
the process terminates.

8.4 The Posix Store

The Posix store is the default way SanFrancisco stores state of Entities. The
Posix store is very easy to manage and does not require any DBA assistance. It
is very well suited for doing prototypical work since it does not require the
developer to pay any special attention to it.

A container in Posix on Windows NT is physically a catalog (directory), and every
Entity resides in a single file with a name that is a unique identifier that equals
SanFrancisco internal representation for the object.
Object Persistence, Databases, and Schema Mapping 135

It is not recommended to use Posix store in a production environment. For a
small number of objects, a Posix store can actually be faster than a relational
database, but since every object resides in its own file, the access to persisted
objects will be noticeably slower the more objects there are. This is also true for a
relational data base, but there you have the entire power of RDBMS system to
optimize the database activity for you.

8.5 The Rdb Store

The Rdb (Relational Database) store is used when you map the state of an Entity
to a RDBMS (Relational Database Management System). Currently supported
RDBMS are:

 • DB2/400 on AS/400 Systems
 • DB2 V5 (UDB) on Windows NT
 • Oracle 8 on Windows NT, AIX, Solaris, HP/UX, Reliant
 • DB2 on AIX

8.5.1 DSM (Default Schema Mapper)
The default schema mapper (DSM) provides automatic mapping from one class
to one table. The DSM also maps the classes’ attributes to default columns. A
general set of rules help define and create the table at run time. Java reflection
support obtains information about the Java class file at run time. An automatically
generated object identity column becomes the primary key column for the new
table. In addition, the DSM automatically generates a system defined partition
key column for the new table. Partition keys are used to partition a table into
multiple EntityOwningExtents (EOEs).

In simple cases when a class contains basic data types, the schema mapper
maps each attribute to a column in the database. For example, Strings defaults to
VARCHAR(128), and DDecimal to BINARY(a), and so on. Only certain dependant
classes are streamed, not all. If the DSM would create more than one
LONGVARBINARY column, it will instead stream the containing object. The DSM
will only create one LONGVARBINARY column per table. Dependent classes,
such as Address for example, that contain several attributes are just streamed
out to a single column in the database. This makes query pushdowns impossible.
Collections of Dependents are also streamed to a single column in the database
and are impossible to do Pushdown queries against.
136 IBM SanFrancisco Performance Tips and Techniques

Figure 60. Simple Class Customer Mapped by Default Schema Mapper

For simplicity of this chart, partition key is omitted. By default, the DSM creates
the tables with IBMSF as schema qualifier. The DBA (data base administrator)
must create a user ID or a group profile with this name (IBMSF) and then grant
the authorities to the users that should participate in database activity.
Object Persistence, Databases, and Schema Mapping 137

Figure 61. Class Customer with Dependent Class Address Mapped by DSM

For simplicity of this chart, the partition key is omitted.

8.5.2 The Extended Schema Mapper (ESM)
The extended schema mapper (ESM) enables you to map a class to either a new
table or an existing table. The ESM initial mapping is similar to the DSM. In
addition, you can change the attribute to use the column mapping to match a
particular legacy table as long as the data base supports data conversion on that
particular data type.

In simple cases when a class contains basic data types, the schema mapper
maps each attribute to a column in the database. For example, Strings defaults to
VARCHAR(128), and DDecimal to BINARY(a), and so on. Here a performance
boost will be achieved in creating the table with CHAR and the actual length of
the field(CHAR(35)). Fixed length data types generally take less overhead than
variable length variables. An even bigger performance boost can be achieved by
using UTF8 instead of the UNICODE default. It also saves space with US - Latin
data.

In Extended schema mapper, it is also possible to map the Dependent classes
that contain several attributes to columns in the database. This makes the
attributes of the Dependent eligible for Query Pushdown. Collections can send
handles map to other tables, which will help to get a more traditional database
design. The optimizing capabilities of the database are used to achieve high
performance.
138 IBM SanFrancisco Performance Tips and Techniques

The outcome from the schema mapper tool is a SML (Schema Mapping
Language) file that contains the mapping between the class and the table. The
SM (Schema Mapper) uses the SML file at run time to perform the mapping.

A class must be configured with a corresponding SML file in order for the ESM to
map correctly. When using a class in multiple containers, the class can have a
separate SML file for each container.

One restriction is that any classes or subclasses that are owned by an
EntityOwningExtent MUST map to the same SML file. This restriction is based on
the current implementation of EntityOwningExtent that requires that all elements
contained in an EntityOwningExtent belong to the same table.

Figure 62. Class Customer with Dependent Class Address Mapped by ESM

Note that even the database data type column has been changed from the
original defaults. For simplicity, partition key is omitted.

8.6 Legacy Data

As mentioned in the Extended Schema Map section, if you want to map Entities
to legacy tables, this has to be done with the extended schema mapper.
Object Persistence, Databases, and Schema Mapping 139

8.7 When to Use What

The Default Schema Mapper provides the simplest way to persist the data to
relational tables. However, it does not scale to perform advanced functions, such
as subclassing, joins or specific data type mapping. It is nearly as easy to use in
a prototypical stage as the Posix store.

Table 4. DSM and ESM Advantages and Disadvantages

Schema mapper Advantage Disadvantage

DSM Does not require a previous
knowledge of schema
mapping by the user.

Maps one class to one table.

The schema mapper handles
the mapping.

The schema mapper creates
the table automatically.

Applies to new tables only.

Maps one class to one table.
This means that it is not
possible to share a table
among classes. This results
in a higher degree of
normalization, which means
that more joins may be used

Individual object attributes
may not map to columns.
Instead, the entire object may
be streamed into one
column.

Mapping may not be optimal.

Query pushdowns are not
available in all situations.

ESM Supports legacy tables.

Allows mapping of the class
attributes to columns of the
existing table.

Allows you to change the
data type to match the Java
type.

Allows usage of more
functions like persistent
array, null attributes,
subclassing, joins, handles,
etc.

Performance benefits
achieved in the sense that
the administrator maps the
class attributes to a more
efficient data type and length.

Mapping all attributes to
columns allows query
pushdown to be enabled.

Table must exist before the
application runs.

Must use the schema
mapping tool to create the
mapping.

Must manage the Schema
mapping language files.

Requires more configuration.
140 IBM SanFrancisco Performance Tips and Techniques

8.8 Database Configuration

The following sections describe how to configure and set up different database
systems to work properly with SanFrancisco.

8.8.1 Microsoft Windows NT DB2 5 - UDB
IBM SanFrancisco officially supports only version 5 of DB/2 on Intel and AIX. So
far, we only have significant tuning experience with DB/2 on Intel/NT platforms.
There are over three dozen performance-related parameters that can be used to
configure DB/2. Of all these, the following are several that we have found that can
have significant effects on performance with IBM SanFrancisco applications.

8.8.1.1 Pre allocating the Catalog, User, and Temporary Tablespace
When you create a database to hold SF business objects, you can specify which
files will be used to hold the database tables and the size of those files.These
are, in DB/2, called containers, not to be confused with object oriented container
classes. Doing this creates the space for these ahead of time so that when SF
application starts filling the tables with data, the database never has to pause to
get file space or extend the current files. The following example shows an
example DB/2 create database command that pre-allocates the database catalog
at 20 MB in size (5000 x 4K pages), the user tables (containing the actual object
state) at 1GB in size (4 x 65535 x 4K pages), and the temporary table-space at
16MB in size (4000 x 4K pages):

create database sfdb2 on ’e:’
catalog tablespace managed by database using
(file ’e:\db2data\sfcat00’ 5000)
user tablespace managed by database using
(file ’g:\db2data1\sfusr00’ 65536,
file ’g:\db2data1\sfusr01’ 65536,
file ’g:\db2data1\sfusr02’ 65536,
file ’g:\db2data1\sfusr03’ 65536)
temporary tablespace managed by database using
(file e:\db2data1\sftmp0’ 4096)

Note that table-space actually allocates space over four separate files (sfusr00 -
sfusr03). This is to allow the database to use available empty space on one file
while another is being extended.

8.8.1.2 Explicitly Setting the Number of DB/2 Buffer Pages
The other significant parameter we have found is the buffpage parameter that
tells DB/2 how many 4K memory pages it should use for its data buffers. The key
is to make this value as large as you can without overcalling memory to the point
where you force the system to start trashing. The values we have found to work
the best with our test applications are between 2000 and 20000 pages (roughly
corresponding to a main memory size between 128MB and 1GB). This is for a
system that is basically running SF applications and nothing else. Other
applications that have memory requirements will effect this number. For example,
to give 20MB to DB/2 for its database buffers, you can use the following DB/2
command:

update db cfg for sfdb2 using buffpage 5000
Object Persistence, Databases, and Schema Mapping 141

Because of a quirk in DB/2, explicitly setting the buffpage parameter, as
previously suggested, only works if the database has been configured with the
following buffer pool parameter:

alter bufferpool ibmdefaultdb size -1

8.8.1.3 Multi-Client Applications in DB2/NT
For using UDB in a multi-client application, set the parameter:

db2set DB2_RR_TO_RS=YES

This should be used to decrease lock contention (increase performance) but is
only needed in a multi client environments. This is probably the normal setting for
an average application.

8.8.2 IBM AS/400 DB2/400
If you plan to use DB2 for AS/400 systems as your data store, make sure it meets
the requirements described in the following sections.

8.8.2.1 AS/400 Configuration Example
Create a SQL Collection on the AS/400 system. The SQL Collection is the
schema of the table on the Schema Mapping Tool. In the AS/400 system, a
Collection is a library where the database files reside. This can be done with the
AS/400 command CRTLIB (create library) or STRSQL (to create an sql
collection). Which one to use depends on if you are using the database natively
or through SQL if you are using the default schema mapper

For the Default Schema Mapper (DSM), the Schema Mapper sets the default
schema name to IBMSF. You can change the schema name by changing the
qualified table name while you are configuring the Class Token. The schema
name can be set at the container level.

You must have that Collection on the AS/400 system before running the
SanFrancisco applications if you are using the extended schema mapper.

For the Extended Schema Mapper (ESM), the default schema name is IBMSF.
The schema name can be set at the container level. You can change the schema
name by changing the qualified table name on the Schema Mapping Tool. You
must ensure that you create the Collection under the same schema name, for
example, the table name is ibmsf.mytable. You can change to the table name
mycoll.mytable.

Store the SML file on the AS/400 system (ESM only). Once you create the SML
file using the Schema Mapping Tool, you need to store this SML file on your
AS/400 system's IFS directory. In addition, you need to configure the SML root
directory for each container. For each class, you must specify the SML file name
from the root directory.

8.8.2.2 Restrictions on the Data Type to Use in the Tables
Currently, DB2 for AS/400 systems do not support the conversion from a CHAR
column to a numerical column. You will receive the run time DataStoreException
if you use this mapping.

DB2/400 does not support any column name that is one of the reserved words,
such as LONG, DECIMAL, or BINARY.
142 IBM SanFrancisco Performance Tips and Techniques

8.8.3 Oracle on Microsoft Windows NT
SanFrancisco store Entities to Oracle using operating system authenticated
connections to the Oracle database. This type of connection means that
SanFrancisco will not pass a user or password to Oracle when obtaining
connections. It is the system administrator's responsibility to start the
SanFrancisco servers while logged onto Windows NT, using an authenticated
Windows NT user and password. The existence of a operating authenticated
Oracle user allows this Windows NT authenticated user and password to obtain
connections to the Oracle database without supplying a user name or password.

The following text is a description of the SanFrancisco requirements for
configuring and administering Oracle.

Create a Windows NT system user profile under which the SanFrancisco factory
service process runs. You must sign onto Windows NT under this profile when
starting the SanFrancisco servers. We recommend that you name this user
IBMSF, but you may name it whatever you like. SanFrancisco persists Entities
into tables that are schema qualified. In Oracle, an Oracle user of the same name
owns every schema. Thus, for every schema that you use, you must create an
Oracle user of the same name. When configuring Entities for a container,
configuration can control the schema that you use. If using default or extended
schema mapping, the default schema uses ibmsf. You can change this value for
both default and extended schema mapped classes (see the documentation for
configuring classes to containers and the Schema Mapping Tool). The space for
the tables that SanFrancisco creates and uses is charged to this Oracle user.
Thus, the Oracle user must be given sufficient quota size for the USER_DATA
and TEMPORARY_DATA table spaces.

SanFrancisco depends on operating system authenticated users when
connecting to the Oracle database. Oracle defines an operating system
authenticated user by creating an Oracle user named <os_authent_pr><NT user>
and configuring the user as authentication external. You can define the
<os_authent_pr> value in the Oracle Instance Manager. By default, Oracle sets
this value to OPS$. We recommend that you set this value to a null string (" ").
For an NT user of IBMSF, and an os_authen_pr value of " ", an Oracle user
named IBMSF (configured as authenticated external) allows the NT user IBMSF
to connect to the Oracle database using operating system authenticated
connections. All authority checking performs against this operating system
authenticated Oracle user. Thus, this user needs privileges to any data that
SanFrancisco accesses. Give the client authenticated Oracle user (IBMSF)
appropriate privileges to access the database and perform operations on the
tables configured to persist Entities. The CREATE SESSION system privilege is
necessary to allow connections to the database. You must grant Insert, update,
and select authority to any tables that persist Entities. When accessing tables
that are in a schema different from the Oracle user making connections, you must
grant special privileges (to access these schemas). Special privileges include:
CREATE ANY TABLE, CREATE ANY INDEX, INSERT ANY TABLE, UPDATE
ANY TABLE, and SELECT ANY TABLE.

8.8.4 Query Pushdown
Query pushdown is the process of converting a query over a set of IBM
SanFrancisco Business Objects into a form that the underlying data store
processes efficiently. When querying objects that are stored in a relational
Object Persistence, Databases, and Schema Mapping 143

database, it converts the query to an SQL SELECT statement. By converting to a
query that the database understands, the restoring of every object in the table is
prevented, and any indexes existing over the table can be used to further
increase the performance of the query.

It is important to note that the distinction between object query and query
pushdowns is transparent to the developer. A IBM SanFrancisco query operates
on IBM SanFrancisco collections. There are no separate interfaces for performing
a query pushdown. The only difference between the two approaches is
performance. In most cases, query pushdown gives the same or better
performance than object query. As collections become larger, the benefits of
query pushdown increase dramatically. Therefore, it is to the developer’s
advantage that query pushdown be performed as often as possible.

8.8.4.1 Using Query Pushdown
An EntityOwningExtent is the only SanFrancisco collection that allows for query
pushdown. The EntityOwningExtent class provides the ability to perform efficient
queries against large-scale collections by tying the collection directly to the
underlying data store.

The OOSQL (Object Oriented Structured Query Language) select statement is
based upon methods that are invoked on objects. Since the database contains
columns with data and no methods, there are limitations upon the types of
methods you can use for the query. If these conditions are not met, a
SanFrancisco query results in a Partial Pushdown or an object query. The
following list shows the requirements on the query to be eligible for pushdown:

 • Methods must not contain parameters.
 • Methods must map directly to an attribute.
 • Methods must return a supported data type.
 • The attribute can not be streamed into a column with other attributes.

There are also requirements on the query statement itself, which include:

 • It must not contain select compare or sort compare objects.

 • It must not query over attributes that are stored in different tables. If Schema
Mapping an object to multiple tables, only attributes stored in the primary table
may be queried.

8.8.4.2 Method to Attribute Mapping
An object-oriented SQL query specifies methods on the objects being queried. To
schema map an object to the database, the Schema Mapping Tool must map
each attribute in the object to a column in the table. Since SanFrancisco query
relies on method names, Query Pushdown must rely on an additional mapping
from method name to attribute name. To do this, the Default Schema Mapper
relies on a naming convention for the method to attribute mapping.

The naming convention is quite simple. If there is a get method, say
getEmployee, then the DSM looks for an ivEmployee attribute. An iv replaces get.
If this condition is met, then the method is eligible for Query Pushdown.

It is also possible for a navigation chain to push down to the database. A
navigation chain is a list of methods that are performed to retrieve the desired
element. For example, x.getBestEmployee()..getManager()..getName() would
return the name of the manager of the best employee in the company. Each
144 IBM SanFrancisco Performance Tips and Techniques

method in the navigation chain must specify a method that maps to an attribute
using the naming convention. Note that the last method in the chain must return
one of the supported data types, but all methods previous to the last must return
objects.

If the methods defined on the object do not follow the naming convention for the
method to attribute name, then the Extended Schema Mapper can be used to
manually specify the method to attribute mapping.

For more information on query pushdown, see the Optimization with Query
Pushdown section in the Persistent Object Planning chapter of Administering and
Configuring IBM SanFrancisco in the IBM SanFrancisco Base documentation.

8.8.5 EntityOwningExtent
The EntityOwningExtent collection is semantically similar to a Map, but it does
not allow Entity elements to be added. Entity elements are always owned by the
EntityOwningExtent collection and must be created "into" the
EntityOwningExtent. That is, at creation time, the creation Location must be the
EntityOwningExtent collection object. An EntityOwningExtent has semantics that
allow it to be mapped to a table, or to a subset of a table, in a database. This
allows many efficiencies in the implementation of EntityOwningExtent that are not
possible with the other collections.

EntityOwningExtent can be configured so that the rows of an existing database
table are implicitly elements of the EntityOwningExtent. With all other collection
types, the only elements that are part of the collection are those objects that have
been explicitly added to the collection. This makes EntityOwningExtent the only
collection type that can be used to map to legacy data.

The EntityOwningExtent collections are intended to be the most scalable of the
collections because they can be mapped directly to the database. The other
Entity collections are designed to be more flexible but may not be as efficient for
very large collections. For interface details, see the EntityOwningExtent Javadoc.

The other major difference between an EntityOwningExtent and a Map is that an
EntityOwningExtent supports only method keys. That is, multiple keys are
supported, but they must be defined from the methods supported by the
elements' interfaces.

The concrete Map, on the other hand, supports a single key, which can be any
arbitrary Base object or String.

SanFrancisco operations that might be pushed down to the database (like query()
and getElementBy() on an EntityOwningExtent) always return the correct results.
The results reflect any Entity creation, deletion, or update made in the current
transaction without the programmer needing to make any explicit calls to
syncEntity(). To accomplish this, the Foundation Layer may, at times, implicitly
synchronize dirty Entities with the underlying datastore, but the programmer must
not rely on when or whether that will occur. If you need to ensure that the actual
database record is updated before commit() is called (for example, to trigger
database operations like constraint or duplicate key checking), then you must use
the syncEntity() method.

EntityOwningExtent that are accessed NO_LOCK have the following limitations:
Object Persistence, Databases, and Schema Mapping 145

 • An EntityOwningExtent accessed NO_LOCK throws an exception when an
attempt is made to insert an element or to remove an element.

 • Query pushdown on an EntityOwningExtent accessed NO_LOCK does not
see changes made to NO_LOCK copies of the elements in the
EntityOwningExtent.

For more information see the Programmers Guide.
146 IBM SanFrancisco Performance Tips and Techniques

Chapter 9. Java Coding Tips

Like any other programming language, Java provides different ways to solve given
problems. Some of these ways perform better than others. To increase the overall
performance of your application, you should be aware of the implications certain
code has. Some practices (like reevaluating the same expression in a loop) are
just bad programming and not language dependent. Other practices (such as
using those classes or constructs that give you the best performance while
satisfying functional requirements) may depend on the language or the
implementation of the language.

This chapter provides you with some basic information on Java performance.
Because Java is a relatively young language, additional judgement is required.
You may find your optimized code performing completely different with the next
release of your JVM (Java Virtual Machine). It may be the best idea to take a look
on the code that really inflicts problems. If you have no serious performance
problems, you might be tempted to forget about performance tuning and just
count on future versions of the Java implementation to do these optimizations for
you—like the most good optimizing compilers for C and C++ do today.

Additional information and a variety of different hints about optimizing Java code
can be found at: http://www.ibm.com/Java/Sanfrancisco/tips/ExtHome.html and
http://www.cs.cmu.edu/~jch/java/

Also Object-Oriented System Development by Dennis de Champeaux, Douglas
Lea, and Penelope Faure has a helpful chapter about performance tuning.

9.1 The Idea Behind the Tips

Overall performance of an application depends on multiple factors:

 • Hardware
 • Hardware configuration
 • Application architecture

And last, but not least, on the application code this is how a given architecture or
design has been implemented.

All performance comparisons within this chapter are the result of our tests. The
actual performance improvements for your own code may vary. You may not
recognize any difference by simply running the source code. The differences
are normally within the fluctuation of the provided measurement utilities. All
becomes clear while using a profile that measures CPU time.

For all tests, we used a IBM Personal Computer 365, PentiumPro 200MHz, 112
MB RAM. To analyze the performance impacts of any given tip, we used
JProbe for Microsoft Windows NT that includes a JDK that is based on version
1.1.5 and an instrumented JVM. Newer versions of the JDK, or different
implementations of the JVM, may give different results.

Note
© Copyright IBM Corp. 1999 147

It is clear that all designers and programmers must be aware of performance
while writing applications. These tips and techniques should provide them with an
easy way by following the rules that others have learned during prior experiences.
We have divided all tips in three groups. The first is giving a general guidance that
applies to most languages. The second part is resource (memory, in this case)
related; whereas, the third one is more Java specific.

To give you an idea first of the overall performance implications of Java code, we
have provided a table of the normalized costs of different Java operations.

Table 5. Java Operations Costs

Operation Example Normalized Time

Local assignment i = n; 1.0

Instance assignment this.i = n; 1.2

int increment i++; 1.5

byte increment b++; 2.0

short increment s++; 2.0

float increment f++; 2.0

double increment d++; 2.0

Empty loop while (true) n++; 2.0

Ternary expression (x<0) ? -x :x 2.2

Math call Math.abs(x); 2.5

Array assignment a[0] = n; 2.7

long increment l++; 3.5

Method call funct(); 5.9

throw and catch exception try{throw e;} catch(e) {} 320

synchronized method call synch Method() 570

New Object new Object() 980

New array new int[10] 3100

Sometimes a performance optimized code results in a less readable code. In
this case, you have to decide carefully which is more important, either a more
readable code or a better performing one. Keep in mind that a more readable
code is easier to maintain.

Note
148 IBM SanFrancisco Performance Tips and Techniques

9.2 General Techniques

There are some coding techniques that are not specific to Java and can be
applied to many other languages as well.

9.2.1 Loop and Counting
Common statistics reflect that you spend 90% of the time in only 10% of the code.
The larger part of this code consists of loops. Because you spend much time
inside loops, you would want to minimize the code that is inside the loop and
reduce the number of iterations. There are different ways to decrease the
evaluation time of a loop.

9.2.1.1 Moving Invariant Code
It is a good idea to move any code that is constant for the loop out of the loop
itself. The following example shows the code that you may write quite often:

void doSomething()
{

long test, result;
result = 0;
for(int i=0; i < 10000; i++)

{
test = 356 * 323;
result = result + i*test;

}
}

Obviously, the calculation of test always gives the same result. To reduce the
execution of this code to the minimum, move this calculation outside the loop:

void doSomething()
{

long test, result;
result = 0;
test = 356 * 323;
for(int i=0; i < 10000; i++)

{
result = result + i*test;

}
}

You can save 9999 calculations of the value of test with this little adjustment.
Even if you do not have a variable in the first case, it is worth the effort to move
constant calculations out of the loop.

9.2.1.2 Terminating Loops Early
You can spend much time in loops that already have the final result. The following
example evaluates the complete array before it leaves the loop:

public boolean isReadOnly()
{
// return true only if all elements in the array are ReadOnly

boolean readOnly = true;
for (int i = 0; i < ivListenerIndex; i++)
{

readOnly = readOnly && ivListenerControlList[i].isReadOnly();
}

Java Coding Tips 149

return readOnly;
}

The following improved example evaluates the code until it reaches the final
result:

public boolean isReadOnly()
{
// return true only if all elements in the array are ReadOnly

for (int i = ivListenerIndex; i > 0; i--) {
if (ivListenerControlList[i].isReadOnly() == false)
{

return (false);
}

}
return (true);

}

The time you gain with this improvement depends on the position of the first
element that terminates the loop. If you have to check the loop multiple times, it
may be a good idea to think about the order of the elements.

9.2.1.3 Using Local Variables
The fastest access mode to data is a local access. You can use this information to
further improve the performance of loops by avoiding the access of global
variables within the loop.

The following code uses direct access of the global variable:

int a1[] = new int [1000000];

public void test()
{

int a2[] = a1; // included for comparison
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++)
{

a1[i]=55;
}

}

By changing the access to the reference a2, you gain around 12% performance
for the execution of this loop, as shown here:

int a1[] = new int [1000000];

public void test()
{

int a2[] = a1;
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++)
{

a2[i]=55;
}

}

The main reason for the time difference is revealed by looking at the generated
byte code. The access to the global variable results in calls to the getfield
operation that consumes much more time than a local access. You gain an
150 IBM SanFrancisco Performance Tips and Techniques

advantage by moving this operation out of the loop and hence using it only once.
You can verify the byte code by decompiling the class file with the following
command:

javap -c classname > filename

9.2.1.4 Avoid Unnecessary Method Calls
While implementing loops, always remember that method calls have a
performance impact. It always takes time to execute any method call. For
example, by writing:

String buffer = getBuffer();
for (int i=0; i<buffer.length(); i++)
{

buffer[i]++;
}

instead of writing:

String buffer = getBuffer();
int len = buffer.length();
for (int i=0; i<len; i++)
{

buffer[i]++;
}

you increase the number of method calls dramatically. This is safe to do, because
in Java, Strings are immutable and can not change their size. For example, with a
buffer.length() of 10000, you will save 9999 calls of the length() method.

In other cases, a method call can result in a remote call that might, depending on
the connection, take several seconds of additional execution time. This
dramatically increases the time saved that can be achieved by avoiding a call.

9.2.2 Using Buffered Data Streams
If you use unbuffered I/O streams, you may end up with single byte read or write
operations. Note that the JDK (Java Development Kit) I/O classes use a lot of
synchronization, so you might get better performance by using a single "bulk"
call, such as readFully() and then interpreting the data yourself. Also notice that
the Java "reader" and "writer" classes were designed for improved performance.
For example, instead of using:

DataInputStream reader = new DataInputStream(new FileInputStream(in_file));
DataOutputStream writer = new DataOutputStream(new

FileOutputStream(out_file));

use:

BufferedReader reader = new BufferedReader(new FileReader(in_file));
BufferedWriter writer = new BufferedWriter(new FileWriter(out_file));

9.2.3 Reduce Code Execution
While designing your application, you often have the choice between multiple
objects and methods to get your job done. By being careful in your decisions, you
can reduce the amount and weight of the executed instructions. Often, you want
to do a simple task and call a method that does this for you. Unfortunately, the
method belongs to an object with a completely different purpose. This object may
Java Coding Tips 151

be too large, including too much functionality, which is more memory consuming.
Even worse, it may delegate the job to other objects, which results in multiple
object creations. With a little additional effort, you can find the object in which the
task is delegated and use this object directly.

9.3 Memory Management

Although the price for memory is dropping, it is still a limited resource. You should
consider the fact that Java is built for distributed environments and thin clients
where size does matter.

9.3.1 Using Primitives
While using objects, you should always consider the fact that an object is a
complex structure. On the other hand, a primitive is a lean structure. By knowing
this, it is quite obvious that the performance of our application will increase if you
use primitives instead of objects wherever possible.

To measure the difference, we ran the 100000 iterations of the following two code
examples:

Example 1: using int

int a2[] = new int[100000];
for(int j = 0; j < 100000; j++)
{

a2[j]=10;
}

Example 2: using Integer

Integer a2[] = new Integer[100000];
for(int j = 0; j < 100000; j++)
{

a2[j]=new Integer(10);
}

The difference of the runtime of both implementations is quite obvious, as shown
in Table 6.

Table 6. Using int or Integer

With this difference in mind, you should carefully judge in which case a primitive
can be used. It may be better to convert the data into primitives before an
operation is made. This depends on the number of iterations your data runs
through. The exact point after which a conversion is useful depends on the given
problem. It may help to measure both implementations with test cases to select
the better solution.

9.3.2 Reusing Objects
The creation of new objects takes a considerable amount of time and creates the
need to get rid of these objects after they have been used. Especially for large
objects, this fact has to be carefully considered. You may want to reuse these

int Integer

10 ms 961 ms
152 IBM SanFrancisco Performance Tips and Techniques

objects by updating the fields of an existing object that is no longer used rather
than generating new objects all the time. This also applies to lists of objects
where you may provide an additional list of currently unused objects. There is an
easy way of reusing objects that can be described in these steps:

1. Look on the free list to see if one is available to be reused.

2. If so, retrieve the reference to the reusable object. If the free list does not
contain any reusable objects, create one as you normally would.

3. Take the reusable object off the free list.

4. Reinitialize the object (you may want to add a method that specifically does
this).

5. Use the object as you normally would.

The following example shows how to follow the basic rules for reusing objects:

class Order
{
/* holds the recyclable orders */
private static Stack freelist = new Stack();

Order()
{
/* whatever it takes to create a new Order */
}

private Order reinit()
{
/* whatever it takes to initialize an old order into a new state */
}

public void recycle ()
{

freelist.push(this);
}

public static Order getNew()
{

if (freelist.empty())
{

return new Order();
}
else
{

return ((Order)freelist.pop()).reinit();
}
}

Instead of using new Order(), you use Order.getNew(),which generates a new
object only if there are no preused left. Whenever an Order is no longer used, it is
recycled and prepared for reuse by the recycle() instance method.

9.3.3 Reduce Object Size
Often there is more than one object that has the required capabilities. Similar to
the already mentioned usage of primitives, you should carefully look at which
object fits your needs best. For example, a list of objects can be stored in a
Java Coding Tips 153

collection (in SF), a vector (refer to 9.4.6, “Vectors” on page 158), or an array.
Perhaps you do not need the additional functionality of a collection. In this case, it
is possible to choose an array that is a much leaner construct. This reduces the
amount of memory required and increase your performance.

9.3.4 Free Resources
You may trust the garbage collector to get rid of all resources that are no longer
needed. This is true, but do you know when the resources are collected? This is a
major concern for external resources, such as files or database connections. If
you no longer use those, free them so that the resources are available
immediately, and you do not have to wait for the garbage collector to do this.
Especially in long running methods, it may be worth to take a close look at your
code to find out at which point these resources are no longer required.

9.4 Java-Specific Tips

Overall, there are some Java specific topics concerning the implementation of
certain objects in Java.

9.4.1 String Operations
Because Strings are immutable in Java, you have to be careful about
concatenation of Strings. Any concatenation of Strings results in the generation
of new objects, which is a major performance cost. On the other hand, a
StringBuffer is generated once and reused thereafter. Using of concatenations
such as:

String test = "";
test += "Active ";
test += "Buffer";

performs worse than using a StringBuffer:

StringBuffer test = new StringBuffer();
test.append("Active ");
test.append("Buffer");
test.toString();

When executing it only once, you may not find any difference in the performance
of both codes. To average the influence of one execution, we executed the
examples 10,000 times. The significant difference clearly favors the usage of a
StringBuffer if you have to concatenate more than two Strings.

Table 7. String versus StringBuffer

You also may consider using a char array that will perform even better (refer to
9.3.1, “Using Primitives” on page 152). This solution, of course, decreases the
readability of your code.

String StringBuffer

4,181 ms 991 ms

The actual execution times on your machine may vary.

Note
154 IBM SanFrancisco Performance Tips and Techniques

9.4.2 StringTokenizer
As in most other languages, there are different ways to divide a String into single
tokens. The most comfortable way is the usage of the StringTokenizer.
Unfortunately, the performance of the StringTokenizer is a disadvantage of this
useful class.

The standard implementation using StringTokenizer (like suggested in the
JavaDocs) is:

String result;
StringTokenizer st = new StringTokenizer("this is a test");
while (st.hasMoreTokens())
{

result = st.nextToken();
}

This returns the expected results, but it does not perform very well. If you do not
need the flexibility of the StringTokenizer, you may consider writing your own
implementation for tokenizing Strings, such as:

int i1=0;
int i2;
String stringToParse = "this is a test", result;
i2 = stringToParse.indexOf(" ");
while (i2 >= 0)
{

result = stringToParse.substring(i1, i2);
i1 = i2+1;
i2 = stringToParse.indexOf(" ", i1);

}
result = stringToParse.substring(i1);

This code is giving the same results as the first one, but it performs significantly
better. During our tests, we ran both codes 100000 times, which produced the
results shown in Table 8.

Table 8. Compare StringTokenizer with Own Implementation

9.4.3 Function Inlining
A Java compiler can inline specific methods to reduce the number of method calls
and increase the performance of an application. However, there are some
restrictions for code being inlined by the Java compiler. The method has to be:

 • Final
 • Private
 • Static

StringTokenizer Own Implementation

2123 ms 1042 ms

This implementation of the StringTokenizer is a good example where better
performing code is less readable. Judge carefully when to increase
performance and when to increase readability.

Note
Java Coding Tips 155

If your code often calls methods that have none of these modifiers, you should
think about providing an additional method that fits these restrictions. This can
increase the performance by elimination of unnecessary function calls.

A special form of code inlining is the usage of constants. Constants, which are
variables that are declared static final, are important for performance because
they allow a lot of optimization. For example, constant folding and inlining can be
done if the compiler knows that the variable will never change its value. If you
know that a variable is used as a constant, make sure to declare it as static final
in order to reap the performance benefits.

Also, avoid calling new to initialize a constant String, for example:

static final String MY_STRING = new String("XYZ");

The previous example calls new and the String constructor when it is not needed,
where the following code represents a better implementation:

static final String MY_STRING = "XYZ";

9.4.4 Exceptions
Exceptions are meant for situations that are truly unique. They require time and
space to be instantiated. Performance-wise, it is expensive to catch an exception.
Considering this, you should not design any method that has an exception as the
normal result. Instead, this method should return a value with the necessary
information. Otherwise, it is bad for performance to test every time for occasions
that happen only if an error occurs. These cases should be covered by an
exception. For example, testing for a negative return value to say you are out of
memory would be unwise; that would be a situation calling for an exception case.

To enable the compiler to optimize your code, it is not a good idea to put a
try/catch block around every method call. If possible, it is much better to put a
larger block around several method calls instead of implementing several blocks
for each method, as shown here:

public void some()
{

try
{

some.method1();
} catch (method1Exception e)
{

// do something with the exception
}
try {

some.method2();
} catch (method2Exception e)
{

// do something with the exception
}
try

Remember that both the static and final modifier have to be set for inlining by
the compiler.

Note
156 IBM SanFrancisco Performance Tips and Techniques

{
some.method3();

} catch (method3Exception e)
{

// do something with the exception
}

}

You should consider to include multiple method calls within one block, as shown
in the following example:

public void some()
{

try
{

some.method1();
some.method2();
some.method3();

}
catch (method1Exception e1)
{

// do something with exception 1
}
catch (method1Exception e2)
{

// do something with exception 2
}
catch (method1Exception e3)
{

// do something with exception 3
}

}

This improved implementation enables a JIT, or static compiler, to perform
optimizations, for example, by rearranging code for increased performance. This
optimization can only be done within a block. As described in the following
different examples, sometimes using exceptions to terminate a loop is the
preferred way to exit rather than constantly checking for a certain condition.

Original implementation with repeated call at the top of every loop to check if
there are more elements:

while (iterator.more())
{

some.method(iterator.next());
}

Improved implementation by terminating the loop through the exception path
when an attempt to get the next element fails:

try
{

while (forever)
{

some.method(iterator.next());
// Assume that some.method() can handle null

}
} catch (CollectionException e)
{

...
Java Coding Tips 157

}

Another alternative is:

long cardinality = coll.getCardinality();
for (long i=cardinality; i > 0; --i)
{

iterator.next();
}

9.4.5 Hashtables
Java provides a very powerful hashtable function. However, it should be used with
care if you have performance concerns:

 • It is important to specify the correct size of hashtable for good performance.
Note that the default constructor Hashtable you get from the JDK is set for a
default capacity of 101 and a load factor of 0.75. If these values do not fit your
needs, set appropriate values in the Hashtable constructor. We recommend a
load factor of 0.75 with an initial capacity of about 1.25 times the average
number of items you think the table will eventually need to hold. If you specify
a smaller number than this, then you risk the performance cost of having to
rehash the entire table to a larger size each time the load factor is exceeded.

 • It is also important that the hashcode itself is appropriate for the data being
put into the Hashtable. An efficient hashcode is one that:

 – Is easy to calculate
 – Spreads the data evenly over the domain of the key values

The idea, of course, is to eliminate collisions as much as possible. A good
hash function is tricky to design.

For further information on the hashtables and hashcodes in SF, refer to 10.1.9,
“Hashcodes” on page 173.

9.4.6 Vectors
Java provides Vectors as data structures that are more powerful and flexible than
arrays. However, they are also much slower, so if you need to use a vector, keep
this in mind:

If you are using a Vector to maintain a list of items that you will be inserting
and deleting from, remember that it is always faster to add or delete from the
end of the Vector rather than from the front.

For example, when using a vector to maintain a list of free elements, it is much
faster to put the newly freed elements at the end of the vector using addElement()
and get it from the end of the vector using lastElement() when you need one, as
in the following code fragments:

The hashtable you get with the JDK is synchronized so that it can safely be
used by multiple asynchronous threads and give predictable results. However,
if your hashtable is not accessed asynchronously, then the synchronization
overhead is not necessary, and a non-synchronized hashtable will perform
better from a strict code execution perspective.

Note
158 IBM SanFrancisco Performance Tips and Techniques

Vector bufferList;
// add a buffer to the free list
public void addBufferToFreeList(Buffer freeBuf)
{

bufferList.addElement(freebuf);
}
// take a buffer off the free list (exception if none available)
public Buffer getBufferFromFreeList() throws NoSuchElementException
{

return (Buffer) bufferList.lastElement();
}

When you create a Vector without specifying an initial size, the Vector is created
with an initial size to hold just 10 elements. Each time you have to add an element
to a Vector that is already "full", Java automatically creates a new Vector of a
larger size and copy all the old elements to the new Vector. While functionally this
is fine, the extra work of creating another Vector and copying the elements adds
up to significant performance overhead. This can be avoided if a right-sized
Vector is created from the beginning. If you know how many elements the Vector
will eventually have to hold, you should allocate the Vector to be of that size when
creating it. You can also specify how much the vector capacity will grow once it
fills up:

Vector myVector = new Vector(50,20);

This code creates a Vector with space to initially hold 50 elements. Its capacity
will grow in increments of 20 elements.

9.4.7 Synchronization
Java was designed to be a multi-threaded language, and in keeping with that
philosophy, the JDK has a lot of synchronization built into it. For additional
information on synchronization, refer to 2.1.4, “Synchronous versus
Asynchronous Processing” on page 8. Synchronization offers you a relatively
robust multi-threading environment. However, due to the increase execution time
of synchronized operations, it decreases performance to do this much
synchronization, particularly if there is no real need for it. Therefore,
synchronization has advantages and disadvantages. Not doing enough
synchronization gives incorrect results and subtle timing window bugs that can be
extremely difficult to pin down. Over-synchronizing results in bad performance.
The JDK has chosen robustness over performance, so most of the classes and
methods in the JDK are synchronized. For example, Hashtables, StringBuffers,
and Streams are all extensively synchronized. If your program is not
multi-threaded, or if its threads do not access the same objects asynchronously,
then you can improve the performance of your program by writing unsynchronized
versions of the methods that these objects use or find an unsynchronized version
that already exists.

Keep in mind that you can synchronize on a block of code rather than an entire
method. This particularly makes sense if the block of code is only on some of the
logic paths through the modules. On the other hand, synchronizing on a method
is slightly more efficient than a code block, so if the code block takes up most of
the method anyway, you may just as well synchronize the whole method. In case
you are in a highly threaded environment, this must be balanced by the need to
synchronize across all methods versus just a single code block.
Java Coding Tips 159

9.4.8 Casts and Instanceof Operation
Remember, it takes time to perform a cast or an instanceof operation. Different
from C++, where it is resolved at compile time, a cast in Java requires runtime
checking. This should be avoided if it is possible. Normally, there is no application
without casts and instanceof, but this should be reduced to the least possible
number. For example, instead of writing:

MyClass castedParm = (MyClass) parm;
if (someCondition)
{

castedParm.someMethod();
}
else
{

return;
}

which performs the cast even in the false case where it is never needed, you can
implement:

if (someCondition)
{

MyClass castedParm = (MyClass) parm;
castedParm.someMethod();

}
else
{

return;
}

This implementation avoids the unnecessary cast. In the same manner, an
instanceof can easily be avoided in cases where a violation of an instanceof is
really an exceptional case. In this situation, you may want to use an exception,
but only if this case is really rare (refer to 9.4.4, “Exceptions” on page 156),
always keeping in mind the additional cost of an exception. This can be done by
writing:

try
{

MyClass castedParm = (MyClass) parm;
...

} catch (ClassCastException e)
{

...
}

instead of using:

if (parm instanceof MyClass)
{

MyClass castedParm = (MyClass) parm;
...

}
else
{

...
}

160 IBM SanFrancisco Performance Tips and Techniques

9.4.9 Using the API
Several Java classes provide methods for special needs that are faster than a
normal operation. It is, for example, much faster to do an arraycopy() than looping
over all elements to do the job. Sometimes the Java classes include too much
functionality and can be replaced by a different implementation that better fits
your needs. This can reduce the overall cost of the usage of these objects. Even
if the object fits your needs, you may want to implement a single method that
performs better than the original one. You can do so by overriding the original
method.

9.4.10 Use JIT and Static Compilers
Normally, Java code is interpreted, which takes additional time that can be
reduced. For an additional performance boost, make sure your application is
running on a JIT (Just In Time) compiler that can increase the performance of
your application by 30% up to 3000%, depending on your application. For a
normal application, you can expect an overall increase of about 50%.

You should also consider the usage of a static compiler. These tools are now
available from different companies and can increase the performance of your
application even better than a JIT compiler, especially for client GUI applications.
Java Coding Tips 161

162 IBM SanFrancisco Performance Tips and Techniques

Chapter 10. SanFrancisco Coding Tips

The purpose of this chapter is to suggest some coding tips that may be employed
while using or extending the SanFrancisco framework. Some of the techniques
described here are generic enough so that they can be incorporated in any
SanFrancisco development work, while some others are specific to an
architectural layer. Since the Foundation layer has the most active components, a
judicious use of these can reap immediate performance benefits.

This chapter describes the following topics:

 • Section 10.1, “General Techniques” on page 163—Outlines a number of
coding techniques that can be fruitfully employed for any development work on
SanFrancisco frameworks.

 • Section 10.2, “Foundation Layer Coding Tips” on page 173—Details the
performance trade-offs while using the various Foundation Layer objects.

 • Section 10.3, “Common Business Objects Coding Tips” on page 188—Covers
specific coding techniques that can produce better performing code while
dealing with the CommonBusinessObjects in SanFrancisco.

10.1 General Techniques

Using the GBOB benchmark, it was inferred that a lot of time is being spent on
transaction services and creation and retrieval of objects. Figure 63 on page 164
shows the time distribution for some commonly performed functions.

The following list shows some of the methods (on BaseFactory) that consume a lot
of system time:

 • getEntity()/getObjectFromHandle()

 • createString()/copyString()

 • createDependent()/copyDependent()

 – Cascading "gets " :
paymentTerms.getRemainingAmount().getAllocationIdentifier(). Here, the
call to getRemainingAmount() creates a new object, DPaymentTermsDetail for
temporary use, so that getAllocationIdentifier() can be handled. This
results in more garbage since the DPaymentTermsDetail object will be
discarded after this use. Such a situation can be overcome by using the
get<name>ForRestrictedUse() [getRemainingAmountForRestrictedUse()]
method, which is provided typically for this kind of use. These methods are
to be used when the returned object is not going to be modified.

The information presented in Figure 63 is just one example and is specific to
one application, in this case the GBOB Benchmark. The time distribution may
be totally different for your application. It is strongly urged that you create a
similar profile for your application so as to obtain the time distribution that is
more relevant to your application. For more information on how you can go
about doing this, refer to 3.2, “Profiling the Application with JProbe Profiler” on
page 25.

Note
© Copyright IBM Corp. 1999 163

 – Stateless Objects (for example, Policies and so on)

 – Immutable Objects

Figure 63. Where Time is Spent in a Test Application - The GBOB Benchmark

The reason for the excessive time consumption by these operations would
become apparent once we become aware of the process involved in carrying out
these operation. The flow charts in Figure 64 on page 165 show a macro level
view of the process for some of the time consumption of the operations.

Each of the operations require an initial setup for setting local variables, and so
on. The getEntity() operation checks if the requested object is currently in the
container cache. If so, it checks if the object has been registered for the current
transaction with a certain lock. If it does, a lock upgrade can be performed to lock
it with the desired lock and then returned. If the entity has not been registered
and locked, it needs to be locked with the requested lock and registered for the
current transaction before it can be returned for use. In the worst case, if the
entity is not in the cache at all, a new instance has to be created, its attribute
values have to be obtained from the database, and the object has to be locked
and registered before it can be returned back. In createEntity(), the stages are
similar to the last scenario except that no cache check is performed since it is a
new instance.

The commit() operation is more elaborate. After the initial setup, it goes into a loop
checking each of the objects registered use in the current transaction. It
determines whether an object has changed (that is, whether it is dirty), and if so,
determines the type of operation that was performed on it. It then does the
corresponding operation (write, insert, or delete), drops the lock on it, and starts
the loop all over for the next object. After exiting the loop, the changes are
committed to the database.
164 IBM SanFrancisco Performance Tips and Techniques

Figure 64. Flow Charts for Some Time Consuming Operations

Many times, due to faulty or careless programming, a large number of objects are
created when it might not really be required. This results in lot of memory usage
and also requires more garbage collection to be performed. This section
describes many memory management techniques, such as caching, object
selection, copy versus create, and so on. This section also explains some other
common techniques that can be employed for performance benefit.

10.1.1 Caching
Method calls can be expensive if they are invoked repeatedly or cascaded, a
practice that developers using OO languages very often resort to. A method call
in Java is at least three times more expensive than referencing a local variable.

10.1.1.1 Intra-Method Caching
If the results of a method call are not going to change, and the results of the
method call are going to be used more than once, the results of the initial call can
be cached to a local variable for later usage. This can be called intra-method
caching. Since SanFrancisco is a distributed environment, caching method return
values are especially important because a method call may be a remote method
call or internally invoke remote methods.
SanFrancisco Coding Tips 165

The getEntity() method is of particular importance to programmers in
SanFrancisco. From a performance perspective, you have to know what you are
going to do with an Entity after obtaining it. A getEntity() call is time consuming
because it must go to the Business Object server process and get the object from
the persistent store (at worst) or from its cache (at best) and return a local copy or
a reference to its proxy (stub) depending on the access mode used. Now, if you
are going to pass a local reference of the object, then simply pass the Entity
reference obtained. However, if the Entity needs to be transported to a remote
object or used in a Command that will be executed remotely, it would be prudent
to pass the Handle itself. In such a case, you might not want to do a getEntity()
at all since the creation of a proxy on your system is a waste if you are never
going to call any methods on it. In such a case, just the Handle to the Entity
should be passed in the command.

The following examples show common coding practices that need to take
advantage of caching.

Example 1: Caching AccessModes
In the following piece of code, many AccessMode objects are created instead of
creating them once and caching them in a local variable so that they can be used
later:

Company company = CompanyContext.getActiveCompany(AccessMode.createNormal());
....
CurrencyController ctrl = getController(AccessMode.createPlusWrite());
....
Currency newCurrency =
CurrencyFactory.createCurrency(ctrl, AccessMode.createNormal(), ...);

The following improved version caches the AccessModes in a local variable and
uses them:

AccessMode amNormal = AccessMode.createNormal();
AccessMode amPlusWrite = AccessMode.createPlusWrite();

Company company = CompanyContext.getActiveCompany(amNormal);
....
CurrencyController ctrl = getController(amPlusWrite);
....
Currency newCurrency =
CurrencyFactory.createCurrency(ctrl, amNormal, ...);

Example 2: Caching Global Factory Reference
The following example code has a loop where a reference to the BaseFactory is
obtained each time a transaction is started and stopped and also when an Entity
is obtained:

for (int i = 0; i < largeNumOfTransactions; i++)
{

Global.factory().begin();
ref = Global.factory().getEntity(handle, AccessMode.createPlusWrite());
....
Global.factory().commit();

}

Instead, a local variable can be initialized to hold a reference to the BaseFactory.
This can be used within the loop, as shown here:
166 IBM SanFrancisco Performance Tips and Techniques

BaseFactory factory = Global.factory();
AccessMode amPlusWrite = AccessMode.createPlusWrite();

for (int i = 0; i < largeNumOfTransactions; i++)
{

factory.begin();
ref = factory.getEntity(handle, amPlusWrite);
....
factory.commit();

}

10.1.1.2 Inter-Method Caching
Another scenario where caching can be gainfully employed is the situation where
the same data is accessed by a series of two or more method calls. Two areas
worth considering are:

 • Handle inflation
 • Object navigation

Handle Inflation
Consider the following case:

someMethodABC(Handle handle)
{

SomeEntity someEntity = factory.getEntity(handle, amPlusWrite);
.....
anotherMethodXYZ(handle);
.....
.....

}

anotherMethodXYZ(Handle handle)
{

SomeEntity someEntity = factory.getEntity(handle, amPlusWrite);
...
...

}

There are two methods: someMethodABC(Handle handle), which calls
anotherMethodXYZ(Handle handle) . Both methods take the same parameter Handle
and have to inflate it to obtain the Entity. In such a case, the second method,
anotherMethodXYZ(Handle handle), could be changed to anotherMethodXYZ(Entity

e) , or it could be replaced altogether. This saves on the overhead of having to
obtain the same object twice and provide better performance.

Object Navigation
On similar lines as the previous example, consider a case where there are two
methods, methodX() and methodY() , which need to navigate several levels deep on
an object to access data. This is typically by way of a series of getXXX() calls on a
number of intermediate objects. In such a case, it is advisable to change the
methodX() so that it stores the navigated results and then passes them onto the
methodY() .

10.1.1.3 Process-Scoped Caching
Another opportunity for caching is with global data. When dealing with global
data, the developer can cache the information scoped to a process in a static
SanFrancisco Coding Tips 167

variable or in the Distributed Process Context. See 10.1.7, “DPC Initialization” on
page 172 for more information.

For more examples on method caching, refer to 9.2.1.4, “Avoid Unnecessary
Method Calls” on page 151.

10.1.2 Object Selection
Often developers have a choice of different objects to accomplish a function.
Selecting an object of the right weight is a critical issue for good performance. A
good rule to follow is: Always use the simplest object possible, but no simpler. For
example, if you need to store a number value, you could use the Java primitive
int , a Java object Integer , or the Foundation Layer object DInteger (a
dependent). Depending on what you are going to do with it, you would always be
better of using the most primitive type that you can get by with, in this case, the
Java primitive int.

An object that is heavier costs more both in time and space. It costs more to work
with and requires more storage. Java primitive objects, especially int s, are very
efficiently manipulated within the JVM (32-bits is a natural size to the JVM
architecture). The disadvantage is that it is not an object, and hence, cannot be
used like an object (for example, certain collections can only handle objects, not
primitives). A distant second choice would be use of the Java Integer for the
additional functionality that it offers as an object. Even in such cases, it is better
to continue using a primitive int , and convert it to Integer only when you need
that additional functionality. The SanFrancisco object, DInteger , is another choice.
A Java int requires only 4 bytes, an Integer requires 20 bytes for the value and
overhead, and SanFrancisco DInteger requires 24 bytes.

On similar lines, boolean , a java primitive, would be more efficient than using the
Boolean object, which in turn, would be more efficient than the DBoolean
SanFrancisco object.

An offshoot of the problem of object selection is when you have to make a choice
between adding attributes to an object (by extending it) and adding properties to
it. For example, let us say you have an Employee object, and you want to add the
capability to store "title" information such as "Manager," "Director," "Architect,"
and so on. You could do this either by extending the Employee object and adding
a String attribute "title," or you could add a Property "title" to the Employee object
(if it is a DynamicEntity) using:

employee.addDirectlyContainedPropertyBy("Manager", "title").

Table 9 on page 169 can serve as a guide to make a choice between the two
options.
168 IBM SanFrancisco Performance Tips and Techniques

Table 9. Choosing between Adding Properties to, or Extending, an Object

For more details on object selection in general, refer to 9.3.1, “Using Primitives”
on page 152. For information on properties, refer to 5.4, “Property Container
Pattern” on page 74.

10.1.3 Object Streaming
When you need to pass an object parameter to a method that is executing
remotely, the object needs to be streamed or flattened to be sent across the
communication link to another process. There are several ways to stream an
object, each with different performance characteristics. This section explores
each of them in brief.

10.1.3.1 Declare as java.io.Serializable
You can simply define the class of the object to implement java.io.Serializable
and be done with it. Java takes the responsibility for streaming all the attributes of
the object except those that have been declared as transient . The streaming may
not be very effective since the decision as to what is to be streamed is done at
runtime. If streaming is done often or in a performance critical application, such a
process may be not adequate.

10.1.3.2 Implement java.io.Serializable
To have more control over the serialization that Java does while streaming an
object, you can implement the readObject() and writeObject() methods of the
Serializable interface. These provide specific control over the streaming of the
attributes of the object. However, it does not provide control over the parents of
the object. Their serialization proceeds in the manner their classes have defined.
For example, if one of the attributes of your object is a Vector that happens to be
empty when you stream it, instead of streaming the empty Vector , just stream null.
This can save the time necessary to flatten the Vector at the source as well as the
time for fluffing the object at the target.

10.1.3.3 Implement java.io.Externalizable
If you want control over the streaming of an object, as well as that of its parents,
then you object should implement the java.io.Externalizable interface. This
means you need to implement the readExternal() and writeExternal() methods
that provide control over streaming the object’s parents also. This can result in
considerable savings in time, as the streaming process does not have to walk
through the hierarchy of your object looking for readObject()/writeObject()

Extending and Adding Attributes Adding Properties

To be used if it is going to be accessed often,
or if the number of attributes is fewer in
number.

To be used if large number of properties are
going to be stored, or if these are going to be
seldomly accessed.

To use this option in your application, you
have to perform class replacement for sake
of factory services, so that the extended
object is used instead of the base object.

Adding a property internally results in
creating and maintaining a Hashtable .
Hence, it is an overhead to be used with
fewer properties.

Query pushdown can be effected by
appropriately mapping the newly added
attribute to the corresponding columns in the
databases. This results in improved
performance.

The support for mapping properties of
DynamicEntity to table columns will be
available in a future release. It is not
supported for release SF130.
SanFrancisco Coding Tips 169

methods at each level. It also obviates the need to stream the parent’s attributes if
streaming your object does not need them.

10.1.3.4 GBOF Externalization
In SanFrancisco, streaming is used to transfer objects between client and server.
The methods internalizeFromStream() and externalizeToStream() control which
attributes of the objects are getting streamed. Every class (except the stateless
classes) should implement these methods. The com.ibm.sf.gf.Base class
implements this Externalizable interface. Its readExtrenal()/writeExternal()
methods will call the SanFrancisco streaming methods. GBOF Externalization is
about as fast as java.io.Externalizable ..

10.1.4 Fast Conversions
Java allows conversions of any object to String object, and this is achieved by
calling the toString() method on the object. For example, let us say you
concatenate a number and a String, as in the following code:

for (int i = 0; i < someValue; i++)
{

System.out.println("Loop counter value is " + i);
}

While this may not exactly be a performance hazard, if you really want to optimize
on code, be aware that the JDK methods that convert the int to a String are
currently inefficient. The SF Performance Team has written a class called
FastConvert that converts the Java primitives into Strings a lot more efficiently
than the JDK methods. The following code uses the FastConvert class from
GBOF:

for (int i = 0; i< someValue; i++)
System.out.println("Loop counter value is " + FastConvert.intToString(i));

}

Using FastConvert is eight to ten times faster than the built-in String methods.

The FastConvert class has a dozen other conversion utility methods for various
types, such as decimal, Radix64, Hex, and so on. It is beneficial to utilize this
class extensively in your code.

10.1.5 Tracing
A trace support is a powerful and flexible tool for debugging problems. You can
have your own implementation, say MyTrace , for trace support. However, it can be
a drag on performance if it is done incorrectly. The objective should be to
minimize path length when tracing is not active. The following piece of code
shows the recommended way of using a trace facility within methods:

if (tracingEnabled)
{

MyTrace.println("Begin someMethod");
}

In this case, tracingEnabled is a static boolean variable that has been set to true
or false depending on whether a trace should be taken at that point, as shown
here:
170 IBM SanFrancisco Performance Tips and Techniques

static boolean tracingEnabled = MyTrace.isTraceLevelEnable(MyTrace.COMPONENT_X
| MyTrace.ANYTYPE)

isTraceEnabled() is an implementation you can provide to check if tracing is
enabled for a component. When the class is first loaded, the tracingEnabled is set
to true or false depending on whether tracing is currently enabled for COMPONENT_X

(use you own MyTrace defined component name here). The only additional runtime
overhead is the “if” test of the static boolean when tracing is not enabled for this
component. To allow dynamic tracing to work, the tracingEnabled static variable
should allow itself to be set by a static routine that can be called by the tracing
support.

If you do not need the tracing to be turned on dynamically (that is, if you need
tracing only for in-lab development purposes), you can condition the trace
statement with a static final boolean that has been compiled to be either true or
false:

if (finalTracingEnabled) {
MyTrace.println("Begin someMethod");

}

where finalTracingEnabled is declared to be static final.

static final boolean finalTracingEnabled = true; // or false (or Debug.ON)

In this case, if finalTracingEnabled is false, the compiler eliminates the entire “if”
statement as dead code. So, the compiled code looks as though the trace
statement never even existed in the source code. Although this results in rather
efficient coding, you lose the ability to dynamically set tracing ON or OFF without
having to recompile your code. Note that you can use the static final boolean
Debug.ON that has been defined for this purpose.

Finally, because of the need to keep class files reasonably sized, all unit test type
traces should be of the Debug.ON variety (no code should be generated for them in
the actual customer product).

10.1.6 Copy versus Create
This section is an extension of the 9.3.2, “Reusing Objects” on page 152. In most
cases in SanFrancisco, it is faster to copy and modify a Dependent than to create a
new one. When a transient Dependent is no longer needed, it can be recycled by
reinitializing the object. A Dependent is copied when set as an attribute, hence, a
transient Dependent used as an initialization parameter can be reused after
reinitializing it. If a Dependent continues to be in use, it is generally faster to copy
the Dependent to a new Dependent .

For example, the following code:

inStock = DDecimalFactory.createDDecimal(1, 1);
damagedStock = DDecimalFactory.createDDecimal(0, 1);

may be slower than:

inStock = DDecimalFactory.createDDecimal(1, 1);
damagedStock = ((DDecimal) Global.factory().copyDependent(null, inStock);
damagedStock.assign(0);
SanFrancisco Coding Tips 171

This may vary depending on the complexity of the logic to create an object and
the amount of state that differs between the two instances.

10.1.7 DPC Initialization
A Distributed Process (DP) is based on the concept of a normal process, in that it
is an anchor point for one or more threads that are actively working under it. The
threads of a DP can be spread across one or more JVMs. The DP, like a normal
process, has a context, or shared information space, that each thread in the
distributed thread can access and modify. This context is called Distributed
Process Context (DPC). Changes made to the DPC by one thread are available
immediately to other threads in the distributed process.

A thread must be associated with a work area to access the DPC. Things that are
scoped to the work area include transaction work, factory interface for NO_LOCK,
and transient entities and security context.

During global initialization of an application, a distributed process and default
work area is constructed and associated with client thread. When initialization is
complete, the client thread has access to the DPC and can begin using the work
area. The information stored here is typically timezone information, the locale
currently in use, the precision values when working with DDecimal , the currently
active company, and so on.

There are two ways to ensure that the DPC global data is initialized as soon as
possible. You can:

 • Define the initial default value in the Global.name.

 • Set the value when it is not already set.

Currently, the DPC support allows primitives to be used in initial default values in
the Global.name .

For handling situations where the DPC value may not have been set, the following
logic should be used when attempting to retrieve the value:

DistributedProcess dp = Global.factory().getDP();
try
{

scale = (Integer) dp.getSystemFieldBy("maxScale");
}
catch (SmContextFieldNotFoundException e)
{

Integer scale = new Integer(5);
dp.setSystemFieldBy(scale, "maxScale");

}

Additionally, the DPC allows for usage of any Java object (not just SanFrancisco
objects). Here, using Integer instead of DInteger is a better choice.

10.1.8 Transient Entities
Generally transient objects are garbage collected when they are no longer
referenced by any other object. On the other hand, transient entities are cached
in Factory. They can be accessed by their handles.They are created as a result
of:
172 IBM SanFrancisco Performance Tips and Techniques

 • Query Result collections
 • No-Lock copies
 • Other usages, such as when an entity is explicitly created as transient by

passing a null location handle.

These entities have to be explicitly deleted from the work area of the user, if not,
they take up a lot of memory and thus cause performance degradation. They can
be deleted by:

 • deleteEntity() —Specify the handle.

 • deleteWorkArea() — Results in deleting all the Entities of the work area, in
addition to other information in DPC.

 • End client process—Stops the client process and frees up the memory used
by the Entities.

10.1.9 Hashcodes
Hashcodes are used by tables/collections for accessing elements. They are
integer values returned by the hashCode() method, which all Java objects
support.They are functionally similar to an index key used for looking up
elements. Though hashcodes do not have to be unique, performance is best
when no two elements in the same collection have the same hash code values.

While deriving Dependent subclasses, the hashCode() method must be overwritten
if it does not inherit a suitable hashCode() method from some ancestor class. The
value computed by hashCode() is normally computed from one or more instance
variables of the object. A good hashCode() method should be fast and also returns
values that tend to spread the instances of a class broadly across the range of
integer values returned.

For more details on hashCode() method, refer to the Programmers Guide section
on Deriving Dependent Subclasses

10.2 Foundation Layer Coding Tips

SanFrancisco is known to be a distributed environment. This means that objects
can be made available anywhere in the network. Different options exist for
accessing or working with a business object and choosing the right approach are
crucial for application performance.

To make the right choice in accessing an object, you should know:

 • How big the object is
 • How many calls are going to be made to it
 • What kind of data flows with those calls
 • Communication link overhead
 • Computing power of the server versus the client

Essentially, the choice you have lies within using a certain AccessMode and the
use of Commands. These factors work together and have a cumulative effect on
the performance. This section focusses on the use of AccessMode and
Command objects and other Foundations objects that can have a profound
bearing on the working of your application.
SanFrancisco Coding Tips 173

Figure 65 shows the distribution of time for some common operations in the
Foundation Layer.

Figure 65. An Example of Time Distribution for Foundation Layer Operations

10.2.1 Commands
One of the most efficient ways to work with remote SanFrancisco objects is by
well-planned use of the Command objects. A Command is a class of SanFrancisco that
provides a way of wrapping up a number of method calls against an object.
Commands are an effective way of shifting the execution of method calls to actual
space of the target object on which they will be executed. Thus, the methods are
executed in the same memory space and server process as that of the target.

10.2.1.1 Creating commands
Commands are Dependents and can be streamed and contained in another
Entity or Dependent. This capability is used by business process components to

The information presented in Figure 65 is just one example and is specific to
one application, in this case the GBOB Benchmark. The time distribution may
be totally different for your application. It is strongly urged that you create a
similar profile for your application, so as to obtain the time distribution that is
more relevant to your application. For more information on how you can go
about doing this, refer to the 3.2, “Profiling the Application with JProbe Profiler”
on page 25.

Note
174 IBM SanFrancisco Performance Tips and Techniques

support logging of actions and undo/redo of commands. Commands are created
by following the standard Factory pattern. The command factory, in turn,
delegates the job to the BaseFactory.

Figure 66. Command Loading - Specifying the Location of Execution

The Command factory has a number of static create() methods that allow you to
specify different parameters while creating the command objects, depending on
whether the target is a Dependent or Entity. These methods are reproduced here
for reference:

static final <className> create<className>(Base target, <param1, ...>) throws
SFException;
//run command locally

For example:
public static final HouseAdjustRoomSizesCmd createHouseAdjustRoomSizesCmd(
House house, float percentage) throws SFException;

If the target inherits from Dependent, the following creation method is used:

static final <className> createContained<className> (Base containingObject,
Handle locationHdl, boolean returnCommand, Base target, <param1, ...>) throws
SFException;

For example:
public static final HouseAdjustRoomSizesCmd createHouseAdjustRoomSizesCmd(
Base containingObject, Handle locationHdl,
boolean returnCommand, Handle houseHdl, float percentage) throws SFException;

If the target inherits from Entity, the following creation method is used:

static final <className> create<className> (Handle handleOfTarget, <param1,
...>) throws SFException;
//run in target server process, no return

For example:
public static final HouseAdjustRoomSizesCmd createHouseAdjustRommSizesCmd(
Handle houseHdl, float percentage) throws SFException;
SanFrancisco Coding Tips 175

static final <className> createContained<className>(Base containingObject,
Handle locationHdl, bolean returnCommand, Handle handleOfTarget, <param1,...>)
throws SFException;

For example:
public static final HouseAdjustRoomSizesCmd createHouseAdjustRoomSizesCmd(
Base containingObject, Handle locationHdl,
boolean returnCommand, Handle houseHdl, float percentage) throws SFException;

The factors that decide the actual place of execution of the command are
determined by two parameters, which are passed to the factory create() method,
namely the “target”, which can be either null, an Object (if derived from
Dependent), or its Handle (if derived from Entity) and “locationHdl”, which can be
either null or the handle of a persistent entity. The table in Figure 67 summarizes
the location of execution for different input combination of these two parameters.
For more details on other parameters, refer to the Programmers Guide for
creation of Commands.

Figure 67. Location of Execution for Different Values of Target and LocationHandle

If the target is specified by handle and no separate locationHdl is specified, target
handle is passed to BaseFactory as locationHdl. This causes the command to be
executed in server process of the target unless the target entity is already
accessed locally, in which case, the command also is executed locally. This is the
most efficient way of specifying the location of execution.

10.2.1.2 Commands and Transaction Scoping
Commands can be executed as independent transactions or as part of larger
transactions. When they are used to define a transaction, they handle the
transaction management by themselves with BaseFactory calls, such as begin()
and commit(), and automatic recovery in case of failures with a rollback() call.

To execute a command atomically, use the doTransaction() call. It is not possible
to undo/redo operations on the command if you use this method call. To execute a
command as part of a larger transaction, use the doAll() call. This call allows
undo/redo operations.

However, some framework provided commands that represent complex business
tasks do not support undo/re-do. This can only be done by having the transaction
176 IBM SanFrancisco Performance Tips and Techniques

rolled back. Other commands that normally perform interactive tasks, such as
data entry tasks, support the undo/redo operations. The supportsUndo() method
call can be used to determine if a undo() is supported by a command or not.

If a lock is held on a business object that a command needs to modify, and the
lock does not allow writing, the command can be programmed to attempt to
upgrade the lock for modification. If the necessary lock type cannot be obtained
due to a compatibility mode it has, an exception will be thrown.

10.2.1.3 Scenarios for Usage of Commands
It appears that top performance gains can be obtained from SF if most of the
operations are performed using command objects. They can be used extensively
for creating, deleting, and manipulating business objects and running complex
business logic involving multiple objects.

Commands can be used specifically in the following scenarios:

 • To retrieve a host of information from a remote object. All methods that need to
be executed on the remote object are encapsulated in the Command.

 • To execute a method call on a large number of remote objects. The Command
can collect information from a large number of objects by executing a
particular method call on each of them, collecting the results, and then
sending it back to the caller.

 • When the streaming costs of a business object are high.

 • When the request involves access to other business objects.

Keep in mind, however, that using Command does not come free. It involves writing
three new classes: the command interface, the factory for creating the command,
and of course, the implementation. Creation of command also takes time. In
cases where only one method call needs to be executed remotely on a single
object, it would not be worthwhile to create a command. This is because of the
additional costs involved in creating a command, streaming the command over to
the target location, and returning the results back. In such cases, the standard
method is recommended.

10.2.1.4 Generic Commands
Commands written should be as generic in nature as possible, so that commands
used for a purpose can be reused, with some reinitialization, for use with other
objects. For example, if we have to run a query on a collection, instead of
hard-coding the command to be a particular type of collection, the collection to be
queried can be passed as a initialization parameter. This command can then be
reused with another collection for a similar kind of query by reinitializing the
command with the new collection element. Use of generic commands reduces the
the application code to write and causes the byte code to be loaded.

10.2.1.5 Reusing Commands
As with any other object, reusing Commands can also result in significant
performance improvement. Thus, instead of creating a Command every time you
wish to manipulate an object, you can usually reuse the Command (even those
having state). The reuse is achieved by calling the reset() method on the
command:

public final void reset() throws SFException, SFResetNotAllowedException
SanFrancisco Coding Tips 177

This method, in turn, calls the handleReset() , which changes the state of the
command to NEW. This does not change the other initialization parameters, such
as target, and so on, but allows another doAll() on the command. The other
parameters could be changed by calling the appropriate public setter methods on
the command class. This can be used specifically if you want to execute a series
of commands that are almost identical.

If you have a command that does not have state, it can be reused as shown here:

MyCommand cmd;
...
if (cmd != null)
{

cmd.reset();
}
else

{
cmd = MyCommandFactory.createMyCommand(locationHandle);

}
cmd.doAll();

To reinitialize a command with a new set parameters, you should provide your
own reinitialization routine. The following example shows how to re-use a Command
that has state through a reinitialize method:

if (createDissectionCmd != null)
{

createDissectionCmd.reinitialize(journalHdl, postingCombinationHdl.
transactionValue);

}
else
{

createDissectionCmd =
CreateDissectionCommandFatory.createCreateDissectionCmd(journalHdl,
(postingCombinationHdl, transactionValue);

}
createDissectionCmd.doAll();

Here is the implementation of the reinitialize method for the CreateDissectionCmd
object:

CreateDissectionCmdImpl.java:
/*

/* Reinitializes this Command with the given values so that it can be executed
** again.
** @param Handle journalHdl (also the location handle of this Command)
**(Mandatory)
** @param Handle postingCombinationHdl (Mandatory)
** @param DTransactionValue (Mandatory)
** @return void
** @exception com.ibm.sf.gf.SFException Business Objects Framework Exception
**--
*/
public void reinitialize(Handle journalHdl, Handle postingCombinationHdl,
DTransactionValue transactionValue) throws SFException
{

this.reset();
ivJournalHdl = this.setHandleToHandle(ivJournalHdl, journalHdl);
178 IBM SanFrancisco Performance Tips and Techniques

ivPostingCombinationHdl = this.setHandleToHandle(ivPostingCombinationHdl,
postingCombinationHdl);

ivTransactionValue = (DTransactionValue)
Helper.setDependentToDependent(ivTransactionValue, transactionValue);

}

10.2.2 AccessMode and Locking
AccessModes are used to control the way a shared, persistent Entity object is
accessed. They are passed to the BaseFactory , and they determine lock type and
access characteristics, such as the access location and lock wait time-out, for
both Entity and any of its contained collection elements.

Figure 68 shows typical client server scenarios with different access modes. The
AccessMode used by the client will determine whether the entities it accesses will
be copied over to the client (that is, a proxy of the entity object is streamed over to
the client), or they are accessed remotely on the server.

Figure 68. Object Distribution for Default SanFrancisco AccessModes

Programmers generally do not need to know the details of the various access
mode possibilities. Special static create methods exist on the AccessMode class
that return AccessMode objects suitable for most programming situations.

These methods for creating AccessMode objects are summarized here:

static final AccessMode createNomal () throws GFException,
SmWorkAreaNotActiveException;
//supports reading and upgrading to write, access location is HOME
SanFrancisco Coding Tips 179

//that is the server where the entity "lives".

static final AccessMode createPlusWrite () throws GFException,
SmWorkAreaNotActiveException;
//supports getting or upgrading to write access, access location is HOME.

static final AccessMode createCritical () throws GFException,
SmWorkAreaNotActiveException;
//supports exclusive access with high degree of isolation for short, critical
//tasks, access location is HOME.

static final AccessMode createNoLock () throws GFException,
SmWorkAreaNotActiveException;
//gets non-transactional, non-shareable access to data from the object
//access location is LOCAL, that is a copy is made on the client side.

The specific values returned from the preceding static create methods can be
modified at run-time using the set<name>() methods. A modification affects all use
within the callers DistributedProcessContext. These methods are used by first
creating an access mode object using the static create method that allows
specifying the values for every attribute of the object. Once an access mode
object is created with the desired attributes, it is passed in the set<name>()
method, which copies it for use in the corresponding subsequent static
create<name>() calls.

10.2.2.1 Customized AccessMode objects
The primary purpose of creating a customized object is to use it on the static
access mode methods to change the setting of the standard access modes
(described above). Changing the standard access mode like this will normally
result in the best performance because then all objects will be accessed
consistently in that distributed process.

Creating a customized access mode object is done using the static create method
on the AccessMode class. This method takes values for each of the access mode
attributes as an argument as shown here:

static final create (int entityLock, // values defined in LockMode

You should not directly use a custom access mode when accessing objects
because you may run the risk of having significant performance or contention
problems. This is because other code in the same transaction may use the
standard access mode, resulting in a mixture of access modes, with some
object being accessed differently from others. This mixture can cause bad
performance due to excessive remote calls between the objects being
accessed HOME and LOCAL. The alternative of trying to get all the code in the
same transaction to use the same custom access mode object without
changing the standard access mode is unreliable because of code that you
didn’t write being called. This includes IBM code (such as AdhocQueryCmd, which
uses createNormal() access configured on the Entity that is the target of the
command), or other third-party code that may be called without your knowledge
because someone configured a third-party class to be substituted for one of
your own or for one of the framework classes.

Attention
180 IBM SanFrancisco Performance Tips and Techniques

int entityLocation, // values defined in AccessLocation
int entityCompatibility // values defined in CompatibilityMode
int waitTime) // values defined in Timeout
throws GFException;

The parameters that can have a bearing on performance are explained in the
following sections.

10.2.2.2 Lock Modes
Concurrency control is achieved through the specification of the type of lock to
get on the accessed Entity. Valid values for lock types are defined in the
LockMode class with the following identifiers:

OPTIMISTIC
OPTIMISTIC_CLEAN
NO_LOCK
READ
WRITE

The details of each of these are available in the Programmer’s Guide.

Approaches for Using of LockModes
A simplified way of looking at an application is to think of it as having three major
stages:

1. Read—In this stage, data is collected from certain objects in order to present
to the user. There are no modifications in user interactions.

2. Work —This is the stage with user interaction. The application needs to
preserve requests of the user.

3. Write —Here, there are no user interactions, but the real objects are modified
and committed.

Let us assume that each of these stages uses separate transactions for Read and
Write stage.

Table 10 on page 182 shows what object access would be used in each stage of
different approaches. The table also details the pros/cons for each approach and
the performance trade-off while using the different approaches. The approaches
are named for the dominant access mode used.
SanFrancisco Coding Tips 181

Table 10. Summary of Pessimistic, NO_LOCK, and Optimistic Approaches

Pessimistic NO_LOCK Optimistic

Read Pessimistic read
access to collect
information to
display information
to the user

Make NO_LOCK
copies of relevant
objects and use
them to get
information to
display to user

Gets optimistic
copies of relevant
objects and uses
them to get
information to
display to user

Work Application uses
local variables or UI
object state to keep
track of changes the
user wants to be
made

Use local variables
or UI object state to
keep track of
changes user
requests

Application makes
modifications to the
optimistic copies
based on user
interactions

Write Pessimistic write
access to make
changes to real
objects

Pessimistic write
access to make
changes to real
object based on
changes to
NO-LOCK copies

Application can
simply commit the
transaction, which
will succeed as long
as no other
transaction holds
any pessimistic lock
on the changed
objects, and none of
the objects have not
been changed by
other transactions

Pros/Cons Must be careful
about other
transactions having
changed your object
during work stage.
But this can be
overcome in two
ways. One is by
maintaining a time
stamp in the entity
being changed, the
other is by
comparing all the
attributes of the
entity that was
changed.

Allows use of an
object view of the
data during work
stage.
Current limitations
with
refreshEntity(),
etc. that make it hard
to program.
Must be careful
about other
transaction having
changed your object
between the time
you obtained the
NO_LOCK copy and
the time you got the
write lock.

Allows object view of
data during work
stage.
System will detect if
objects have been
changed by another
transaction during
commit time, and if
so, will cause
commit to fail.
The burden of
recovery from failure
is on user.
Current limitations
with
refreshEntity()
make it hard to use.
182 IBM SanFrancisco Performance Tips and Techniques

If the three stages Read, Work, and Write are carried out in a single transaction,
then the scenarios are different. An object that is read and written in the same
transaction would need to be accessed with a Write lock in the Read stage to
avoid problems of lock upgrade during the work stage or during the Write stage. If
you use a pessimistic lock, you also have to have a suitable scheme to avoid
deadlocks. For more details on deadlock avoidance, refer to the Programmers
Guide in the section on Deadlock Avoidance

10.2.2.3 NO_LOCK and Optimistic Access with EntityOwningExtents
Unlike other entities, NO_LOCK and Local access to EntityOwningExtents is not
made by simply making a snapshot copy of the real object. The object provided
when NO_LOCK or Local access is requested is a special object that delegates
some of the operations performed on it to the real extent and the real underlying
persistent data. Currently if an Extent is accessed Locally, it is implicitly
overridden to HOME access. However, this does not affect the correct functioning
of you application, performance may be significantly affected due to many remote
method calls between objects that were accessed Local as requested and objects
that got accessed HOME because the extent was overridden to HOME. It is better
if your code doing the query and processing the results is running on the server
rather than trying to use Local access mode from a client.

10.2.2.4 Access Location - HOME versus LOCAL
Accessing an object with AccessMode set to LOCAL causes the object to be
copied from the server process owning its container into the process where it is
being accessed. All method calls on that object are then local (fast). When you
are finished updating the object, it is copied back to the server process that owns
its container.

Accessing an object with access mode set to HOME creates a proxy or stub of
the accessing system. The object itself remains on the server owning its
container. All method calls on the object are then transferred by the stub to the
server system where they will be executed directly on the object.

The LOCAL versus HOME question depends on whether the overhead of
streaming the object back and forth (LOCAL) is more than that of having each

Performance Best performing
approach because
only data to be
displayed is copied.
Makes it easy to use
commands running
on server for the
read/write stage.
Since pessimistic
locks are not held
during work stage, it
reduces chances of
a bottleneck caused
due to restricting
other transactions
use of these objects.

Performance
overhead of having
to make NO_LOCK
copies, which may
be prohibitive if the
objects are very
large, such as
collections other
than
EntityOwningExtent

Performance
overhead of having
to make Optimistic
copies of objects,
which can be very
prohibitive for very
large object, such as
collections other
than
EntityOwningExtent

Table 10. Summary of Pessimistic, NO_LOCK, and Optimistic Approaches

Pessimistic NO_LOCK Optimistic
SanFrancisco Coding Tips 183

method call flow back and forth (HOME). The answer depends on a number of
factors:

 • The size of the object
 • The number of calls made to it
 • The kind of data that flows with those calls
 • The amount of communication overhead
 • The computing power of the server versus the client

In short, to answer the LOCAL or HOME question properly, you have to
understand these different factors (some of which you may not even know) and
how they inter-relate. The advise of our SF performance team is: “Access remote
objects at HOME”. The team has found very few situations that LOCAL access
wins. So, unless you are convinced that LOCAL access is better, use HOME.

One case where the LOCAL has been found to be the best is in connection with
NO_LOCK mode. This is the case where you want to cache an Entity because
you need to access it repeatedly for reading (across multiple transactions), and
the state of that Entity is very unlikely to change while you work with it. Even if the
Entity changed its state, the above still applies, as in the case:

 • You were only interested in a subset of the Entity’s state
 • The subset was not likely to change

Some of the Controllers introduced by CF and Towers are good examples for
Entities to cache because:

 • They go through an initial setup (where they are populated with the set of
objects and from that point on typically do not change state any more).

 • They are accessed multiple times (across transaction) to retrieve controlled
objects.

For example, consider the UnitOfMeasure controller.

The set of UnitOfMeasures used by an application does not usually change at
application run-time. It is determined during application setup. Thus, once the
application setup is complete, the state of the UnitOfMeasure controller is unlikely
to change. The following piece of code makes use of cached UnitOfMeasure
Controller:

Company company = CompantContext.getActiveCompany(AccessMode.createNoLock());
cachedUnitOfMeasureController = (UnitOfMeasureController)
company.getPropertyBy("cf.UnitOfMeasureController");
BaseFactory factory = Global.factory();
factory.begin();
UnitOfMeasure unit_a = cachedUnitOfMeasureController.getUnitOfMeasureBy("A");
.....
factory.commit();
...
factory.begin();
UnitOfMeasure unit_b = cachedUnitOfMeasureController.getUnitOfMeasureBy("B");
...
factory.commit();

Follow these rules of thumb while using AccessModes:
184 IBM SanFrancisco Performance Tips and Techniques

 • If you have many requests (methods calls) and streaming costs are low, use
LOCAL access. The streaming costs are the costs for streaming the target of
the method call plus the cost of streaming parameters and results.

 • If you have very few requests, use HOME access.

 • If you have many requests and high streaming costs, use Commands.

10.2.2.5 Compatibility Modes
A compatibility mode attribute in the access mode specifies whether, and how,
the framework may modify the lock and location request to be compatible with an
existing lock on the object or its container. The valid values for compatibility mode
are defined in CompatibilityMode class with the following identifiers:
NO_CHANGE, SELF and CONTAINER. The compatibility modes come into play
when we try to access objects that are contained within another object. The
containing object’s AccessMode determines the type of lock that may be granted
to the contained object. This is an important consideration since the appropriate
lock may not be obtained for a contained object if its not compatible with that of its
containing object. This could result in failures at commit time because a lock
upgrade could not be obtained. For more details on Compatibility modes, refer to
the Programmers Guide section on Compatibility Modes under Advanced
AccessMode Programming.

10.2.3 Iterators
Iterators are a set of classes provided by SanFrancisco to traverse SanFrancisco
collections. The following sections outline the points that you should keep in mind
while using iterators.

10.2.3.1 Iterators and LockModes
Irrespective of the AccessMode specified for the collection, the elements of the
collection are accessed using the default AccessMode createNormal(). If it is
known in advance that the elements being accessed are going to be changed,
then it would be a good idea to set the AccessMode to createPlusWrite() for
accessing the elements. The setAccessMode() on the iterator can be used for this.
The drawback of using the default createNormal() is that there is a contention risk
when the changes are to be committed later.

10.2.3.2 Loops
If you are going to iterate over a SanFrancisco collection, you may attempt to
utilize the more() or hasMoreElements() methods. For example:

Iterator iterator = collection.createIterator();
while(iterator.hasMoreElements())
{

Object myElement = collection.next();
}

This loop is easy to understand, but the call to more() is unnecessary since
SanFrancisco collections and iterators returns null on calls to the next() method
when there are no more elements. You can use this feature to loop until next()
returns a null. If you are accessing the collection remotely, remote method call
overhead will also be added to the overhead of the more() method, resulting in a
significant performance cost. An improved version of the loop eliminates the
additional method call overheard. For example:
SanFrancisco Coding Tips 185

Iterator iterator = collection.createIterator();
Object myElement = iterator.next();
while (myElement != null)
{

Object myElement = iterator.next();
}

10.2.3.3 Databases
When associated with persistent EntityOwningExtents in a relational database,
iterators allocate resources when created. If your transactions are long running,
you may want to consider forcing the iterator to drop its database resources when
you are done with the iterator. This can be done by use of releaseResources()
method on the iterator. This frees the resource for later use in this, or other,
transactions.

If the user of the iterator neglects to call the releaseResources() , the iterator
performs this method itself when the next transactional scope is started.

10.2.3.4 Reversible Iterators
Before the SF130 release, iterators supported both forward and backward
iterations. The backward iteration proved to be a performance hurdle for usage
with collections, especially EntityOwningExtents , because some databases do not
support backward iteration. This required a lot of caching to be performed and
used up memory. To overcome these problems, and also because most of the
time only forward iteration is required, this functionality was removed from the
Iterator and a new class, the ReversibleIterator, was introduced to allow for
backward iteration. Lists and transient collections return reversible Iterators on
createIterator() calls.

10.2.4 Collections
Choice of a particular collection can have considerable impact on performance.
The table below shows the preferred choice of collection for a set of
functionalities that are expected from it and for a given number of elements.

Table 11. Choice of Collections Determined by Size or Functionality Needed

Note :
* Copy semantics
** Database column limits
*** Recommended size constraints

Special care has to be taken while returning collections as return values of
methods. The following list outlines some pointers for such a use:

Choice Query Pushdown Iteration Primitives Legacy Size***

DMap,
List,
Set*

10 to 50**

Map,
List, Set

over 50

Extents # # # # very large

Arrays # 1-20
186 IBM SanFrancisco Performance Tips and Techniques

 • When the returned value is used as a particular collection type, return the
collection type.

 – For example, a collection should be used when the result is typically copied
into a collection or will be queried over.

 – Avoid using a DEntityOwning<collection> since each copy owns the Entities
and destroy them when its is destroyed.

 – If a large number of elements are returned, a D<collection> should not be
used because a D<collection>, which contains dependents, copies
everything when it is copied.

 • When a constant fixed number of elements is to be returned, an array should
be used.

 • When a variable number of elements is to be returned, a vector should be
used.

For methods whose parameters and return values are collections:

 • When the parameter is used as a particular collection type, pass in the
collection type.

 – For example, a collection should be passed when it is copied into a
collection or will be queried over.

 – Consider transferring ownership of non-Dependent collections.

 – Avoid using a DEntityOwning<collection> since each copy will own the
Entities and will destroy them when it is destroyed.

 – If a large number of elements are returned, a D<collection> should not be
used because a D<collection>, which contains dependents, will copy
everything when its copied.

 • When a constant fixed number of elements are passed in, then an array can
be used.

 • When a variable number of elements are passed in, then a vector can be
used.

10.2.4.1 Arrays
Arrays need to be considered as a collection choice especially compared to
Dependent collections (DList, DSet, and so on). Because arrays are lighter in
weight, streaming and storage costs are much less.

It is important to know how an array is used and what function is needed. If only
basic functions are needed (stepping through the collection one element at a time
or especially indexing to specific elements), look at using an array. If keyed
function or element uniqueness is required, DMaps or DLists would probably be
required. For more assistance on selecting the correct collection, refer to
Collections section in the Programmers Guide.

Persistent SanFrancisco vectors are not available at this time, so if an array is
not applicable, pick the right kind of collection: Set, Map, List, DSet, DMap , or
DList , depending on your situation. Refer to the Programmers Guide for the
suitability of a type of collection for a given situation.

Note
SanFrancisco Coding Tips 187

You can also use transient arrays to hold SF business objects (Dependents,
Entities, and so on) that you need to hold temporarily (instead of creating a
Collection for them). You can also use arrays as input parameters or return values
for methods (again, rather than the relatively heavy weight collection objects).
When working with a small number of objects, arrays are probably your best
choice.

10.2.5 Miscellaneous
This section proposes the use of the Helper class and some recent
enhancements made to SF, namely multiple entity retrieval and persistent arrays.

Helper
The Helper class can be used to copy dependents, comparing entities for
equality, and so on. The helper methods should be called directly. For example:

Helper.setDependentToDependent();

The following example code compares two entities that are equal:

Helper.equals(thisHandle, thatHandle);

This way of comparing handles is preferred to comparing two entity objects
directly because it saves the time for loading the entities in memory.

Multiple Entity Retrieval
The getElementsBy..() method on BaseFactory allows for accessing multiple
entities by their Handle. This is more efficient as compared to retrieving each
Entity separately since it reduces the number of remote method calls involved.
This method also takes an AccessMode parameter that determines the type of
access obtained for the elements of the collection.

Persistent Arrays
The use of SanFrancisco collection objects, such as Map, Set, and so on, may not
really be necessary if the only need is to store a collection of elements. These
SanFrancisco objects are heavier, and hence, take more memory and time.
Instead, arrays could be used, and since their elements can be persisted, it
makes sense to use them instead of the SanFrancisco objects.

DDecimal
The DDecimal factory class has been modified in the SF130 release to allow
creation of DDecimal with a long primitive initialization value. This speeds up the
initialization process.

10.3 Common Business Objects Coding Tips

This section discusses some of the issues that come up while using the Common
Business Objects. Since SanFrancisco is organized on the concept of a company
hierarchy, the section on CBOs details the structure of the hierarchy and the
association of controllers and policies with the company objects. Also, it talks
about validation and the use of keys and cached balances.

10.3.1 Company, Controllers, and Policies
A company in SanFrancisco serves more than the normal purpose of
representing an organizational unit. It also acts as the placeholder, or parent of a
188 IBM SanFrancisco Performance Tips and Techniques

number of domain objects, that either do not have a parent object in the domain
or that are generally used across the entire organization. These objects are
tracked and managed by special objects called Controllers . The controllers, in
turn, are held as properties by the company. Thus, we have two types of
companies: context and non-context companies. To be eligible to be a context, a
company should have all controllers and policies necessary for a given process
contained either directly, or on, its ancestor companies. The exact controllers that
are required depends on the application. A company that is currently associated
with the context of a session is called the activeCompany . The user always retrieves
any of these objects from the activeCompany by requesting the appropriate
controller. For the user, it is as if the activeCompany holds all the controllers,
whereas in reality, the controllers may be attached at different levels in the
organizational structure. To make this clearer, lets assume we are dealing with
the PaymentMethod (PM) objects, and our company hierarchy is as shown in Figure
69.

The Enterprise (just another Company, its significance being that it is the root in
the Company hierarchy) is the root of the tree with a number of companies C1,
C2, and so on under it. Let us say the activeCompany is directly under the company
C1. The companies have the PM controllers attached to them. The enterprise has
the root controller, which means it is the last in the chain of responsibility for
searching for a given object. If its not found here, then the search of an item will
fail. The company C1 has an aggregating controller attached to it, which means it
can access objects in the PM root controller in addition to the object it contains.
Aggregating controllers have access to all the objects that are above them in the
hierarchy. Figure 69 illustrates this scenario:

Figure 69. Company Hierarchy and its Association with Controllers

Now, let us say the user in the active company needs access to object "z." The
company propagates the request to C1, which checks its PM aggregating
SanFrancisco Coding Tips 189

controller for the object. The object is found and returned. If the user now
requests object "p," it is searched for in the PM aggregating controller of C1. At
this point, the aggregating controller does not find it in its collection, but the
search does not stop here. It passes the request on to the controller higher up in
the hierarchy, in our case, the root controller. To do this, the controller internally
requests its company, C1, for its parent company and passes on the request to
the parent company’s controller. Thus, the grouping shown in dotted lines is just a
view that the user sees. The aggregating controllers pretend to be holding all the
objects that are in the complete path higher up in the hierarchy. In reality, the
logical scope of controllers increase as we descend in the Company hierarchy
and decrease as we move higher up in the hierarchy.

The point to note here is that the distribution of the objects in controllers at
various levels can have a considerable impact on the performance, especially for
queries of the type described above. Also, the depth of the hierarchy, and which
company is currently the active company for the user, will also determine the path
length in the chain of responsibility for queries. If the company C1 and Enterprise
are on physically different machines, it would involve remote calls over
communication links.

The issues to be considered can be explained with the example of the
PaymentMethod object used above. The PaymentMethod describes the means of
payments accepted by a company, such as cheques, cash, and so on. Now,
normally this would be common across the entire organization, and hence, this
would be placed on the level of the enterprise (for example, objects "p," "q," and
"r"). But, say the company is geographically dispersed and company C1 needs to
introduce a new manner of payment "z." Also, the other means of payment are
used. Since "z" is specific to C1, you place it in Company C1 and use a PM
aggregating controller for accessing the other payments too. Also, if some type of
payment, say "r," is not acceptable in its current form at company C1, it can be
overridden and replaced by object "r1" in the company C1. Thus, if a user of C1
asks for object "r," they instead are returned the object "r1." Also, let us say there
is a change in the object "p." This is an enterprise-level object, and thus, the
change in it is automatically available to all the companies in the organization. For
these, and many other organizational reasons, its desirable to have the objects
distributed at various levels. All of this flexibility can lead to the performance
problems described above. By a proper load balancing at all levels, these issues
can be optimally sorted out. The answers to the following questions provide some
direction in this regard:

 • Where is the root controller placed? In the extreme case, every company
could just hold a root controller and there would be no propagation in the chain
of responsibility at all. This would, however, mean that the controllers contain
all the objects in them. Also, there arises questions of keeping them all in sync
since they are common for the whole organization. On the contrary, if the
companies at a certain level, say C1 and C3, deal with totally different types of
objects, and there are no commonalities in them, then each could hold a root
controller.

 • Where is the ActiveCompany set? Most of the time, this is decided by default
as the current company returned by the CompanyContext . But the active
company can be set at a different level in the hierarchy to reduce the path in
the chain of responsibility. For example, let us say that C1 holds all the root
controllers, and all companies below it in the hierarchy just pass the request
up to it for all objects, then the active company could be set to C1, and this
190 IBM SanFrancisco Performance Tips and Techniques

would reduce the path lengths considerably. This would not allow for a
company down in the hierarchy to override any functionality or use a new
object.

The discussion for controllers applies largely to policies as well. The policy usage
should be based on two criteria. The first consideration is whether the behavior
being considered is flexible enough to warrant the use of a policy. If it is not likely
that the behavior will change, or if that change could be accommodated by
providing a different class (that is, another class that implements a common
interface of the class being considered), it is probably unwise to introduce a policy
due to performance and object size considerations. In this case, the behavior
could be built into the object being designed. Users wishing to change the built in
behavior could still do so by subclassing or introducing a sibling class and
enabling that class through class replacement. However, if the behavior
considered is flexible and likely to be customized, a policy should be introduced.

The second consideration is to determine the scope of the policy, whether it is
application wide (applies for the entire logical SanFrancisco network, for example,
a rounding policy for numeric values), or company specific (for example, leave
encashment for employees). In the first case, where the policy is application wide,
the appropriate policy subclass is enabled through class replacement using
objects that create and contain an instance of the policy when they themselves
are created. In the later case, where the policy is company specific, instances of
the appropriate subclass of the policy are placed on companies in the company
hierarchy as properties. Objects that use the policy do so by going to the active
company and retrieving the policy when necessary. Because policies, like
controllers, are held as company properties, their retrieval will follow a chain of
responsibility upwards through the company hierarchy. For specific
implementations, the chain of responsibility can be truncated at certain points by
introducing terminal objects that return the required policy objects themselves
instead of propagating the request. For more information on the chain of
responsibility pattern, refer to the Extension Guide’s section on Working with
chain-of-responsibility driven policies.

Sometimes, the policy functionality itself needs to be changed. This would be true
in cases where the default functionality provided by a policy may be too elaborate
and not really required. For example, one implementation of the exchange rate
policy, which converts from a given currency to another currency, does not do a
simple table lookup for a direct conversion. It checks if there are any intermediate
currencies through which the conversion can be done. If such a functionality is
not really required, it could be replaced with a simple and more efficient direct
conversion check. This would improve performance to an extent.

10.3.2 Euro Currency
Some changes have been made in the SF130 release for the incorporation of the
Euro, though the discussion here applies in general. The exchange rate retrieval
policy brings about some considerations while using fluctuating rates, such as
trade offs between maintaining a lookup table for conversions between currencies
and the coding algorithm for conversions. If you want to have the simplest
algorithm for direct conversion table, you have to exhaustively list all the
conversions you will encounter. On the other hand, if conversion can proceed
through other currencies, then maintenance is reduced, but more efficient
algorithm needs to be coded for conversion. For fixed rates, table lookup normally
SanFrancisco Coding Tips 191

proceeds in the triangular way, that is, by converting to an intermediate currency
(the Euro) and then to the required currency.

Another factor is the information about the phases in which the changeover to
Euro takes place. There are up to four phases, and each phase has the base
currency, which is the primary currency being used and an optional report
currency. This would have its impact to an extent on the creation of transaction
values that is based on the period and the phase you are currently in. You may
not want to add all the phases in the beginning, and this would reduce phase
checks.

Another consideration that is not specific to the Euro is whether your exchange
rate type is period based or date based. If your application is primarily period
based, and you use a period based exchange rate type, then pass the period,
instead of a date, which would require some processing to convert it to a period.
The same applies if you are using date based exchange rates.

As a last note, if your application is used in a company where the Euro is not the
base currency, then it would be a good idea not to use the
TransactionValueExtended at all. This may improve performance.

10.3.3 Validation
Validation is an integral part of CBOF and the Towers. Since validation is intended
to catch errors, theoretically, it should be optimized for normal operations, for
example, it should be assumed that errors do not happen very often. One
inclination is for a developer to create the DResultsCollection right at the
beginning of a validation method. This practice, however, tends to be wasteful,
since most of the time, DResultsCollection isn’t needed (no errors) and is simply
discarded. This increases the path length and the amount of garbage to collect.
Developers should only create a DResultsCollection when it is needed.

Most of the time, the default policies that are employed perform an extensive
number of checks. This may not really be required, and it is better to override the
default policy and provide another one where the checks are minimized. Also,
most of the time the GUI itself performs some of the validation checks. For
example, let us say we are dealing with a policy that uses BusinessPartner s, which
can be of three types. If the particular policy can be used with only
BusinessPartner of the Customer type, then such a check would be included in the
policy. This is not really necessary because the GUI allows the user to make
selections only from a collection that displays BusinessPartners of the Customer

type. At the same time, keep in mind that validations are an integral part of any
process and skipping some checks might result in unacceptable behavior.

Additional performance tuning that can be done with the validation is with regard
to the validation levels. The ValidationContex t class can be set to work with three
levels of validations defined in the ValidationLevelEnum class - ALL ,
SEVERE_ERRORS_ONLY and NO_VALIDATION. If set to ALL, then all errors and warnings
validation logic are performed. If set to SEVERE_ERRORS_ONLY, only the severe errors
validation logic is performed. If set to NO_VALIDATION, the validation logic is
skipped all together. Depending on the criticality of the application, the validation
could be set to either NO_VALIDATION or SEVERE_ERRORS_ONLY to reduce the amount of
validation processing. Of course, for critical application, you have to use the ALL
option.
192 IBM SanFrancisco Performance Tips and Techniques

The ValidationContext class also allows you to set the option for bundling the
results (error messages). This is recommended since it saves the efforts for both
creation and handling of the exceptions, which is rather expensive.
SanFrancisco Coding Tips 193

194 IBM SanFrancisco Performance Tips and Techniques

Appendix A. Internal SanFrancisco Tools - Schema Mapper Tool

The following sections described the major topics from the publication “Using
Schema Mapper Tool” in the IBM SanFrancisco documentation found on the
product CD-ROM at SanFrancisco Base Information, column Advanced. All
references in the following sections point to this documentation. The developers
that intend to use Extended Schema Mapping should print and read this
documentation. This document is not included here since it may be subject to
change.

A.1 Overview

A schema is the underlying structure of a database and the organization of its
information. Using a relational database as the persistent store for IBM San
Francisco Business Objects requires a mapping, or correlation, between an
object model and a relational model, each of which has its own schema.

Schema mapping defines the relationships between an object schema and a
relational schema. In other words, classes, objects, and attributes are mapped to
tables, rows, and columns.

A.1.1 Schema Mapping Tool (SMT)

The SanFrancisco SMT plays an essential role in the integration of San Francisco
Common Business Objects with new or legacy relational databases (RDB).
Mapping Entity object attributes to table columns and mapping a unique object
identity to an existing primary key are only two of the many schema mapping
functions that help ensure RDB persistence.

SanFrancisco provides two different tools for schema mapping: the Default
Schema Mapper (DSM) and the Extended Schema Mapper (ESM). The ESM
requires a graphical user interface (GUI) to collect the necessary direct user
input. Because the DSM is an automatic function that requires no direct input
from a user, it does not use the SMT GUI.

For more information on the characteristics of the DSM and the ESM, see
Integrating, storing, and managing persistent objects.

A.1.2 Schema Mapping Language (SML)

A SanFrancisco SML file contains the definitions of a particular schema map for a
class, embedded objects, and subclasses. SML files extend the usefulness of a
schema map through their reuse and modification.

A.1.3 Platforms and DBMS

The SML generated by the ESM is compatible with the following platforms with
the specified DBMS:

 • DB2 V5 on Windows NT 4.0
 • DB2 on AIX
 • Oracle8 on Windows NT
 • DB2/400 on AS/400 systems
© Copyright IBM Corp. 1999 195

A.1.4 Schema Mapping Interface (SMT GUI)

The main interface of the SMT GUI is characterized by the four buttons (tabs) at
the top of the interface and the large, active work area that fills the remainder of
the frame. Clicking any of the four tabs displays the interface for the
corresponding function of the SMT.

A.1.5 Schema Mapping an Object

Using the ESM to customize data mappings requires a full and elemental
knowledge of the structure of the database.

A.1.6 Using the Extended Schema Mapper

The following issues are included in the work with ESM:

 • Select a class
 • Define user preferences
 • Create schema map
 • Map the object
 • Map subclasses
 • Assigning primary key
 • Joining tables
 • Mapping to multiple rows
 • Save the schema map
 • Configure the SML file
 • Connect the data source
 • Create required tables

A.1.7 Editing an Existing SML File

Alternatively, you can select an object that has already been mapped by
specifying an existing SML file.

A.1.8 User Preferences

You can modify user preferences and save them to a preferences file. You can
create as many preferences files as you want. When you are finished modifying
the preferences files, you can choose one to use for your current schema
mapping session.

A.1.9 Default and Override Tables

The name of the database table in which you will store the schema mapped
object is the Default Table. You can override this designated table by specifying
an Override Table.

A.1.10 Functions of the SMT

The schema mapping tool provides the following major functions: object mapping,
defining a primary key, joining tables, mapping to multiple rows, and object sub
classing. The tasks include working with following issues:

 • Object mapping
 • Map fields
 • Primitive mapping
 • Array mapping
 • Stream object.
196 IBM SanFrancisco Performance Tips and Techniques

 • Reference SML file
 • Do not store
 • Subclasses
 • Handles
 • Query methods
 • Patterns
 • Primary key
 • Join
 • Multiple rows

A.1.11 Other Considerations

The following SMT limitations apply to SanFrancisco Version 1, Release 2. These
limitations will be addressed in future releases:

 • Caution must be used when mapping more than one class to a single table.
Deleting any object of a set of classes that are mapped to the same table
deletes its corresponding row, effectively deleting all objects that are mapped
to that row. A future enhancement will allow you to specify whether or not a
deleted object will delete its corresponding row.

 • No verification is performed against the database catalog or the original.class
file. Incorrect table or column names that exceed the maximum length of a
data type, and similar problems, result in a run time error.

 • Query pushdown for Handles is supported only if the Handles are streamed.
For specific details on data type mapping considerations and restrictions with
respect to query pushdown, see Integrating, storing, and managing persistent
objects.

 • The Table Schema Assistant cannot "dynamically" create the table on a
system different than the one in which the SMT is running. Instead, you must
save the Create Table statement to a file, then use this file to create the tables
on a different system.

 • Please avoid using the "Window Destroy" (“X” button) as a Cancel function.
Results may be unpredictable.

 • Secondary tables may not use multiple row support. You must map large
objects multiple rows in the primary table only.

 • NT ODBC support is limited to single phase.

A.1.12 Table Schema Assistant

Create a new table directly from a SML file that was created by the Schema
Mapping Tool. Starting the Table Schema Assistant causes it to parse the current
SML file to generate both a CREATE TABLE statement and a DROP TABLE
statement. Executing the CREATE TABLE statement from within, the tool creates
a table that is needed to persistently store the class file that you schema mapped.
Executing the DROP TABLE statement drops the table. It is also possible to use
the ALTER TABLE statement in order to alter an existing table.

 You must have an active SML file for the Table Schema Assistant to work.

Note
Internal SanFrancisco Tools - Schema Mapper Tool 197

A.1.13 Start-up Options

Use the Schema Mapping Tool to map Java objects to relational tables.

A.1.14 Define New Schema Mapping

Designate the class name for the object that you want to schema map, and define
initial user preferences, including data type mappings. For more information
about the procedure, see Selecting a class to map.

A.1.15 Select SML File

Load an existing SML file to edit.

A.1.16 Select Preferences

Select initial user preferences to use in the current schema mapping or to save in
a preferences file. For more information, see User preferences.

A.1.17 Mapping (User) Preferences

Change the listed mapping preferences and save the new preferences to a
preferences file.

A.1.18 Data Type Mapping Preferences - Detail

Change the default schema mapping for a Java data type by defining a column
definition for that type.

A.1.19 Object Mapping

Schema map an object by using one of the following types of mapping: Stream
Object, Map Fields, Reference SML File, or Do Not Store. For more information,
see the procedure Mapping the object or Object mapping in the Overview.

A.1.20 Field Mapping - Options

Define the mapping from a field to a database column. Options include the query
methods that you want to use to associate a field and the database column
definition and the pattern that you want to use for boolean, DBoolean, and DTime
data types. For reference, the dialog displays the field name and data type of the
field that you are mapping.

A.1.21 Select Query Methods

Map the get methods to use for query pushdown. A listed method that is specified
in the “WHERE” clause of a query is eligible for query pushdown only if it is stored
to a compatible column type. For reference, the dialog displays the name and
data type of the field or object that you are mapping.

A.1.22 Substitution Pattern

Define the values that boolean and DBoolean Java data types are to use for the
current mapping. Add, remove, edit, and order new and existing values for these
data types. Ensure that the current values for the column definition support the
pattern you want to specify. For more information, see Patterns.
198 IBM SanFrancisco Performance Tips and Techniques

A.1.23 Date Pattern

Examine or modify the date pattern that the DTime Java data type uses for the
current mapping. Ensure that the current values for the column definition support
the pattern that you want to specify.

A.1.24 Array Mapping - Options

The Schema Mapping Tool supports the mapping of a single-dimension array of
Handles, Dependents, Strings, or primitive Java data types to a relational
database table. Array elements must all be of the same type or class but can be a
mixture of subclasses.

A.1.25 Defining Handles

Begin mapping a Handle. If you decide to stream the Handle, the process is
simple and requires only that you define a column in which to stream the Handle
data. Defining your own Handle types requires knowledge of the Handle, its
contents, and the objects the Handle references. For more information, see the
procedure Mapping the object or Handles in the Overview.

A.1.26 Mapping Handle Types

Begin mapping a Handle type. Options include the Handle Type, the type of
mapping, and the definitions that identify the Handle contents and the objects that
the Handle references. For more information, see the procedure Mapping the
object or Handles in the Overview.

A.1.27 Defining Subclasses

Add, update, and delete subclass mappings. Mapping subclasses includes
mapping the fields (or streaming them) and determining the class name or class
ID. For more information, see the procedure Mapping the object or Subclasses in
the Overview.

A.1.28 Subclass Mapping

Schema map a subclass by using one of two types of mapping: Stream Object or
Map Fields. For more information, see Object mapping, Subclasses, and the
procedure Mapping the object in the Overview.

A.1.29 Interface Mapping - Options

Select whether to use the associated Impl class or the interface class only. This
dialog displays when you are mapping an interface, and an associated Impl class
exists in your CLASSPATH.

A.1.30 Primary Key

Map the unique identity that is contained in the independent handle of this object
to the primary key of a table. For more information, see the procedure Assigning a
primary key or Primary key in the Overview.

A.1.31 Join

Build, modify, and inspect relationships between tables. All joins must chain back
to the current default table for this SML file. For more information, see the
procedure Joining tables or Join in the Overview.
Internal SanFrancisco Tools - Schema Mapper Tool 199

A.1.32 Define Join Relationship

This display lists all the joins that you have defined in this schema map. Each join
is made up of one or several column pairs. A column pair shows the relationship
between two columns from two separate tables. A column pair uses the following
format:

<primary table name>.<column name> = <secondary table name>.<column name>

Define the join (relationships) between a column or columns in a primary table
and the corresponding columns in a secondary table. A list of column pairs in the
Join On display indicates a Join. You can define several column pairs for the
same primary and secondary tables.

A.1.33 Multiple Rows

Enable multiple row support to allow the streaming of Entity or Dependent objects
in which the data stream is greater than the specified column length. This support
focuses on mapping a large object into multiple rows of a column. Only those
objects that are both streamed and mapped to a LONGVARBINARY column are
eligible for mapping to multiple rows.

A.1.34 Exit Options

Confirm or abort the process of exiting the current schema mapping. Before
exiting, select whether to save or discard any changes made since the last save.

 This dialog appears when you exit a schema mapping session, whether you
have made any changes since the last save.

Note
200 IBM SanFrancisco Performance Tips and Techniques

Appendix B. Modifying Generated Code

The section deals with the SF Code Generator for SF130 and with the possible
enhancements that can be made manually in order to improve the performance.
The code generator does a very good job, but at some points, improvements are
still possible.

B.1 When to Make the Changes

It is clear that these kind of manual modifications to the generated code should
only be done at the end of an implementation since changes cannot be
permanently applied. Regenerating the code overwrites any manual modifications
previously made.

B.2 Possible Changes

A series of points, where performance improvements, are possible are listed. All
these tips and techniques are already discussed in the previous chapters.

B.2.1 Method getChildControllers() on Controller Objects

Controllers have a getChildControllers(Company, DSet) method. In this method's
implementation, the "contains" check could be replaced with something like:

if ((result = childCompany.get...By (...)) != null)

This method returns null if the request can not be met, so the above expression
gives the same reult as the "contains" check. As the result of the get...By()
method is needed if the "contains" check passes, the result is already obtained.
This is more efficient since the "contains" check essentially is eliminated.

B.2.2 Use of Iterators

There are a number of places in the method implementations where the code will
use an iterator to traverse a collection. Rather than using:

while (iterator.hasMoreElements()) {...}

use:

while ((element = collection.getNextElement(iterator)) != null) {...}

since the getNextElement(iterator) method returns null if the next element is not
found, and it is needed to do the getNextElement(iterator) anyway. This is more
efficient since, essentially, the iterator.hasMoreElements() call is eliminated. Note
that the specifics depend on the particular method implementation you are
changing (for example, element may be named something else). Additional
information can be found in 10.2.3, “Iterators” on page 185.

B.2.3 Caching of Global.factory

Already, many places will the generated code cache the Global.factory() . This is
how it should be. In some areas, this is not yet completely done. The code needs
to be changed manually in order to implement the caching of Global.factory() .
Namely in create methods on the generated factories, some changes can be
useful. Additional information can be found in 10.1.1, “Caching” on page 165.
© Copyright IBM Corp. 1999 201

B.2.4 Use of Local Variables

In many places in the generated code, a local variable is used for the unique
purpose of storing the result of a method call just before returning the value of
this local variable. This local variable can be eliminated instead of having code,
such as:

{...
String name = person.getName();
return(name); }

the following code can be used:

{...
return(person.getName());}

B.2.5 Use of Helper Methods

The Helper class contains functionality that many high level base classes for
business objects also implement. It is more expensive to use in business objects
the inherited methods than call the Helper class methods. So instead of the code:

{...
Person person = setOwningHandleToObject(handle);
...}

use the following implementation:

{...
Person person = Helper.setOwningHandleToObject(handle);
...}

Additional information can be found in 10.2.5, “Miscellaneous” on page 188

B.2.6 Method addAllElements() on List Objects

If an business object implements a List object for example Person objects, a
method addAllPersons(Collection) will be generated. In the implementation, an
iterator loops over all elements calling the addElement(Object) on the List variable.
It is better performing to change the code so that the List object itself will iterate
over the collection. Use the addElements(Collection) on the List object for
implementing the addAllPersons(Collection) method.

B.3 Other Changes

This list is definitely not exhaustive. Other modifications are still possible. All the
recommandations from the coding tips described in Chapter 9, “Java Coding
Tips” on page 147 and Chapter 10, “SanFrancisco Coding Tips” on page 163
should be respected in the generated code. Most recommendations are followed
already, and future releases of the code generator will increase the compatibility
with the recommandations.
202 IBM SanFrancisco Performance Tips and Techniques

Appendix C. Special Notices

This publication is intended to help IBM SanFrancisco Application Architects,
Application Designers and Application Developers, as well as IBM SanFrancisco
Performance Consultants, to analyze, optimize, and improve performance of their
applications. The information in this publication is not intended as the
specification of any programming interfaces that are provided by the IBM
SanFrancisco Business Process Components. See the PUBLICATIONS section
of the IBM Programming Announcement for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBMs product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBMs intellectual property rights
may be used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
© Copyright IBM Corp. 1999 203

environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java, HotJava and Sun Solaris are trademarks of Sun Microsystems,
Incorporated.

Microsoft, Windows, Windows NT Performance Monitor, Windows NT, and the
Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

APPN AS/400
DB2 DRDA
Distributed Relational Database
Architecture

IBM
OS/400

OfficeVision/400
204 IBM SanFrancisco Performance Tips and Techniques

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 207.

 • AS/400 Performance Explorer — Tips and Techniques, SG24-4781

 • Accessing the Internet, SG24-2597

D.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

D.3 Other Publications

These publications are also relevant as further information sources:

 • de Champeaux, Dennis; Le, Douglas; Faure, Penelope. 1993. Object-Oriented
System Development. Addison Wesley (ISBN 0-201-56355-X)

 • Windows NT Resource Kit, Microsoft Press (ISBN 1-55615-929-3)

 • Architecting Object Applications for High Performance with Relational
Databases. Persistence Software Inc. (www.persistence.com)

 • Jain, Raj; Wiley, John. 1991. The Art of Computer Systems Performance
Analysis (ISBN 0-471-503363-3)

 • Sims, Oliver. 1994. Business Objects. Mc Graw-Hill (ISBN 0-07-707957-4)

 • Shuey, Richard; Spooner, David; Frieder, Ophir. 1997. The Architecture Of
Distributed Computer Systems (ISBN 0-201-55332-5)

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1999 205

206 IBM SanFrancisco Performance Tips and Techniques

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com/ .

How IBM Employees Can Get ITSO Redbooks
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
© Copyright IBM Corp. 1999 207

How Customers Can Get ITSO Redbooks
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
208 IBM SanFrancisco Performance Tips and Techniques

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 209

210 IBM SanFrancisco Performance Tips and Techniques

List of Abbreviations

APA All Points Addressable

AS/400 System Application System 400

BIOS Basic Input Output System

BOB Business Object Benchmark

BTPH Business Transactions Per
Hour

CPU Central Processing Unit

CSM Custom Schema Mapper

DASD Direct Access Storage Device

DBA Data Base Administrator

DBMS Database Management
System

DNS Domain Name Server

DSM Default Schema Mapper

E-R Entity Relational

ESM Extended Schema Mapper

GBOB GBOF Business Object
Benchmark

GBOF General Business Object
Framework
(Foundation Layer of SF)

GSM Global Server Manager

GUI Graphical User Interface

I/O Input/Output

IBM International Business
Machines Corporation

ISV Independent Software Vendor

ITSO International Technical
Support Organization

JDK Java Development Kit

JIT Just In Time compiler

JVM Java Virtual Machine

LSFN Logical SanFrancisco Network

NC Network Computer

OLTP OnLine Transaction
Processing

OODBMS Object Oriented Database
Management System

OS Operating System

PEX Performance Explorer

PDS Performance Data Collector

RAID Redundant Array of
Independent Disk
© Copyright IBM Corp. 1999
RDB Relational Database

RDBMS Relational Database
Management System

RMI Remote Method Invocation

SCSI Small Computer System
Interface

SF SanFrancisco

TBOB Tower Business Object
Benchmark

TPC Transaction Processing
Council

TPM Transactions Per Minute

VTUNE Visual Tuning Environment
 211

212 IBM SanFrancisco Performance Tips and Techniques

Index

A
abbreviations 211
acronyms 211
activeCompany 189
adding attributes 168
adding properties 168, 169
Agarwal 123, 125
aggregating controller 189
Alternative

Cached Balance 85
Analytical Modeling 15
Approaches for Using of LockModes 181
Architecture 7
Arrays 187
AS/400 33
Asynchronous Processing 8, 85
Attach 36
auto start 111

B
base currency 192
Batch Process 76
BIOS 94
blocking garbage collector 108
buffer pages 141

C
cache 131
cached object 130
Caching 9
Caching AccessModes 166
Caching Global Factory Reference 166
Capacity Planning 14
catalog 141
Categorization Based On Latency and Transfer Rate 113
Categorization Based On Temporal Properties 115
chain of responsibility 191
client 92
code, invariant 149
Commands and Transaction Scoping 176
commit() 164
Common Measurements 13
Communication 9
Compatibility modes 185
Conclusions 134
Concurrency control 181
Configuration Utility 107
Constants 156
Container Cache 111
Container Cache Statistics Tool 33
Containers 120
Control Panel 94
CPU Time 34
CREATE SESSION 143
createCritical() 180
createNoLock() 180
© Copyright IBM Corp. 1999
createNomal() 179
createPlusWrite() 180
Creating commands 174
CSM 123
Customized AccessMode objects 180

D
DataStoreException 142
DB/2 123
DB2 on AIX 136
DB2 V5.5 (UDB) on Windows NT 136
DB2/400 on AS/400 136
DBA 123
DController 74
DDecimal 188
deadlock avoidance 183
Debug.ON 171
Default Schema Mapper 142
Design Pattern 67

Cached Balances 83
Command 67
Controller 72
Extensible Item 77
Life Cycle 81
Link 87
Policy 75
Property Container 74

development system 93
DInteger 168
Distinct table 128
Distributed Process 172
Distributed Process Context 168, 172
DistributedProcessContext 172
DNS 101
Domain Name Server 101
doTransaction() 176
DPC 117
DResultsCollection 192
drive, network 101
DSM 123, 136, 142

E
Elapsed Time 33
Embedded foreign key 128
Enterprise 189
EntityOwningExtent 72, 74, 88, 89, 123, 145, 183
Entity-Relational 126
ESM 123, 138, 142
exchange rate 192
exchange rate retrieval policy 191
Extended Schema Mapper 142
Extending and Adding Attributes 169

F
FastConvert 170
filter 37
213

G
Garbage Collection 12, 97

Heap MAXimum 101
INitiaL size 101

garbage collector 108
GBOB benchmark 163
GBOF Externalization 170
GCHINL 101
GCHMAX 101
Generic Commands 177
getEntity() 164, 166
Global Server Manager 111
global variables 150
Global.name 106
GlobalNameService(GNS) 116
GUI 70

H
Handle Inflation 167
Hardware 8
heap 108
heap size 97, 100, 101
Helper 188
hierarchies 130
Horizontal Partitioning 129

I
I/O bandwidth 94
IBM AS/400 123
IBM San Francisco 123
Id Generation 75
IFS 142
inlining 155
Inter-Method Caching 167
Intra-Method Caching 165
Intuitive Systems 32
Iterators and LockModes 185

J
JavaBeans 92
JProbe Profiler 32

K
Keller 123, 125
KL Group 32

L
Legacy data 139
Live object cache 131
local access 150
Local Server Manager 111
locationHdl 176
lock analysis tools 33
Lock Conflict Trace Analysis Tool 33
Lock Contention Console 33
Locking 10, 11
loop, termination 149

M
Max. cache size 107
Mediator 124
memory, physical 94, 97
Microsoft Windows 98 91
Microsoft Windows NT 123
Microsoft Windows NT Performance Monitor 32
Multiple Entity Retrieval 188
Multiple Machines 121

N
Naming Cache 111
navigating 132
Network Computer 92
network drive 101
NO_LOCK 182
noasyncgc 101
noclassgc 98
Node distribution 121
non-blocking garbage collector 108
nslookup 102

O
Object Creation 13
object isolation 133
Object Navigation 167
on-line transaction processing 124
OODBMS 125
Optimistic 182
optimistic oocking 11, 134
optimistic transaction model 134
Optimization with Query Pushdown 145
OptimizeIt 32
OptimizeIt audit system 34
OptimizeIt user interface 34
OptimizeIts Allocation Backtrace Mode 38

Reverse Display 39
OptimizeIts CPU Profiler 40
OptimizeIts Memory Profiler 37
Oracle 123
Oracle 8 on Windows NT 136

P
Path Length 8
performance problems 101
Persistence Software Inc. 123
Persistent Arrays 188
Pessimistic 182
Pessimistic Locking 11
physical memory 94, 97
policy 191
Posix 123, 135
primary key 131
primitive 152
Processes settings 106
Process-Scoped Caching 167
Programmers guide 146
Projection objects 127
214 IBM SanFrancisco Performance Tips and Techniques

Q
Query Pushdown 123, 143

R
RAID 94
RAM, limited 105
RDB 123
Rdb 136
RDBMS 125
readability 148, 155
readFully() 151
releaseResources() 186
report currency 192
reset() 177
Reusing Commands 177
Reversible Iterators 186
root controller 189

S
San Francisco Configuration Utility 135
Scenarios for Usage of Commands 177
schema 142
Schema Mapper 142
scope of the policy 191
Security 117
Server Processes 119
setAccessMode() 185
SFDefaultContainer 109
shared object cache 133
Simulation Modeling 16
Single Machine 119
SML 135, 142
Special privileges 143
SQL Collection 142
String 154
StringBuffer 154
supportsUndo() 177
Synchronization 12
Synchronous Processing 8

T
target 176
TaskManager 94
TEMPORARY_DATA 143
Testing a Java program 34
Testing a SanFrancisco Application 35
Timing Methods 33
Tools 31
Transaction isolation 133
Transactions 117
Typed Partitioning 129

U
unbuffered I/O 151
user 141
user profile 143
USER_DATA 143

V
ValidationContext 192
ValidationLevelEnum 192
Vertical Partitioning 129
View objects 127
VTUNE 32

W
warehouse 113
When to use what 140
Windows 98, Microsoft 91
 215

216 IBM SanFrancisco Performance Tips and Techniques

© Copyright IBM Corp. 1999 217

ITSO Redbook Evaluation

IBM SanFrancisco Performance Tips and Techniques
SG24-5368-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

S
G

24
-5

36
8

-0
0

P
ri

n
te

d
 in

 t
h

e
 U

.S
.A

.

IBM SanFrancisco Performance Tips and Techniques SG24-5368-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 Performance in General
	1.1.1 What Performance Is
	1.1.2 Why the Need for the Best Performance
	1.1.3 What Appropriate Performance Is
	1.1.4 Performance in a Distributed IT Environment

	1.2 Where to Go from Here
	1.2.1 Where You Are in the Development
	1.2.2 What Your Job Is in the Development

	1.3 Performance in SanFrancisco Based Applications: An Approach
	1.4 Understanding and Solving a Performance Problem

	Chapter 2. General Performance Issues
	2.1 Influencing Performance
	2.1.1 Architecture
	2.1.2 Software Path Length
	2.1.3 Hardware
	2.1.4 Synchronous versus Asynchronous Processing
	2.1.5 Communication
	2.1.6 Caching
	2.1.7 Prefetching Data
	2.1.8 Locking
	2.1.9 Object Oriented Issues

	2.2 Measuring Performance
	2.2.1 Common Measurements
	2.2.2 Capacity Planning
	2.2.3 Analytical Modeling
	2.2.4 Simulation Modeling
	2.2.5 Queuing

	Chapter 3. How to Find a Performance Problem
	3.1 Step-by-Step Approach
	3.2 Profiling the Application with JProbe Profiler
	3.2.1 Checking for Streaming
	3.2.2 Remote Method Calls
	3.2.3 Creating Objects and Garbage Collection

	3.3 Using Strings and StringBuffers

	Chapter 4. Tools for Performance Analysis
	4.1 Which Tool to Use
	4.2 About Timing Methods
	4.2.1 Elapsed Time
	4.2.2 CPU Time

	4.3 OptimizeIt
	4.3.1 Testing a Java Program
	4.3.2 Testing a SanFrancisco Application
	4.3.3 Using the Memory Profiler
	4.3.4 Using the CPU Profiler
	4.3.5 Summary on OptimizeIt

	4.4 JProbe
	4.4.1 Testing a Java Program
	4.4.2 Testing a SanFrancisco Application
	4.4.3 The Memory Usage Window
	4.4.4 The Instance Summary Window
	4.4.5 The Call Graph Window
	4.4.6 The Method List Window
	4.4.7 The Method Detail Window
	4.4.8 The Source Window
	4.4.9 Summary on JProbe

	4.5 Windows NT Performance Monitor
	4.6 AS/400 Performance Tools
	4.7 The Container Cache Statistics Tool
	4.7.1 How to Run
	4.7.2 Explanation of Output
	4.7.3 Example Output
	4.7.4 What to Watch For

	4.8 Lock Analysis Tools
	4.8.1 The Lock Conflict Trace Analysis Tool
	4.8.2 The Lock Contention Console

	Chapter 5. Performance Aspects Using Design Patterns
	5.1 What Design Patterns Are
	5.2 Command Pattern
	5.2.1 Description
	5.2.2 Performance Impact
	5.2.3 Usages of Command Objects

	5.3 Controller Pattern
	5.3.1 Description
	5.3.2 Performance Impact
	5.3.3 Controllers without ExtentCollection
	5.3.4 Partitioning Controlled Entities
	5.3.5 DController

	5.4 Property Container Pattern
	5.4.1 Description
	5.4.2 Performance Impact

	5.5 Policy Pattern
	5.5.1 Description
	5.5.2 Performance Impact

	5.6 Extensible Item Pattern
	5.6.1 Description
	5.6.2 Concept
	5.6.3 Performance Impact
	5.6.4 Alternative for the Extensible Item Pattern
	5.6.5 Replacing an Extensible Item Implementation

	5.7 Life Cycle Pattern
	5.7.1 Description
	5.7.2 Performance Impact

	5.8 Cached Balances Pattern
	5.8.1 The Basis: Keys and Keyables
	5.8.2 Description
	5.8.3 Performance Impact
	5.8.4 Alternatives for the Cached Balance Pattern

	5.9 Link Pattern
	5.9.1 Link Object
	5.9.2 Description
	5.9.3 Performance Impact

	Chapter 6. Hardware and Software Configuration
	6.1 Hardware Recommendations
	6.1.1 Memory
	6.1.2 Client
	6.1.3 Server
	6.1.4 Development
	6.1.5 Configuration

	6.2 Operating System
	6.2.1 Microsoft Windows NT Server
	6.2.2 Microsoft Windows 95
	6.2.3 The AS/400 System

	6.3 JVM Configuration
	6.3.1 First Steps
	6.3.2 Fine Tuning
	6.3.3 Timeout Setting
	6.3.4 The AS/400 System
	6.3.5 AIX

	6.4 Communication
	6.4.1 Network Drives
	6.4.2 DNS Configuration

	6.5 Running IBM SanFrancisco on Small Machines
	6.5.1 IBM SanFrancisco Container Settings
	6.5.2 JVM Settings

	Chapter 7. LSFN Configuration
	7.1 Configuration Settings
	7.1.1 Cache Threshold
	7.1.2 Garbage Collection

	7.2 Configuring LSFN for Small Systems
	7.2.1 Container Settings
	7.2.2 JVM Settings

	7.3 Exploring Topologies
	7.3.1 Data Placement
	7.3.2 Communication Issues
	7.3.3 Some Commonly Used Topologies

	Chapter 8. Object Persistence, Databases, and Schema Mapping
	8.1 Schema Mapping in General
	8.1.1 Abstract
	8.1.2 Introduction
	8.1.3 Object-Relational Mediators
	8.1.4 Achieving Performance
	8.1.5 Optimize Object-Relational Mapping
	8.1.6 Mapping Simple and Aggregate Classes
	8.1.7 Mapping Relationships
	8.1.8 Mapping Inheritance
	8.1.9 Multi-Class Join Queries
	8.1.10 Live Object Cache
	8.1.11 Optimizing Object Navigation
	8.1.12 Transaction Isolation
	8.1.13 Conclusion

	8.2 The SanFrancisco Entity Cache
	8.3 SanFrancisco Schema Mapping Cache
	8.4 The Posix Store
	8.5 The Rdb Store
	8.5.1 DSM (Default Schema Mapper)
	8.5.2 The Extended Schema Mapper (ESM)

	8.6 Legacy Data
	8.7 When to Use What
	8.8 Database Configuration
	8.8.1 Microsoft Windows NT DB2 5 - UDB
	8.8.2 IBM AS/400 DB2/400
	8.8.3 Oracle on Microsoft Windows NT
	8.8.4 Query Pushdown
	8.8.5 EntityOwningExtent

	Chapter 9. Java Coding Tips
	9.1 The Idea Behind the Tips
	9.2 General Techniques
	9.2.1 Loop and Counting
	9.2.2 Using Buffered Data Streams
	9.2.3 Reduce Code Execution

	9.3 Memory Management
	9.3.1 Using Primitives
	9.3.2 Reusing Objects
	9.3.3 Reduce Object Size
	9.3.4 Free Resources

	9.4 Java-Specific Tips
	9.4.1 String Operations
	9.4.2 StringTokenizer
	9.4.3 Function Inlining
	9.4.4 Exceptions
	9.4.5 Hashtables
	9.4.6 Vectors
	9.4.7 Synchronization
	9.4.8 Casts and Instanceof Operation
	9.4.9 Using the API
	9.4.10 Use JIT and Static Compilers

	Chapter 10. SanFrancisco Coding Tips
	10.1 General Techniques
	10.1.1 Caching
	10.1.2 Object Selection
	10.1.3 Object Streaming
	10.1.4 Fast Conversions
	10.1.5 Tracing
	10.1.6 Copy versus Create
	10.1.7 DPC Initialization
	10.1.8 Transient Entities
	10.1.9 Hashcodes

	10.2 Foundation Layer Coding Tips
	10.2.1 Commands
	10.2.2 AccessMode and Locking
	10.2.3 Iterators
	10.2.4 Collections
	10.2.5 Miscellaneous

	10.3 Common Business Objects Coding Tips
	10.3.1 Company, Controllers, and Policies
	10.3.2 Euro Currency
	10.3.3 Validation

	Appendix A. Internal SanFrancisco Tools - Schema Mapper Tool
	A.1 Overview
	A.1.1 Schema Mapping Tool (SMT)
	A.1.2 Schema Mapping Language (SML)
	A.1.3 Platforms and DBMS
	A.1.4 Schema Mapping Interface (SMT GUI)
	A.1.5 Schema Mapping an Object
	A.1.6 Using the Extended Schema Mapper
	A.1.7 Editing an Existing SML File
	A.1.8 User Preferences
	A.1.9 Default and Override Tables
	A.1.10 Functions of the SMT
	A.1.11 Other Considerations
	A.1.12 Table Schema Assistant
	A.1.13 Start-up Options
	A.1.14 Define New Schema Mapping
	A.1.15 Select SML File
	A.1.16 Select Preferences
	A.1.17 Mapping (User) Preferences
	A.1.18 Data Type Mapping Preferences - Detail
	A.1.19 Object Mapping
	A.1.20 Field Mapping - Options
	A.1.21 Select Query Methods
	A.1.22 Substitution Pattern
	A.1.23 Date Pattern
	A.1.24 Array Mapping - Options
	A.1.25 Defining Handles
	A.1.26 Mapping Handle Types
	A.1.27 Defining Subclasses
	A.1.28 Subclass Mapping
	A.1.29 Interface Mapping - Options
	A.1.30 Primary Key
	A.1.31 Join
	A.1.32 Define Join Relationship
	A.1.33 Multiple Rows
	A.1.34 Exit Options

	Appendix B. Modifying Generated Code
	B.1 When to Make the Changes
	B.2 Possible Changes
	B.2.1 Method getChildControllers() on Controller Objects
	B.2.2 Use of Iterators
	B.2.3 Caching of Global.factory
	B.2.4 Use of Local Variables
	B.2.5 Use of Helper Methods
	B.2.6 Method addAllElements() on List Objects

	B.3 Other Changes

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

