
ibm.com/redbooks

RS/6000 SP System
Performance Tuning
Update

Dino Quintero
Jess Hart

Maria Lafranke
Bjorn Roden

Theeraphong Thitayanun
Marc-Eric Kahle

What you always wanted to know about
SP performance but were afraid to ask

New tuning information about
PSSP 3.2 and AIX 4.3.3

Sample tuning scripts
included

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

RS/6000 SP System Performance Tuning Update

January 2001

SG24-5340-01

International Technical Support Organization

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (January 2001)

This edition applies to Version 3, Release 2 of the IBM Parallel System Support Programs for AIX
(PSSP) for use with AIX Operating System Version 4 Release 3 (5765-C34).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special notices” on page 487.

Take Note!

Contents

Figures .xi

Tables. xiii

Preface . xv
The team that wrote this redbook. xv
Comments welcome. xvii

Book layout .xix

Start map .xxi

Part 1. Overview . 1

Chapter 1. Introduction . 3
1.1 Why tune? . 3
1.2 When to tune? . 3
1.3 Why SP tuning differs from normal AIX tuning? 3

Chapter 2. Tuning methodology . 5
2.1 The SP performance tuning cycle . 5

Part 2. General tuning . 11

Chapter 3. Basic performance settings. 13
3.1 Basic network settings . 14
3.2 Basic adapter settings . 15
3.3 Basic AIX system settings . 18

Chapter 4. Network tuning . 21
4.1 Initial considerations. 21

4.1.1 General tuning recommendations . 21
4.1.2 Consolidated system challenges. 22
4.1.3 System topology considerations . 22

4.2 TCP/IP network overview for performance . 23
4.2.1 Send and receive flows in the TCP/IP protocol stack 24
4.2.2 MTU . 28
4.2.3 Communication subsystem memory (mbuf) management 29
4.2.4 Enabling thread usage on LAN adapters (dog threads). 32
4.2.5 Tuning TCP maximum segment size. 33
4.2.6 TCP sliding window . 36
© Copyright IBM Corp. 2000 iii

4.2.7 Address resolution . 40
4.2.8 Subnet addressing . 41
4.2.9 Description of the Nagle Algorithm . 42
4.2.10 Routing. 45

4.3 AIX network tunables . 45
4.3.1 IP tunable inheritance rules . 45
4.3.2 AIX tunables . 46

4.4 SP system-specific network tunables . 67
4.5 NFS tuning . 68

4.5.1 NFS overview for performance . 69
4.5.2 Read/write throughput . 70
4.5.3 Tuning the numbers of nfsd and biod daemons 72
4.5.4 Tuning to avoid retransmits . 73
4.5.5 Dropped packets . 75
4.5.6 Cache file system . 78
4.5.7 Reduced requests for file attributes . 78
4.5.8 Disabling unused NFS ACL support . 79
4.5.9 NFS tuning checklist . 79
4.5.10 Examples of NFS configurations. 82

4.6 SP system-specific tuning recommendations 83
4.6.1 IBM-supplied files of SP tunables . 85

4.7 Tuning the SP network for specific workloads. 86
4.7.1 Tuning for development environments . 86
4.7.2 Tuning for scientific and technical environments. 87
4.7.3 Tuning for commercial and database environments 89
4.7.4 Tuning for server environments . 91
4.7.5 Summary of workload tunables. 93

Chapter 5. Adapter tuning . 95
5.1 Adapter queue size . 95

5.1.1 Transmit and receive queues . 96
5.1.2 Displaying adapter queue settings . 98
5.1.3 Changing adapter settings . 98
5.1.4 Adapter tuning recommendations . 99

5.2 SP Switch and SP Switch2 adapter tuning . 99
5.2.1 Switch adapter pools . 99
5.2.2 Window sizes . 100
5.2.3 Switch window reservation . 103
5.2.4 Switch pool allocation . 105
5.2.5 Switch buffer pool allocation considerations 106
5.2.6 Sizing send and receive pool requirements. 107
5.2.7 Sample switch send pool size estimate. 109
5.2.8 Reducing send/receive pool requirements 110
iv RS/6000 SP System Performance Tuning Update

5.3 SP Ethernet tuning . 110
5.4 Gigabit ethernet performance tuning recommendations 111
5.5 Token-Ring performance tuning recommendations. 112
5.6 FDDI performance tuning recommendations. 112
5.7 ATM performance tuning recommendations 112
5.8 HIPPI performance tuning recommendations 112
5.9 Escon interface tuning . 113

Chapter 6. Tuning other components in AIX . 115
6.1 Memory . 115

6.1.1 Virtual memory manager . 116
6.1.2 Real-memory management. 117

6.2 CPU . 129
6.2.1 Scheduler run queue management . 129
6.2.2 CPU tuning . 136

6.3 I/O . 141
6.3.1 Logical volume manager. 141
6.3.2 Data transfer path to and from disk. 142
6.3.3 Disk types. 144
6.3.4 Improving read and write performance (VMM) 152
6.3.5 Logical Volume Device Driver . 155
6.3.6 Performance implications of disk mirroring 157
6.3.7 Logical volume striping . 161
6.3.8 JFS and JFS log . 164
6.3.9 Paging space allocation . 166
6.3.10 Tuning I/O pacing . 167
6.3.11 Asynchronous I/O . 169
6.3.12 Logical volume policies. 174
6.3.13 File system fragmentation. 178

Chapter 7. Control workstation tuning . 181
7.1 Control workstation considerations . 181
7.2 Control workstation tuning . 182

7.2.1 Network tunables . 182
7.2.2 Adapter tuning . 183
7.2.3 Other AIX components tuning . 183
7.2.4 Other considerations . 183

Part 3. Problem determination and tools . 187

Chapter 8. Problem determination . 189
8.1 Performance problem checklist . 189
v

Chapter 9. Common performance problems . 191
9.1 The Nagle Algorithm. 191
9.2 Adapter queue overflows . 192
9.3 ARP cache tuning. 193
9.4 NFS performance in SP system . 194
9.5 External server considerations . 195
9.6 Single-server multiple-client node problems 197
9.7 Gateway or router node problems . 200
9.8 Typical performance problems by environments 200

Chapter 10. Resource monitoring . 203
10.1 IBM AIX monitoring tools and commands . 203
10.2 Monitoring memory. 204

10.2.1 System-wide monitoring . 205
10.2.2 Application specific monitoring . 208
10.2.3 User specific monitoring . 211

10.3 Monitoring CPU . 212
10.3.1 System-wide monitoring . 213
10.3.2 Application specific monitoring . 218

10.4 Monitoring disk I/O . 222
10.4.1 System-wide monitoring . 222

10.5 Monitoring Network I/O. 231
10.5.1 System-wide monitoring . 232

Chapter 11. Tools . 243
11.1 IBM AIX Monitoring tools and commands . 243

11.1.1 acctcom . 243
11.1.2 bf/bfrpt . 244
11.1.3 crash . 246
11.1.4 col_dump . 247
11.1.5 entstat/tokstat/atmstat/fddistat . 248
11.1.6 estat . 251
11.1.7 filemon . 251
11.1.8 fileplace . 256
11.1.9 hatstune . 258
11.1.10 ifcl_dump . 260
11.1.11 iostat . 260
11.1.12 iptrace/ipreport/ipfilter . 262
11.1.13 lsps. 265
11.1.14 lspv/lslv/lsvg/getlvcb . 266
11.1.15 mmlsmgr/mmdf/mmlsfs/mmlsdisk/mmfsadm 269
11.1.16 ndb . 271
11.1.17 netpmon . 275
vi RS/6000 SP System Performance Tuning Update

11.1.18 netstat . 281
11.1.19 nfsstat . 287
11.1.20 nslookup/host . 293
11.1.21 ntpq . 295
11.1.22 ntptrace . 295
11.1.23 Performance Diagnostic Tool (PDT) 295
11.1.24 ping . 302
11.1.25 pprof . 303
11.1.26 ps . 304
11.1.27 pstat . 308
11.1.28 sar . 309
11.1.29 spmon . 313
11.1.30 statvsd . 313
11.1.31 svmon. 314
11.1.32 tcpdump . 317
11.1.33 topas . 319
11.1.34 tprof . 320
11.1.35 traceroute . 321
11.1.36 trace, trcrpt . 322
11.1.37 vmstat. 324
11.1.38 vmtune . 330
11.1.39 xmperf, 3dmon . 331

Part 4. Tuning selected products. 335

Chapter 12. Tivoli Storage Manager (ADSM) 337
12.1 TSM tunables - quick reference . 337
12.2 Performance considerations . 338
12.3 SP network tunables . 339
12.4 Server performance tuning . 339

12.4.1 Server Options to improve network performance 340
12.4.2 Server options to improve memory performance. 342
12.4.3 Server options to improve CPU performance 343
12.4.4 Server options to improve I/O performance. 344
12.4.5 Server options to improve TSM server database performance 345

12.5 Client performance tuning . 345
12.5.1 Client options to improve network performance 346
12.5.2 Client options to improve memory performance 346
12.5.3 Client options to improve CPU performance 347
12.5.4 Client options to improve I/O performance 348
12.5.5 Client options to improve small file size performance 348

12.6 Some test results . 348
vii

Chapter 13. VSD . 353
13.1 Overview . 353
13.2 Tuning . 354

13.2.1 Application considerations . 354
13.2.2 I/O subsystem considerations . 355
13.2.3 SP switch considerations . 355
13.2.4 VSD parameters: . 356
13.2.5 Summary of VSD tuning recommendations. 362

13.3 Other VSD considerations . 363
13.3.1 Concurrent VSD . 363
13.3.2 VSD usage of KLAPI . 364

Chapter 14. GPFS . 369
14.1 Overview . 369
14.2 Tuning . 373

14.2.1 Network tuning . 373
14.2.2 Switch adapter tuning . 374
14.2.3 SSA adapter tuning . 375
14.2.4 VSD tuning . 377
14.2.5 GPFS tuning . 380

14.3 Summary of GPFS tuning recommendations 390

Chapter 15. Web applications . 393
15.1 Tuning web applications on the SP. 393

15.1.1 Websphere - an overview . 393
15.1.2 What can be tuned? . 394
15.1.3 AIX tunables for web related applications 395
15.1.4 Performance test tools for webserver 396
15.1.5 Monitoring tools . 398

Chapter 16. DB2 Universal Database . 401
16.1 General concepts about parallel databases 402

16.1.1 Inter-partition and intra-partition parallelism 403
16.1.2 Database partitioning . 404

16.2 Tuning database systems for performance 405
16.2.1 Document the current system . 405
16.2.2 Bottlenecks, utilization, and resources 407
16.2.3 Insufficient CPU and latent demand . 408
16.2.4 Insufficient memory . 408
16.2.5 Insufficient network resources . 410
16.2.6 Insufficient logical resource access . 410
16.2.7 What can we tune? . 411
16.2.8 Top 20 DB2 parameters . 412

16.3 DB2 UDB Implementation on RS/6000 SP: a real case 420
viii RS/6000 SP System Performance Tuning Update

16.3.1 Hardware configuration. 420
16.3.2 Software configuration . 422
16.3.3 Database layout . 422
16.3.4 Operating system tuning . 424
16.3.5 Database tuning . 425
16.3.6 System management and performance. 425
16.3.7 Additional tuning observations . 430

Chapter 17. Oracle . 433
17.1 Oracle Parallel Server (OPS) . 433

17.1.1 Parallel Oracle architecture . 434
17.1.2 Virtual Shared Disk (VSD) . 438
17.1.3 Distributed lock manager (DLM) . 439

17.2 Oracle tuning . 440
17.2.1 Oracle tuning order. 441
17.2.2 Tuning AIX for Oracle . 442
17.2.3 Top 10 Oracle parameters . 450

Chapter 18. Lotus Notes . 455
18.1 What can be tuned now in the SP and AIX environments? 455
18.2 Transactional logging and how it operates 456

18.2.1 Performance improvement . 457
18.2.2 Flushing and hardening . 458
18.2.3 Crash recovery . 458
18.2.4 Transactional Logging NOTES.INI Parameters 459

18.3 Tuning servers for maximum performance 459
18.3.1 Server tasks . 459
18.3.2 Server performance problems. 460

Chapter 19. Communication server . 463
19.1 Communications buffers (mbufs) . 463

19.1.1 Setting maxmbuf. 464
19.2 SNA DLC link parameters. 464

19.2.1 LAN-based DLC characteristics . 464
19.3 Memory . 465
19.4 Paging space . 465
19.5 File transfer applications . 466

Part 5. Appendices . 467

Appendix A. Performance toolbox for AIX and parallel extensions. . 469
A.1 Performance toolbox for AIX (PTX/6000) . 469

A.1.1 PTX/6000 installation . 470
ix

A.2 Performance toolbox parallel extensions (PTPE) 472
A.2.1 PTPE installation . 472

Appendix B. How to report performance problems to IBM 475

Appendix C. Hardware details . 479
C.1 Node types . 479
C.2 Roles of nodes . 480
C.3 Communication paths . 482
C.4 System partitioning . 482
C.5 Node selection process . 483

Appendix D. Special notices . 487

Appendix E. Related publications . 491
E.1 IBM Redbooks . 491
E.2 IBM Redbooks collections. 491
E.3 Other resources . 492
E.4 Referenced Web sites. 492

How to get IBM Redbooks . 495
IBM Redbooks fax order form . 496

Index . 497

IBM Redbooks review . 515
x RS/6000 SP System Performance Tuning Update

Figures

1. Performance tuning cycle . 5
2. TCP/UDP/IP data flow . 25
3. The network memory pool . 30
4. Socket layer . 31
5. Subnet addressing . 35
6. Inter-subnet fragmentation. 36
7. TCP Sliding Window . 37
8. rfc1323 - TCP extension . 38
9. Inserting no options for ARP cache in /etc/rc.net. 41
10. The Nagle Algorithm . 43
11. netstat -I command . 44
12. NFS overview. 68
13. Adapter queue overview . 95
14. MTU ratio . 97
15. lsattr command output for an ATM adapter . 98
16. Viewing send and receive pool buffer sizes. 100
17. chgcss command. 102
18. lsattr -El css0 output . 103
19. Switch pool allocation . 105
20. Output of the vdidl3 command . 108
21. Querying fragmentation for a file system . 179
22. Defragmentation of file system with defragfs . 180
23. Calculating tcp send/receive space sizes . 196
24. Single-server multiple-client scenario . 198
25. Sample setsockopt() call . 199
26. xmperf custom output for memory . 211
27. 3dmon CPU monitor . 218
28. xmperf disk I/O monitor . 231
29. xmperf ntework I/O monitor . 242
30. Monitoring a system using xmperf . 332
31. xmperf . 333
32. Default client and server files. 349
33. Changed client dsm.sys file . 350
34. Changed server dsmserv.opt file . 351
35. VSD implementation . 353
36. Write data flow: VSD using IP . 366
37. Write data flow: VSD using KLAPI . 366
38. GPFS overview . 372
39. Fundamental tuning points of WebSphere application server settings . . 395
40. Resource Analyzer with case1 (-mx64m) . 398
© Copyright IBM Corp. 2000 xi

41. Shared nothing. 402
42. DB2 UDB EEE structure . 404
43. Balancing paging I/O against database I/O . 409
44. The SSA disk layout. 422
45. Logical volume layout. 423
46. CPU utilization. TPC-H power run. 427
47. I/O characteristics. TPC-H power run . 428
48. CPU utilization. TPC-H throughput run. 429
49. I/O bandwidth. TPC-H throughput run. 430
50. An Oracle instance. 435
51. General Oracle Parallel Server architecture . 436
52. Parallel Oracle on SP systems . 437
53. Oracle tables working with VSD operations. 438
54. Distributed lock manager operation . 439
55. SGA buffer cache memory sizes for raw device and JFS DBs 451
56. PTX/6000 network monitoring - client/server model 469
57. RS/6000 SP node selection based on capacity . 484
58. RS/6000 SP node selection based on performance 485
xii RS/6000 SP System Performance Tuning Update

Tables

1. Start map . xxi
2. Basic network settings with the no command . 14
3. Maximum transmission units . 29
4. Default ARP parameters in AIX . 40
5. TCP/IP Pacing Degradation Window . 44
6. Socket level network option tunables. 49
7. Recommended values for ARP cache sizing in SP systems 58
8. Software development tuning parameters . 86
9. Scientific and technical environment tuning parameters 88
10. Commercial and database environment tuning parameters 90
11. Server tuning parameters . 92
12. Summary of workload tunables . 93
13. Transmit queue size examples . 96
14. Window types. 101
15. settings for new attributes . 102
16. vdidl3xx commands . 108
17. Escon interface tuning parameters . 113
18. Backing store for different memory segment types 118
19. Simplified transfer path of data from disk to memory. 142
20. Terms used in describing disk device block operations. 143
21. Latencies for disk access times . 143
22. Implications on performance of mirror write scheduling policies 160
23. Sample values for minpout and maxpout. 169
24. CWS network tunables . 182
25. Settings for nodes running primarily parallel jobs 185
26. Settings for nodes running primarily DB or mixed loads 185
27. Settings for nodes with intensive I/O and heavy paging 185
28. Determining ARP tuning settings based on the number of nodes 193
29. Determining ARP tuning settings based on number of IP interfaces . . . 194
30. Common performance problems categorized by environment 200
31. IBM AIX monitoring tools by system resources . 203
32. Commands for determining network protocol and services settings 231
33. Header types . 264
34. Files produced by pprof . 303
35. TSM server values in dsmserv.opt. 337
36. TSM client values in dsm.sys. 338
37. no parameter values . 339
38. BufPoolSize recommended sizes . 342
39. Parameters that are now internally controlled by GPFS 390
40. Summary for tuning a GPFS subsystem . 390
© Copyright IBM Corp. 2000 xiii

41. Tunable no command parameters . 396
42. Bottleneck thresholds depend on the resource and workload 407
43. System parameters tuned . 424
44. DB2 UDB parameters tuned . 425
45. Variables used by ptxrlog. 426
46. Memory distribution for JFS and raw device databases 444
47. Server tasks that may be disabled. 460
48. Checklist . 475
49. Installation of perfpmr . 477
50. Usage of perfpmr . 478
51. SP nodes overview . 479
xiv RS/6000 SP System Performance Tuning Update

Preface

This IBM redbook provides an updated version of the SP System
Performance Tuning Guide. It now includes new information about changes in
AIX V4.3.3 and PSSP V3.2 that can affect your SP System performance.
Also, new hardware that is available especially for the SP, such as the new SP
Switch2, is described along with its enhancements and tunables.

This redbook now includes information about certain applications: Tivoli
Storage Manager (ADSM), DB2, and GPFS, just to name a few. To make this
book comprehensive, we added more specific information about monitoring
your system to increase performance. This also includes some useful scripts
that can help you improve system performance or analyze the current settings
of your system faster and easier.

The reader of this book can range from a novice of performance tuning to an
experienced administrator. Considerable thought has gone into the layout of
the book. Readers with greater experience in SP tuning have new “quick
reference” features, such as startmaps and part guides: this will make
referencing parameter and other environment information easier. Full and
clear explanation of concepts and procedures are still provided.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Dino Quintero is a project leader at the International Technical Support
Organization (ITSO), Poughkeepsie Center. He has over nine years of
experience in the Information Technology field. He holds a BS in Computer
Science, and a MS degree in Computer Science from Marist College. Before
joining the ITSO, he worked as a Performance Analyst for the Enterprise
Systems Group, and as a Disaster Recovery Architect for IBM Global
Services. He has been with IBM since 1996. His areas of expertise include
Enterprise Backup and Recovery, Disaster Recovery Planning and
Implementation, and RS/6000. He is also a Microsoft Certified Systems
Engineer. Currently, he focuses on RS/6000 Cluster technology by writing
redbooks and teaching IBM classes worldwide.

Jess Hart is a SP Systems Administrator at IBM Hursley Park in the UK. She
has ten years experience in the AIX field. She holds a degree in Industrial
Economics from Coventry Polytechnic. She previously worked for IBM in AIX
© Copyright IBM Corp. 2000 xv

technical support, specializing in SP and SMP systems, and has written and
presented workshops in both these areas. She is a Certified Advanced
Technical Specialist for AIX and SP.

Marc-Eric Kahle is a RS/6000 Hardware Support specialist at the IBM ITS
Central Region SPOC in Germany. He has eight years of experience in the
RS/6000 and AIX fields. He has worked at IBM Germany for 13 years. His
areas of expertise include RS/6000 Hardware, including the SP, and he is
also certified in AIX. A lot of his experience with the SP System comes from
several lab projects in Poughkeepsie, onsite support at some of the biggest
European SP customers and the so-called Top Gun specialist workshops for
SP in Poughkeepsie.

Maria Lafranke is an IT Specialist in IBM ITS Division in Spain. She has
worked at IBM Spain for five years in all areas concerning AIX and SP. She
holds a degree in Computer Science from Polytechnic University in Madrid.
Also, she is a Certified Advanced Technical Expert in AIX and SP.

Bjorn Roden was recruited by IBM in the late 1980s while he was working as
a programmer, and studied for the last year at Lund University in Sweden for
his Master of Science. After working three years as SE (only with AIX) for IBM
in Malmo, and during the last year as the person responsible for local AIX
competence, he started a RS/6000 Business Partner with a former IBM
colleague, which became the second largest RS/6000 Business Partner in
Sweden. During his time at UNIMAX, Bjorn has achieved all SP, HACMP,
ADSM and AIX Advanced Technical Expert certifications. He has also, during
this time, been in charge of installing the largest SP installations for industrial
customers in Sweden. Bjorn now works as the technical manager for
Sweden’s largest RS/6000 Business Partner, Pulsen Systems.

Theeraphong Thitayanun is a Consulting IT Specialist with IBM Thailand.
He has been with IBM for 12 years. His main responsibility is to provide
billable services and support in all areas of RS/6000 SP. His areas of
expertise include PSSP, VSD, GPFS, HACMP, TSM, UDB, InfoSpeed and
AFS. Theeraphong holds a Bachelor Degree in Computer Engineering from
Chulalongkorn University and, as a Monbusho student, a Master Degree in
Information Technology from Nagoya Institute of Technology, Japan.

Thanks to the following people for their invaluable contributions to this project:

IBM PPS Lab, Poughkeepsie
Bernard King-Smith
xvi RS/6000 SP System Performance Tuning Update

International Technical Support Organization, Poughkeepsie Center
Yoshimichi Kosuge

IBM TJ Watson Research Center
Margaret Momberger

International Technical Support Organization, Austin Center
Diana Groefer, Augie Mena III, Wade Wallace

IBM Poughkeepsie
Bruno Bonetti, Bob Currant, Rich Darvid, Brian Herr, Lyle Gayne, Bob
Gensler, Eugene Johnson, Joe Kavaky, Chulho Kim, Gautam Shah, Rajeev
Sivaram, Peter Soroka, Clarisse Taaffee-Hedglin, Les Vigotti, James Wang

IBM Hursley
John Hayward, Richard Seymour

IBM Germany
Ewald Vogel

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 515 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks.

• Send your comments in an Internet note to redbook@us.ibm.com.
xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii RS/6000 SP System Performance Tuning Update

Book layout

This redbook is divided into four parts:

Part 1, ”Overview” gives an introduction to SP performance tuning; why is it
necessary, when you should tune and how SP tuning differs from tuning a
standalone AIX box. It then offers a methodology for tuning - how best to
understand the existing environment and how to plan and implement changes
to improve performance.

Part 2, ”General Tuning” helps the reader to understand how to improve the
general performance of an SP. This does not mean there has to be a known
problem in the system. It gives the basic recommended network adapter and
system settings to act as a quick reference guide. It then provides a more in
depth explanation of individual settings and what affect they have on
performance. It also illustrates differences in tuning for different
environments, for example, scientific and commercial.

Part 3, “Problem Determination and Tools” provides information on how to
detect and solve performance problems that are seen on a system. It starts
with a basic checklist to help ascertain where the problem lies, and then goes
into greater depth to explain the more common problems seen in an SP
environment and how to fix them. This checklist is followed by an explanation
of how to best monitor system resources, for example, how to avoid
bottlenecks.

Part 4, “Tuning Selected Products” gives tuning information for when the
following applications are running on an SP:

• TSM - (ADSM)
• VSD
• GPFS
• Web
• DB2
• Oracle
• Lotus Notes
• Communication Server for AIX
© Copyright IBM Corp. 2000 xix

xx RS/6000 SP System Performance Tuning Update

Start map

The START MAP - What to find in this book and where to find it

The intention of this redbook is to give you guidance on either finding or fixing
certain performance problems. Perhaps you have no known performance
problem, but you want to verify your system settings. To make it easier for you
to navigate through this book, you can use the Start Map below. For general
information about tuning, when and why, and tuning methodology, you may
start with Chapter 1, “Introduction” on page 3; otherwise, take a look at Table
1 on page xxi.

Table 1. Start map

What? Where?

You want to change your initial
settings, but you have no idea
what to change.

Go to Chapter 3, “Basic performance settings” on
page 13. Here you will find some useful initial
performance settings.

You want to tune your network
for better performance.

Go to Chapter 4, “Network tuning” on page 21. Learn
to change ARP, MTU and much more.

You want to tune your adapters
for better performance.

Go to Chapter 5, “Adapter tuning” on page 95. Here
you will find SP Switch adapter tuning, Gigabit
Ethernet tuning, and much more.

You want to tune components
like Memory, Disk, and CPU.

Go to Chapter 6, “Tuning other components in AIX”
on page 115 for more information.

You want to tune TSM, VSD,
GPFS, Websphere, DB2,
Oracle, and Notes.

Go to Part 4, “Tuning selected products” on page 335
and proceed with the chapters that deal with your
specific application.

You simply want TCPIP + NFS
Overview.

Go to Chapter 4, “Network tuning” on page 21 for
more information.

You are looking for Performance
Tools and how they are used

Go to Chapter 11, “Tools” on page 243 and/or
Appendix A, “Performance toolbox for AIX and
parallel extensions” on page 469 for more
information.

You want to check for
performance problems.

Go to Part 3, “Problem determination and tools” on
page 187 for more information.

You are looking for the correct
command syntax (no
command).

Go to Section 4.3.2, “AIX tunables” on page 46 for no
command syntax and much more information.
© Copyright IBM Corp. 2000 xxi

xxii RS/6000 SP System Performance Tuning Update

Part 1. Overview
© Copyright IBM Corp. 2000 1

2 RS/6000 SP System Performance Tuning Update

Chapter 1. Introduction

Welcome to the fully updated “RS/6000 SP System Performance Tuning
Guide.” This guide, although still very relevant for lower levels of code,
primarily discusses new features included in PSSP version 3.2 and AIX 4.3.3.

In writing this redbook, it is our objective to make it as readable to a novice of
performance tuning as it is to an experienced administrator. Considerable
thought has gone into the layout of the book. Readers with greater
experience in SP tuning have new “quick reference” features, such as
startmaps and part guides. This will make referencing parameter settings,
tables, and other environment information easier. Full and clear explanation
of concepts and procedures are still given, as required.

1.1 Why tune?

Tuning gives us the ability, through the full understanding of our computer
environment, to achieve optimal performance.

However, this means we really have to know the goals of the system. What is
really critical to achieve those goals? Do we understand what environment we
are in? What limitations does the system have that could cause bottlenecks?
Only in this way can we begin to prioritize and schedule workloads so that
any settings we change have the desired effect.

1.2 When to tune?

Tuning is a continuous process. Computer environments are getting more
complex. The SP family, with its growing cluster capabilities, is a good
example of this. High speed networking, with concurrent running of jobs,
coupled with the ease of scaling that the SP provides means that systems
can grow as an organization grows. As more users, applications and data are
added, the system has to be tuned and re-tuned so it can absorb the
increased load while still delivering the needed performance.

1.3 Why SP tuning differs from normal AIX tuning?

The SP is essentially a centrally managed, network connected collection of
servers. It is necessary to carefully consider the differences between the
network topology of the nodes and that of standalone AIX boxes.
© Copyright IBM Corp. 2000 3

Systems will have adapters with different transfer rates. Ethernet can be the
10Mb per second or the newer 100Mb per second adapter, so when mixing
both, the traffic throughput will be at the slower speed.

The new SP Switch2 is capable of 500 MB per second one way (up from 150
MB per second). If not properly tuned, this could potentially result in one node
receiving a volume of data and number of requests exceeding its capacity.
The new switch will be discussed in detail in Chapter 5, “Adapter tuning” on
page 95.

Other relevant topics are included in:

• Section 4.2.9, “Description of the Nagle Algorithm” on page 42, if the
switch is running slow.

• Section 4.2.7.1, “ARP cache tuning” on page 40, for information on
caching Address Resolution Protocol (ARP) addresses in SP
environments greater than 150 nodes.
4 RS/6000 SP System Performance Tuning Update

Chapter 2. Tuning methodology

Tuning methodology consists of the basic procedures that keep a system well
tuned. It is important to see this ongoing process as a cycle of events, that
requires continual review of the system settings and adjustments for changes
in the computing environment.

An important rule to adhere to when tuning or monitoring an SP system is to
make sure you have an adequate change control mechanism. You must have
clear documentation on what you changed, when you changed it and why you
changed it - without this information, any collected monitoring data will not
make sense.

2.1 The SP performance tuning cycle

Figure 1 illustrates this performance tuning cycle.

Figure 1. Performance tuning cycle

If you have a well planned and documented existing running system, then you
can initially skip steps 1 and 2.

6 - Minimize resource
requirements

3 - Evaluate the
workload

4 - Set performance
objectives

5 - Indentify critical
resources

7 - Establish new
settings

8 - Record system
settings

9 - Apply and manage
new settings

10b - System change
needed

10a - performance
problem or re-analysis

2 - Document your
system

1 - Installation or
Migration
© Copyright IBM Corp. 2000 5

1. Installation or migration.

Part of an installation or migration is the selection of the appropriate initial
tunables for the nodes. IBM provides four alternate tuning files
(tuning.cust) that contain initial performance tuning parameters for the
following SP environments:

- Commercial

- Development

- Scientific and technical

- Server

Homogeneous systems (those systems where the nodes are identical or
all have very similar roles) will all need similar or the same tuning.
Consolidated systems, where the nodes can have very different roles from
each other, present a larger tuning challenge. A full examination is
necessary to determine what is running on each node, the traffic through
the node, and any interaction between applications. Defining an
appropriate set of tunables for a consolidated system requires accounting
for everything running on the SP system.

Grouping together nodes that have identical workloads is a possible
solution. These nodes, as a group, usually can use the same set of
tunable settings. In the case where there are three distinct node workload
types, three sets of tunables need to be determined, and then the
appropriate set applied to the tuning.cust file on the appropriate nodes
needs to be determined.

Selecting a tuning file at this stage is not the end of all efforts, but the
beginning. These files should be seen as the base setup for getting a
running system. You need to go through the rest of the SP performance
tuning cycle and adjust the parameters according to your requirements.

2. Document your system.

When your system is “alive” and installed correctly, you should document
your system settings and your network configuration. It is unlikely the
system will be running at an optimal performance, but these initial settings
will provide a stable environment.

3. Evaluate the workload.

When planning how to best tune a system, it is important to understand all
the work that your system is doing. For example, if your system has file
systems that are NFS-mounted and frequently accessed by other
systems, handling those accesses could be a significant workload, even
though the machine is not officially a server.
6 RS/6000 SP System Performance Tuning Update

With multiuser workloads, the analyst must quantify both typical and peak
request rates.

- Components of the workload that have to be identified are:

• Who will be using the programs running on a system?

• In which situations will the programs be run?

• How often do those situations arise, and at what time of day, month
or year?

• Will those situations require changes to existing programs?

• Which systems will the program run on?

• How much data will be handled and from where?

Some thought should be given on whether tuning and testing has to be
done away from the production environment. Simulating the workload
outside a live system is certainly the safest option; an analyst can do more
experimental tuning and it does not matter if there is a temporary
degradation in performance. However, care has to be taken that this test
environment is a true reflection of the production environment. If the
workloads are not authentic, any data collected will be inaccurate.

Benchmarking is a popular option in comparing how a particular workload
runs on dissimilar systems. These benchmarks can be useful tests if you
need to show the relative performance of different systems and
configurations, or you feel you do not understand the resource
requirements of a workload.

A quality benchmark needs to show relevance to the “real” application and
should test what it is intended to test. It needs to be easily portable
between platforms and different vendor machines. The results should be
meaningful and easily repeatable. The benchmark should be easy to scale
for smaller or larger workloads.

The disadvantage of benchmarking is that the workloads used are often
very “standardized” in order to allow comparisons between platforms. In
many cases, benchmark results will not accurately reflect the performance
of a live production system, but can certainly give good indications of
potential problems. Also, if the production system is too vast and
expensive to duplicate in a test environment, benchmarking can provide a
cost effective alternative.

4. Set performance objectives.

After defining the workload, you can set the objectives. Key to being able
to set the objectives is deciding the relative importance of the different
work being run on the system. Unless this objective is agreed to in
Chapter 2. Tuning methodology 7

advance, then trade-off decisions between resources will be very difficult.
Objectives must be measurable, and this is usually done by expressing
the necessary performance as throughput and response time.

Response time The elapsed time between when a request is submitted
and when the response from that request is returned, for
example, how long on average does a database query
take.

Throughput The number of workload operations that can be
accomplished per unit of time, for example, kilobytes of
a file transferred per second

5. Identify critical resources.

Systems have both real and logical resources. Real resources are the
physical components, such as disk space, network adapters, memory and
CPU. Logical resources are abstractions that enable the real resources to
be shared. An example of a CPU logical resource is a processor time
slice. Memory logical resources include page frames, buffers, locks and
semaphores. Disk space is divided into volume groups, logical volumes
and file systems, while networking has sessions packets and channels.

If several applications are sharing the same node they will be in contention
for, for example, CPU. The user process priorities can be manipulated
using the nice or renice commands and the schedtune command can
change the time slice, although this is for all processes. Applications that
may not or should not have the whole time slice can give up the processor
time slot with the yield system call. The new Workload Manager that is in
AIX 4.3.3 can also help with prioritizing workload.

6. Minimize the workload’s critical resource requirements.

To minimize the critical resource requirements of a workload, conscious
decisions have to be taken as to where applications will run and whether,
for example, files should be kept locally or on a server. Basic
administrative tasks, such as clearing log files or backing up file systems,
could cause network traffic that could affect system performance.
Scheduling such tasks via the crontab is a good way to make sure these
important tasks do not get forgotten and also run at quieter times.

If you already understand what the CPU or memory peak times on a
system are at a system-management level, low priority workloads that are
contending for critical resource can be moved to other systems, run at
other times or controlled with the Workload Manager.

The parallelism of the SP environment can help the resource problem
considerably, although the nodes’ resources, such as memory and CPU,
8 RS/6000 SP System Performance Tuning Update

are separate. Internode bandwidth means that jobs can run on different
nodes, concurrently passing needed data between nodes. Software that
runs in this kind of environment, such as POE and LoadLeveler, will use
the Ethernet as well as the Switch, and a peak performance may not be
obtainable on both at the same time.

7. Establish new settings to reflect resource priorities.

Now you can plan what actual settings to change. This could mean
changing the AIX network tunables. The no command is used to display
and change these values (these values will be discussed in detail in
Chapter 4, “Network tuning” on page 21). Adapter tuning is discussed in
detail in Chapter 5, “Adapter tuning” on page 95 and includes, for
example, information on sizing adapter and switch adapter pools.

8. Record and keep track of system settings.

Record all changes that have been made. You must know what was
changed, when it was changed, when data was collected and what this
data was good for. Along with the change records, keep a log of the
performance impacts on the system and the nodes during the changes.

9. Apply and manage new settings

It is important to know where to set these new tunable values. If they are
not set in the correct places, you may not use the changed settings. In the
worst case, the node will not reboot at all.

For all dynamic tunables (those that take effect immediately), the settings
for each node should be set in its local /tftpboot/tuning.cust file. It is
guaranteed that this file will be executed on every reboot. Tunables
changed using the no, nfso, or vmtune commands can be included in this
file.

If the system has nodes that require different tuning settings, it is
recommended that a copy of each of the settings be saved on the control
workstation; then when nodes of a specific tuning setting are installed, that
version of tuning.cust can be moved into /tftpboot on the control
workstation. You can amalgamate these tuning.cust files into one by
reading each node’s node number from the SDR, then, based on the node
number, set the appropriate values for that node. This avoids maintaining
several different tuning.cust files and making sure the correct one is
loaded on each node.

10.Monitor performance indices.

Continue to check the system and monitor the performance indices (such
as response time of applications, throughput, possible errors, and so on)
to prove that the changes led to an overall improvement.
Chapter 2. Tuning methodology 9

Resource monitoring is dealt with in Chapter 10, “Resource monitoring” on
page 203, which gives an insight into how best to monitor memory, CPU,
and I/O resources. A further chapter Chapter 11, “Tools” on page 243
gives details of general tools for monitoring that are available, for
example, topas.

Eventually, one of the following two situations may occur.

a. Performance problem or re-analysis necessary.

The system shows performance problems, or the analyst believes better
performance can be achieve by readjusting some parameters. Record and
analyze the data that shows any performance degradation. Perform AIX
performance analysis, SP Switch analysis, SP log analysis, and so forth,
and then go back to Step 3.

b. System changes

Some hardware or software is going to be added, replaced by a newer
version or removed from the system. Note the changes, identify node role
changes (if any), then go back to Step 1.
10 RS/6000 SP System Performance Tuning Update

Part 2. General tuning
© Copyright IBM Corp. 2000 11

12 RS/6000 SP System Performance Tuning Update

Chapter 3. Basic performance settings

In this chapter, we outline basic performance tuning settings that you always
should apply to all nodes in a RS/6000 SP (and most other large RS/6000
systems), as well as the Control Workstation (CWS). These settings are the
starting point from which performance monitoring and tuning begins. If you
perceive that the RS/6000 SP system is not performing as you desire or
expected, make sure that these values have been set on all systems in your
SP complex before investigating further. These values are based on SP
experts experiences in dealing with both real life customer workloads and in
advanced benchmarking scenarios.

View these settings as the basics that should always be applied on all
customer production systems. Remember that the default values on many of
the values for the logical resources are inherited from AIX v3 and are
backwards compatible with hardware that is still supported but designed and
manufactured over ten years ago. The default values are also intended for
workstation workloads and not for large multiuser, multiprocessor systems.

We give you tables and command examples of how to set these basic values.
If you manage more than one RS/6000 SP node or networked RS/6000
system, you should use a shell script to set the values, so that none are
overlooked and missed, or you should use a checklist where you set values,
and after each reboot check the setting in the production environment.

On the RS/6000 SP you can change both the devices or just put all values
into /tftpboot/tuning.cust on each node. If you maintain a good
/tftpboot/script.cust, you could divide the settings for the nodes into one
part that is done by the installation/customization and one part that is done at
boot (IPL) time (first.boot). If you do not use a well documented and
structured /tftpboot/script.cust, set all values in /tftpboot/tuning.cust. This
latter method is also good for when you apply these changes to a running
production system.

1. Document current values before changing them.

2. Do not type any errors (use shell scripts if possible).

3. Pretype the command to reset the values using another terminal
connection just in case something goes wrong.

Important
© Copyright IBM Corp. 2000 13

3.1 Basic network settings

Before applying the basic performance tuning settings, document the current
value of each, as in the following example:

no -a | tee /tftpboot/no.$(date +”%Y%m%d”).out

When this is done, create a script or update /tftpboot/tuning.cust so that
these values are set at every boot (IPL). Use the following as an example:

no -o sb_max=1310720

To set all no tunables back to their default value, use the following command:

no -a | awk '{print $1}'|xargs -t -i no -d {}

The values in Table 2 are to be used as a starting point. For information on
these parameters, refer to Section 4.3.2, “AIX tunables” on page 46.

Table 2. Basic network settings with the no command

To document all the network interfaces’ important device settings, you can
manually check all interface device drivers with the lsattr command, or run
the following script:

no parameter Value Comment

thewall Use the default If network errors occur, set manually to
1048500

sb_max 1310720 sb_max limits what each socket can get out
of thewall

tcp_sendspace 262144 sb_max / 5

tcp_recvspace 262144 sb_max / 5

udp_sendspace 65536 sb_max / 20

udp_recvspace 655360 sb_max / 2

tcp_mssdflt 1448 1448 for Ethernet and 1440 for Token-Ring

rfc1323 1

ipqmaxlen 512

tcp_pmtu_discover 0

udp_pmtu_discover 0
14 RS/6000 SP System Performance Tuning Update

3.2 Basic adapter settings

Network adapters should be set to utilize the maximum transfer capability of
the current network. Maximum values for device driver buffers and caches
should be set.

To find out the maximum possible setting for a device, use the lsattr

command as will be shown in the following examples. First find out the
attribute names of the device driver buffers/queues that the adapter uses:

Then find out the range for each queue as follows:

#!/bin/ksh

stripit()
{
awk '
example: 1...999
/\.\.\./{print $1;next}
example: "attribute=1-999"
/ "/{a=substr($0,index($0,"\"")+1);
b=substr(a,index(a,"=")+1);
print substr(b,0,index(b,"\"")-1);next}'|read value

if [[! -z "$value"]];then
print "$value"

else
print "N/A"

fi
}

printf "%-6.6s %-16.16s %-16.16s %-s\n" "Device" "Attribute" "Value" "Range"
for device in $(lsdev -F"name:subclass" -C -c if|grep -v LO|cut -f1 -d:);do
for attribute in netaddr mtu remmtu rfc1323 tcp_nodelay tcp_sendspace tcp_recvspace

tcp_mssdflt;do
lsattr -F"value" -E -l $device -a $attribute|awk '{print ($1)?$1:"none"}'|read value
lsattr -R -l $device -a $attribute 2>&1 |stripit|read range
printf "%-6.6s %-16.16s %-16.16s %-s\n" "$device" "$attribute" "$value" "$range"

done
done

lsattr -El ent0
busio 0x7ff800 Bus I/O address False
busintr 7 Bus interrupt level False
intr_priority 3 Interrupt priority False
tx_que_size 2048 TRANSMIT queue size True
rx_que_size 256 RECEIVE queue size True
rxbuf_pool_size 2048 RECEIVE buffer pool size True
media_speed 100_Full_Duplex Media Speed True
use_alt_addr no Enable ALTERNATE ETHERNET address True
alt_addr 0x000000000000 ALTERNATE ETHERNET address True
ip_gap 96 Inter-Packet Gap True
Chapter 3. Basic performance settings 15

For the tx_que_size and rxbuf_pool_size, the maximum is 2048; for
rx_que_size, the maximum is 256. To change the values so that they will be
used the next time the device driver is loaded, use the chdev command, as
shown here:

The following script extracts the maximum values allowed for Ethernet and
Token-Ring adapters (from the ODM) to use for the transmit and the receive
queues (respectively):

lsattr -Rl ent0 -a tx_que_size
16...2048 (+1)

lsattr -Rl ent0 -a rx_que_size
16
32
64
128
256

lsattr -Rl ent0 -a rxbuf_pool_size
16...2048 (+1)

chdev -l ent0 -a tx_que_size=2048 -a rxbuf_pool_size=2048 -a rx_que_size=256 -P
ent0 changed
16 RS/6000 SP System Performance Tuning Update

To set the maximum values with the above script, just start it with a
parameter. For example (if the script above was named
change_adapter_buffers):

change_adapter_buffers 1

If used without a parameter, it would show all the maximum values for all
attributes for all Ethernet and Token-Ring adapters in the system.

#!/bin/ksh

execute=$1

stripit2()
{
awk '
example: 1...999
/\.\.\./{x=substr($1,index($1,".")+3)}
example: "attribute=1-999"
/\=/{a=substr($0,index($0,"=")+1);
b=substr(a,index(a,"-")+1);
x=substr(b,0,index(b,"\"")-1)}

example: 16\n32\n64\n256
NR>1{x=$1}
END{print x}'

}

types="ent|tok"

printf "%-6.6s %-16.16s %-8.8s %-8.8s %-s\n" "Device" "Attribute" "Value" "Maxvalue"
"Command"

for device in $(lsdev -Cc adapter -Fname|egrep $types);do
for attribute in $(lsattr -E -Fattribute -l $device|grep "_.*_size");do
lsattr -E -F"value" -l $device -a $attribute 2>&1 |read value
lsattr -R -l $device -a $attribute 2>&1 |stripit2|read maxvalue
cmd="chdev -l $device -a $attribute=$maxvalue"
printf "%-6.6s %-16.16s %-8.8s %-8.8s %s\n" "$device" "$attribute" "$value" "$maxvalu

"$cmd"
if [[! -z "$execute"]];then
$cmd -P # Sets the change in the ODM only

fi
done

done
Chapter 3. Basic performance settings 17

3.3 Basic AIX system settings

Do not make any memory threshold changes until you have had experience
with the response times of the system for the actual workload.

Use the default CPU scheduling parameters, unless you have extensive
monitoring and tuning experience with the same workload on a similar
configuration. Leave most of the AIX system settings for memory
management unchanged at installation time.

The mechanisms for defining and expanding logical volumes attempt to make
the best possible default choices. However, satisfactory disk I/O performance
is much more likely if the installer of the system tailors the size and placement
of the logical volumes to the expected data storage and workload
requirements. But this is very dependent on the available hardware
configuration and should have been considered at the design stage of the
system layout. When creating multiple large logical volumes that span
multiple disks, start by using the edge inter-disk allocation policy, and let AIX
create the logical volumes consecutively starting from the edge1.

You should consider increasing the maxuproc setting to reflect the maximum
number of processes that will be allowed per user; otherwise, some
applications might not run properly (the default of 40 is usually to low). You
should also change autorestart to true so that the system will restart if it
crashes.

chdev -l sys0 -a maxuproc=1024 -a autorestart=true

Also, run the schedtune and vmtune commands to document the initial settings
for the Scheduler and the Virtual Memory Manager (VMM). These commands
can be found in the bos.adt sample fileset.

/usr/samples/kernel/schedtune
/usr/samples/kernel/vmtune

Note that you will very probably need to change the VMM settings for
minperm/maxperm and minfree/maxfree with vmtune. For more information, refer
to Section 6.1.2.6, “minperm and maxperm” on page 123 and Section 6.1.2.4,
“minfree and maxfree” on page 119.

For nodes that will have a lot of networked users logged in or applications
running that use pseudo terminals, you will need to increase the maximum
number of PTYs allowed on the system using the following command:

1 If allocated from the center, there is a risk that the logical volumes, after the first one, will get split around the previous
logical volume(s) that occupy most of the center already.
18 RS/6000 SP System Performance Tuning Update

chdev -l pty0 -a BSDnum=128

The default for BSDnum is 16 (and 256 for ATTnum).
Chapter 3. Basic performance settings 19

20 RS/6000 SP System Performance Tuning Update

Chapter 4. Network tuning

The tuning objectives for the RS/6000 SP are: improve performance,
response time, and resource utilization. These objectives look similar to those
for a stand-alone RS/6000 system. Nevertheless, the approach for tuning an
SP system is, in some situations, different from how you would tune an AIX
workstation.

This chapter discusses the most important parameters involved in a general
network tuning and how these same parameters are tuned for in a RS/6000
SP system. We will also describe specific tuning strategies for SP systems in
different environments.

4.1 Initial considerations

The basic architecture of the SP is a set of nodes connected by a
communication layer. Therefore, the most important aspect of tuning
concerns the communication network. Once the RS/6000 SP communication
layer is properly tuned, use standard AIX tuning within the nodes.

4.1.1 General tuning recommendations
The very first step always involves monitoring the system. Keeping a detailed
log (statistics and also parameters) of your system before and after any
configuration changes could save hours of distress later. Any changes to your
SP environment, whether you are adding applications or changing your
subsystems, requires a full review of all your system parameters.

In tuning an AIX workstation or server, the most common approach is to tune
the machine to handle the amount of traffic or services requested of it. In the
case of a file server, the server is tuned to the maximum amount of traffic it
can receive. In general, the bottleneck in a high-end server is the capacity of
the network through which services are requested.

The situation with an SP system could be the opposite in some situations.
The SP Switch is faster than any other network available. With the
non-blocking nature of a switch, the number of requests and volume of data
that may be requested of a node can far exceed the node's capacity. To
properly handle this situation, the SP system must manage the volume of
services requested of a server. In other words, you should reduce the number
of requests at the client rather than increase the capacity of the server. It is
very easy on large SP system configurations to require more services than
the most powerful node can currently deliver.
© Copyright IBM Corp. 2000 21

4.1.2 Consolidated system challenges
Consolidated systems present a larger tuning challenge than homogeneous
systems. Consolidated systems are those in which different nodes assume
different roles. In such a case, make a full examination of what is running on
each node, the traffic through the node, and any interaction between
applications. Defining an appropriate set of tunables for a consolidated
system requires accounting for everything running on each node in the SP
system.

The typical method of picking apart the consolidated tuning problem is to
group nodes with identical workloads. These nodes, as a group, usually can
use the same set of tunables. Where there are three distinct node workload
types, three sets of tunables need to be determined and the appropriate set
applied to the tuning.cust file on the appropriate nodes.

4.1.3 System topology considerations
The most important consideration in configuring the SP Ethernet is the
number of subnets configured. The routing through the Ethernet can be
complicated because of the limitation on the number of simultaneous network
installs per subnet. More information regarding the topology of the Ethernet
can be found in RS/6000 SP: Planning Volume 1, Hardware and Physical
Environment, GA22-7280.

Systems that use Ethernet switches need to address the flat Ethernet
topology rather than a hierarchical network tree of the traditional SP Ethernet.

When configuring software that uses the SP Ethernet, consider the software
location in the SP Ethernet topology. Software such as LoadLeveler and POE
use the SP Ethernet to communicate to other nodes. Installing such software
on a far point in the network in a large SP configuration can cause
bottlenecks on the network subnets and the adapters connected to the CWS.
On systems where the CWS is the default route, the Ethernet adapter that
maps to the default address can become a bottleneck as traffic is all routed
through this one adapter.

Installing such software on the CWS causes the lowest possible traffic.
However, the CWS has to be powerful enough to act as the CWS and, in
addition, support the additional software and network traffic.

It is not recommended that the SP Ethernet be local to other parts of the
outside computing network topology. Keeping only SP traffic on the SP
Ethernet prevents outside network traffic from causing performance problems
on the SP itself. If you have to connect the SP Ethernet to your external
22 RS/6000 SP System Performance Tuning Update

network, make sure that the outside traffic does not overload the SP Ethernet.
You can overload it if you route high-speed network adapter traffic (for
example, FDDI or ATM) through the SP Ethernet. Route gateway traffic over
the SP switch from gateways to FDDI, ATM, and other high-speed networks.
Configure routers or gateways to distribute the network traffic so that one
network or subnet is not a bottleneck.

Several gateways or the SP router node should be configured if a large
volume of traffic is expected. All traffic on these networks can be monitored
using the standard network monitoring tools. Details about the monitoring
tools and their usage can be found in Understanding IBM RS/6000
Performance and Sizing, SG24-4810 or in Section 10.5, “Monitoring Network
I/O” on page 231.

4.2 TCP/IP network overview for performance

In the following pages, there is a description of the most important TCP/IP
concepts related to performance. For more information about TCP/IP, refer to
Understanding IBM RS/6000 Performance and Sizing, SG24-4810 and AIX
V4.3 System Management Guide: Communications and Networks,
SC23-4127.

TCP/IP carefully defines how information moves from sender to receiver:

1. First, application programs send messages or streams of data to one of
the Internet Transport Layer Protocols, either the User Datagram Protocol
(UDP) or the Transmission Control Protocol (TCP).

2. These protocols receive the data from the application, divide it into
smaller pieces called packets, add a packet header (including the
destination address), and then pass the packets along to the next protocol
layer (the Internet Network layer). The TCP/IP transport-level protocols
allow application programs to communicate with other application
programs. UDP and TCP are the basic transport-level protocols for
making connections between Internet hosts. Both TCP and UDP use
protocol ports on the host to identify the specific destination of the
message.

3. The Internet Network layer encloses the packet in an Internet Protocol (IP)
datagram, puts in the datagram header and trailer, decides where to send
the datagram (either directly to a destination or else to a gateway), and
passes the datagram on to the Network Interface layer.
Chapter 4. Network tuning 23

4. The Network Interface layer accepts IP datagrams and transmits them as
frames over a specific network hardware, such as Ethernet or Token-Ring
networks.

5. Frames received by a host go through the protocol layers in reverse. Each
layer strips off the corresponding header information, until the data is back
at the application layer (see Figure 2 on page 25). Frames are received by
the Network Interface layer (in this case, an Ethernet adapter). The
Network Interface layer strips off the Ethernet header, and sends the
datagram up to the Network layer. In the Network layer, the Internet
Protocol strips off the IP header and sends the packet up to the Transport
layer. In the Transport layer, the Transmission Control Protocol (in this
case) strips off the TCP header and sends the data up to the Application
layer.

Higher-level protocols and applications use UDP to make datagram
connections and TCP to make stream connections. The operating system
sockets interface implements these protocols.

4.2.1 Send and receive flows in the TCP/IP protocol stack
In this section, we describe, in more detail, the send and receive flows that go
through the TCP/IP stack. Figure 2 on page 25 is an illustration of all of these
flows.

In the following paragraphs you will find some variables or parameters that
you can adjust in AIX environments for performance reasons. For a more
exhaustive description of the AIX network tunables go to Section 4.3, “AIX
network tunables” on page 45.
24 RS/6000 SP System Performance Tuning Update

Figure 2. TCP/UDP/IP data flow

4.2.1.1 UDP send flow
If udp_sendspace (size of the UDP socket send buffer) is large enough to
hold the datagram, the application's data is copied into mbufs in kernel
memory. If the datagram is larger than udp_sendspace, an error is returned to
the application. The operating system chooses optimum size buffers from a
power of 2 size buffer. For example, a write of 8704 bytes is copied into two
clusters, a 8192-byte and a 512-byte cluster. UDP adds the UDP header (in
the same mbuf, if possible), checksums the data, and calls the IP ip_output()
routine.

4.2.1.2 UDP receive flow
UDP verifies the checksum and queues the data onto the proper socket. If the
udp_recvspace (size of the UDP socket receive buffer) limit is exceeded, the
packet is discarded. A count of these discards is reported by the netstat -s

command under udp label as socket buffer overflows.

Socket Layer
(Subsytem
e.g. NFS, DFS

Application

TCP or
UDP
Layer

IP Input
Queue

S
E

N
D

IN
G

R
E

C
E

IV
IN

G

IP Layer

DEVICE
DRIVER

ADAPTERMTU

DMA

MTU

DMA

Media

IF LayerMTU Enforcement

MTU Compliance

Socket Send
Buffer

Socket Receive
Buffer

TCP
UDP TCP UDP(MTU Compliance)

Receive
Queue

Transmit
Queue

mbufs

mbuf mbuf

User space

System space

DatagramsStream

Send
Buffer

Read
Buffer

copy copy
Chapter 4. Network tuning 25

If the application is waiting for a receive or read on the socket, it is put on the
run queue. This causes the receive to copy the datagram into the user's
address space and release the mbufs, and the receive is complete. Normally,
the receiver responds to the sender to acknowledge the receipt and also
return a response message.

4.2.1.3 TCP send flow
When the TCP layer receives a write request from the socket layer, it
allocates a new mbuf for its header information and copies the data in the
socket-send buffer either into the TCP-header mbuf (if there is room) or into a
newly allocated mbuf chain. If the data being copied is in clusters, the data is
not actually copied into new clusters. Instead, a pointer field in the new mbuf
header (this header is part of the mbuf structure and is unrelated to the TCP
header) is set to point to the clusters containing the data, thereby avoiding the
overhead of one or more 4 KB copies.

TCP then checksums the data (unless it is off-loaded by certain PCI
adapters), updates its various state variables, which are used for flow control
and other services, and finally calls the IP layer with the header mbuf now
linked to the new mbuf chain.

4.2.1.4 TCP receive flow
When the TCP input routine receives input data from IP, the following occurs:

1. It checksums the TCP header and data for corruption detection (unless it
is off-loaded by certain PCI adapters).

2. Determines which connection this data is for.

3. Removes its header information.

4. Links the mbuf chain onto the socket-receive buffer associated with this
connection.

5. Uses a socket service to wake up the application (if it is sleeping).

netstat -s
udp:

2844603 datagrams received
0 incomplete headers
0 bad data length fields
0 bad checksums
1027 dropped due to no socket
140406 broadcast/multicast datagrams dropped due to no socket
0 socket buffer overflows
2703170 delivered
2514585 datagrams output
26 RS/6000 SP System Performance Tuning Update

4.2.1.5 IP send flow
When the IP output routine receives a packet from UDP or TCP, it identifies
the interface to which the mbuf chain should be sent, updates and checksums
the IP part of the header, and passes the packet to the interface (IF) layer. IP
determines the proper device driver and adapter to use based on the network
number. The driver interface table defines the maximum MTU for this
network. If the datagram is less than the MTU size, IP adds the IP header in
the existing mbuf, checksums the IP header, and calls the driver to send the
frame. If the driver send queue is full, an EAGAIN error is returned to IP,
which returns it to UDP, which returns it to the sending application. The
sender should delay and try again.

If the datagram is larger than the MTU size (which only occurs in UDP), IP
fragments the datagram into MTU-size fragments, appends an IP header (in
an mbuf) to each, and calls the driver once for each fragment frame. If the
driver's send queue is full, an EAGAIN error is returned to IP. IP discards all
remaining unsent fragments associated with this datagram and returns
EAGAIN to UDP. UDP returns EAGAIN to the sending application. Since IP
and UDP do not queue messages, it is up to the application to delay and try
the send again.

4.2.1.6 IP receive flow
Interfaces do not perform queuing and directly call the IP input queue routine
to process the packet; the loopback interface will still perform queuing. In the
case of queuing, the demux layer places incoming packets on this queue. If
the queue is full, packets are dropped and never reach the application. If
packets are dropped at the IP layer, the statistic called ipintrq overflows in the
output of the netstat -s command is incremented. If this statistic increases
in value, then use the no command to tune the ipqmaxlen tunable.

The demux layer calls IP on the interrupt thread. IP checks the IP header
checksum to make sure the header was not corrupted and determines if the
packet is for this system. If so, and the frame is not a fragment, IP passes the
mbuf chain to the TCP or UDP input routine.

If the received frame is a fragment of a larger datagram (which only occurs in
UDP), IP retains the frame. When the other fragments arrive, they are merged
into a logical datagram and given to UDP when the datagram is complete. IP

netstat -s
ip:

0 path MTU discovery memory allocation failures
0 ipintrq overflows
0 with illegal source
0 packets dropped by threads
0 packets dropped by threads
Chapter 4. Network tuning 27

holds the fragments of an incomplete datagram until the ipfragttl time (as
specified by the no command) expires. The default ipfragttl time is 30 seconds
(an ipfragttl value of 60 half-seconds). If any fragments are lost due to
problems such as network errors, lack of mbufs, or transmit queue overruns,
IP never receives them. When ipfragttl expires, IP discards the fragments it
did receive. This is reported as a result from the netstat -s command under
ip label as fragments dropped after timeout.

4.2.1.7 Demux send flow
When the demux layer receives a packet from IP, it attaches the link-layer
header information to the beginning of the packet, checks the format of the
mbufs to make sure they conform to the device driver's input specifications,
and then calls the device driver write routine. The address resolution protocol
(ARP) is also handled in this layer. ARP translates a 32-bit Internet address
into a 48-bit hardware address. ARP is discussed in Section 4.2.7, “Address
resolution” on page 40.

4.2.1.8 Demux receive flow
When the demux layer receives a packet from the device driver, it calls IP on
the interrupt thread to perform IP input processing. If the “dog threads” are
enabled, the incoming packet will be queued to the thread and the thread will
handle calling IP, TCP, and the socket code. Refer to Section 4.2.4, “Enabling
thread usage on LAN adapters (dog threads)” on page 32 for more
information.

4.2.2 MTU
The Maximum Transmission Unit (MTU) specifies the maximum size of a
packet (including all the protocol headers) that can be transmitted on a
network. All nodes and/or systems on the same physical network must have
the same MTU. The MTU can be displayed using the netstat -i command.
Table 3 on page 29 gives an overview of common network adapters and their
related MTU sizes.

For two hosts communicating across a path of multiple networks, a
transmitted packet will become fragmented if its size is greater than the
smallest MTU of any network in the path. Since packet fragmentation can
result in reduced network performance, it is desirable to avoid fragmentation

netstat -s
ip:

35 fragments dropped after timeout
28 RS/6000 SP System Performance Tuning Update

by transmitting packets with a size that is no greater than the smallest MTU in
the network path. This size is called the path MTU.

Table 3. Maximum transmission units

The MTU value can be changed per adapter using the ifconfig command or
via SMIT. Because all systems on the same physical network should have the
same MTU, any changes made should be made simultaneously. The change
is effective across system boots.

4.2.3 Communication subsystem memory (mbuf) management
This section describes the mechanism used by AIX to manage the memory
dedicated to the communication subsystem.

4.2.3.1 Mbufs
To avoid fragmentation of kernel memory and the overhead of numerous calls
to the xmalloc() subroutine, the various layers of the communication
subsystem share common buffer pools. The mbuf management facility
controls different buffer sizes that can range from 32 bytes up to 16384 bytes.

Network Type Default MTU Maximum MTU Optimal

Ethernet 1500 1500 1500

Gigabit Ethernet 1500 9000 9000

Token Ring 1492 17284 4096
8500 for NFS traffic

Escon 1500 4096 4096

FDDI 4352 4352 4352

ATM 9180 65530 9180

HiPS 65520 65520 65520

SP Switch 65520 65520 65520

SP Switch2 65520 65520 65520

HiPPI 65536 65536 65536
Chapter 4. Network tuning 29

Figure 3. The network memory pool

The pools are created from system memory by making an allocation request
to the Virtual Memory Manager (VMM). The pools consist of pinned pieces of
kernel virtual memory in which they always reside in physical memory and
are never paged out. The result is that the real memory available for paging in
application programs and data has been decreased by the amount that the
mbuf pools have been increased.

The network memory pool is split evenly among each processor, as show in
Figure 3. Each sub-pool is then split up into buckets of 32-16384 bytes. Each
bucket can borrow memory from other buckets on the same processor but a
processor cannot borrow memory from another processor's network memory
pool. When a network service needs to transport data, it can call a kernel
service such as m_get() to obtain a memory buffer. If the buffer is already
available and pinned, it can get it immediately. If the upper limit has not been
reached, and the buffer is not pinned, then a buffer is allocated and pinned.
Once pinned, the memory stays pinned, but can be freed back to the network
pool. If the number of free buffers reaches a high-water mark, then a certain
number is unpinned and given back to the system for general use.

thewall

mbuf
256 bytes

minimum
cluster

32 bytes

mcluster
16384 bytes

mcluster
4096 bytes
30 RS/6000 SP System Performance Tuning Update

An upper limit is placed on how much of real memory (RAM) can be used for
network memory. You can tune this parameter by setting maxmbuf or thewall.
For more details about these parameters go to Section 4.3, “AIX network
tunables” on page 45.

4.2.3.2 Sockets
Sockets provide the application program interface (API) to the communication
subsystem. Several types of sockets provide various levels of service by
using different communication protocols. Sockets of type SOCK_DGRAM use
the UDP protocol. Sockets of type SOCK_STREAM use the TCP protocol.
See Figure 4 for an overview.

Figure 4. Socket layer

The semantics of opening, reading, and writing to sockets are similar to those
for manipulating files.

The sizes of the buffers in system virtual memory (that is, the total number of
bytes from the mbuf pools) that are used by the input and output sides of
each socket are limited by system-wide default values (which can be
overridden for a given socket by a call to the setsockopt() subroutine).

MTU

INTERFACE
LAYER

PROTOCOL LAYERS
(TCP,UDP,IP,ICMP,IGMP)

SOCKET
LAYER

APPLICATION
LAYER

Function
Call

SOCKET
QUEUES

PROTOCOL QUEUE
(IP INPUT QUEUE)

INTERFACE QUEUES

Software Interrupt
(Caused by Interface Layer)

Hardware Interrupt
(Caused by Network Device)

HARDWARE LAYER

System Calls
Chapter 4. Network tuning 31

4.2.4 Enabling thread usage on LAN adapters (dog threads)
Drivers, by default, call IP directly, which calls up the protocol stack to the
socket level while running on the interrupt level. This minimizes instruction
path length, but increases the interrupt hold time. On an SMP system, a
single CPU can become the bottleneck for receiving packets from a fast
adapter. By enabling the dog threads, the driver queues the incoming packet
to the thread and the thread handles calling IP, TCP, and the socket code. The
thread can run on other CPUs which may be idle. Enabling the dog threads
can increase capacity of the system in some cases.

This is a feature for the input side (receive) of LAN adapters. It can be
configured at the interface level with the ifconfig command in two ways:

ifconfig interface thread
ifconfig interface hostname up thread

To disable the feature, use the following command:

ifconfig interface -thread

The interface parameter used in the ifconfig command must be replaced
with the interface type you want to configure. For example, use en0 for
Ethernet.

When considering using dog threads, the guidelines are as follows:

• More CPUs than adapters need to be installed. Typically, at least two times
more CPUs than adapters are recommended.

• Systems with faster CPUs benefit less. Machines with slower CPU speed
may help the most.

• This feature is most likely to improve performance when there is high input
packet rate. It will improve performance more on MTU 1500 compared to
MTU 9000 (jumbo frames) on Gigabit, as the packet rate will be higher on
small MTU networks.

• The dog threads run best when they find more work on their queue and do
not have to go back to sleep (waiting for input). This saves the overhead of
the driver waking up the thread and the system dispatching the thread.

This feature is not supported on uniprocessors, because it would only add
path length and slow down performance.

Note
32 RS/6000 SP System Performance Tuning Update

The dog threads can also reduce the amount of time a specific CPU spends
with interrupts masked. This can release a CPU to resume normal user-level
work sooner.

The dog threads can also reduce performance by about 10 percent if the
packet rate is not fast enough to allow the thread to keep running. The 10
percent is an average amount of increased CPU overhead needed to
schedule and dispatch the threads.

4.2.5 Tuning TCP maximum segment size
The Maximum Segment Size (MSS) is the largest segment or chunk of data
that TCP will send to a destination. The TCP protocol includes a mechanism
for both ends of a connection to negotiate the MSS to be used over the
connection. Each end uses the OPTIONS field in the TCP header to advertise
a proposed MSS. The MSS that is chosen is the smaller of the values
provided by the two ends.

The purpose of this negotiation is to avoid the delays and throughput
reductions caused by fragmentation of the packets when they pass through
routers or gateways and reassemble at the destination host.

The value of MSS advertised by the TCP software during connection setup
depends on whether the other end is a local system on the same physical
network (that is, the systems have the same network number) or whether it is
on a different (remote) network.

4.2.5.1 Local network
If the other end of the connection is local, the MSS advertised by TCP is
based on the MTU (maximum transmission unit) of the local network
interface, as follows:

TCP MSS = MTU - TCP header size - IP header size.

Because this is the largest possible MSS that can be accommodated without
IP fragmentation, this value is inherently optimal, so no MSS tuning is
required for local networks.

4.2.5.2 Remote network
When the other end of the connection is on a remote network, this operating
system's TCP defaults to advertising an MSS of 512 bytes. This conservative
value is based on a requirement that all IP routers support an MTU of at least
576 bytes. The optimal MSS for remote networks is based on the smallest
MTU of the intervening networks in the route between source and destination.
In general, this is a dynamic quantity and could only be ascertained by some
Chapter 4. Network tuning 33

form of path MTU discovery. The TCP protocol, by default, does not provide a
mechanism for doing path MTU discovery, which is why a conservative MSS
value is the default.

However, it is possible to enable the TCP MTU discovery by using the
following command (MTU path discovery default is on in AIX 4.3.3):

no -o tcp_pmtu_discover=1

A normal side effect of this setting is to see the routing table increase (one
more entry per each active TCP connection). The no option route_expire
should be set to a non-zero value, in order to have any unused cached route
entry removed from the table, after route_expire time of inactivity.

While the conservative default is appropriate in the general Internet, it can be
unnecessarily restrictive for private intranets within an administrative domain.
In such an environment, MTU sizes of the component physical networks are
known, and the minimum MTU and optimal MSS can be determined by the
administrator. The operating system provides several ways in which TCP can
be persuaded to use this optimal MSS. Both source and destination hosts
must support these features. In a heterogeneous, multi-vendor environment,
the availability of the feature on both systems can determine the choice of
solution.

To override the MSS default using the tcp_mssdflt option, with the no

command or on the adapter, specify a value that is the minimum MTU value
less 40 to allow for the normal length of the TCP and IP headers. The size is
the same as the MTU for communication across a local network with one
exception: the size is only for the size of the data in a packet. Reduce the
tcp_mssdflt for the size of any headers so that you send full packets instead
of a full packet and a fragment.

In an environment with a larger-than-default MTU, this method is
advantageous because the MSS does not need to be set on a per-network
basis. The disadvantages are as follows:

MTU of interface - TCP header size - IP header size - rfc1323 header size

(MTU - 20 - 20 - 12, or MTU - 52)

Limiting data to (MTU - 52) bytes ensures that, where possible, only full
packets will be sent.

Calculate MSS
34 RS/6000 SP System Performance Tuning Update

• Increasing the default can lead to IP router fragmentation if the destination
is on a network that is truly remote and the MTUs of the intervening
networks are not known.

• The tcp_mssdflt parameter must be set to the same value on the
destination host.

4.2.5.3 Subnetting
Several physical networks can be made to share the same network number
by subnetting. The no option subnetsarelocal specifies, on a system wide
basis, whether subnets are to be considered local or remote networks. With
the command no -o subnetsarelocal=1 (the default), Host A on subnet 1
considers Host B on subnet 2 to be on the same physical network.

Figure 5. Subnet addressing

The consequence is that when Host A and Host B establish a connection,
they negotiate the MSS assuming they are on the same network. Each host
advertises an MSS based on the MTU of its network interface, usually leading
to an optimal MSS being chosen.

Figure 6 on page 36 gives us an overview of this process

The advantages of this approach are as follows:

• It does not require any static bindings; MSS is automatically negotiated.

• It does not disable or override the TCP MSS negotiation, so that small
differences in the MTU between adjacent subnets can be handled
appropriately.

loca l
part

Inte rne t
part

phys ica l
network

host
Inte rne t

part
Chapter 4. Network tuning 35

Figure 6. Inter-subnet fragmentation

The disadvantages of this approach are as follows:

• Potential IP router fragmentation when two high-MTU networks are linked
through a lower-MTU network.

• Hosts A and B would establish a connection based on a common MTU of
4352. A packet going from A to B would be fragmented by Router 1 and
defragmented by Router 2. The reverse would occur going from B to A.

• Source and destination must both consider subnets to be local.

4.2.6 TCP sliding window
TCP enforces flow control of data from the sender to the receiver through a
mechanism referred to as sliding window. This helps ensure delivery to a
receiving application. The size of the window is defined by the tcp_sendspace
and tcp_recvspace values.

The window is the maximum amount of data that a sender can send without
receiving any ACK segment. A receiver always advertises its window size in
the TCP header of the ACK segments.

In the example in Figure 7 on page 37, the sending application is sleeping
because it has attempted to write data that would cause TCP to exceed the
send socket buffer space (that is, tcp_sendspace). The sending TCP has sent
the last part of rec5, all of rec6 and rec7, and the beginning of rec8. The
receiving TCP has not yet received the last part of rec7 or any of rec8.

Host A Host B

FDDI FDDIEthernet

MTU=4352 MTU=4352MTU=1500

Router 1 Router 2
36 RS/6000 SP System Performance Tuning Update

Figure 7. TCP Sliding Window

The receiving application got rec4 and the beginning of rec5 when it last read
the socket, and it is now processing that data. When the receiving application
next reads the socket, it will receive (assuming a large enough read) the rest
of rec5, rec6, and as much of rec7 and rec8 as has arrived by that time.

In the course of establishing a session, the initiator and the listener converse
to determine their respective capacities for buffering input and output data.
The smaller of the two sizes defines the size of the effective window. As data
is written to the socket, it is moved into the sender’s buffer. When the receiver
indicates that it has space available, the sender transmits enough data to fill
that space (assuming that it has that much data). It then informs the sender
that the data has been successfully delivered. Only then does the sender
discard the data from its own buffer, effectively moving the window to the right
by the amount of data delivered. If the window is full because the receiving
application has fallen behind, the sending thread will be blocked.

We now have a lot of high-speed network media and memory for a
workstation. The maximum of 64 KB for a window may not be big enough for
such an advanced environment. TCP has been enhanced to support such
situations by RFC 1323, TCP Extensions for High Performance.

ec5 rec6 rec7 rec8

ec5 rec6 rec

Sender TCP

Receiver TCP

rec4 r...

Receiving Appl.
(processing)

Available space for the
data that is in transit

Data Stream

Unacknowledged
Data

Acknowledged
Data Sending Appl.

(sleeping)

Transmit Window

Receive Window
Chapter 4. Network tuning 37

If the rfc1323 parameter is 1, the maximum TCP window size is 4 GB (instead
of 64 KB). Figure 8 illustrates this TCP enhancement.

Figure 8. rfc1323 - TCP extension

There is, of course, no such thing as free function. The additional operations
performed by TCP to ensure a reliable connection result in about 7 to 12
percent higher CPU time cost than in UDP.

There are two technical terms about TCP windows that you may sometimes
get confused. A window is a receiver's matter, telling how much data the
receiver can accept. There is also the term send window, which is a sender's
matter. They are the same thing, but on some occasions when the congestion
avoidance algorithm is working (see the following paragraphs), they represent
different values to each other.

Also, many improvements have been made to the TCP sliding window
mechanism. Here is a brief list of these improvements in RFC 1122
“Requirements for Internet Hosts - Communication Layers:”

• Silly window syndrome avoidance algorithm

The Silly Window Syndrome (SWS) is caused when a large amount of
data is transmitted. If the sender and receiver do not implement this

Window Size

rfc1323 = 1 4 Gbytes (2)32

rfc1323 = 0 64 Kbytes (2)16

rfc1323 = 0

Ethernet

ACKACKACKACK

45 TCP messages

1500 1500 1500 1500

Switch
ACK

1 TCP message

64k

NETWORK

64K Max.

NETWORK

> 64K

Ethernet

ACKACKACKACK

Limited by max. outstanding data
on the adapter

1500 1500 1500 1500 1500 1500 1500

ACK ACK ACK ACK

Switch
ACK

64k

ACKACKACKACK

Limited by max. outstanding data
on the adapter

64k 64k

rfc1323 = 1
38 RS/6000 SP System Performance Tuning Update

algorithm, the receiver advertises a small amount of the window each time
the receiver buffer is read by an application. As a result, the sender has to
send a lot of small segments, which do not have the advantage of bulk
data transfer; that is the purpose of the window mechanism. This
algorithm is mandatory by RFC 1122.

• Delayed ACK

TCP should not send back an ACK segment immediately because there
will not be any data that can be sent with the ACK. As a result, the network
traffic and protocol module overhead will be reduced. With this
mechanism, an ACK segment is not returned immediately. This
mechanism is optional (but strongly recommended) by RFC 1122.

• Nagle Algorithm

When an application issues many write system calls with a single byte of
data or so, TCP should not send data segments just carrying a single byte
of data. In order to avoid this inefficiency, data should not be sent until the
ACK of the prior data segment is received. This mechanism accumulates
small segments into one big segment before it is sent out. This mechanism
is optional by RFC 1122.

• Congestion avoidance

When a segment is lost, the sender's TCP module considers that this is
due to the congestion of the network and reduces the send window size by
a factor of 2. If the segment loss continues, the sender's TCP module
keeps reducing the send window using the previous procedure until it
reaches 1. This mechanism is mandatory by RFC 1122.

• Slow start

If network congestion is resolved, the minimized send window should be
recovered. The recovery should not be the opposite of shrinking
(exponential backoff). This mechanism defines how to recover the send
window. It is mandatory by RFC 1122.

Certain applications, such as X-Windows, do not work well with this
mechanism. Thus, there must be an option to disable this feature.
For this, you can use the TCP_NODELAY option of the setsockopt()
call. For more information about the Nagle Algorithm, see Section
4.2.9, “Description of the Nagle Algorithm” on page 42.

Note
Chapter 4. Network tuning 39

4.2.7 Address resolution
The first network-level protocol is the Address Resolution Protocol (ARP).
ARP dynamically translates Internet addresses for IP into unique hardware
MAC addresses. The kernel maintains the translation tables, and the ARP is
not directly available to users or applications. When an application sends an
Internet packet to one of the interface drivers, the driver requests the
appropriate address mapping. If the mapping is not in the table, an ARP
broadcast packet is sent through the requesting interface driver to the hosts
on the local area network.

Entries in the ARP mapping table are deleted after 20 minutes; incomplete
entries are deleted after 3 minutes. This value can be changed with the no

command option arpt_killc.

When any host that supports ARP receives an ARP request packet, the host
notes the IP and hardware addresses of the requesting system and updates
its mapping table (if necessary). If the receiving host IP address does not
match the requested address, the host discards the request packet. If the IP
address does match, the receiving host sends a response packet to the
requesting system. The requesting system stores the new mapping and uses
it to transmit any similar pending Internet packets into the unique hardware
addresses on local area networks.

4.2.7.1 ARP cache tuning
The relevant no command options for tuning ARP cache are shown in Table 4:

Table 4. Default ARP parameters in AIX

Parameter AIX Default Value Definition

arptab_nb 25 Number of buckets.

arptab_bsiz 7 Number of entries in each bucket.

arpqsize 1 Number of packets to queue while waiting for
ARP responses.

The total available ARP entries are calculated using the variables:
arptab_nb * arptab_bsiz.

In a default configuration, this gives us 175 ARP entries.

Calculating ARP entries
40 RS/6000 SP System Performance Tuning Update

arpqsize is a runtime attribute, but to change the others, it is necessary to
include these lines at the beginning of the /etc/rc.net script, right after the first
line in the file, as shown in Figure 9:

Figure 9. Inserting no options for ARP cache in /etc/rc.net.

A complete description of these no command options can be found in Section
4.3.2, “AIX tunables” on page 46.

As general recommendations for ARP cache sizing, you can use these:

• For fast lookups, a large number of small buckets is ideal.

• For memory efficiency, a small number of medium buckets is best. Having
too many buckets wastes memory (if the arptab_nb size were set to 128,
bucket numbers above 66 would rarely be used).

You can also evaluate your current parameters. Use arp -a to get the current
contents of your ARP cache. See if any of your buckets are full. You can do
this by pinging an IP address on a local subnet that is not in the ARP cache
and is not being used. See how long the ARP entry stays in the cache. If it
lasts for a few minutes, that particular bucket is not a problem. If it disappears
quickly, that bucket is doing some thrashing. Carefully choosing the IP
addresses to ping will let you monitor different buckets. Make sure the ping
actually made the round trip before timing the ARP cache entry.

ARP cache thrashing, generally, shows us the ARP cache containing a large
number of entries.

In Section 9.3, “ARP cache tuning” on page 193, you can find the suggested
way to tune no command options for ARP cache in SP systems.

4.2.8 Subnet addressing
Subnet addressing allows an autonomous system made up of multiple
networks to share the same Internet address. The subnetwork capability of
TCP/IP also makes it possible to divide a single network into multiple logical
networks (subnets). For example, an organization can have a single Internet
network address that is known to users outside the organization, yet
configure its network internally into departmental subnets. In either case,
fewer Internet network addresses are required while local routing capabilities
are enhanced.

#!/bin/ksh
no -o arptab_nb=64
no -o arptab_bsiz=8
IBM_PROLOG_BEGIN_TAG
Chapter 4. Network tuning 41

A standard Internet Protocol address field has two parts: a network address
and a local address. To make subnets possible, the local address part of an
Internet address is divided into a subnet number and a host number. The
subnet is identified so that the local autonomous system can route messages
reliably.

4.2.9 Description of the Nagle Algorithm
The Nagle Algorithm (RFC 896) was designed for slower networks to
encourage the use of large packets rather than many small ones; to avoid
excessive LAN traffic when an application is reading in small IP packets, by
delaying the TCP acknowledgement (ACK) until the receiving application has
read a total amount of data that is at least half the receive window size or
twice the maximum segment size.

The Nagle Algorithm is particularly helpful for networks such as Ethernet,
which behave badly with many small packets due to its collision avoidance
algorithm. However, it can cause problems on large segment size networks,
such as SP Switch, HiPPI or ATM.

TCP_NODELAY specifies whether TCP should follow the Nagle Algorithm for
deciding when to send data. By default, TCP will follow it. To disable this
behavior, applications can enable TCP_NODELAY to force TCP to always
send data immediately.

The specific rules used by the Nagle Algorithm for deciding when to send
data follows:

• If a packet is equal to or larger than the segment size (or MTU), send it
immediately.

• If the interface is idle, or the TCP_NODELAY flag is set, and the TCP
window is not full, send the packet immediately.

The Nagle Algorithm states that under some circumstances, there will be a
waiting period of 200 msec before data is sent. The Nagle Algorithm uses
the following parameters for traffic over a switch:

• Segment size = MTU or tcp_mssdflt or MTU path discovery value

• TCP window size = smaller of tcp_sendspace and tcp_recvspace values

• Data size = application data buffer size

Nagle Algorithm
42 RS/6000 SP System Performance Tuning Update

• If there is less than half of the TCP window in outstanding data, send the
packet immediately.

• If sending less than a segment size, and if more than half the window is
outstanding, and TCP_NODELAY is not set, wait up to 200 msec for more
data before sending the packet.

Figure 10. The Nagle Algorithm

In addition to the Nagle Algorithm, a delayed ACK timer can cause slow data
transfer over an SP switch. This timer is set when a single TCP/IP packet is
received at the receive side of a connection. If a second packet is received,
then the timer expires, and an acknowledgement is sent back to the sending
side. You rarely see this on small segment size (MTU) networks because a
large buffer of data results in more than one packet being transmitted.
However, on large segment size networks like the SP Switch, writing a 32 KB
buffer results in only one packet. That same buffer on smaller segment size
networks results in multiple packets, and the delay ACK timer is not used.

D A T A

L E N G T H > = M S S

S E N D IM M E D IA T E L Y (*)

D

L E N G T H < M S S

S E N D IM M E D IA T E L Y (*)
O N L Y IF :

T C P _ N O D E L A Y = 1 O R
In te r fa c e is id le O R
L e s s th a n h a l f w in d o w is b e in g u s e d

IF N O T :

W a i t u p to 2 0 0 m s

E E E E W W W

M S S

T C P W IN D O W

E : E m p ty
W :D a ta in w in d o w
M S S :M a x im u m S e g m e n t S iz e
(*) I f T C P w in d o w is n o t fu l l
Chapter 4. Network tuning 43

With the rfc1323 parameter not set to 1, and having a large segment size for
the network, sending full IP packets can cause a 5 packet/second rate. Table
5 lists the window size where this occurs for various network segment sizes.

Table 5. TCP/IP Pacing Degradation Window

The effect of the Nagle Algorithm or delayed ACK timer is easy to see if only
one socket connection is running. If you check the packet rate over the switch,
you should see an average of 5 packets/sec. Typically, a transfer rate of 150
to 300 KB/second is reported by an application. To check the packet rate over
the switch, use the following command:

netstat -I css0 1

The output will show the switch and total IP packet rates per second, as
shown in Figure 11.

Figure 11. netstat -I command

In Section 9.1, “The Nagle Algorithm” on page 191, you can find clues to
detect this problem in SP systems and some recommendations to avoid it.

Network type MTU TCP window Nagle hole

Ethernet 1500 1501-2999

Token Ring 1492 1493-2983

Token Ring 4096 4097-8191

FDDI 4352 4353-8705

ATM 9180 9181-18359

ATM 60416 60417-120831

SP Switch 65520 65521-131039

FCS 65536 65537-131071

HiPPI 65536 65537-131071

netstat -I css0 1
input (css0) output input (Total) output

packets errs packets errs colls packets errs packets errs colls
125696 0 110803 0 0 356878 0 287880 0 0

119 0 216 0 0 123 0 221 0 0
117 0 222 0 0 120 0 224 0 0
115 0 225 0 0 117 0 227 0 0
115 0 202 0 0 117 0 204 0 0
115 0 207 0 0 117 0 209 0 0
116 0 201 0 0 118 0 203 0 0
44 RS/6000 SP System Performance Tuning Update

4.2.10 Routing
In TCP/IP, routing can be one of two types: static or dynamic. With static
routing, you maintain the routing table manually using the route command.
Static routing is practical for a single network communicating with one or two
other networks. However, as your network begins to communicate with more
networks, the number of gateways increases, and so does the amount of time
and effort required to maintain the routing table manually.

4.3 AIX network tunables

This section describe the network parameters involved in the process of
tuning an SP system. These parameters include the no command options and
nfso command options.

Although there are 95 no parameters that you can use, we only explain the
most relevant. All default values are referred to AIX 4.3.3. We also discuss
the nfso parameters related to NFS tuning in SP systems. You can find a
complete information about no values and nfso values in Understanding IBM
RS/6000 Performance and Sizing, SG24-4810.

The tunable values should be set to customized values during the installation
process. See Section 4.7, “Tuning the SP network for specific workloads” on
page 86 for recommended default settings. Use the no and nfso commands
to display the current settings.

4.3.1 IP tunable inheritance rules
This is the list of rules that apply for IP tunables inheritance. All parameters
described in the next section follow them.

• All socket connections inherit values at create time from no option
settings.

• If Interface Specific Network Options (ISNO) are implemented, use the
network setting for the adapter being used.

• Changes to no command do not affect existing socket connections.

SP switch adapter only supports IPv4 addressing, that is, it can talk to IPv6
networks because of a mapping method, but does not support IPv6
addressing.

We do not include any IPv6 parameters in this chapter for that reason.

IPv6
Chapter 4. Network tuning 45

• Child processes inherit default socket settings from STDIN and STDOUT
from parent processes.

• Processes spawned by inetd, inherit no tunable settings for STDIN and
STDOUT from the time when inetd was started.

• Application specific settings set using setsockopt() system call always
override the defaults.

4.3.2 AIX tunables
For each parameter listed we describe the purpose, the default value, the way
to change/show the current value and the suggested one for use in an SP
system. All default values are referred to AIX 4.3.3. Most of them are
managed with the no command.

no

Purpose: This is the command used to configure network attributes.

Syntax: no { -a | -d option | -o option [=newvalue]}

4.3.2.1 Memory-related tunables
The following tunable parameters are related to communication memory
management, for example, related to the way that the AIX operating system
handles the memory used by the communication subsystem.

thewall

Purpose: This specifies the maximum amount of memory, in KB,
that is allocated to the memory pool. thewall is a runtime
attribute. Systems that are not Common Hardware
Reference Platform (CHRP), that is, Power PC based, are
limited to 256 MB.

AIX 4.2.1 and earlier: smaller of 1/8 RAM or 64MB

AIX 4.3.0: smaller of 1/8 RAM or 128 MB

AIX 4.3.1: smaller of 1/2 RAM or 128 MB

AIX 4.3.2 and later: smaller of 1/2 RAM or 1GB (CHRP)

Values: Defaults: see "Purpose"

Be careful when you use this command. The no command performs no
range checking; therefore, it will accept all values for the variable. If used
incorrectly, the no command can make your system inoperable.

Note
46 RS/6000 SP System Performance Tuning Update

Display: no -o thewall

Change: no -o thewall=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Increase size, preferably to multiples of 4 KB.

maxmbuf

Purpose: This is also used to limit how much real memory can be
used by the communications subsystem. Prior to AIX
Version 4.2 the upper limits on mbufs is the higher value of
maxmbuf or thewall. In AIX 4.2. and later, if it is greater
than 0 the maxmbuf value is used regardless of the value
of thewall. The value of 0 indicates that the system default
(thewall) should be used.

Values: Default: 0

Display: lsattr -E -l sys0

Change: chdev -l sys0 -a maxmbuf=newvalue

Changes take effect immediately and are permanent.

sb_max

Purpose: This provides an absolute upper bound on the size of TCP
and UDP socket buffers per socket. It limits setsockopt(),
udp_sendspace, udp_recvspace, tcp_sendspace and
tcp_recvspace variables. The units are in bytes.

Values: Default: 1048576

Display: no -o sb_max

Change: no -o sb_max=newvalue

Changes take effect immediately for new connections and
are effective until next system reboot. To make the change
permanent, add the no command to /etc/rc.net.

In AIX version 4.3.2 and later, this value should not need to be manually
set. In most cases, the system will automatically select a setting that will
be appropriate. However, if network buffer errors occur, it may need to be
manually changed.

Note
Chapter 4. Network tuning 47

Tuning: Increase size, preferably to multiples of 4096. Should be
at least twice the size of the largest value for
tcp_sendspace, tcp_recvspace, udp_sendspace and
udp_recvspace. This ensures that if the buffer utilization is
better than 50 percent efficient, the entire size of the tcp
and udp byte limits can be used.

extendednetstats

Purpose: This enables more extensive statistics for network
memory services.

Values: Default: 1 (in /etc/rc.net is set to 0). Range: 0 or 1

Display: no -o extendednetstats

Change: no -o extendednetstats=newvalue

Changes take effect immediately for new connections and
are effective until next system reboot. To make the change
permanent, add the no command to /etc/rc.net.

Tuning: When it is set to 1, these extra statistics cause a reduction
in system performance. If, for tuning reasons, these
statistics are desired, it is recommended that the code in
/etc/rc.net that sets extendednetstats to 0 be commented
out.

use_isno

Purpose: This enables or disables per interface tuning options. Only
applies to version 4.3.3. There are five parameters that
can be tuned for each supported network interface:

• rfc1323

• tcp_nodelay

• tcp_sendspace

• tcp_recvspace

• tcp_mssdflt

These are available for all of the mainstream TCP/IP
interfaces: Token-Ring, 10/100 Ethernet, Gigabit Ethernet,
FDDI and ATM (a software update is required). It is not
supported in SP Switch or SP Switch2 interface, but, as a
workaround, SP Switch users can set the tuning options
appropriate for the switch using the traditional no
command and then use ISNO to override the values
needed for the other system interfaces.
48 RS/6000 SP System Performance Tuning Update

Values: Default: 1(yes). Range: 0 or 1.

Display: no -o use_isno

Change: no -o use_isno=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: If the TCP tunable parameters per interface (tunable
through smit or chdev command) have been set, they will
override the TCP global values if use_isno is set on.
Applications can still override all of these with the
setsockopt() subroutine.

Table 6 lists the parameters for the setsockopt() subroutine.

Table 6. Socket level network option tunables

tcp_sendspace

Purpose: This provides the default value of the size of the TCP
socket send buffer, in bytes.

Values: Default: 4096 bytes (in /etc/rc.net is set to 16384).

Range: 0 to 64 KB, if rfc1323=0.

Range: 0 to 4 GB, if rfc1323=1. In any case, it should be
less or equal than sb_max.

Display: no -o tcp_sendspace

ISNO: lsattr -El interface or ifconfig interface

Change: no -o tcp_sendspace=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

ISNO:

ifconfig interface tcp_sendspace newvalue or

setsockopt() no option equivalent

SO_SNDBUF
SO_RCVBUF
RFC1323
TCP_NODELAY
n/a
n/a

tcp_sendspace
tcp_recvspace
rfc1323
n/a (use lsattr -El interface)
sb_max
tcp_mssdflt
Chapter 4. Network tuning 49

chdev -l interface -a tcp_sendspace=newvalue

The ifconfig command sets values temporarily, making it
useful for testing. The chdev command alters the ODM, so
custom values return after system reboots.

Tuning: This affects the window size used by TCP. Setting the
socket buffer size to 16 KB improves performance over
standard Ethernet and Token-Ring networks. The optimum
buffer size is the product of the media bandwidth and the
average round-trip time of a packet.

The tcp_sendspace parameter is a runtime attribute, but
for daemons started by the inetd daemon, run the
following commands:

stopsrc -s inetd; startsrc -s inetd

In SP systems, set a minimum of 65536 unless there are
problems with external connections not handling greater
than 32768 byte windows. Never set it higher than the
major network adapter transmit queue limit. To calculate
this limit, use:

major adapter queue size * major network adapter MTU

tcp_recvspace

Purpose: This provides the default value of the size of the TCP
socket receive buffer, in bytes.

Values: Default: 4096 bytes (in /etc/rc.net is set to 16384).

Range: 0 to 64 KB, if rfc1323=0.

Range: 0 to 4 GB, if rfc1323=1. In any case, it should be
less or equal than sb_max.

Display: no -o tcp_recvspace

ISNO: lsattr -El interface or ifconfig interface

Change: no -o tcp_recvspace=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

ISNO:

ifconfig interface tcp_recvspace newvalue or

chdev -l interface -a tcp_recvspace=newvalue
50 RS/6000 SP System Performance Tuning Update

The ifconfig command sets values temporarily, making it
useful for testing. The chdev command alters the ODM, so
custom values return after system reboots.

Tuning: This affects the window size used by TCP. Setting the
socket buffer size to 16 KB improves performance over
standard Ethernet and Token-Ring networks. The optimum
buffer size is the product of the media bandwidth and the
average round-trip time of a packet. The tcp_recvspace
parameter is a runtime attribute, but for daemons started
by the inetd daemon, run the following commands:

stopsrc -s inetd; startsrc -s inetd

In SP systems, set a minimum of 65536, unless there are
problems with external connections not handling greater
than 32768 byte windows. Never set higher than the major
network adapter transmit queue limit. To calculate this
limit, use:

major adapter queue size * major network adapter MTU

udp_sendspace

Purpose: This provides the default value of the size of the UDP
socket send buffer, in bytes.

Values: Default: 9216, Range: 0 to 65536

Display: no -o udp_sendspace

Change: no -o udp_sendspace=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Increase size, preferably to a multiple of 4096. This should
always be less than udp_recvspace and less than or equal
to sb_max, but never greater than 65536.

udp_recvspace

To properly set these tunables, you need a good understanding of the type
of traffic your application will be sending. For optimal switch performance
on a single socket, tcp_sendspace and tcp_recvspace need to be set to
384 KB or greater.

Note
Chapter 4. Network tuning 51

Purpose: This provides the default value of the size of the UDP
socket receive buffer.

Values: Default: 41600

Display: no -o udp_recvspace

Change: no -o udp_recvspace=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Increase size, preferably to a multiple of 4096.This should
always be greater than udp_sendspace and less than or
equal to sb_max. Adjust the values to handle as many
simultaneous UDP packets as can be expected per UDP
socket.

Diagnosis:

with n greater than 0.

In SP systems, a good suggestion for a starting value is
10 times the value of udp_sendspace, because UDP may
not be able to pass a packet to the application before
another one arrives. Also, several nodes can send to one
node at the same time. To provide some staging space,
this size is set to allow 10 packets to be staged before
subsequent packets are thrown away. For large parallel
applications using UDP, the value may have to be
increased.

rfc1323

Purpose: This enables TCP enhancements as specified by RFC
1323 (TCP extensions for High Performance).Value of 1
indicates that tcp_sendspace and tcp_recvspace sizes
can exceed 64 KB.

If the value is 0, the effective tcp_sendspace and
tcp_recvspace sizes are limited to a maximum of 65535.

Values: Default: 0, Range: 0 or 1

Display: no -o rfc1323

netstat -s
udp:

n socket buffer overflows.
52 RS/6000 SP System Performance Tuning Update

ISNO: lsattr -El interface or ifconfig interface

Change: no -o rfc1323=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

ISNO:

ifconfig interface rfc1323 newvalue or

chdev -l interface -a rfc1323=newvalue

The ifconfig command sets values temporarily, making it
useful for testing. The chdev command alters the ODM, so
custom values return after system reboots.

Tuning: The sockets application can override the default behavior
on individual connections using the setsockopt()
subroutine.

In SP systems always set in each side of the connection to
1.

4.3.2.2 Networking-related tunables
The following tunable parameters are related to networking management, that
is, related to the communications and negotiations between the parts of a
network.

subnetsarelocal

Purpose: This specifies that all subnets that match the subnet mask
are to be considered local for purposes of establishing, for
example, the TCP maximum segment size (instead of
using MTU).This attribute is used by the in_localaddress()
subroutine. The value of 1 specifies that addresses that
match the local network mask are local. If the value is 0,
only addresses matching the local subnetwork are local. It
is a runtime attribute.

Values: Default: 1 (yes), Range: 0 or 1

Display: no -o subnetsarelocal

Change: no -o subnetsarelocal=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.
Chapter 4. Network tuning 53

Tuning: This is a configuration decision with performance
consequences. If the subnets do not all have the same
MTU, fragmentation at bridges may degrade performance.
If the subnets do have the same MTU, and subnets that
are local are 0, TCP sessions may use an unnecessarily
small MSS.

In SP systems, always set to 1.

ipforwarding

Purpose: This specifies whether the kernel should forward IP
packets.

Values: Default: 0 (no), Range: 0 or 1

Display: no -o ipforwarding

Change: no -o ipforwarding=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Comment: This is a configuration decision with performance
consequences.

In SP systems, set to 1 for gateway nodes (or nodes that
really need it).

tcp_mssdflt

Purpose: This specifies the default maximum segment size used in
communicating with remote networks. However, only one
value can be set, even though there are several adapters
with different MTU sizes. It is the same as MTU for
communication across a local network, except for one
small difference: the tcp_mssdflt size is for the size of only
the data in the packet. You need to reduce the value for
the size of any headers so that you can send full packets
instead of a full packet and a fragment.

Values: Default: 512, Range: 512 to unlimited

Display: no -o tcp_mssdflt

ISNO: lsattr -El interface or ifconfig interface

Change: no -o tcp_mssdflt=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.
54 RS/6000 SP System Performance Tuning Update

ISNO:

ifconfig interface tcp_mssdflt newvalue or

chdev -l interface -a tcp_mssdflt=newvalue

The ifconfig command sets values temporarily, making it
useful for testing. The chdev command alters the ODM, so
custom values return after system reboots.

Tuning: In AIX 4.2.1 or later, tcp_mssdflt is only used if path MTU
discovery is not enabled or path MTU discovery fails to
discover a path MTU. Limiting data to (MTU - 52) bytes
ensures that, where possible, only full packets will be sent.
If set higher than MTU of the adapter, the IP or
intermediate router fragments packets. The way to
calculate this is as follows:

MTU of interface - TCP header size - IP header size -
rfc1323 header size

which is:

MTU - (20 + 20 + 12), or MTU - 52, if rfc1323 = 1

MTU - (20 + 20), or MTU - 40, if rfc1323 = 0

In SP systems set to 1448.

tcp_nodelay

Purpose: This is not a no parameter, but is related in terms of its
effect on performance. Specifies that sockets using TCP
over this interface follow the Nagle Algorithm when
sending data. By default, TCP follows the Nagle
Algorithm. See Section 4.2.9, “Description of the Nagle
Algorithm” on page 42 for more details.

Values: Default: 0, Range: 0 or 1

Display: lsattr -E -l interface or ifconfig interface

Change: chdev -l interface -a tcp_nodelay=newvalue

or

ifconfig interface tcp_delay newvalue

The ifconfig command sets values temporarily, making it
useful for testing. The chdev command alters the ODM, so
custom values return after system reboots.

MTU
Chapter 4. Network tuning 55

Purpose: This is not a no parameter, but is related in terms of its
effect on performance. Limits the size of the packets that
are transmitted on the network, in bytes.

Values: Default: adapter dependent. Range: 512 bytes to 65536
bytes

Display: lsattr -E -l interface

Change: chdev -l interface -a mtu=newvalue

Because all the systems on the LAN must have the same
MTU, they must change simultaneously. With the chdev

command, the interface cannot be changed while it is in
use. Change is effective across boots. An alternative
method is as follows:

ifconfig interface mtu newvalue

This changes the MTU size on a running system, but will
not preserve the value across a system reboot.

Tuning: The default size should be kept.

In SP systems, the CSS MTU size is 65520. We suggest
that you keep this value and always use the same MTU
across all nodes in the SP.

In Table 3 on page 29, you can find a detailed table with
MTU values for different network adapters.

tcp_pmtu_discover

Purpose: This enables or disables path MTU discovery for TCP
applications.

Values: Default: 1 (yes). Range: 0 or 1. In earlier versions than AIX
4.3.3 the default is 0.

Display: no -o tcp_pmtu_discover

Change: no -o tcp_pmtu_discover=newvalue

Under some circumstances, for example, when you want to avoid the
Nagle Algorithm, causing very slow traffic, it may be necessary to reduce
the CSS MTU size. You can reduce the value for a switch to 32678 with
only a two to ten percent loss in throughput. But CPU utilization will be
slightly higher due to the per-packet overhead.

Note
56 RS/6000 SP System Performance Tuning Update

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Watch out for networks with more than a couple of
hundred hosted. If you turn tcp_pmtu_discover on, you
are, in effect, creating a route in your routing table to every
host that is out there. Any network greater than a couple of
hundred hosts becomes very inefficient and performance
problems arise.

udp_pmtu_discover

Purpose: This enables or disables path MTU discovery for UDP
applications.

Values: Default: 1 (yes). Range: 0 or 1. In earlier versions than AIX
4.3.3 the default is 0.

Display: no -o udp_pmtu_discover

Change: no -o udp_pmtu_discover=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: UDP applications must be specifically written to use path
MTU discovery.

ipqmaxlen

Purpose: This specifies the number of received packets that can be
queued on the IP protocol input queue. It is a load-time
attribute and must be set in /etc/rc.net file prior to the
interfaces being defined.

Values: Default: 100.

Display: no -o ipqmaxlen

Change: no -o ipqmaxlen=newvalue

Tuning: Increase this value if system is using a lot of loopback
sessions.

Diagnosis:

with n greater than 0.

netstat -s
ip:

n ipintrp overflows.
Chapter 4. Network tuning 57

In SP systems, increase this value to 512.

4.3.2.3 ARP cache-related tunables
The following tunable parameters are related to the ARP cache and its sizing.

arptab_nb

Purpose: This specifies the number of arp table buckets.

Values: Default: 25.

Display: no -o arptab_nb

Change: no -o arptab_nb=newvalue

Change is effective when the netinet kernel extension is
loaded. It is a load-time attribute and must be set in
/etc/rc.net file prior to the interfaces being defined. See
Figure 9 on page 41 for more details.

Tuning: Increase this value for systems that have a large number
of clients or servers. The default provides for 25 x 7 = 175
arp entries, but assumes an even task distribution.

arptab_bsiz

Purpose: This specifies the arp table bucket size.

Values: Default: 7.

Display: no -o arptab_bsiz

Change: no -o arptab_bsiz=newvalue

Change is effective when the netinet kernel extension is
loaded. It is a load-time attribute and must be set in
/etc/rc.net file prior to the interfaces being defined. See
Figure 9 on page 41 for more details.

Tuning: Increase this value for systems that have a large number
of clients or servers. The default provides for 25 x 7 = 175
arp entries, but assumes an even task distribution.

For sizing ARP cache in SP systems, you can follow the
recommended values included in Table 7.

Table 7. Recommended values for ARP cache sizing in SP systems

Number of nodes arptab_nb Number of interfaces arptab_bsiz

1 - 64 25 1 - 3 7

65 - 128 64 4 8
58 RS/6000 SP System Performance Tuning Update

arpqsize

Purpose: This specifies the maximum number of packets to queue
while waiting for arp responses. It is supported by
Ethernet, 802.3, Token-Ring and FDDI interfaces. This is a
runtime attribute.

Values: Default: 1.

Display: no -o arpqsize

Change: no -o arpqsize=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: The arpqsize value is increased to a minimum value of 5
when path MTU discovery is enabled. The value will not
automatically decrease if path MTP discovery is
subsequently disabled.

arpt_killc

Purpose: This specifies the time (in minutes) before a complete
ARP entry will be deleted. This is a runtime attribute.

Values: Default: 20.

Display: no -o arpt_killc

Change: no -o arpt_killc=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: To reduce ARP activity in a stable network, you can
increase arpt_killc.

ifsize

Purpose: This specifies the maximum number of network interface
structures per interface.

Values: Default: 8.

129 - 256 128 5 10

257 - 512 256 more ... 2 x # of interfaces

Number of nodes arptab_nb Number of interfaces arptab_bsiz
Chapter 4. Network tuning 59

Display: no -o ifsize

Change: no -o ifsize=newvalue

Change is effective when the netinet kernel extension is
loaded. It is a load-time attribute and must be set in
/etc/rc.net file prior to the interfaces being defined. See
Figure 9 on page 41 for more details.

Tuning: In AIX 4.3.2 and above, if the system detects, at boot time,
that more adapters of one type are present than it would
be allowed by the current value of ifsize, it will
automatically increase the value to support the number of
adapters present.

4.3.2.4 NBC-related tunables
The following tunable parameters are related to the Network Buffer Cache
(NBC) and its sizing. The NBC is a list of network buffers which contains data
objects that can be transmitted to the networks. It grows dynamically as data
objects are added or removed from it. The Network Buffer Cache is used by
some kernel interfaces for performance enhancement on the network.

In AIX 4.3.2 and later, you can see the NBC statistics:

netstat -c
Network Buffer Cache Statistics:

Current total cache buffer size: 0
Maximum total cache buffer size: 0
Current total cache data size: 0
Maximum total cache data size: 0
Current number of cache: 0
Maximum number of cache: 0
Number of cache with data: 0
Number of searches in cache: 0
Number of cache hit: 0
Number of cache miss: 0
Number of cache newly added: 0
Number of cache updated: 0
Number of cache removed: 0
Number of successful cache accesses: 0
Number of unsuccessful cache accesses: 0
Number of cache validation: 0
Current total cache data size in private segments: 0
Maximum total cache data size in private segments: 0
Current total number of private segments: 0
Maximum total number of private segments: 0
Current number of free private segments: 0
Current total NBC_NAMED_FILE entries: 0
Maximum total NBC_NAMED_FILE entries: 0
#

nbc_limit
60 RS/6000 SP System Performance Tuning Update

Purpose: This specifies the total maximum amount of memory that
can be used for the Network Buffer Cache, in KB.

Values: Default: derived from thewall parameter.

Display: no -o nbc_limit

Change: no -o nbc_limit=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: When the cache grows to this limit, the least-used caches
are flushed out of cache to make room for the new ones.
This attribute only applies in AIX 4.3.2 and later. NBC is
only used by the send_file() API and some web servers
that use the get engine in the kernel.

nbc_max_cache

Purpose: This specifies the maximum size of the cache object
allowed in the Network Buffer Cache (NBC), in bytes,
without using the private segments.

Values: Default: 131072 (128 KB).

Display: no -o nbc_max_cache

Change: no -o nbc_max_cache=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Data objects bigger than this size are either cached in a
private segment or are not cached at all, but may not be
put in the NBC. This attribute only applies in AIX 4.3.2 and
later. NBC is only used by the send_file() API and some
web servers that use the get engine in the kernel.
Chapter 4. Network tuning 61

nbc_min_cache

Purpose: This specifies the minimum size of the cache object
allowed in the Network Buffer Cache (NBC), in bytes,
without using the private segments.

Values: Default: 1 byte.

Display: no -o nbc_min_cache

Change: no -o nbc_min_cache=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Data objects smaller than this size are either cached in a
private segment or are not cached at all, but may not be
put in the NBC. This attribute only applies in AIX 4.3.2 and
later. NBC is only used by the send_file() API and some
web servers that use the get engine in the kernel.

nbc_pseg

Purpose: This specifies the maximum number of private segments
that can be created for the Network Buffer Cache (NBC).

Values: Default: 0.

Display: no -o nbc_pseg

Change: no -o nbc_pseg=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: When this option is set to a nonzero value, data objects
with size between the size specified in nbc_max_cache
and the segment size (256 MB) will be cached in a private
segment. Data objects bigger than the segment size will
not be cached at all. When this many private segments
exist in NBC, cache data in private segments may be
flushed for new cache data so the number of private
segments will not exceed the limit. When this option is set
to 0, all cache in private segments will be flushed.

This attribute is new in AIX 4.3.3.
62 RS/6000 SP System Performance Tuning Update

nbc_pseg_limit

Purpose: This specifies the maximum total cache data size allowed
in private segments in the Network Buffer Cache (NBC), in
KB.

Values: Default: half of real memory.

Display: no -o nbc_pseg_limit

Change: no -o nbc_pseg_limit=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the no command to /etc/rc.net.

Tuning: Because data cached in private segments will be pinned
by the Network Buffer Cache, this option provides a
control on the amount of pinned memory used for the
Network Buffer Cache in addition to the network buffers in
global segments. When this limit is met, cache data in
private segments may be flushed for new cache data so
the total pinned memory size will not exceed the limit.
When this option is set to 0, all cache in private segments
will be flushed.

This attribute is new in AIX 4.3.3.

4.3.2.5 NFS-related tunables
The following tunables parameters are related to Network File System (NFS).
They are managed with the nfso command.

nfso

Purpose: This is the command used to configure Network File
System (NFS) network variables.

Syntax: nfso { -a | -d option | -l hostname | -o option

[=newvalue]} [-c].

Be careful when you use this command. The nfso command performs no
range checking; therefore, it accept all values for the variable. If used
incorrectly, the nfso command can make your system inoperable.

Note
Chapter 4. Network tuning 63

biod

Purpose: This specifies the number of biod processes available to
handle NFS requests on a client.

Values: Default: 6. Range: 1 to any positive integer

Display: ps -efa |grep biod

Change: chnfs -b newvalue - To change the value immediately and
for each subsequent system reboot.

chnfs -N -b newvalue - To change the value immediately
with no permanent change.

chnfs -I -b newvalue - To delay the change until next
system reboot.

Tuning: Check netstat -s to look for UDP socket buffer
overflows. Then, increase the number of biod daemons
until socket buffer overflows cease. Refer to Section 4.5.3,
“Tuning the numbers of nfsd and biod daemons” on page
72 for more details.

nfsd

Purpose: This specifies the number of nfsd processes available to
handle NFS requests on a server.

Values: Default: 8. Range: 1 to any positive integer

Display: ps -efa |grep nfsd

Change: chnfs -n newvalue - To change the number immediately
and for each subsequent system reboot.

chnfs -N -n newvalue - To change the number immediately
with no permanent change.

chnfs -I -n newvalue - To delay the change until next
system reboot.

Tuning: Check netstat -s to look for UDP socket buffer
overflows. Then, increase the number of nfsd daemons
until socket buffer overflows cease. Refer to Section 4.5.3,
“Tuning the numbers of nfsd and biod daemons” on page
72 for more details.

nfs_socketsize

Purpose: This specifies the queue size of the NFS server UDP
socket, in bytes. This socket is used for receiving the NFS
client request.
64 RS/6000 SP System Performance Tuning Update

Values: Default: 60000. Practical Range: 60000 to 204800

Display: nfso -o nfs_socketsize

Change: nfso -o nfs_socketsize=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the nfso command to /etc/rc.nfs. The position in the
file is crucial. Add the entry immediately before the nfsd
daemon is started and after the biod daemon is started.

Tuning: Increase the size of the nfs_socketsize variable when
netstat reports packets dropped due to full socket buffers
for UDP (and increasing the number of nfsd daemons has
not helped).

It is recommended to at least double the socket buffer size
to begin with when working with active servers.

nfs_tcp_socketsize

Purpose: This specifies the queue size of the NFS server TCP
socket, in bytes. This socket is used for receiving the NFS
client request.

Values: Default: 60000. Practical Range: 60000 to 204800

Display: nfso -o nfs_tcp_socketsize

Change: nfso -o nfs_tcp_socketsize=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the nfso command to /etc/rc.nfs. The position in the
file is crucial. Add the entry immediately before the nfsd
daemon is started and after the biod daemon is started.

Tuning: This option reserves, but does not allocate, memory for
use by the send and receive socket buffers of the socket.
Large or busy servers should have larger values until TCP
NFS traffic shows no packets dropped from the output of
the netstat -s -p tcp command.

It is recommended to at least double the socket buffer size
to begin with when working with active servers.

nfs_device_specific_bufs

Purpose: This option allows the NFS server to use memory
allocations from network devices, if the network device
supports such a feature.
Chapter 4. Network tuning 65

Values: Default: 1. Range: 0 or 1

Display: nfso -o nfs_device_specific_bufs

Change: nfso -o nfs_device_specific_bufs=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the nfso command to /etc/rc.nfs.

Tuning: Use of these special memory allocations by the NFS
server can positively affect the overall performance of the
NFS server. The default of 1 means the NFS server is
allowed to use the special network device memory
allocations. If the value of 0 is used, the NFS server will
use the traditional memory allocations for its processing of
NFS client requests. These are buffers managed by a
network interface that result in improved performance
(over regular mbufs) because no setup for DMA is
required on these. Two adapters that support this include
the Micro Channel ATM adapter and the SP Switch
adapter.

In large SP system configurations, set this value to 1.

nfs_rfc1323

Purpose: This option enables the use of RFC1323 for NFS sockets.
Use it to allow very large TCP window size negotiation
(greater than 65535 bytes) between systems.

Values: Default: 0. Range: 0 or 1

Display: nfso -o nfs_rfc1323

Change: nfso -o nfs_rfc1323=newvalue

Change takes effect immediately and it is effective until
the next system reboot. To make the change permanent,
add the nfso command to /etc/rc.nfs.

Tuning: If using the TCP transport between NFS client and server,
and both systems support it, this allows the systems to
negotiate a TCP window size in a way that will allow more
data to be “in-flight” between the client and server. This
increases the potential throughput between client and
server. Unlike the rfc1323 option of the no command, this
only affects NFS and not other applications in the system.
If the no command parameter rfc1323 is already set, this
NFS option does not need to be set.
66 RS/6000 SP System Performance Tuning Update

In large SP system configurations, set this value to 1.

4.4 SP system-specific network tunables

We will now describe the variables provided by PSSP to tune the size of the
switch adapter pools. As an initial size, these variables should be twice the
size of the largest of the tcp_sendspace, tcp_recvspace, udp_sendspace and
udp_recvspace values. These pools reside in pinned kernel memory.

spoolsize

Purpose: This is the size of the SP Switch device driver send pool,
in bytes.

Values: Default: 512 KB

Range: 512 KB to 16 MB for SP Switch

Range: 512 KB to 32 MB for SP Switch2

Display: lsattr -E -l css0

Change: chgcss0 -l css0 -a spoolsize=newvalue

Changes update the ODM, so these changes will be
permanent. A reboot of the system is necessary in order
to apply any changes.

rpoolsize

Purpose: This is the size of the SP Switch device driver receive pool
in bytes.

Values: Default: 512 KB

Range: 512 KB to 16 MB for SP Switch

Range: 512 KB to 32 MB for SP Switch2

Display: lsattr -E -l css0

Change: chgcss0 -l css0 -a rpoolsize=newvalue

Changes update the ODM, so these changes will be
permanent. A reboot of the system is necessary in order
to apply any changes.
Chapter 4. Network tuning 67

4.5 NFS tuning

NFS operates on a client/server basis, that is, files that are physically resident
on a server disk or other permanent storage are accessed through NFS on a
client machine. For an illustration of this setup, see Figure 12. In this sense,
NFS is a combination of a networking protocol, client and server daemons,
and kernel extensions.

Figure 12. NFS overview

When allocating the send pool and the receive pool, realize that this space
is pinned kernel space in physical memory. This takes space away from
other user applications and it is particularly important in small memory
nodes.

Note

DISK

Local File
Access

Application

biod biod biod

UDP

IP

INTERFACE

MTU

CACHE

DISK

Local File
Access

Application

biod biod biod

UDP

IP

INTERFACE

MTU

CACHE

DISK

Local File
Access

nfsd

CACHE

M
T

U

nfsd nfsd

UDP

IP

INTERFACE
68 RS/6000 SP System Performance Tuning Update

4.5.1 NFS overview for performance
mountd
The mountd daemon is a server daemon that answers a client request to
mount a server's exported file system or directory. The mountd daemon
determines which file system is available by reading the /etc/xtab file.
Although soft-mounting the directories causes the error to be detected
sooner, it runs a serious risk of data corruption. In general, read/write
directories should be hard-mounted.

In the case of soft mounts, the RPC call will try some set number of times and
then quit with an error. The default for NFS calls is three retransmits on a soft
mount. For a hard mount, it will keep trying forever.

biod
The biod daemon is the block input/output daemon and is required in order to
perform read-ahead and write-ahead requests, as well as directory reads.
The biod daemon improves NFS performance by filling or emptying the buffer
cache on behalf of the NFS clients. When a user on a client system wants to
read or write to a file on a server, the biod daemon sends the requests to the
server. Some NFS operations are sent directly to the server from the
operating system's NFS client kernel extension and do not require the use of
biod daemon.

nfsd
The nfsd daemon is the active agent providing NFS services from the NFS
server. The receipt of any one NFS protocol request from a client requires the
dedicated attention of an nfsd daemon until that request is satisfied and the
results of the request processing are sent back to the client.

Mount process
The mount process takes place as follows:

1. Client mount makes call to server's portmap daemon to find the port
number assigned to the mountd daemon.

2. The portmap daemon passes the port number to the client.

3. The client mount command then contacts the server mountd daemon
directly and passes the name of the desired directory.

4. The server mountd daemon checks /etc/xtab (built by the exportfs -a

command, which reads /etc/exports) to verify availability and permissions
on the requested directory.
Chapter 4. Network tuning 69

5. If all is verified, the server mountd daemon gets a file handle (pointer to
file system directory) for the exported directory and passes it back to the
client's kernel.

4.5.2 Read/write throughput
The following is an explanation of the read/write process in NFS and some
suggestions to improve the throughputs on it.

4.5.2.1 Write throughput
Applications running on client systems may periodically write data to a file,
changing the file's content. The amount of time an application waits for its
data to be written to stable storage on the server is a measurement of the
write throughput of a global file system. Write throughput is therefore an
important aspect of performance. All global file systems, including NFS, must
ensure that data is safely written to the destination file while at the same time
minimizing the impact of server latency on write throughput.

The NFS Version 3 protocol increases write throughput by eliminating the
synchronous write requirement of NFS Version 2 while retaining the benefits
of close-to-open semantics. The NFS Version 3 client significantly reduces
the number of write requests it makes to the server by collecting multiple
requests and then writing the collective data through to the server's cache,
but not necessarily to disk. Subsequently, NFS submits a commit request to
the server that ensures that the server has written all the data to stable
storage. This feature, referred to as “safe asynchronous writes,” can vastly
reduce the number of disk I/O requests on the server, thus significantly
improving write throughput.

The writes are considered "safe" because status information on the data is
maintained, indicating whether it has been stored successfully. Therefore, if
the server crashes before a commit operation, the client will know by looking
at the status indication whether to resubmit a write request when the server
comes back up.

4.5.2.2 Read throughput
NFS sequential read throughput, as measured at the client, is enhanced via
the VMM read-ahead and caching mechanisms. Read-ahead allows file data
to be transferred to the client from the NFS server in anticipation of that data
being requested by an NFS client application. By the time the request for data
is issued by the application, it is possible that the data resides already in the
client's memory, and the request can be satisfied immediately. VMM caching
allows re-reads of file data to occur instantaneously, assuming that the data
70 RS/6000 SP System Performance Tuning Update

was not paged out of client memory, which would necessitate retrieving the
data again from the NFS server.

4.5.2.3 Tuning VMM for maximum caching of NFS data
NFS does not have a data-caching function, but the Virtual Memory Manager
(VMM) caches pages of NFS data just as it caches pages of disk data. If a
system is essentially a dedicated NFS server, it may be appropriate to permit
the VMM to use as much memory as necessary for data caching. This is
accomplished by setting the maxperm parameter, which controls the
maximum percentage of memory occupied by file pages, to 100 percent. For
example:

vmtune -P 100

The same technique could be used on NFS clients, but would only be
appropriate if the clients were running workloads that had very little need for
working-segment pages.

4.5.2.4 The rsize and wsize options
The mount command provides some NFS tuning options that are often
ignored or used incorrectly because of a lack of understanding of their use.

The most useful options are those for changing the read and write size
values. These options define the maximum sizes of each RPC for read and
write. Often, the rsize and wsize options of the mount command are
decreased in order to decrease the read/write packet that is sent to the
server. There can be two reasons why you might want to do this:

1. The server may not be capable of handling the data volume and speeds
inherent in transferring the read/write packets (8 KB for NFS Version 2 and
32 KB for NFS Version 3). This might be the case if a NFS client is using a
PC as an NFS server. The PC will likely have limited memory available for
buffering large packets.

2. If a read/write size is decreased, there may be a subsequent reduction in
the number of IP fragments generated by the call. If you are dealing with a
faulty network, the chances of a call/reply pair completing with a
two-packet exchange are greater than if there must be seven packets
successfully exchanged. Likewise, if you are sending NFS packets across
multiple networks with different performance characteristics, the packet
fragments may not all arrive before the timeout value for IP fragments.

Reducing the rsize and wsize may improve the NFS performance in a
congested network by sending shorter package trains for each NFS request.
But a side effect is that more packets are needed to send data across the
Chapter 4. Network tuning 71

network, increasing total network traffic, as well as CPU utilization on both the
server and client.

On the other hand, if your NFS file system is mounted across a high-speed
network, such as the SP Switch, then larger read and write packet sizes
would enhance NFS file system performance. With NFS Version 3, rsize and
wsize can be set as high as 65536. The default is 32768. With NFS Version 2,
the largest that rsize and wsize can be is 8192, which is also the default.

4.5.3 Tuning the numbers of nfsd and biod daemons
There is a single nfsd daemon and a single biod daemon, each of which is
multithreaded (multiple kernel threads within the process). Also, the number
of threads is self-tuning in that it creates additional threads as needed. You
can, however, tune the maximum number of nfsd threads by using the
nfs_max_threads parameter of the nfso command.

Determining the best numbers of nfsd and biod daemons is an iterative
process. Guidelines can give you no more than a reasonable starting point.
By default there are six biod daemons on a client and eight nfsd daemons on
a server. The defaults are a good starting point for small systems, but should
probably be increased for client systems with more than two users or servers
with more than two clients. A few guidelines are as follows:

• In each client, estimate the maximum number of files that will be written
simultaneously. Configure at least two biod daemons per file. If the files
are large (more than 32 KB), you may want to start with four biod daemons
per file to support read-ahead or write-behind activity. It is common for up
to five biod daemons to be busy writing to a single large file.

• In each server, start by configuring as many nfsd daemons as the sum of
the numbers of biod daemons that you have configured on the clients to
handle files from that server. Add 20 percent to allow for non-read/write
NFS requests.

• If you have fast client workstations connected to a slower server, you may
have to constrain the rate at which the clients generate NFS requests.The
best solution is to reduce the number of biod daemons on the clients, with
due attention to the relative importance of each client's workload and
response time.

After you have arrived at an initial number of biod and nfsd daemons, or have
changed one or the other, do the following:
72 RS/6000 SP System Performance Tuning Update

1. First, recheck the affected systems for CPU or I/O saturation with the
vmstat and iostat commands. If the server is now saturated, you must
reduce its load or increase its power, or both.

2. Use the command netstat -s to determine if any system is experiencing
UDP socket buffer overflows. If so, and the system is not saturated,
increase the number of biod or nfsd daemons.

3. Examine the nullrecv column in the nfsstat -s output. If the number
starts to grow, it may mean there are too many nfsd daemons. However,
this is less likely on this operating system's NFS servers than it is on other
platforms. The reason for that is that all nfsd daemons are not awakened
at the same time when an NFS request comes into the server. Instead, the
first nfsd daemon wakes up, and if there is more work to do, this daemon
wakes up the second nfsd daemon, and so on.

To change the numbers of nfsd and biod daemons, use the chnfs command.

To increase the number of biod daemons on the client may decrease server
performance because it allows the client to send more requests at once,
further overloading the network and the server. In extreme cases of a client
overrunning the server, it may be necessary to reduce the client to one biod
daemon, as follows:

stopsrc -s biod

This leaves the client with the kernel process biod still running.

4.5.4 Tuning to avoid retransmits
Related to the hard-versus-soft mount question is the question of the
appropriate time-out duration for a given network configuration. If the server
is heavily loaded, is separated from the client by one or more bridges or
gateways, or is connected to the client by a WAN, the default time-out
criterion may be unrealistic. If so, both server and client are burdened with
unnecessary retransmits. For example, if the following command:

nfsstat -c

When you configure more than 100 nfsd daemons on a uniprocessor
system or more than 200 nfsd daemons on a SMP system, you will
probably start to see NFS performance degradation, depending on the
characteristics of the NFS traffic. The same rule can be applied to biod
daemons.

Note
Chapter 4. Network tuning 73

Client rpc:
Connection oriented
calls badcalls badxids timeouts newcreds badverfs timers
36883 0 0 0 0 0 0
nomem cantconn interrupts
0 0 0
Connectionless
calls badcalls retrans badxids timeouts newcreds badverfs
20 0 0 0 0 0 0
timers nomem cantsend
0 0 0

Client nfs:
calls badcalls clgets cltoomany
36880 0 0 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (36881 calls)
null getattr setattr lookup access readlink read
0 0% 818 2% 0 0% 18 0% 1328 3% 0 0% 34533 93%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 181 0% 2 0% 1 0% 0 0%
commit
0 0%
#

reports a significant number (greater than 5 percent of the total) of both
time-outs and badxids, you could increase the timeo parameter with the
following SMIT fast path:

smitty chnfsmnt

Identify the directory you want to change, and enter a new value on the line
NFS TIMEOUT (In tenths of a second). The default time is 0.7 seconds
(timeo=7), but this value is manipulated in the NFS kernel extension
depending on the type of call. For read calls, for example, the value is
doubled to 1.4 seconds.

To achieve control over the timeo value for AIX V4 clients, you must set the
nfs_dynamic_retrans option of the nfso command to 0. There are two
directions in which you can change the timeo value, and in any given case,
there is only one right way to change it. The correct way, making the time-outs
longer or shorter, depends on why the packets are not arriving in the allotted
time.
74 RS/6000 SP System Performance Tuning Update

If the packet is only late and does finally arrive, then you may want to make
the timeo variable longer to give the reply a chance to return before the
request is retransmitted.

On the other hand, if the packet has been dropped and will never arrive at the
client, then any time spent waiting for the reply is wasted time, and you want
to make the timeo shorter.

One way to estimate which option to take is to look at a client's nfsstat -cr

output and see if the client is reporting lots of badxid counts. A badxid value
means that an RPC client received an RPC call reply that was for a different
call than the one it was expecting. Generally, this means that the client
received a duplicate reply for a previously retransmitted call. Packets are thus
arriving late and the timeo should be lengthened.

Also, if you have a network analyzer available, you can apply it to determine
which of the two situations is occurring. Lacking that, you can simply try
setting the timeo option higher and lower and see what gives better overall
performance. In some cases, there is no consistent behavior. Your best option
then is to track down the actual cause of the packet delays/drops and fix the
real problem (that is, a server or network/network device).

For LAN-to-LAN traffic through a bridge, try 50 (tenths of seconds). For WAN
connections, try 200. Check the NFS statistics again after waiting at least one
day. If the statistics still indicate excessive retransmits, increase timeo by 50
percent and try again. You will also want to examine the server workload and
the loads on the intervening bridges and gateways to see if any element is
being saturated by other traffic.

4.5.5 Dropped packets
Given that dropped packets are detected on an NFS client, the real challenge
is to find out where they are being lost. Packets can be dropped at the client,
the server, and somewhere on the network.

4.5.5.1 Packets dropped by the client
Packets are rarely dropped by a client. Because each client RPC call is
self-pacing, that is, each call must get a reply before going on, there is little
opportunity for overrunning system resources. The most stressful operation is
probably reading, where there is a potential for 1 MB+/second of data flowing
into the machine. While the data volume can be high, the actual number of
simultaneous RPC calls is fairly small and each biod daemon has its own
space allocated for the reply. Thus, it is very unusual for a client to drop
Chapter 4. Network tuning 75

packets. Packets are more commonly dropped either by the network or by the
server.

4.5.5.2 Packets dropped by the server
Two situations exist where servers will drop packets under heavy loads:

• Adapter driver

When an NFS server is responding to a very large number of requests, the
server will sometimes overrun the interface driver output queue. You can
observe this by looking at the statistics that are reported by the netstat
-i command. Examine the columns marked Oerrs and look for any
counts. Each Oerrs is a dropped packet. This is easily tuned by increasing
the problem device driver's transmit queue size. The idea behind
configurable queues is that you do not want to make the transmit queue
too long, because of latencies incurred in processing the queue. But
because NFS maintains the same port and XID for the call, a second call
can be satisfied by the response to the first call's reply. Additionally,
queue-handling latencies are far less than UDP retransmit latencies
incurred by NFS if the packet is dropped.

• Socket buffers

The second common place where a server will drop packets is the UDP
socket buffer. Dropped packets here are counted by the UDP layer and the
statistics can be seen by using the netstat -p udp command. Examine
the statistics marked as UDP for the socket buffer overflows statistic.

NFS packets will usually be dropped at the socket buffer only when a server
has a lot of NFS write traffic. The NFS server uses a UDP socket attached to
NFS port 2049 and all incoming data is buffered on that UDP port. The default
size of this buffer is 60,000 bytes. You can divide that number by the size of
the default NFS write packet (8192) to find that it will take only eight
simultaneous write packets to overflow that buffer. This overflow could occur
with just two NFS clients (with the default configurations).

In this situation, there is either high volume or high burst traffic on the socket.

1. If there is high volume, a mixture of writes plus other possibly non-write
NFS traffic, there may not be enough nfsd daemons to take the data off
the socket fast enough to keep up with the volume. Recall that it takes a
dedicated nfsd daemon to service each NFS call of any type.

2. In the high burst case, there may be enough nfsd daemons, but the speed
at which packets arrive on the socket is such that they cannot wake up fast
enough to keep it from overflowing.
76 RS/6000 SP System Performance Tuning Update

Each of the two situations is handled differently.

1. In the case of high volume, it may be sufficient to just increase the number
of nfsd daemons running on the system. Because there is no significant
penalty for running with more nfsd daemons on a machine, try this
solution first. In the case of high burst traffic, the only solution is to enlarge
the socket, in the hope that some reasonable size will be sufficiently large
enough to give the nfsd daemons time to catch up with the burst. Memory
dedicated to this socket will not be available for any other use, so it must
be noted that a tuning objective of total elimination of socket buffer
overflows by making the socket larger may result in this memory being
under utilized for the vast majority of the time. A cautious administrator will
watch the socket buffer overflow statistic, correlate it with performance
problems, and determine how large to make the socket buffer.

2. You might see cases where the server has been tuned and no dropped
packets are arriving for either the socket buffer or the driver Oerrs, but
clients are still experiencing time-outs and retransmits. Again, this is a
two-case scenario. If the server is heavily loaded, it may be that the server
is just overloaded and the backlog of work for nfsd daemons on the server
is resulting in response times beyond the default time-out set on the client.
See Section 4.5.9, “NFS tuning checklist” on page 79 for hints on how to
determine if this is the problem. The other possibility, and the most likely
problem if the server is known to be otherwise idle, is that packets are
being dropped on the network.

4.5.5.3 Dropped packets on the network
If there are no socket buffer overflows or Oerrs on the server, and the client is
getting lots of time-outs and retransmits and the server is known to be idle,
then packets are most likely being dropped on the network. What do we mean
here when we say the network? We mean a large variety of things, including
media and network devices such as routers, bridges, concentrators, and the
whole range of things that can implement a transport for packets between the
client and server.

Anytime a server is not overloaded and is not dropping packets, but NFS
performance is bad, assume that packets are being dropped on the network.
Much effort can be expended proving this and finding exactly how the network
is dropping the packets. The easiest way of determining the problem depends
mostly on the physical proximity involved and resources available.

Sometimes the server and client are in close enough proximity to be
direct-connected, bypassing the larger network segments that may be
causing problems. Obviously, if this is done and the problem is resolved, then
Chapter 4. Network tuning 77

the machines themselves can be eliminated as the problem. More often,
however, it is not possible to wire up a direct connection, and the problem
must be tracked down in place.

4.5.6 Cache file system
The Cache File System (CacheFS) may be used to further enhance read
throughput in environments with memory-limited clients, very large files,
and/or slow network segments by adding the potential needed to satisfy read
requests from file data residing in a local disk cache on the client.

When a file system is cached, the data read from the remote file system is
stored in a cache on the local system, thereby avoiding the use of the network
and NFS server when the same data is accessed for the second time.
CacheFS is designed as a layered file system; this means that CacheFS
provides the ability to cache one file system (the NFS file system, also called
the back-file system) on another (your local file system, also called the
front-file system). CacheFS works as follows:

1. After creating a CacheFS file system on a client system, the system
administrator specifies which file systems are to be mounted in the cache.

2. When a user on the client attempts to access files that are part of the back
file system, those files are placed in the cache. The cache does not get
filled until a user requests access to a file or files. Therefore, the initial
request to access a file will be at normal NFS speeds, but subsequent
accesses to the same file will be at local JFS speeds.

3. To ensure that the cached directories and files are kept up to date,
CacheFS periodically checks the consistency of files stored in the cache.
It does so by comparing the current modification time to the previous
modification time.

4. If the modification times are different, all data and attributes for the
directory or file are purged from the cache, and new data and attributes
are retrieved from the back-file system.

4.5.7 Reduced requests for file attributes
Because read data can sometimes reside in the cache for extended periods
of time in anticipation of demand, clients must check to ensure their cached
data remains valid if a change is made to the file by another application.
Therefore, the NFS client periodically acquires the file's attributes, which
includes the time the file was last modified. Using the modification time, a
client can determine whether its cached data is still valid.
78 RS/6000 SP System Performance Tuning Update

Keeping attribute requests to a minimum makes the client more efficient and
minimizes server load, thus increasing scalability and performance.
Therefore, NFS Version 3 was designed to return attributes for all operations.
This increases the likelihood that the attributes in the cache are up to date,
and thus reduces the number of separate attribute requests.

4.5.8 Disabling unused NFS ACL support
If your workload does not use the NFS access control list (ACL) support on a
mounted file system, you can reduce the workload on both client and server
to some extent by specifying the noacl option. This can be done as follows:

options=noacl

Set this option as part of the client's /etc/filesystems stanza for that file
system.

4.5.9 NFS tuning checklist
Here is a checklist that you can follow when tuning NFS:

1. Check to see if you are overrunning the server.

The general method is to see if slowing down the client will increase the
performance. The following methods can be tried independently:

a. Try running with just one biod daemon on the mount.

b. Try running with just one biod daemon on the affected client. If
performance increases, then something is being overrun either in the
network or on the server. Run the stopsrc -s biod command to stop
all the SRC biod daemons. It will leave one kernel process biod with
which you can still run. See if it runs faster with just the one biod
process. If it has no effect, restart the biod daemons with the startsrc

-s biod command. If on the other hand, it runs faster, attempt to
determine where the packets are being dropped when all daemons are
running. Networks, network devices, slow server, overloaded server, or
a poorly tuned server could all cause this problem.

c. Try reducing the read/write sizes to see if things speed up.

d. If you are using UDP, try using a TCP mount instead.

2. Check for Oerrs.

This is probably the most common under-configuration error that affects
NFS servers. If there are any Oerrs, increase the transmit queues for the
network device. This can be done with the machine running, but the
interface must be detached before it is changed (rmdev -l). You can not
shut down the interface on a diskless machine, and you may not be at
Chapter 4. Network tuning 79

liberty to shut down the interface if other work is going on. In this case,
you can use the chdev command to put the changes in ODM so they will
be activated on the next boot. Start by doubling the current value for the
queue length, and repeat the process (adding an additional 30 each time)
until no Oerrs are reported.

On SP systems where NFS is configured to run across the high-speed
switch, Oerrs may occur on the switch when there has been a switch fault
and the switch was temporarily unavailable. An error is counted towards
Oerr for each attempt to send on the switch that fails. These errors cannot
be eliminated.

3. Look for any errors.

Any counts that are very large indicate problems.

4. Check for NFS UDP/TCP buffer overruns.

When using UDP, buffer overruns on the NFS server are another frequent
under-configuration for NFS servers. TCP sockets can be similarly
overrun on very busy machines. Tuning for both is similar, so this section
discusses only UDP.

Run the netstat -s command and examine the UDP statistics for the
socket buffer overflows statistic. If it is anything other than 0, you are
probably overrunning the NFS UDP buffer. Be aware, however, that this is
the UDP socket buffer drop count for the entire machine, and it may or
may not be NFS packets that are being dropped. You can confirm that the
counts are due to NFS by correlating between packet drop counts on the
client using the nfsstat -cr command to socket buffer overruns on the
server while executing an NFS write test.

Socket buffer overflows can happen on heavily stressed servers or on
servers that are slow in relation to the client. Up to 10 socket buffer
overflows are probably not a problem. Hundreds of overflows are. If this
number continually goes up while you watch it, and NFS is having
performance problems, NFS needs tuning.

Two factors can tune NFS socket buffer overruns. First, try increasing the
number of nfsd daemons that are being run on the server. If that does not
solve the problem, you must adjust two kernel variables, sb_max (socket
buffer max) and nfs_socketsize (the size of the NFS server socket buffer).
Use the no command to increase sb_max. Use the nfso command to
increase the nfs_socketsize variable.

The sb_max parameter must be set larger than nfs_socketsize. It is hard
to suggest new values. The best values are the smallest ones that also
make the netstat report 0 or just produce a few socket buffer overruns.
80 RS/6000 SP System Performance Tuning Update

Remember, in AIX V4, the socket size is set dynamically. Configurations
using the no and nfso commands must be repeated every time the
machine is booted. Add them in the /etc/rc.nfs file, right before the nfsd
daemons are started and after the biod daemons are started. The position
is crucial.

5. Check for mbuf problems.

See if there are any requests for mbufs denied or delayed. If so, increase
the number of mbufs available to the network.

6. Check for very small interpacket delays.

There have been rare cases where this has caused problems with
machines. If there is a router or other hardware between the server and
client, you can check its documentation to see if the interpacket delays
can be configured. If so, try increasing the delay.

7. Check for media mismatches.

When packets are traversing two networks with widely different speeds,
the router might drop packets when taking them off the high speed net and
trying to get them out on the slower net. This has been seen particularly
when a router was trying to take packets from a server on FDDI and send
them to a client on Ethernet. It could not send out the packets fast enough
on Ethernet to keep up with the FDDI. The only solution is to try to slow
down the volume of client requests, use smaller read/write sizes, and limit
the number of biod daemons that can be used on a single file system.

8. Check for MTU mismatches.

Run the netstat -i command and check the MTU on the client and
server. If they are different, try making them the same and see if the
problem is eliminated. Also be aware that slow or wide area networks
between the machines, routers, or bridges may further fragment the
packets to traverse these network segments. Attempt to determine the
smallest MTU between source and destination, and change the
rsize/wsize on the NFS mount to some number lower than that
lowest-common-denominator MTU.

9. Check for routing problems.

Use the traceroute command to look for unexpected routing hops or
delays.

10. Check for errlog entries.

Run the errpt command and look for reports of network device or network
media problems. Also look for any disk errors that might be affecting NFS
server performance on exported file systems.
Chapter 4. Network tuning 81

4.5.10 Examples of NFS configurations
The following are a couple of examples of how to determine the number of
nfsd and biod daemons on SP nodes. If you have one server node for ten
client nodes each mounting two file systems, you will need 120 nfsd daemons
on the server. For example:

120 nfsd daemons = 10 X 6 X 2

If you have a client node mounting 5 NFS file systems from a NFS server, you
will need 30 biod daemons on the client node. For example:

30 biod daemons = 5 X 6

If you have ten client nodes each mounting 5 NFS file systems all from the
same server node, you may have a problem using the maximum number of
biod daemons on each client node. Client nodes start at 30 biod daemons
each server node needs 30 X 10 nfsd daemons or 300 nfsd daemons.

You may want to change the client nodes to each configure 20 biod daemons
and change the server node to configure 200 nfsd daemons. This will work
better, especially with a SMP NFS server node.

The other parameters that need addressing are the nfs_socketsize and
nfs_tcp_socketsize parameters. These settings can be found using the nfso

command. The current default values of 60000 are way too small for use on a
SP system. These parameters specify the amount of space available in the
NFS queue of pending requests. This queue is eventually read, and the
requests handed off to a nfsd daemon. In the queue, write requests include
the data to be written, so enough space to handle concurrent write requests
to a server must be allocated. If this size is too small, then the client node will
record NFS time-outs and retries as requests are dropped at the server.

In NFS V2.0, you only have the nfs_socketsize. In NFS V3.0, since it now
includes the ability of using TCP as the transport mechanism between client
and server, you must make sure that both these parameters are set to the
correct size. To determine the appropriate size on the server, you need to
calculate the maximum number of clients that will be writing to the server at

The current default value for nfs_socketsize and nfs_tcp_socketsize is
60000, but this value is too small for large SP system configuration. Start
by doubling the value.

Note
82 RS/6000 SP System Performance Tuning Update

the same time, times the number of file systems they will be writing to, times
6, which is the maximum number of biod's per remote file system. By taking
this number, and multiplying it by 4K (NFS V2.0) or 32K (NFS V3.0), you can
estimate the queue space needed.

If the size needed for the nfs_socketsize and nfs_tcp_socketsize are very
large, you might want to reduce the number of biod daemons per mounted file
system from the client nodes. If you do, then you can reduce the size
determined above by using the smaller number of biod daemons per file
system, rather than the value of 6.

The following are a couple of examples of how to set the socket sizes for
NFS:

If you have ten client nodes running NFS V2.0, each writing to two file
systems on a single server node, you need to set nfs_socketsize to 491520 or
480 KB. For example:

10 X 6 X 2 X 4096 = 480 KB

If you have ten client nodes, each running NFS V3.0 over TCP writing to two
file systems on a single server node, you need to set nfs_socketsize and
nfs_tcp_socketsize to 39321600 or 3.8 MB. For example:

10 X 6 X 2 X 32768 = 3.8 MB.

There is a possible problem with sb_max size in no tunables. If sb_max is
less than the socket size you set, the sb_max value is really the limit for the
NFS socket.

You might want to change the client node mount parameters to use two biod
daemons on each mount to the server node. This will result in a
nfs_tcp_socketsize of 1310720 or 1.28 MB. For example:

10 X 2 X 2 X 32768 = 1.28 MB.

For more detailed information regarding tuning NFS, refer to the AIX V4.3
System Management Guide: Communications and Networks, SC23-4127.

4.6 SP system-specific tuning recommendations

The SP system usually requires that tunable settings be changed from the
default values in order to achieve optimal performance of the entire system.
How to determine what these settings are is described in the sections that
follow. However, where to set these tunable values is very important. If they
Chapter 4. Network tuning 83

are not set in the correct places, subsequent rebooting of the nodes or other
changes can cause them to change, or be lost.

For all dynamically tunable values (those that take effect immediately), the
setting for each node should be set in the tuning.cust file. This file is found in
the /tftpboot directory on each node. There is also a copy of the file in the
same directory on the CWS. Tunables changed using the no, nfso or vmtune
commands can be included in this file. Even though the sample files do not
include nfso and vmtune commands, they can be added here with no
problems.

There are a small number of tuning recommendations that are not
dynamically tunable values that need to be changed in the /etc/rc.net file.
These tunables are for ARP cache tuning and setting the number of adapter
types per interface. The following tunables are the only ones that should be
added to rc.net:

• arptab_nb

• arptab_bsize

• ifsize

There are several reasons why the tuning.cust file should be used rather than
rc.net for dynamically tunable settings:

• If you damage /etc/rc.net, you can render the node unusable, requiring a
reinstallation of the node.

• If you partially damage /etc/rc.net, getting to the node through the console
connection from the CWS can take several minutes or even over an hour.
This is because part of the initialization of the node is to access remote
nodes or the CWS, and because /etc/rc.net is defective, each attempt to
get remote data takes nine minutes to time out and fail (time-out defined in
the system).

• If you damage /tftpboot/tuning.cust file, at least the console connection will
work, enabling you to log in through the CWS and fix the bad tunable
settings.

• If you decide to create your own inittab entry to call a file with the tuning
settings, future releases of PSSP will require a tuning.cust set of tunables
to be run, overriding your local modifications.

• Tuning.cust is run from /etc/rc.sp, so it will always be run on a reboot.

• Tuning.cust includes a stop and start of inetd as of PSSP Release 2.4,
which is required for all daemons to inherit the SP-specific tuning settings.
84 RS/6000 SP System Performance Tuning Update

Using the sample tuning.cust settings selected as part of the install, the SP
nodes will at least function well enough to get up and running for the
environment type selected.

If the system has nodes that require different tuning settings, it is
recommended that a copy of each setting be saved on the CWS. When nodes
with specific tuning settings are installed, that version of tuning.cust needs to
be moved into /tftpboot on the CWS.

Another option is to create one tuning.cust file that determines the node
number, and based on that node number, sets the appropriate tuning values.

4.6.1 IBM-supplied files of SP tunables
When a node is installed, migrated or customized, and that node’s boot/install
server does not have a /tftpboot/tuning.cust file, a default file of performance
tuning variable settings /usr/lpp/ssp/install/tuning.default is copied to
/tftpboot/tuning.cust on that node. You can choose from one of the
IBM-supplied tuning files, or you can create or customize your own. There are
four sample tuning files currently available. The existing files are located in
the /usr/lpp/ssp/install/config directory, and are as follows:

• tuning.commercial contains initial performance tuning parameters for a
typical commercial environment.

• tuning.development contains initial performance tuning parameters for a
typical interactive and/or development environment. These are the default
tuning parameters.

• tuning.scientific contains initial performance tuning parameters for a
typical engineering/scientific environment.

• tuning.server contains initial performance tuning parameters for a typical
server environment.

The other option is to create and select your own alternate tuning file. While
this may not be the initial choice, it certainly must be the choice at some point
in time. On the CWS, create a tuning.cust file, or you can begin with an
IBM-supplied file. Edit the tuning.cust file with your favorite editor, making
sure changes are saved. Once you are finished, proceed to the installation of
nodes. This tuning.cust file is then propagated to each node’s
/tftpboot/tuning.cust file from the boot/install server when the node is
installed, migrated, or customized and is maintained across reboots.
Chapter 4. Network tuning 85

4.7 Tuning the SP network for specific workloads

This section describes four typical environments: Software Development,
Scientific and Technical, Commercial Database, and Server Configuration.
The settings given are only initial settings and are not guaranteed to be
optimized for your environment. They will get the system up and running fairly
well. You should look at your specific implementation and adjust your tuning
settings accordingly.

4.7.1 Tuning for development environments
The typical development environment on the SP consists of many users all
developing an application or running small tests of a system. On the SP
system, this type of environment has lots of connections between the nodes
using TCP/IP. In this case, setting the TCP/IP parameters to more
conservative values is an approach to prevent exhaustion of the switch buffer
pool areas. Most of the high-speed tuning is not done in this environment
because single connection performance is not critical. What is important is
that aggregate requirements from several developers do not exhaust system
resources.

Table 8 provides network tunable settings designed as initial values for a
development environment. These settings are only initial suggestions. Start
with them and understand you may need to change them. Remember to keep
track of your changes and document them.

Table 8. Software development tuning parameters

Parameter Value

thewall 16384 (higher value in AIX 4.3.2 and later. See Section 4.3,
“AIX network tunables” on page 45 for more details.)

sb_max 131072

subnetsarelocal 1

ipforwarding 0 (set 1 only if needed)

tcp_sendspace 65536

tcp_recvspace 65536

In a typical development environment, only small packets are used, but lots
of sockets are active at one time.

Note
86 RS/6000 SP System Performance Tuning Update

The way these initial values are derived is that the network traffic expected
consists of small packets with lots of socket connections. The tcp_sendspace
and tcp_recvspace parameters are kept small so that a single socket
connection cannot use up lots of network buffer space, causing buffer space
starvation. It is also set so that high performance for an individual socket
connection is not expected. However, if lots of sockets are active at any one
time, the overall resources will enable high aggregate throughput over the
switch.

4.7.2 Tuning for scientific and technical environments
The typical scientific and technical environment usually has only a few
network sockets active at any one time, but sends large amounts of data. The
following information sets up the network tunables so that a single socket
connection or a few connections can get the full SP Switch bandwidth. In
doing this, however, you can cause problems on small packet networks like
Ethernet and Token Ring. This is the trade-off that has to be made to get peak
performance out of the SP system.

The following are the characteristics for a scientific and technical
environment:

• Few active connections

• Large TCP windows size (tcp_sendspace, tcp_recvspace)

• rfc1323 turned on

• Switch buffer pools larger than TCP window (chgcss)

• Large TCP socket write size (socket write call)

To achieve peak data transfer across the SP switch using TCP/IP you need to
increase the tunables that affect buffer sizes, queue sizes and the TCP/IP

udp_sendspace 32768

udp_recvspace 65536

rfc1323 1

tcp_mssdflt 1448

tcp_pmtu_discover 0

udp_pmtu_discover 0

ipqmaxlen 512

Parameter Value
Chapter 4. Network tuning 87

window. To get the best TCP/IP transfer rate, you need to size the TCP/IP
window large enough to keep data streaming across a switch without
stopping the IP stream. The switch has an MTU of 65520 bytes. This is the
largest buffer of data that it can send. When using TCP/IP, TCP will send as
many buffers as it can until the total data sent without acknowledgment from
the receiver reaches the tcp_sendspace value.

Experimentation has found that having at least six times the size of the MTU
of the SP switch (or SP switch2) available in the TCP window size allows
TCP/IP to reach high transfer rates. However, if you set tcp_sendspace and
tcp_recvspace to 655360 bytes, it can hurt the performance of the other
network adapters connected to the node. This can cause adapter queue
overflows, as described in Section 5.1, “Adapter queue size” on page 95.

The settings in Table 9 are only initial suggestions. Start with them and
understand you may need to change them. Remember to keep track of your
changes and document them.

Table 9. Scientific and technical environment tuning parameters

Parameter Value

thewall 16384 (higher value in AIX 4.3.2 and later. See Section 4.3,
“AIX network tunables” on page 45 for more details.)

sb_max 1310720

subnetsarelocal 1

ipforwarding 0 (set 1 only if needed)

tcp_sendspace 655360

tcp_recvspace 655360

upd_sendspace 65536

upd_recvspace 655360

rfc1323 1

tcp_mssdflt Varies (depending on other network types)

tcp_pmtu_discover 0

udp_pmtu_discover 0

ipqmaxlen 512
88 RS/6000 SP System Performance Tuning Update

Now we list the most common problems that occur in the scientific and
technical environment. Most of them are explained in more detail later in this
book.

• TCP/IP pacing caused by incorrect TCP window tuning (the Nagle
Algorithm). See Section 4.2.9, “Description of the Nagle Algorithm” on
page 42.

• Single server / multiple client scaling problems. See Section 9.6,
“Single-server multiple-client node problems” on page 197.

• Synchronization point file server accesses.

• File systems performance, including NFS (see Section 4.5.1, “NFS
overview for performance” on page 69) and GPFS (Chapter 14, “GPFS” on
page 369).

• ARP cache size on greater than 128 node systems. See Section 4.2.7.1,
“ARP cache tuning” on page 40.

• Turning on tcp_pmtu_discover can increase route table and increase
lookup time on large systems.

4.7.3 Tuning for commercial and database environments
The typical commercial and database environments generally have many
network connections between nodes. For environments with lots of active
connections, the tcp_sendspace and tcp_recvspace need to be adjusted so
that the aggregate amount of the TCP window across all connections does
not exceed the available buffer space for the SP Switch. In commercial and
database environments where only a few connections are active, you can
increase the tcp_sendspace and tcp_recvspace sizes to get better
per-connection performance over the switch.

The following are the characteristic for commercial and database
environments:

• Lots of active connections.

• Smaller TCP or dynamically adjusted window sizes (tcp_sendspace,
tcp_recvspace).

• Aggregate active TCP window sizes less than switch pools.

• TCP write sizes aligned along switch pool buffer sizes (socket write call).
Chapter 4. Network tuning 89

These settings in Table 10 are only initial suggestions. Start with them and
understand you may need to change them. Remember to keep track of your
changes and document them.

Table 10. Commercial and database environment tuning parameters

The way these initial values are derived is that the network traffic expected
consists of small packets with lots of socket connections. However, when
running a parallel database product, you want to be able to get as much SP
Switch throughput to a single connection as you can without causing
problems on other network adapters. The settings in Table 10 are also
designed to enable a single socket to be able to send to an Ethernet adapter
without causing adapter queue overruns. In addition, the tcp_sendspace and
tcp_recvspace are large enough to get a majority of the switch bandwidth at
database size packets.

If other applications, with vastly different network characteristics, are run on
the same node, such as TSM (Tivoli Storage Manager), or data mining type
applications, that tend to use few sockets, these settings may not provide
peak performance. In these cases, the TCP window settings may have to be
increased. Conflicts with the settings needed by TSM can be resolved by

Parameter Value

thewall 16384 (higher value in AIX 4.3.2 and later. See Section 4.3, “AIX
network tunables” on page 45 for more details.)

sb_max 1310720

subnetsarelocal 1

ipforwarding 0 (set 1 only if needed)

tcp_sendspace 262144

tcp_recvspace 262144

udp_sendspace 65536

udp_recvspace 655360

rfc1323 1

tcp_mssdflt 1448

tcp_pmtu_discover 0

udp_pmtu_discover 0

ipqmaxlen 512
90 RS/6000 SP System Performance Tuning Update

having TSM do its own socket level tuning. See Chapter 12, “Tivoli Storage
Manager (ADSM)” on page 337 for more information.

The following list describes the most common problems that occur in the
commercial and database environment. Most of them are explained in more
detail later in this book.

• TCP/IP pacing caused by incorrect TCP window tuning (the Nagle
algorithm). See Section 4.2.9, “Description of the Nagle Algorithm” on
page 42.

• Single server / multiple client scaling problems. See Section 9.6,
“Single-server multiple-client node problems” on page 197.

• Switch pool sizing. See Section 5.1, “Adapter queue size” on page 95.

• Excessive aggregate memory requirements.

• Adapter queue overruns. See Section 9.2, “Adapter queue overflows” on
page 192.

• Poor applications IP traffic characteristics.

• Unbalanced I/O channel traffic.

• Scheduled operations tuning requirements conflicts with ongoing
database workload.

• Turning on tcp_pmtu_discover can increase route table and increase
lookup time on large systems.

4.7.4 Tuning for server environments
The server environment usually is a node serving a lot of data to one or many
other nodes on an SP system. It can also be serving data to machines
outside the SP system through gateway nodes. This environment puts the
highest demands on getting the aggregate amount of traffic for the SP Switch
or TCP/IP buffer pools. If a server node in an SP system is potentially serving
hundreds of requests or connections, tcp_sendspace and tcp_recvspace
need to be small. This prevents a large number of large data requests from
consuming the entire switch and TCP/IP buffer pools.

In systems where there is one server and the rest of the nodes run an
application that needs larger tcp_sendspace and tcp_recvspace sizes, it is
acceptable to use different settings on the appropriate nodes. In this situation,
the nodes talking to each other use large TCP windows for peak performance,
and when talking to the server, use small windows. The effective TCP window
is the least common denominator of the tcp_sendspace and tcp_recvspace
values.
Chapter 4. Network tuning 91

The following are the characteristics for tuning the server environments:

• Large buffer pools for staging remote traffic.

• Large number of daemons to handle remote requests.

• Multiple disks and adapters to distribute I/O.

• Smaller TCP windows to prevent exhaustion of buffer pools
(tcp_sendspace and tcp_recvspace).

Table 11 provides tunable network settings designed as initial values for
server environments.

Table 11. Server tuning parameters

The way these initial settings are derived is that the network traffic expected
is coming from many connections. To prevent exhaustion of the TCP/IP buffer
pools or the switch pools, the tcp_sendspace, the tcp_recvspace and the
sb_max parameters are reduced. If the total number of active requests from
the server are small, these values may be increased to allow more buffer area
per connection. This increase will help improve performance for small
numbers of connections as long as aggregate TCP window space does not
exceed other buffer areas.

Parameter Value

thewall 65536 (See Section 4.3, “AIX network tunables” on page 45 for
more details.)

sb_max 1310720

subnetsarelocal 1

ipforwarding 0 (set 1 only if needed)

tcp_sendspace 65536

tcp_recvspace 65536

udp_sendspace 65536

udp_recvspace 655360

rfc1323 1

tcp_mssdflt 1448

tcp_pmtu_discover 0

udp_pmtu_discover 0

ipqmaxlen 512
92 RS/6000 SP System Performance Tuning Update

We describe the most common problems that occur in the server
environment. Most of them are explained in more details later in this book.

• Exhaustion of switch pools due to use of large TCP windows. See Section
5.1, “Adapter queue size” on page 95 for more details.

• Insufficient buddy buffers for VSD and GPFS. See Chapter 13, “VSD” on
page 353 and Chapter 14, “GPFS” on page 369 for more details.

• Adapter queue overflows on non-switch adapters. See Section 5.1,
“Adapter queue size” on page 95 for more details.

• Not enough NFS daemons or too small NFS socket size. See Section 9.4,
“NFS performance in SP system” on page 194 for more details.

• Bottlenecks on a single I/O bus or subset of disks.

• Too small memory size.

4.7.5 Summary of workload tunables
Table 12 gives a combined overview of our tunables for the different
environments.

Table 12. Summary of workload tunables

Parameter Dvlpmnt. S&T Commercial Server

thewall 16384 16384 16384 65536

sb_max 131072 1310720 1310720 1310720

subnetsarelocal 1 1 1 1

ipforwarding 0 0 0 0

tcp_sendspace 65536 655360 262144 65536

tcp_recvspace 65536 655360 262144 65536

udp_sendspace 32768 65536 65536 65536

udp_recvspace 65536 655360 655360 655360

rfc1323 1 1 1 1

tcp_mssdflt 1448 Varies
(depending
on other
network
types)

1448 1448

tcp_pmtu_discover 0 0 0 0
Chapter 4. Network tuning 93

udp_pmtu_discover 0 0 0 0

ipqmaxlen 512 512 512 512

Parameter Dvlpmnt. S&T Commercial Server
94 RS/6000 SP System Performance Tuning Update

Chapter 5. Adapter tuning

Many types of network adapters are supported in an RS/6000 SP
environment. When data is sent, it is passed through the TCP/IP layers to the
device drivers. Therefore, tuning the network adapter is critical to maintain
peak throughput for network traffic.

5.1 Adapter queue size

The high throughput of a switch can cause problems with network adapters,
such as Ethernet, Token Ring and FDDI, connected to nodes acting as
gateways on SP systems. There is a fixed number of adapter queue slots to
stage packets in each network adapter device driver for traffic to that network.
The transmit adapter queue length specifies the maximum number of packets
for the adapter. The SP Switch send and receive pools are separate buffer
pools as shown in Figure 13.

Figure 13. Adapter queue overview

ADAPTER

Network

Transmit
Queue

Receive
Queue

Memory

Node

Memory
© Copyright IBM Corp. 2000 95

If the adapter queue size is exceeded, subsequent packets are discarded by
the adapter device driver, resulting in dropped packets. This results in a
transmit time-out in the TCP layer, which leads to a rollback of the TCP
window and the resending of data. For UDP, the result is lost packets.

Adapter queue overflows can be detected by looking at the errors logged in
the adapter counters as "S/W Transmit Queue Overflows." For Ethernet,
Token Ring, FDDI and ATM, the adapter statistics can be seen by using the
entstat, tokstat, fddistat and atmstat commands.

Most communication drivers provide a set of tunable parameters to control
transmit and receive resources. These parameters typically control the
transmit queue and receive queue limits, but may also control the number
and size of buffers or other resources. They limit the number of buffers or
packets that may be queued for transmit or limit the number of receive buffers
that are available for receiving packets. For an example, see Table 13; these
parameters (for AIX 4.2.1 and later) can be tuned to ensure enough queueing
at the adapter level to handle the peak loads generated by the system or the
network.

Table 13. Transmit queue size examples

5.1.1 Transmit and receive queues
For transmit, the device drivers may provide a transmit queue limit. There
may be both hardware queue and software queue limits, depending on the

Adapter Default Range

MCA Ethernet 512 20 - 2048

10/100 Ethernet 64 16,32,64,128,256

Token Ring 99 or 512 32 - 2048

FDDI 512 3 - 2048

ATM / 155 ATM 512 0 - 2048

PCI Ethernet 64 16,32,64,128,256

10/100 Ethernet 256 - 512 16,32,64,128,256

Gigabit Ethernet 512 512-2048

Token Ring 96 - 512 32 - 2048

FDDI 30 3 - 250

155 ATM 100 0 - 4096
96 RS/6000 SP System Performance Tuning Update

driver and adapter. Some drivers have only a hardware queue, some have
both hardware and software queues. Some drivers control the hardware
queue internally and only allow the software queue limits to be modified.
Generally, the device driver will queue a transmit packet directly to the
adapter hardware queue. If the system CPU is fast relative to the speed of
the network, or on an SMP system, the system may produce transmit packets
faster than they can be transmitted on the network. This will cause the
hardware queue to fill. Once the hardware queue is full, some drivers provide
a software queue and subsequent packages will be queued to it. If the
software transmit queue limit is reached, then the transmit packets are
discarded. This can affect performance because the upper level protocols
must then retransmit the discarded packets.

A typical example would be that you set your adapter queue length to 30.
Assuming that the MTU of that adapter is 1500, you have set the maximum
amount of data that the adapter can hold to 45,000 bytes. This is less than a
single packet from a switch. Figure 14 illustrates the different MTU ratios. If
you try and stage more packets to an adapter, then the packets that arrive
when this queue is full get thrown away.

Figure 14. MTU ratio

Receive queues are the same as transmit hardware queues.

M axim um
M TU

Ratio to
Ethernet

FDD I 4352 2.9

N etw ork
Type

M axim um
M TU

Ratio to
Ethernet

E therne t

FDD I

1500

4352

1

2.9

Token
R ing

SP Sw itch and SP Sw itch2

17284

65520

11.5

43.7

G igabit E thernet 9000 6
Chapter 5. Adapter tuning 97

5.1.2 Displaying adapter queue settings
To show the adapter configuration settings, you can use the lsattr command
or SMIT. For example, to display the default values of the settings, you can
use the command:

lsattr -D -l <adapter - name>

and to display the current values, you can use:

lsattr -E -l <adapter - name>

Finally, to display the range of legal values of an attribute (for example,
xmt_que_size) for a given adapter (for example, Token Ring), you can use
the command:

lsattr -R -l tok0 -a xmt_que_size

Different adapters have different names for these variables. For example,
they may be named sw_txq_size, tx_que_size, or xmt_que_size, to name a
few for the transmit queue parameter. The receive queue size and/or receive
buffer pool parameters may be named rec_que_size, rx_que_size, or
rv_buf4k_min, and so on.

Figure 15 shows the output of the lsattr -E -l atm0 command on an IBM PCI
155 Mbps ATM adapter. This shows sw_xq_size set to 250 and the
rv_buf4K_min receive buffers set to 48.

Figure 15. lsattr command output for an ATM adapter

5.1.3 Changing adapter settings
The easiest way to change the adapter settings is by using SMIT. The other
method is to use the chdev command.

ma-mem 0x400000 N/A False
regmem Oxlff88000 Bus Memory address of Adapter Registers False
virtmem Oxlff90000 Bus Memory address of Adapter Virtual Mem False
busintr 3 Bus Interrupt Level False
intr_priority 3 Interrupt Priority False
use_alt_addr no Enable ALTERNATE ATM MAC address True
alt_addr OX0 ALTERNATE ATM MAC address (12 hex digits) True
sw_txq_size 250 Software Transmit Queue size True
max_vc 1024 Maximum Number of VCs Needed True
min_vc 32 Minimum Guaranteed VCs Supported True
rv_buf4k_min 0x30 Minimum 4K-byte premapped receive buffer True
interface_typ 0 Sonet or SH interface True
adapter_clock 1 Provide SONET Clock True
uni_vers autot_detect N/A True
98 RS/6000 SP System Performance Tuning Update

For example, to change tx_que_size on en0 to 512, use the following
sequence of commands. Note that this driver only supports four different
sizes, so it is better to use SMIT to see the valid values.

ifconfig en0 detach

chdev -1 ent0 -a tx_que_size=512

ifconfig en0 up

5.1.4 Adapter tuning recommendations
If you consistently see output errors when running the netstat -i command,
increasing the size of the xmt_que_size parameter may help. Check also the
adapter transmit average overflow count. As a rule of thumb, always set
xmt_que_size to the maximum.

One way to tune IP to prevent exceeding the adapter queue size is to reduce
the aggregate TCP window size or udp_sendspace so that it is less than the
transmit queue size times the segment size (MTU) on the network. This
usually results in optimal throughput and slightly higher system overhead for
network traffic. If multiple connections are sharing an adapter at the same
time, the aggregate TCP window size across all connections should be
slightly less than the transmit queue size times the segment size for the
network media type.

5.2 SP Switch and SP Switch2 adapter tuning

The switch network is something unique for an SP system. It provides high
performance connections for all nodes. Therefore, the right tuning of the
switch adapters is essential for good overall system performance.

5.2.1 Switch adapter pools
Since PSSP Level 2.1 PTF 11, two variables are provided to tune the sizes of
the switch adapter pools:

• rpoolsize - Size of SP Switch device driver receive pool in bytes.

• spoolsize - Size of SP Switch device driver send pool in bytes.

To apply the changes, you need to reboot the node(s). Use the chgcss

command to change the settings.

Note
Chapter 5. Adapter tuning 99

These pools are used to stage the data portion of IP packets for the switch.
However, the allocation and sizes utilized from the pools can cause buffer
starvation problems. The send pool and receive pool are separate buffer
pools, one for outgoing data (send pool) and one for incoming data (receive
pool). When an IP packet is passed to the switch interface, then if the size of
the data is large enough, a buffer is allocated from the pool. If the amount of
data fits in the IP header mbuf used in the mbuf pool, no send pool space is
allocated for the packet. The amount of data that will fit in the header mbuf is
a little less than 200 bytes, depending on what type of IP packet is being sent.
The header size varies between UDP and TCP, or having rfc1323 turned on.

To see the current send pool and receive pool buffer sizes, as shown in Figure
16, issue the lsattr -E -l css0 command.

Figure 16. Viewing send and receive pool buffer sizes

In this particular example, the pool sizes have been increased from the
default size of 512 KB to 2 MB. The pool settings can be changed using the
chgcss command, and require rebooting the node.

For example, to change the size of both pools to 1 MB, enter:

chgcss -l css0 -a rpoolsize=1048576 -a spoolsize=1048576

The SP switch adapter pools reside in pinned kernel memory. The SP
Switch2 adapter has a 16 MB memory block physically installed, referred as
rambus RDRAM, that enables software to copy user data directly to the
adapter. With this on-board memory, the SP Switch2 adapter eliminates the
need to access main storage and decreases the number of memory bus
transfers by a factor of 2X to 3X.

5.2.2 Window sizes
With PSSP 3.2, we now have three new ODM attributes to specify bounds on
window sizes and memory usage:

lsattr -E -l css0
bus_mem_addr 0x04000000 Bus memory address False
int_level 0xb Bus interrupt level False
int_priority 3 Interrupt priority False
dma_lvl 8 DMA arbitration level False
spoolsize 2097152 Size of IP send buffer True
rpoolsize 2097152 Size of IP receive buffer True
adapter_status css_ready Configuration status False
100 RS/6000 SP System Performance Tuning Update

• win_poolsize - Total pinned node memory available for all user-space
receive FIFOs.

• win_maxsize - Maximum memory used per window.

• win_minsize - Minimum memory used per window.

All applications on a RS/6000 SP can use the switch (SP Switch or SP
Switch2) network. Using the switch network, you can profit from a low latency
and high bandwidth communication method. Two communication protocols
are offered on the switch adapter:

• Standard TCP/IP communication through AIX sockets or message passing
libraries.

• Dedicated user-space access via message passing libraries.

A distinct communication port between an application on the SP node and the
switch is called a window. Each window has its own send FIFO and receive
FIFO and a set of variables that describes the status of the FIFOs. The latter
is used to properly transfer data to and from the window’s FIFOs and the
adapter.

There are different types of windows, as shown in Table 14.

Table 14. Window types

IP This reserved window is responsible for the IP communication
among nodes.

Service This reserved window manages configuration and monitoring of the
switch network.

VSD This window will be reserved for VSD communication, if you install
VSD on your system and you use LAPI or KLAPI.

User Space These windows permit high-speed data communication among user
applications.

No reboot is necessary to apply the changes.

Note

SP Switch2 has 16 user-space windows available. For SP Switch, however,
there are 4 user-space windows available. The total number of available
windows is 17 for SP Switch2 and 5 for SP Switch.

Note
Chapter 5. Adapter tuning 101

The total device memory reserved for all switch adapters UserSpace windows
used as interface network FIFO buffers is specified by the new win_poolsize
ODM attribute. The two other new attributes, win_maxsize and win_minsize
represent maximum and minimum memory used per window. Note that these
three new attributes are dynamically changeable, that is, no reboot is needed.
In addition, these attributes pertain to both SP Switch and SP Switch2.

Recall that in PSSP earlier than level 3.2, only spoolsize and rpoolsize
attributes could be changed using the chgcss command. Now this command is
enhanced to include the three new attributes mentioned above. For example,
to change the maximum window size to 1 megabyte, enter either of the
commands shown in Figure 17:

Figure 17. chgcss command

See Table 15 for the ODM default settings for the new attributes.

Table 15. settings for new attributes

Take a look at Figure 18 for lsattr -El css0 command output that verifies the
current settings of the switch adapter available windows.

Attribute Default value
(SPS2/SPS) a

a. SPS2 is for SP Switch2 and SPS is for SP Switch.

Min. value Max. value
(SPS2/SPS) b

b. SPS2 is for SP Switch2 and SPS is for SP Switch.

win_poolsize 128MB/80MB maximum_windows
* win_minsize

256MB/80MB

win_maxsize 16MB/16MB 256KB win_poolsize/16MB

win_minsize 1MB/1MB 256KB (win_poolsize/maximum_
windows)/(win_poolsize/
maximum_windows)

chgcss -l css0 -a win_maxsize=0x100000

or

chgcss -l css0 -a win_maxsize=1048576
102 RS/6000 SP System Performance Tuning Update

Figure 18. lsattr -El css0 output

This is the output that you get with an SP Switch2 Adapter installed in your
system.

5.2.3 Switch window reservation
There is also a way to reserve user-space windows for specific clients. For
example, you want to reserve a window for GPFS or VSD. What you need to
type is described in the following:

Syntax:

•chgcss -l css0 -a window=token1{/token2{/token3{/token4}}}

where:

• token1=CMD:{RESERVE|RELEASE|QUERY}

• token2=ID:<client_name>

• token3=TYPE:{user_client|kernel_client}

• token4=COUNT:<window_count>

adapter_memory 0xe0000000 adapter memory address False
rambus_memory 0x10c0000000 RAMBUS memory address False
win_poolsize 134217728 Total window memory pool size True
win_maxsize 16777216 Maximum window memory size True
win_minsize 1048576 Minimum window memory size True
int_priority 3 Interrupt priority False
int_level 32 Bus interrupt level False
spoolsize 2097152 Size of IP send buffer True
rpoolsize 2097152 Size of IP receive buffer True
khal_spoolsize 524288 Size of KHAL send buffer True
khal_rpoolsize 524288 Size of KHAL receive buffer True
adapter_status css_ready Configuration status False
diags_prog /usr/sbin/diag Diagnostic program True
ucode_version 3 Micro code version True
ucode_name /etc/microcode/col_ucodeMicro code name True
window VSD AVAIL AVAIL AVAIL AVAIL window owners True
driver_debug 0 Device Driver Debug True
ip_chksum off if_cl checksum True
ip_debug 0 if_cl debug level True
proto_debug off HAL debug True

Always use the chgcss command to apply the changes. There is no reboot
necessary.

Note
Chapter 5. Adapter tuning 103

5.2.3.1 How to reserve a window
Here is an example on how to reserve a window for GPFS:

In this example, window 1 has been reserved for GPFS.

5.2.3.2 How to query all windows
To query the list of reserving applications for all windows, enter:

In this example, window 0 is reserved for VSD, window 1 is reserved for
GPFS, and windows 2, 3 and 4 are unreserved. With SP Switch2, you will see
the following output:

VSD GPFS AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
AVAIL AVAIL AVAIL AVAIL AVAIL

This occurs because of the higher amount of available windows with the SP
Switch2 (totalling 16). The maximum number of windows available would be
17, if VSD or GPFS were not installed.

5.2.3.3 How to query for unreserved windows
To query the list of unreserved applications for all windows, enter:

In this example, windows 2, 3 and 4 are unreserved.

5.2.3.4 How to release windows
You can also release the reserved windows, enter the following:

In this case, we released the reserved GPFS window and now only window 0
is still reserved for VSD.

chgcss -l css0 -a window=cmd:reserve/id:GPFS/type:user_client/count:1
1
chgcss -l css0 -a window=cmd:QUERY/id:GPFS
1

chgcss -l css0 -a window=cmd:query
VSD GPFS AVAIL AVAIL AVAIL

chgcss -l css0 -a window=cmd:QUERY/id:AVAIL
2 3 4
or enter:
chgcss -l css0 -a window=cmd:QUERY/id:
2 3 4

chgcss -l css0 -a window=cmd:RELEASE/id:GPFS
VSD AVAIL AVAIL AVAIL AVAIL
104 RS/6000 SP System Performance Tuning Update

5.2.4 Switch pool allocation
The size of the buffers allocated by the switch device driver starts at 4096
bytes, and increases to 65536 bytes in values of powers of 2. See Figure 19
for an overview.

If the size of the data being sent is just slightly larger than one of these sizes,
the buffer allocated from the pool is the next size up. This can cause as low
as 50 percent efficiency in usage of the buffer pools. More than half of the
pool can go unused in bad circumstances.

Figure 19. Switch pool allocation

When assembling TCP/IP packets, there is always one mbuf from the IP mbuf
pool used to assemble the packet header information in addition to any data
buffers from the spool. If the mbuf pool size is too small, and the system runs
out of mbufs, the packet is dropped. The mbuf pool is used globally for all IP
traffic, and set using the thewall tunable with the no command.

When sending 4 KB of data over the switch, an mbuf from the mbuf pool will
be used, as well as one 4 KB spool buffer for the data. If the amount of data
being sent is less than 200 bytes, no buffer from the spool is allocated,
because there is space in the mbuf used for assembling the headers to stage

64K

32K

16K

8K 4K
Chapter 5. Adapter tuning 105

the data. However, if sending 256 bytes of data, you will end up using one
mbuf for the IP headers, and one 4 KB send pool buffer for the data. This is
the worst case scenario, where you are wasting 15/16 of the buffer space in
the send pool. These same scenarios apply to the receive pool when a packet
is received on a node.

The key for peak efficiency of the spool and rpool buffers is to send messages
that are at or just below the buffer allocation sizes, or less than 200 bytes.

5.2.5 Switch buffer pool allocation considerations
When tuning the rpool and spool, it is important to know the expected
network traffic. As we have seen, if the size of the buffers for the applications
is not ideal, much of the spool and rpool will be wasted. This can cause the
need for a larger rpool and spool because of inefficient usage. When
allocating the rpool and spool, realize that this space is pinned kernel space
in physical memory. This takes space away from user applications and is
particularly important in small memory nodes.

If there are a small number of active sockets, then there is usually enough
rpool and spool space that can be allocated. In systems where a node has a
large number of sockets opened across the switch, it is very easy to run out
of spool space when all sockets transmit at once. For example, 300 sockets,
each sending 33 KB of data, will far exceed the 16 MB limit for the spool. Or,
1100 sockets, each sending 1 KB packets, will also exceed the maximum
limit. But this is different with the new SP Switch2. The new switch adapter
allows us to allocate 32 MB of rpool and spool size. The SP Switch2 adapter
will not pin the memory, as it was done before with the SP Switch adapter. We
now have 32 MB physically installed in the new adapter. That makes it much
faster.

On the receive side of a parallel or client/server implementation, where one
node acts as a collector for several other nodes, the rpool runs into the same
problem. Four nodes, each with 600 sockets, each sending to one node two 1
KB packets, will exceed the rpool limit, but those same sockets, each sending
twice as much data, 4 KB in one 4 KB packet, will work. The key here is
sending a single larger packet rather than several smaller ones.

The new SP Switch2 receive pool and send pool maximum size is 32 MB
instead of 16 MB.

Note
106 RS/6000 SP System Performance Tuning Update

Another situation that aggravates exhaustion of the pools is SMP nodes. Only
one CPU is used to manage the send or receive data streams over the
switch. However, each of the other CPUs in the SMP node is capable of
generating switch traffic. As the number of CPUs increases, so does the
aggregate volume of TCP/IP traffic that can be generated. For SMP nodes,
the spool size should be scaled to the number of processors when compared
to a single CPU setting.

5.2.6 Sizing send and receive pool requirements
When trying to determine the appropriate rpool and spool sizes, you need to
get a profile of the message sizes that are being sent by all applications on a
node. This will help to determine how the rpool and spool will be allocated in
the total number of buffers. At a given pool size, you will get 16 times as many
buffers allocated out of the pool for 4 KB messages as for 64 KB messages.

Once you have a profile of the packet or buffer sizes used by all applications
using the switch on a node, you can then determine roughly how many of
each size spool or rpool buffers will be needed. This then determines your
initial rpool and spool settings.

The sizes allocated from the pool are not fixed. At any point in time, the
device driver will divide the pool up into the sizes needed for the switch traffic.
If there is free space in the send pool, and smaller buffers than the current
allocation has available are needed, then the device driver will carve out the
small buffer needed for the current packet. As soon as the buffer is released,
it is joined back with the 64 KB buffer it came from. The buffer pool manager
tries to return to 64 KB block allocations as often as possible to maintain high
bandwidth at all times. If the pool were fragmented, and a large buffer needed
64 KB, then there may not be 64 KB of contiguous space available in the pool.
Such circumstances would degrade performance for the large packets. If all
buffer space is used, then the current packet is dropped, and TCP/IP or the
application needs to resend it, expecting that some of the buffer space was
freed up in the meantime. This is the same way that the transmit queues are
managed for Ethernet, Token Ring and FDDI adapters. If these adapters are
sent more packets than their queues can handle, the adapter drops the
packets.

The upper limit for the SP Switch send pool and receive pool is 16 MB each.
This means you can get a maximum of 4096 4 KB or 256 64 KB buffers each
for sending and receiving data.
Chapter 5. Adapter tuning 107

The new SP Switch2 adapter offers a 32 MB limit for both the send pool and
receive pool. This gives us a maximum of 8192 4 KB or 512 64 KB buffers
each for sending and receiving data.

Use the vdidl3xx commands shown in Table 16 to check for IP pool size
problems indicated by slow network traffic or ENOBUF errors.

Table 16. vdidl3xx commands

For possible receive pool problems, check the errpt output and look for "mbuf
pool threshold exceeded" entries for css0 device.

Figure 20 on page 108 is a sample output of the first table from the vdidl3

command.

Figure 20. Output of the vdidl3 command

The fields of the vdidl3 command are as follows:

bkt Lists the pool allocation in power of 2 for the line it is on. The line
starting with 12 means 2 to the 12th or 4 KB allocations. The line
starting with 16 means 2 to the 16th or 64 KB allocations.

allocd Lists the current allocations at the time the command was run, for
each of the size allocations in the first column. This is an

SP Switch adapter type Command

TB3 vdidl3 -i

SPSMX vdidl3mx -i

TB3PCI vdidl3pci -i

There is no vdidl3xx command available right now for the SP Switch2.

Note

#/usr/lpp/ssp/css/vdidl3 -i
send pool: size=524288 anchor@=0x50002000 start@=0x50e70000
tags@=0x50c1c200
bkt allocd free success fail split comb freed
12 0 0 409 0 316 0 0
13 0 0 220 0 161 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 8 0 0 0 0 0
108 RS/6000 SP System Performance Tuning Update

instantaneous value and, therefore, can increase and decrease
from one execution of the command to the next.

free Lists the number of buffers of each allocation that are allocated
and unused at the time the command was run. In the above
example, there are eight 64 KB allocations free for use. This is an
instantaneous value and, therefore, can increase and decrease
from one execution of the command to the next.

success Increments every time an allocation of the given size succeeded.
This counter is cumulative and, therefore, shows the number of
successes since the adapter was last initialized.

fail Increments every time an allocation is not available for the size
requested.This counter is cumulative and, therefore, shows the
number of fails since the adapter was last initialized.

split Indicates how many times the allocation size was extracted from
the pool by carving the size needed from a larger allocation in the
pool. This counter is cumulative and, therefore, shows the number
of splits since the adapter was last initialized.

comb Currently not used.

freed Currently not used.

5.2.7 Sample switch send pool size estimate
In this section, we calculate the switch pool requirements for a common
distribution of packet sizes. In our example, the node stages a mix of packet
sizes, of which 25 percent are smaller than 200 bytes, 50 percent are 5 KB,
and 25 percent are 32 KB.

Buffer size profile:

Less than 200 bytes 25 percent

5 KB packets 50 percent

32 KB packets 25 percent

Aggregate tcp_sendspace equivalent in packets: 1024 packets

Total send pool space:

No space needed for small packets 0 MB

512 - 8 KB buffers for 5 KB packets 4 MB

256 - 32 KB buffers for 32 KB packets 8 MB

Chapter 5. Adapter tuning 109

Total send pool space needed 12 MB

If the number of packets staged at any one time is 1024, then the spool initial
setting should be 12582912 or 12 MB. None of the small packets needs any
spool space (if the amount of data fits in the IP header mbuf used in the mbuf
pool, no send pool space is allocated for the packet); the 5 KB packets each
use 8 KB out of the spool and need about 4 MB of space, and the 32 KB
packets need about 8 MB of spool space. The total estimated pool size
needed is 12 MB.

The above calculation is a conservative estimate in that it assumes all
packets will be staged at once. In reality, as packets are being staged into the
pool, other packets are being drained out, so the effective number of active
buffers should be less.

5.2.8 Reducing send/receive pool requirements
Reducing the TCP window size across sockets reduces the amount of send
pool buffer space required on the sender side, and the receive pool buffer
space required on the receiver side. Realize, however, that reducing the
window size could affect the switch performance by limiting the maximum
amount of outstanding data. Consider this as a trade-off. The exact setup will
depend on the application requirements.

Also, reducing the number of sockets sending data through the switch
simultaneously will reduce send pool requirements. This is true when the
same amount of data must be sent using fewer sockets; this will not reduce
the requirement and probably will not affect the overall performance of the
application.

Finally, be aware that changes on the sender side will affect the receiver, so
always keep in mind that tuning involves both sides of a network connection.

5.3 SP Ethernet tuning

There are three areas to consider when tuning an SP Ethernet network:

• Number of frames

• Number of nodes

• Number of networks

The lower the amount of traffic in each Ethernet network, the better the
performance or response time of the system. If you run a small system of
fewer than two frames, you probably connected the SP network to your own
110 RS/6000 SP System Performance Tuning Update

network through a gateway. For larger configurations, we suggest that you
dedicate one node per frame as a gateway to the rest of the SP system.
Routing from the gateway node can be either through the SP Ethernet or
across a switch.

In the case where an Ethernet switch is used, the best way to connect
external Ethernets to the SP is through separate Ethernet adapters on nodes
that route the external traffic over the switch. Having too many external
Ethernet connections route through the SP Ethernet can lead to congestion.
This can cause the system to slow down.

When routing across a switch, you should give careful consideration to other
traffic moving across the switch. An environment which has many parallel
jobs will suffer in performance if a lot of the user traffic is routed through the
SP Switch adapter to that same node.

In larger SP system configurations, the network topology and the name
server can cause problems. If there are many name server queries at the
same time, and the topology from a node to the name server is complex,
performance can suffer. Under these circumstances, there are three possible
solutions:

1. Create a name server within the SP system complex so you are not at risk
for traffic problems to an external name server.

2. Do not use the name server, but create an /etc/hosts file of all addresses
that the SP system and the applications need, and change the nodes to
resolve their addresses locally.

3. Specify the name lookup hierarchy to first look locally in the /etc/hosts file,
then the name server. Use the /etc/netsvc.conf file to specify that. The file
should contain a line like hosts=local,bind. Since AIX 4.1 you can also use
the environment variable NSORDER (NSORDER=local,bind).

5.4 Gigabit ethernet performance tuning recommendations

Instead of just having a maximum MTU size of 1500 bytes, such as the
standard Ethernet Adapters (10/100 Mbit Ethernet and similar), this Gigabit
Ethernet offers a 9000 byte MTU size.

• The 9000 byte MTU size (called Jumbo Frame) gives you a TCP
throughput that can be more than twice as high as the standard 1500 byte
MTU size.
Chapter 5. Adapter tuning 111

5.5 Token-Ring performance tuning recommendations

The default MTU of 1492 bytes is appropriate for token rings that interconnect
to Ethernets or to heterogeneous networks in which the minimum MTU is not
known.

• Unless the LAN has extensive traffic to outside networks, the MTU should
be increased to 8500 bytes. This allows NFS 8 KB packets to fit in one
MTU. Further increasing the MTU to the maximum of 17000 bytes seldom
results in corresponding throughput improvement.

• The application block size should be in multiples of 4096 bytes.

5.6 FDDI performance tuning recommendations

Despite the comparatively small MTU, this high-speed medium benefits from
substantial increases in socket buffer size.

• Unless the LAN has extensive traffic to outside networks, the default MTU
of 4352 bytes should be retained.

• Where possible, an application using TCP should write multiples of 4096
bytes at a time (preferably 8 KB or 16 KB) for maximum throughput.

5.7 ATM performance tuning recommendations

Unless the LAN has extensive traffic to outside networks, the default MTU of
9180 bytes should be retained. ATM traffic routed over the SP Switch will
benefit from MTUs up to 64 KB.

• Where possible, an application using TCP should write multiples of 4096
bytes at a time (preferably 8 KB or 16 KB) for maximum throughput.

5.8 HIPPI performance tuning recommendations

The default MTU of 65536 bytes should not be changed.

• Where possible, an application using TCP should write 65536 bytes at a
time for maximum throughput.

• Set sb_max to a value greater than 2*655360.

• TCP and UDP socket send and receive space defaults should be set to
more than 64 KB.
112 RS/6000 SP System Performance Tuning Update

5.9 Escon interface tuning

To achieve peak TCP/IP throughput over a switch and through Escon to MVS,
you need to make sure that the maximum packet size possible is used over
the Escon connection. Table 17 lists all necessary parameters to tune for
maximum packet size of 4096 bytes.

Table 17. Escon interface tuning parameters

These settings ensure that the maximum packet size across the interface will
be a full Escon interface packet of 4096 bytes. These settings generally
enable peak throughput over the Escon interface. Recent releases of TCP/IP
on MVS support window scaling, known as rfc1323. You may be able to
increase the window size of the connection by setting rfc1323 to 1 on the SP.
You want to avoid setting the TCP window larger than 256 KB, which is the
recommended maximum buffer area on the MVS side of the socket
connection.

Parameter MVS/
TCP/IP

AIX
Escon
gateway
node

Explanation

Segment Size 4096 _ Maximum packet size.

DATABUFFERSIZE 256K _ The DATABUFFERSIZE variable on
MVS TCP/IP must be set to 256 KB.

Escon Interface MTU _ 4096 On the Escon gateway node, set the
Escon interface MTU to 4096.

ipforwarding _ 1 On the Escon gateway node, set
ipforwarding to 1.

tcp_mssdflt _ 4056 On the nodes across the switch from
the Escon gateway node, set
tcp_mssdflt to 4056.
Chapter 5. Adapter tuning 113

114 RS/6000 SP System Performance Tuning Update

Chapter 6. Tuning other components in AIX

Since performance tuning of an SP system is primarily about tuning the
network resources in AIX, other system components, such as memory, CPU
and I/O, that are not specific for SP systems, will be discussed separately.

To be able to performance tune the components covered in this chapter, you
need experience with how different workloads and applications in production
environments utilize specific system designs and implementations based on
RS/6000 computers. Not only will different production systems behave and
perform differently, the same system will usually change its resource
utilization during the course of a production cycle.

Each section in this chapter will first discuss the basics of each resource or
resource manager and then continue with how to performance tune each
component.

The sections are:

• Section 6.1, “Memory” on page 115
• Section 6.2, “CPU” on page 129
• Section 6.3, “I/O” on page 141

6.1 Memory

Memory is a critical resource in an SP system. Insufficient memory, or poor
use of memory, usually results in performance degradation and, in some
cases, even serious availability problems.

Manipulating resource utilization settings discussed in this chapter can
severely affect performance and availability of the system if done
inappropriately and should be done with caution in a production
environment.

If possible, use a separate test system to evaluate proper resource settings
before performing changes in the production environment.

Note
© Copyright IBM Corp. 2000 115

For additional info on the specific tuning commands, see Chapter 10,
“Resource monitoring” on page 203, Chapter 11, “Tools” on page 243, and
the AIX Command Reference, GBOF-1802, or the Understanding IBM
RS/6000 Performance and Sizing, SG24-4810.

6.1.1 Virtual memory manager
The Virtual Memory Manager (VMM) provides the virtual memory facilities
that are used by the other parts of the system to implement the following:

• Virtual address space of processes

• Sharing of executables

• Shared memory segments

• Mapped files

The VMM implements virtual memory, by dividing it into segments. The
segments are then divided into fixed-size units called pages. Each page in a
segment can be in physical memory or stored on disk until it is needed. When
a process accesses a page that is not present in physical memory, the VMM
reads the page into memory; this is called a page in. When physical memory
is not available, the VMM writes pages to disk; this is called a page out or
page steal.

The following are some of the segment types:

When calculating memory requirements for parallelized applications that
will run on an SP system, be careful how to estimate the memory
consumption for each node.

A working collective of SP nodes with a parallel application can be
compared conceptually to the equivalent running on an SMP system, when
it comes to calculating the memory requirements.

For example a parallel RDBMS that would need 4 GB memory on a SMP
system would not necessarily need 4 GB on each SP node, if four nodes
were used and database tables and client loads were distributed amongst
these four nodes (usually 1 GB would be needed per node [for the
RDBMS]). The result is 4 GB for the SP environment, but 1 GB for each
node.

Note
116 RS/6000 SP System Performance Tuning Update

6.1.2 Real-memory management
Virtual-memory segments are partitioned into fixed-size units called pages.
The page size is 4096 bytes. Each page in a segment can be in real memory,
or stored on disk until it is needed. Similarly, real memory is divided into
4096-byte page frames. The role of the VMM is to manage the allocation of
real-memory page frames and to resolve references by the program to
virtual-memory pages that are not currently in real memory or do not yet
exist. Because the amount of virtual memory that is in use at any given
instant can be larger than real memory, the VMM must store the surplus on
disk. From the performance standpoint, the VMM has two, somewhat
opposed, objectives:

• Minimize the overall processor time and disk bandwidth cost of the use of
virtual memory.

• Minimize the response time cost of page faults.

In pursuit of these objectives, the VMM maintains a free list of page frames
that are available to satisfy a page fault. The VMM uses a page replacement
algorithm to determine which virtual memory pages currently in memory will
have their page frames reassigned to the free list.

6.1.2.1 Persistent versus working segments
Since each page of a persistent segment has a permanent disk storage
location, the VMM writes the page back to that location when the page has
been changed and can no longer be kept in real memory. If the page has not
changed, its frame is simply reassigned to the free list. If the page is
referenced again later, a new copy is read in from its permanent disk storage
location.

Working
storage

Segments that are used to implement the data areas of
processes and shared memory segments. The pages for
working storage segments are stored in the paging spaces
configured in the system.

Persistent
storage

Segments that are used to manipulate files and directories.
When a persistent storage segment is accessed, the pages
are read and written from its file system.

Client
storage

Segments that are used to implement some virtual file
systems like Network File System (NFS) and the CD-ROM
file system. The storage for client segment pages can be in
a local or remote computer.
Chapter 6. Tuning other components in AIX 117

Working segments are transitory, exist only during their use by a process, and
have no permanent disk storage location. Process stack and data regions are
mapped to working segments, shared library text and data segments. Pages
of working segments must have disk-storage locations to occupy when they
cannot be kept in real memory. The disk paging space is used for this
purpose.

Persistent-segment types are further classified. Client segments are used to
map remote files (for example, files that are being accessed through
NFS/GPFS), including remote executable programs. Pages from client
segments are saved and restored over the network to their permanent file
location, not on the local disk paging space. Journaled and deferred
segments are persistent segments that must be automatically updated. If a
page from a journaled or deferred segment is selected to be removed from
real memory (paged out), it must be written to disk paging space unless it is
in a state that allows it to be committed (written to its permanent file location).

Table 18 outlines the three types of real memory and their backing stores.

Table 18. Backing store for different memory segment types

6.1.2.2 Computational versus file memory
Computational memory, also known as computational pages, consists of the
pages that belong to working-storage segments or program text segments. A
segment is considered to be a program text segment if an instruction cache
miss occurs on any of its pages.

File memory (or file pages) consists of the remaining pages. These are
usually pages from permanent data files in persistent storage.

6.1.2.3 Page replacement
When the number of available real memory frames on the free list becomes
low, the page stealer is invoked. The page stealer moves through the Page
Frame Table (PFT), looking for pages to steal.

Page replacement is done directly within the scope of the thread if running on
an uniprocessor. On an multiprocessor system, page replacement is done

Real memory Backing store

Persistent File space

Working Paging space

Client Network to file space
118 RS/6000 SP System Performance Tuning Update

through the lrud kernel process, which is dispatched to a CPU when the
minfree threshold has been reached.

Starting with AIX 4.3.3, the lrud kernel process is multithreaded with one
thread per memory pool. Real memory is split into evenly sized memory pools
based on the number of CPUs and the amount of RAM. The number of
memory pools will be as follows:

MAX (Number of CPUs/8, RAM in GB/16)

But the number of memory pools will not be more than the number of CPUs
and not less than 1.

6.1.2.4 minfree and maxfree
The number of page frames on the free list is controlled by the following
parameters:

The VMM attempts to keep the size of the free list greater than or equal to
minfree. When page faults or system demands cause the free list size to fall
below minfree, the page replacement algorithm runs. The size of the free list
must be kept above a certain level (the default value of minfree) for several
reasons. For example, the operating system's sequential-prefetch algorithm
requires several frames at a time for each process that is doing sequential
reads. Also, the VMM must avoid deadlocks within the operating system
itself, which could occur if there were not enough space to read in a page that
was required to free a page frame.

Choosing minfree and maxfree settings
As mentioned before, the purpose of the free list is to keep track of real
memory page frames released by terminating processes and to supply page
frames to requestors immediately, without forcing them to wait for page steals
and the accompanying I/O to complete. The minfree limit specifies the

minfree Minimum acceptable number of real-memory page frames in
the free list. When the size of the free list falls below this
number, the VMM begins stealing pages. It continues
stealing pages until the size of the free list reaches maxfree.

maxfree Maximum size to which the free list will grow by VMM
page-stealing. The size of the free list may exceed this
number as a result of processes terminating and freeing their
working-segment pages or the deletion of files that have
pages in memory.
Chapter 6. Tuning other components in AIX 119

free-list size, below which page stealing to replenish the free list is to be
started. The maxfree parameter is the size above which stealing will end.

The objectives in tuning these limits are to ensure that:

• Any activity that has critical response-time objectives can always get the
page frames it needs from the free list.

• The system does not experience unnecessarily high levels of I/O because
of premature stealing of pages to expand the free list.

The default value of minfree and maxfree depend on the memory size of the
machine. The default value of maxfree is determined by this formula:

maxfree = minimum (# of memory pages/128, 128)

By default, the minfree value is the value of maxfree - 8. However, the
difference between minfree and maxfree should always be equal to or greater
than maxpgahead. Or in other words, the value of maxfree should always be
greater than or equal to minfree plus the size of maxpgahead.

The minfree/maxfree values will be different if there is more than one memory
pool; the minfree/maxfree values shown by the vmtune command will be the
sum of the minfree/maxfree for all memory pools.

Remember, that minfree pages in some sense are wasted, because they are
available, but not in use. If you have a short list of the programs you want to
run fast, you can investigate their memory requirements with the svmon

command, and set minfree to the size of the largest. This technique risks
being too conservative, because not all of the pages that a process uses are
acquired in one burst. At the same time, you might be missing dynamic
demands that come from programs not on your list that may lower the
average size of the free list when your critical programs run.

If you observe the page frame consumption of your applications, either during
initialization or during normal processing, you will soon have an idea of the
number of page frames that need to be in the free list to keep the program
from waiting for memory.

How to set minfree and maxfree
The following example sets minfree to 128 and maxfree to 144 pages
respectively:

/usr/samples/kernel/vmtune -f 128 -F 144

Since the purpose of increasing minfree and maxfree are to ensure that
processes needing free pages will get them without having to wait for a page
120 RS/6000 SP System Performance Tuning Update

reclamation cycle, it is important to understand how much memory on
average are needed by applications in the current workload.

One simple basic setting for minfree and maxfree is to calculate a starting
point as follows:

• minfree = (120 * # of CPUs)

• maxfree to ((maxpageahead * # of CPUs) + minfree)

As an example we use a node with 8 CPUs, which would give us a minfree of
960 and a maxfree of 1024 (with the default value for maxpageahead).

The difference between minfree and maxfree usually needs to be larger than
the maxpageahead value. However, care must be taken, since the more
memory that needs to be freed each time, the longer the wait each time, but if
chosen carefully, the throughput might increase.

Gung ho reclamation
Since page reclamation does not occur immediately when a process is
terminated, it can force it to happen by increasing the minfree and maxfree
values. Be aware, though, that this should be done in increments. If you
increase it too much and your system is heavily loaded, you will kick-start the
page reclamation and it will not stop until it has freed minfree and maxfree
number of pages.

Depending on how heavily loaded your system is, this can lead to several
minutes of searching, freeing and paging, and since this is a prioritized
process, it will effectively make your multiuser AIX system into a single user
system for the duration of this process. This in turn means that all user
applications will end up in the run queue, and some might even get errors
from system calls and time-outs on communication links. If the applications
(maybe server processes) can not handle these error situations, they will
abort, and their services will become unavailable in much the same way as
when a low paging space situation results.

In the following example, we have a system with 4 GB memory and we will
increment minfree and maxfree until we see heavy page reclamation every 30
seconds. The test should be running with three windows active: one for
entering the vmtune commands, one for monitoring using vmstat, and the third
with a vmtune command ready to reset the values to the starting point. If you
happen to go too far, the response time can extend up to a couple of minutes,
and if you need to, you just have to hit Enter in the window with the resetting
vmtune command, and wait for the full page reclamation cycle to settle down
again.
Chapter 6. Tuning other components in AIX 121

But before starting, you should monitor the system for a while using vmstat

and understand how many pages it is searching and freeing every second. If
it is constantly searching many times more than it is freeing, and it is freeing a
couple of hundred/thousands (depending on the number of CPUs in the
node), you should be very cautious when trying this out.

In the preceding example, you should run it as a script and, the first time,
verify that is working by printing the vmtune line instead of executing it (just
insert print as the first command on the line). Let the system settle with the
current values before incrementing them higher (one to ten minutes should be
sufficient). If you change them too quick, you might not have seen the full
effect yet.

6.1.2.5 Repaging
A page fault is considered to be either a new page fault or a repage fault. A
new page fault occurs when there is no record of the page having been
referenced recently. A repage fault occurs when a page that is known to have
been referenced recently is referenced again and is not found in memory
because the page has been replaced (and perhaps written to disk) since it
was last accessed.

A perfect page-replacement policy would eliminate repage faults entirely
(assuming adequate real memory) by always stealing frames from pages that
are not going to be referenced again. Thus, the number of repage faults is an
inverse measure of the effectiveness of the page-replacement algorithm in
keeping frequently reused pages in memory, thereby reducing overall I/O
demand and potentially improving system performance.

To classify a page fault as new or repage, the VMM maintains a repage
history buffer that contains the page IDs of the N most recent page faults,
where N is the number of frames that memory can hold. For example, 512 MB
memory requires a 128 KB repage history buffer. At page-in, if the page's ID
is found in the repage history buffer, it is counted as a repage. Also, the VMM
estimates the computational-memory repaging rate and the file-memory
repaging rate separately by maintaining counts of repage faults for each type

cd /usr/samples/kernel
integer maxpageahead minfree
vmtune|awk 'NR==4{print $4,$5}'|read maxpageahead minfree
while :; do
> set -x
> vmtune -f $minfree -F $(($minfree+$maxpageahead))
> set +x
> read
> ((minfree=$minfree*2))
> done
122 RS/6000 SP System Performance Tuning Update

of memory. The repaging rates are multiplied by 0.9 each time the
page-replacement algorithm runs, so that they reflect recent repaging activity
more strongly than historical repaging activity.

6.1.2.6 minperm and maxperm
The following thresholds are expressed as percentages. They represent the
fraction of the total real memory of the machine that is occupied by file pages
(pages of noncomputational segments).

When the percentage of real memory occupied by file pages is between
minperm and maxperm, the VMM normally steals only file pages, but if the
repaging rate for file pages is higher than the repaging rate for computational
pages, computational pages are stolen as well. The main intent of the
page-replacement algorithm is to ensure that computational pages are given
fair treatment. For example, the sequential reading of a long data file into
memory should not cause the loss of program text pages that are likely to be
used again soon. The page-replacement algorithm's use of the thresholds
and repaging rates ensures that both types of pages get treated fairly, with a
slight bias in favor of computational pages.

minperm If the percentage of real memory occupied by file pages falls
below this level, the page-replacement algorithm steals both
file and computational pages, regardless of repage rates.

maxperm If the percentage of real memory occupied by file pages rises
above this level, the page-replacement algorithm steals only
file pages.

strict_maxperm strict_maxperm is implemented so that when the number
of file pages exceeds maxperm, VMM will not give out
any more free frames to persistent segments (threads
will be waited) and page-replacement will run to free up
only file pages. However, if the number of file pages is
within a threshold of maxperm (the threshold is minfree)
but has not yet reached it, a free frame will be given for
a persistent segment and page-replacement will be
started for file pages. While page-replacement is running
in this threshold, it will free anything unless the number
of file pages is greater than maxperm.
Chapter 6. Tuning other components in AIX 123

Choosing minperm and maxperm settings
As mentioned before, the purpose of minperm and maxperm is to ensure that
enough memory is available to satisfy both the demand for memory by
starting new processes and for I/O read ahead and write-behind caching
(collectively named file caching in this section). It can be set to favor file
caching or having as many programs in memory simultaneously.

With the default parameters, the system would try to maintain up to
((RAMSIZE-4MB)*.8), or approximately 80 percent of real memory with
persistent pages, leaving only ((RAMSIZE-4MB)*.2), approximately 20
percent, for working pages.

When memory becomes full of file pages, the VMM is spending a lot of time
looking for dirty pages to write back to disk during sync processing or when
the application is using O_SYNC1 or fsync() logic. In these cases, VMM
scans all pages in real memory associated with the file to determine which
pages must be written to disk. Since the file has many pages in memory, CPU
cycles are wasted looking at each page in memory.

Before deciding on changing the settings of these parameters, the current
workload and memory usage must be known. For some workloads, it is more
important to use as much as possible for file caching, and for some
workloads, with less I/O but more computational properties, to ensure that
program text is favored. To find out how much memory is currently used for
file mapping, run vmtune and look at numperm:

1 With the open() subroutine

maxperm is not a strict limit; it is only considered when the VMM needs to
perform page replacement, unless strict_maxperm is activated.

Note
124 RS/6000 SP System Performance Tuning Update

To determine how many page frames that are actually used in the current
production system, use the svmon -G command (for more details of this
command, see Chapter 10, “Resource monitoring” on page 203 and Chapter
11, “Tools” on page 243):

In the vmtune output, you can compare the number of file memory pages with
pers in use from svmon. In these examples, they differ, since they were not run
at the same time.

How to set minperm and maxperm
First get a current snapshot with vmtune and look at the current values for
maxperm, minperm and numperm. If numperm is in between maxperm and
minperm then file pages or computational pages will be kicked out to memory
when the minfree value is reached and until maxfree is reached. However, if
numperm is above maxperm, then file pages will get kicked out. We usually
need to set up maxperm so that file pages get kicked out so that we can keep
computational pages longer, since those are the ones going out to disk and
being paged in and out (therefore causing thrashing). numperm is a value
that changes with time and is not tunable via vmtune. It will change with I/O
load on the system.

/usr/samples/kernel/vmtune
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
209508 838032 2 8 120 128 524288 0

-M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps
838852 73728 18432 1 93 80 9 131072 1

-s -n -S -h
sync_release_ilock nokilluid v_pinshm strict_maxperm

0 0 0 0

number of valid memory pages = 1048565 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 14127 numperm=1.3% of real memory

svmon -G

size inuse free pin virtual
memory 1048565 93469 952627 1048565 37759
pg space 2359296 423

work pers clnt
pin 56734 156 0
in use 79147 14322 0
Chapter 6. Tuning other components in AIX 125

If you would like to keep more recently read files in memory, such as on a
database server, you would raise minperm towards maxperm. numperm will
then approach minperm as I/O is applied to the system and not go below it.

As default, a file cache is configured with about 20 percent (minperm) and 80
percent (maxperm). This is too high for operation with a file system-based
database, since the data files are not only available in the file system, but are
also in the data buffer. This results in an unnecessarily large amount of
paging, which affects the performance. The following are a few guidelines2:

• For file system-based database servers with up to 1.5 GB memory, set
minperm to 5 and maxperm to 10.

• For file system-based database servers with more than 1.5 GB memory,
set minperm to 3 and maxperm to 8.

• For dedicated NFS servers, use the default or increase maxperm to 100.

• For other use, set maxperm to 60 and then decrease maxperm by
increments of 5 (not less than 10) while monitoring numperm with vmtune.

However, in some cases, when an application creates large files, on an
otherwise busy system and I/O problems occur, maxperm is set too low and
needs to be increased (at least during this type of job).

To make sure that the value set by maxperm is used in a strict way, and not
only as recommended limits, set the strict_maxperm option:

/usr/samples/kernel/vmtune -h 1

2 For Oracle RDBMS servers, please see Chapter 17, “Oracle” on page 433.

With the default option for strict_maxperm of 0, maxperm is only used
when page replacement needs to occur (when minfree threshold is
reached).

When set to 1, the strict_maxperm option will case the maxperm parameter
to be a hard limit on the amount of RAM that can be used as a persistent
file cache. This can be very useful in the cases where there is
double-buffering of data (for example, databases on top of JFS file
systems, where the database caches data in its own buffer cache; VMM
also may have the same data in its persistent file cache). It is
recommended that this option is used on systems such as these, especially
if running HACMP; it can also be useful for systems where there is a lot of
backup activity which causes frequent page replacement.

Note
126 RS/6000 SP System Performance Tuning Update

The next example shows the settings that enable a large amount of programs
to remain in memory and reduces the amount allowed for file caching. This
scenario could be used on an Oracle database server:

/usr/samples/kernel/vmtune -p 5 -P 20 -W32 -c2 -s1

This also sets the maxrandwrt3 to 32*4 KB and numclust4 to 2*16 KB and
activates the sync_release_ilock parameter.

6.1.2.7 VMM memory load control facility
A process requires real-memory pages to execute. When a process
references a virtual-memory page that is on disk, because it either has been
paged-out or has never been read, the referenced page must be paged-in
and, on average, one or more pages must be paged out (if replaced pages
had been modified), creating I/O traffic and delaying the progress of the
process.

The operating system attempts to steal real memory from pages that are
unlikely to be referenced in the near future through the page-replacement
algorithm. A successful page-replacement algorithm allows the operating
system to keep enough processes active in memory to keep the CPU busy.
But at some level of competition for memory, no pages are good candidates
for paging out to disk because they will all be reused in the near future by the
active set of processes.

6.1.2.8 Allocation and reclamation of paging space slots
The operating system supports three allocation methods for working storage,
also referred to as paging-space slots, as follows:

• Deferred allocation

• Late allocation

• Early allocation

3 Specifies a threshold in 4 KB pages for random writes to accumulate in RAM before these pages are synchronized
to disk via a write-behind algorithm. This threshold is on a per file basis.

4 Specifies the number of 16 KB clusters processed by write behind. This threshold is system wide.

In AIX V4, memory load control is disabled by default on systems that have
available memory frames that add up to greater than or equal to 128 MB.

Note
Chapter 6. Tuning other components in AIX 127

Deferred allocation algorithm
The default paging-space-slot-allocation method is the Deferred Page Space
Allocation (DPSA) policy. The DPSA delays allocation of paging space until it
is necessary to page out the page, which results in no wasted paging space
allocation. This method can save huge amounts of paging space, which
means disk space.

On some systems, paging space might not ever be needed, even if all the
pages accessed have been touched. This situation is most common on
systems with very large amount of RAM. However, this may result in over
commitment of paging space in cases where more virtual memory than
available RAM is accessed.

Late allocation algorithm
With the late allocation algorithm, a paging slot is allocated to a page of
virtual memory only when that page is first read from or written into. The
normal recommendation for paging-space size is at least twice the size of the
system's real memory using this allocation algorithm. This was the default
algorithm prior to AIX 4.3.2.

Early allocation algorithm
The early allocation algorithm causes the appropriate number of
paging-space slots to be allocated at the time the virtual-memory address
range is allocated. The early allocation algorithm is invoked by setting the
environment variable PSALLOC=early for the programs that are to use the
early allocation algorithm. The recommendation for paging space size for
systems that use early allocation is at least four times the real memory size.

Paging-space slots are only released by process (not thread) termination
or by the disclaim() system call. The slots are not released by the free()
system call.

Note
128 RS/6000 SP System Performance Tuning Update

6.2 CPU

AIX scheduling uses a time-sharing, priority based scheduling algorithm. This
algorithm favors threads that do not consume large amounts of the processor
time, as the amount of processor time used by the thread is included in the
priority recalculation equation. Fixed priority threads are allowed: the priority
of these threads do not change regardless of the amount of processor time
used.

Each new process is created with a single thread that has its parent process
priority and contends for the CPU with the threads of other processes. The
process owns the resources used in execution; the thread owns only its
current state. A thread can be thought of as a low-overhead process. It is a
dispatchable entity that requires fewer resources to create than a process.
The fundamental dispatchable entity of the AIX V4 scheduler is the thread.
Each process is made up of one or more threads. A thread is a single
sequential flow of control. Multiple threads of control allow an application to
overlap operations, such as reading from a terminal and writing to a file.

All processes in the system are created from other processes through the
fork5 mechanism. All processes are also descendants of the init process
(process number 1) except the scheduler (process number 0).

6.2.1 Scheduler run queue management
A user thread within a process has a specified contention scope. If the
contention scope is global, the thread contends for CPU time with all other
threads in the system. The thread that is created when a process is created
has global contention scope. If the contention scope is local, the thread
contends with the other threads within the process to be the recipient of the
process' share of CPU time.

The algorithm for determining which thread should be run next is called a
scheduling policy.

6.2.1.1 Run queue and process states
The scheduler maintains a run queue of all of the threads that are ready to be
dispatched.

5 A process that forks creates a child process that is nearly a duplicate of the original parent process. Statistical
information is reset and the child initially shares most of the virtual memory space with the parent process. The child
process initially runs the same program as the parent process. The fork() or f_fork() system calls can be used to perform
the fork operation.
Chapter 6. Tuning other components in AIX 129

All the dispatchable threads of a given priority occupy consecutive positions
in the run queue.

The fundamental dispatchable entity of the AIX V4 scheduler is the thread.
AIX V4 maintains 128 run queues. These run queues relate directly to the
range of possible values (0 through 127) for the priority field for each thread.
This method makes it easier for the scheduler to determine which thread is
most favored to run. Without having to search a single large run queue, the
scheduler consults a 128-bit mask where a bit is on to indicate the presence
of a ready-to-run thread in the corresponding run queue.

The priority value of a thread changes rapidly and frequently because threads
are always jumping from one run queue level to another. This is not true,
however, for fixed-priority threads; the constant movement is due to the way
that the scheduler recalculates priorities.

Starting with AIX V4.3.3, each CPU has its own 128-bit run queue. The run
queue values reported in the performance tools will be the sum of all the
threads in each run queue. If a thread becomes runnable because of an event
on another CPU than the one in which the newly runnable thread had been
running on, then this thread would only get dispatched immediately if there
was an idle CPU. No preemption occurs until the processor's state can be
examined (such as an interrupt on this thread's CPU).

If an environment variable called RT_GRQ exists, and is set to ON, it will
cause this thread to be on a global run queue. In that case, the global run
queue is searched to see which thread has the best priority. This can improve
performance for threads that are running SCHED_OTHER and are interrupt
driven. Threads that are running at fixed priority are placed on the global run
queue if the FIXED_PRI setting is enabled with the schedtune command.

The average number of threads in the run queue can be seen in the first
column of the vmstat (r) command output. If you divide this number by the
number of CPUs, the result is the average number of threads that can be run
on each CPU. If this value is greater than one, these threads must wait their
turn for the CPU (the greater the number, the more likely it is that
performance delays are noticed).

When a thread is moved to the end of the run queue (for example, when the
thread has control at the end of a time slice), it is moved to a position after the
last thread in the queue that has the same priority value.

The scheduler maintains processes in the multi-level run queue in the
following states:
130 RS/6000 SP System Performance Tuning Update

When a process terminates, and if the parent issues a wait system call (or
catches the SIGCHLD signal), the exit status is returned to the parent.
However, if the parent does not care about the child, the child will occupy a
slot with the exit code until a parent acknowledges its termination (the
resources that the child occupied are released upon termination before its
exit status is delivered). If the parent no longer exists when a child process
exits, the init process frees the remaining resources held by the child (the
child will linger in the Zombie state until this is done).

6.2.1.2 Scheduling policy for threads
In AIX V4, the five possible values for thread scheduling policy are as follows:

Idle Processes that are being created are in the idle state. This
state is temporary until the fork mechanism is able to allocate
all of the necessary resources for the creation of a new
process. Once the new child process is created, it is placed
in the active state.

Active This is the normal process state. Threads in the process can
be running or ready-to-run.

Stopped Process has been stopped by SIGSTOP signal. Process can
be restarted by SIGCONT signal. All threads are in the
stopped state.

Swapped Process cannot run until scheduler makes it active again. All
threads are in the swapped state.

Zombie Processes that have terminated with an exit system call are
in the zombie state. Such processes have most of their
resources freed. However, a small part of the process
remains, such as the exit value that the parent process uses
to determine why the child process died.

SCHED_FIFO This is a non-preemptive scheduling scheme. After a
thread with this policy is scheduled, it runs to completion
unless it is blocked, it voluntarily yields control of the
CPU, or a higher-priority thread becomes dispatchable.
Only fixed-priority threads can have a SCHED_FIFO
scheduling policy.
Chapter 6. Tuning other components in AIX 131

6.2.1.3 Process and Thread Priority
The priority management tools manipulate process priority. In AIX V4,
process priority is simply a precursor to thread priority. When the fork()
subroutine is called, a process and a thread to run in it are created. The
thread has the priority that would have been attributed to the process.

The kernel maintains a priority value (sometimes termed the scheduling
priority) for each thread. The priority value is a positive integer and varies
inversely with the importance of the associated thread. That is, a smaller
priority value indicates a more important thread. When the scheduler is
looking for a thread to dispatch, it chooses the dispatchable thread with the
smallest priority value.

SCHED_RR The thread has a fixed priority. When a SCHED_RR
thread has control at the end of the time slice, it moves to
the tail of the queue of dispatchable threads of its priority.
Only fixed-priority threads can have a SCHED_RR
scheduling policy.

SCHED_OTHER This policy is defined by POSIX Standard 1003.4a as
implementation-defined. In AIX V4, this policy is defined
to be equivalent to SCHED_RR, except that it applies to
threads with nonfixed priority. The recalculation of the
running thread's priority value at each clock interrupt
means that a thread may lose control because its priority
value has risen above that of another dispatchable
thread.

SCHED_FIFO2 The policy is the same as for SCHED_OTHER, except
that it allows a thread which has slept for only a short
amount of time to be put at the head of its run queue when
it is awakened. This time period is the affinity limit
(tunable with schedtune -a). This policy is only available
beginning with AIX V4.3.3.

SCHED_FIFO3 A thread whose scheduling policy is set to
SCHED_FIFO3 is always put at the head of a run queue.
To prevent a thread belonging to SCHED_FIFO2
scheduling policy from being put ahead of
SCHED_FIFO3, the run queue parameters are changed
when a SCHED_FIFO3 thread is queued, so that no
thread belonging to SCHED_FIFO2 will satisfy the
criterion that enables it to join the head of the run queue.
This policy is only available beginning with AIX V4.3.3.
132 RS/6000 SP System Performance Tuning Update

A thread can be fixed-priority or nonfixed priority. The priority value of a
fixed-priority thread is constant, while the priority value of a nonfixed priority
thread varies based on the sum of the minimum priority level for user threads
(a constant 40), the thread's nice value (20 by default, optionally set by the
nice or renice command), and its CPU-usage penalty.

The priority of a thread can be fixed at a certain value, which can have a
priority value less than 40, if their priority is set (fixed) through the setpri()
subroutine. These threads are immune to the scheduled recalculation
algorithms. If their priority values are fixed to be less than 40, these threads
will run and complete before any user threads can run. For example, a thread
with a fixed value of 10 will run to completion before a thread with a fixed
value of 15.

Users can apply the nice or renice command to make a thread's nonfixed
priority less favorable (by adding more than the default nice value of 20 to the
priority recalculation, thus increasing the value of the priority). The system
manager can apply a negative nice value to a thread, thus giving it a better
priority.

The nice value of a thread is set when the thread is created and is constant
over the life of the thread, unless explicitly changed by the user.

6.2.1.4 CPU penalty for non-fixed processes
The CPU penalty is an integer that is calculated from the recent CPU usage
of a thread. The recent CPU usage increases by 1 each time the thread is in
control of the CPU at the end of a 10 ms clock tick, up to a maximum value of
120. Once per second, the recent CPU usage values for all threads are
recalculated.

The result is the following:

• The priority of a nonfixed-priority thread becomes less favorable as its
recent CPU usage increases and vice versa. This implies that, on
average, the more time slices a thread has been allocated recently, the
less likely it is that the thread will be allocated the next time slice.

• The priority of a nonfixed-priority thread becomes less favorable as its
nice value increases, and vice versa.

6.2.1.5 Process priority values
The formula for calculating the priority value for a process is:

priority value = base priority + nice value + (CPU penalty based on recent
CPU usage)
Chapter 6. Tuning other components in AIX 133

or to be more precise:

Recalculated priority = p_nice + (C * R/32) where p_nice = base priority +
nice value

The recent CPU usage value of a given thread is incremented by 1 each time
that thread is in control of the CPU when the timer interrupt occurs (every 10
milliseconds). The recent CPU usage value is displayed as the C column in
the ps command output. The maximum value of recent CPU usage is 120.
The default algorithm calculates the CPU penalty by dividing recent CPU
usage by 2. The CPU-penalty-to-recent-CPU-usage ratio is therefore 0.5. We
will call this value R (the default is 16). The formula is as follows:

C = C_recent * R/32

Once a second, the default algorithm divides the recent CPU usage value of
every thread by 2. The recent-CPU-usage-decay factor is therefore 0.5. We
will call this value D (the default is 16). The formula is as follows:

C = C_old * D/32

For some users, the existing algorithm does not allow enough distinction
between foreground and background processes. For example, ignoring other
activity, if a system were running two compute-intensive user processes, one
foreground (nice value = 20), and one background (nice value = 24) that
started at the same time, the following sequence would occur:

The foreground process would be dispatched first. At the end of eight time
slices (80 ms), its CPU penalty would be 4, which would make its priority
value equal to that of the background process. The scheduling algorithm
would cause the background process to be dispatched.

After two further time slices, the background process's CPU penalty would be
1, making its priority value one greater than that of the foreground process.
The foreground process would be dispatched.

Another two time slices and the priority values of the processes would be
equal again. The processes would continue to alternate every two time slices
until the end of the second.

At the end of the second, the foreground process would have had 54 time
slices and the background would have had 46. After the decay factor was
applied, the recent CPU usage values would be 27 and 23. In the second of
their competition, the foreground process would get only four more time slices
than the background process.
134 RS/6000 SP System Performance Tuning Update

Even if the background process had been started with the command nice -n

20, the distinction between foreground and background would be only slightly
better. Although the scheduler stops counting time slices used after 120, this
permits the CPU penalty to level off at 60, which is more than enough to
offset the maximum nice value difference of 40.

To allow greater flexibility in prioritizing threads, the operating system permits
user tuning of the ratio of CPU penalty to recent CPU usage (R) and the
recent-CPU-usage-decay rate (D). Also, to have more of an impact on the
priorities if the nice value was changed, the formula for calculating the priority
value has been slightly changed in AIX V4.3.2 and later.

The formula now provides a mechanism such that threads whose nice values
are the default of 20 will behave the same as they did previously, but when
the nice value is less than or greater than the default, the priority will be
affected more, due to two formulas that are being used.

Remember that p_nice = base priority + nice value. Now use the following:

If p_nice > 60, then x_nice = (p_nice * 2) - 60, else x_nice = p_nice.

What this means is that if the nice value is greater than 20, then the nice
value has more of an impact on the priority value than if the nice value was
less than or equal to 20. A new factor which we will call X is also used in the
priority calculation.

X = (x_nice + 4)/64

The new priority calculation is as follows:

Recalculated priority = x_nice + (C * R/32 * X)

6.2.1.6 Process mode switching
A user process undergoes a mode switch when it needs access to system
resources. This is implemented through the system call interface or by
interrupts, such as page faults. There are two modes:

• User mode

• Kernel mode

As long as the nice value is the default, the formula of AIX V4.3.1 and
earlier is still used.

Note
Chapter 6. Tuning other components in AIX 135

CPU time spent in user mode (application and shared libraries) is reflected as
user time in the output of commands. CPU time spent in kernel mode is
reflected as system time in the output of these commands.

6.2.1.7 Process context switching
Mode switches should be differentiated from the context switches seen in the
output of the vmstat (cs column) and sar (cswch/s) commands. A context
switch occurs when the currently running thread is different from the
previously running thread on that CPU.

The scheduler performs a context switch when any of the following occurs:

• A thread must wait for a resource (voluntarily), such as disk I/O, network
I/O, sleep, or locks.

• A higher priority thread wakes up (involuntarily).

• The thread has used up its time slice (usually 10 ms).

Context switch time, system calls, device interrupts, NFS I/O, and any other
activity in the kernel is considered as system time.

6.2.2 CPU tuning
Tuning how the system scheduler selects applications (threads running
applications) is usually not necessary on currently available nodes if they run
a mixed workload. But when necessary, it is mostly used to favor either
interactive or batch users. Since I/O intensive applications becomes favored
by the scheduler, on a overcommitted system with a mixed simultaneous
workload, interactive users could be suffering, although the total throughput is

User mode Programs executing in the user protection domain do not
have access to the kernel or kernel data segments, except
indirectly through the use of system calls. A program in this
protection domain can only affect its own execution
environment and executes in the process or unprivileged
state.

Kernel
mode

Programs executing in this protection domain can affect the
execution environments of all programs. The use of a
system call by a user-mode process allows a kernel function
to be called from user mode. Access to functions that
directly or indirectly invoke system calls is typically provided
by programming libraries, which provide access to operating
system functions.
136 RS/6000 SP System Performance Tuning Update

high. Tuning is then done to reduce the batch throughput in favor of
interactive response times.

It is also usually of no consequence for throughput, on the currently available
nodes, to use nice/renice if you have thousands of processes (threads) and
with hundreds to thousands of concurrent active users. The usage of
nice/renice is mostly for systems with few users that have longer running jobs
on the same node.

6.2.2.1 Modifying the scheduler priority calculation
Tuning is accomplished through two options of the schedtune command: -r and
-d. Each option specifies a parameter that is an integer from 0 through 32.
The parameters are applied by multiplying the recent CPU usage value by the
parameter value and then dividing by 32 (shift right 5). The default R and D
values are 16, which yields the same behavior as the original algorithm
(D=R=16/32=.5). The new range of values permits a far wider spectrum of
behaviors. R stands for the rate at which to accumulate CPU usage and D
stands for the factor used to decay CPU usage.

Guidelines for R and D:
Smaller values of R narrow the priority range and make the nice value more
of an impact on the priority. Larger values of R widen the priority range and
make the nice value less of an impact on the priority.

Smaller values of D decay CPU usage at a faster rate and can cause
CPU-intensive threads to be scheduled sooner. Larger values of D decay
CPU usage at a slower rate and penalize CPU-intensive threads more (thus
favoring interactive-type threads).

Tuning examples using R and D
Setting R to 0 (R=0, D=.5) would mean that the CPU penalty was always 0,
making priority absolute. For example:

/usr/samples/kernel/schedtune -r 0

No background process would get any CPU time unless there were no
dispatchable foreground processes at all. The priority values of the threads

Using schedtune as described in this section inappropriately can seriously
harm your production environment. Be warned and take necessary steps to
ensure that this will not happen. Know what you do before you do it and
then do it right.

Important
Chapter 6. Tuning other components in AIX 137

would effectively be constant, although they would not technically be
fixed-priority threads.

Setting R to 5 (R=.15625, D=.5) would mean that a foreground process would
never have to compete with a background process started with the command
nice -n 20. For example:

/usr/samples/kernel/schedtune -r 5

The limit of 120 CPU time slices accumulated would mean that the maximum
CPU penalty for the foreground process would be 18.

Setting R to 6 and D to 16 (R=.1875, D=.5) would mean that, if the
background process were started with the command nice -n 20, it would be at
least one second before the background process began to receive any CPU
time. For example:

/usr/samples/kernel/schedtune -r 6 -d 16

Foreground processes, however, would still be distinguishable on the basis of
CPU usage. Long-running foreground processes that should probably be in
the background would ultimately accumulate enough CPU usage to keep
them from interfering with the true foreground.

Setting R to 32 and D to 32 as well (R=1, D=1) would mean that long-running
threads would reach a C value of 120 and remain there, contending on the
basis of their nice values. For example:

/usr/samples/kernel/schedtune -r 32 -d 32

New threads would have priority, regardless of their nice value, until they had
accumulated enough time slices to bring them within the priority value range
of the existing threads.

6.2.2.2 Modifying the scheduler time slice
The length of the scheduler time slice can be modified with the schedtune

command. To change the time slice, use the schedtune -t option, as in the
following example:

/usr/samples/kernel/schedtune -t 4

The value of -t is the number of ticks for the time slice and only fixed-priority
threads (such as SCHED_RR) will use the nondefault time slice values.

A thread running with SCHED_OTHER scheduling policy can use the CPU for
up to a full time slice (the default time slice being 1 clock tick) and a clock tick
being 10 ms). However, if this thread is preempted by a clock interrupt or
138 RS/6000 SP System Performance Tuning Update

some other interrupt (such as disk or network adapter interrupt), this thread
may not get its full time slice and will be put at the end of the priority-ordered
run queues.

A thread running with SCHED_RR scheduling policy will always be
guaranteed at least a full time slice. If it gets interrupted before its time slice
has been completed, it will be put at the beginning of the run queue and will
be allowed to run again.

In some situations, too much context switching (the vmstat and sar commands
can indicate the number of context switches per second) is occurring and the
overhead of dispatching threads can be more costly than allowing these
threads to run for a longer time slice. In these cases, increasing the time slice
might have a positive impact on performance on fixed-priority threads.

6.2.2.3 Tuning the NICE value for individual processes and threads
To alter the nice value for a process, two commands can be used: nice and
renice. Any user can run a command at a less-favorable-than-normal priority
by using the nice command. The renice command alters the nice value of one
or more processes that are already running. The processes are identified
either by process ID, process group ID, or the name of the user who owns the
processes.

Using the nice command
With the nice command, the user specifies a value to be added to or
subtracted from the standard nice value. The modified nice value is used for
the process that runs the specified command. The priority of the process is
still non-fixed; that is, the priority value is still recalculated periodically based
on the CPU usage, nice value, and minimum user-process-priority value.

Only the root user can use the nice and renice command to run
applications at a more-favorable-than-normal priority.

The renice command also has the following two limitations:

• Only processes owned by that user ID can be specified.

• The priority of the process cannot be increased, not even to return the
process to the default priority after making its priority less favorable with
the renice command.

Note
Chapter 6. Tuning other components in AIX 139

The standard nice value of a foreground process is 20; the standard nice
value of a background process is 24. The nice value is added to the minimum
user-process-priority level (40) to obtain the initial priority value of the
process. For example, the command:

nice -n 5 application_program

causes the application_program command to be run with a nice value of 25
(instead of 20), resulting in a base priority value of 65 (before any additions
for recent CPU use). If we were using root login, we could have run the
application_program command at a more favorable priority with:

nice -n -5 application_program

If we were not using root login and issued that nice command, the
application_program command would still be run, but at the standard nice
value of 20, and the nice command would not issue any error message.

Using the renice command
For AIX V4, the syntax of the renice command has been changed to
complement the alternative syntax of the nice command, which uses the -n
flag to identify the nice-value increment.

The renice command can not be used on fixed-priority processes. A user can
specify a value to be added to, but not subtracted from the priority of one or
more running processes. The modification is done to the nice values of the
processes. The priority of these processes is still non-fixed. Only the root
user can use the renice command to alter the priority value within the range
of -20 to 20, or subtract from the priority of one or more running processes.

To continue our example, we will use the renice command to alter the nice
value of the application_program process that we started with nice.

renice -n -5 7569

By reducing the nice value of the process running application_program (with
process id 7569) by 5, it will be 15, if it previously was 20.
140 RS/6000 SP System Performance Tuning Update

6.3 I/O

The I/O subsystem is the slowest part in a standalone RS/6000 and, for
practical purposes, in a SP system as well. It does not matter if the DASD6

(more commonly know as disk, both fixed and removable) are SCSI, SSA, FC
connected, ESS, or RAID. At one time or another the reading and writing to
the disks, in a large multi-user SMP SP node, will be a constraining
bottleneck for throughput. Only solid state “disks” or disks with true read/write
caching will be fast enough to feed data to and from memory, but fetching
data from memory will still be much faster.

It is for this reason that applications such as Oracle VLM RDBMS, with
medium sized databases, that will fit in a couple of GB memory, will run much
faster, because the data can be accessed directly from memory instead of
using a complicated caching mechanism. But since memory based storage is
dependent on continuous electricity, it can not be relied upon to store data
over a long period of time, so disk storage will still need to be used. (For large
database systems with TB of data, this is not a solution anyway.)

To do proper performance tuning for disk I/O, it is necessary to understand
the path that data has to travel from the disk until it reaches memory and vice
versa. In this section, we will focus on LVM and VMM tuning.

6.3.1 Logical volume manager
The Logical Volume Manager (LVM) controls disk resources by mapping data
between a more simple and flexible logical view of storage space and the
actual physical disks. The LVM does this using a layer of device driver code
that runs above traditional disk device drivers. The LVM consists of the logical
volume device driver (LVDD) and the LVM subroutine interface library. The
logical volume device driver (LVDD) is a pseudo-device driver that manages
and processes all I/O. It translates logical addresses into physical addresses
and sends I/O requests to specific device drivers.

6 Direct access storage devices.
Chapter 6. Tuning other components in AIX 141

6.3.2 Data transfer path to and from disk
Conceptually the data transfer path from disk to memory is described in Table
19.

Table 19. Simplified transfer path of data from disk to memory

Discussions of disk, logical volume and file system performance sometimes
lead to the conclusion that the more drives you have on your system, the
better the disk I/O performance. This is not always true because there is a
limit to the amount of data that can be handled by a disk adapter. The disk
adapter can also become a bottleneck. If all your disk drives are on one disk
adapter, and your hot file systems are on separate physical volumes, you
might benefit from using multiple disk adapters. Performance improvement
will depend on the type of access.

The major performance issue for disk drives is usually application-related;
that is, whether large numbers of small accesses will be made (random), or
smaller numbers of large accesses (sequential). For random access,
performance will generally be better using larger numbers of smaller capacity
drives. The opposite situation exists for sequential access (use faster drives
or use striping with larger number of drives).

A disk consists of a set of flat, circular rotating platters. Each platter has one
or two sides on which data is stored. Platters are read by a set of nonrotating,

Operation Performance implications

Determining position of data blocks on
disk.

LVM and disk device driver operations.
The overhead depends on the type of
reading that is performed.

Determine position for data on disk and
disk arm seeks this position on the disk.

Mainly seek time for the disk.

Read data from disk and transfer from disk
to disk controller.

Read transfer rate of disk in MB/s.

Transfer data from disk controller to disk
adapter using the disk bus.

Transfer rate of disk bus in MB/s.

Transfer data from disk adapter to memory
using the adapter bus.

Adapter bus transfer rate (using DMA).

Transfer data from memory to registers
using intermediary processor caches.

Memory transfer logic that is CPU
dependent, but never a constraining factor
in data transfer from disk.
142 RS/6000 SP System Performance Tuning Update

but positionable, read or read/write heads that move together as a unit. The
terms in Table 20 are used when discussing disk device block operations.

Table 20. Terms used in describing disk device block operations

6.3.2.1 Disk access times
The three components that make up the access time of a disk are described
in Table 21.

Table 21. Latencies for disk access times

Term Description

sector An addressable subdivision of a track used to record one block of a
program or data. On a disk, this is a contiguous, fixed-size block. Every
sector of every DASD is exactly 512 bytes.

track A circular path on the surface of a disk on which information is recorded and
from which recorded information is read; a contiguous set of sectors. A
track corresponds to the surface area of a single platter swept out by a
single head while the head remains stationary.

head A head is a positionable entity that can read and write data from a given
track located on one side of a platter. Usually a DASD has a small set of
heads that move from track to track as a unit.

cylinder The tracks of a DASD that can be accessed without repositioning the
heads. If a DASD has n number of vertically aligned heads, a cylinder has
n number of vertically aligned tracks.

Latency Description

Seek A seek is the physical movement of the head at the end of the disk arm
from one track to another. The time for a seek is the necessary time for
the disk arm to accelerate, to travel over the tracks to be skipped, to
decelerate, and to settle down and wait for the vibrations to stop while
hovering over the target track. The total time the seeks take is variable.
The average seek time is used to measure the disk capabilities.

Rotational This is the time that the disk arm has to wait while the disk is rotating
underneath until the target sector approaches. Rotational latency is, for
all practical purposes (except sequential reading), a random function with
values uniformly between zero and the time required for a full revolution
of the disk. The average rotational latency is taken as the time of a half
revolution. To determine the average latency, you must know the number
of revolutions per minute (RPM) of the drive. By converting the
revolutions per minutes to revolutions per second and dividing by two, we
get the average rotational latency.
Chapter 6. Tuning other components in AIX 143

6.3.3 Disk types
Currently, SP nodes supports both SCSI and SSA connected disks. The disks
can be both IBM and non-IBM. However, when using IBM manufactured disks
that IBM sells, the firmware and microcode is usually not the same as for IBM
OEM disk that is sold by other companies. This has implications on how the
disks (especially SCSI) will be initially configured in AIX by the config
manager.

IBM disks will have default settings in ODM PdAT that states how certain
characteristics of the SCSI interface can be used for that particular disk. IBM
OEM and other manufacturers disk will be configured as other disks. For
these disks, it is important to check if and how they support the SCSI
command tag queuing feature.

6.3.3.1 SCSI
SCSI (Small Computer System Interface), an ANSI standard, supports eight
devices (one for the server adapter) via a parallel bus. Original SCSI-1 was
rated at 3.5 MB/s, and the latest was up to 5 MB/sec. SCSI-2 became an
ANSI standard in 1974 and added performance features: SCSI fast and SCSI
wide. More devices could be added and the data transfer rate was also
increased. SCSI-2 has a top speed of 20 MB/s. SCSI-3 includes four different
types of interconnect technologies: SPI, SSA, FCS, and Firewire. SPI
(SCSI-3 Parallel Interface) is also known as Ultra SCSI. The 16-bit UltraSCSI
has a top speed of 40 MB/s. SCSI (1,2,and Ultra) are arbitrated bus
architectures. To transfer data, a SCSI device has to gain control over the
SCSI bus. Thus, only one SCSI device can be transferring data at a time.
Once a device has arbitrated for access, it can then submit the data. When
multiple SCSI devices try to access the bus at the same time, the port with
the highest priority will get the arbitration. Under peak loads, ports with the
lowest priority can be starved for service.

Transfer The data transfer time is determined by the time it takes for the requested
data block to move through the read/write arm. It is linear with respect to
the block size. The average disk access time is the sum of the averages
for seek time and rotational latency plus the data transfer time (normally
given for a 512-byte block). The average disk access time generally
overestimates the time necessary to access a disk; typical disk access
time is 70 percent of the average.

Latency Description
144 RS/6000 SP System Performance Tuning Update

Command tag queuing for non-IBM SCSI disks
SCSI Command tag queuing refers to queuing multiple commands to a SCSI
device. A command to a file system on a SCSI disk or to the raw disk causes
the SCSI disk driver to generate one or more transactions. These
transactions are then sent to the SCSI adapter driver, which sends them to
the SCSI adapter, which in turn sends them to the disk itself. The following
chdev command sets the queue depth to 3:

chdev -l hdisk# -a queue_depth=3

Queuing to the SCSI device can improve performance, because the device
itself determines the most efficient way to order and process commands. The
default queue depth for IBM SCSI disks are 3.

SCSI devices that support command tag queuing can be divided into two
classes: those that clear their queues on error and those that do not. Devices
that do not clear their queues on error resume processing of queued
commands when the error condition is cleared (typically by receiving the next
command). Devices that do clear their queues flush all commands currently
outstanding. When the q_err attribute for the disk is yes, the SCSI disk clears
all transactions from its command queue when an error occurs. If this
attribute is no, the transactions remain on the queue. The following example
shows how to set this attribute:

chdev -l hdisk# -a q_err=yes

When the SCSI disk drive does not support the Qerr bit, the clr_q attribute
can be used to indicate to the system how the disk handles its queue of
transactions if an error occurs. When yes, this attribute indicates that the
SCSI disk drive clears its queue when an error occurs. When set to no, this
attribute indicates that the disk drive does not clear its command queue when
an error occurs. The system uses this attribute only if the system determines
that the drive does not support the Qerr bit. If the SCSI disk supports the Qerr
bit, the system uses the value of the Use Qerr Bit attribute to determine how
to configure the drive. Unless the drive manufacturer indicates otherwise, set
this attribute to no.

For non-IBM RAID solutions, the queue depth could be increased
additionally by using the number of disks multiplied with the queue depth
for each disk. For example: on a five disk RAID, where each disk performs
well with a queue depth of 3, we could set the queue_depth for the RAID
disk to 15 (5*3).

Note
Chapter 6. Tuning other components in AIX 145

chdev -l hdisk# -a clr_q=yes

The Queuing type attribute must be set to either simple or ordered. Do not
change this attribute without understanding the SCSI-2 specification for
command tag queuing because some settings can degrade performance. For
drives that support command tag queuing, this value should not exceed the
drive's queue size. You may need to determine the best value by trial and
error. The ordered value indicates that the system can queue multiple
transactions to the disk and that the drive processes the transactions in the
order that it receives them. However, the system can reorder transactions
even if the ordered value is selected. The simple value indicates that the
system can queue multiple transactions at the drive and that the drive can
process the transactions in a more efficient order than that which they arrived
in. The following example enables command queue tagging and sets the
queue type to simple:

chdev -l hdisk# -a type=simple

6.3.3.2 SSA
SSA is part of the SCSI-3 standard and is enhanced to support fault tolerance
and high-performance loops with a large number of devices and does not
require arbitration. An SSA adapter has four full-duplex ports. Multiple
devices can transmit data simultaneously by a characteristic called spatial
reuse. Spatial reuse allows for higher throughput than indicated by the
interface bandwidth. Because each serial point-to-point link is independent,
multiple data transfers can occur at the same time on the same loop. During
periods of heavy data traffic, SSA’s fairness algorithm ensures that each
device on the loop gets its fair share of time.

Disk placement within a loop
The SSA subsystem uses a fairness algorithm to guarantee each port on a
node will be allowed to originate a pre-programmed amount of frames. This is
only of interest if a node wishes to originate a frame and at the same time
must forward a frame to the next node. Generally, if a node needs to forward a
frame, the hardware will route the frame before it allows the node to originate
a new frame. Thus, you will want to place the disks with the lowest I/O nearest
the adapter, and the disks with the highest I/O furthest from the adapter. The
increase in latency, for placing disks further from the adapter, is only about 5
microseconds per hop, so even if a disk is 20 hops from the adapter, the
increased latency is only 0.1 ms. This algorithm is loaded in firmware, can be
different for each node, could change in the future, and cannot be changed by
the system administrator. The SSA loop must be heavily loaded for disk
146 RS/6000 SP System Performance Tuning Update

placement within the loop to matter. To determine the disk placements within
loops, use simple commands as shown in the following example:

The above example shows us that pdisk2 is closest to port B1 and pdisk0 is
closest to port B2. The output from the ssaconn is interpreted as follows:

In a system with two adapters in a loop, and unbalanced I/O between the
adapters, changing the primary adapter for the pdisk and hdisk can improve
performance. Note that you can also physically rearrange the disks to
balance the load. The volume group must be varied off to make the change to
the hdisk.

SSA RAID
RAID (Redundant Array of Independent Disks) allows a set of disk drives to
be managed as a group. Each RAID level employs different data
management algorithms:

• RAID 0: Data is striped in units of 512-byte blocks across consecutive
physical drives. The first segment of logical blocks is located on the first
disk in the array, the second segment is located on the second disk, and
so on. Independent paths go to the drives, and spreading of
segment-length portions of data is repeated across the entire array of
disks. The number of drives, as well as the number of drive groups, is
scalable. Drive spindles may be synchronized, but synchronization is not
required.

For current SSA implementation, there is no data protection, and a single
drive failure results in data loss. Only a single initiator (one adapter) per
loop configuration is allowed and the Fast-Write Cache (FWC) is
supported. There can be from 2 to 16 disks per array, but all members and
spares must be on the same loop.

• RAID 1: The array is split into two groups. The first set of drives stores
original data (striped one segment at a time); the second stores the mirror
image of the first. Independent data paths go to the drives, and spindles
may be synchronized.

of hops from adapter port

Logical disk Adapter A1 A2 B1 B2

for p in $(ssadisk -a ssa0 -P);do ssaconn -l $p -a ssa0;done|sort -k5
pdisk2 ssa0 - - 0 3
pdisk3 ssa0 - - 1 2
pdisk1 ssa0 - - 2 1
pdisk0 ssa0 - - 3 0
Chapter 6. Tuning other components in AIX 147

For current SSA implementation, two initiators (adapters) per loop are
allowed and the Fast-Write Cache option is supported in both one or two
initiator configurations. There can be only two drives per array and all
members and spares must be on the same loop.

• RAID 5 can read and write data and parity across all disks. The parity
segments rotate among the drives. By eliminating the dedicated parity
disk, the performance of the array is increased and another potential point
of failure is removed. Independent data paths go to each drive, and
synchronization of the spindles is suggested but not required.

For current SSA implementation, from 3 to 16 disks per array are
supported. However the number of initiators, the use of Fast-Write Cache
(FWC), and if member and spare disks are allowed to span more than one
loop, are dependent on the type of adapters used in a loop.

• RAID 10 or Enhanced RAID 1 is RAID 1 but with striping as well.

For current SSA implementation, two initiators (adapters) per loop are
allowed and the Fast-Write Cache option is supported in both one or two
initiator configurations. There can be from 4 to 16 disks per array (even
numbers only). Member disks are designated as either Primary or
Secondary (copy). There is no difference in the use of the disks by this
designation, except when using split site operations.

For commercial production, RAID 5 or 10 with a maximum size Fast-Write
Cache (FWC) is recommended. But as everything else with performance
tuning, to make a design decision, the characteristics of the workload must be
known.

max_coalesce setting
The SSA RAID parameter max_coalesce is the maximum number of bytes
which the SSA disk device driver attempts to transfer to or from an SSA
logical disk in a single operation. The default value is appropriate for most
environments. For applications that perform very long sequential write
operations, there are performance benefits in writing data in blocks of 64 KB
times the number of disks in the array minus one (these are known as
full-stride writes times the number of disks in the array minus one, or to some
multiple of this number). Thus, the formula for calculating the optimum value
for full-stride writes would be:

(N-1)*64K

or, to make it simple, just insert the value for N-1 (since the hex value
0x10000 is 64K):

0x(N-1)0000
148 RS/6000 SP System Performance Tuning Update

In the case of a RAID 5 array with eight disks, of which one is logically the
parity drive, the value for max_coalesce would be 448K ((8-1)*64K) and
0x70000 in hex. The maximum value for max_coalesce is 0x200000 (2MB).

The current value of max_coalesce can be ascertained via the lsattr

command. For example:

In general, increasing max_coalesce increases the chance that composite I/O
operations for contiguous data are physically executed as single operations.
This can clearly give performance benefits where the parameter can be set
so as to maximize full-stride write operations.

To calculate the hexadecimal value, you could use the bc command and
create a script like the one shown here:

To check the decimal value of max_coalesce for the disk in the above
example, run the following commands:

max_coalesce can be modified by use of the chdev command. However, the
volume group must be varied off and on to make the change effective. For
example:

queue_depth setting
Indicates the maximum number of concurrent I/O operations which can be
sent to the disk. The default value is correct for normal operating conditions.

lsattr -El hdisk6 -a max_coalesce
max_coalesce 0x20000 Maximum coalesced operation True

#!/bin/ksh
bc.calc
B.Roden

i=${1:-20000}
op=${2:-'/1024'}
ibase=${3:-16} # Input base 10=dec, 16=hex, 8=oct
obase=${4:-10} # Output base 10=dec, 16=hex, 8=oct

print "scale=2\n$(print "obase=$obase\nibase=$ibase\n$i"|bc)$op"|bc

bc.calc $(lsattr -El hdisk6 -a max_coalesce -F value|cut -c3-)
128.00

bc.calc '(128*1024)' ' ' 10 16
20000

varyoffvg vg99
chdev -l hdisk6 -a max_coalesce=0x70000
hdisk6 changed
varyonvg vg99
Chapter 6. Tuning other components in AIX 149

The maximum value is 200 and increasing the queue_depth setting for large
disk systems could be done.

The current value of queue_depth can be ascertained via the lsattr

command. For example:

queue_depth can be modified by use of the chdev command. However the
volume group must be varied off and on to make the change effective. For
example:

write_queue_mod setting
The write_queue_mod parameter alters the way in which write commands are
queued to SSA logical disks. The default value is 0 for all SSA logical disks
that do not use the fast-write cache; with this setting the SSA disk device
driver maintains a single seek-ordered queue of queue_depth operations on
the disk. Reads and writes are queued together in this mode.

If write_queue_mod is set to a non-zero value, the SSA disk device driver
maintains two separate seek-ordered queues, one for reads and one for
writes. In this mode, the device driver issues up to queue_depth read
commands and up to write_queue_mod write commands to the logical disk.

This facility is provided because, in some environments, it may be beneficial
to hold back write commands in the device driver so that they may be
coalesced into larger operations, which may be handled as full-stride writes
by the RAID software within the adapter.

Changing the write_queue_mod setting is unlikely to be useful unless a large
percentage of the workload to a RAID 5 device is composed of sequential
write operations.

The current value of write_queue_mod can be ascertained via the lsattr

command. For example:

lsattr -El hdisk6 -a queue_depth
queue_depth 32 Queue depth True

varyoffvg vg99
chdev -l hdisk6 -a queue_depth=200
hdisk6 changed
varyonvg vg99

lsattr -El hdisk6 -a write_queue_mod
write_queue_mod 0 Write queue depth modifier True
150 RS/6000 SP System Performance Tuning Update

write_queue_mod can be modified by use of the chdev command. However,
the volume group must be varied off and on to make the change effective. For
example:

scat_gat_pages setting
The scat_gat_pages attribute for the SSA adapter controls the size of the
scatter-gather table used by the device driver. This table is used to control I/O
operations sent to the adapter. If it is too small, you may experience
degraded adapter I/O performance when under heavy load. If it is too large, it
will needlessly consume kernel memory, which can also affect system
performance. The size of the table is specified in 4 KB pages. If you have
many disks attached to the adapter, which are used intensively, then consider
setting the table size quite large. If the anticipated I/O load to the adapter is
modest, then consider reducing the table size to conserve memory. Setting it
too small will cause adapter I/O performance to degrade, while setting it too
large will just use up memory.

The current value of scat_gat_pages can be ascertained via the lsattr

command. For example:

scat_gat_pages can be modified by use of the chdev command. However, the
volume group must be varied off and on to make the change effective. For
example:

MCA (Micro channel) SSA adapters do not have this attribute.

dma_mem setting
The dma_mem attribute for the SSA adapter sets the total bus address
space, which is available for DMA transfers for commands which are active or
queued on SSA devices accessed via this adapter. The default value is
sufficient for normal circumstances. The dma_mem attribute should only be
changed if large numbers of devices supporting long queues need to be kept
active with I/O. Increasing the value may result in increased system

varyoffvg vg99
chdev -l hdisk6 -a write_queue_mod=0
hdisk6 changed
varyonvg vg99

lsattr -El ssa0 -a scat_gat_pages
scat_gat_pages 35 Pages allocated for scatter/gather True

varyoffvg vg99
chdev -l ssa0 -a scat_gat_pages=35
ssa0 changed
varyonvg vg99
Chapter 6. Tuning other components in AIX 151

performance if the current value is causing I/O to be queued in the adapter
device driver.

If the system attempts to initiate more concurrent I/O requests than can be
serviced with the available DMA space, then some I/O requests will be
queued in the adapter device driver. If this happens, then the total system
performance may be affected, depending upon the workload.

Increasing the value may result in some adapter cards not being configured if
the total amount of bus memory space requested by all of the adapter cards
on a particular bus is greater than what is available on the bus.

The current value of dma_mem can be ascertained via the lsattr command.
For example:

dma_mem can be modified by use of the chdev command. However, the
volume group must be varied off and on to make the change effective. For
example:

This is a PCI SSA adapter attribute. The MCA attribute is dma_bus_mem.

6.3.4 Improving read and write performance (VMM)
The AIX operating system has several enhancing mechanisms for both
reading and writing data to disk to minimize the time an application spends
waiting for I/O. To enhance the read transfer rate for applications that read
data sequentially, AIX utilizes read-ahead for JFS files. To enhance the write
transfer rate for applications, AIX uses write-behind so that the application
does not have to wait for the completion of the physical I/O of each write
operation.

6.3.4.1 Sequential-access read ahead
The VMM tries to anticipate the future need for pages of a sequential file by
observing the pattern in which a program is accessing the file. When the
program accesses two successive pages of the file, the VMM assumes that
the program will continue to access the file sequentially, and the VMM
schedules additional sequential reads of the file. These reads are overlapped
with the program processing, and will make the data available to the program

lsattr -El ssa0 -a dma_mem
dma_mem 0x400000 DMA bus memory length

varyoffvg vg99
chdev -l ssa0 -a dma_mem=0x400000
ssa0 changed
varyonvg vg99
152 RS/6000 SP System Performance Tuning Update

sooner than if the VMM had waited for the program to access the next page
before initiating the I/O. The number of pages to be read ahead is determined
by two VMM thresholds:

If the program deviates from the sequential-access pattern and accesses a
page of the file out of order, sequential read ahead is terminated. It will be
resumed with minpgahead pages if the VMM detects a resumption of
sequential access by the program. The values of minpgahead and
maxpgahead can be set with the vmtune command.

Values of maxpgahead greater than 16 (read ahead of more than 64 KB)
exceed the capabilities of some disk device drivers. In such cases, the read
size stays at 64 KB. Higher values of maxpgahead can be used in systems
where the sequential performance of striped logical volumes is of paramount
importance.

A minpgahead value of 0 effectively defeats the mechanism. This can
adversely affect performance. However, it can be useful in some cases where
I/O is random, but the size of the I/Os cause the VMM's read-ahead algorithm
to take effect.

NFS and the VMM have been changed, starting with AIX V4.3.3, to
automatically turn off VMM read-ahead if it is operating on a locked file. On
these types of files, read-ahead pages are typically flushed by NFS so that
reading ahead is not helpful.

The buildup of the read-ahead value from minpgahead to maxpgahead is
quick enough that for most file sizes there is no advantage to increasing
minpgahead.

Tuning sequential-access read ahead
It is rare that tuning the sequential read-ahead feature (or turning it off) will
improve performance.

minpgahead Number of pages read ahead when the VMM first detects the
sequential access pattern. If the program continues to
access the file sequentially, the next read ahead will be for 2
times minpgahead, the next for 4 times minpgahead, and so
on until the number of pages reaches maxpgahead.

maxpgahead Maximum number of pages the VMM will read ahead in a
sequential file.
Chapter 6. Tuning other components in AIX 153

The minpgahead and maxpgahead values can be changed by using options -r
and -R in the vmtune command, as in the following example:

/usr/samples/kernel/vmtune -r 0 -R 16

The values should be from the set: 0, 1, 2, 4, 8, 16, and so on. The use of
other values may have adverse performance or functional effects. Values
should be powers of 2 because of the doubling algorithm of the VMM.

6.3.4.2 Write behind
To increase write performance, limit the number of dirty file pages in memory,
reduce system overhead, and minimize disk fragmentation, the file system
divides each file into 16 KB partitions. The pages of a given partition are not
written to disk until the program writes the first byte of the next 16 KB
partition. At that point, the file system forces the four dirty pages of the first
partition to be written to disk. The pages of data remain in memory until their
frames are reused, at which point no additional I/O is required. If a program
accesses any of the pages before their frames are reused, no I/O is required.

If a large number of dirty file pages remain in memory and do not get reused,
the syncd daemon writes them to disk, which might result in abnormal disk
utilization. To distribute the I/O activity more efficiently across the workload,
write-behind can be turned on to tell the system how many pages to keep in
memory before writing them to disk. The write-behind threshold is on a
per-file basis, which causes pages to be written to disk before the sync
daemon runs. The I/O is spread more evenly throughout the workload.

There are two types of write-behind: sequential and random.

Sequential write-behind
By default, a file is partitioned into 16 KB partitions or four pages. Each of
these partitions is called a cluster. If all four pages of this cluster are dirty,
then as soon as a page in the next partition is modified, the four dirty pages of
this cluster are scheduled to go to disk. Without this feature, pages would
remain in memory until the syncd daemon runs, which could cause I/O
bottlenecks and fragmentation of the file.

Tuning sequential write-behind
The number of clusters that the VMM uses as a threshold is tunable. The
default is one cluster. You can delay write-behind by increasing the numclust
parameter using the vmtune command, as in the following example, that
increases the number of write-behind clusters to 32 (32*16384 => 1/2 MB):

/usr/samples/kernel/vmtune -c 32
154 RS/6000 SP System Performance Tuning Update

Random write-behind
There may be applications that do a lot of random I/O, that is, the I/O pattern
does not meet the requirements of the write-behind algorithm and all the
pages stay resident in memory until the syncd daemon runs. If the application
has modified many pages in memory, this could cause a very large number of
pages to be written to disk when the syncd daemon issues a sync() call.

The write-behind feature provides a mechanism such that when the number
of dirty pages in memory for a given file exceeds a defined threshold, these
pages are then scheduled to be written to disk.

Tuning random write-behind
This threshold can be tuned by using the -W option of the vmtune command.
The parameter to tune is maxrandwrt; the default value is 0, indicating that
random write-behind is disabled. Increasing this value to 128 indicates that
once 128 memory-resident pages of a file are dirty; any subsequent dirty
pages are scheduled to be written to the disk. The first set of pages will be
flushed after a sync() call.

The following example increases the number of write-behind clusters to 128
(128*4096 => 1/2 MB)

/usr/samples/kernel/vmtune -W 128

6.3.5 Logical Volume Device Driver
The Logical Volume Device Driver (LVDD) is a pseudo-device driver that
operates on logical volumes through the /dev/lv# special file. Like the
physical disk device driver, this pseudo-device driver provides character and
block entry points with compatible arguments. Each volume group has an
entry in the kernel device switch table. Each entry contains entry points for
the device driver and a pointer to the volume group data structure. The logical
volumes of a volume group are distinguished by their minor numbers.

6.3.5.1 Scheduler layer
The scheduler layer schedules physical requests for logical operations and
handles mirroring and the Mirror Write Consistency (MWC) cache. For each
logical request, the scheduler layer schedules one or more physical requests.
These requests involve translating logical addresses to physical addresses,
handling mirroring, and calling the LVDD physical layer with a list of physical
requests.

6.3.5.2 Physical layer
The physical layer of the LVDD handles startup and termination of the
physical request. The physical layer calls a physical disk device driver's
Chapter 6. Tuning other components in AIX 155

ddstrategy entry point with a list of buf structures linked together. In turn, the
physical layer is called by the iodone kernel service when each physical
request is completed. This layer also performs bad-block relocation and
detection/correction of bad blocks, when necessary.

6.3.5.3 Bad blocks
If a logical volume is mirrored, a newly detected bad block is fixed by
relocating that block. A good mirror is read and then the block is relocated
using data from the good mirror. With mirroring, the user does not need to
know when bad blocks are found. However, the physical disk device driver
does log permanent I/O errors, so the user can determine the rate of media
surface errors.

Detecting bad blocks
When a bad block is detected during I/O, the physical disk device driver sets
the error fields in the buf structure to indicate that there was a media surface
error. The physical layer of the LVDD then initiates any bad-block processing
that must be done.

If the operation was a nonmirrored read, the block is not relocated, because
the data in the relocated block is not initialized until a write is performed to the
block. To support this delayed relocation, an entry for the bad block is put into
the LVDD defects directory and into the bad-block directory on disk. These
entries contain no relocated block addresses and the status for the block is
set to indicate that relocation is desired.

On each I/O request, the physical layer checks whether there are any bad
blocks in the request. If the request is a write and contains a block that is in a
relocation-desired state, the request is sent to the physical disk device driver
with safe hardware relocation requested. If the request is a read, a read of
the known defective block is attempted.

If the operation was a read operation in a mirrored LV, a request to read one
of the other mirrors is initiated. If the second read is successful, then the read
is turned into a write request and the physical disk device driver is called with
safe hardware relocation specified to fix the bad mirror.

If the hardware relocation fails or the device does not support safe hardware
relocation, the physical layer of the LVDD attempts software relocation. At the
end of each volume is a reserved area used by the LVDD as a pool of
relocation blocks. When a bad block is detected and the disk device driver is
unable to relocate the block, the LVDD picks the next unused block in the
relocation pool and writes to this new location. A new entry is added to the
LVDD defects directory in memory (and to the bad-block directory on disk)
156 RS/6000 SP System Performance Tuning Update

that maps the bad-block address to the new relocation block address. Any
subsequent I/O requests to the bad-block address are routed to the relocation
address.

Relocating bad blocks
The physical layer of the LVDD checks each physical request to see if there
are any known software-relocated bad blocks in the request. The LVDD
determines if a request contains known software-relocated bad blocks by
hashing the physical address. Then a hash chain of the LVDD defects
directory is searched to see if any bad-block entries are in the address range
of the request.

If bad blocks exist in a physical request, the request is split into pieces. The
first piece contains any blocks up to the relocated block. The second piece
contains the relocated block (the relocated address is specified in the
bad-block entry) of the defects directory. The third piece contains any blocks
after the relocated block to the end of the request or to the next relocated
block. These separate pieces are processed sequentially until the entire
request has been satisfied.

6.3.6 Performance implications of disk mirroring
Disk mirroring is mostly used to reduce impact of disk failure on running
applications. Systems that need large storage capacity use either ESS (or
equivalent product), RAID solutions or AIX managed SSA disks in drawers
and racks. And since disks fail to work sometimes, if many disks are used (a
couple of hundred), a couple of disks will fail during each production year
(sometimes during a month). So in this section, we will discuss how to tune
the I/O system when using mirroring.

6.3.6.1 Mirror write consistency
The LVM always ensures data consistency among mirrored copies of a
logical volume during normal I/O processing. For every write to a logical

By default, AIX will not allow the execution of the intermediate-level data
relocation on non-IBM drives. On IBM (not IBM OEM) drives, the AIX LVM
relies on the guarantee that there are reserved areas for possible hardware
relocation (typically 256 blocks per disk). However, on non-IBM drives, AIX
LVM cannot predict what spare blocks may or may not exist for possible
relocation. So, assuming the worst, AIX LVM only allows the internal disk
relocation and the top layer software relocation to occur on non-IBM drives.

Note
Chapter 6. Tuning other components in AIX 157

volume, the LVM generates a write request for every mirror copy. A problem
arises if the system crashes in the middle of processing a mirrored write
(before all copies are written). If mirror write consistency recovery is
requested for a logical volume, the LVM keeps additional information to allow
recovery of these inconsistent mirrors. Mirror Write Consistency recovery
should be performed for most mirrored logical volumes. Logical volumes,
such as the page space that do not use the existing data when the volume
group is re-varied on, do not need this protection. Although an lslv command
will usually show MWC to be on for nonmirrored logical volumes, no actual
processing is incurred unless the COPIES value is greater than one.

Mirror write consistency record
The Mirror Write Consistency (MWC) record consists of one sector. It
identifies which logical partitions may be inconsistent if the system is not shut
down correctly. When the volume group is varied back on-line, this
information is used to make the logical partitions consistent again.

Mirror write consistency check
The Mirror Write Consistency Check (MWCC) is a method for tracking the last
62 writes to a mirrored logical volume.7 MWCC only makes mirrors consistent
when the volume group is varied back online after a crash by examining the
last 62 writes to mirrors and picking one mirror and propagating that data to
the other mirrors. MWCC does not keep track of the latest data; it only keeps
track of LTGs currently being written. Therefore, MWC does not guarantee
that the latest data will be propagated to all the mirrors; it is the application
above LVM that has to determine the validity of the data after a crash.

This source that is selected for propagation is important to parallel mirrored
systems. In sequentially mirrored systems, the source is always the primary
disk. If that disk fails to respond, the next disk in the sequential ordering will
be picked as the source copy. There is a chance that the mirror picked as
source to correct the other mirrors was not the one that received the latest
write before the system crashed. Thus, the write that may have completed on
one copy and incomplete on another mirror would be lost.

AIX does not guarantee that the absolute, latest write request completed
before a crash will be there after the system reboot. But, AIX will guarantee
that the parallel mirrors will be consistent with each other.

If the mirrors are consistent with each other, then the user will be able to
realize which writes were considered successful before the system crashed
and which writes will be retried. The point here is not data accuracy, but data
consistency. The use of the primary mirror copy as the source disk is the

7 It is actually journaling that a Write request is active in a Logical Track Group (LTG) (32 4 KB pages or 128 KB)
158 RS/6000 SP System Performance Tuning Update

basic reason that sequential mirroring is offered. Not only is data consistency
guaranteed with MWC, but the use of the primary mirror as the source disk
increases the chance that all the copies have the latest write that occurred
before the mirrored system crashed.

Tuning mirror write consistency
MWC can take two writes just to perform one write. To turn off MWC for a
logical volume, run the chlv command, as in the following example for logical
volume lv99:

chlv -w n lv99

If MWC is turned off, the autovaryon on the volume group must also be turned
off, as in the following example for volume group vg99:

chvg -a n vg99

After each IPL, the syncvg command must be run manually on the volume
group, as in the following example for volume group vg99:

syncvg -f -v vg99

or specifically for the logical volume lv99 as follows:

syncvg -f -l lv99

However, if the mirroring is only needed to protect the data in the logical
volume when the system is up and running, as it is for paging logical volumes
(and no manual synchronization after IPL is needed either), MWC should
always be turned off, as in the following example for hd6:

chlv -w n hd6

If mirroring is being used and MWC is on (as it is by default), consider
locating the copies in the outer region of the disk, because the MWC
information is always written in Cylinder 0 (on the edge of the disk). The
following example sets the lv99 logical volumes interpolicy to edge:

chlv -a e lv99

But to actually move the logical volume, reorganization of the disk is
necessary, which can be done by the reorgvg command, as in the following
example for the vg99 volume group:

reorgvg vg99 lv99

or if you want to move the logical volume to another empty disk, use the
migratepv command, as in the following example:

migraptepv -l lv99 hdisk0 hdisk1
Chapter 6. Tuning other components in AIX 159

Scheduling policy for reading/writing logical partition copies
Different scheduling policies can be set for the logical volume. Different types
of scheduling policies are used for logical volumes with multiple copies, as
shown in Table 22:

Table 22. Implications on performance of mirror write scheduling policies

For data that has only one physical copy, the logical volume device driver
translates a logical read or write request address into a physical address and
calls the appropriate physical device driver to service the request. This
single-copy policy handles bad block relocation for write requests and returns
all read errors to the calling process.

Tuning scheduling for reading/writing logical partition copies
Mirroring-scheduling policies, such as parallel and parallel/round-robin, can
allow performance on read-intensive mirrored configurations to be equivalent
to nonmirrored ones. Typically, performance on write-intensive mirrored
configurations is not as good than non-mirrored, unless more disks are used.

The default policy usually makes little use of secondary copies when reading,
but change the policy to parallel/round-robin, as in the following example for
lv99:

chlv -d pr lv99

Mirror Write
Scheduling Policy

Implications

sequential The sequential policy results in all reads being issued to the
primary copy. Writes happen serially, first to the primary disk;
only when that is completed is the second write initiated to the
secondary disk.

parallel The parallel policy balances reads between the disks. On each
read, the system checks whether the primary is busy. If it is not
busy, the read is initiated on the primary. If the primary is busy,
the system checks the secondary. If it is not busy, the read is
initiated on the secondary. If the secondary is busy, the read is
initiated on the copy with the least number of outstanding I/Os.
Writes are initiated concurrently.

parallel/sequential The parallel/sequential policy always initiates reads on the
primary copy. Writes are initiated concurrently.

parallel/round robin The parallel/round robin policy is similar to the parallel policy,
except that instead of always checking the primary copy first, it
alternates between the copies. This results in equal utilization
for reads even when there is never more than one I/O
outstanding at a time. Writes are initiated concurrently.
160 RS/6000 SP System Performance Tuning Update

Mirroring on different disks
The default for disk mirroring is that the copies should exist on different disks.
This is for performance as well as data integrity. With copies residing on
different disks, if one disk is extremely busy, then a read request can be
completed by the other copy residing on a less busy disk.

Mirroring across different adapters
Another method to improve disk throughput is to mirror the copies across
adapters. This will give you a better chance of not only finding a copy on a
disk that is least busy, but it will also improve your chances of finding an
adapter that is not as busy. LVM does not realize, nor care, that the two disks
do not reside on the same adapter. If the copies were on the same adapter,
the bottleneck there is still the bottleneck of getting your data through the flow
of other data coming from other devices sharing the same adapter card. With
multi-adapters, the throughput through the adapter channel should improve
unless the adapter bus gets saturated.

Mirroring across different adapters on different busses
Since very high performance adapters, such as the SP Switch 2, SSA or
Gigabit Ethernet, can saturate a PCI bus with streaming data by itself,
consideration should be made as to the placement of adapters on different
busses if more than one bus is available.

6.3.6.2 Write verification
From a performance standpoint, mirroring is costly, mirroring with Write Verify
costs even more (extra disk rotation per write), and mirroring with both Write
Verify and MWC costs the most (disk rotation plus a seek to Cylinder 0). Write
Verify defaults to off, and it does have meaning (and cost) for both mirrored as
non-mirrored logical volumes.

When you have write verify enabled, every write to a physical portion of a disk
that is part of a logical volume causes the disk device driver to issue the Write

and Verify scsi command to the disk. This means that after each write, the
disk will reread the data and do an IOCC parity check on the data to see if
what the platter wrote exactly matched what the write request buffer
contained.

6.3.7 Logical volume striping
Striping is a technique for spreading the data in a logical volume across
several disk drives in such a way that the I/O capacity of the disk drives can
be used in parallel to access data on the logical volume. The primary
objective of striping is very high-performance reading and writing of large
sequential files, but there are also benefits for random access.
Chapter 6. Tuning other components in AIX 161

In an ordinary logical volume, the data addresses correspond to the
sequence of blocks in the underlying physical partitions. In a striped logical
volume, the data addresses follow the sequence of stripe units. A complete
stripe consists of one stripe unit on each of the physical devices that contains
part of the striped logical volume. The LVM determines which physical blocks
on which physical drives correspond to a block being read or written. If more
than one drive is involved, the necessary I/O operations are scheduled for all
drives simultaneously.

Mirroring and striping at the same time
AIX Version 4.3.3 introduces the new mirroring and striping function (also
known as RAID 0+1, Enhanced RAID 0 or RAID 10). This function provides
better data availability at the cost of extra disks. In the case of non-mirrored
and striped logical volume, failure of one physical volume causes the loss of
the whole striped logical volume since there is no redundancy. The mirroring
and striping function prevents this situation from happening by adding, up to
three mirrors, the striped logical volumes. One failing disk in a striped mirror
copy does not bring down the entire logical volume. The remaining (working)
disks in the striped mirror copy continue to service striped units. Although the
striped units on the failed disk are inaccessible, the mirrored copies of these
units are available from another mirror. In this case, users are unaware that a
disk is unavailable. To support the mirroring and striping function, a new
partition allocation policy (super strict) is also introduced. This policy prohibits
partitions from one mirror from sharing a disk with a second or third mirror.
Volume groups that contain logical volumes that are both striped and mirrored
cannot be imported into AIX V4.3.2 or earlier.

LVM writing of data from striped logical volumes
In the write phase, a caller (like the journaled file system device driver) issues
one write I/O request to the LVM device driver. This request is chopped into
several chunks, and they are written to each physical disk in parallel. Since
these writes are achieved on separate drives, they are executed in parallel. It
improves the write performance compared to one drive. Subsequently, if all
the writes to each physical volume return with no error, then the LVM device
driver returns a success to the caller. Otherwise, it returns an error to the
caller.

LVM reading of data from striped logical volumes
In the read phase, a caller (like the journal file system device driver) issues
one read I/O request to the AIX LVM device driver. This request is split into
several read calls for chunks, and these small reads are sent to each physical
disk in parallel. Since these reads are achieved on separate drives, they are
executed in parallel. It improves the read performance, compared to one
physical drive. Subsequently, if all the reads to each physical volume return
162 RS/6000 SP System Performance Tuning Update

with no error, the LVM device driver directly passes the memory pointers for
all the chunks that compose the data into the user’s memory area without
re-assembly. If one of the read calls for chunks failed, then the AIX LVM
device driver would return an error to the caller.

Tuning Logical Volume Striping
Sequential and random disk I/Os benefit from disk striping. The following
techniques have yielded the highest levels of sequential I/O throughput:

• Spread the logical volume across as many physical volumes as possible.

• Use as many adapters as possible for the physical volumes.

• Create a separate volume group for striped logical volumes.

• Set a stripe-unit size of 64 KB.

• Set minpgahead to 2. Example: /usr/samples/kernel/vmtune -r 2.

• Set maxpgahead to 16 times the number of disk drives (16 4 KB pages fills
one disks stripe). This causes page-ahead to be done in units of the
stripe-unit size (64 KB) times the number of disk drives, resulting in the
reading of one stripe unit from each disk drive for each read-ahead
operation. For example (with eight disks): /usr/samples/kernel/vmtune -R
128.

• Request I/Os for 64 KB times the number of disk drives. This is equal to
the maxpgahead value. For eight disks, it would be 512KB.

• Modify maxfree to accommodate the change in maxpgahead (maxfree =
minfree + maxpgahead. For example (with eight disks and default setting
of minfree [120]): /usr/samples/kernel/vmtune -F 248.

• Do not mix striped and non-striped logical volumes in the same physical
volume. All physical volumes should be the same size within a set of
striped logical volumes.

If the striped logical volumes are on raw logical volumes and writes larger
than 1.125 MB are being done to these striped raw logical volumes,
increasing the lvm_bufcnt parameter with the vmtune command might increase
throughput of the write activity as shown in the following example (default
value is 9):

/usr/samples/kernel/vmtune -u 64
Chapter 6. Tuning other components in AIX 163

The following example shows how to create a RAID 10 logical volume spread
over four disks:

6.3.8 JFS and JFS log
The Journaled File System (JFS) uses a database journaling technique to
maintain a consistent file system structure. This involves duplicating
transactions that are made to file system metadata to the circular JFS log.
File system metadata includes the superblock, i-nodes, indirect data pointers,
and directories.

6.3.8.1 How to use JFS logs
If possible the JFS log volume should reside on a disk of its own or together
with low usage logical volumes if it becomes heavily used (due to application
workload). One example of when the log volume will be very active is if
hundreds to thousands of SPOOL files are created for the print subsystem
per hour.

Having multiple log devices in a volume group is supported. However, a log
for a file system must be in the same volume group as that of the file system.
A log logical volume or file system logical volume can be moved to another
disk using the migratepv command, even while the system is running and in
use, as in the following example with logical volume lv99 on hdisk1 in the
same volume group as hdisk8:

migratepv -l lv99 hdisk1 hdisk8

Placing the log logical volume on a physical volume different from your most
active file system logical volume will increase parallel resource usage. A
separate log for each file system is also supported. To change a log volume
for a file system, follow these steps:

1. Create a log volume, as in the following example, that creates the log
volume log99 in volume group vg99 consisting of one logical partition:

mklv -y log99 -t jfslog vg99 1

2. Format the new log volume:

print y | logform /dev/log99

mklv -y lv99 -e x -c 2 -s s vg99 4 hdisk1 hdisk2 hdisk4 hdisk5
lslv -m lv99
lv99:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0109 hdisk1 0109 hdisk2
0002 0109 hdisk4 0109 hdisk5
0003 0110 hdisk1 0110 hdisk2
0004 0110 hdisk4 0110 hdisk5
164 RS/6000 SP System Performance Tuning Update

3. Unmount the file system:

umount /filesystem

4. Edit the stanza for the file system in the /etc/filesystems file, either
manually or by using the following commands:

a. First, extract all but the /filesystem stanza from /etc/filesystems:

grep -v -p filesystem: /etc/filesystems > /tmp/filesystems.new

b. Then, extract only the /filesystem stanza, change the log volume and
add it to the new file systems file

grep -p filesystem /etc/filesystems |
sed 's/hd8/log99/g' >>/tmp/filesystems.new

c. Then, make a backup copy of the original /etc/filesystems file:

cp /etc/filesystems /etc/filesystems~1

d. Finally, copy the new file systems file to the /etc directory:

cp /tmp/filesystems.new /etc/filesystems

5. Run fsck on the file system (not always necessary):

fsck -y /filesystem

6. Mount the file system again:

mount /filesystem

The only drawback to the preceding procedure is that the new file system
stanza will be added to the end of the /etc/filesystems file and thus mounted
last. The following script can be used to fix it right and put the modified stanza
back where it was:

#!/bin/ksh

fs=${1:-home}
oldlog=${2:-hd8}
newlog=${3:-log99}
tmpfile=/tmp/filesystems.new

integer n=$(grep -n -p $fs: /etc/filesystems | sed 's/://g;1p;1,$d')
((n=$n-3))
grep -v -p $fs: /etc/filesystems > $tmpfile
cat <<-! | ed $tmpfile

${n}r ! grep -p $fs: /etc/filesystems | sed 's/hd8/log99/'
w

!
cp /etc/filesystems /etc/filesystems~1
cp $tmpfile /etc/filesystems
rm -f $tmpfile
Chapter 6. Tuning other components in AIX 165

6.3.8.2 How to not use the JFS log
The mount option nointegrity bypasses the use of a JFS log for the file system
mounted with this option. This can provide better performance as long as the
administrator knows that the fsck command might have to be run on the file
system if the system goes down without a clean shutdown.

mount -o nointegrity /filesystem

To make the change permanent, use the chfs command as follows:

chfs -a options=nointegrity,rw /filesystem

6.3.9 Paging space allocation
If paging space is needed in a system, performance and throughput will
always suffer; thus, the obvious conclusion is to eliminate paging to paging
space as much as possible.

The current default paging-space-slot-allocation method, Deferred Page
Space Allocation (DPSA), delays allocation of paging space until it is
necessary to page out the page.

At some point in time, allocated paging space might be needed; to avoid
problems arising from having too little virtual memory, creation of sufficient
space is still necessary. There are a couple of schools of thought concerning
the creation of paging space:

• Provide a Dedicated disk for a single paging spaced.

• Use single paging space spread over multiple shared disks.

• Have multiple paging spaces allocated, one each on multiple shared disks.

However, what is important when creating paging spaces is that the disk(s)
are the least used ones. When paging is needed, it should not have to
compete with other disk operations; keep in mind that if paging to paging
space occurs, and processes are delayed because of it, performance will
suffer.

Apart from optimizing the speed of accessing paging space, as for any logical
volume, there are a few extra considerations to take, due to the fact that
paging spaces are not like ordinary logical volumes. Paging spaces are
accessed in a round robin fashion and the data stored in the logical volume
are of no interest after a reboot (IPL). Therefore, disable mirror write
consistency (MWC) for paging spaces that are mirrored. Do not allocate more
than one paging space per physical disk, and use the center intra-disk
allocation policy (except when the paging space coexists on the same disk as
166 RS/6000 SP System Performance Tuning Update

mirrored logical volumes; then it should have the edge intra-disk policy). Do
not let paging spaces and JFS log volumes share the same disk, and if
possible, let the paging spaces reside on separate disk(s).

The following example shows the creation of a striped paging space:

After creating the paging space, we need to activate it:

chps -a y hd66 && swapon /dev/hd66

This is the output from the lsps command:

6.3.10 Tuning I/O pacing
Disk I/O pacing is intended to prevent programs that generate very large
amounts of output from saturating the system's I/O facilities and causing the
response times of less-demanding programs to deteriorate. Disk I/O pacing
enforces per-segment (which effectively means per-file) high- and low-water
marks on the sum of all pending I/Os. When a process tries to write to a file
that already has high-water mark pending writes, the process is put to sleep
until enough I/Os have completed to make the number of pending writes less
than or equal to the low-water mark. The logic of I/O request handling does
not change. The output from high-volume processes is slowed down
somewhat.

One limitation of pacing is that it does not offer as much control when a
process writes buffers larger than 4 KB. When a write is sent to the VMM and
the high-water mark has not been met, the VMM performs start I/Os on all
pages in the buffer, even if that results in exceeding the high-water mark.
Pacing works well on the cp command, because the cp command writes 4 KB
at a time.

Disk-I/O pacing is a tuning parameter that can improve interactive response
time in some situations where foreground or background programs that write
large volumes of data are interfering with foreground requests. If not used
properly, however, it can massively reduce throughput.

mklv -y hd66 -t paging -a c -S 64K rootvg 110 hdisk2 hdisk3 hdisk4 hdisk5
hd66

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd66 hdisk2 rootvg 896MB 1 yes yes lv
hd66 hdisk3 rootvg 896MB 1 yes yes lv
hd66 hdisk4 rootvg 896MB 1 yes yes lv
hd66 hdisk5 rootvg 896MB 1 yes yes lv
hd6 hdisk0 rootvg 9216MB 1 yes yes lv
Chapter 6. Tuning other components in AIX 167

Programs whose presence in a workload that could benefit from disk-I/O
pacing include:

• Programs that generate large amounts of output algorithmically, and thus
are not constrained by the time required to read input. Some such
programs may need pacing on comparatively fast processors and not
need it on comparatively slow processors.

• Programs that write large, possibly somewhat modified files that have
been read in their entirety shortly before writing begins (by a previous
command, for example).

• Filters, such as the tar command, that read a file and write it out again
with little processing. The need for pacing can be exacerbated if the input
is being read from a faster disk drive than the output is being written to.

The pseudo device driver sys0 parameters maxpout and minpout can be used
to enable and configure I/O pacing:

The high- and low-water marks are not straightforward because of the
combination of write-behind and asynchronous writes. Start by using the
following simple formula to calculate the maxpout setting (where N is a
positive integer such as 4, 8, 16):

maxpout = (4 * N) + 1

minpout = (maxpout - 1) / 2

The settings in Table 23 are a good place to start, but some experimenting
will be needed to find the best settings for your workload. Remember that the

maxpout Sets the maximum number of I/O write requests that are
allowed against a single file.

minpout Sets the number of I/O requests against a single file before
the issuing processes are resumed.

Before using I/O pacing restrictions, analyze the disk and adapter
utilization and try to move disks or file systems to even out the I/O load. If
this is not an option, or has already been done and there still are processes
that hog the I/O bandwidth, use I/O pacing and check if the overall
throughput will increase over a given time period.

Note
168 RS/6000 SP System Performance Tuning Update

aim with I/O pacing is to increase overall I/O throughput during a given time
period.

Table 23. Sample values for minpout and maxpout

The following examples set the maximum number of pending I/O write
requests outstanding against a file to 33 (maxpout) before suspending the
process.

chdev -l sys0 -a maxpout=33 -a minpout=16

Once the process is suspended, it will not be resumed until the outstanding
I/O write requests against the file drop to 16 (minpout).

6.3.11 Asynchronous I/O
Synchronous I/O occurs while you wait. Applications processing can not
continue until the I/O operation is complete. In contrast, asynchronous I/O
operations run in the background and do not block user applications. This
improves performance, because I/O operations and applications processing
can run simultaneously.

Using asynchronous I/O will usually improve I/O throughput. For JFS I/O, the
actual performance, however, depends on how many server processes are
running that will handle the I/O requests.

Many applications, such as databases and file servers, take advantage of the
ability to overlap processing and I/O. These asynchronous I/O operations use

N minpout maxpout

4 8 17

8 16 33

16 32 65

Setting minpout and maxpout to 0 disables I/O pacing (the default setting is
0 for both).

Note

In AIX V4, async I/O on JFS file systems is handled by kprocs.
Asynchronous I/O on raw logical volume partitions is handled directly by
the kernel.

Note
Chapter 6. Tuning other components in AIX 169

various kinds of devices and files. Additionally, multiple asynchronous I/O
operations may run at the same time on one or more devices or files.

Applications use the aio_read() and aio_write() subroutines to perform the
I/O. Control returns to the application from the subroutine as soon as the
request has been queued. The application can then continue processing
while the disk operation is being performed.

A kernel process (KPROC), called a server, is in charge of each request from
the time it is taken off the queue until it completes (for JFS). The number of
servers limits the number of JFS disk I/O operations that can be in progress
in the system simultaneously.

AIO will not relieve an overly busy disk drive. Using the iostat command
with an interval and count value, you can determine if any disks are overly
busy. Monitor the %tm_act column for each disk drive on the system. On
some systems, a %tm_act of 35.0 or higher for one disk can cause
noticeably slower performance. The relief for this case could be to move
data from more busy to less busy disks, but simply having AIO will not
relieve an overly busy disk problem.

Note
170 RS/6000 SP System Performance Tuning Update

To activate asynchronous I/O during boot (IPL), run this command:

chdev -l aio0 -a autoconfig=available

To activate asynchronous I/O in the running system without doing a reboot,
run this command:

mkdev -l aio0

The following command will tell you how many AIO Servers are currently
running (you must run this command as the root user):

pstat -a | grep -c aios

If the disk drives that are being accessed asynchronously are using the
Journaled File System (JFS), all I/O will be routed through the aios KPROCs.
If the disk drives that are being accessed asynchronously are using a form of
RAW logical volume management, then the disk I/O is not routed through the
aios KPROCs. In that case, the number of servers running is not relevant. To
confirm that an application that uses RAW logical volumes are taking
advantage of asynchronously I/O, you can disable the fast path option for the
device driver (thus forcing all I/O activity through the aios KPROCs) using the
following command:

chdev -l aio0 -a fastpath=disable

When this option has been disabled, even RAW I/O will be forced through the
aios KPROCs. At that point, the pstat command listed above will work for
RAW I/O applications as well. You would not run the system with this option
disabled for any length of time. This is simply a suggestion to confirm that the
application is working with asynchronously I/O and RAW logical volumes.

Functions provided by the asynchronous I/O facilities are:

• Large File-Enabled Asynchronous I/O

• Nonblocking I/O

• Notification of I/O completion

• Cancellation of I/O requests

One fundamental limitation in asynchronous I/O is page hiding. When an
unbuffered (raw) asynchronous I/O is issued, the page that contains the user
buffer is hidden during the actual I/O operation. This ensures cache
consistency. However, the application may access the memory locations that
fall within the same page as the user buffer. This may cause the application to
block, as a result of a page fault. To alleviate this situation, the application
Chapter 6. Tuning other components in AIX 171

should allocate page aligned buffers and not touch the buffers until the I/O
request using it has completed.

6.3.11.1 Tuning asynchronous I/O
The default values are 1 for minservers and 10 for maxservers. In systems
that seldom run applications that use asynchronous I/O, this is usually
adequate. For environments with many disk drives and key applications that
use asynchronous I/O, the default is far too low. The result of a deficiency of
servers is that disk I/O seems much slower than it should be. Not only do
requests spend inordinate lengths of time in the queue, but the low ratio of
servers to disk drives means that the seek-optimization algorithms have too
few requests to work with for each drive.

Using the vmstat command with an interval and count value, you can
determine if the CPU is idle (waiting for disk I/O). The wa column details the
percentage of time the CPU was idle with pending local disk I/O. If there is at
least one outstanding I/O to a local disk when the wait process is running, the
time is classified as waiting for I/O. Unless asynchronous I/O is being used by
the process, an I/O request to disk causes the calling process to block (or
sleep) until the request has been completed. Once a process's I/O request
completes, it is placed on the run queue.

The asynchronous I/O device has a few attributes that regulate it’s
performance impact:

maxreqs The maxreqs attribute is the maximum number of
asynchronous I/O requests that can be outstanding at one
time. This includes requests that are in progress as well as
those that are waiting to be started. The maximum number of
asynchronous I/O requests cannot be less than 4096 but it
can be greater. It would be appropriate for a system with a
high volume of asynchronous I/O to have a maximum
number of asynchronous I/O requests larger than 4096.
172 RS/6000 SP System Performance Tuning Update

Setting minservers and maxservers
If the number of asynchronous I/O requests is high, then the basic
recommendation is to increase maxservers to the approximate number of
possible simultaneous I/Os. In most cases, it is better to leave the minservers
parameter at the default value, because the asynchronous I/O kernel
extension will generate additional servers (if needed).

Here are some suggested rules of thumb for determining what value to set
the maximum number of servers to:

kprocprio The kprocprio attribute is the priority level of kernel
processes dedicated to asynchronous I/O. The lower the
priority number is, the more favored the process is in
scheduling. Concurrency is enhanced by making this
number slightly less than the value of 40, the priority of a
normal user process. It cannot be made lower than the value
of 16.

Since the default priority is (40+nice), these daemons will be
slightly favored with this value of (39+nice). If you want to
favor them more, make changes slowly. A very low priority
can interfere with other system processes.

minservers The minservers attribute are the minimum number of kernel
processes dedicated to asynchronous I/O processing. Since
each kernel process uses memory, this number should not
be large when the amount of asynchronous I/O expected is
small.

maxservers The maxservers attribute are the maximum number of kernel
processes dedicated to asynchronous I/O processing. There
can never be more than this many asynchronous I/O
requests in progress at one time, so this number limits the
possible I/O concurrency.

Raising kprocprio (decreasing this numeric value) is not recommended
because system hangs or crashes could occur if the priority of the
asynchronous I/O servers are favored too much. There is little to be gained
by making big priority changes.

Important
Chapter 6. Tuning other components in AIX 173

1. The first rule of thumb suggests that you limit the maxservers to a number
equal to ten times the number of disks that are to be used concurrently,
but not more than 80. The minservers should be set to half of maxservers.

2. Another rule of thumb is to set maxservers to 80 and leave minservers set
to the default of 1 and reboot. Monitor the number of additional servers
started throughout the course of normal workload. After a 24-hour period
of normal activity, set maxservers to (The number of currently running
aios + 10), and set minservers to (The number of currently running aios -
10).

3. For environments with more than 80 aio KPROCs running, take statistics
using vmstat -s before any high I/O activity begins and again at the end.
Check the field iodone. From this field, you can determine how many
physical I/Os are being handled in a given wall clock period. Then
increase maxservers and see if you can get more iodones in the same
time period.

6.3.12 Logical volume policies
The inter-disk and intra-disk allocation policies can have performance impact
and needs to be evaluated regarding how applications use data, and how
much data is read and written.

6.3.12.1 Inter-disk allocation policy
The inter-disk allocation policy specifies the number of disks on which a
logical volume's physical partitions are located. The physical partitions for a
logical volume might be located on a single disk or spread across all the disks
in a volume group.

Minimum The minimum setting indicates that one physical volume
should contain all the original physical partitions of this
logical volume if possible. If the allocation program must use
two or more physical volumes, it uses the minimum number,
while remaining consistent with other parameters.

Maximum The maximum setting, considering other constraints,
spreads the physical partitions of the logical volume as
evenly as possible over as many physical volumes as
possible. This is a performance-oriented option, because
spreading the physical partitions over several disks tends to
decrease the average access time for the logical volume. To
improve availability, the maximum setting should only be
used with mirrored logical volumes.
174 RS/6000 SP System Performance Tuning Update

Tuning considerations
When choosing between minimum or maximum inter-disk allocation policy,
other factors should be taken more into account than just the individual
logical volume. Questions such as these must be asked and evaluated:

1. Will other heavily used logical volumes occupy the same disk?

2. Will the reading and writing be done in a sequential or random way?

3. How much data will be read or written with each I/O operation?

4. How much of a load on the logical volume will saturate the I/O channel,
from memory to disk, if one adapter and minimum inter-disk allocation
policy is used and no other applications are contending for throughput?

6.3.12.2 Intra-disk allocation policy
The intra-disk allocation policy choices are based on the five regions of a disk
where physical partitions can be located. The five regions are: outer edge,
inner edge, outer middle, inner middle, and center. The edge partitions have
the slowest average seek times, which generally result in longer response
times for any application that uses them. The center partitions have the
fastest average seek times, which generally result in the best response time
for any application that uses them. There are, however, fewer partitions on a
physical volume at the center than at the other regions.

The JFS log is a good candidate for allocation at the center of a physical
volume because it is used by the operating system so often. At the other
extreme, the boot logical volume is used infrequently and should be allocated
at the edge or middle of the physical volume.

The general rule is that the more I/Os, either absolutely or during the running
of an important application, the closer to the center of the physical volumes
the physical partitions of the logical volume should be allocated. This rule has
two important exceptions:

• Logical volumes that contain large, sequential files could benefit from
being located at the edge, if the disks in question have more blocks per
track at the edge than farther in (resulting in better sequential
performance).

• Mirrored logical volumes with Mirror Write Consistency (MWC) set to ON
should be at the outer edge, because that is where the system writes
MWC data.
Chapter 6. Tuning other components in AIX 175

6.3.12.3 Logical volume reorganization
In our following example, we have a file system that is heavily used. We will
spread the logical volume over as many disks as possible in the volume
group, but away from disks that are heavily used.

First, we change the intra-policy for the logical volume to maximum (and while
we are at it, we set the intra-policy to center and the scheduling policy to
parallel round robin, in case we will turn on mirroring later) by using the
following command:

chlv -a c -e x -d pr lv01

We check the following output to see the logical volume layout in the volume
group:

So, because we have not done so before, we extend the volume group with a
couple of disks, use the following command:

extendvg vg99 hdisk2 hdisk3 hdisk4 hdisk5

We can now reorganize the logical volume so we will get equivalent number
of partitions on each disk. To do this, we use migratepv:

migratepv -l lv01 hdisk1 hdisk2 hdisk3 hdisk4 hdisk5

We now check how the logical volume layout in the volume group has
changed:

When creating large quantities of logical volumes, consider the
consequences of selecting the center allocation policy.

When creating large logical volumes that span multiple disks, start by using
the edge inter-disk allocation policy and let AIX create the logical volumes
consecutively, starting from the edge. If allocated from the center, there is a
risk that the logical volumes, after the first one, will be split around the
previous logical volume(s) that occupy most of the center already.

Note

lslv -l lv01
lv01:/testfs2
PV COPIES IN BAND DISTRIBUTION
hdisk1 032:000:000 0% 000:028:000:004:000
176 RS/6000 SP System Performance Tuning Update

6.3.12.4 Volume group fragmentation
If file systems (logical volumes) have been expanded after the first creation, it
is very likely that the logical volume will have physical partitions in a
non-sequential manner and might even spread over several disks in the
volume group in this way. To consolidate all space needed for a logical
volume in a consecutive way, the reorgvg command can be used. This
command is used to move the placement of logical volumes in physical
volumes by using lower level commands that mirrors the physical partitions,
syncs them and then removes the unwanted copy. The following example
illustrates the command usage for the spdatavg volume group:

6.3.12.5 Example scenario
As an example, we will run a RDBMS server that will read and write 8 KB
each time from database files residing in JFS file systems. We have 16 SSA
disks, and two SSA adapters, and we will use mirroring for availability. Since
the RDBMS will mostly read randomly (the application is heavily indexed and
very few full table scans will occur), we will not use striping. We will also do a
standard split of the SSA disks between the two adapters and use two loops.

Since the main usage will be for the RDBMS, we only have to decide the
optimal placing of the logical volumes for the RDBMS. Since there is an
identical system running on a different location, we can determine the I/O
requirements by monitoring the RDBMS and AIX. Since our investigation of
the running system concludes that there are 14 tables, of which 1/3 are
currently heavily used, 1/3 is rarely used, and 1/3 are in between, we decide
to use maximum inter-disk allocation policy and create almost one logical
volume for each table. Since we only use the SSA drawer for the RDBMS, we
do not have to worry about the JFS log for the application, because the
application will not write outside the preallocated database files. The most
used 1/3 logical volumes were also allocated as close to the edge part on the
disks, the medium used 1/3 in the middle, and the least used 1/3 at center.
After production starts on the system, we see an evenly balanced I/O

lslv -l lv01
lv01:/testfs2
PV COPIES IN BAND DISTRIBUTION
hdisk2 012:000:000 100% 000:000:012:000:000
hdisk3 008:000:000 100% 000:000:008:000:000
hdisk4 006:000:000 100% 000:000:006:000:000
hdisk5 006:000:000 100% 000:000:006:000:000

reorgvg spdatavg
0516-962 reorgvg: Logical volume loglv01 migrated.
0516-962 reorgvg: Logical volume lv06 migrated.
Chapter 6. Tuning other components in AIX 177

situation over most disks and the throughput is perceived to be good by the
end-users.

However, since a lot more SPOOL files are created during production than
was originally anticipated (on other disks), we created a file system for
SPOOL files on the SSA disk volume group. We put this file system on the
first disk together with the JFS log, and because we allocated most of the
available space on the disks already, we change the policy from maximum to
minimum for the rarely used tables. And then we use migratepv to move them
from the other disks to the first one. Sometimes reorgvg will work, but when
we consolidate from a lot of space-constrained disks to one specific disk,
migratepv gives the desired level of control and manageability. The JFS log
was moved to the center of the disk, as was the new SPOOL file system, and
MWC was turned off for both the SPOOL file system and the JFS log.

The above example illustrates that different policies can be utilized for
different logical volumes that are used by the same application because there
are always trade-offs to be made in a production environment.

6.3.13 File system fragmentation
When a file system is created, the system administrator can specify the size
of the fragments in the file system. The allowable sizes are 512, 1024, 2048,
and 4096 bytes (the default). Files smaller than a fragment are stored in a
single fragment, conserving disk space, which is the primary objective.

Files smaller than 4096 bytes are stored in the minimum necessary number
of contiguous fragments. Files whose size is between 4096 bytes and 32 KB
(inclusive) are stored in one or more (4 KB) full blocks and in as many
fragments as are required to hold the remainder. For example, a 5632-byte
file would be allocated one 4 KB block, pointed to by the first pointer in the
i-node. If the fragment size is 512, then eight fragments would be used for the
first 4 KB block. The last 1.5 KB would use three fragments, pointed to by the
second pointer in the i-node. For files greater than 32 KB, allocation is done
in 4 KB blocks, and the i-node pointers point to these 4 KB blocks.

Whatever the fragment size, a full block is considered to be 4096 bytes. In a
file system with a fragment size less than 4096 bytes, however, a need for a
full block can be satisfied by any contiguous sequence of fragments totalling
4096 bytes. It need not begin on a multiple of 4096 byte boundary.

The file system tries to allocate space for files in contiguous fragments by
spreading the files themselves across the logical volume to minimize interfile
allocation interference and fragmentation.
178 RS/6000 SP System Performance Tuning Update

The primary performance hazard for file systems with small fragment sizes is
space fragmentation. The existence of small files scattered across the logical
volume can make it impossible to allocate contiguous or closely spaced
blocks for a large file. Performance can suffer when accessing large files.
Carried to an extreme, space fragmentation can make it impossible to
allocate space for a file, even though there are many individual free
fragments.

Another adverse effect on disk I/O activity is the number of I/O operations.
For a file with a size of 4 KB stored in a single fragment of 4 KB, only one disk
I/O operation would be required to either read or write the file. If the choice of
the fragment size was 512 bytes, eight fragments would be allocated to this
file, and for a read or write to complete, several additional disk I/O operations
(disk seeks, data transfers, and allocation activity) would be required.
Therefore, for file systems which use a fragment size of 4 KB, the number of
disk I/O operations might be far less than for file systems which employ a
smaller fragment size.

6.3.13.1 How to defragment a file system
To check if a file system is fragmented and would benefit from
defragmentation (a process which on large partitions will take considerable
time and resource), use the defragfs command, as in the following example:

Figure 21. Querying fragmentation for a file system

In the output from the defragfs command, check the following values:

• Number of free spaces shorter than a block

• Number of free fragments

If the number of free spaces shorter than a block is high or close to the
number of free fragments, use defragfs to consolidate the free space. The
following example shows how the fragments for files in the specified file
system are consolidated:

defragfs -q /filesystem
statistics before running defragfs:
number of free fragments 239445
number of allocated fragments 391339
number of free spaces shorter than a block 0
number of free fragments in short free spaces 0
Chapter 6. Tuning other components in AIX 179

Figure 22. Defragmentation of file system with defragfs

6.3.13.2 How to rearrange datablocks in a file system
To rearrange all data blocks so that files and directories have their respective
data blocks arranged contiguously in the file system, the file system has to be
rebuilt. There is no software available from IBM8 to perform this task as
defragfs does for fragments. To achieve the same result as defragfs the
following must be done:

1. Backup the file system data (use tar, cpio, backup or a similar command)
and verify that it is restorable before continuing.

2. Unmount the file system (use the umount /filesystem).

3. Rebuild the file system (use the print yes|mkfs /filesystem).

4. Mount the file system again (use the mount /filesystem).

5. Restore the backup of the file system data.

8 Eagle Software (www.eaglesoft.com) has software for this.

defragfs /filesystem
statistics before running defragfs:
number of free fragments 239445
number of allocated fragments 391339
number of free spaces shorter than a block 0
number of free fragments in short free spaces 0

statistics after running defragfs:
number of free spaces shorter than a block 0
number of free fragments in short free spaces 0

other statistics:
number of fragments moved 2713
number of logical blocks moved 2713
number of allocation attempts 937
number of exact matches 129
180 RS/6000 SP System Performance Tuning Update

Chapter 7. Control workstation tuning

This chapter discusses various control workstation (CWS) considerations and
the tuning of its performance.

7.1 Control workstation considerations

The CWS serves as a single point of control for various PSSP subsystems
that provide configuration data, security, hardware monitoring, diagnostics,
and, optionally, job scheduling data and a time source for the SP nodes.

It is important that there are necessary resources available when these PSSP
subsystem requires them. Thus, it is recommended not to use the CWS to run
other programs or applications.

Do not use the CWS as a server for any other applications, for example, TSM
or Netview, because they can deprive necessary resources from CWS and
interfere with PSSP subsystems. If this happens, it may cause an unexpected
interruption to the operation of your production SP nodes.

One probable exception to this is the Performance Toolbox. If we do not have
other machines that can run it, we can run it on CWS and display the
consoles on the local display. (We do not recommend displaying the consoles
on the remote machine, because this can place quite a workload on the
CWS.)

Do not use the CWS as a client for other applications. If this can not be
avoided, be aware of the impact that the client function can cause to the
overall performance of the CWS and try to prevent that from happening. For
example, if the CWS is a client of a DNS server and the server appears to be
down, the DNS client on CWS will retry to contact the name server several
times until it times out. This can have serious performance impact to the
CWS. In this case, we recommend that you put all hostnames required by the
CWS in the /etc/hosts file and create a /etc/netsvc.conf file with a line saying:
“host=local,bind”, as this instructs AIX to consult local /etc/hosts file before
going to the DNS server for name resolution.

In summary, dedicate the CWS to the PSSP management and monitoring
tasks, such as Perspectives and Performance Toolbox, only.
© Copyright IBM Corp. 2000 181

7.2 Control workstation tuning

This section describes various tuning parameters for the CWS.

7.2.1 Network tunables
When you first install AIX on the CWS, its network tunable values are set to
the default. Your system may not run efficiently with these values.

When installing PSSP on your CWS, modify the following network tunables to
the values suggested in Table 24.

Table 24. CWS network tunables

When you use the no -o command to change a network tunable value, it
takes effect immediately. However, it is not preserved upon reboot.

To make the changes to the network tunables effective upon reboot, add the
no -o command to the bottom of the /etc/rc.net file.

Notice that this is different from tuning the nodes in the SP. The dynamic
tuning changes for SP nodes should be done in the /tftpboot/tuning.cust file.

Refer to Chapter 4, “Network tuning” on page 21 for more detailed information
about these network tunables.

Tunable Recommended initial value

thewall Leave it at the default value

sb_max 163840

ipforwarding 1

tcp_sendspace 65536

tcp_recvspace 65536

udp_sendspace 32768

upd_recvspace 32768

tcp_mssdflt 1448
182 RS/6000 SP System Performance Tuning Update

7.2.2 Adapter tuning
Various models of the network adapters can have different values for transmit
and receive queue sizes. These values sometimes also differ depending on
the level of AIX you are using.

You can set these values using SMIT or the chdev command. We recommend
you use SMIT, because PF4 in SMIT shows you the range of valid values that
can be specified.

We recommend to set the transmit and receive queue sizes to the maximum
value.

If the adapter you are changing is also the adapter for the network you are
logged in through or it is being used, you will have to make the changes to the
databases only. Then reboot the CWS for the changes to become effective.

Refer to Section Chapter 5., “Adapter tuning” on page 95 for more detail
information about network adapter tuning.

7.2.3 Other AIX components tuning
For tuning other AIX components (memory, disk and so on) on the CWS, refer
to Chapter 6, “Tuning other components in AIX” on page 115.

7.2.4 Other considerations
The following are other considerations that may have impact on the CWS.

SP Ethernet tuning
Refer to Section 5.3, “SP Ethernet tuning” on page 110 for information about
SP ethernet tuning.

Because the CWS can perform various roles, for example, to install the
nodes, to control/monitor the nodes and so on through the life cycle of an
SP system, there may be cases where the initial network tunable options
described here may not be optimum.

In that case, use the recommendations in Section 4.7.4, “Tuning for server
environments” on page 91.

Note
Chapter 7. Control workstation tuning 183

Tuning the Topology Services subsystem
Topology Services is a distributed subsystem of the IBM RS/6000 Cluster
Technology (RSCT) software for the RS/6000 system. It provides other high
availability subsystems with network adapter status, node connectivity
information and a reliable message service.

Topology Services is meant to be sensitive to the adapter and network events
in the system; this sensitivity is tunable. However, some conditions can
degrade the ability of Topology Services to accurately report on adapter or
node membership.

One such condition is the failure of AIX to schedule the daemon process in a
timely manner. This can cause daemons to be late in sending their heartbeats
by a significant amount. This can happen because an interrupt rate is too
high, the rate of paging activity is too high, or there are other problems.

If the daemon is prevented from running for enough time, the node might be
considered to be down by other peer daemons. The node down indication,
when propagated to subsystems like VSD and GPFS, will cause these
subsystems to perform; in this case, undesirable recovery procedures that
take over resources and roles of the node will occur.

Two parameters in the TS_Config class in SDR controls this operation:

Frequency Controls how often Topology Services sends a heartbeat to its
neighbors. The value is interpreted as the number of seconds
between heartbeat. The minimum and default value is 1 second.

Sensitivity Controls the number of missed heartbeat messages that will
cause a Death in Family message to be generated. The default
is 4. Heartbeats are not considered missing until it has been
twice the interval indicated by the frequency value.

The default settings of these values are overly aggressive for a SP system
partition with more than 128 nodes or under heavy load conditions. Using the
default setting in these environment can result in false failure indications.

Decide which settings are suitable for your system by considering the
following:

• Higher values for the frequency attributes result in lower CPU and network
utilization from the Topology Services daemon.

• Higher values for the product of frequency times sensitivity result in less
sensitivity of Topology Services to factors that cause the daemon to be
blocked or messages not to reach their destinations. Higher values also
184 RS/6000 SP System Performance Tuning Update

result in Topology Services taking longer to detect a failed adapter or
node.

• If the nodes are used primarily for parallel jobs, use the settings shown in
Table 25:

Table 25. Settings for nodes running primarily parallel jobs

• If the nodes are used primarily for database workloads or a mixed
environment, use the settings shown in Table 26:

Table 26. Settings for nodes running primarily DB or mixed loads

• If the nodes tends to operate in a heavy paging or I/O intensive
environment, as is often the case when running the GPFS software, use
the settings shown in Table 27:

Table 27. Settings for nodes with intensive I/O and heavy paging

These tunables are typically set after PSSP is installed and configured on the
CWS and before installing the nodes. After PSSP has been installed and
configured on the nodes, you must refresh the subsystem after making any
tuning adjustments.

To display the current settings, use the following command:

Frequency Sensitivity Seconds to detect failure

2 6 24

3 5 30

3 10 60

4 9 72

Frequency Sensitivity Seconds to detect failure

2 6 24

3 5 30

2 10 40

Frequency Sensitivity Seconds to detect failure

1 12 24

1 15 30
Chapter 7. Control workstation tuning 185

To change the frequency to 3 seconds and sensitivity to 5, use the following
command:

The -f flag sets the frequency, the -s flag sets the sensitivity and the -r flag
refreshes the hats subsystem after the setting.

root@sp6en0:/: /usr/sbin/rsct/bin/hatstune -v
Current HATS tunable values:

Frequency: 1
Sensitivity: 6
Running fixed priority: 38
Maximum number of lines in log file: 5000
Pinning in real memory:

root@sp6en0:/: /usr/sbin/rsct/bin/hatstune -f 3 -s 5 -r
The following HATS tunables are changed:

Default heart beat frequency changed to 3.
Default heart beat sensitivity changed to 5.

0513-095 The request for subsystem refresh was completed successfully.

Topology Services sets the following network options to 1 so that the
reliable message feature, which utilizes IP source routing, will continue to
work:

• nonlocsrcroute
• ipsrcroutesend
• ipsrcrouterecv
• ipsrcrouteforward

Disabling any of these network options can prevent the reliable message
from working properly

Note
186 RS/6000 SP System Performance Tuning Update

Part 3. Problem determination and tools
© Copyright IBM Corp. 2000 187

188 RS/6000 SP System Performance Tuning Update

Chapter 8. Problem determination

This chapter provides you with an initial Performance Problem Checklist
when your system is experiencing performance problems.

For more information on network tunables, ARP, or NFS tuning, you can refer
to Chapter 4, “Network tuning” on page 21. Transmit queue overflows and
switch send pools are discussed in Chapter 5, “Adapter tuning” on page 95.
Resource monitors, such as vmstat, iostat, and netstat, are explained in
more detail in Chapter 10, “Resource monitoring” on page 203.

The dsh commands given below are to be run on the nodes. The quoted part
of these commands also need to be run on the control workstation.

8.1 Performance problem checklist

Users - Check if the expected users are logged onto the system:

dsh -a “who”

Processes - Check for runaway processes:

dsh -a “ps -gvc”

• Look for processes causing lots of pagein counts.

• Look for processes using up lots of memory.

• Look for processes using lots of CPU.

(kproc is the cpu wait process and can be ignored)

Paging - To check the total amount of paging being used:

dsh -a “lsps -a”

use vmstat 2 5 to check paging rates:

• Check for page scan rates in the "sr" column.

• Check for page freeing rates in the "fr" column.

CPU - Check CPU utilization:

dsh -a “vmstat 2 5”

• Check for the percentage of user time in “us” column.

• Check for the percentage of system time in “sys” column.
© Copyright IBM Corp. 2000 189

I/O - Check I/O utilization:

dsh -a “iostat 2 5”

• Check for imbalance of workload between disks.

• Check %iowait for the time the CPU was idle while there was an
outstanding I/O request.

AIX network tunables - Check AIX network tunables:

dsh -a “no -a”

Transmit queue overflows -Check network adapters for transmit queue
overflow errors, particularly on the adapters to the SP Ethernet:

dsh -a “netstat -v en0 | grep Overflow “

For the switch:

dsh -a “estat -d css0 | grep Overflow”

ARP cache - Check to see that the ARP cache is set correctly for systems
greater than 128 nodes:

dsh -a “arp -a | wc -l”

Switch send pool (SP Switch only) - Check vdidl3 for failed counts on the
switch send pool:

dsh -a “/usr/lpp/ssp/css/vdidl3 -i”

Traffic flow - Check for unexpected or unbalanced traffic flow:

dsh -a “netstat -i”

NFS - Check for client timeout and retry counts:

dsh -a “nfsstat -c”
190 RS/6000 SP System Performance Tuning Update

Chapter 9. Common performance problems

When tuning an SP system, some problems can appear that cause
performance that is lower than expected. The following sections shed more
light on most of these problems, how to detect them, and what tuning
parameters to change in order to alleviate them.

9.1 The Nagle Algorithm

A problem that often occurs on the SP systems is that an application runs
very slowly when using the SP Switch, while performance is significantly
better on an Ethernet or FDDI network interface. This problem is sometimes
caused by the Nagle Algorithm (used by TCP/IP) interacting with the delayed
ACK (acknowledgement) timer. Complete information about the Nagle
Algorithm can be found in Section 4.2.9, “Description of the Nagle Algorithm”
on page 42.

The following are suggestions on how to avoid the Nagle Algorithm in SP
systems:

• If you are running an application and do not have access to the source
code, use the no command to increase the TCP window.

Be careful with this because it may not always be effective. Increasing the
tcp_sendspace and tcp_recvspace sizes on the sending and receiving
nodes may cause other negative effects on the SP system or to other
applications running on the system. Make sure that you set rfc1323 to 1 if
the window size exceeds 65536.

• Change the MTU size of the switch.

Changing the MTU of the switch moves the window and buffer size
combination where the 200 msec delay is invoked. When writing 32 KB
buffers to a TCP connection, if the TCP/IP window is 65536, only 5
packets/second are transmitted. If you change the MTU of the switch
interface to 32768, there is no delay on transmitting a 32768 buffer,
because it is the same size as the segment size of the switch. However,
reducing the MTU of the switch to 32768 degrades the peak TCP/IP
throughput slightly. Reducing the MTU even further degrades the peak
throughput even more.

• From within an application, you can increase the TCP window size on the
socket by using the SO_SNDBUF and SO_RCVBUF settings on the
socket.
© Copyright IBM Corp. 2000 191

- For good performance across a switch, we suggest that both
SO_SNDBUF and SO_RCVBUF be set to at least 524288 on both the
client and server nodes. You need to set both sides, because TCP uses
the lowest common size to determine the actual TCP window.

- If you set the SO_SNDBUF and SO_RCVBUF sizes larger than 65536,
you need to set TCP_RFC1323 also on the socket unless the no

options already set it. Setting TCP_RFC1323 to 1 takes advantage of
window sizes greater than 65536.

- You also want to ensure that the system setting for sb_max is at least
twice the TCP window size, or sb_max will reduce the effective values
for SO_SNDBUF and SO_RCVBUF.

• Set TCP_NODELAY on the socket of the sending side to turn off the Nagle
Algorithm.

All data sent will go immediately, no matter what the data size. However, if
the application sends very small buffers, you will significantly increase the
total number of packets on the network.

On systems where a node is talking to several other nodes, it is harder to see
the Nagle effect. In this case, the only way to detect it is to examine the
iptraces command outputs to extract a single socket's traffic. What can
happen is that if one node is talking to two nodes, each connection can have
the Nagle effect, and the packet rate over the switch is 10 packets/sec. If you
have one node talking to five nodes, the packet rate can be 25
packets/second, but the aggregate switch traffic 1.5 MB/sec. This rate
exceeds the throughput on a slow Ethernet network, but is well below what
the switch can handle.

9.2 Adapter queue overflows

Many types of network adapters are supported in the RS/6000 SP
environment. When data is being sent, it is passed through the TCP/IP layers
to the device driver for that adapter. At the device driver layer, data is queue

Two common problems that can cause unexpected Nagle behavior:

• Set tcp_sendspace and tcp_recvspace to a higher number and forget
to set rfc1323 to 1 on all nodes.

• Set tcp_sendspace and tcp_recvspace large on one node and not in
the other.

Note
192 RS/6000 SP System Performance Tuning Update

in network memory pool space until it is transmitted by the adapter. Then, it is
signaled to start DMA operations. When the adapter has completed the
transmission, it interrupts the system, and the device interrupt routines are
called to adjust the transmit queues and free the network memory buffers that
held the transmitted data.

When frames are received by the adapter, they are transferred from the
adapter into a driver-managed receive queue. This queue consists of network
memory buffers. If no network memory buffers are available, the incoming
frames are discarded. If the frame was sent by TCP, TCP will resend the
packet when a time-out is received. If UDP sent the data, it is up to the
application to verify that the packets have been sent.

See Chapter 5, “Adapter tuning” on page 95 for a complete description of this
mechanism and suggestions about tuning transmit and receive queues in the
adapters. Also, a list with the most typical adapter used in SP systems and its
specifications about adapter queues (default values and ranges).

9.3 ARP cache tuning

Address Resolution Protocol (ARP) translates dynamic Internet addresses for
IP into the unique hardware MAC addresses for all adapters on local links to a
node. Configurations larger than 128 nodes in your RS/6000 SP environment
could have performance problems due to the size of the ARP cache when
communicating using IP based protocols.

In the second part of this book you had a complete explanation of ARP
protocol and ARP cache tuning (Section 4.2.7, “Address resolution” on page
40) and the description of the parameters needed to do this (Section 4.3.2,
“AIX tunables” on page 46). At this point, we only give some
recommendations about the best way to size ARP cache in SP systems.

• For systems with greater than 150 nodes, round the number of nodes
down to the next power of 2, and use that for arptab_nb. Table 28 shows
these values for systems from 1 to 512 nodes.

Table 28. Determining ARP tuning settings based on the number of nodes

Number of nodes arptab_nb value

1-64 25(default)

65-128 64

129-256 128

257-512 256
Chapter 9. Common performance problems 193

• For nodes that have more than three network adapters, set arptab_bsiz to
2 times the number of active IP interfaces. Table 29 lists the sizes of the
arptab_bsiz value, based on the number of IP interfaces.

Table 29. Determining ARP tuning settings based on number of IP interfaces

9.4 NFS performance in SP system

The first problem related to NFS that we generally see in large SP system
configurations occurs when a single node is acting as the NFS server for a
large number of nodes. In this scenario, the aggregate number of NFS
requests can overwhelm the NFS socket or nfsd daemons on the server, or
enough daemons cannot be configured.

For the server configuration, the number of nfsd daemons are the primary
concern. If you have a 64 node configuration and configured one NFS server
for the other 63 nodes, and if all 63 client nodes made an NFS request at the
same time, you will need at least 63 nfsd daemons on the server. If you had
only eight nfsd daemons, as in the default configuration, then 55 NFS
requests would have to wait and they could time out. Obviously, average NFS
response time will be very slow.

However, there is a limit on how many nfsd daemons you can configure
before the amount of processing on behalf of the NFS traffic overwhelms the
server. Generally, when you configure more than 100 nfsd daemons on a
uniprocessor, and 200 nfsd daemons on a SMP node, you start to see NFS
performance degradation, depending on the characteristics of the NFS traffic.
The size of the requests, the mix of NFS operations, and the number of
processes on each node that generates NFS requests influence the amount
of NFS performance degradation.

Determining the number of biod daemons to configure on the client node is a
bit complicated. The limitation of six biod daemons on a client node per NFS

Number of interfaces arptab_bsiz value

1-3 7

4 8

5 10

6 12

7 14

8 or more 2 x number of interfaces
194 RS/6000 SP System Performance Tuning Update

mounted file system is imposed by NFS. If there is more than one NFS
mounted file system on your client nodes, and the number of biod daemons
gets too high, performance will suffer in the same way as when too many nfsd
daemons are configured on the server. Again, a general rule is that more than
100 biod daemons on a uniprocessor and 200 biod daemons on a SMP node
will start to degrade performance.

If you already have a lot of nfsd daemons configured on the server, the best
solution is to split the NFS server duties up across several nodes, and keep
the potential number of concurrent NFS requests below 100.

See Section 4.5, “NFS tuning” on page 68 for a complete NFS mechanism
description and more information about nfsd and biod daemons tuning.

9.5 External server considerations

Connections through external networks to other machines can restrict
performance on certain nodes on the SP system. For example, some external
servers may not support RFC1323 extension, and can threfore only use a
maximum TCP/IP window of only 65536 to transfer data to or from a node.
This causes different performance problems on connections to these servers
from other connections on the same node to other SP nodes.

In some cases, external servers have to communicate with additional external
servers. When such external servers establish a connection, the negotiated
tunables may be set to small values. For example, the TCP/IP window size
value is set to the least common denominator. In the case of an external
server having a tcp_recvspace of 16384, that is the TCP/IP window size that
is used. Such a small TCP/IP window size provides slow throughput if the
sending node is on the far side of a switch from a gateway node.

If traffic is routed through other external network routers, you may not be able
to use the optimal maximum transmission unit (MTU) or tcp_mssdflt size for
that network. If this happens, adjust the tcp_sendspace and tcp_recvspace
values accordingly.

When you configure more than 100 nfsd daemons on a uniprocessor
system or more than 200 nfsd daemons on a SMP node, you start to see
NFS performance degradation, depending on the characteristics of the
NFS traffic. The same rule can be applied to biod daemons

Note
Chapter 9. Common performance problems 195

To find the optimal tcp_sendspace and tcp_recvspace sizes, get the largest
MTU size that the router will handle to other networks of the same type. To
get the optimal tcp_sendspace and tcp_recvspace sizes for single-stream
transfers, use the formula shown in Figure 23.

Figure 23. Calculating tcp send/receive space sizes

This does not apply to the SP switch or SP switch2 because the switch
adapter does not have transmit and receive queues. See Section 5.2, “SP
Switch and SP Switch2 adapter tuning” on page 99 for more information on
tuning rpoolsize and spoolsize.

The number produced by the formula in Figure 23 is the largest that you can
use for a single socket before the adapter drops packets and TCP/IP has to
do a retry on the dropped packets. If you have more than one active socket,
then the size calculated using this formula needs to be divided by the number
of active sockets. You need to avoid dropping packets on the adapter to get
optimal throughput performance.

When configuring the nodes, you must plan for the amount of mbuf space for
all interfaces to a node. An indication that the mbuf allocation is too small is
getting a requests for mbufs denied count in the netstat -m output, but you
need to set extendednetstats to 1. See Section 11.1, “IBM AIX Monitoring
tools and commands” on page 243 for more information about the command.

Some of these problems cannot be overridden using tunables on the node,
but need to be considered when tuning a node that communicates to outside

t = m * q, where:

t = optimal tcp_sendspace and tcp_recvspace sizes

m = largest MTU size that the router will handle to other networks

q = smaller of the transmit queue and receive queue size for the
adapter

no -o extendednetstats
extendednetstats = 1

netstat -m
2 mbuf cluster pages in use
7 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached
196 RS/6000 SP System Performance Tuning Update

servers. There are two network tunables that may help in solving the small
packet problem to external servers. These no settings are:

• tcp_pmtu_discover

• udp_pmtu_discover

By setting these tunables to 1, when a connection is established to a
connection on a remote network (if the external server or workstation
supports MTU path discovery), the connection will determine the largest
segment size that it can send without fragmentation. This eases the problem
of setting tcp_mssdflt to a compromise value.

9.6 Single-server multiple-client node problems

Some application configurations, such as NFS, consist of a parent or server
node with multiple client or remote nodes. Such applications have a potential
for the client nodes, through a large TCP window size, to send large volumes
of data to one server node using the nonblocking switch network, whereas
the server node cannot handle the total traffic from the client nodes, due to
demands on the server’s mbuf pools. The dropped packets will be reflected in
a large number of failures in netstat -m on the server node.

To further illustrate, if you had 64 client nodes, as shown in Figure 24 on page
198, with a TCP window size of 512 KB, the server node would need buffer
space of 32 MB just to accommodate the incoming packets from the client
nodes, all other connections and traffic aside. To determine the server node
mbuf requirements, get the number of client nodes that will simultaneously
send data to the server node, multiply by the TCP window size on each client
node, then again multiply by the number of sockets that each client opens on
the server. If the server has multiple roles, add additional mbuf space as
required. You can see how easy it can be to exceed the maximum amount of
memory that can be allocated for the network (thewall) or even the limitations
of the server node itself, which may only contain 128 MB of memory. To
prevent this scenario from happening, you must reduce the combined amount
of data arriving from the client nodes to the server nodes.
Chapter 9. Common performance problems 197

Figure 24. Single-server multiple-client scenario

You can use two methods to accomplish this:

• The first is to try to restrict the client nodes by setting tcp_sendspace and
tcp_recvspace small enough so that the combined data sent by the client
nodes does not exceed the buffer space on the server. While this reduces
the receive buffer space required on the server, if that traffic must then be
redirected to a terminal or remote file, you need to double the mbuf
requirements to accommodate sending it back out again. If there are other
applications on the client nodes that require the high switch bandwidth,
they will not get the same throughput and may suffer due to the smaller
setting for tcp_sendspace and tcp_recvspace. Traffic will back up and
applications may slow down. It is a tradeoff of large data transfers on the
client versus mbuf allocation on the server. To determine what values you
should assign to tcp_sendspace and tcp_recvspace, first select the
maximum number of buffers to allocate in the servers’ mbuf pool, divide by
the number of client nodes, and multiply by the average message size to
get your window size. Set tcp_sendspace and tcp_recvspace on both the
client and server side.

• The second method would be to restrict tcp_recvspace on the server
node. The TCP window is negotiated upon establishment of the
connection; the window value will be set to the lesser of tcp_sendspace
and tcp_recvspace and will only impact client to server connections.

32
M B

Server

.................512K

Client 1

512K

Client 2

512K

Clien t 3

512K

Clien t 4

512K

Client 64
198 RS/6000 SP System Performance Tuning Update

• If at all possible, the best solution would be to set the socket window sizes
from within an application, leaving the tcp_sendspace and tcp_recvspace
settings alone. This can be done by using the setsockopt() call within the
application to change the values for SO_SNDBUFF and SO_RCVBUFF.
Changing these values affects only the socket that the setsockopt() call
was made against. All other connections would use their own setsockopt()
call settings or the tcp_sendspace and tcp_recvspace settings.

Keep in mind that UDP has no mechanism for windowing and can have a
greater amount of outstanding I/O on the connection. UDP should not be
used to send large amounts of data over the switch because you could
deplete the servers’ mbuf pools very rapidly. Also be aware of very small
messages; the minimum allocation from the mbuf pool is 256 bytes, so you
could chew up all the mbuf space with a small amount of data.

An example of how a typical program would be modified to handle the
setsockopt() call is shown in Figure 25. You can get more information in
changing socket setting in the documentation for the setsockopt() call in the
AIX Technical Reference Volume 1, SN32-9029.

Figure 25. Sample setsockopt() call

/*We are the client if transmitting*/
if(options) {

if(setsockopt(fd,SOL_SOCKET, options, &one, sizeof(one)) <0
err("setsockopt");

}
if(nodelay) {

if(setsockopt(fd,IPPROTO_TCP,TCP_NODELAY,&one, sizeof(one)) <0
err("nodelay");

}
if(rfc1323) {

if(setsockopt(fd,IPPROTO_TCP,TCP_RFC1323,&one, sizeof(one)) <0
err("rfc1323");

}
if (setsockopt(fd,SOL_SOCKET,SO_SNDBUF,&window,sizeof(window)) <0)

err("setsendwindow");
if (setsockopt(fd,SOL_SOCKET,SO_RCVBUF,&window,sizeof(window)) <0)

err("setreceivewindow");
if(connect(fd,&sinhim, sizeof(sinhim)) < 0)

err("connect");
mes("connect");
Chapter 9. Common performance problems 199

9.7 Gateway or router node problems

Gateway or router nodes direct traffic between external networks and the SP
system. Two different types of nodes are used as gateways: an existing SP
node acting as a gateway, and the SP Switch Router, used as direct-attached
SP Router node (also known as the GRF router node).

If a lot of traffic is routed through a router node, it affects any other job using
that node. We suggest that router or gateway nodes not be assigned to high
priority or fast response time parallel jobs unless there are no other nodes
available, or the amount of expected network traffic is small.

When tuning a router or gateway, you need to plan on enough buffer space in
the node to handle traffic on multiple interfaces. Traffic from the SP Switch
uses the send and receive pools. Traffic to Ethernet, Token Ring and FDDI
uses the system mbufs, while ATM uses its own buffer areas. Having a large
difference between the switch pools and the amount of space for other
adapter traffic leads to bottlenecks or dropped packets. The best initial
settings are for the same amount of space for both sets of interfaces.

To optimize the packet size sent to remote networks, you may set the variable
tcp_pmtu_discover = 1. This lowers the overhead on the gateway or router
node. However, watch out for networks with more than a couple of hundred
hosts. By turning tcp_pmtu _discover on, you are, in effect, creating a route in
your routing table to every host that is out there. Any network greater than a
couple of hundred hosts becomes very inefficient and performance problems
will arise. Be sure to turn this variable on if your network has the correct
number of hosts.

9.8 Typical performance problems by environments

Table 30 that summarizes the most common performance problems in SP
systems, but categorized by environment.

Table 30. Common performance problems categorized by environment

Common to all applications

What? Where?

Nagle problem caused by incorrect TCP
windows tuning

Go to Section 9.1, “The Nagle Algorithm”
on page 191.

Single server / Multiple client scaling
problems

Go to Section 9.6, “Single-server
multiple-client node problems” on page
197.
200 RS/6000 SP System Performance Tuning Update

Memory size problems Go to Section 10.2, “Monitoring memory”
on page 204

Commercial applications

What? Where?

SP switch pool sizing Go to Section 5.2, “SP Switch and SP
Switch2 adapter tuning” on page 99.

Excessive aggregate memory
requirements

Go to Section 4.3, “AIX network tunables”
on page 45.

Adapter queue overflows Go to Section 9.2, “Adapter queue
overflows” on page 192.

Scientific and technical applications

What? Where?

Synchronization point file server
accesses

Go to Section 6.3, “I/O” on page 141.

File system performance Go to Section 6.3, “I/O” on page 141.

Server environments

What? Where?

Exhaustion of switch pools due to use of
large TCP windows

Go to Section 5.2, “SP Switch and SP
Switch2 adapter tuning” on page 99.

Adapter queue overflows in non-switch
adapters

Go to Section 5.3, “SP Ethernet tuning” on
page 110.

NFS tuning (daemons & socket sizing) Go to Section 4.5, “NFS tuning” on page
68.

Bottlenecks on the I/O bus or disks Go to Section 6.3, “I/O” on page 141.

Buddy buffers sizing for VSD or GPFS Go to Chapter 13, “VSD” on page 353 and
Chapter 14, “GPFS” on page 369.
Chapter 9. Common performance problems 201

202 RS/6000 SP System Performance Tuning Update

Chapter 10. Resource monitoring

In this chapter, we will discuss how to monitor system resources by using
commands and tools that are available with the normal AIX distribution. Their
use on the RS/6000 SP is the same as on any standalone RS/6000
multiprocessor (MP) or uniprocessor (UP) system. The main differences are
the tools to monitor the SP Switch and SP Switch2.

10.1 IBM AIX monitoring tools and commands

AIX provides several monitoring tools to determine performance bottlenecks
and to tune the system. The commands listed in Table 31 are useful for
determining where bottlenecks are occurring on your system.

Table 31. IBM AIX monitoring tools by system resources

CPU MEMORY I/O Network

topas topas topas topas

vmstat vmstat vmstat netstat

iostat svmon iostat nfsstat

ps filemon fileplace netpmon

sar bf, bfrpt filemon iptrace,
ipreport

netpmon lsps lspv, lslv, lsvg tcpdump

pstat crash crash, ndb

acctcom acctcom nslookup, host,
ntptrace, ntpq

traceroute, ping

col_dump

entstat,
tokstat,
fddistat,
atmstat, estat

trace, trcrpt trace, trcrpt trace, trcrpt trace, trcrpt
© Copyright IBM Corp. 2000 203

10.2 Monitoring memory

To monitor the usage of memory in a SP node is very important, because a
lack of memory will invariably lead to, at least, performance degradation, but
in some cases even service discontinuance and application malfunctions.

The default values in /etc/security/limits, as shown here, will limit each
process regarding the DATA, RSS and STACK properties of a user process,
unless they are changed, which is often necessary.

The limits that are highlighted above are softlimits that can be used to restrict
how a user process is allowed to use system memory (real and virtual).

To enforce a hardlimit, the following attributes may be used instead:

The values are 512-byte blocks or -1 which indicates unlimited. If the
hardlimits are not set, the data_hard, rss_hard and stack_hard will all default
to unlimited.

data Identifies the soft limit for the largest process data segment for
a user's process.

rss Sets the soft limit for the largest amount of physical memory a
user's process can allocate. This limit is not enforced by the
system.

stack Specifies the soft limit for the largest process stack segment for
a user's process.

data_hard Identifies the largest process data segment for a user's process.

rss_hard Sets the largest amount of physical memory a user's process
can allocate. This limit is enforced by the system.

stack_hard Specifies the largest process stack segment for a user's
process.

grep -p ^default /etc/security/limits
default:

fsize = 2097151
core = 2097151
cpu = -1
data = 262144
rss = 65536
stack = 65536
nofiles = 2000
204 RS/6000 SP System Performance Tuning Update

10.2.1 System-wide monitoring
Memory monitoring can be done with many commands and tools. We will try
to describe two starting points and how to pursue the resource specifics of
memory monitoring.

10.2.1.1 To start with vmstat
The vmstat command shows how the system is performing its memory
handling, as is shown in this example:

To find out how much real memory this system has, you can use the bosboot

and lsattr commands. Three examples of how to do it follows:

The node has 12 GB of memory and it is running out of memory; vmtune can
tell us what the VMM settings for this node are:

vmstat 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 2146520 130 0 4 3 67 238 0 237 243 222 31 7 30 32
4 11 2146523 135 0 0 0 7008 25490 0 2868 8989 3711 24 9 0 67
4 9 2145191 122 0 0 0 6812 50234 0 2746 4100 3362 27 8 0 65
4 9 2145192 124 0 0 0 7602 48337 0 2766 3696 3606 20 8 0 72
4 11 2145637 133 0 0 0 7109 46670 0 2777 8785 3479 25 8 0 67
5 13 2145738 134 0 0 0 8267 66832 0 3600 22070 5037 40 12 0 48
6 10 2144499 119 0 0 0 8348 83568 0 3435 31469 4695 33 14 0 53
5 10 2144244 131 0 0 0 7325 53636 0 2943 26248 4871 30 12 0 58
3 11 2144251 133 0 0 0 7309 44760 0 2987 16852 4465 16 12 0 71
<<< lines omitted >>>

bosboot -r
12582912

lsattr -F value -El sys0 -a realmem
12582912

lsdev -F name -Cc memory|grep m̂em|xargs -i lsattr -Fname:attribute:value -El {}
mem0:size:12288
mem0:goodsize:12288
Chapter 10. Resource monitoring 205

Just by looking at the previous vmstat output, we can almost certainly say that
this 12 GB/12 CPU system is having a hard time, with a lot of threads blocked
for I/O and a high wait for I/O. But the separation of system and user is OK
even though there are a lot of system calls and context switches going on,
and there is obviously a shortage of real memory. However, the vmtune output
does show that someone has changed the default values for
minperm/maxperm and that numperm is 35 percent. This would mean that
approximately 4 GB is used for file caching. The system is running multiple
ORACLE RDBMS instances and the disk layout is not optimized for speed.

Based on the information presented in the previous paragraph, we can make
the following conclusions:

• The system is short on memory. This needs to be investigated further to
determine if minperm/maxperm can be lowered substantially and maybe
strict_maxperm can be used as well. Also, the minfree/maxfree should be
increased, depending on the read behavior on the file systems. But for
now, we will assume that we will make the following changes with vmtune to
the system:

- minfree to 240 and maxfree to 256

- minperm to 3 and maxperm to 8

• There is a high percentage of I/O wait, but this is actually AIX V4.3.2, so it
could be misleading (see Section 11.1.37, “vmstat” on page 324 for more
information). But there are a lot of blocked threads, so we need to
investigate the RDBMS layout as well. Usually an I/O intensive system can
aggravate the memory usage, because more processes are
simultaneously active during longer periods of time than would be the
case if their I/O was dispensed with more quickly.

/usr/samples/kernel/vmtune
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
628939 943715 2 8 120 128 524288 0

-M -w -k -c -b -B -u -l
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defp
2516576 105984 26496 1 93 928 9 131072 1

-s
sync_release_ilock

0

number of valid memory pages = 3145719 maxperm=30.0% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 1102288 numperm=35.0% of real memory
206 RS/6000 SP System Performance Tuning Update

10.2.1.2 To start with svmon
The most memory monitoring oriented command, svmon will show how the
system is performing it’s memory handling a bit differently from vmstat, as is
shown in this example:

The above example shows us that size of real memory frames are 65536
memory frames, 38389 of these frames contain pages, and 27147 are free.
The size of the paging space is 131072 pages and 26474 are used.

.

10.2.1.3 To start with sar
Another good, but more versatile monitoring command, sar will also show
how the system is performing its memory handling a bit differently from
vmstat, as can be seen in this example:

The above example shows us that, on average, the node has 61.8 kernel
threads in the run queue, that 2.6 kernel threads are waiting to be paged in.
There are 3887 page faults per second (this is not a count of page faults that
generate I/O, because some page faults can be resolved without I/O) and
there are 42 non paging disk I/Os per second.

svmon -i 2 4|sed '/̂ $/d'
size inuse free pin virtual

memory 65536 38389 27147 4599 49050
pg space 131072 26474

work pers clnt
pin 4443 156 0
in use 25406 12983 0

size inuse free pin virtual

VMM manages virtual counter for statistics purpose. It may happen that all
values are not updated at the same time.

Note

sar -qr 2 4|sed '/ $̂/d'
AIX night4n41 3 4 006001824C00 10/13/00
19:35:49 runq-sz %runocc swpq-sz %swpocc

slots cycle/s fault/s odio/s
19:35:54 70.0 100 2.0 100

4191450 0.00 68.17 37.39
19:35:59 63.2 100 2.4 100

4191504 0.00 33.80 41.79
19:36:04 55.8 100 2.8 100

4192228 0.00 389.75 46.99
19:36:09 59.0 100 2.8 100

4192229 0.00 9030.14 47.19
19:36:14 61.0 100 2.8 100

4192229 0.00 9915.16 34.20
Average 61.8 100 2.6 100
Average 4191928 0 3887 42
Chapter 10. Resource monitoring 207

10.2.2 Application specific monitoring
To find out how much real memory an application uses, is important that the
memory consumption of additional instances can be calculated. Each
process has shared and non-shared parts. The non-shared are specific for
each process, but the shared part can be used by other processes as well.

Since part of a process is usually shared, it is not so straightforward as to
multiply one instance of a process memory consumption with the number of
estimated instances of that process.

In a small scale system, this might not be a real issue, but counting hundreds
and thousands of users this same way can give a large amount of perceived,
but false, memory requirements. Say that an application uses 10 MB for the
first instance; of these 10 MB, we know that 7 MB are shared. Then, by
adding 500 users who use the same program, if we only calculated 10*500,
we would have an overcapacity of 7*500 (3.5 GB) memory when it would be
sufficient with approximately 3*500 1.5 GB.

It is important to find out how much memory is and will be used by adding
more users and applications to a production system. To calculate the
requirements for sizing memory for a particular application, we can use the
following formula:

Total application size = shared size + (# processes * non-shared size)

This example uses the svmon -dlC command, which will show all processes
running the specified application (note the highlighted process 16426, as this
will be used in subsequent examples below).
208 RS/6000 SP System Performance Tuning Update

Then svmon displays information about the segments used by those
processes. This set of segments is separated into three categories:

• The segments that are flagged SYSTEM, that are basically shared by all
processes.

• The segments that are only used by the set of processes (exclusive).

• The segments that are shared between several command names (shared).

Because we used the -l flag, then for each segment in the last category the
list of process identifiers, that use the segment, are displayed. Beside the
process identifier, the command name it runs is also displayed. Note that in
our example above, the application ksh shares a segment with different
applications as well (tn, smitty).

The first Inuse column indicates the total number of pages in real memory in
segments that are used by all processes running the command.

svmon -dlC ksh|sed '/ $̂/d'
===
Command ksh Inuse Pin Pgsp Virtual

3495 19 172 4726

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
31094 ksh 2458 7 43 3509 N N

<<< lines omitted >>>
16426 ksh 2365 7 33 3442 N N

...
SYSTEM segments Inuse Pin Pgsp Virtual

6 6 0 7
<<< lines omitted >>>
...
EXCLUSIVE segments Inuse Pin Pgsp Virtual

1172 13 146 1362
<<< lines omitted >>>
...
SHARED segments Inuse Pin Pgsp Virtual

2317 0 26 3357
<<< lines omitted >>>
1e8de - pers /dev/hd2:8280 1 0 - - 0..0

pid:39722 cmd: tn
pid:35606 cmd: ksh
pid:34248 cmd: ksh
pid:32684 cmd: tn
pid:31094 cmd: ksh
pid:29056 cmd: smitty
pid:28302 cmd: ksh
pid:26964 cmd: ksh
pid:26454 cmd: ksh
pid:17628 cmd: ksh

<<< lines omitted >>>
Chapter 10. Resource monitoring 209

By adding the Inuse columns from SYSTEM, EXCLUSIVE and SHARED we
end up with the same amount as is shown in the Inuse column for the
Command record (6+1172+2317 = 3495).

To examine a specific process, the following example shows how to use the
-P option; this option also requires a process ID as parameter. In this
example, we get the same data for this particular process as is highlighted in
the previous example (2365 [2257+58+41+6+2+1]):

Compare this with the output from the ps command:

A simpler way of looking at the output from svmon is as follows:

10.2.2.1 To start with xmperf
Start xmperf on the CWS (or the system that PTX/6000 is installed on) and
select Monitor -> add new console. Select the node IP address that is the
subject of observation. In Figure 26 on page 211, we selected Memory
statistics -> physical memory and then the values we want to look at. Here
we have number of Computational pages resident in memory, Memory free,
Memory pinned:

svmon -P 16426|sed '/ $̂/d'

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
16426 ksh 2365 7 33 3442 N N
Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
13013 d work shared library text 2257 0 26 3357 0..65535
18058 1 pers code,/dev/hd2:5382 58 0 - - 0..58
18ff8 2 work process private 41 1 6 76 0..82 :

65310..65535
e00e 0 work kernel shadow 6 6 0 7 0..12
1c05c - pers /dev/hd2:47253 2 0 - - 0..1
19cf9 f work shared library data 1 0 1 2 0..1850
a0ab - pers /dev/hd9var:203 0 0 - - 0..0
70a6 - pers /dev/hd3:80 0 0 - -

ps vax 16426
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

16426 - A 0:00 0 500 400 32768 198 232 0.0 0.0 ksh
ps lax 16426

F S UID PID PPID C PRI NI ADDR SZ RSS WCHAN TTY TIME CMD
240001 A 0 16426 9930 0 64 22 18ff8 696 400 - 0:00 ksh

svmon -C ksh|grep -p segments|sed '/ $̂/d;/ \̂./d'
SYSTEM segments Inuse Pin Pgsp Virtual

6 6 0 7
EXCLUSIVE segments Inuse Pin Pgsp Virtual

1176 13 144 1362
SHARED segments Inuse Pin Pgsp Virtual

2333 0 26 3357
210 RS/6000 SP System Performance Tuning Update

Figure 26. xmperf custom output for memory

10.2.3 User specific monitoring
To find out how much real memory a user is using for applications, the
following is a way to find out.

This example uses the svmon -dU command, which will show all processes
running for the specified user:

svmon -dU root|sed '/ $̂/d'
===
User root Inuse Pin Pgsp Virtual

22413 294 10988 31048

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
29516 smitty 3365 7 26 4211 N N
29056 smitty 3342 7 96 4258 N N
18412 bin 3118 7 537 4415 N N
14192 bin 3072 165 1364 5208 N Y

<<< lines omitted >>>
...
SHARED segments Inuse Pin Pgsp Virtual

2263 0 26 3356
Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
13013 d work shared library text 2261 0 26 3356 0..65535
4204 1 pers code,/dev/hd2:509 2 0 - - 0..40

<<< lines omitted >>>
Chapter 10. Resource monitoring 211

10.3 Monitoring CPU

Monitoring the usage of CPU in a SP node is also very important, because if
Workload Manager is not used, a process is usually allowed to utilize the
available CPUs as much as its priority permits.

Applications that use spin-looping1 and other such techniques, or that are just
misbehaving, can cause system wide performance degradation (they are
CPU hogs).

UNIX/AIX is different from other multi-user IBM systems, such as OS/400,
because there is usually no limitations to how much resources a user
application can make use of (except for what is defined in /etc/security/limits).
The default values in /etc/security/limits, as shown here, will not limit the CPU
time for processes:

The limits that are highlighted above are softlimits that can be used to restrict
how a user process is allowed to use system memory (real and virtual):

To enforce a hardlimit, the following attributes may be used instead:

The values should be a decimal integer string representing the amount of
system unit time in seconds or -1, which indicates unlimited. If the cpu_hard
is not set, and cpu is unlimited, then cpu_hard by definition will be unlimited.

1 Programming technique where a condition is tested and retested in a loop with, usually, a delay between tests.

cpu Sets the soft limit for the largest amount of system unit time (in
seconds) that a user's process can use.

cpu_hard Sets the largest amount of system unit time (in seconds) that a
user's process can use.

grep -p ^default /etc/security/limits
default:

fsize = 2097151
core = 2097151
cpu = -1
data = 262144
rss = 65536
stack = 65536
nofiles = 2000
212 RS/6000 SP System Performance Tuning Update

10.3.1 System-wide monitoring
Memory monitoring can be done with many commands and tools; we will try
to describe two starting points and how to pursue the resource specifics of
memory monitoring.

10.3.1.1 To start with vmstat
The vmstat command shows how the CPU resources are used, as shown in
the following example:

As can be seen in the preceding example, the system has a good division
between system (sy) and user (us) mode. But the waiting (wa) for I/O is very
high, and the system has problems executing all I/O, as there are around ten
kernel threads that are blocked waiting for resources or I/O (b). The run
queue (r) is OK with around four kernel threads waiting to be dispatched.

But since we know that this is a 12 CPU node, the run queue (r) might even
be a bit low to keep all CPUs occupied, especially with the high I/O wait (wa)
and blocked waiting for resources or I/O (b). Therefore, we can use the pstat

command to look at what is running on the different CPUs:

vmstat 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 2146520 130 0 4 3 67 238 0 237 243 222 31 7 30 32
4 11 2146523 135 0 0 0 7008 25490 0 2868 8989 3711 24 9 0 67
4 9 2145191 122 0 0 0 6812 50234 0 2746 4100 3362 27 8 0 65
4 9 2145192 124 0 0 0 7602 48337 0 2766 3696 3606 20 8 0 72
4 11 2145637 133 0 0 0 7109 46670 0 2777 8785 3479 25 8 0 67
5 13 2145738 134 0 0 0 8267 66832 0 3600 22070 5037 40 12 0 48
6 10 2144499 119 0 0 0 8348 83568 0 3435 31469 4695 33 14 0 53
5 10 2144244 131 0 0 0 7325 53636 0 2943 26248 4871 30 12 0 58
3 11 2144251 133 0 0 0 7309 44760 0 2987 16852 4465 16 12 0 71
<<< lines omitted >>>
Chapter 10. Resource monitoring 213

As we suspected, the system has idle processors (where the wait processes
are running); at this snapshot in time, only half (six) of the CPUs were busy.

Compare this with the following pstat snapshot from a benchmarking node
running a CPU constrained application:

Note that this is a 16 CPU system. The corresponding vmstat output for this
system follows:

pstat -S
STATUS OF PROCESSORS:

CPU TID TSLOT PID PSLOT PROC_NAME
0 25e5db 9701 18544 389 no pstat
1 307 3 306 3 no wait
2 e1d 14 e1c 14 no lrud
3 422879 16936 4268c 1062 no oracle
4 6e899d 28297 1e496 484 no oracle
5 70f 7 70e 7 no wait
6 55f4c3 22004 3a16a 929 no oracle
7 913 9 912 9 no wait
8 a15 10 a14 10 no wait
9 b17 11 b16 11 no wait
10 25e5db 9701 18544 389 no pstat
11 d1b 13 d1a 13 no wait

pstat -S
STATUS OF PROCESSORS:

CPU TID TSLOT PID PSLOT PROC_NAME
0 f6fd 246 1a228 418 no crash
1 7771 119 501a 80 no hxebench
2 9c39 156 71e2 113 no hxeflp
3 c3d1 195 8000 128 no hxehd
4 6875 104 3a3e 58 no hxebench
5 618d 97 4728 71 no hxebench
6 3fef 63 4ee2 78 no hxebench
7 7efd 126 4ab2 74 no hxebench
8 7fff 127 51a4 81 no hxebench
9 a347 163 78f0 120 no hxeflp
10 8103 129 56ac 86 no hxebench
11 ab57 171 8000 128 no hxehd
12 8811 136 5dba 93 no hxecolony
13 a74f 167 7cf8 124 no hxeflp
14 a851 168 7dfa 125 no hxeflp
15 860d 134 5bb6 91 no hxebench
214 RS/6000 SP System Performance Tuning Update

This node has no waiting for I/O (wa) and many kernel threads ready to run
(r). However, the fact that the system is not idle waiting for I/O does not mean
that there is no I/O; it just does not show up here.

10.3.1.2 To start with sar
The sar command will show how the CPU resources are used, as is shown in
the following example. First, by looking at the mean values for all CPUs put
together:

Note that the different samples shown here were made during the same run,
but not during the same time, as can be seen from the timestamps.

As can be seen above, we have extremely high utilization of the CPU
resources in this system. The next example shows the same node, but with
sar showing the statistics for each CPU:

vmstat 5 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
3 0 613796 861153 0 0 0 0 0 0 145 860 285 97 2 1 0
67 2 272830 1202381 0 0 0 0 0 0 2397 14261 4701 97 3 0 0
62 2 300855 1174452 0 0 0 0 0 0 2382 12615 4320 97 3 0 0
63 2 361943 1113393 0 0 0 0 0 0 2357 12922 4633 98 2 0 0
65 2 421961 1053406 0 0 0 0 0 0 2360 12963 4614 98 2 0 0
<<< lines omitted >>>

sar 5 5

AIX night4n41 3 4 006001824C00 10/13/00

13:37:57 %usr %sys %wio %idle
13:38:02 98 2 0 0
13:38:07 98 2 0 0
13:38:12 98 2 0 0
13:38:17 98 2 0 0
13:38:22 98 2 0 0

Average 98 2 0 0
Chapter 10. Resource monitoring 215

Apart from the actual CPU usage, it is also important to understand how the
scheduler queues are building up, as can be seen in this example:

The above example shows us that on average the node has 61.8 kernel
threads in the run queue and that 2.6 kernel threads are waiting to be paged
in every second.

The following shows the use of vmstat and iosat for monitoring the same
node:

sar -P ALL 1 5

AIX night4n41 3 4 006001824C00 10/13/00

13:46:24 cpu %usr %sys %wio %idle
<<< lines omitted >>>
13:46:27 0 100 0 0 0

1 100 0 0 0
2 100 0 0 0
3 100 0 0 0
4 99 1 0 0
5 100 0 0 0
6 99 1 0 0
7 98 2 0 0
8 100 0 0 0
9 100 0 0 0
10 73 27 0 0
11 98 2 0 0
12 100 0 0 0
13 98 2 0 0
14 99 1 0 0
15 99 1 0 0
- 98 2 0 0

<<< lines omitted >>>
Average 0 100 0 0 0

sar -q 2 4|sed '/^$/d'
AIX night4n41 3 4 006001824C00 10/13/00
19:35:49 runq-sz %runocc swpq-sz %swpocc
19:35:54 70.0 100 2.0 100
19:35:59 63.2 100 2.4 100
19:36:04 55.8 100 2.8 100
19:36:09 59.0 100 2.8 100
19:36:14 61.0 100 2.8 100
Average 61.8 100 2.6 100
216 RS/6000 SP System Performance Tuning Update

Finally, we look at the node with the topas command (topas -n1 -d3 -p6):

10.3.1.3 To start with xmperf and 3dmon
With xmperf and 3dmon, it is possible to view a 3D monitor. Just select
Utilities in the xmperf window and open a 3dmon window. You can select the
preferred output. In our example, shown in Figure 27 on page 218, we
observe the CPU 0-3.

vmstat 1 5;iostat -t 1 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
3 0 446108 1029240 0 0 0 0 0 0 145 858 284 97 2 1 0
63 4 456483 1018857 0 0 0 0 0 0 2255 18464 4260 97 3 0 0
71 2 466646 1008695 0 0 0 0 0 0 2188 14415 4477 97 3 0 0
59 2 477736 997604 0 0 0 0 0 0 2222 14623 4494 98 2 0 0
82 2 488600 986746 0 0 0 0 0 0 2181 15455 4578 98 2 0 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 1.1 97.2 2.1 0.8 0.0
0.0 145.7 97.9 2.1 0.0 0.0
0.0 80.7 97.6 2.4 0.0 0.0
0.0 80.8 97.9 2.1 0.0 0.0
0.0 80.2 98.0 2.0 0.0 0.0

Topas Monitor for host: night4n41 EVENTS/QUEUES FILE/TTY
Fri Oct 13 13:57:05 2000 Interval: 2 Cswitch 4655 Readch 46228608

Syscall 14726 Writech 141048
Kernel 2.1 |# | Reads 1499 Rawin 0
User 97.8 |########################### | Writes 259 Ttyout 163
Wait 0.0 | | Forks 0 Igets 475
Idle 0.0 | | Execs 66.5 Namei 530

Runqueue 73.1 Dirblk 5
Interf KBPS6 2.9 O-Pac4 KB-I2 KB-Ou4 Waitqueue 2.5
en0 0.7 3.4 3.4 0.2 0.5

PAGING MEMORY
Disk Busy% KBPS TPS KB-Read KB-Writ Faults 10534 Real,MB 6143
hdisk0 0.0 328.2 73.4 0.0 328.2 Steals 0 % Comp 73.0
hdisk1 0.0 319.8 10.4 207.9 111.9 PgspIn 0 % Noncomp 1.0

PgspOut 0 % Client 0.0
hxehd (32768)123.2% PgSp: 3.0mb root PageIn 0
hxebench (22446) 64.0% PgSp:20.7mb root PageOut 82 PAGING SPACE
hxebench (20900) 59.2% PgSp:20.7mb root Sios 73 Size,MB 16384
hxebench (22188) 57.2% PgSp:20.7mb root % Used 0.0
hxebench (8514) 57.2% PgSp:20.7mb root % Free 99.9
hxebench (20454) 57.2% PgSp:20.7mb root

Press "h" for help screen.
Press "q" to quit program.
Chapter 10. Resource monitoring 217

Figure 27. 3dmon CPU monitor

10.3.2 Application specific monitoring
To examine the CPU usage of a specific running process, the ps command is
usually used. But as we will also show, crash and pstat can also be used.

But first, we will run topas -n0 -d0 to get a rough feeling for the overall
performance and the top CPU using processes:

From the topas screen, we decide to find out more about these hxebench
processes that are using most of the CPU resources. First, we use ps with the
lax option (the w option is only used to get longer lines from ps):

Topas Monitor for host: night4n41 EVENTS/QUEUES FILE/TTY
Fri Oct 13 20:07:29 2000 Interval: 2 Cswitch 4523 Readch 6593122

Syscall 15066 Writech 3261987
Kernel 2.1 |# | Reads 1688 Rawin 0
User 97.8 |########################### | Writes 316 Ttyout 623
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 615

Runqueue 62.5 Dirblk 4
hxebench (23478) 55.1% PgSp:20.7mb root Waitqueue 2.1
hxebench (22446) 55.1% PgSp:20.7mb root
hxebench (14910) 54.9% PgSp:20.7mb root PAGING MEMORY
hxebench (20506) 54.4% PgSp:20.7mb root Faults 11597 Real,MB 6143
hxebench (18216) 54.4% PgSp:20.7mb root Steals 0 % Comp 63.0
hxebench (20454) 54.1% PgSp:20.7mb root PgspIn 0 % Noncomp 1.0
hxebench (19122) 53.8% PgSp:20.7mb root PgspOut 0 % Client 0.0
hxebench (20194) 52.7% PgSp:20.7mb root PageIn 0
hxebench (21930) 52.1% PgSp:20.7mb root PageOut 39 PAGING SPACE
hxeflp (30960) 46.9% PgSp: 0.4mb root Sios 35 Size,MB 16384

% Used 0.0
% Free 99.9
218 RS/6000 SP System Performance Tuning Update

From the output above, we get priority, nice value and how much CPU time
the process has accumulated. However, we also get a lot of unnecessary
information, so we make our own selection using the -F option to ps:

Now we get process status (ST), CPU utilization (CP), priority (PRI), nice
value (NI), scheduling policy (SCH), processor binding (BND), percent CPU
time (%CPU), and accumulated CPU time (TIME).

An explanation for the output of our selection follows:

ps laxw|egrep 'PID|hxebench'
F S UID PID PPID C PRI NI ADDR SZ RSS WCHAN TTY TIME CMD

240001 A 0 8514 17148 66 126 38 88551 21484 21612 - 1556:20 hxeb
240001 A 0 14910 17148 66 126 38 a8555 21484 21612 - 1553:28 hxeb
240001 A 0 15556 17148 6 100 38 40548 21484 21612 - 177:01 hxeb
240001 A 0 18216 17148 64 126 38 c8559 21484 21612 - 1539:32 hxeb
240001 A 0 19122 17148 68 126 38 8561 21484 21612 - 1508:06 hxeb
240001 A 0 20194 17148 41 126 38 e855d 21484 21612 - 1514:37 hxeb
240001 A 0 20454 17148 65 126 38 6854d 21484 21612 - 1570:16 hxeb
240001 A 0 20506 17148 41 126 38 10542 21484 21612 - 1587:40 hxeb
240001 A 0 20900 17148 42 126 38 28565 21484 21612 - 1479:48 hxeb
240001 A 0 21930 17148 68 126 38 48569 21484 21612 - 1450:17 hxeb

ps -ea -F "pid stat cpu pri nice sched bnd pcpu time comm"|egrep "PID|hxebench"
PID ST CP PRI NI SCH BND %CPU TIME COMMAND
8514 A 62 126 38 0 3 3.0 1-02:12:18 hxebench
14910 A 61 126 38 0 4 3.0 1-02:10:52 hxebench
15556 A 6 100 38 0 0 0.3 02:58:59 hxebench
18216 A 62 126 38 0 5 3.0 1-01:56:30 hxebench
19122 A 39 126 38 0 7 2.9 1-01:25:53 hxebench
20194 A 62 126 38 0 6 2.9 1-01:31:10 hxebench
20454 A 61 126 38 0 2 3.1 1-02:27:45 hxebench
20506 A 40 126 38 0 1 3.1 1-02:45:31 hxebench
20900 A 64 126 38 0 8 2.9 1-00:56:46 hxebench
21930 A 38 125 38 0 9 2.8 1-00:25:58 hxebench
22188 A 38 125 38 0 10 2.7 23:43:58 hxebench
22446 A 38 125 38 0 11 2.7 23:24:36 hxebench
22704 A 60 126 38 0 12 2.6 22:47:21 hxebench
22962 A 58 126 38 0 13 2.5 21:55:49 hxebench
23220 A 38 125 38 0 14 2.4 20:57:01 hxebench
23478 A 62 126 38 0 15 2.4 20:29:39 hxebench
Chapter 10. Resource monitoring 219

We now use the same options to create a list of the ten highest CPU-intensive
processes on the node:

ST Contains the state of the process:

0 Nonexistent

A Active

I Intermediate

Z Canceled

T Stopped

K Available kernel process

CP CPU utilization of process or thread, incremented each time the system
clock ticks and the process or thread is found to be running. The value
is decayed by the scheduler by dividing it by 2, once per second. For
the sched_other policy, CPU utilization is used in determining process
scheduling priority. Large values indicate a CPU intensive process and
result in lower process priority, whereas small values indicate an I/O
intensive process and result in a more favorable priority.

PRI The priority of the process or kernel thread; higher numbers mean
lower priority.

NI The nice value; used in calculating priority for the sched_other policy.

SCH The scheduling policy for a kernel thread. The policies are displayed
using integers starting from 0. See Chapter 6, “Tuning other
components in AIX” on page 115.

BND The logical processor number of the processor to which the kernel
thread is bound (if any). For a process, this field is shown if all its
threads are bound to the same processor.

%CPU The percentage of time the process has used the CPU since the
process started. The value is computed by dividing the time the process
uses the CPU by the elapsed time of the process. In a multi-processor
environment, the value is further divided by the number of available
CPUs, because several threads in the same process can run on
different CPUs at the same time. (Because the time base over which
this data is computed varies, the sum of all %CPU fields can exceed
100%.)

TIME The total execution time for the process.
220 RS/6000 SP System Performance Tuning Update

The following example shows that the application spinner occupies the top
five positions when it comes to CPU utilization in this node. It also shows us
that the application is not paging, but it has a short execution time (TIME),
and because since it is on the top of the list, it has a huge CPU usage
(%CPU).

print " PID ST CP PRI NI SCH BND %CPU TIME COMMAND"
ps -ea -F "pid stat cpu pri nice sched bnd pcpu time comm"|tail +2|sort -k8nr|head -1

PID ST CP PRI NI SCH BND %CPU TIME COMMAND
20454 A 101 126 38 0 2 3.1 1-02:31:11 hxebench
20506 A 62 126 38 0 1 3.1 1-02:48:23 hxebench
8514 A 100 126 38 0 3 3.0 1-02:15:43 hxebench
14910 A 68 126 38 0 4 3.0 1-02:14:23 hxebench
18216 A 97 126 38 0 5 3.0 1-01:59:40 hxebench
19122 A 94 126 38 0 7 2.9 1-01:29:00 hxebench
20194 A 95 126 38 0 6 2.9 1-01:34:16 hxebench
20900 A 99 126 38 0 8 2.9 1-00:59:38 hxebench
21930 A 102 126 38 0 9 2.8 1-00:29:24 hxebench
22188 A 100 126 38 0 10 2.7 23:46:55 hxebench

ps gvc|head -1;ps gvc|tail +2|sort -rk11|head -5
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
34910 pts/6 A 0:20 0 296 424 32768 197 228 48.8 0.0 spinner
42064 pts/6 A 0:08 0 300 424 32768 197 228 29.6 0.0 spinner
37196 pts/6 A 0:01 0 316 424 32768 197 228 25.0 0.0 spinner
39602 pts/6 A 0:03 0 304 424 32768 197 228 20.0 0.0 spinner
40112 pts/6 A 0:02 0 308 424 32768 197 228 18.2 0.0 spinner
Chapter 10. Resource monitoring 221

10.4 Monitoring disk I/O

To monitor the disk I/O usage in a SP node is also very important, because
this is the slowest storage resource for online operations. If not customized
properly, disk I/O will lead to performance degradation, and in some cases
severe performance degradation.

10.4.1 System-wide monitoring
A node that shows I/O waits has a problem when the CPU has very little idle
time, in which case CPU utilization is constrained by the I/O subsystem.

However, there are often I/O waits with a lightly loaded system. As there are
only a few processes executing, the scheduler is unable to keep the CPU(s)
utilized. Environments with few active processes and significant I/O waits
require application changes. Changing an application to use asynchronous
I/O is often effective.

As the number of processes executing on a system increases, it is easier for
the scheduler to find dispatchable work. In this case, disk I/O wait will become
less noticeable, even though the system might perform disk I/O.

10.4.1.1 To start with iostat
To monitor disk I/O, we will usually start with the iostat command. The iostat

command will show in great detail the load on different logical disks. The
output below is the summary since boot time (if the iostat attribute has been
enabled for the sys0 logical device driver):

As can be seen in the output above, the iostat attribute has not been enabled
for sys0, hence the “Disk history since boot not available message". This
node only has two disks and one is 20 percent used while the other is 80

iostat -d 5
" Disk history since boot not available. "

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 17.4 122.8 30.1 0 620
hdisk1 81.0 465.1 63.4 0 2349
hdisk0 20.0 145.9 36.3 0 731
hdisk1 82.8 461.1 63.1 0 2310
hdisk0 19.0 132.0 31.0 0 660
hdisk1 80.4 493.3 64.8 0 2467
hdisk0 20.4 148.3 34.6 0 742
hdisk1 84.6 476.6 64.6 0 2384
hdisk0 24.6 164.8 38.0 0 824
hdisk1 79.4 467.3 63.6 0 2337
hdisk0 24.0 173.6 40.6 0 868
hdisk1 80.2 490.3 64.6 0 2452
222 RS/6000 SP System Performance Tuning Update

percent used. We need to find out more about those disks; what is on them
and what they are used for. Here are a few of the actions we need to perform:

• We need to check what volume group the disks in question belongs to.

• We need to check the logical volume layout on the disks in question.

• We need to check the logical volume layout on all the disks in question in
the volume group.

To accomplish these tasks, we will use the lsvg, lspv and lslv commands.
First, let us find out what volume groups the disks belong to:

They both belong to the rootvg volume group (as could be expected in this
case). Since the two disks in question belongs to the same volume group, we
can go ahead and list some information about the disks from the volume
group perspective with lsvg:

We now see that the disks have different number of physical partitions, and
since volume groups have one partition size, they must be of different size.
Let us check the volume group to find out the PP size:

The PP size is 32 MB, so hdisk0 and hdisk1 are 8 GB and 17 GB disks
respectively (approximate). Let us find out what logical volumes occupy the
rootvg volume group:

lspv
hdisk0 00601452e0737ca0 rootvg
hdisk1 00601452e496116e rootvg

lsvg -p rootvg
rootvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk0 active 271 0 00..00..00..00..00
hdisk1 active 542 2 00..00..00..00..02

lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 00600245fb9a9061
VG STATE: active PP SIZE: 32 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 813 (26016 megabytes)
MAX LVs: 256 FREE PPs: 2 (64 megabytes)
LVs: 12 USED PPs: 811 (25952 megabytes)
OPEN LVs: 10 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 2 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32
Chapter 10. Resource monitoring 223

We cam see that there is no mirroring and that lv00 is not used and could be
removed (this does not matter performance-wise), but there are two paging
spaces (hd6 and paging00), and lv0hd0 has no file system mount point in
/etc/filesystems (we will get back to this logical volume further down).

We now need to get more information on the layout on the disks. The
following is the output from lspv to find out the intra-disk layout of logical
volumes on hdisk1 (the 17 GB disk with 80 percent utilization):

As shown above, there are no file systems on this disk, and the only
application logical volume is lv0hd0. The layout of logical volumes on the disk
is not especially good, but we have also two paging spaces (hd6 and
paging00) on the same disk, which is not good either. The lv0hd0 logical
volume is also not allocated over one area, but is divided in two parts, one at
the edge of the disk and one at the center. This is, of course, not good either.
Let us view the intra-disk layout in another, more readable, way with the lspv

command:

lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 1 1 1 closed/syncd N/A
hd6 paging 288 288 2 open/syncd N/A
hd8 jfslog 1 1 1 open/syncd N/A
hd4 jfs 8 8 1 open/syncd /
hd2 jfs 77 77 1 open/syncd /usr
hd9var jfs 2 2 1 open/syncd /var
hd3 jfs 1 1 1 open/syncd /tmp
hd1 jfs 1 1 1 open/syncd /home
lv00 sysdump 10 10 1 closed/syncd N/A
hd7 sysdump 89 89 1 open/syncd N/A
paging00 paging 224 224 1 open/syncd N/A
lv0hd0 jfs 109 109 1 open/syncd N/A

lspv -l hdisk1
hdisk1:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
lv0hd0 109 109 10..00..00..00..99 N/A
hd6 108 108 99..09..00..00..00 N/A
lv00 10 10 00..10..00..00..00 N/A
hd7 89 89 00..89..00..00..00 N/A
paging00 224 224 00..00..108..108..08 N/A
224 RS/6000 SP System Performance Tuning Update

The highlighted partitions, in both the output examples above, for logical
volume lv0hd0 shows the same information; it has its large part on the inner
edge and 10 percent on the outer edge. This means that the disk arms have
to move across the disk platter whenever the end of the first part of the logical
volume. Let us examine how the logical volumes partitions are organized with
the lslv command:

The output just confirms that the first ten partitions (and 10 percent of its size)
are on the outer edge and the rest on the inner edge for the lv0hd0 logical
volume. If we want LVMs opinion on whether it is a good layout or not, we cam
run the following lslv command and check the IN BAND percentage:

lspv -p hdisk1
hdisk1:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
1-10 used outer edge lv0hd0 jfs N/A
11-109 used outer edge hd6 paging N/A
110-119 used outer middle lv00 sysdump N/A
120-208 used outer middle hd7 sysdump N/A
209-217 used outer middle hd6 paging N/A
218-325 used center paging00 paging N/A
326-433 used inner middle paging00 paging N/A
434-441 used inner edge paging00 paging N/A
442-540 used inner edge lv0hd0 jfs N/A
541-542 free inner edge

lv0hd0:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0001 hdisk1
0002 0002 hdisk1
0003 0003 hdisk1
0004 0004 hdisk1
0005 0005 hdisk1
0006 0006 hdisk1
0007 0007 hdisk1
0008 0008 hdisk1
0009 0009 hdisk1
0010 0010 hdisk1
0011 0442 hdisk1
0012 0443 hdisk1
<<< lines omitted >>>
0108 0539 hdisk1
0109 0540 hdisk1

lslv -l lv0hd0
lv0hd0:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk1 109:000:000 0% 010:000:000:000:099
Chapter 10. Resource monitoring 225

LVM agrees with us that this is not a good intra-disk layout for this logical
volume. Let us check the paging spaces with the lsps command before we
continue:

This shows us that there is 16 GB of paging space allocated, but only 1
percent used (approximately 165 MB). So, we now need to know how much
memory we have in the node:

Since the system is using the Deferred Page Space Allocation (see Section
6.1, “Memory” on page 115), we will delete paging00 and shrink hd6 to
maybe 1 to 2 GB.

Let us continue with examining the layout. Let us now check the other disk:

The layout was not good on this disk either. The hd6 paging space occupies
this disk as well, and the logical volumes are spread out over the disk area.
This is usually the case when file systems are expanded during production.

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
paging00 hdisk1 rootvg 7168MB 1 yes yes lv
hd6 hdisk0 rootvg 5760MB 1 yes yes lv
hd6 hdisk1 rootvg 3456MB 1 yes yes lv

lsps -s
Total Paging Space Percent Used

16384MB 1%

bootinfo -r
6291456

lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
1-1 used outer edge hd5 boot N/A
2-55 used outer edge hd6 paging N/A
56-109 used outer middle hd6 paging N/A
110-110 used center hd8 jfslog N/A
111-111 used center hd4 jfs /
112-121 used center hd2 jfs /usr
122-122 used center hd9var jfs /var
123-123 used center hd3 jfs /tmp
124-124 used center hd1 jfs /home
125-157 used center hd2 jfs /usr
158-163 used center hd6 paging N/A
164-209 used inner middle hd6 paging N/A
210-212 used inner middle hd2 jfs /usr
213-213 used inner middle hd9var jfs /var
214-217 used inner middle hd4 jfs /
218-220 used inner edge hd4 jfs /
221-251 used inner edge hd2 jfs /usr
252-271 used inner edge hd6 paging N/A
226 RS/6000 SP System Performance Tuning Update

This is an excellent feature of AIX LVM, but after a while, logical volumes
need to be reorganized so that they occupy consecutive physical partitions.

Returning to the logical volume lv0hd0, it seems to be the only application
logical volume on the node. Is it used as a raw logical volume and, if so, in
what way? Let us first examine the logical volume with lslv:

It looks OK, but if we try getlvcb on the logical volume, we get the following
output:

This does not appear to be a normal logical volume, so let us try and read the
first part of the logical volume with dd to confirm that this logical volume writes
from byte 0 and does not leave any space in the beginning of the logical
volume for the logical volume control block (LVCB):

lslv lv0hd0
LOGICAL VOLUME: lv0hd0 VOLUME GROUP: rootvg
LV IDENTIFIER: 00600245fb9a9061.12 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 125 PP SIZE: 32 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 109 PPs: 109
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes

getlvcb -AT lv0hd0

intrapolicy = &
copies = 40
interpolicy =
lvid = MDHF…d
lvname =
label =
machine id = #
number lps = 41
relocatable = '
strict = (
stripe width = 106
stripe size in exponent = 105
type = v0hd0
upperbound = 39
fs =
time created = time modified =

dd if=/dev/lv0hd0 bs=16 count=1 2>/dev/null|od -C
0000000 \0 \0 \0 \0 9 è Ê 021 r l v 0 h d 0 \0
0000020
Chapter 10. Resource monitoring 227

This logical volume is completely overwritten; compare the preceding output
to the output from /usr (hd2):

10.4.1.2 To start with filemon
Monitoring disk I/O with the filemon command is usually done when there is a
known performance issue with regards to the I/O. The filemon command will
show, in great detail, the load on different disks, logical volumes and files:

filemon -o filemon.out -O all && sleep 180;trcstop

The output from the filemon command can be quite extensive. To quickly find
out if something is in need of attention, run the following awk commands to
extract specific summary tables from the complete filemon output file. In the
first report extraction, we want to look at disk I/O:

This shows us that hdisk1 is more active than hdisk0 with almost twice the
amount of transferred data (KB/s). We could now examine the disks, volume
groups and logical volumes, as done in the previous section.

To get more detailed information on the usage of the logical volumes, extract
the “Most Active Logical Volumes” part from the output file:

The logical volume lv0hd0 is by far the most utilized for both reading and
writing, so now we extract information about this particular logical volume

dd if=/dev/hd2 bs=16 count=1 2>/dev/null|od -C
0000000 A I X L V C B \0 \0 j f s \0 \0 \0
0000020

awk '/Most Active Physical Volumes/,/̂ $/' filemon.out
Most Active Physical Volumes
--
util #rblk #wblk KB/s volume description

--
0.24 16 50383 171.9 /dev/hdisk0 N/A
0.08 68608 36160 357.4 /dev/hdisk1 N/A

awk '/Most Active Logical Volumes/,/ $̂/' filemon.out
Most Active Logical Volumes
--
util #rblk #wblk KB/s volume description

--
0.22 0 37256 127.1 /dev/hd8 jfslog
0.08 68608 36160 357.4 /dev/lv0hd0 N/A
0.04 0 11968 40.8 /dev/hd3 /tmp
0.01 0 312 1.1 /dev/hd4 /
0.01 16 536 1.9 /dev/hd2 /usr
0.00 0 311 1.1 /dev/hd9var /var Frag_Sz.= 512
228 RS/6000 SP System Performance Tuning Update

from the output file (since it appears in the summary part to have a detailed
section as well):

Since lv0hd0 is not a JFS file system, you will not see any references to
lv0hd0.

So what files were the most active during our monitoring? We can find that
answer in the following output:

awk '/VOLUME: \/dev\/lv0hd0/,/ $̂/' filemon.out
VOLUME: /dev/lv0hd0 description: N/A
reads: 1072 (0 errs)
read sizes (blks): avg 64.0 min 64 max 64 sdev 0.0
read times (msec): avg 7.112 min 2.763 max 29.334 sdev 2.476
read sequences: 1072
read seq. lengths: avg 64.0 min 64 max 64 sdev 0.0

writes: 565 (0 errs)
write sizes (blks): avg 64.0 min 64 max 64 sdev 0.0
write times (msec): avg 7.378 min 2.755 max 13.760 sdev 2.339
write sequences: 565
write seq. lengths: avg 64.0 min 64 max 64 sdev 0.0

seeks: 1074 (65.6%)
seek dist (blks): init 60288,

avg 123.6 min 64 max 64000 sdev 1950.9
time to next req(msec): avg 89.512 min 3.135 max 1062.120 sdev 117.073
throughput: 357.4 KB/sec
utilization: 0.08

awk '/Most Active Files/,/^$/' filemon.out
Most Active Files
--
#MBs #opns #rds #wrs file volume:inode

--
337.3 2059 86358 0 fma.data /dev/hd2:342737
176.7 2057 45244 0 fms.data /dev/hd2:342738
45.6 1 1010 450 rlv0hd0
9.6 2 2458 0 unix /dev/hd2:30988
6.8 12 66140 0 errlog /dev/hd9var:2065
3.6 2 915 0 htx.errpta /dev/hd3:71
1.2 6 318 0 codepoint.cat /dev/hd9var:2056
0.8 2059 0 2055 htx.fp3arg /dev/hd3:57
0.8 2056 0 2053 htx.fp3arg1 /dev/hd3:62
0.2 1 0 62 oth.errpt /dev/hd3:74
0.2 1 41 0 nasa7.out11 /dev/hd3:4110
0.2 1 41 0 nasa7.out14 /dev/hd3:4192
0.2 1 41 0 nasa7.out0 /dev/hd3:4176
0.2 1 41 0 nasa7.out2 /dev/hd3:4122
0.2 1 41 0 nasa7.out5 /dev/hd3:4112
0.2 169 0 2535 htx.fpout15 /dev/hd3:122
0.1 167 0 2493 htx.fpout1 /dev/hd3:46
0.1 153 0 2295 htx.fpout8 /dev/hd3:60
0.1 1 0 35 nasa7.out12 /dev/hd3:4186
0.1 151 0 2252 htx.fpout12 /dev/hd3:120
Chapter 10. Resource monitoring 229

Let us now find the fma.data file so that we can check it out with the file

place command (we know that hd2 is the /usr filesystem):

We now have both the filename and the path, so we check how the file is
allocated on the logical volume:

We discover that we have a decent allocation, with approximately 98 percent
space efficiency and sequentially.

To assess the performance effect of file fragmentation, an understanding of
how the file is used by the application is required:

• If the application is primarily accessing this file sequentially, the logical
fragmentation is more important. At the end of each fragment, read ahead
stops. The fragment size is therefore very important.

• If the application is accessing this file randomly, the physical fragmentation
is more important. The closer the information is in the file, the less latency
there is when accessing.

10.4.1.3 To start with xmperf
The disk I/O statistics can also be monitored with xmperf. The required values
can be selected in the add values section of xmperf. In our case, we simply
monitored the I/O transfers to and from the disks, as shown in Figure 28:

find /usr -name fma.data
/usr/lpp/htx/rules/reg/hxeflp/fma.data

fileplace -v /usr/lpp/htx/rules/reg/hxeflp/fma.data

File: /usr/lpp/htx/rules/reg/hxeflp/fma.data Size: 165432 bytes Vol: /dev/hd2
Blk Size: 4096 Frag Size: 4096 Nfrags: 41 Compress: no
Inode: 342737 Mode: -rwxr-xr-x Owner: root Group: system

Logical Fragment

0351537-0351544 8 frags 32768 Bytes, 19.5%
0351546-0351578 33 frags 135168 Bytes, 80.5%

41 frags over space of 42 frags: space efficiency = 97.6%
2 fragments out of 41 possible: sequentiality = 97.5%
230 RS/6000 SP System Performance Tuning Update

Figure 28. xmperf disk I/O monitor

10.5 Monitoring Network I/O

Monitoring the network I/O usage in a SP node is very important, because an
SP by design is a very network intensive system. If the network settings are
not set appropriately, it will usually lead to performance degradation, and in
some cases, service discontinuance and application malfunctions.

For our purposes here, we assume a TCP/IP network and communication
between remote processes based on, mainly, the TCP or UDP protocol. To
obtain current settings for different network services and protocols, the
following is a shortlist of some of the more important commands to use. See
Chapter 4, “Network tuning” on page 21 for more information.

Table 32. Commands for determining network protocol and services settings

Command (option) Purpose

no -a Configures or displays network attributes.

nfso -a Configures or displays Network File System (NFS) network
variables.

ifconfig Configures or displays network interface parameters for a
network using TCP/IP.

netstat Shows network status.

ndb Displays network kernel data structures.

arp -a Configures or displays address resolution interfaces.
Chapter 10. Resource monitoring 231

10.5.1 System-wide monitoring
Memory monitoring can be done with many commands and tools. We will try
to describe two starting points and how to pursue the resource specifics of
memory monitoring.

10.5.1.1 To start with netstat
The netstat command is a very versatile network monitoring tool and will
show most of what is needed about how the network resources are being
used. The following netstat command example shows how to start by looking
at the traffic overview per network interface (adapter):

In the preceding output, we can see that most of the interfaces are up and
running, except the last line with css1 that is down (the * after the interface
name). We can also see all the MTU sizes for each interface and the
networks with the primary interface IP address (aliases are not shown). The
last columns in the output shows received packets (Ipkts), sent packets
(Opkts) and packets with errors that was discarded (Ierrs/Oerrs).

Device drivers
To find out if there are any buffer or allocation problems that could cause
delays and interruptions in the traffic flow, check the interface output:

lsattr Displays attribute characteristics and possible values of
attributes for devices.

Command (option) Purpose

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 5962 0 6017 0 0
lo0 16896 127 loopback 5962 0 6017 0 0
lo0 16896 ::1 5962 0 6017 0 0
en0 1500 link#2 0.60.94.e9.4d.b0 113514 0 109486 0 0
en0 1500 192.168.6 sp6n07 113514 0 109486 0 0
tr0 1492 link#3 0.20.35.7a.cb.36 0 0 7 7 0
tr0 1492 192.169.16 sp6tr07 0 0 7 7 0
css0 65520 link#4 115576 0 102085 0 0
css0 65520 192.168.16 sp6sw07 115576 0 102085 0 0
css1* 65504 link#5 0 0 0 0 0
css1* 65504 129.10.10 night4s37_00 0 0 0 0 0

netstat -v|egrep 'STATISTICS|Overflow'
ETHERNET STATISTICS (ent0) :
S/W Transmit Queue Overflow: 0
ETHERNET STATISTICS (ent1) :
S/W Transmit Queue Overflow: 0
TOKEN-RING STATISTICS (tok0) :
S/W Transmit Queue Overflow: 0
232 RS/6000 SP System Performance Tuning Update

Note that the Switch adapter (css#) will not show up using netstat, so we use
a separate command:

We implement a script (calling it nsi.all) to show all the current available
interfaces. But before you run the script, make sure you include estat

(/usr/lpp/ssp/css/estat) as part of the default path.

When we run the script, it will show all interfaces that are Available: and
active (that is, not marked with an *):

Mbufs
Continuing on our mission to examine the network usage, we check the mbuf
usage with the -m option to netstat (extendednetstats must be set to 1,
otherwise netstat will not be able to obtain the output we desire):

estat css0|egrep 'STATISTICS|Overflow'
CSS STATISTICS (css0) :
S/W Transmit Queue Overflow: 0

#!/bin/ksh

netstat -i|
awk 'NR>1&&$1!~/̂ lo/{print $1,substr($1,length($1))}'|
sort -u|
while read i n;do
case $i in
e*) entstat -d "en$n";;
t*) tokstat -d "tr$n";;
f*) fddistat -d "fddi$n";;
a*) atmstat -d "atm$n";;
c*) estat -d "css$n";;

esac
done

nsi.all|egrep 'STAT|Over'
ETHERNET STATISTICS (ent0) :
S/W Transmit Queue Overflow: 0
DMA Underrun: 0 DMA Overrun: 0
TOKEN-RING STATISTICS (tok0) :
S/W Transmit Queue Overflow: 0
Receive Overruns : 0
CSS STATISTICS (css0) :
S/W Transmit Queue Overflow: 0

[[$(no -o extendednetstats|awk '{print $3}') -gt 0]] && netstat -m|head -5
4147 mbufs in use:
1036 Kbytes allocated to mbufs
106 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached
Chapter 10. Resource monitoring 233

The preceding output, shows that we have had requests for mbufs denied; a
more detailed output can be found by looking at the mbuf allocation sizes:

We might want to return to examining the different protocol statistics; we can
use the -s option to netstat to accomplish this task. First, we examine the IP
protocol layer by examining all non-zero fields:

Routing
There has been a lot of MTU traffic, so we check the MTU discovery settings
with the no command:

netstat -m|awk '/CPU/||/By size/;$4~/[0-9].*/&&$4>0{print $0}'
******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
******* CPU 1 *******
By size inuse calls failed delayed free hiwat freed
256 1799 2566588 12 0 1369 1392 1
2048 2048 2807 106 0 2 362 0
******* CPU 2 *******
By size inuse calls failed delayed free hiwat freed
******* CPU 3 *******
By size inuse calls failed delayed free hiwat freed
kernel table 2 16 0 0 1024 2048 0
mcast opts 0 1 0 0 0 128 0

netstat -ssp ip
ip:

23851859 total packets received
91596 fragments received
45796 packets reassembled ok
23804803 packets for this host
1256 packets for unknown/unsupported protocol
10 packets forwarded
23972857 packets sent from this host
45796 output datagrams fragmented
91596 fragments created
1914 successful path MTU discovery cycles
1429 path MTU rediscovery cycles attempted
2744 path MTU discovery no-response estimates
2814 path MTU discovery response timeouts
179 path MTU discovery decreases detected
9663 path MTU discovery packets sent

no -a |grep pmtu
pmtu_default_age = 10

pmtu_rediscover_interval = 30
udp_pmtu_discover = 1
tcp_pmtu_discover = 1
234 RS/6000 SP System Performance Tuning Update

The MTU discovery is turned on; an extract from the routing table follows:

This node is connected to the production network through the SP Switch
Router, which is why most of the routes are shown for css0. The two lines
with MTU of 1470 stands out and might be a cause for additional
examination, but since the amount of traffic is small, it does not have any
significant performance impact.

Protocols
To check how many packets that have been transferred per protocol, we use
the -D option to netstat:

We continue by examining the transport protocol layers UDP and TCP. The
following shows the UDP statistics:

There has been a lot of dropped packets, but no socket buffer overflows (the
field socket buffer overflows would have been shown with a non-zero value).

netstat -rn
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default 193.168.207.50 UGc 0 0 en0 - -
9/8 9.15.193.222 UGc 0 0 css0 - -
9.15.80.14 9.15.193.222 UGHW 1 523 css0 1500 -
9.15.209.81 9.15.193.222 UGHW 3 96 css0 1500 -
9.223.6.48 9.15.193.222 UGHW 1 232 css0 1492 -
9.223.6.117 9.15.193.222 UGHW 1 3569 css0 1470 -
9.223.6.153 9.15.193.222 UGHW 3 1530 css0 1470 -
127/8 127.0.0.1 U 23 499542 lo0 - -
146.100.222.190 9.15.193.222 UGHW 2 12606 css0 1500 -
146.100.222.193 9.15.193.222 UGHW 2 369 css0 1500 -
146.100.222.194 9.15.193.222 UGHW 4 15088 css0 1500 -
172.16/16 9.15.193.222 UGc 0 0 css0 - -
172.25.1.189 193.168.207.50 UGHW 1 6 en0 - -
172.25.1.193 193.168.207.50 UGHW 1 6 en0 - -
193.168.206/26 193.168.206.60 U 1 3167277 css0 - -
193.168.207/26 193.168.207.60 U 631 19033262 en0 - -
<<< lines omitted >>>

netstat -D|egrep ' Ŝource|^IP| T̂CP|^UDP'
Source Ipkts Opkts Idrops Odrops
IP 288910 286790 666 100
TCP 140400 117628 0 0
UDP 146311 126109 948 0

netstat -ssp udp
udp:

3725363 datagrams received
326586 dropped due to no socket
34 broadcast/multicast datagrams dropped due to no socket
3398743 delivered
3654984 datagrams output
Chapter 10. Resource monitoring 235

To quickly check if we have had any IP queue overflows, use the following
command:

The major part would be examining the TCP statistics, as shown in the
following:

We should also check ICMP statistics, as shown in the following:

netstat -sp ip|grep ipintrq
0 ipintrq overflows

netstat -ssp tcp
tcp:

19973667 packets sent
18561251 data packets (201385108 bytes)
5046 data packets (4884008 bytes) retransmitted
244828 ack-only packets (229111 delayed)
95 window probe packets
1157152 window update packets
4435 control packets

19743451 packets received
16985922 acks (for 202685820 bytes)
14710 duplicate acks
18330209 packets (750372102 bytes) received in-sequence
3478 completely duplicate packets (670591 bytes)
1869 packets with some dup. data (7770 bytes duped)
12415 out-of-order packets (378482004 bytes)
8358 window update packets
141 packets received after close
141 packets received after close
1 discarded for bad checksum

1172 connection requests
2140 connection accepts
3158 connections established (including accepts)
12505 connections closed (including 837 drops)
100 embryonic connections dropped
16603768 segments updated rtt (of 16557447 attempts)
4 resends due to path MTU discovery
72 path MTU discovery terminations due to retransmits
1757 retransmit timeouts

12 connections dropped by rexmit timeout
134 persist timeouts
4243 keepalive timeouts

2965 keepalive probes sent
307 connections dropped by keepalive

1 connections in timewait reused
236 RS/6000 SP System Performance Tuning Update

DNS
We also need to check if the DNS is working properly. The following example
will test if the name server is responding to ECHO_REQUEST from ping:

Usually, we just leap ahead and try to resolve a name, as shown here with the
host command on our own hostname:

Alternatively, we could use the nslookup command:

To check if the default name resolution order is used or not, use the following
command:

netstat -sp icmp
icmp:

326645 calls to icmp_error
0 errors not generated because old message was icmp
Output histogram:

echo reply: 3123
destination unreachable: 326643

846 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 2225
destination unreachable: 331300
routing redirect: 2
echo: 3131
time exceeded: 17

3123 message responses generated

ping -c 3 $(awk '/nameserver/{print $2}' /etc/resolv.conf)
PING 9.12.0.30: (9.12.0.30): 56 data bytes
64 bytes from 9.12.0.30: icmp_seq=0 ttl=255 time=1 ms
64 bytes from 9.12.0.30: icmp_seq=1 ttl=255 time=1 ms
64 bytes from 9.12.0.30: icmp_seq=2 ttl=255 time=1 ms

----9.12.0.30 PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 1/1/1 ms

host -n $(hostname -s)
sp6en0.msc.itso.ibm.com has address 192.168.6.160

nslookup $(hostname -s)
Server: riscserver.itso.ibm.com
Address: 9.12.0.30

Non-authoritative answer:
Name: sp6en0.msc.itso.ibm.com
Address: 192.168.6.160
Chapter 10. Resource monitoring 237

The /etc/netsvc.conf file existed and the order is specified. Reverse the
default order by checking the /etc/hosts file before querying the DNS server
specified in /etc/resolv.conf.

ARP
To see if we have any problems with the ARP cache, check the number of
entries:

Since we have more than 100 ARP entries, we should check the ARP settings
with the no command:

The system has only the default settings, which is not enough (see Chapter 4,
“Network tuning” on page 21). We can monitor the ARP cache by either using
iptrace, tcpdump or a simple script. First we monitor with tcpdump, for one hour:

Then we just check how many requests our local node has done during the
trace period, with the following command:

print $NSORDER

grep NSORDER /etc/environment

cat /etc/netsvc.conf
hosts=local,bind

arp -an|wc -l
109

no -a|grep arp
arptab_bsiz = 7
arptab_nb = 25
arpqsize = 1

arpt_killc = 20

tcpdump -NIi en0 arp >/tmp/tcpdump.en0 & sleep 3600;kill -1 %%
[2] 22728
tcpdump: listening on en0

tcpdump -NIi tr0 arp >/tmp/tcpdump.tr0 & sleep 3600;kill -1 %%
[2] 22744
tcpdump: (tr0):Promiscuous mode not supported for this interface.

Continuing ...
tcpdump: listening on tr0

grep -c $(hostname -s) /tmp/tcpdump.en0
11
238 RS/6000 SP System Performance Tuning Update

Even though it is not much at all, we need to check the proximity over time
that these requests has occurred; we need to look at the actual trace line
from tcpdump:

We can use a simple script to monitor the changes occurring in the ARP
cache, first by simply checking the number of each network type (if we have
multiple network types, it is easy to spot if there are large shifts in the number
of types that occupies the cache):

As can be seen below, the ARP cache is too small:

grep $(hostname -s) /tmp/tcpdump.en0
14:55:09.403502336 arp who-has sp6n07 tell sp6en0
14:57:17.223626496 arp who-has sp6n05 tell sp6en0
14:57:22.222190848 arp who-has sp6n03 tell sp6en0
15:01:23.178490880 arp who-has sp6n12 tell sp6en0
15:12:24.221085952 arp who-has sp6n14 tell sp6en0
15:17:39.140759040 arp who-has sp6n03 tell sp6en0
15:18:58.794184192 arp who-has sp6n10 tell sp6en0
15:20:25.895874816 arp who-has sp6n11 tell sp6en0
15:22:21.162817024 arp who-has sp6n09 tell sp6en0
15:22:21.210290688 arp who-has sp6n13 tell sp6en0
15:33:23.757966080 arp who-has sp6n14 tell sp6en0

#!/bin/ksh
t1=/tmp/arp.1
t2=/tmp/arp.2
trap 'rm -f $t1 $t2' EXIT

printf "%12s %12s %12s %12s %12s\n" "# Deleted" "# Added" "Token-Ring" "Ethernet" "FDDI

while :;do
arp -an >$t1
sleep ${1:-3}
arp -an >$t2
t=$(grep -c token $t2)
e=$(grep -c ether $t2)
f=$(grep -c fddi $t2)
diff $t1 $t2|grep -c '\<'|read _del
diff $t1 $t2|grep -c '\>'|read _add
printf "%12s %12s %12s %12s %12s\n" $_del $_add $t $e $f
done
Chapter 10. Resource monitoring 239

The first part that is highlighted shows ARP cache thrashing, the second part
shows a full APR cache but with no thrashing, the third part (that is also
highlighted) shows a purge of the cache, and the fourth part shows a normal
small system cache that is not thrashing.

If we want to check the ARP entries to see if there are any strange values, run
the arp command, as follows:

This system has both Ethernet and Token-Ring entries, but the cache is not
over committed at this point.

10.5.1.2 To start with netpmon
The netpmon command is a very powerful low level network monitoring tool. To
run netpmon for our purposes here, use the device driver tracing, as shown
here:

arpmon 1
Deleted # Added Token-Ring Ethernet FDDI

14 14 89 27 0
13 13 103 13 0
14 14 93 23 0
7 7 85 31 0
0 0 85 31 0
0 0 85 31 0
2 0 83 31 0
15 0 70 27 0
16 0 57 24 0
15 0 45 19 0
18 0 29 16 0
15 0 17 12 0
9 0 7 10 0
0 0 7 10 0

Ĉ

arp -a
night4n60.ppd.pok.ibm.com (129.40.35.115) at 0:60:94:e9:49:d9 [ethernet]
night4n62.ppd.pok.ibm.com (129.40.35.116) at 0:60:94:e9:4a:b6 [ethernet]
night4n05.ppd.pok.ibm.com (129.40.35.70) at 0:4:ac:b1:4b:b5 [ethernet]
18gate.ppd.pok.ibm.com (9.114.18.254) at 0:0:45:0:df:ab [token ring]
night4n33.ppd.pok.ibm.com (129.40.35.98) at 0:4:ac:ec:7:98 [ethernet]
night4n09.ppd.pok.ibm.com (129.40.35.74) at 0:4:ac:ec:b:32 [ethernet]
orlando.ppd.pok.ibm.com (9.114.18.8) at 0:20:35:7c:d:2e [token ring]
night4n37.ppd.pok.ibm.com (129.40.35.102) at 0:4:ac:ec:8:d0 [ethernet]
night4n13.ppd.pok.ibm.com (129.40.35.78) at 0:4:ac:ec:5:44 [ethernet]
night4n41.ppd.pok.ibm.com (129.40.35.106) at 0:4:ac:ec:1:97 [ethernet]
night4n17.ppd.pok.ibm.com (129.40.35.82) at 0:4:ac:ec:7:36 [ethernet]
240 RS/6000 SP System Performance Tuning Update

The example shows how to start by looking at the traffic overview per network
interface (adapter):

As this report shows, the networks that this system is connected to are barely
utilized by it (the Util column). But we also want to know the statistics for the
communication with other nodes and systems:

So most of our traffic was to sp6n14, as shown in the preceding output.

10.5.1.3 To start with xmperf
The network I/O statistics can also be monitored with xmperf, as shown in
Figure 29 on page 242. The required values can be selected in the add
values section of xmperf.

netpmon -o netpmon.out -O dd -tv && sleep 60;trcstop

Enter the "trcstop" command to complete filemon processing

[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 60.583 secs in measured interval]

awk '/^Network.*by Device/,/̂ \=/' netpmon.out|sed '/^$/d;/^=/d'
Network Device-Driver Statistics (by Device):

----------- Xmit ----------- -------- Recv ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
--
token ring 0 0.54 650 0.1% 0.001 1.12 91 0.0002
ethernet 0 1.58 188 0.0% 0.000 1.65 196 0.0002

awk '/^Network.*by Destination/,/ \̂=/' netpmon.out|sed '/̂ $/d;/̂ =/d'
Network Device-Driver Transmit Statistics (by Destination Host):
--
Host Pkts/s Bytes/s
--
9.12.0.119 0.50 647
sp6n14 1.51 178
sp6n01 0.05 9
9.12.0.114 0.03 3
sp6n11 0.02 1
Chapter 10. Resource monitoring 241

Figure 29. xmperf ntework I/O monitor
242 RS/6000 SP System Performance Tuning Update

Chapter 11. Tools

In the previous chapter, we discussed how resources can be monitored by
different commands and tools. In this chapter, we will discuss the different
tools in more detail. The emphasis here is on the tool itself and how to use it
and what it will tell us when we are using it. Both IBM and non-IBM
commands and tools are described. We have also tried to show the benefits
of using shell programming to personalize the output in some cases.

11.1 IBM AIX Monitoring tools and commands

AIX provides several monitoring tools to determine performance bottlenecks
and to tune the system. Here are most of the important commands/tools used
in this book.

11.1.1 acctcom
The acctcom command displays information on processes that are in a
specified accounting file. To activate process accounting so that the acctcom

command can be used, create a separate accounting filesystem and then
activate the process accounting:

To turn off process accounting, execute the accton command without any
parameter:

/usr/sbin/acct/accton

The following is a sample of the acctcom output:

touch /accounting/acctfile
/usr/sbin/acct/accton /accounting/acctfile

Do not save accounting data in a filesystem that is vital to AIX or
applications. Create a separate filesystem for accounting data. The amount
of data can be voluminous.

Note
© Copyright IBM Corp. 2000 243

11.1.2 bf/bfrpt
bf (BigFoot) monitors memory usage of applications. bf can be run using
executable programs without recompilation and can provide memory
footprints for processes, system components, and subroutines. It is possible
for bf to identify page sharing between processes and subroutines within the
processes. Since the BigFoot functionality operates at the page-level and not
at the subroutine-level, if the text segments of two subroutines, or portions of
the text segments, reside within a common page, then it is possible for one of
the routines to be charged for page references that both make while the other
is not charged for those references.

bfrpt is the post-processing utility that can produce graphical and tabular
reports.

The following is an example of running bf; we let it run the sleep command for
30 seconds, because it is necessary to specify a command to monitor:

acctcom /accounting/acctfile
COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
#accton root pts/0 17:53:01 17:53:01 0.02 0.00 0.00
#ls root pts/0 17:53:14 17:53:14 0.00 0.00 0.00
#ls root pts/0 17:53:16 17:53:16 0.00 0.00 408.00
#ps root pts/0 17:53:18 17:53:18 0.08 0.09 28.00
#ping root pts/1 19:05:42 17:53:10 82048.00 9.83 40.00
#ls root pts/0 17:53:35 17:53:35 0.00 0.00 328.00
#acctcom root pts/0 17:53:48 17:53:48 0.05 0.05 116.00
sendmail root ? 17:53:50 17:53:50 0.00 0.00 648.00
<<< lines omitted >>>

bf can only monitor processes and not threads.

Note
244 RS/6000 SP System Performance Tuning Update

After bf has been run, use the bfrpt -r global to check the footprint of
processes, or use a simpler script like the following to examine the total
pages referenced by processes, as reported by bf (calling it bfrpt2):

Running the preceding script bfrpt2 could give the following result:

print y|bf -x sleep 30
bf: Load kernel extension bf_kex

Warning:
bf cannot monitor threaded applications, it may crash
the system or give unpredictable results when the
monitored program is threaded application
If the application is threaded, do not continue.

Continue y/[n]i=5

Turning ON BigFoot now.

Buffer Size in Bytes = 520000
Forking Command: sleep 30

Turning OFF BigFoot now. Copying data to __bf.rpt

bf: A buffer overflow occurred while tracing. You may want
to try again with a larger buffer size (-b option)

#!/bin/ksh

/usr/lib/perf/pp ${1:-__bf.rpt} || exit $?

trap '
rm -f __AllByPname __AllByProc __UniqByProc __UniqByProcSort __UniqBySid
rm -f __ftr1 __ftr2 __ftr3 __hdr1 __history.pg __pid.hdr1 __pid.hdr2
' EXIT INTR TERM QUIT

print "Number of Unique Pages Referenced by <Process Name, PID>"
cat __pid.hdr2
sort +2 -3 -nr __UniqByProc
cat __ftr3
Chapter 11. Tools 245

The preceding output lets us know the total number of unique page
references that each process has made during the time bf was monitoring.

11.1.3 crash
The crash command is an interactive utility for examining an operating system
image or the running kernel. The crash command facility interprets and
formats control structures in the system and certain miscellaneous functions
for examining a dump. By default, crash opens the /dev/mem file and the /unix
file so you can run the crash command with no arguments to examine an
active system.

There are so many uses for crash, and we will show some examples.

The following example uses crash as a primitive ps command to list all nfsd
processes in the system process table:

bfrpt2 __bf.rpt
Number of Unique Pages Referenced by <Process Name, PID>

PNAME (20 chars) PID TOTAL

hatsd 14192 92
dtfile 40242 89
dtfile 34452 58

ksh 26136 50
hardmon 5414 50
xntpd 22326 42
cron 9930 19
gil 1032 1

TOTALS 401

SHARED 87

Be very careful when increasing the buffersize used by bf, because setting
it wrong might crash the system. Remember that the BigFoot functionality
is activated in the VMM and bf is not using a normal snapshot method. If
you are not sure, leave the buffersize at the default value.

Important
246 RS/6000 SP System Performance Tuning Update

As can be seen in the preceding example, we get all the nfsd processes, but
we only want to see the nfsd processes that are not zombies (z in the second
column from the left):

Create the following script (calling it crashmon) and run it as, for example,
crashmon 1 60; it will run crash each second for a minute:

11.1.4 col_dump
The col_dump command will access the registers and buffer areas for the SP
Switch2 Communications Adapter. To extract some values and monitor what
changes by usage, run it as follows:

print "th|grep nfsd"|crash 2>/dev/null
44 s 2c6b 1844 unbound other 3c 0 0036c7e8 nfsd
45 s 2d69 1844 unbound other 3c 0 500014d8 nfsd
48 z 309f 1844 unbound other 3c 0 nfsd
88 s 58fb 1844 unbound other 3c 0 50028708 nfsd
102 s 669d 1844 unbound other 3c 1 50028708 nfsd
104 z 6863 1844 unbound other 3c 0 nfsd
105 s 697f 1844 unbound other 3d 2 50028708 nfsd
<<< lines omitted >>>
115 z 73ed 1844 unbound other 3c 0 nfsd

print "th|grep nfsd|grep -v z"|crash 2>/dev/null
44 s 2c6b 1844 unbound other 3c 0 0036c7e8 nfsd
45 s 2d69 1844 unbound other 3c 0 500014d8 nfsd
88 s 58fb 1844 unbound other 3c 0 50028708 nfsd
102 s 669d 1844 unbound other 3c 0 50028708 nfsd
105 s 697f 1844 unbound other 3c 0 50028708 nfsd
106 s 6a1d 1844 unbound other 3c 1 50028708 nfsd
<<< lines omitted >>>

#!/bin/ksh

integer sleep=${1:-5}
integer count=${2:-0}

integer i=0

while :;do
print 'th -r'|crash
((i=$i+1))
(($count > 0 && $i>=$count)) && break
sleep $sleep

done
Chapter 11. Tools 247

11.1.5 entstat/tokstat/atmstat/fddistat
These stat commands display the statistics gathered by the specified device
drivers. The user can optionally specify that the device-specific statistics be
displayed in addition to the device generic statistics. If no flags are specified,
only the device generic statistics are displayed. This command is also
invoked when the netstat command is run with the -v flag. The netstat

command does not issue any entstat command flags.

To run the stat commands, use the -d options, as follows:

entstat -d ent0
tokstat -d tok0

The following shows the part of the device driver statistics that concerns the
device drivers mbuf usage:

col_dump -a 0 -g -s -d|egrep -v ':|\.|=|\['|sed '/̂ $/d'|grep '\[[1-9].*\]'
parm 0x00000001 [1]

status 0x00000002 [2]
send_cmd_size 0x00000100 [256]
send_cmd_cnt 0x00000080 [128]

send_fifo_entry_size 0x00000200 [512]
send_fifo_entry_count 0x00000080 [128]
recv_fifo_entry_size 0x00000200 [512]
recv_fifo_entry_count 0x00000080 [128]

max_windows 0x00000013 [19]
version 0x00071703 [464643]

window_status 0x00000002 [2]
node_id 0x00000007 [7]

recv_hdr_int_ctr 0x28fa2aca [687483594]
DMA_to_NBA_sw_ctr 0x00000002 [2]
NBA_push_sw_ctr 0x00000002 [2]

dump_request_serviced_ctr 0x00000001 [1]
RAMBUS Slot for bit_bucket() and bad_packet() 0x08010000 [134283264]

CR 0x22000288 [570425992]
HID0 0x3001c024 [805421092]
SRR1 0x0000b070 [45168]

Before doing continous monitoring of the network resource usage with the
stat commands, reset the counters with the -r option.

Note
248 RS/6000 SP System Performance Tuning Update

The adapter device drivers buffer queue (list pointing to mbufs) will show as
Max Packets, which is the maximum number of packets that has been on the
queue at the same time:

Obviously, Receive/Transmit Errors are important, as are Bad/Dropped
Packets. Queue Overflow is, of course, how many times there have been
requests to transmit packets that could not be performed because the
adapters queue was full already. And finally, there is the Current field, which
is self explanatory.

The next sample shows the number of collisions for the Ethernet network:

An excessive amount of collisions will have a degrading effect on network
performance. To reduce the number of collisions on an Ethernet network, a
different network topology must be used (for example, different switches
creating vlans, changing broadcast options, and so on).

entstat -dt ent0 |grep -p General
General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 0
Driver Flags: Up Broadcast Running

Simplex AlternateAddress 64BitSupport
PrivateSegment

<<< lines omitted >>>
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 1 Packets Dropped: 0

Bad Packets: 0
Max Packets on S/W Transmit Queue: 62
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1
<<< lines omitted >>>

entstat -d ent0|grep -p "Broadcast Packets"
Broadcast Packets: 1231 Broadcast Packets: 18218
Multicast Packets: 2 Multicast Packets: 14
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 0
Deferred: 6422 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 3566 Receiver Start Count: 0
Multiple Collision Count: 2371
Current HW Transmit Queue Length: 1
Chapter 11. Tools 249

The next sample is a portion of the detailed output for an Ethernet adapter:

For Ethernet, it is very interesting to look at the number of transfer collision
levels. At the end of the listing, there is a Packets with Transmit collisions
table. The first position is the same as the field Single Collision Count and the
rest are 2 to 16 number of times the collision detection backoff has been
performed for sending packets (a summary is in the Multiple Collision Count
field). Since the time increases for each additional packet transmission,
network traffic is degraded if multiple collisions occur for the same packet and
this is occurring frequently.

As for Token-Ring, since it is a more complicated protocol than Ethernet, it
has more sophisticated performance degrading possibilities. The following is
a normal output from the General section of the tokstat report:

Some of many interesting things to notice are the Only Station and Token
Errors fields. The Only Station field indicates that the local adapter is not

entstat -dt ent0 |grep -p "Adapter Specific Statistics"
IBM 10/100 Mbps Ethernet PCI Adapter Specific Statistics:
--
Chip Version: 26
RJ45 Port Link Status : up
Media Speed Selected: 100 Mbps Full Duplex
Media Speed Running: 100 Mbps Full Duplex
Receive Pool Buffer Size: 2048
Free Receive Pool Buffers: 1791
No Receive Pool Buffer Errors: 0
Inter Packet Gap: 96
Adapter Restarts due to IOCTL commands: 37
Packets with Transmit collisions:
1 collisions: 3566 6 collisions: 0 11 collisions: 0
2 collisions: 1828 7 collisions: 0 12 collisions: 0
3 collisions: 479 8 collisions: 0 13 collisions: 0
4 collisions: 60 9 collisions: 0 14 collisions: 0
5 collisions: 4 10 collisions: 0 15 collisions: 0
Excessive deferral errors: 0x0

tokstat -d tok0|grep -p General
General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 11 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 1
Lost Frame Errors: 1 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 3 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running

AlternateAddress 64BitSupport ReceiveFunctionalAddr
16 Mbps
250 RS/6000 SP System Performance Tuning Update

aware of any other adapters up-stream. If there are more nodes on the
Token-Ring up-stream from this adapter, it should not be zero.

The Token Errors field indicates the number of times the current token on the
ring got lost, if this adapter was the Token-Ring active monitor.

If there is a disagreement among the Token-Ring adapters on the network as
to which one should be the active monitor, there can be a lot of unnecessary
traffic concerning acquiring the active monitor role. Since it is the role of the
active monitor to generate new tokens, this malfunctioning state will lead to
performance degradation that is hard to detect.

11.1.6 estat
The estat command displays the statistics gathered by the switch device
drivers (css#). The -d option that can be specified shows the number of open
windows. This command is not invoked when the netstat command is run
with the -v flag.

The following shows how to run the command and what to expect from the
output:

11.1.7 filemon
filemon monitors a trace of file system and I/O system events, and reports
performance statistics for files, virtual memory segments, logical volumes,
and physical volumes. filemon is useful to those whose applications are
believed to be disk-bound, and want to know where and why.

/usr/lpp/ssp/css/estat -d css0

CSS STATISTICS (css0) :
Elapsed Time: 5 days 18 hours 48 minutes 45 seconds
Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 7091171 Packets: 6927492
Bytes: 924133755 Bytes: 414985141
Interrupts: 0 Interrupts: 0
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0
Broadcast Packets: 0 Broadcast Packets: 0
General Statistics:

No mbuf Errors: 0
High Performance Switch Specific Statistics:
--
Windows open: 5
Chapter 11. Tools 251

The filemon command uses the AIX system trace facility. Currently, the trace
facility only supports one output stream. Consequently, only one trace

process can be active at a time. If another trace process is already running,
the filemon command will respond with an error message.

The following example shows how to run filemon. To stop filemon tracing of
I/O, trcstop must be issued, and it is when this is done that filemon writes the
output. To have filemon monitor I/O during a time interval, just run the sleep

program with the specified amount of seconds and then the trcstop program:

The output from filemon can be quite extensive, and to quickly find out if
something is in need of attention, we filter it with the awk command, as in most
of our examples below, to extract specific summary tables from the filemon

output file. We have used the all option and then we will use the awk

command to extract relevant parts, but we could have used any of these
options:

When analyzing the output, keep in mind that the avg (average) measurement
is an indication of efficiency and that the sdev measurement indicates the
level of fragmentation (standard deviation).

Summary table for disk I/O
In the following example, we only extract the summary table for disk I/O:

lf Logical file level

vm Virtual memory level

lv Logical volume level

pv Physical volume level

all Short for lf, vm, lv, pv

filemon -o filemon.out -O all && sleep 60;trcstop

Enter the "trcstop" command to complete filemon processing

[filemon: Reporting started]
[filemon: Reporting completed]

[filemon: 96.371 secs in measured interval]
252 RS/6000 SP System Performance Tuning Update

The disk with the highest transfer rate and utilization is hdisk1, which is 84
percent utilized at a 3.8 MB transfer rate. The fields are interpreted as follows:

Summary table for file I/O
In the following example, we only extract the summary table for file I/O:

We notice heavy reading of the iptrace.out file and writing of the ipreport.out.
The fields are interpreted as follows:

util Utilization of physical volume. Note: logical volume I/O requests
start before and end after physical volume I/O requests. For that
reason, total logical volume utilization will appear to be higher
than total physical volume utilization.

#rblk Number of 512-byte blocks read from physical volume.

#wblk Number of 512-byte blocks written to physical volume.

KB/s Average transfer data rate in KB per second.

volume Physical volume name.

description Simple description of the physical volume type, for example,
CD-ROM SCSI, 36.0 GB SCSI disk.

#MBs Total number of MBs transferred over a measured interval for
this file. The rows are sorted by this field in decreasing order.

#opns Number of opens for files during measurement period.

awk '/Most Active Physical Volumes/,/̂ $/' filemon.out
Most Active Physical Volumes
--
util #rblk #wblk KB/s volume description

--
0.24 16 50383 171.9 /dev/hdisk0 N/A
0.84 370680 372028 3853.4 /dev/hdisk1 N/A
0.08 68608 36160 357.4 /dev/hdisk2 N/A

awk '/Most Active Files/,/^$/' filemon.out
Most Active Files
--
#MBs #opns #rds #wrs file volume:inode

--
180.8 1 46277 0 iptrace.out /dev/hd3:17
180.8 1 0 46277 ipreport.out /dev/hd3:107
0.0 2 4 0 ksh.cat /dev/hd2:12741
0.0 1 2 0 cmdtrace.cat /dev/hd2:12610
Chapter 11. Tools 253

Summary table for logical volume I/O
In the following example, we only extract the summary table for logical volume
I/O:

The logical volume hd3 with filesystem /tmp is fully utilized at 3.8 MB transfer
rate. The fields are interpreted as follows:

#rds Number of read calls to file.

#wrs Number of write calls to file.

file File name (the full path name is in detailed report).

volume:inode The logical volume that the file resides in and the inode number
of the file in the associated file system. This field can be used
to associate a file with its corresponding persistent segment
shown in the detailed VM segment reports. This field may be
blank for temporary files created and deleted during execution.

util Utilization of logical volume.

#rblk Number of 512 byte blocks read from logical volume.

#wblk Number of 512 byte blocks written to logical volume.

KB/s Average transfer data rate in KB per second.

volume Logical volume name.

description Either the file system mount point or the LV type (paging, jfslog,
boot, or sysdump). For example, the LV /dev/hd2 is /usr and
/dev/hd8 is jfslog. There may also be the word compressed; this
means all data is compressed automatically using LZ
compression before being written to disk, and all data is
uncompressed automatically when read from disk. The Frag_Sz
shows the fragment size; 512 means that there can be four
fragments in one page.

awk '/Most Active Logical Volumes/,/ $̂/' filemon.out

Most Active Logical Volumes
--
util #rblk #wblk KB/s volume description

--
1.00 370664 370768 3846.8 /dev/hd3 /tmp
0.02 0 568 2.9 /dev/hd8 jfslog
0.01 0 291 1.5 /dev/hd9var /var Frag_Sz.= 512
0.00 0 224 1.2 /dev/hd4 /
0.00 0 25 0.1 /dev/hd1 /home Frag_Sz.= 512
0.00 16 152 0.9 /dev/hd2 /usr
254 RS/6000 SP System Performance Tuning Update

To check the details of the highest utilized logical volumes, create a script as
shown (calling it filemon.lvdetail) and then run it using the filemon output file
as input:

For our continuing example, it would result in the following output:

The description for the detailed output from the filemon command for logical,
and physical volumes are as follows:

reads Number of read requests made against the volume.

read sizes (blks) The read transfer-size statistics (avg/min/max/sdev), in
units of 512-byte blocks.

read times (msec) The read response-time statistics (avg/min/max/sdev), in
milliseconds.

#!/bin/ksh

file=${1:-filemon.out}
switch=${2:-0.20} # 20%

extract the summary table...
awk '/Most Active Logical Volumes/,/̂ $/' $file|
select logical volumes starting from line 5 and no empty lines...
awk 'NR>4&&$0!~/̂ $/{if ($1 >= switch)print $5}' switch=$switch|
while read lv;do

strip the /dev/ stuff and select the detail section.
awk '/VOLUME: \/dev\/'${lv##*/}'/,/ $̂/' $file

done

filemon.lvdetail filemon.out 0.1
VOLUME: /dev/hd3 description: /tmp
reads: 6896 (0 errs)
read sizes (blks): avg 53.8 min 8 max 64 sdev 17.7
read times (msec): avg 31.251 min 0.484 max 680.707 sdev 17.817
read sequences: 6034
read seq. lengths: avg 61.4 min 8 max 72 sdev 9.4

writes: 11739 (0 errs)
write sizes (blks): avg 31.6 min 8 max 32 sdev 2.9
write times (msec): avg 26.120 min 4.440 max 671.314 sdev 19.814
write sequences: 5922
write seq. lengths: avg 62.6 min 8 max 128 sdev 7.4

seeks: 11956 (64.2%)
seek dist (blks): init 1160,

avg 476295.2 min 8 max 1703560 sdev 386639.7
time to next req(msec): avg 5.171 min 0.001 max 665.182 sdev 11.744
throughput: 3846.8 KB/sec
utilization: 1.00
Chapter 11. Tools 255

11.1.8 fileplace
fileplace displays the placement of a file's blocks within a file system.
Logically contiguous files may be physically fragmented on disk, depending

read sequences Number of read sequences. A sequence is a string of
512-byte blocks that are read consecutively and indicate
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences, in
blocks.

writes Number of write requests made against the volume.

write sizes (blks) The write transfer-size statistics (avg/min/max/sdev), in
units of 512-byte blocks.

write times (msec) The write response-time statistics (avg/min/max/sdev), in
milliseconds.

write sequences Number of write sequences. A sequence is a string of
512-byte blocks that are written consecutively.

write seq. lengths Statistics describing the lengths of the write sequences, in
blocks.

seeks Number of seeks that preceded a read or write request;
also expressed as a percentage of the total reads and
writes that required seeks.

seek dist (blks) Seek distance statistics, in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This seek
distance is sometimes very large, so it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) Hard files only; seek distance statistics, in units of disk
cylinders.

time to next req Statistics (avg/min/max/sdev) describing the length of
time, in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate at
which the volume is being accessed.

throughput Total volume throughput, in Kilobytes per second.

utilization Fraction of time the volume was busy. The entries in this
report are sorted by this field, in decreasing order.
256 RS/6000 SP System Performance Tuning Update

on the available free space at the time the file is created. fileplace can be
used to examine and assess the efficiency of a file's placement on disk.

This example shows the logical layout for the file ipreport.out:

This example shows the physical layout of the file ipreport.out:

fileplace -vl ipreport.out

File: ipreport.out Size: 598162 bytes Vol: /dev/hd3
Blk Size: 4096 Frag Size: 4096 Nfrags: 147 Compress: no
Inode: 21 Mode: -rw------- Owner: root Group: system

Logical Fragment

0000286-0000293 8 frags 32768 Bytes, 5.4%
0000298-0000301 4 frags 16384 Bytes, 2.7%
0000369-0000376 8 frags 32768 Bytes, 5.4%
0000390-0000397 8 frags 32768 Bytes, 5.4%

<<< lines omitted >>>
0000544-0000551 8 frags 32768 Bytes, 5.4%
0000560-0000563 4 frags 16384 Bytes, 2.7%
0000567-0000570 4 frags 16384 Bytes, 2.7%
0000579-0000586 8 frags 32768 Bytes, 5.4%
0000596-0000603 8 frags 32768 Bytes, 5.4%
0000620-0000627 8 frags 32768 Bytes, 5.4%
0000633-0000640 8 frags 32768 Bytes, 5.4%
0000655-0000662 8 frags 32768 Bytes, 5.4%
0000671-0000677 7 frags 28672 Bytes, 4.8%

147 frags over space of 392 frags: space efficiency = 37.5%
20 fragments out of 147 possible: sequentiality = 87.0%
Chapter 11. Tools 257

11.1.9 hatstune
The hatstune command can be used to tune the High Availability Topology
Services (HATS) heart beat functionality. It will update the SDR for the
TS_Config object. The default settings follow:

To check the current settings with the hatstune command, use the following:

The options that we would use to tune the execution of hats are as follows:

fileplace -vp ipreport.out

File: ipreport.out Size: 598162 bytes Vol: /dev/hd3
Blk Size: 4096 Frag Size: 4096 Nfrags: 147 Compress: no
Inode: 21 Mode: -rw------- Owner: root Group: system

Physical Addresses (mirror copy 1) Logical Fragment
---------------------------------- --------- -------
2458430-2458437 hdisk1 8 frags 32768 Bytes, 5.4% 0000286-0000293
2458442-2458445 hdisk1 4 frags 16384 Bytes, 2.7% 0000298-0000301
2458513-2458520 hdisk1 8 frags 32768 Bytes, 5.4% 0000369-0000376
2458534-2458541 hdisk1 8 frags 32768 Bytes, 5.4% 0000390-0000397

<<< lines omitted >>>
2458688-2458695 hdisk1 8 frags 32768 Bytes, 5.4% 0000544-0000551
2458704-2458707 hdisk1 4 frags 16384 Bytes, 2.7% 0000560-0000563
2458711-2458714 hdisk1 4 frags 16384 Bytes, 2.7% 0000567-0000570
2458723-2458730 hdisk1 8 frags 32768 Bytes, 5.4% 0000579-0000586
2458740-2458747 hdisk1 8 frags 32768 Bytes, 5.4% 0000596-0000603
2458764-2458771 hdisk1 8 frags 32768 Bytes, 5.4% 0000620-0000627
2458777-2458784 hdisk1 8 frags 32768 Bytes, 5.4% 0000633-0000640
2458799-2458806 hdisk1 8 frags 32768 Bytes, 5.4% 0000655-0000662
2458815-2458821 hdisk1 7 frags 28672 Bytes, 4.8% 0000671-0000677

147 frags over space of 392 frags: space efficiency = 37.5%
20 fragments out of 147 possible: sequentiality = 87.0%

SDRGetObjects TS_Config
Frequency Sensitivity Run_FixPri FixPri_Value Log_Length Pinning

1 4 1 38 5000 ""

/usr/sbin/rsct/bin/hatstune -v
Current HATS tunable values:

Frequency: 1
Sensitivity: 4
Running fixed priority: 38
Maximum number of lines in log file: 5000
Pinning in real memory:
258 RS/6000 SP System Performance Tuning Update

To set the values to default, run hatstune in the following way:

It is important that the values are not changed without monitoring the effect. If
the values are too low, nodes might not have time enough to answer and will
be perceived as being off-line. If the values are too high, the nodes might be
off-line but are not detected as being off-line. Increasing the settings in small
increments while monitoring is the best approach. Usually, it is not necessary
to change the priority values (which can also be done). When changing the
frequency and sensitivity, start by doubling the values and see if that is
enough, as is shown in the following example:

You can verify that the changes have taken place in the SDR as shown in the
following:

Frequency (-f) Controls how often Topology Services sends a heartbeat
to its neighbors. The value is interpreted as the number of
seconds between heartbeats. On a system with a high
amount of paging activity or other heavy workload, this
number should be kept as small as possible. The
frequency is an integer value of heart beat frequency in
seconds. The valid frequency range is [1, 30] or a special
keyword “default.” The default frequency value is used if
the frequency is “default.”

Sensitivity (-s) Controls the number of missed heartbeat messages that
will cause a Death in Family message to be sent to the
Group Leader. Heartbeats are not considered missing
until it has been twice the interval indicated by the
Frequency attribute. The sensitivity is an integer value of
heart beat sensitivity. The valid sensitivity range is [4, 40]
or a special keyword “default.” The default sensitivity value
will be used if sensitivity is the special keyword “default.”

/usr/sbin/rsct/bin/hatstune -f default -s default
The following HATS tunables are changed:

Default heart beat frequency changed to 1.
Default heart beat sensitivity changed to 4.

/usr/sbin/rsct/bin/hatstune -f 2 -s 8
The following HATS tunables are changed:

Default heart beat frequency changed to 2.
Default heart beat sensitivity changed to 8.

SDRGetObjects TS_Config
Frequency Sensitivity Run_FixPri FixPri_Value Log_Length Pinning

2 8 1 38 5000 ""
Chapter 11. Tools 259

11.1.10 ifcl_dump
The ifcl_dump command (new for the SP Switch2 in PSSP 3.2) accesses the
pseudo device driver (csspd#) that maintains the nodes connectivity matrix.
This will show the currently available connections over the switch that the
node knows about. The first example shows a node with no switch
connections:

The following example shows a node with two working fault service
connections:

11.1.11 iostat
iostat is foremost a tool to get a first impression of whether a system has an
I/O-bound performance problem or not. The tool, however, reports the same
CPU activity statistics as vmstat does, which is a percentage breakdown of
user mode, system mode, idle time, and waits for disk I/O. For multiprocessor
systems, the CPU values are global averages among all processors. Also, the
I/O wait state is defined system-wide and not per processor.

The following example shows how we monitor the system with iostat saving
output to a file (it runs for 60 minutes in 5 second intervals, and the sample
data is not shown here in its entirety):

ifcl_dump -m
CM reachable structure

| ret_code 0x00000000 [0]
| inout 0x00000000 [0]
| reachfrom 0x00000000 [0]

| nodelist

ifcl_dump -m
CM reachable structure

| ret_code 0x00000000 [0]
| inout 0x00000002 [2]
| reachfrom 0x00000001 [1]

| nodelist
0x0003 0x0007

iostat -d 5 720|tee /tmp/iostat.out
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 0.0 0.5 0.0 4247 2114
hdisk3 0.0 0.0 0.0 0 0
hdisk4 0.0 0.0 0.0 0 0
hdisk5 0.0 0.0 0.0 0 0
hdisk0 0.1 3.5 0.2 41175 3360
hdisk1 2.0 11.7 2.5 49905 100387
hdisk6 0.0 4.1 0.1 7440 44436
<<< lines omitted >>>
260 RS/6000 SP System Performance Tuning Update

To make some summaries, we use two scripts, and the first one is for
reporting the most heavily loaded disk:

This is the sample script used (called iostat.max); it first goes through the
output to find the disk with the highest peak usage and then extracts all
records for this disk using half the peak value as a breaking point (stripping
off the first summary output from iostat as well):

To summarize the read and write transfer from and to a disk, a script such as
the one that follows (called iostat.maxdata) could be used (stripping off the
first summary output from iostat as well):

iostat.max /tmp/iostat.out
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk6 100.0 16944.0 135.8 0 84720
hdisk6 100.0 16181.5 165.1 4 80944
hdisk6 100.0 16102.4 161.2 4 80508
hdisk6 100.0 16072.8 163.7 4 80400
hdisk6 100.0 16028.8 162.6 4 80140
hdisk6 100.0 15754.4 159.2 4 78768
hdisk6 100.0 15231.2 184.0 8 76148
hdisk6 100.0 14891.2 184.2 8 74448
hdisk6 100.0 14688.7 185.5 8 73472
hdisk6 100.0 14415.2 181.4 8 72068
hdisk6 100.0 14272.8 147.6 4 71360
hdisk6 100.0 13997.8 177.3 8 70016
hdisk6 99.8 16226.3 149.9 4 81168

#!/bin/ksh

input=${1:-iostat.out}
awk '{

if (!first[$1]>0) {first[$1]=NR;next}
if($2>max){max=$2;disk=$1}}END{print disk,max}

' $input|read disk max
print "Disks: % tm_act Kbps tps Kb_read Kb_wrtn"
awk '$1~/ '̂$disk'/&& $2>'$((${max%%.*}/2))'' $input|sort -nrk2

#!/bin/ksh

printf "%-10.10s %12s %12s %12s\n" "Disk" "Read(KB)" "Write(KB)" "#samples"
awk '/ ĥdisk/{
if (!first[$1]>0) {first[$1]=NR;next}
disk[$1]++
write[$1]=write[$1]+$6
read[$1]=read[$1]+$5

}
END{

for (i in disk)
printf "%-10.10s %12d %12d %12d\n",i,read[i],write[i],disk[i]

}' ${1:-iostat.out}|sort -rn -k2 -k3
Chapter 11. Tools 261

With the same input data as the previous example, it would generate the
following output:

11.1.12 iptrace/ipreport/ipfilter
Monitoring the network traffic with iptrace (and tcpdump) can often be very
useful in determining why network performance is not as expected. For
example, in reviewing an instance of the ip trace, a pattern was found that
indicated nfsd usage. It was discovered that out of 112,000 packets, 42,000
packets were replies that had the error “NFS: Stat: 970) Error- Stale NFS file
handle.” Basically, a large amount of traffic (roughly half) was caused by the
inability of clients to access an old file handle.

iptrace
The iptrace daemon records Internet packets received from configured
interfaces. Command flags provide a filter so that the daemon traces only
packets meeting specific criteria. Packets are traced only between the local
host on which the iptrace daemon is invoked and the remote host.

The following example shows how to trace a bi-directional connection
between a server host and a client (remotenode), save the output in a file,
wait for 30 seconds and then stop the trace:

ipreport
To format the data file generated by iptrace, run the ipreport command.

The ipreport command generates a trace report from the specified trace file
created by the iptrace command. The following example uses the trace file
generated by iptrace to generate a readable report, excluding name lookup,
and only reporting on the 100 first packets, starting from packet number 55
and including RPC information:

ipreport -c 100 -j 55 -v -N -rs /tmp/iptrace.out >/tmp/ipreport.out

iostat -d 5 72 >/tmp/iostat.out
iostat.maxdata /tmp/iostat.out
Disk Read(KB) Write(KB) #samples
hdisk6 7432 1006340 3599
hdisk0 7364 0 3599
hdisk1 8 14627 3599
hdisk5 0 0 3599
hdisk4 0 0 3599
hdisk3 0 0 3599
hdisk2 0 0 3599

startsrc -s iptrace -a "-a -b -d remotenode /tmp/iptrace.out" &&
> sleep 30 &&
> stopsrc -s iptrace
262 RS/6000 SP System Performance Tuning Update

The following is an example of the output from ipreport after running ping

between two nodes over Ethernet:

This is the ECHO_REPLY packet that is returned to the host issuing the
ECHO_REQUEST (in this example, it is the one running the ping command).

This example shows the initiation of a TCP connection between two nodes
(from SRC to DST):

Note the request for message segment size of 1460 (a similar sample for TCP
initiation is also shown for the tcpdump command; see Section 11.1.32,
“tcpdump” on page 317 for more information). This sample is the reply to the
initiation request (note the SYN and ACK in the flags field):

ETH: ====(98 bytes received on interface en0)==== 10:41:20.509152590
ETH: [00:04:ac:ec:07:98 -> 00:04:ac:ec:08:d0] type 800 (IP)
IP: < SRC = 129.40.35.98 >
IP: < DST = 129.40.35.102 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=63399, ip_off=0
IP: ip_ttl=255, ip_sum=7ae8, ip_p = 1 (ICMP)
ICMP: icmp_type=0 (ECHO_REPLY) icmp_id=16974 icmp_seq=22

ETH: ====(74 bytes received on interface en0)==== 12:22:05.191609117
ETH: [00:04:ac:ec:07:98 -> 00:04:ac:ec:08:d0] type 800 (IP)
IP: < SRC = 129.40.35.98 >
IP: < DST = 129.40.35.102 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=41626, ip_off=0
IP: ip_ttl=60, ip_sum=9309, ip_p = 6 (TCP)
TCP: <source port=34308, destination port=2049(shilp) >
TCP: th_seq=f47ddc71, th_ack=0
TCP: th_off=10, flags<SYN>
TCP: th_win=65535, th_sum=4b0a, th_urp=0
TCP: mss 1460
TCP: nop
TCP: wscale 1
TCP: nop
<<< lines omitted >>>

ETH: ====(74 bytes transmitted on interface en0)==== 12:22:05.191741778
ETH: [00:04:ac:ec:08:d0 -> 00:04:ac:ec:07:98] type 800 (IP)
IP: < SRC = 129.40.35.102 >
IP: < DST = 129.40.35.98 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=51148, ip_off=0
IP: ip_ttl=60, ip_sum=6dd7, ip_p = 6 (TCP)
TCP: <source port=2049(shilp), destination port=34308 >
TCP: th_seq=b29207af, th_ack=f47ddc72
TCP: th_off=10, flags<SYN | ACK>
TCP: th_win=59368, th_sum=5530, th_urp=0
TCP: mss 1460
TCP: nop
TCP: wscale 0
TCP: nop
<<< lines omitted >>>
Chapter 11. Tools 263

ipfilter
The ipfilter sorts the file provided by the ipreport command, provided the -r
(for NFS reports) and -s (for all reports) flag has been used to generate the
report. It provides information about NFS, UDP, TCP, IPX and ICMP headers
in table form. Information can be displayed together, or separated by headers
into different files. It also provides information about NFS calls and replies.

To run an ipfilter script that will generate a specific report for different
protocols (header types in the ipreport output file), use the following
command:

ipfilter -s untxc /tmp/ipreport.out

Table 33 shows the different header types and options.

Table 33. Header types

If no options are specified, ipfilter will generate a file containing all
protocols (ipfilter.all).

The following is a sample output taken from ipreport.nfs generated by
ipfilter; it can be used to get an overview of the NFS traffic:

Header Type Header type option Output file name

NFS (RPC) n ipfilter.nfs

TCP t ipfilter.tcp

UDP u ipfilter.udp

ICMP c ipfilter.icmp

IPX (PC protocol) x ipfilter.ipx

more ipfilter.nfs
Operation Headers: NFS

Ports

pkt. Time Source Dest. Length Seq # Ack #
Source Destination Net_Interface Operation

--

1388 08:43:07.881449 192.168.6.7 192.168.6.160 176, a1441f13, db32c357

34299, 2049(shilp) en0 TCP ACK PUSH NFS
1391 08:43:07.903165 192.168.6.160 192.168.6.7 208, db32c357, a1441f9b 2
049(shilp), 34299 en0 TCP ACK PUSH NFS
<<< lines omitted >>>
264 RS/6000 SP System Performance Tuning Update

The following is sample output taken from ipreport.tcp generated by ipfilter,
it gives a good overview of the TCP packet flow:

The following is sample output taken from ipreport.udp generated by
ipfilter; it shows the UDP packet flow:

11.1.13 lsps
The lsps command displays the characteristics of paging spaces, such as the
paging-space name, physical-volume name, volume-group name, size,
percentage of the paging space used, whether the space is active or inactive,
and whether the paging space is set to automatic activation at boot (IPL). The
following are a couple of examples that shows one paging space on one disk:

more ipfilter.tcp
Operation Headers: TCP

Ports

pkt. Time Source Dest. Length Seq # Ack #
Source Destination Net_Interface Operation

--

1 18:35:06.814647 9.12.0.6 9.12.0.114 63, 2610f9ea, 3c0813
23(telnet), 1195 tr0 TCP ACK PUSH

2 18:35:06.891148 9.12.0.105 9.12.0.6 40, 93da21, df807567
6000, 46398 tr0 TCP ACK

3 18:35:06.957874 9.12.0.6 9.12.0.105 60, df807567, 93da21
46398, 6000 tr0 TCP ACK PUSH

<<< lines omitted >>>

more ipfilter.upd
Operation Headers: UDP

Ports

pkt. Time Source Dest. Length Seq # Ack #
Source Destination Net_Interface Operation

--

6 18:35:07.116037 9.12.0.15 9.12.0.255 239, 1
38(netbios- 138(netbios- tr0 UDP

7 18:35:07.139761 192.168.6.160 192.168.6.14 104, 1
0000(hats.s 10000(hats.s en0 UDP
23 18:35:08.248904 192.168.6.10 192.168.6.160 76,
123(ntp), 123(ntp) en0 UDP

<<< lines omitted >>>

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto
hd6 hdisk0 rootvg 9216MB 1 yes yes

lsps -s
Total Paging Space Percent Used

9216MB 1%
Chapter 11. Tools 265

Since paging is usually to be avoided, use lsps (or svmon [see Section
11.1.31, “svmon” on page 314) or pstat (see Section 11.1.27, “pstat” on page
308]) to monitor paging space usage.

11.1.14 lspv/lslv/lsvg/getlvcb
These commands are useful for determining the logical volume layout and
gives a good overview.

lspv
The lspv command is useful for displaying information about the physical
volume and its logical volume content and logical volume allocation layout, as
the following two examples show:

In the preceding examples, we can see that the hd6 logical volume is nicely
placed in the center area of the disk, the distribution being 108 LPs in the
very center, 108 LPs in the outer middle, and 72 LPs in the inner middle part
of the disk.

lslv
The lslv command displays the characteristics and status of the logical
volume, as the following example shows:

As can be seen above, the lspv and lslv shows the same distribution for the
logical volume hd6. The lslv command also shows that it has 288 LPs but no
additional copies. It also says that the intra-policy of center is only 37 percent
in band, which means that 63 percent is out of band, that is, not in the center.
This we know from the previous lspv command to be true, since 108+72 LPs

lspv -l hdisk0
hdisk0:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd5 1 1 01..00..00..00..00 N/A
hd6 288 288 00..108..108..72..00 N/A

lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
1-1 used outer edge hd5 boot N/A
2-109 free outer edge

110-217 used outer middle hd6 paging N/A
218-325 used center hd6 paging N/A
326-397 used inner middle hd6 paging N/A
398-433 free inner middle
434-542 free inner edge

lslv -l hd6
hd6:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk0 288:000:000 37% 000:108:108:072:000
266 RS/6000 SP System Performance Tuning Update

are placed on the inner and outer middle respectively and only 108 LPs are
actually placed in the center; thus, 108/288 is 37.5 percent.

lsvg
The lsvg command displays information about volume groups. When
information from the Device Configuration database is unavailable, some of
the fields will contain a question mark (?) in place of the missing data.

First, we need to understand the basic properties of the volume group, such
as its general characteristics, its currently allocated size, its PP size, if there
are any STALE partitions, and how much space is and is not occupied (in
case we need to reorganize for performance reasons). For example:

The volume group has only two logical volumes and one disk with a PP size
of 64 MB.

Second, we need to find out which logical volumes are created on this volume
group and if they all are open and used; if they are not open and used, they
might be old, corrupted and forgotten or only used occasionally, and if we
were to need more space to reorganize the volume group, we might be able to
free that space. For example:

As the preceding example shows, there is only one filesystem with a JFS log
allocated on the entire volume group. Remember that the PP size was 64 MB,
so even though the JFS log only has 1 LP/PP, it is a 64 MB partition.

print "scale=3\n(108/288)*100"|bc
37.500

lsvg -L vg99
VOLUME GROUP: vg99 VG IDENTIFIER: 006015611f031daa
VG STATE: active PP SIZE: 64 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 543 (34752 megabytes)
MAX LVs: 256 FREE PPs: 525 (33600 megabytes)
LVs: 2 USED PPs: 18 (1152 megabytes)
OPEN LVs: 2 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32

lsvg -l vg99
vg99:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfslog 1 1 1 open/syncd N/A
lv02 jfs 17 17 1 open/syncd /testfs
Chapter 11. Tools 267

We would also like to know which disks are allocated for this volume group.
For example:

There is only one disk in this volume group and no mirroring is being done for
the logical volumes, but what kind of disk is it? Use the following command to
discover this information:

It is an SSA logical disk let us find out more with the following command:

The logical disk hdisk6 is composed of four physical disks (pdisk0-3) and
there should be some sort of SSA RAID configuration (since the hdisks
consists of more than one pdisk); to find out, we use the following command:

It confirmed that it was a RAID definition.

To find out all SSA configured RAID disks controlled by SSA RAID managers,
run the following command:

getlvcb
The getlvcb command is useful when you want to extract logical volume
information and use this information in shell scripts. To understand what
information can be extracted by getlvcb, use the -AT flags:

getlvcb -AT lv99

lsvg -p vg99
vg99:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk6 active 543 525 109..91..108..108..109

lsdev -Cl hdisk6
hdisk6 Available N0-58-L SSA Logical Disk Drive

ssaxlate -l hdisk6
pdisk0 pdisk2 pdisk1 pdisk3

ssaraid -M|xargs -i ssaraid -l {} -Ihz -n hdisk6
#name id state size

hdisk6 156139E312C44CO good 36.4GB RAID-10 array

ssaraid -M|xargs -i ssaraid -l {} -Ihz
#name id use member_stat size

pdisk0 000629D148ED00D member n/a 18.2GB Physical disk
pdisk1 000629D2781600D member n/a 18.2GB Physical disk
pdisk2 000629D278C500D member n/a 18.2GB Physical disk
pdisk3 000629D282C500D member n/a 18.2GB Physical disk
hdisk6 156139E312C44CO good 36.4GB RAID-10 array
268 RS/6000 SP System Performance Tuning Update

The next example shows how getlvcb can be used in a shell script to extract
the logical volume id and logical volume type:

This is a sample output with rootvg and a second volume group that only
contains two logical volumes (highlighted) if the above script was named
lslvcb (compare this output to lsvg|xargs -i getlvodm -L {}). The output
could look something like the following when the lslvcb script is run:

11.1.15 mmlsmgr/mmdf/mmlsfs/mmlsdisk/mmfsadm
The mm commands operate on GPFS objects, and a few of the monitoring
commands are exemplified here.

mmlsmgr
The mmlsmgr command (new with GPFS 1.3) displays which node is the GPFS
File System Manager for a specific file systems. If no file system is specified,
information about all file systems, for which a GPFS File System Manager is
appointed, is displayed. For example:

#!/bin/ksh

lsvg|xargs -i lsvg -l {}|awk '$3~/[0-9]/{print $1}'|
while read lv;do
printf "%-12.12s %-20.20s %s\n" $lv $(getlvcb -i -t $lv)

done|sort -k1

lslvcb
hd1 00601561fb9811c0.8 jfs
hd2 00601561fb9811c0.5 jfs
hd3 00601561fb9811c0.7 jfs
hd4 00601561fb9811c0.4 jfs
hd5 00601561fb9811c0.1 boot
hd6 00601561fb9811c0.2 paging
hd7 00601561fb9811c0.10 sysdump
hd8 00601561fb9811c0.3 jfslog
hd9var 00601561fb9811c0.6 jfs
loglv00 006015611f031daa.1 jfslog
lv00 00601561fb9811c0.9 sysdump
lv01 00601561fb9811c0.11 jfs
lv02 006015611f031daa.2 jfs

mmlsmgr
file system manager node
---------------- ------------------
gpfsdev 5 (sp6n05)
Chapter 11. Tools 269

mmdf
The mmdf command queries available file space on a GPFS file system. For
example:

mmlsfs
The mmlsfs command displays GPFS file system attributes. For example:

mmlsdisk
The mmlsdisk command displays the current state of disks in a file system.
For example:

mmfsadm
The mmfsadm command is not a user supported command, and as is such
subject to change or deletion without notice from IBM. However, we found it
most useful for some low level monitoring of VSD performance and utilization.
It should be executed on a VSD node. The dump option, along with tscomm,

mmdf gpfsdev
disk disk size failure holds holds free KB free KB
name in KB group metadata data in full blocks in fragments
--------------- --------- -------- -------- ----- --------------- ---------------
gpfs0vsd 8880128 4005 yes yes 8852480 (100%) 1216 (0%)
gpfs1vsd 8880128 4007 yes yes 8854016 (100%) 848 (0%)

--------- -------------- --------------
(total) 17760256 17706496 (100%) 2064 (0%)

Inode Information

Total number of inodes: 32768
Total number of free inodes: 32113

mmlsfs gpfsdev -d -s
flag value description
---- -------------- ---
-d gpfs0vsd;gpfs1vsd Disks in file system
-s roundRobin Stripe method

mmlsdisk gpfsdev
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfs0vsd disk 512 4005 yes yes ready up
gpfs1vsd disk 512 4007 yes yes ready up
270 RS/6000 SP System Performance Tuning Update

cfgmgr, stripe, disk, malloc and pgalloc, are some of the more useful
suboptions. The following shows all configured nodes in a list:

11.1.16 ndb
The ndb command can be useful sometimes to examine the runtime status of
sockets and interface layers. It can also be accessed through the crash

command. The following example shows how to extract information about the
first network interface:

mmfsadm dump cfgmgr|grep -p ' node'
node adapter admin fails SGs mem daem TMreq

idx no host name ip address node status panics mngd free CPU /sec
---- ---- -------------- ----------- ----- ------- ------- --- ---- ---- -----

0 5 sp6n05 192.168.16.5 y up 0/0 0 0% 100% 0
1 7 sp6n07 192.168.16.7 y up 0/0 0 0% 100% 0
2 1 sp6n01 192.168.16.1 y up 0/0 0 0% 100% 0
3 3 sp6n03 192.168.16.3 y up 0/0 0 0% 100% 0
4 9 sp6n09 192.168.16.9 y up 0/0 0 0% 100% 0
5 10 sp6n10 192.168.16.10 y down 0/0 0 0% 100% 0
6 11 sp6n11 192.168.16.11 y up 0/0 0 0% 100% 0
7 12 sp6n12 192.168.16.12 y up 0/0 0 0% 100% 0
8 13 sp6n13 192.168.16.13 y up 0/0 0 0% 100% 0
9 14 sp6n14 192.168.16.14 y up 0/0 0 0% 100% 0

print "ndd\nquit\nquit"|ndb|sed '/̂ $/d' &
> netstat -I en3 &
> entstat ent3|grep "S/W Transmit Queue"
address of tcb is 0x0504a480
address of udb is 0x050a2680
type ? for help
ndb> address of ndd is 0x0024bf58

---------------------- NDD INFO -----(@0x50f3f020)----------
name: ent3 alias: en3 ndd_next:0x5003d820
flags:0x0002091b (UP|BROADCAST|RUNNING|NOECHO|ALT ADDRS|64BIT|PSEG)
ndd_open(): 0x013eb2c4 ndd_close():0x013eb324 ndd_output():0x013eb330
ndd_ctl(): 0x013eb33c ndd_stat(): 0x013ede68 receive(): 0x013ede5c
ndd_correlator: 0x50f3f000 ndd_refcnt: 1
ndd_mtu: 1514 ndd_mintu: 60
ndd_addrlen: 6 ndd_hdrlen: 14

<<< lines omitted >>>
ndd_ipackets: 3249863 ndd_opackets: 4101666
ndd_ierrors: 0 ndd_oerrors: 0
ndd_ibytes: 361081621 ndd_obytes: 2091025199
ndd_recvintr: 3241114 ndd_xmitintr: 22410
ndd_ipackets_drop: 0 ndd_nobufs: 0
ndd_xmitque_max: 79 ndd_xmitque_ovf: 0

ndb.ndd>
ndb>
Exiting.
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en3 1500 link#3 0.4.ac.3e.c8.ca 3249792 0 4101668 0 0
en3 1500 129.40.35.6 night4cw.ppd.pok. 3249792 0 4101668 0 0
Max Packets on S/W Transmit Queue: 79
S/W Transmit Queue Overflow: 0
Chapter 11. Tools 271

As can be seen in the preceding example output, by running ndb, netstat and
entstat, important values are matching each other (and have been
highlighted).

The following examples of ndb are based on the following output from netstat:

First, we use the socket subcommand with ndb. For example:

netstat -A|grep -p "Active Internet"|head -3
Active Internet connections
PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)
7042dedc tcp4 0 2 night4n37.login night4cw.1023 ESTABLISHED

print "socket 707ccadc\nquit"|ndb|sed ‘/̂ $/d’
address of tcb is 0x050f6980
address of udb is 0x0514eb80
type ? for help
ndb> --------------------- SOCKET INFO -------------------

type:0x7042 (BOGUS) opts:0xffffdedc (REUSEADDR|KEEPALIVE|DONTROUTE|USELO
OPBACK|LINGER|REUSEPORT|USE_IFBUFS|CKSUMRECV|NOREUSEADDR)

state:0xffffdedc (ISCONNECTING|ISDISCONNECTING|CANTSENDMORE|RCVATMARK|PRIV|
ASYNC|SS_ISCONFIRMING)

linger:0x7042 pcb:0x00040000 proto:0x00030000
q0:0x00000000 q0len: 0 q:0x000005b4
qlen: 0 qlimit: 0 head:0x00000003
timeo: 0 error: 0 oobmark:2166891387 pgid:2166891366
snd: cc:2641404642 hiwat:2641404612 mbcnt:3020192430 mbmax:2641404612
lowat:2639834263 mb:0x00003ebc events:0xb404
iodone:0xb40461d5 ioargs:0x00000000 flags:0x0000 ()
rcv: cc:33620991 hiwat: 0 mbcnt: 0 mbmax:1342177280
lowat: 0 mb:0x00000000 events:0x 0
iodone:0x0000ffff ioargs:0x81282366 flags:0xffff8128 (SEL|COLL|SB_WAIT

ING)
ndb>
Exiting.
272 RS/6000 SP System Performance Tuning Update

The socket options that the application is using at the time the ndb command
checked are highlighted in the preceding example. Then we use the tcb

subcommand with ndb. For example:

This next example shows how to use pstat to dump the system file table:

print "tcb 702dfedc\nquit"|ndb|sed '/̂ $/d'
ndb: error reading input, goodbye.
address of tcb is 0x0504a480
address of udb is 0x050a2680
type ? for help
ndb> (TCB)---------------- INPCB INFO -------------------

next:0x702dfedc prev: 0x702dfedc head: 0x00040000
ppcb:0x00000000 socket:0x1770dee9
flags:0x09721216 (RECVRETOPTS|RECVDSTADDR|RECVIFINFO|HDRINCL)
iflowinfo:0x00000000 (UNKNOWN)
oflowinfo:0x00000000 (UNKNOWN)
tos: 0 (UNKOWN)
ttl: 0
lport: 2418 laddr:0x09721216 (nighthawk4.ppd.pok.ibm.com)
fport: 0 faddr:0x000005ac (NONE)
laddr6:(::6:14:972:1216)
faddr6:(2dd7:0:0:3::5ac)
--------------------- SOCKET INFO -------------------

<<< lines omitted >>>

pstat -f
FILE TABLE:

SLOT FILE REF TYPE ADDRESS FLAGS
0 0x10000000 4 inode.VREG 0x15169a10 0x00001001 read rshare
1 0x10000030 1 inode.VREG 0x140b0e90 0x00000020 exec
2 0x10000060 55 inode.VREG 0x1342d130 0x00001001 read rshare
3 0x10000090 1 socket.DGRAM 0x7017f800 0x00000003 read write
4 0x100000c0 1 inode.VCHR 0x526ff070 0x00000002 write
5 0x100000f0 51 inode.VREG 0x1836ff30 0x00001001 read rshare

<<< lines omitted >>>
25 0x100004b0 3 socket.STREAM 0x707b1000 0x00000007 read write nonblock

<<< lines omitted >>>
33 0x10000630 1 socket.DGRAM 0x7089fa00 0x00028003 read write ndelay asy

<<< lines omitted >>>
Chapter 11. Tools 273

We select two sockets from the output above (number 25 and number 33) and
we will show how to find out more about them with ndb. The first example is
the TCP (STREAM) socket (number 25):

What is interesting to watch is the option settings for open sockets; in some
cases, applications are not affected by system changes with the no command,
but uses setsockopt() to override the default socket settings.

The meaning of the above socket options are:

KEEPALIVE Monitors the activity of a connection by enabling or disabling
the periodic transmission of ACK messages on a connected
socket. The idle interval time can be designated using the no
command.

OOBINLINE Leaves received out-of-band data (data marked urgent) in line.

REUSEADDR Specifies that the rules used in validating addresses supplied
by a bind subroutine should allow reuse of a local port.
SO_REUSEADDR allows an application to explicitly deny
subsequent bind subroutine to the port/address of the socket
with SO_REUSEADDR set. This allows an application to block
other applications from binding with the bind() subroutine.

print "socket 707b1000\nquit"|ndb|sed ‘/̂ $/d’
address of tcb is 0x050f6980
address of udb is 0x0514eb80
type ? for help
ndb> --------------------- SOCKET INFO -------------------

type:0x0001 (STREAM) opts:0x010c (REUSEADDR|KEEPALIVE|OOBINLINE)
state:0x0102 (ISCONNECTED|NBIO)
linger:0x0000 pcb:0x707b1244 proto:0x050f4220
q0:0x00000000 q0len: 0 q:0x00000000
qlen: 0 qlimit: 0 head:0x00000000
timeo: 0 error: 0 oobmark: 0 pgid: 0
snd: cc: 2 hiwat:64240 mbcnt: 276 mbmax:256960
lowat: 4096 mb:0x70411e00 events:0x 0
iodone:0x00000000 ioargs:0x00000000 flags:0x0048 (SEL|NOINTR)
rcv: cc: 0 hiwat:64240 mbcnt: 0 mbmax:256960
lowat: 1 mb:0x00000000 events:0x 0
iodone:0x00000000 ioargs:0x00000000 flags:0x0048 (SEL|NOINTR)

ndb>
274 RS/6000 SP System Performance Tuning Update

Remember that the TCP protocol level socket options are inherited from
listening sockets to new sockets. The following TCP options can be changed
by the application for an open socket; in case of unexpected communications
performance for the application, it is important to know about the settings:

This next example is the output from ndb for the selected UDP (DGRAM)
socket (number 33):

The meaning of the above socket option is:

11.1.17 netpmon
netpmon monitors a trace of system events and reports on CPU usage,
network device-driver I/O, internet socket calls, and NFS I/O. In its normal
mode, netpmon runs in the background while one or more application

TCP_RFC1323 Enables or disables RFC 1323 enhancements on the
specified TCP socket.

TCP_NODELAY Specifies whether TCP should follow the Nagle Algorithm for
deciding when to send data. By default, TCP will follow the
Nagle Algorithm. To disable this behavior, applications can
enable TCP_NODELAY to force TCP to always send data
immediately.

TCP_STDURG Enables or disables RFC 1122 compliant urgent point
handling. By default, TCP implements urgent pointer
behavior compliant with the 4.2 BSD operating system; this
option defaults to 0.

BROADCAST Permits sending of broadcast messages.

print "socket 7089fa00\nquit"|ndb|sed ‘/̂ $/d’
address of tcb is 0x050f6980
address of udb is 0x0514eb80
type ? for help
ndb> --------------------- SOCKET INFO -------------------

type:0x0002 (DGRAM) opts:0x0020 (BROADCAST)
state:0x0380 (PRIV|NBIO|ASYNC)
linger:0x0000 pcb:0x70877f00 proto:0x050f4788
q0:0x00000000 q0len: 0 q:0x00000000
qlen: 0 qlimit: 0 head:0x00000000
timeo: 0 error: 0 oobmark: 0 pgid:4294960668
snd: cc: 0 hiwat:32768 mbcnt: 0 mbmax:131072
lowat: 4096 mb:0x00000000 events:0x 0
iodone:0x00000000 ioargs:0x00000000 flags:0x0010 (ASYNC)
rcv: cc: 0 hiwat:65536 mbcnt: 0 mbmax:262144
lowat: 1 mb:0x00000000 events:0x 0
iodone:0x00000000 ioargs:0x00000000 flags:0x0010 (ASYNC)

ndb>
Exiting.
Chapter 11. Tools 275

programs or system commands are being executed and monitored. When
tracing is stopped via a trcstop command, netpmon generates all specified
reports and exits.

The following example shows how to run netpmon. To stop netpmon tracing of
I/O, trcstop must be issued, and it is when this is done that netpmon writes the
output. To have netpmon monitor network I/O during a time interval, just run
the sleep program with the specified amount of seconds and then the trcstop

program. For example:

The output from netpmon can be quite extensive; to quickly find out if
something is in need of attention, we filter it with the awk command in most of
the following examples below in order to extract specific summary tables from
the netpmon output file. We have used the all option, but we could have used
any of these options:

Additional parameters that could be interesting to apply are:

cpu CPU usage

dd Network device-driver I/O

so Internet socket call I/O

nfs NFS I/O

all Short for cpu, dd, so, nfs

-t Prints CPU reports on a per-thread basis.

netpmon provides only partial support on most (PowerPC systems)
PCI-based network adapters, and netpmon does not support NFS Version 3
metrics (NFS3/ONC+).

Note

netpmon -o netpmon.out -O all -tv && sleep 60;trcstop

Enter the "trcstop" command to complete filemon processing

[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 60.583 secs in measured interval]
276 RS/6000 SP System Performance Tuning Update

When analyzing the output, keep in mind that the avg (average) measurement
is an indication of efficiency and that the sdev measurement indicates the
level of fragmentation (standard deviation).

Network device-driver transmit statistics/device
In the following example, we only extract the device driver transmit statistics
divided per adapter interface:

To interpret the above output, use the following descriptions:

-v Prints extra information in the report. All processes and all
accessed remote files are included in the report, instead of only
the 20 most active processes and files.

Xmit Pkts/s Packets per second transmitted through this device.

Xmit Bytes/s Bytes per second transmitted through this device.

Xmit Util Busy time for this device, as a percent of total time.

Xmit Qlen Number of requests waiting to be transmitted through
this device, averaged over time, including any
transaction currently being transmitted.

Recv Pkts/s Packets per second received through this device.

Recv Bytes/s Bytes per second received through this device.

Recv Demux Time spent in demux layer as a fraction of total time.

awk '/^Network.*by Device/,/̂ \=/' netpmon.out|sed '/^$/d;/^=/d'
Network Device-Driver Statistics (by Device):

----------- Xmit ----------- -------- Recv ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
--
token ring 0 74.32 8939 0.0%39.136 77.99 7989 0.0298
ethernet 0 285.06 27970 0.8% 0.008 285.11 27977 0.0309
Chapter 11. Tools 277

Network device-driver transmit statistics/destination
In the next example, we only extract the device driver transmit statistics
divided per destination:

To interpret the above output, use the following descriptions:

Detailed protocol
In the following example, we only extract the detailed protocol information:

To interpret the above output, use the following descriptions:

Host Destination host name. An * (asterisk) is used for
transmissions for which no host name can be
determined.

Pkts/s Packets per second transmitted to this host.

Bytes/s Bytes per second transmitted to this host.

Reads Number of read(), recv(), recvfrom(), and recvmsg()
subroutines made by this process on sockets of this
type.

Read Sizes (Bytes) Size statistics for read() calls.

Read Times (Msec) Response time statistics for read() calls.

Writes Number of write(), send(), sendto(), and sendmsg()
subroutines made by this process on sockets of this
type.

Write Sizes (Bytes) Size statistics for write() calls.

awk '/^Network.*by Destination/,/ \̂=/' netpmon.out|sed '/̂ $/d;/̂ =/d'
Network Device-Driver Transmit Statistics (by Destination Host):
--
Host Pkts/s Bytes/s
--
sp6n07 275.69 27018
9.12.0.119 0.28 416
9.12.0.114 1.54 334
sp6n14 1.40 165

grep -p ^PROTOCOL netpmon.out
PROTOCOL: TCP (All Processes)
reads: 3598
read sizes (bytes): avg 4090.3 min 1 max 4096 sdev 152.5
read times (msec): avg 0.180 min 0.003 max 157.295 sdev 4.340

writes: 20
write sizes (bytes): avg 40.6 min 5 max 145 sdev 60.3
write times (msec): avg 0.018 min 0.008 max 0.050 sdev 0.014
278 RS/6000 SP System Performance Tuning Update

Detailed interface
In the following example, we only extract the detailed interface information:

To interpret the above output, use the following descriptions:

Write Times (Msec) Response time statistics for write() calls.

Recv Packets Number of packets received through this device.

Recv Sizes (Bytes) Size statistics for received packets.

Recv Times (msec) Response time statistics for processing received
packets.

Xmit Packets Number of packets transmitted to this host.

Demux Times (msec) Time statistics for processing received packets in the
demux layer.

Xmit Sizes (Bytes) Size statistics for transmitted packets.

Xmit Times (Msec) Response time statistics for processing transmitted
packets.

grep -p ^DEVICE netpmon.out
DEVICE: token ring 0
recv packets: 38
recv sizes (bytes): avg 62.3 min 62 max 64 sdev 0.5
recv times (msec): avg 0.034 min 0.027 max 0.042 sdev 0.005
demux times (msec): avg 3.145 min 0.129 max 6.332 sdev 2.729

xmit packets: 13
xmit sizes (bytes): avg 412.2 min 64 max 1502 sdev 463.8
xmit times (msec): avg 2626.442 min 0.535 max 4151.737 sdev 1807.529

DEVICE: ethernet 0
recv packets: 1978
recv sizes (bytes): avg 98.1 min 98 max 118 sdev 1.4
recv times (msec): avg 0.023 min 0.019 max 0.138 sdev 0.003
demux times (msec): avg 0.106 min 0.070 max 0.148 sdev 0.004

xmit packets: 1978
xmit sizes (bytes): avg 98.1 min 98 max 118 sdev 1.4
xmit times (msec): avg 0.027 min 0.025 max 0.057 sdev 0.001
Chapter 11. Tools 279

Detailed host
In the following example, we only extract the detailed host information:

To interpret the above output, use the following descriptions:

Summary table for socket call statistics
In the following example, we only extract the summary table for socket calls:

To interpret the above output use the following descriptions, (note that the
above output is on a thread basis due to our usage of the -t option):

Host Destination host name.

Xmit Packets Number of packets transmitted through this device.

Xmit Sizes (Bytes) Size statistics for transmitted packets.

Xmit Times (Msec) Response time statistics for processing transmitted
packets.

Read Calls/s Number of read(), recv(), and recvfrom() subroutines per
second made by this process on sockets of this type.

Read Bytes/s Bytes per second requested by the above calls.

Write Calls/s Number of write(), send(), and sendto() subroutines per
second made by this process on sockets of this type.

grep -p ^HOST netpmon.out
HOST: sp6n07
xmit packets: 7251
xmit sizes (bytes): avg 98.0 min 98 max 98 sdev 0.0
xmit times (msec): avg 0.027 min 0.025 max 0.155 sdev 0.003

<<< lines omitted >>>

grep -p '^TCP Socket Call' netpmon.out
TCP Socket Call Statistics (by Process):
--

------ Read ----- ----- Write -----
Process PID Calls/s Bytes/s Calls/s Bytes/s
--
rsh 20142 26.58 108770 0.10 4

Thread id: 28671 26.58 108770 0.10 4
rsh 20650 26.27 107500 0.10 4

Thread id: 29413 26.27 107500 0.10 4
rsh 17768 25.91 106019 0.10 4

Thread id: 25569 25.91 106019 0.10 4
rsh 19912 14.16 57877 0.10 4

Thread id: 28911 14.16 57877 0.10 4
rsh 19552 0.03 0 0.10 4

Thread id: 29177 0.03 0 0.10 4
--
Total (all processes) 92.94 380167 0.52 21
280 RS/6000 SP System Performance Tuning Update

11.1.18 netstat
Traditionally, netstat is used for determining network problems rather than for
measuring performance. But it is very useful in determining the amount of
traffic on the network and therefore ascertain whether performance problems
are due to congestion or limitations in allocations of logical resources. For
network performance analysis, the netstat tool is for network tuning what
vmstat is for basic system tuning.

Among the many types of information that netstat will provide, the following
are some of the most important for network performance analysis:

• Communication subsystem summaries

• Active connections

• Routing table

• Adapter and network statistics

• Network memory usage

• Protocol statistics

Communication subsystem summaries
The following example shows the number of packets received, transmitted,
and dropped in the communications subsystem. In the statistics output, a N/A
displayed in a field value indicates the count is not applicable. For the
NFS/RPC statistics, the number of incoming packets that pass through RPC
are the same packets which pass through NFS, so these numbers are not
summed in the NFS/RPC Total field, thus the N/A. NFS has no outgoing
packet or outgoing packet drop counters specific to NFS and RPC. Therefore,
individual counts have a field value of N/A, and the cumulative count is stored
in the NFS/RPC Total field.

Write Bytes/s Bytes per second written by this process to sockets of this
protocol type.

Before using netstat to continually monitor network traffic and network
resource usage, reset the counters with the following command:

netstat -Zc -Zi -Zm -Zs

Note
Chapter 11. Tools 281

Active connections
The following example shows all active internet connections (including
servers) that are ESTABLISHED:

The following example also shows active internet connections:

netstat -D

Source Ipkts Opkts Idrops Odrops

ent_dev0 3929421 1223715 0 0

Devices Total 3929421 1223715 0 0

ent_dd0 3929421 1223716 0 1

Drivers Total 3929421 1223716 0 1

ent_dmx0 3929421 N/A 0 N/A

Demuxer Total 3929421 N/A 0 N/A

IP 4083011 4081590 1385 0
TCP 3698997 1017417 0 0
UDP 310112 288510 151 0

Protocols Total 8092120 5387517 1536 0

lo_if0 18468 18475 7 0
en_if0 3929421 1223712 0 0
css_if0 136438 153834 0 0

Net IF Total 4084327 1396021 7 0

NFS/RPC Total N/A 391142 0 0

(Note: N/A -> Not Applicable)

netstat -a|awk '/^$/{exit}{print}'|grep ESTABLISHED
tcp4 0 0 sp6n07.ftp sp6en0.42593 ESTABLISHED
tcp4 0 0 sp6sw07.36349 sp6sw01.6667 ESTABLISHED
tcp4 0 0 sp6n07.login sp6en0.1023 ESTABLISHED
tcp4 0 0 sp6n07.telnet sp6en0.41325 ESTABLISHED
tcp4 0 0 loopback.smux loopback.32845 ESTABLISHED
tcp4 0 0 loopback.32845 loopback.smux ESTABLISHED
tcp4 0 0 loopback.smux loopback.32769 ESTABLISHED
tcp4 0 0 loopback.32769 loopback.smux ESTABLISHED

netstat -A|grep -p "Active Internet"
Active Internet connections
PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)
7042dedc tcp4 0 2 night4n37.login night4cw.1023 ESTABLISHED
707ccadc tcp4 0 0 loopback.smux loopback.32849 ESTABLISHED
707cc6dc tcp4 0 0 loopback.32849 loopback.smux ESTABLISHED
7082a6dc tcp4 0 0 loopback.smux loopback.32770 ESTABLISHED
7082aadc tcp4 0 0 loopback.32770 loopback.smux ESTABLISHED
70877c00 udp4 0 0 129.40.35.12.ntp *.*
70877d00 udp4 0 0 127.255.255..ntp *.*
70877f00 udp4 0 0 night4n37.ntp *.*
7017db00 udp4 0 0 loopback.ntp *.*
282 RS/6000 SP System Performance Tuning Update

This next example shows active internet connections that are not
ESTABLISHED. If they are in the LISTEN state, it means that it’s a server
process that is waiting for a client process to open communication with it (for
many sockets, it is the inetd daemon that is listening). Unspecified addresses
and ports appear as an * (asterisk) in the output.

Routing table
Since performance problems can occur with NFS servers and name
resolution and routing, it can be important to check the current routing table
with netstat. When dynamic mtu discovery is enabled, the routing table can
fill up very fast on a busy server; in this case, do not use name resolution
when running netstat, as in the following example (however, this example is
normal):

netstat -a|awk '$6!=""/^$/{exit}{print}'|grep -v ESTABLISHED
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.6668 *.* LISTEN
tcp4 0 0 *.6667 *.* LISTEN
tcp4 0 0 *.sysctl *.* LISTEN
tcp4 0 0 *.writesrv *.* LISTEN
tcp4 0 0 *.spseccfg *.* LISTEN
tcp4 0 0 *.time *.* LISTEN
tcp4 0 0 *.daytime *.* LISTEN
tcp4 0 0 *.chargen *.* LISTEN
tcp4 0 0 *.discard *.* LISTEN
tcp4 0 0 *.echo *.* LISTEN
tcp 0 0 *.exec *.* LISTEN
tcp4 0 0 *.klogin *.* LISTEN
tcp 0 0 *.login *.* LISTEN
tcp4 0 0 *.kshell *.* LISTEN
tcp 0 0 *.shell *.* LISTEN
tcp 0 0 *.telnet *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
tcp4 0 0 *.32771 *.* LISTEN
tcp4 0 0 *.652 *.* LISTEN
tcp4 0 0 *.651 *.* LISTEN
tcp4 0 0 *.32770 *.* LISTEN
tcp4 0 0 *.smux *.* LISTEN
tcp4 0 0 *.sunrpc *.* LISTEN
tcp4 0 0 *.smtp *.* LISTEN

netstat -rnf inet
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default 129.40.35.123 UGc 0 0 en0 - -
9.114.18.22 129.40.35.123 UGHW 3 10882 en0 1500 -
127/8 127.0.0.1 U 7 911 lo0 - -
129.10.10/24 129.10.10.37 U 1 157483 css0 - -
129.40.35.64/26 129.40.35.102 U 15 1225073 en0 - -
Chapter 11. Tools 283

Adapter and network statistics
To display information about the adapter queues and other network specific
statistics, use the netstat -v command. This invokes the appropriate stat
command (entstat/tokstat/atmstat/fddistat) for each adapter type. In the
following output example, we have extracted some of the information that is
important to look at:

Obviously Receive/Transmit Errors are important, as are Bad/Dropped
Packets. The adapter device drivers buffer queue (list pointing to mbufs) will
show as Max Packets, which is the maximum number of packets that has
been on the queue at the same time. Queue Overflow is, of course, how many
times there have been requests to transmit packets that could not be
performed because the adapters queue was already full. And finally we have
the Current field, which is self explanatory.

It is also interesting to look at transfer collisions for Ethernet. At the end of the
listing, there is a Packets with Transmit collisions table. The first position is
the same as the field Single Collision Count and the rest are 2 to 16 number
of times the collision detection backoff has been performed for sending
packets (a summary is in the Multiple Collision Count field). Since the time
increases for each additional packet transmission, network traffic is degraded
if multiple collisions occur for the same packet and are occurring frequently.

In some environments, Ethernet adapters driven above 25 percent to 30
percent will result in serious throughput degradation (it usually starts at a 10
percent load). One indicator that the network is overloaded can be calculated
by dividing the number of collisions with the number of transmitted packets,
and if this is larger than 0.1, the network might be overloaded. In our next
example, we use the following as input to our calculation:

<<< lines omitted >>>
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 1 Packets Dropped: 0

Bad Packets: 0
Max Packets on S/W Transmit Queue: 62
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1
<<< lines omitted >>>

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 1852749 Packets: 2319984
<<< lines omitted >>>
Single Collision Count: 83847
Multiple Collision Count: 92151
<<< lines omitted >>>
284 RS/6000 SP System Performance Tuning Update

By applying our “rule of thumb” to the above values, as follows:

(83847+92151) / (1852749+2319984) = 0.042

We find that our network is not overloaded if we use this heuristic rule,
because 0.042 is less than 0.1.

For Token-Ring, it can be interesting to note if the ring is actually running half
or full duplex when full duplex is requested. This is shown by looking at the
Media Speed Running field (compare with Media Speed Selected). The
following example illustrates the dynamics of Token-Ring:

Network memory usage
To examine how the mbuf memory management is performing issue the
netstat -m command. The following example extracts only the top part that
contains a summary; in this example, we have 112 mbuf allocation failures:

To have the information displayed, as in the preceding example, you need to
set the extendednetstats option to 1 with the no command in AIX 4.3.31.

no -o extendednetstats=1

1 The change is effective immediately.

<<< lines omitted >>>
IBM PCI Tokenring Adapter (14103e00) Specific Statistics:

Media Speed Running: 16 Mbps Half Duplex
Media Speed Selected: 16 Mbps Full Duplex
<<< lines omitted >>>

netstat -m|head -5
4139 mbufs in use:
1034 Kbytes allocated to mbufs
112 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached
Chapter 11. Tools 285

The following example extracts the relevant part for CPU 0:

Put the following output in a script and call it status.mbuf.cpu.2 (before you
run the script, make sure it is in your path) as follows; this script will use the
first parameter as the CPU# and the second parameter as the delay factor in
seconds:

This output can then be used in another script, as the following example
shows, to examine each processors usage in a separate X-Windows aixterm:

Protocol statistics
netstat can also be used to monitor protocol specific statistics such as IP,
ICMP, TCP and UDP. Use the -ss option and zero statistics will not be
included. The following example illustrates the usage to monitor ICMP since
we are concerned with erroneous redirect packets from some old OS/2

netstat -m|awk 'BEGIN{go=0}go>0&&/̂ $/{exit}go>1{print}/CPU 0/,/By/{print;go++}'
******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
32 137 305 0 0 119 2320 0
64 48 174 0 0 16 1160 0
128 34 2788 0 0 62 580 0
256 5996 41812 15 0 1364 1392 0
512 47 487 0 0 9 145 0
1024 7 131 0 0 5 362 0
2048 2048 2063 112 0 2 362 0
4096 3 8 0 0 2 435 0
8192 0 6 0 0 0 36 0
16384 1 279 0 0 65 87 0
65536 1 1 0 0 0 4096 0

#!/bin/ksh
no=${1:-0}
runrun()
{
netstat -m|
awk 'BEGIN{go=0}go>0&&/^$/{exit}go>1{print}/CPU '$no'/,/By/{print;go++}'

}
case $2 in
"") runrun;;
*) while :;do runrun;sleep $2;done;;

esac

#!/bin/ksh

integer nproc=$(LANG=C lsdev -Cc processor -S Available -Fname|wc -l)
integer i=0

[[-f ${0##*/}.2 && ! -z "$DISPLAY"]] || exit -1

while (($i<=$nproc-1));do
aixterm -T "CPU $i" -e status.mbuf.cpu.2 $i 5 &
((i=$i+1))

done
286 RS/6000 SP System Performance Tuning Update

machines and want to find out if there are an excessive amount hitting our
server node:

In this case, we do not think that it was the case, since the number was
achieved over more than a week and other systems that had been affected
had much higher numbers for an equivalent time period.

The following example shows that UDP has dropped packets due to no
socket:

If we have a server with a lot of connections, we want to monitor the IP queue,
which we can do, as shown in this example:

If the ipqintrq shows a non zero value, IP connections can not be made to
our node because the queue is to small for the demand. Check the current
setting as follows with the no command:

11.1.19 nfsstat
NFS gathers statistics on the types of NFS operations performed along with
error information and performance indicators. You can use the nfsstat

command to identify network problems and observe the amount of NFS
operations taking place on the system.

netstat -ssp icmp
icmp:

103 calls to icmp_error
Output histogram:

echo reply: 242
destination unreachable: 103
routing redirect: 97

Input histogram:
echo reply: 546
destination unreachable: 715
echo: 433
time exceeded: 12

242 message responses generated

netstat -ssp udp
udp:

623603 datagrams received
37484 dropped due to no socket
44 broadcast/multicast datagrams dropped due to no socket
586075 delivered
640024 datagrams output

netstat -sp ip|grep ipintrq
0 ipintrq overflows

no -o ipqmaxlen
ipqmaxlen = 100
Chapter 11. Tools 287

When monitoring NFS statistics, be aware of how many biod threads each
client has and how many nfsd threads the servers have (both the maximum
and the currently active number of threads).

11.1.19.1 NFS Server
Examine the output from the nfsstat command on both the client and server
nodes to find indications that there is too much NFS traffic generated for the
server. The NFS server displays the number of NFS calls received (calls) and
rejected (badcalls) due to authentication, as well as the counts and
percentages for the various kinds of calls made.

To check how many nfsd threads are running in the current system, use the ps

command as follows:

As can be seen in the preceding, there are only three threads active in this
nfsd process, and as will be shown in the following, it is allowed to use up to
32 threads in the current sample setting.

To check the setting for the number of maximum threads, either check the
nfsd process with the ps command and look at its arguments (it is usually
started with the number of maximum threads as the parameter), as is shown
in the following example:

You can also check the ODM, as is shown here:

Before using nfsstat to continually monitor the NFS network traffic, reset
the counters with the following command:

nfsstat -z

Note

ps -mo THREAD -p $(lssrc -s nfsd|awk '$1=="nfsd"&&/active/{print $3}')
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 4478 9032 - A 0 60 3 * 240001 - - /usr/sbin

/nfsd
- - - 8529 S 0 60 1 50044608 1400 - - -
- - - 10857 S 0 60 1 5278cd98 400 - - -
- - - 11095 S 0 60 1 36c8bc 1400 - - -

ps -e -F "args" |awk '/^\/.*nfsd/{print $2}'
32

odmget -q subsysname=nfsd SRCsubsys|awk '/cmdargs/{print $3}'
"32"
288 RS/6000 SP System Performance Tuning Update

The command line arguments overrides other settings when starting nfsd, but
the nfso command has another limit that nfsd could use, the
nfs_max_threads, and how to check it is shown here:

The following example shows the output from the server part of the nfsstat

command (-s):

The preceding output displays a count of the various kinds of calls and their
respective percentages. Some explanations of the output as shown above:

calls The total number of RPC calls received from clients.

badcalls The total number of calls rejected by the RPC layer.

nullrecv The number of times an RPC call was not available when it
was thought to be received. This used to be an indicator that
there were too many nfsd processes started. However,
because additional nfsd threads will now be started as they
are needed, this should not be a concern.

badlen Packets truncated or damaged; the number of RPC calls with
a length shorter than a minimum-sized RPC call.

nfso -o nfs_max_threads
nfs_max_threads= 8

nfsstat -s
Server rpc:
Connection oriented
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
33650 0 0 0 0 8 0
Connectionless
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
6 0 0 0 0 0 0

Server nfs:
calls badcalls public_v2 public_v3
33656 0 0 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (33656 calls)
null getattr setattr lookup access readlink read
114 0% 1012 3% 0 0% 509 1% 563 1% 0 0% 31352 93%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 8 0% 5 0% 93 0% 0 0%
commit
0 0%
Chapter 11. Tools 289

For example, if the percentage of getattr() calls is very high, then tuning
attribute caches may be advantageous. If the percentage of write() calls is
very high, then disk and LVM tuning is important. If the percentage of read()
calls is very high, then using more RAM for caching files could improve
performance, as could increasing maxperm with vmtune (see Section 6.1.2.6,
“minperm and maxperm” on page 123).

11.1.19.2 NFS Client
The NFS client displays the number of calls sent and rejected, as well as the
number of times a client handle was received (nclget), the number of times a
call had to sleep while awaiting a handle (nclsleep), and a count of the
various kinds of calls and their respective percentages.

To check how many biod threads are running in the current system, use the ps

command as follows (remember that there is one additional kernel biod that is
always running):

As can be seen in the preceding example, there is only one thread active in
this biod process, and as will be shown in the following, it is allowed to use up
to six threads in the current sample setting.

To check the setting for the number of maximum threads, check the biod
process with the ps command, and look at its arguments (it is usually started
with the number of maximum threads as the parameter), as shown in the
following example:

You could also check the ODM, shown here:

dupchecks The number of RPC calls that did a look-up in the duplicate
request cache.

dupreqs The number of duplicate RPC calls found.

ps -mo THREAD -p $(lssrc -s biod|awk '$1=="biod"&&/active/{print $3}')
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 7486 4648 - A 0 60 1 - 240001 - 0 /usr/sbin

/biod
- - - 18835 S 0 60 1 - 400 - 0 -

ps -e -F "args" |awk '/^\/.*biod/{print $2}'
6

odmget -q subsysname=biod SRCsubsys|awk '/cmdargs/{print $3}'
"6"
290 RS/6000 SP System Performance Tuning Update

NFS mountpoint
To query a mount point and its options on a client, issue the following nfsstat

command (see also the mount command):

Look at the line starting with All; the three groups give some quick
performance related information, as follows:

For an NFS client, if you see incidents of time-outs and retransmits, and the
numbers are roughly equivalent, then you can be assured that there are
packets being dropped. It will be of particular interest to monitor the RPC
statistical data; the heading “Connection oriented“ refers to connections
made with the TCP protocol and the heading “Connectionless“ refers to
connections made with the UDP protocol:

srtt Smoothed round-trip time

dev Estimated deviation

cur Current backed-off time-out value

nfsstat -m
/mnt from /mnt:night4n37
Flags: vers=3,proto=tcp,auth=unix,hard,intr,link,symlink,rsize=32768,wsize=32 768,re
All: srtt=0 (0ms), dev=0 (0ms), cur=0 (0ms)

nfsstat -c
Client rpc:
Connection oriented
calls badcalls badxids timeouts newcreds badverfs timers
0 0 0 0 0 0 0
nomem cantconn interrupts
0 0 0
Connectionless
calls badcalls retrans badxids timeouts newcreds badverfs
20 0 0 0 0 0 0
timers nomem cantsend
0 0 0

Client nfs:
calls badcalls clgets cltoomany
0 0 0 0
Version 2: (0 calls)
<<< lines omitted >>>
Version 3: (0 calls)
null getattr setattr lookup access readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
commit
0 0%
Chapter 11. Tools 291

The preceding output displays a count of the various kinds of calls and their
respective percentages. Some explanations of the output shown above are:

A network may drop a packet if it can not handle it. Dropped packets may be
the result of the response time of the network hardware or software, or an
overloaded CPU on the server. The severity of the performance degradation
resulting from dropped packets is dependent on the number of packets
dropped and the length of time during which the packets were dropped. The
data from dropped packets is not actually lost because a replacement request
is issued for them; they will, however, reduce performance because they will
have to be retransmitted, thus causing a delay in delivery of the information
they contained. See Chapter 4, “Network tuning” on page 21 for more
information.

The retrans column in the RPC section displays the number of times requests
were retransmitted due to a time-out in waiting for a response. This is related
to dropped packets.

A high badxid count implies that requests are reaching the various NFS
servers, but the servers are too busy to send replies before the client's RPC
calls time out and are retransmitted. The badxid value is incremented each
time a duplicate reply is received for a transmitted request (an RPC request

calls The total number of RPC calls made to NFS.

badcalls The total number of calls rejected by the RPC layer.

retrans The number of times a call had to be retransmitted due to a
time-out while waiting for a reply from the server. This is
applicable only to RPC over connection-less transports.

badxid The number of times a reply from a server was received that
did not correspond to any outstanding call. This means the
server is taking too long to reply.

timeout The number of times a call timed out while waiting for a reply
from the server.

newcred The number of times authentication information had to be
refreshed.

nomem The number of times a call failed due to a failure to allocate
memory.

cantconn The number of times a call failed due to a failure to make a
connection to the server.
292 RS/6000 SP System Performance Tuning Update

retains its XID through all transmission cycles). Excessive retransmissions
place an additional strain on the server, further degrading response time.

11.1.20 nslookup/host
The nslookup command queries domain name servers in two modes:

• interactive

• non-interactive

Interactive mode allows you to query name servers for information about
various hosts and domains or to print a list of the hosts in a domain. In
non-interactive mode, the names and requested information are printed for a
specified host or domain.

The host command resolves a host name into an Internet address or an
Internet address into a host name. If the local host is using DNS, the local or
remote name server database is queried before searching the local /etc/hosts
file.

The process of obtaining an Internet address from a host name is known as
name resolution. The process of translating an Internet address into a host
name is known as reverse name resolution. The presence of the
/etc/resolv.conf file indicates that DNS should be used to resolve a name.

Resolver routines on hosts running TCP/IP normally attempt to resolve
names using the following sources:

1. BIND/DNS (named)

2. Network Information Service (NIS)

3. Local /etc/hosts file

The default order described above can be overridden by using the NSORDER
environment variable (set it in the /etc/environment file), for example
NSORDER=local,bind, or in AIX 4, the /etc/netsvc.conf file, adding a line
such as this:

host = local,bind

This example shows how to find our local system in the DNS (it is more
detailed if the debugging flag -d is turned on as well). For example:
Chapter 11. Tools 293

This could also be done with the host command, using the old style, then the
new style, and finally the new style with the verbose flag turned on (more
detailed information is shown if the debugging flag -d is turned on as well).
For example:

This example queries the DNS for nameservers (type=NS) for the specified
host (only the domain could also be supplied):

The following example uses the new style of the host command to make a
similar query (note that we have verbose mode switched on):

nslookup $(hostname -s)
Server: riscserver.itso.ibm.com
Address: 9.12.0.30

Non-authoritative answer:
Name: sp6en0.msc.itso.ibm.com
Address: 192.168.6.160

host $(hostname -s)
sp6en0 is 192.168.6.160, Aliases: sp6en0.msc.itso.ibm.com, cws

host -n $(hostname -s)
sp6en0.msc.itso.ibm.com has address 192.168.6.160

host -n -v $(hostname -s)
Trying domain "msc.itso.ibm.com"
rcode = 0 (Success), ancount=1
The following answer is not authoritative:
sp6en0.msc.itso.ibm.com 9999999 IN A 192.168.6.160

The host command uses a cache while the nslookup command always talks
to the name server.

Note

nslookup -querytype=NS www.ibm.com
Server: riscserver.itso.ibm.com
Address: 9.12.0.30

Non-authoritative answer:
www.ibm.com nameserver = ns2.nyc.ibm.com
www.ibm.com nameserver = ns.nyc.ibm.com

Authoritative answers can be found from:
ns2.nyc.ibm.com internet address = 9.242.119.176
ns.nyc.ibm.com internet address = 9.38.112.84
294 RS/6000 SP System Performance Tuning Update

11.1.21 ntpq
The ntpq command queries Network Time Protocol (NTP) servers about their
current NTP state. It runs either in interactive mode or by using command line
arguments. The ntpq command can, among other things, also obtain and print
a list of peers in a common format by sending multiple queries to the server.
For example:

11.1.22 ntptrace
The ntptrace command traces a chain of Network Time Protocol (NTP) hosts
back to their master time source. The ntptrace command determines where a
given NTP server gets its time, and follows the chain of NTP servers back to
their master time source.

The following example shows a ntptrace that failed due to time-out

11.1.23 Performance Diagnostic Tool (PDT)
The PDT package attempts to identify performance problems automatically
by collecting and integrating a wide range of performance, configuration, and
availability data. The data is regularly evaluated to identify and anticipate
common performance problems. PDT assesses the current state of a system
and tracks changes in workload and performance.

PDT data collection and reporting are easily enabled, and then no further
administrator activity is required.

host -n -v -t NS www.ibm.com
Trying null domain
rcode = 0 (Success), ancount=2
The following answer is not authoritative:
www.ibm.com 23021 IN NS ns.nyc.ibm.com
www.ibm.com 23021 IN NS ns2.nyc.ibm.com
Additional information:
ns.nyc.ibm.com 42747 IN A 9.38.112.84
ns2.nyc.ibm.com 42747 IN A 9.242.119.176

ntpq -c peers
remote refid st t when poll reach delay offset

===
*LOCAL(2) LOCAL(2) 3 l 23 64 377 0.00 0.000

ntptrace
loopback: stratum 4, offset 0.000812, synch distance 0.01044
127.127.1.2: *Timeout*
Chapter 11. Tools 295

While many common system performance problems are of a specific nature,
PDT also attempts to apply some general concepts of well-performing
systems to its search for problems. Some of these concepts are as follows:

• Balanced Use of Resources

• Operation within Bounds

• Identified Workload Trends

• Error-Free Operation

• Changes Investigated

• Appropriate Setting of System Parameters

11.1.23.1 Start and configure PDT
To start PDT, run the following command and use the menu driven
configuration program:

/usr/sbin/perf/diag_tool/pdt_config

When you run it, follow the menus. The next example is taken from the main
menu:

First, check the current setting by selecting 1, as shown in the following
example:

If no other structured way is used to monitor system performance, always
enable PDT, and archive the reports.

Important

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:
296 RS/6000 SP System Performance Tuning Update

This states level 3 reports are to be made and sent to the root user on the
local system. To check if root has a mail alias defined, run the following
command:

grep ^root /etc/aliases

If nothing is returned, the mail should be delivered to the local node. If
however, it returns something formatted, as the following example shows:

It is routed to another user and/or node, in this case the user (or another
alias) reports on the node night4n37, and in this case, the mail will also be
appended to the /tmp/log file.

By default, Driver_ reports are generated with severity level 1 with only the
most serious problems identified. Severity levels 2 and 3 are more detailed
and can, as in this case, be enabled. Also, by default, the reports are mailed
to the adm user, but, as in this case, it is changed to root (it can also be
changed so that it is not sent at all).

The configuration program will update the adm users crontab file. Check the
changes made by using the cronadm command, as in the following example:

You can also use grep on the crontab file, as shown here:

current PDT report recipient and severity level
root 3

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

grep ^root /etc/aliases
root:reports@night4n37.msc.itso.ibm.com,"|/usr/bin/cat >>/tmp/log"

cronadm cron -l adm|grep diag_tool
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly
Chapter 11. Tools 297

The daily parameter makes the Driver_ program collect data and store it in
the /var/perf/tmp directory. The programs that do the actual collecting are
specified in the /var/perf/cfg/diag_tool/.collection.control file. These programs
are also located in the /usr/sbin/perf/diag_tool directory.

The daily2 parameter makes Driver_ create a report from the /var/perf/tmp
data files and e-mails it to the recipient specified in the
/var/perf/cfg/diag_tool/.reporting.list file. The PDT_REPORT is the formatted
version and the .SM_RAW_REPORT is the unformatted report file.

Reports generated by PDT
The following is a short extract from the PDT_REPORT file:

The raw information from the .SM_RAW_REPORT file that is used for
creating the PDT_REPORT file follows:

grep diag_tool /var/spool/cron/crontabs/adm
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

Performance Diagnostic Facility 1.0

Report printed: Thu Oct 12 12:04:35 2000

Host name: sp6en0
Range of analysis includes measurements
from: Hour 11 on Thursday, October 12th, 2000
to: Hour 11 on Thursday, October 12th, 2000
<<< lines omitted >>>
-------------------- Summary -------------------------
This is a severity level 3 report
No further details available at severity levels > 3

H 1 | Performance Diagnostic Facility 1.0
H 1 |

H 1 | Report printed: Thu Oct 12 12:04:35 2000

H 1 |

H 1 | Host name: sp6en0

H 1 | Range of analysis includes measurements

H 1 | from: Hour 11 on Thursday, October 12th, 2000

H 1 | to: Hour 11 on Thursday, October 12th, 2000
H 1 |

<<< lines omitted >>>
298 RS/6000 SP System Performance Tuning Update

The PDT_REPORT, at level 3, will have the following report sections:

• Alerts

• Upward Trends

• Downward Trends

• System Health

• Other

• Summary

It will also have subsections such as the following:

• I/O Configuration

• Paging Configuration

• I/O Balance

• Processes

• File Systems

• Virtual Memory

The following script shows you how to extract report subsections from the
PDT_REPORT file; in this example, it displays all subsections in turn:

As an alternative to using the periodic report, any user can request a current
report from the existing data by executing /usr/sbin/perf/diag_tool/pdt_report
(where the # sign is the severity number 1 to 3). The report is produced with
the given severity (if none is provided, it defaults to 1) and it is written to
standard output. Generating a report in this way does not cause any change
to the /var/perf/tmp/PDT_REPORT files.

11.1.23.2 Editing configuration files
There are some configuration files for PDT that need to be edited to better
reflect the needs of a specific system.

#!/bin/ksh

set -A tab "I/O CONFIGURATION" "PAGING CONFIGURATION" "I/O BALANCE" \
"PROCESSES" "FILE SYSTEMS" "VIRTUAL MEMORY"

for string in "${tab[@]}";do
grep -p "$string" /var/perf/tmp/PDT_*

done
Chapter 11. Tools 299

Files and directories
PDT analyzes files and directories for systematic growth in size. It examines
only those files and directories listed in the file /var/perf/cfg/diag_tool/.files.
The format of the .files file is one file or directory name per line. The default
content of this file is as follows:

You can use an editor2 to modify this file to track files and directories that are
important to your system.

Hosts
PDT tracks the average ECHO_REQUEST delay to hosts whose names are
listed in the /var/perf/cfg/diag_tool/.nodes file. This file is not shipped with
PDT (which means that no host analysis is performed by default), but they
may be created by the administrator. The format of the .nodes file is one host
name per line in the file. /etc/resolv.conf points to this IP address. For
example:

For example, to monitor the nameserver used by the local node, the .nodes
file would contain the following line:

9.12.0.30

Thresholds
The file /var/perf/cfg/diag_tool/.thresholds contains the thresholds used in
analysis and reporting. These thresholds, listed below, have an effect on PDT
report organization and content. The following is the content of the default
file:

2 Do not use vi; just append filenames with: print filename >> .files

/usr/adm/wtmp
/var/spool/qdaemon/
/var/adm/ras/
/tmp/

awk '/nameserver/{print $2}' /etc/resolv.conf
9.12.0.30

grep -v ^# .thresholds
DISK_STORAGE_BALANCE 800
PAGING_SPACE_BALANCE 4
NUMBER_OF_BALANCE 1
MIN_UTIL 3
FS_UTIL_LIMIT 90
MEMORY_FACTOR .9
TREND_THRESHOLD .01
EVENT_HORIZON 30
300 RS/6000 SP System Performance Tuning Update

The settings in the preceding content listing are the default values, and the
following are the basic description for each threshold:

DISK_STORAGE_
BALANCE

The SCSI controllers with the largest and smallest
disk storage are identified. This is a static size, not
the amount allocated or free.The default value is 800.
Any integer value between 0 and 10000 is valid.

PAGING_SPACE_
BALANCE

The paging spaces having the largest and the
smallest areas are identified. The default value is 4.
Any integer value between 0 and 100 is accepted.
This threshold is presently not used in analysis and
reporting.

NUMBER_OF_
BALANCE

The SCSI controllers having the largest and the least
number of disks attached are identified.The default
value is 1. It can be set to any integer value in the
range of 0 to 10000.

MIN_UTIL Applies to process utilization. Changes in the top
three CPU consumers are only reported if the new
process had a utilization in excess of MIN_UTIL. The
default value is 3. Any integer value from 0 to 100 is
valid.

FS_UTIL_LIMIT Applies to journaled file system utilization. Any
integer value between 0 and 100 is accepted.

MEMORY_FACTOR The objective is to determine if the total amount of
memory is adequately backed up by paging space.
The formula is based on experience and actually
compares MEMORY_FACTOR * memory with the
average used paging space. The current default is
0.9. By decreasing this number, a warning is
produced more frequently. Increasing this number
eliminates the message altogether. It can be set
anywhere between .001 and 100.

TREND_THRESHOLD Used in all trending assessments. It is applied after a
linear regression is performed on all available
historical data. This technique basically draws the
best line among the points. The slope of the fitted line
must exceed the last_value * TREND_THRESHOLD.
The objective is to try to ensure that a trend, however
strong its statistical significance, has some practical
significance. The threshold can be set anywhere
between 0.00001 and 100000.
Chapter 11. Tools 301

11.1.24 ping
The ping command sends an Internet Control Message Protocol (ICMP)
ECHO_REQUEST to obtain an ICMP ECHO_RESPONSE, from a host or
gateway. The ping command is useful for:

• Determining the status of the network and foreign hosts.

• Tracking and isolating hardware and software problems.

• Testing, measuring, and managing networks.

If the host is operational and on the network, it responds to the
ECHO_REQUEST. Each default ECHO_REQUEST contains an Internet
Protocol (IP) and ICMP header, followed by a timeval structure, and enough
bytes to fill out the packet (the default is 56 bytes).

The following example is similar to the one used with traceroute and shows
the route to and from a remote node:

But the real use of ping is to quickly check if systems are available on the
network or not, as the following example shows (by sending 1 default packet):

EVENT_HORIZON Used also in trending assessments. For example, in
the case of file systems, if there is a significant (both
statistical and practical) trend, the time until the file
system is 100 percent full is estimated. The default
value is 30, and it can be any integer value between
0 and 100000.

ping -c 1 -R pollux.ibm.com
PING pollux.ibm.com: (9.46.1.2): 56 data bytes
64 bytes from 9.46.1.2: icmp_seq=0 ttl=252 time=60 ms
RR: 9.32.41.42

9.32.44.1
9.32.1.93
9.46.1.1
pollux.cbe.ibm.com (9.46.1.2)
9.32.1.94
9.32.44.3
9.32.41.41

----pollux.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 60/60/60 ms

ping -c 1 w3.ibm.com
PING w3ibm.southbury.ibm.com: (9.45.3.170): 56 data bytes
64 bytes from 9.45.3.170: icmp_seq=0 ttl=249 time=35 ms

----w3ibm.southbury.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 35/35/35 ms
302 RS/6000 SP System Performance Tuning Update

But ping can also be used to saturate networks if used inappropriately, as the
following example shows. This command sends as many packets it can to the
remote host with 8184 byte per packet (For every ECHO_REQUEST sent, a .

(period) is printed, while for every ECHO_REPLY received, a backspace is
printed). This particular example is run over a SP Switch2 (note that ping is
not appropriate to use in order to measure network throughput):

The following is a small sample of the netstat data collected during the run of
two simultaneous ping commands, as described above, from one system to
the monitoring one:

Another good use of ping is to send packets to remote hosts, to test if the
packets will be fragmented on the way. This requires tracing the network with
tcpdump or iptrace during the transfer.

11.1.25 pprof
The pprof command reports CPU usage of all kernel threads over a period of
time and saves the data to files. Table 34 shows the report files generated by
pprof.

Table 34. Files produced by pprof

File Content description

pprof.cpu Lists all kernel level threads sorted
by actual CPU time.

pprof.start Lists all kernel threads sorted by
start time.

ping -f -d night4s33_00 8184
...
<<< lines omitted >>>
..^C
----night4s33_00.ppd.pok.ibm.com PING Statistics----
923590 packets transmitted, 470184 packets received, 49% packet loss
round-trip min/avg/max = 0/1/108 ms

netstat -I css0 5
input (css0) output input (Total) output
packets errs packets errs colls packets errs packets errs colls
2097782 0 2013842 0 0 4951165 0 6831574 0 0
33145 0 33146 0 0 33165 0 33169 0 0
32987 0 32984 0 0 32999 0 32993 0 0
33009 0 33009 0 0 33019 0 33019 0 0
33099 0 33098 0 0 33110 0 33111 0 0
32873 0 32872 0 0 32882 0 32882 0 0
32744 0 32743 0 0 32756 0 32752 0 0

<<< lines omitted >>>
Chapter 11. Tools 303

The following example shows a good usage of pprof to monitor processes for
a specified duration (in this example, one minute):

11.1.26 ps
The ps command is a very flexible tool for identifying the programs that are
running on the system and the resources they are using. It displays statistics
and status information about processes on the system, such as process or
thread ID, I/O activity, CPU and memory utilization.

pprof.namecpu Lists information about each type of
kernel thread (all executable with the
same name).

pprof.famind Lists all processes grouped by
families (processes with a common
ancestor).

pprof.famcpu Lists the information for all families
(processes with a common
ancestor).

File Content description

pprof 60 -n
Sat Oct 7 14:54:11 2000
System: AIX sp6en0 Node: 4 Machine: 000504936700

61.306 secs in measured interval

*** PPROF COMPLETED ***
head -20 pprof.namecpu

Pprof PROCESS NAME Report

Sorted by CPU Time

From: Sat Oct 7 15:06:54 2000
To: Sat Oct 7 15:07:56 2000

Pname #ofThreads CPU_Time %
======== ========== ======== ========

ksh 1 56.635 92.440
gil 4 1.769 2.887

sr/dt/bin/dtexec 2 0.518 0.845
dtsession 2 0.498 0.813
hardmon 3 0.442 0.721
hatsd 4 0.413 0.674
sdrd 4 0.144 0.235

dtfile 4 0.132 0.215
304 RS/6000 SP System Performance Tuning Update

11.1.26.1 Monitoring threads
If the -m flag is used, it also gives the status of associated kernel threads. To
display extra thread-related columns, you must use the -o THREAD flag in
conjunction with the -m flag.

With Deferred Page Space Allocation (DPSA), the paging space may not get
touched. This means that with DPSA on, you could see smaller values for
SIZE and SZ when using ps.

The following example examines the nfsd daemon. First, we check it when it
uses the default number of eight daemon threads:

We now change the maximum number of daemon threads allowed and then
check the new instance of nfsd and look at how many have been started:

After running the following transfer test from a client:

dd if=/dev/zero cbs=65536 count=1000000 of=zero.out

The ps command can only show information on running processes. If you
have processes that are starting and terminating before you can make a
snapshot with ps, process accounting must be turned on, so that
information about processes are archived after their termination.

Note

lssrc -s nfsd
Subsystem Group PID Status
nfsd nfs 4478 active

ps -mo THREAD -p 4478
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 4478 9032 - A 0 60 3 * 240001 - - /usr/sbin

/nfsd
- - - 8529 S 0 60 1 50044608 1400 - - -
- - - 10857 S 0 60 1 5278cd98 400 - - -
- - - 11095 S 0 60 1 36c8bc 1400 - - -

chnfs -n 4096
0513-044 The nfsd Subsystem was requested to stop.
0513-077 Subsystem has been changed.
0513-059 The nfsd Subsystem has been started. Subsystem PID is 4480.

ps -mo THREAD -p 4480
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 4480 9032 - A 0 60 3 * 240001 - - /usr/sbin

/nfsd
- - - 8531 S 0 60 1 50028608 1400 - - -
- - - 10859 S 0 60 1 5275b018 400 - - -
- - - 11097 S 0 60 1 36c8bc 1400 - - -
Chapter 11. Tools 305

Checking the nfsd process on the server shows a lot of zombie threads:

11.1.26.2 Monitoring processes
Here are some useful option combinations for the ps command.

gvc
The gvc options instructs ps to display:

• All processes

• The PGIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU, %MEM fields

• The command name, as stored internally in the system for purposes of
accounting, rather than the command parameters, which are kept in the
process address space

The following is a sample output with explanation for the fields:

ps -mo THREAD -p 6212
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 6212 9032 - A 0 60 16 * 240001 - - /usr/sbin

/nfsd
- - - 10863 Z 0 60 1 - 1001 - - -
- - - 11371 S 0 60 1 36c7e8 1400 - - -
- - - 11625 S 0 60 1 500014d8 400 - - -
- - - 22777 Z 0 60 1 - 1001 - - -
- - - 26267 Z 0 60 1 - 1001 - - -
- - - 27007 S 0 60 1 50028708 1400 - - -
- - - 27163 Z 0 60 1 - 1001 - - -
- - - 28145 Z 0 60 1 - 1001 - - -
- - - 28391 Z 0 60 1 - 1001 - - -
- - - 28471 Z 0 60 1 - 1001 - - -
- - - 28793 Z 0 60 1 - 1001 - - -
- - - 29119 Z 0 60 1 - 1001 - - -
- - - 29275 Z 0 60 1 - 1001 - - -
- - - 29673 Z 0 60 1 - 1001 - - -
- - - 29929 Z 0 60 1 - 1001 - - -

ps gvc
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

0 - A 0:27 7 268 13932 xx 0 13664 0.0 1.0 swapper
1 - A 0:05 131 908 996 32768 25 36 0.0 0.0 init

516 - A 2758:33 0 264 13928 xx 0 13664 24.9 1.0 kproc
774 - A 2745:00 0 264 13928 xx 0 13664 24.8 1.0 kproc
1032 - A 2750:55 0 264 13928 xx 0 13664 24.9 1.0 kproc
1290 - A 2757:10 0 264 13928 xx 0 13664 24.9 1.0 kproc

<<< lines omitted >>>
21028 pts/1 T 0:09 0 276 340 32768 22 32 0.0 0.0 ping
22150 - A 0:00 0 328 428 32768 25 44 0.0 0.0 inetd
22494 pts/0 A 0:00 0 412 504 32768 52 64 0.0 0.0 ps
306 RS/6000 SP System Performance Tuning Update

The columns are explained as follows:

Other optional combinations
Other useful options to the ps command are shown with their headers below:

TTY The controlling workstation for the process.

STAT Contains the state of the process: 0 - Nonexistent, A - Active, I -
Intermediate, Z - Canceled, T - Stopped, K - Available kernel
process

TIME The total execution time for the process.

PGIN The number of disk I/Os resulting from references by the process
to pages not loaded.

SIZE The virtual size of the data section of the process (in 1 KB units).

RSS The real-memory (resident set) size of the process (in 1 KB
units).

LIM The soft limit on memory used. If no limit has been specified,
then it is shown as xx. If the limit is set to the system limit
(unlimited), a value of UNLIM is displayed.

TSIZ The size of text (shared-program) image.

TRS The size of resident-set (real memory) of text.

%CPU The percentage of time the process has used the CPU since the
process started. The value is computed by dividing the time the
process uses the CPU by the elapsed time of the process. In a
multi-processor environment, the value is further divided by the
number of available CPUs since several threads in the same
process can run on different CPUs at the same time. (Because
the time base over which this data is computed varies, the sum
of all %CPU fields can exceed 100%.)

%MEM The percentage of real memory used by this process.

ps vax|head -1;
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

ps lax|head -1
F S UID PID PPID C PRI NI ADDR SZ RSS WCHAN TTY TIME CMD

ps -elk|head -1
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
Chapter 11. Tools 307

The following example shows how to use ps together with sort and head to
create sorted output of the highest consumers. In this case, we sort on
column 4, which is TIME:

If we wanted the results sorted on another column, we would just change the
number 4 for the sort command.

11.1.27 pstat
The pstat command is a non-interactive form of the crash command. pstat
interprets the contents of the various system tables and writes it to standard
output. You must have root user or system group authority to run the pstat

command.

The following example shows how to examine all runnable threads:

It is possible to use pstat to monitor paging space usage; the USED PAGES
column shows pages that are allocated on a paging space:

LANG=C ps gvc|sort -rk4|head -10
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
516 - A 2801:04 0 264 13928 xx 0 13664 24.9 1.0 kproc
1290 - A 2799:40 0 264 13928 xx 0 13664 24.9 1.0 kproc
1032 - A 2793:24 0 264 13928 xx 0 13664 24.9 1.0 kproc
774 - A 2787:30 0 264 13928 xx 0 13664 24.8 1.0 kproc

11248 - A 5:51 299 8132 8932 32768 621 684 0.1 1.0 hatsd
2064 - A 2:30 0 320 13984 xx 0 13664 0.0 1.0 kproc
3196 - A 1:18 4 416 440 xx 2 4 0.0 0.0 syncd
18090 - A 1:10 344 1376 2512 32768 1884 1520 0.0 0.0 i4llmd
9050 - A 1:06 5367 416 464 32768 4 8 0.0 0.0 nfsd

pstat -P
THREAD TABLE:

SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME FLAGS
2 r 205 204 0 FIFO 7f 78 wait

t_flags: sig_avail funnel kthread
3 r 307 306 1 FIFO 7f 78 wait

t_flags: sig_avail funnel kthread
4 r 409 408 2 FIFO 7f 78 wait

t_flags: sig_avail funnel kthread
5 r 50b 50a 3 FIFO 7f 78 wait

t_flags: sig_avail funnel kthread
109 r 6da5 4d38 unbound other 58 38 pstat

t_flags:

pstat -s
PAGE SPACE:

USED PAGES FREE PAGES
453 2358843
308 RS/6000 SP System Performance Tuning Update

To display the status of processors in the node, use the -S flag as in the
following example (with 12 CPUs):

Since pstat is capable of extracting information from the kernel memory
space, we can also retrieve information on running process statistics and
resource limits and usage. The following example shows how to extract the
resource limits that concerns the running nfsd process. These limits can be
set for users in /etc/security/limits but also at runtime, and if we would like to
check what limits were imposed on a vital server process, this is the easiest
way to do it (but the hex values need conversion):

11.1.28 sar
The sar command reports either system wide (global among all processors)
CPU statistics (which are calculated as averages for values expressed as
percentages, and as sums otherwise), or it reports statistics for each
individual processor. Therefore, this command is particularly useful on SMP
systems.

When used with the -P flag, the information provided for each specified
processor; otherwise, it is provided system wide. Processors can be specified
individually or together, or the keyword ALL can be used.

pstat -S
STATUS OF PROCESSORS:

CPU TID TSLOT PID PSLOT PROC_NAME
0 25e5db 9701 18544 389 no pstat
1 307 3 306 3 no wait
2 e1d 14 e1c 14 no lrud
3 422879 16936 4268c 1062 no oracle
4 6e899d 28297 1e496 484 no oracle
5 70f 7 70e 7 no wait
6 55f4c3 22004 3a16a 929 no oracle
7 913 9 912 9 no wait
8 a15 10 a14 10 no wait
9 b17 11 b16 11 no wait
10 25e5db 9701 18544 389 no pstat
11 d1b 13 d1a 13 no wait

pstat -u $(pstat -a|awk '/nfsd/{print $1}')|grep -p ' R̂ESOURCE LIMITS'
RESOURCE LIMITS AND COUNTERS

ior:0x00000000_00000000 iow:0x00000000_00000000 ioch:0x00000000_0000824c
text:0x00000000_00000e58 data:0x00000000_00015000 stk:0x02000000
max data:0x08000000 max stk:0x02000000 max file(blks):0xffffffff
*tstart:0x00000000_10000100 sdsize:0x00000000
*datastart:0x00000000_20000000 *stkstart0x00000000_2ff23000
soft core dump:0x3ffffe00 hard core dump:0x7fffffff
soft rss:0x02000000 hard rss:0x7fffffff
cpu soft:0x7fffffff cpu hard:0x7fffffff
hard ulimit:0x7fffffff
minflt:0x00000000_00000000 majflt:0x00000000_00000000
Chapter 11. Tools 309

Processor utilization
Our next example reports CPU utilization per processor or system wide
statistics:

The following values are displayed:

The following example illustrates that individual CPUs can be monitored
separately:

%idle Reports the percentage of time the CPU or CPUs
were idle with no outstanding disk I/O requests.

%sys Reports the percentage of time the CPU or CPUs
spent in execution at the system (or kernel) level.

%usr Reports the percentage of time the CPU or CPUs
spent in execution at the user (or application) level.

%wio Reports the percentage of time the CPU(s) were
idle during which the system had outstanding
disk/NFS I/O request(s).

sar -P ALL 5 2

AIX night4n33 3 4 006014524C00 10/11/00

20:14:19 cpu %usr %sys %wio %idle
20:14:24 0 0 14 0 86

1 90 10 0 0
2 0 15 0 85
3 0 11 0 89
- 22 12 0 65

<<< lines omitted >>>
Average 0 0 12 0 88

1 71 11 0 18
2 0 12 0 88
3 0 12 0 88
- 18 12 0 70

sar -P 3 5 3

AIX night4n33 3 4 006014524C00 10/11/00

20:18:24 cpu %usr %sys %wio %idle
20:18:29 3 93 7 0 0
20:18:34 3 90 10 0 0
20:18:39 3 90 10 0 0

Average 3 91 9 0 0
310 RS/6000 SP System Performance Tuning Update

Block I/O
The following example reports activity for each block device:

The activity data reported is:

Run queue
The following example reports queue statistics:

The activity data reported is:

%busy Reports the portion of time the device was busy
servicing a transfer request.

avque Average number of requests outstanding during
that time.

r+w/s Reports the number of read/write transfers from or
to a device.

blks Number of bytes transferred in 512-byte units.

runq-sz Reports the average number of kernel threads in
the run queue.

%runocc Reports the percentage of the time the run queue
is occupied.

swpq-sz Reports the average number of kernel threads
waiting to be paged in.

sar -d 5 1

AIX night4n37 3 4 006015614C00 10/11/00

21:34:38 device %busy avque r+w/s blks/s avwait avserv

21:34:43 hdisk3 0 0.0 0 5 0.0 0.0
hdisk4 0 0.0 0 4 0.0 0.0
hdisk2 0 0.0 0 24 0.0 0.0
hdisk5 0 0.0 0 4 0.0 0.0
hdisk0 0 0.0 0 12 0.0 0.0
hdisk1 1 0.0 1 33 0.0 0.0
hdisk6 0 0.0 2 58 0.0 0.0

sar -q 5 2

AIX night4n37 3 4 006015614C00 10/11/00

21:25:04 runq-sz %runocc swpq-sz %swpocc
21:25:09 1.0 100
21:25:14 1.0 20 1.0 100

Average 1.0 10 1.0 100
Chapter 11. Tools 311

A blank value in any column indicates that the associated queue is empty.

Context switching
The following example reports system switching activity:

The activity data reported is:

System calls
The following example reports system calls per processor:

%swpocc Reports the percentage of the time the swap
queue is occupied.

cswch/s Reports the number of context switches per
second.

sar -P ALL -w 5 2

AIX night4n37 3 4 006015614C00 10/11/00

21:17:06 cpu cswch/s
21:17:11 0 29

1 14
2 21
3 15
- 78

<<< lines omitted >>>
Average 0 28

1 13
2 21
3 15
- 77

sar -P ALL -c 5 2

AIX night4n37 3 4 006015614C00 10/11/00

21:08:04 cpu scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
21:08:09 0 48 12 0 0.00 0.00 0 0

1 14 0 0 0.00 0.00 0 0
2 24 3 1 0.00 0.00 262 23
3 79 4 3 0.00 0.00 754 262
- 510 110 4 0.00 0.00 368866 288

<<< lines omitted >>>
Average 0 49 12 0 0.00 0.00 0 0

1 14 0 0 0.00 0.00 0 0
2 23 3 1 0.00 0.00 262 46
3 52 4 3 0.00 0.00 754 262
- 310 64 4 0.00 0.00 184757 310
312 RS/6000 SP System Performance Tuning Update

The activity data reported are:

11.1.29 spmon
The spmon command can both operate on the SP system controls and monitor
SP system activity. In its latter capacity, it is very useful, because it will
quickly show vital points about the availability of the SP complex, as is shown
in the following example for the fourth frame (Frame 4):

11.1.30 statvsd
The statvsd command displays Virtual Shared Disk (VSD) device driver
statistics of a node.

The following shows the default display when running statvsd. Since most
VSD logical resources are self-tuned, monitoring for tuning of logical
resources are not as necessary as before. However, Buddy Buffers can still
benefit from monitoring and adjustment. Monitor the “requests queued
waiting for a buddy buffer”; with a non-zero value, it indicates that more Buddy
Buffers are needed (the value is accumulated). The field “buddy buffer
wait_queue size“ is the current queue size

exec/s, fork/s Reports the total number of exec and fork system
calls.

sread/s, swrit/s Reports the total number of read/write system
calls.

rchar/s, wchar/s Reports the total number of characters transferred
by read/write system calls.

scall/s Reports the total number of system calls.

spmon -G -d|grep -p 'Frame 4'
----------------------------------- Frame 4 ----------------------------------

Host Switch Key Env Front Panel LCD/LED
Slot Node Type Power Responds Responds Switch Error LCD/LED Flashes
---- ---- ----- ----- -------- -------- ------- ----- ---------------- -------
12 60 wide on no yes N/A no LCDs are blank no
14 62 wide on no no N/A no LCDs are blank no
Chapter 11. Tools 313

.

11.1.31 svmon
The svmon command is a virtual memory monitor. When invoked, it captures a
“snapshot” of the current contents of both real and virtual memory, and
summarizes the contents. svmon is useful to determine which processes, or,
alternatively, which segments are consuming the most real memory. svmon
uses virtual counters from VMM for statistical analysis (these might not
always be current).

statvsd
VSD driver (vsdd): KLAPI interface: PSSP Version:3 Release: 2

9 vsd parallelism
61440 vsd max IP message size

0 requests queued waiting for a request block
0 requests queued waiting for a pbuf
0 requests queued waiting for a cache block
0 requests queued waiting for a buddy buffer

0.0 buddy buffer wait_queue size
0 rejected requests
0 rejected responses
0 rejected no buddy buffer
0 rejected merge timeout.
0 requests rework
0 indirect I/O
0 64byte unaligned reads.
0 comm. buf pool shortage
0 DMA space shortage
0 timeouts

retries: 0 0 0 0 0 0 0 0 0
0 total retries

Non-zero Sequence numbers
node# expected outgoing outcast? Incarnation: 0

1 5 0
3 368 0
9 12 0
11 12 0
12 12 0
13 12 0
14 12 0

2 Nodes Up with zero sequence numbers: 5 7

The displayed information does not constitute a true snapshot of memory,
because the svmon command runs in the foreground as a normal user
process and could be interrupted while collecting data. Be careful when
running svmon snapshots on very busy systems with many processes.

Note
314 RS/6000 SP System Performance Tuning Update

The following shows the default display when running svmon; to monitor on a
continuing basis, use the -i option with an interval number and a count
number (svmon -i 5 12, for example, takes a snapshot every 5 seconds 12
times):

In the first part of the output, what we usually are most interested in are the
number of real memory pages that are inuse and free, as shown on the
memory line. The number of pg space pages that are inuse show how many
pages are actually in use on the paging space(s). The last line in use shows
the division in memory to different segment types. See Section 6.1, “Memory”
on page 115.

Since paging is usually to be avoided, use svmon (or lsps; see Section
11.1.13, “lsps” on page 265) to monitor paging space usage.

The following example shows how to use svmon to check all memory
allocations for a specified process:

The following command displays the memory usage statistics for the top
process (1 was only selected since the output is quite extensive from this
command). If you do not specify a number, it will display all the processes
currently running in this system, and the -i option lets you specify interval and

svmon

size inuse free pin virtual
memory 524277 430150 89373 524277 32328
pg space 1310720 439

work pers clnt
pin 36613 156 0
in use 50477 13495 366178

svmon -C nfsd|sed ‘/ $̂/d’
===
Command nfsd Inuse Pin Pgsp Virtual

2207 9 74 3513
...
SYSTEM segments Inuse Pin Pgsp Virtual

48 8 13 49
Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
5245 - work 42 2 13 42 0..49746
e00e 0 work kernel shadow 6 6 0 7 0..12

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual

50 1 35 103
Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
6246 2 work process private 50 1 19 87 0..20 :

65308..65535
b24b f work shared library data 0 0 16 16 0..422
8248 1 pers code,/dev/hd2:306 0 0 - - 0..1

...
SHARED segments Inuse Pin Pgsp Virtual

2109 0 26 3361
Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
13013 d work shared library text 2109 0 26 3361 0..65535
Chapter 11. Tools 315

report count. By specifying a process ID, after -P, a specific process can be
examined.

As is shown in this example, svmon examines segment (b38b) that is used by
the bin process above:

svmon -P -z -t 1

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

14192 bin 4100 165 899 5227 N Y

Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
13013 d work shared library text 2677 0 20 3375 0..65535
b38b 2 work process private 1141 1 843 1730 0..1862 :

65055..65535
14494 1 pers code,/dev/hd2:121188 156 156 - - 0..170
c38c f work shared library data 53 0 24 56 0..476
18498 - work 27 0 0 27 0..26
1d4dd - work 19 2 12 30 0..49746
a4aa - pers /dev/hd9var:1246 15 0 - - 0..62
e00e 0 work kernel shadow 7 6 0 7 0..12
f3cf - pers /dev/hd2:59502 2 0 - - 0..18
1f4df - work 1 0 0 1 0..0
1c4dc - work 1 0 0 1 0..0
64c6 - pers /dev/hd9var:1268 1 0 - - 0..0

Maximum memory allocated = 47888

svmon -D b38b -b -z

Segid: b38b
Type: working
Address Range: 0..1862 : 65055..65535
Size of page space allocation: 998 pages (3.9 Mb)
Virtual: 1730 frames (6.8 Mb)
Inuse: 885 frames (3.5 Mb)

Page Frame Pin Ref Mod
65339 50875 Y Y Y
65340 18170 N Y Y
65407 21053 N N Y
65338 14246 N N Y

<<< lines omitted >>>
1732 63150 N Y Y
1733 63125 N Y Y
499 52937 N N Y

Maximum memory allocated = 14976
316 RS/6000 SP System Performance Tuning Update

When using the -S option, svmon sorts segments by memory usage and
displays the memory-usage statistics for the top memory-usage segments:

By using the -C option in a script, we can extract and display only the
information we want to look at. In this case, the sum for each application split
into non-shared, shared and total memory usage. For example:

But note that svmon sometimes fails to report on some commands while using
the -C option. But here is a sample output from the preceding script:

11.1.32 tcpdump
The tcpdump command prints out the headers of packets captured on a
network interface that matches the specified selection criteria. Only Ethernet,
Token-Ring, FDDI and loopback interfaces are supported. Access is
controlled by the permissions on /dev/bpf0,1,2, and 3.

svmon -S -t 5

Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
13013 - work 2677 0 20 3375 0..65535

0 - work kernel seg 1964 1290 774 3967 0..20698 :
65423..65535

f00f - work misc kernel tables 1840 0 522 2154 0..15017 :
63488..65535

165b6 - pers /dev/lv00:2259 1451 0 - - 0..1450
10010 - work kernel pinned heap 1349 587 99 1439 0..65535

#!/bin/ksh

tmpfile=/tmp/tmp$$
trap 'rm -f $tmpfile' EXIT

printf "%-20.20s %6s %6s %6s\n" \
"Application" "Mem/Instance(KB)" "Mem/Shared(KB)" "Mem/total(KB)"

for p in $(ps -eF "%c"|tail +2|sort -u);do
svmon -C $p >$tmpfile
[[$(grep -c 'command does not exist' $tmpfile) -gt 0]] && continue
grep -p segments $tmpfile|
awk 'BEGIN{ i=0 }

{ if ($1 ~/[0-9]/) tab[i++]=$1 }
END{ printf "%-20.20s %12d %12d %12d\n",

proc,(tab[1]),(tab[0]+tab[2]),(tab[0]+tab[1]+tab[2])
}' proc=$p

done

Application Mem/Instance(KB) Mem/Shared(KB) Mem/total(KB)
biod 192 9052 9244
bootpd 320 9052 9372
cron 504 9052 9556
dpid2 32 9052 9084
<<< lines omitted >>>
Chapter 11. Tools 317

Timestamps
By default, all output lines are preceded by a timestamp. The timestamp is the
current clock time in the form:

hh:mm:ss.frac

and is as accurate as the kernel's clock. The timestamp reflects the time the
kernel first saw the packet. No attempt is made to account for the time lag
between when the ethernet interface removed the packet from the wire and
when the kernel serviced the new packet interrupt.

Turn off timestamp reporting with the -t parameter.

ARP
The following example shows how to use tcpdump to monitor ARP traffic on a
network on a node:

The two first time stamped lines is our host asking the network for the MAC
address of host night4n33 and it got a reply from night4n33 that it has a MAC
address of 0:4:ac:ec:7:98. The next six lines are requests from other hosts for
other hosts MAC addresses, the node sending the ARP request is the host
that wishes to be told about someones MAC address, and it is the host that
has the IP address, that is queried, that is supposed to answer.

TCP
The next sample shows monitoring of all the start and end packets (the SYN
and FIN packets) of each TCP conversation on the local node:.

The output above shows the start of a telnet session to our monitoring node
from node night4n33 (we are night4n37). Note the request for message

tcpdump -NI arp net 129.40.35
tcpdump: listening on en0
10:28:20.596472784 arp who-has night4n33 tell night4n37
10:28:20.596628482 arp reply night4n33 is-at 0:4:ac:ec:7:98
10:28:54.086867216 arp who-has night4n01 tell night4n09
10:28:54.094944743 arp who-has night4n17 tell night4n09
10:28:54.096532951 arp who-has night4n21 tell night4n09
10:28:54.127165486 arp who-has night4n29 tell night4n09
10:28:54.148348504 arp who-has night4n09 tell 129.40.35.116
10:28:55.029989360 arp who-has night4n09 tell net_8271

tcpdump -NIt \(tcp[13] \& 3 !=0 \)
tcpdump: listening on en0
night4n33.41819 > night4n37.telnet: S 2377895223:2377895223(0) win 65535 <mss 14
60,nop,wscale 1,nop,nop,timestamp 171568130 1728053248> [tos 0x10]
night4n37.telnet > night4n33.41819: S 3889971395:3889971395(0) ack 2377895224 wi
n 63712 <mss 1460,nop,wscale 0,nop,nop,timestamp 171566428 456780802>
318 RS/6000 SP System Performance Tuning Update

segment size of 1460. We see the reply to the TCP initiation in the following
example:

11.1.33 topas
The topas command reports selected statistics about activities on the local
system. Next to many other statistics, it provides CPU utilization information
(user, kernel, idle, and I/O wait) for either a selected number of CPUs or the
average over all CPUs. topas also shows information on the number of
context switches, system calls, reads, writes, forks, and execs. The process
statistics shown include the amount of threads in run and wait queues, a
selectable number of processes, and the average CPU utilization for each
process displayed.

The topas command utilizes the System Performance Measurement Interface
(SPMI) from the PTX product. topas is similar to the lchmon.c sample code
that ships with PTX (in the /var/samples/perfagent/server directory). Since
the topas command will only give a “snapshot” view of the system resource
usage, it has limited usefulness compared to monitoring commands that
shows logging output.

night4n37.telnet > night4n33.41814: F 404724337:404724337(0) ack 3524856541 win
63712 <nop,nop,timestamp 171566426 3527011329>
night4n33.41814 > night4n37.telnet: F 1:1(0) ack 1 win 31856 <nop,nop,timestamp
171568129 507110746> [tos 0x10]

Topas Monitor for host: night4n33 EVENTS/QUEUES FILE/TTY
Thu Oct 5 16:25:24 2000 Interval: 2 Cswitch 24783 Readch 7652769

Syscall 87706 Writech 7651225
Kernel 32.6 |######### | Reads 43822 Rawin 0
User 9.3 |### | Writes 43804 Ttyout 130
Wait 46.0 |## | Forks 0 Igets 0
Idle 52.0 |############### | Execs 3.6 Namei 1

Runqueue 2.4 Dirblk 0
Interf 935.9 473.4 5383.9 61.5 7874.4 Waitqueue 1.1
en0 7749.7 463.9 5258.4 60.3 7689.3
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY

Faults 1840 Real,MB 2047
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 10.0
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 17.0
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 15.0

PageIn 1830
dd (26526) 64.0% PgSp: 0.0mb root PageOut 1823 PAGING SPACE
dd (30590) 60.5% PgSp: 0.0mb root Sios 2057 Size,MB 5120
kbiod (4692) 49.5% PgSp: 0.0mb root % Used 0.0
hatsd (6538) 0.0% PgSp: 6.1mb root % Free 99.9
topas (28352) 0.0% PgSp: 0.4mb root
ksh (29942) 0.0% PgSp: 0.3mb root
fault_ser(13724) 0.0% PgSp: 2.1mb root Press "h" for help screen.
gil (2064) 0.0% PgSp: 0.0mb root Press "q" to quit program.
ksh (27796) 0.0% PgSp: 0.3mb root
Chapter 11. Tools 319

The following example will run topas, showing six disks, three network
interfaces, two processes and will use five second intervals between
snapshot displays:

topas -d6 -n3 -p2 -i5

11.1.34 tprof
tprof provides a detailed profile of CPU usage by an application. tprof is like
the standard AIX program profilers prof and gprof, in that it provides an
estimate of CPU usage by each routine in a program. Unlike prof and gprof, it
provides a CPU profile of all processes running during an application, not just
the program of interest. Additionally, it provides a profile down to the source
statement level, if the associated C or Fortran source files are available. tprof
is useful to those whose applications are believed to be CPU-bound and want
to know where and why. tprof generates a couple of files, but the one we are
interested in is __prof.all.

Shared libraries
In the following example, we examine the usage of shared libraries on the
system and get a process report as well. If the LIBPATH environment variable
is set for users and elements, then the path might traverse network mounts.
tprof can be of help to determine if there are excessive access to libraries
that are network mounted or are declared after network mounted paths in the
LIBPATH environment variable.

Processes
In the following example, we examine processes during one minute (we use
the -x option to run the sleep program). Since we are only interested in the
top part, we use awk to only show it:

tprof -s&&awk '/Shared Object/,NR==-1{print}' __prof.all|sed ‘/̂ $/d’
Shared Object Ticks % Address Bytes
============= ===== ==== ======== ======
/usr/lib/libc.a/shr.o 18 13.1 d0161720 1c08c5
/usr/lib/libpthreads.a/shr_xpg5.o 1 0.7 d0004000 20174
Profile: /usr/lib/libc.a/shr.o
Total Ticks For All Processes (/usr/lib/libc.a/shr.o) = 18

Subroutine Ticks % Source Address Bytes
============= ===== ==== ======== ======== ======
.nl_langinfo 7 5.1 ../../../../../../../src/bos/usr/ccs/lib/libc/nl_
d0186fa8 78
<<< lines omitted >>>
.strchr 1 0.7 strchr.s d0164920 1f4
Profile: /usr/lib/libpthreads.a/shr_xpg5.o
Total Ticks For All Processes (/usr/lib/libpthreads.a/shr_xpg5.o) = 1

Subroutine Ticks % Source Address Bytes
============= ===== ==== ======== ======== ======
._init_static_cond 1 0.7 ../../../../../../../src/bos/usr/ccs/lib/l
ibpthreads/cond.c d000d848 1a8
320 RS/6000 SP System Performance Tuning Update

11.1.35 traceroute
The traceroute command attempts to trace the route that an IP packet follows
to an Internet host by launching UDP probe packets with a small maximum
time-to-live (Max_ttl variable), then listening for an ICMP TIME_EXCEEDED
response from gateways along the way. Probes are started with a Max_ttl
value of one hop, which is increased one hop at a time until an ICMP
PORT_UNREACHABLE message is returned. The ICMP
PORT_UNREACHABLE message indicates either that the host has been
located, or the command has reached the maximum number of hops allowed
for the trace.

The traceroute command sends three probes at each Max_ttl setting to
record the following:

• Max_ttl value

• Address of the gateway

• Round-trip time of each successful probe

The number of probes sent can be increased by using the -q flag. If the probe
answers come from different gateways, the command prints the address of

tprof -x sleep 60&&awk '{print}/^ Total/{exit}' __prof.all
Starting Trace now
Starting sleep 60
Sat Oct 7 17:23:42 2000
System: AIX sp6en0 Node: 4 Machine: 000504936700

Trace is done now
61.381 secs in measured interval
* Samples from __trc_rpt2
* Reached second section of __trc_rpt2
Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====

ksh 33814 9125 5687 24 4698 965 0
hatsd 14192 15741 29 28 1 0 0
gil 1032 1807 25 25 0 0 0

hardmon 5414 21475 25 23 2 0 0
<<< lines omitted >>>
swapper 0 3 1 1 0 0 0

sh 40550 10859 1 1 0 0 0
sh 40552 10861 1 0 0 1 0

cron 9930 19379 1 1 0 0 0
trace 36646 26483 1 1 0 0 0
tprof 31584 56453 1 0 0 1 0
sleep 31584 56453 1 0 0 1 0

======= === === ===== ====== ==== ====== =====
Total 6139 398 4744 997 0
Chapter 11. Tools 321

each responding system. If there is no response from a probe within a
3-second time-out interval, an * (asterisk) is printed for that probe.

The traceroute command prints an ! (exclamation mark) after the round-trip
time if the Max_ttl value is one hop or less. A maximum time-to-live value of
one hop or less generally indicates an incompatibility in the way ICMP replies
are handled by different network software. The incompatibility can usually be
resolved by doubling the last Max_ttl value used and trying again. The
following example shows the basic usage of traceroute (It is the same
example as for ping; refer to Section 11.1.24, “ping” on page 302 for more
information):

11.1.36 trace, trcrpt
AIX provides a vast number of performance monitoring tools to measure the
workload of different system resources, such as CPU, memory, disk I/O or
network. Out of all these tools, trace is probably the most powerful one to
monitor system performance, because it is tightly coupled to the kernel and
can provide an incredible amount of information.

11.1.36.1 trace
The trace facility is useful for observing system activity, particularly that of a
running device driver. The trace facility captures a sequential flow of
time-stamped system events, providing a fine level of detail on system
activity. Events are shown in time sequence and in the context of other
events.

The trace facility is useful in expanding the trace event information to
understand which, when, how, and even why the event happened. The
operating system is shipped with permanent trace event points, as can be
found in the /etc/trcfmt file. These events provide general visibility to system
execution. You can extend the visibility into applications by inserting
additional events and providing formatting rules with low overhead. Because
of this, the facility is useful, both as a performance analysis tool and as a
problem determination tool.

traceroute pollux.ibm.com
trying to get source for pollux.ibm.com
source should be 9.12.0.6
traceroute to pollux.ibm.com (9.46.1.2) from 9.12.0.6 (9.12.0.6), 30 hops
outgoing MTU = 1492
1 itscpokwf.itso.ibm.com (9.12.0.1) 14 ms 2 ms 2 ms
2 9.32.41.41 (9.32.41.41) 87 ms 110 ms 112 ms
3 9.32.44.3 (9.32.44.3) 111 ms 69 ms 64 ms
4 9.32.1.94 (9.32.1.94) 53 ms 78 ms 88 ms
5 pollux.cbe.ibm.com (9.46.1.2) 84 ms 99 ms 94 ms
322 RS/6000 SP System Performance Tuning Update

The trace facility is more flexible than traditional system-monitor services that
access and present statistics maintained by the system. With traditional
monitor services, data reduction (conversion of system events to statistics) is
largely coupled to the system instrumentation. For example, the system can
maintain the minimum, maximum, and average elapsed time observed for
runs of a task and permit this information to be extracted.

The trace facility does not strongly couple data reduction to instrumentation,
but it does provide a stream of system events. It is not required to presuppose
what statistics are needed. The statistics or data reduction are to a large
degree separated from the instrumentation.

This flexibility is important for diagnosing performance or functional problems.
For example, netpmon uses the trace facility to report on network activity,
including CPU consumption, data rates and response time. The tprof

command uses the trace facility to report the CPU consumption of kernel
services, library subroutines, application program modules, and individual
lines of source code in the application program.

The following sample shows how to extract a trace hook for the vmm trace
group (a trace group is a grouping of trace hooks for a related events).

We use this to run the trace program as follows (-j includes hooks and -k
excludes hooks). The next example runs trace on the trace hook 1b (vmm trace
group):

trace -j 1b -a

The following script lists all defined trace groups from the ODM SWservAt
database:

odmget -q 'attribute like vmm_trcgrp' SWservAt |
> awk '$1~/attribute/ && $3~/vmm/{
> trcgrp=substr($3,2,index($3,"_")-2)
> getline
> getline
> gsub("\"","",$3)
> print $3
> }'
1b
Chapter 11. Tools 323

11.1.36.2 trcrpt
The trcrpt command reads a trace log file, formats the trace entries and
writes a report to standard output. The following example uses our trace file
with the vmm trace hook 1b above:

11.1.37 vmstat
The vmstat command focuses on monitoring the resource usage of CPU,
memory and I/O. vmstat provides very quick and compact information and is
the first tool to use for monitoring these components.

#!/bin/ksh

odmget -q 'attribute like *_trcgrp' SWservAt |
awk '
$1~/attribute/{
trcgrp=substr($3,2,index($3,"_")-2)
getline
getline
gsub("\"","",$3)
print $3

}'

trcrpt -O'exec=y' -O'pid=n' -O'tid=n' -O'svc=y' -O'timestamp=3'
System: AIX night4n37 Node: 4
Machine: 006015614C00
Internet Address: 81282366 129.40.35.102
The system contains 4 cpus, of which 4 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.

trace -j 1b -a

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
Mon Oct 16 13:08:43 2000

<<< lines omitted >>>
1B2 3.292995634 0.013550 VMM pagefault: V.S=04
0D.5D8B7 working_storage modified diskmap (type 2)
1B0 3.293027557 0.031923 VMM page assign: V.S=04
0D.5D8B7 ppage=17619A working_storage modified diskmap (type 2)
1B8 3.293027948 0.000391 VMM vmapped page: V.S=04
0D.5D8B7 ppage=17619A working_storage modified diskmap (type 2)
1B2 3.293042289 0.014341 VMM pagefault: V.S=00
04.18C0 working_storage process_private modified (type 2)
1B0 3.293062430 0.020141 VMM page assign: V.S=00
04.18C0 ppage=164435 working_storage process_private modified (type 2)
1B9 3.293062957 0.000527 VMM zero filled page: V.S=00
04.18C0 ppage=164435
<<< lines omitted >>>
002 3.294807054 0.073813 TRACE OFF channel 0000 Mon Oct 16 1
324 RS/6000 SP System Performance Tuning Update

The vmstat command reports statistics about kernel threads in the run and
wait queue, memory, paging, interrupts, system calls, context switches, and
CPU activity. The CPU activity is a percentage breakdown of user mode,
system mode, idle time, and waits for disk I/O. Keep in mind that the CPU
statistics on SMP systems are the average for all of the processors. With
vmstat, you can not see a per-processor CPU usage on SMP systems, as can
be done with the sar command.

At each clock interrupt on each processor (100 times a second), a
determination is made as to which of four categories (usr/sys/wio/idle) to
place the last 10 ms of time. If the CPU was busy in usr mode at the time of
the clock interrupt, then usr gets the clock tick added into its category. If the
CPU was busy in kernel mode at the time of the clock interrupt, then the sys
category gets the tick. If the CPU was not busy, then a check is made to see if
any I/O to disk is in progress. If any disk I/O is in progress, then the wio
category is incremented. If no disk I/O is in progress and the CPU is not busy,
then the idle category gets the tick. However, on a SMP system, an idle CPU
is only marked as wio if an outstanding I/O was started on that CPU. For
example, a node with four CPUs and one thread doing I/O will report a
maximum of 25 percent wio time. A node with 12 CPUs and one thread doing
I/O will report a maximum of approximately 8 percent wio time.

The kernel maintains statistics for kernel threads, paging, and interrupt
activity, which the vmstat command accesses through the use of the knlist
subroutine and the /dev/kmem pseudo-device driver. The disk I/O statistics
are maintained by device drivers. For disks, the average transfer rate is
determined by using the active time and number of transfers information. The
percent active time is computed from the amount of time the drive is busy
during the report.

The following simple, useful example shows us most of what we need by
simply running vmstat with 5 second intervals:
Chapter 11. Tools 325

Column descriptions
We will explain the columns briefly, but the most important fact about the
vmstat output is that serious performance problems will usually show up as a
multiple of high values. If these are analyzed separately it will probably lead
to the wrong conclusion. To examine the more complex picture, a thorough
understanding on processes’ life cycles and resource usage is needed.

r Number of kernel threads placed in run queue. This field indicates
the number of runnable threads. This value should be less than five
for non-SMP systems. For SMP systems, this value should be less
than:

5 x (N total - N bind)

Where N total stands for total number of processors and N bind for the
number of processors which have been bound to processes, for
example, with the bindprocessor command. If this number increases
rapidly, you should probably look at the applications.

However, to determine if a run queue is too high, it is also necessary
to know about the throughput. If the system is performing
outstandingly well, a high run queue level can actually be a sign that
there is a need for more CPUs.

b Number of kernel threads placed in wait queue (awaiting resource,
awaiting input/output). Threads are also located in the wait queue
when they are scheduled for execution but waiting for one of their
thread pages to be paged in. This value is usually near zero. But, if
the run queue value increases, the wait-queue normally also
increases. And if this column increases; the wa column is usually
high as well.

vmstat 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 2146520 130 0 4 3 67 238 0 237 243 222 31 7 30 32
4 11 2146523 135 0 0 0 7008 25490 0 2868 8989 3711 24 9 0 67
4 9 2145191 122 0 0 0 6812 50234 0 2746 4100 3362 27 8 0 65
4 9 2145192 124 0 0 0 7602 48337 0 2766 3696 3606 20 8 0 72
4 11 2145637 133 0 0 0 7109 46670 0 2777 8785 3479 25 8 0 67
5 13 2145738 134 0 0 0 8267 66832 0 3600 22070 5037 40 12 0 48
6 10 2144499 119 0 0 0 8348 83568 0 3435 31469 4695 33 14 0 53
5 10 2144244 131 0 0 0 7325 53636 0 2943 26248 4871 30 12 0 58
3 11 2144251 133 0 0 0 7309 44760 0 2987 16852 4465 16 12 0 71
Ĉ

326 RS/6000 SP System Performance Tuning Update

avm Active virtual memory is defined as the number of virtual-memory
working-segment pages that have actually been touched. It is usually
equal to the number of paging-space slots that have been assigned.
This number can be larger than the number of real page frames in
the machine, because some of the active virtual-memory pages may
have been written out to paging space.

fre Size of the free list. If the number of pages on the free list drops
below minfree, the VMM will steal pages until the free list has been
restored to the maxfree value, If the fre value is substantially above
the maxfree value, then it is unlikely that the system is thrashing.
Thrashing means that the system is continuously paging in and out,
searching and freeing. However, if the system is experiencing
thrashing, you can be assured that the fre value will be small.

re Pager input/output list. If a page fault occurs and this page is
currently on the free list and has not yet been reassigned, this is
considered a reclaim since no new I/O request has to be initiated (the
page is still in memory). It also includes pages previously requested
by VMM for which I/O has not yet been completed or those
pre-fetched by VMM’s read-ahead mechanism but hidden from the
faulting segment. This is not to be confused with the term repage
which refers to a page that has already incurred a page-fault (the
page could be currently on the free list, filesystem, or in paging
space).

pi Pages paged in from paging space. If a page-in occurs, then there
must have been a previous page-out for that page. It is also likely in
a memory-constrained environment that each page-in will force a
different page to be stolen and paged out.

po Pages paged out to paging space. Whenever a page of working
storage is stolen, it is written to paging space. If not referenced
again, it will remain on the paging device until the process terminates
or disclaims the space. Subsequent references to addresses
contained within the faulted-out pages results in page faults, and the
pages are paged in individually by the system. When a process
terminates normally, any paging space allocated to that process is
freed.

fr Pages freed (page replacement). As the VMM page-replacement
routine scans the Page Frame Table (PFT), it uses criteria to select
which pages are to be stolen to replenish the free list of available
memory frames. The criteria include both kinds of pages, working
(computational) and file (persistent) pages. Just because a page has
been freed, it does not mean that any I/O has taken place. For
example, if a persistent storage (file) page has not been modified, it
will not be written back to the disk. If I/O is not necessary, minimal
system resources are required to free a page.
Chapter 11. Tools 327

sr Pages scanned by page-replacement algorithm. The VMM
page-replacement code scans the PFT and steals pages until the
number of frames on the free list is at least the minfree value. The
page-replacement code may have to scan many entries in the PFT
before it can steal enough to satisfy the free list requirements. With
stable, unfragmented memory, the scan rate and free rate may be
nearly equal. On systems with multiple processes using many
different pages, the pages are more volatile and disjointed. In this
scenario, the scan rate may greatly exceed the free rate.

cy Clock cycles by page-replacement algorithm. Since the free list can
be replenished without a complete scan of the PFT and because all
of the vmstat fields are reported as integers, this field is usually zero.
If not, it indicates a complete scan of the PFT, and the stealer has to
scan the PFT again, because fre is still over the minfree value.

in Device interrupts. To see a detailed list, use the -i option.

sy System calls. Resources are available to user processes through
well-defined system calls. These calls instruct the kernel to perform
operations for the calling process and exchange data between the
kernel and the process. Since workloads and applications vary
widely, and different calls perform different functions, it is impossible
to say how many system calls per-second are too many. But typically,
when the sy column raises over a couple of hundred calls per second
and per CPU, there should be some further investigations. For this
column, it is advisable to have a baseline measurement that gives a
count for a normal sy value.

cs Kernel thread context switches. When a thread is given control of the
CPU, the context or working environment of the previous thread is
saved and the context of the current thread must be loaded (see
Section 6.2.1.7, “Process context switching” on page 136 for more
information). AIX has a very efficient context switching procedure, so
each switch is inexpensive in terms of resources. Any significant
increase in context switches should be cause for further
investigation, because it might be an indication that thrashing is
occurring, especially if the memory indicators are higher (the usage)
and lower (the available) than normal.

us User time. When in user mode, a process executes within its
application code and does not require kernel resources to perform
computations, manage memory or set variables.
328 RS/6000 SP System Performance Tuning Update

Examples of usage
The following sample shows which device drivers that has generated
(received) interrupts:

As can be seen in the above example, network and disk has the highest
number of interrupts (excluding the clock). The next example uses the vmstat

summary function two times with a delay in between. It then fixes the output
from the two collections and calculates the difference.

sy System time. If a process needs kernel resources, it must execute a
system call and is thereby switched to system mode to make that
resource available. Generally, if us + sy time is below 90 percent, a
single-user system is not considered CPU constrained. However, if
us + sy time on a multiuser system exceeds 80 percent, the
processes may spend time waiting in the run queue. Response time
and throughput might suffer.

id CPU idle time. If there are no processes available for execution (the
run queue is empty), the system dispatches a process called wait.
This process has priority 127 so if any other process is runnable, the
wait process will be preempted until there are no more runnable
processes.

wa Basically CPU idle time during which the system had outstanding
disk/NFS I/O request(s). A wa value over 25 percent could indicate
that the disk subsystem may not be balanced properly, or it may be
the result of a disk-intensive workload.

vmstat -i
priority level type count module(handler)

0 0 hardware 0 i_misc_pwr(fad5c)
0 24 hardware 0 /etc/drivers/hscsidd(10669ec)
0 24 hardware 0 /etc/drivers/sdpin(10800d0)
0 24 hardware 0 i_epow(e4b20)
0 48 hardware 0 i_scu(fad50)
1 2 hardware 8202101 /etc/drivers/rsdd(114c8cc)
3 4 hardware 87983 /etc/drivers/sdpin(1080010)
3 5 hardware 934 /etc/drivers/middd_loadpin(1181be8)
3 9 hardware 7 /etc/drivers/entdd(1197dc0)
3 10 hardware 3622996 /etc/drivers/tokdd(11ac290)
3 12 hardware 6274350 /etc/drivers/entdd(1197dc0)
3 14 hardware 469089 /etc/drivers/hscsidd(10669e0)
4 1 hardware 8394 /etc/drivers/mousedd(1151948)
4 1 hardware 8952 /etc/drivers/ktsdd(112a540)
5 62 hardware 158344571 clock(e497c)
10 63 hardware 749785 i_softoff(e4934)
Chapter 11. Tools 329

11.1.38 vmtune
The vmtune command is mainly used to change operational parameters of the
Virtual Memory Manager (VMM) for memory management tuning. vmtune can
be found in the bos.adt.samples fileset.

It can be used for low level monitoring as well. When running the vmtune

command without parameters, it displays the current settings for memory
management tunables and some statistics as well, as can be seen in the
following output:

(vmstat -s|awk '{print $1}' >/tmp/1;sleep 60;vmstat -s >/tmp/2)
paste /tmp/[12]|
> sed 's/\([0-9]*\)/\1:/;
> s/\([0-9]\) \([a-z]\)/\1:\2/g'|
> awk -F: '{printf "%12d %s\n",$2-$1,$3}'

233 total address trans. faults
0 page ins
39 page outs
0 paging space page ins
0 paging space page outs
0 total reclaims

130 zero filled pages faults
0 executable filled pages faults
0 pages examined by clock
0 revolutions of the clock hand
0 pages freed by the clock
0 backtracks
0 lock misses
0 free frame waits
0 extend XPT waits
0 pending I/O waits
37 start I/Os
37 iodones

4703 cpu context switches
25521 device interrupts

0 software interrupts
0 traps

10575 syscalls
330 RS/6000 SP System Performance Tuning Update

The most interesting value to monitor is the numperm statistics at the bottom.
See Section 6.1.2.6, “minperm and maxperm” on page 123 for more
information. Another way of obtaining information with vmtune is the -a option,
which will give some indication for tuning some of the buffer count values.

11.1.39 xmperf, 3dmon
The xmperf command can be used to monitor multiple monitoring attributes in
one or more screens. Monitoring attributes can easily be added and removed
to suit the specific monitoring environment. Performance monitoring is set up
by using a hierarchal relationship between the performance monitoring
objects. A console is a frame that encompasses performance monitoring
instruments. Use the default consoles as templates when creating new
consoles.

An instrument is a frame that displays performance data; it defines the type of
display used to present the performance data. A value is a performance
statistic that is displayed by an instrument. A performance instrument can
display multiple values. Depending on the type of instrument, the values are
displayed and stacked differently.

/usr/samples/kernel/vmtune
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
209505 838020 2 8 120 128 524288 0

-M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps
838841 73984 18496 1 93 160 9 131072 1

-s -n -S -h
sync_release_ilock nokilluid v_pinshm strict_maxperm

0 0 0 0

number of valid memory pages = 1048551 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 13254 numperm=1.3% of real memory

/usr/samples/kernel/vmtune -a
hd_pendqblked = 22
psbufwaitcnt = 0
fsbufwaitcnt = 0
Chapter 11. Tools 331

Figure 30. Monitoring a system using xmperf

Figure 30 show a console that encapsulates CPU, VMM, disk activity,
memory, network and I/O kernel calls to be monitored.

Figure 31 on page 333 shows a couple of other examples of monitoring
screens with xmperf and 3dmon.
332 RS/6000 SP System Performance Tuning Update

Figure 31. xmperf
Chapter 11. Tools 333

334 RS/6000 SP System Performance Tuning Update

Part 4. Tuning selected products
© Copyright IBM Corp. 2000 335

336 RS/6000 SP System Performance Tuning Update

Chapter 12. Tivoli Storage Manager (ADSM)

The following chapter seeks to explain the various tunables that can be set to
optimize the performance of Tivoli Storage Manager.

Tivoli Storage Manager (TSM) is a client/server program that provides
storage management to customers in a multivendor computer environment.
TSM provides an automated, centrally scheduled, policy-managed backup,
archive and space management facility for file-servers and workstations.

The parameter values discussed in this chapter were tested in an SP
environment with 200 Mhz POWER3 nodes with AIX 4.3.3, PSSP 3.2 and
TSM 4.1.0 and 4 GB of real memory with internode communication via the SP
Switch.

TSM is the follow-on product to IBM’s ADSTAR Distributed Storage Manager
(ADSM). It is part of Tivoli Storage Management Solutions. More general
information about Tivoli storage products can be found at:

http://www.tivoli.com/products/solutions/storage

12.1 TSM tunables - quick reference

Table 35 and Table 36 on page 338 provide a quick reference to server and
client tuning parameters. All parameters listed in the tables will be discussed
in depth later in the chapter.

Table 35. TSM server values in dsmserv.opt

Parameter Default value Recommended value

TCPWINDOWSIZE 0 128

TCPNODELAY no yes

MAXSESSION 25 40

USELARGEBUFFERS yes yes

BUFPOOLSIZE 2048 131072*

LOGPOOLSIZE 512 512

MOVEBATCHSIZE 40 40

MOVESIZETHRESH 500 500

TXNGROUPMAX 40 246
© Copyright IBM Corp. 2000 337

*Refer to Section 12.4.2, “Server options to improve memory performance”
on page 342 for further details

Table 36. TSM client values in dsm.sys

12.2 Performance considerations

TSM performance can certainly be influenced by its own tuning parameters,
but is also affect by other “external” factors. TSM usually functions in a client
server realm supporting many operating systems and working across several
networks accepting different communication protocols. All of the factors
below can affect TSM performance significantly.

• Client type

• Client speed

• Client activity

• Communication protocol type

• Communication protocol tuning

• Communication controller hardware

• Network activity

• Network speed

• Network reliability

• Server type

• Server speed

• Server activity

• Size and number of files

Parameter Default value Recommended value

TCPWINDOWSIZE 0 128

TCPBUFFSIZE 4 32

TCPNODELAY no yes

COMPRESSION no no

MEMORYEFFICIENT no no

TXBYTELIMIT 2048 25600

RESOURCEUTILIZATION 2 4
338 RS/6000 SP System Performance Tuning Update

• Final output repository type (disk, tape, or optical)

If you have an environment with several large application servers which are
transferring large quantities of data over a network, there could be benefits
from making these machines TSM servers themselves and therefore have
local storage cutting out any network bottleneck. Having a group of TSM
servers can significantly improve backup/restore times.

12.3 SP network tunables

Table 37 shows the recommended no parameters SP server or client running
TSM.

Table 37. no parameter values

12.4 Server performance tuning

The default path for the server options file where these are set is:

/usr/tivoli/tsm/server/bin/dsmserv.opt

The following sections discuss how TSM server performance can be
improved for the following:

• Network

• Memory

• CPU

• I/O

• TSM Server Database

Parameter Value

thewall 1310720

sb_max 1310720

rfc1323 1

tcp_mssdflt 32768

thewall can only to set up to half of real memory on AIX 4.3.3.

Note
Chapter 12. Tivoli Storage Manager (ADSM) 339

12.4.1 Server Options to improve network performance
TCPWINDOWSIZE

Purpose: This option specifies the size of the TCP sliding windows
in kilobytes. This parameter can also be used in the client
options file dsm.sys, which will be discussed later in this
chapter.

A larger window size can improve communication
performance; this is especially true of fast networks with
high latency like the SP switch. However, a window size
larger than the buffer space on the network adapter might
degrade throughput due to resending packets that were
lost on the adapter.

Value: 1 -2048

Default: 0 (This uses the default AIX window size.)

Recommended: 128

TCPNODELAY

Purpose: When set to “no,” this means the server does not allow
packets less that the MTU size to be sent immediately
over the network. Setting this to “yes” does allow such
packets to be sent immediately. For high speed networks,
such as the SP switch, setting this to “yes” should improve
network performance.

Value: no/yes

Default: no

Recommended: yes (only if you have a high speed network)

MAXSESSION

Purpose: Specifies the maximum number of simultaneous client
sessions that can connect with the server. Server
performance can be improved by minimizing the number
of these sessions, as there will be less network load. The
maximum value this option can be is dependent on the
available virtual memory and communication resources.

Minimum Value: 2

Default: 25

Recommended: 40
340 RS/6000 SP System Performance Tuning Update

USELARGEBUFFERS

Purpose: This option increases communication and device I/O
buffers. The communication I/O buffer is used during a
data transfer with a client session, for example, a backup
session, and the disk I/O buffer is used when data is read
from a disk storage pool.

Value: yes/no

Default yes

Recommended: yes

12.4.1.1 Scheduling options:
The following settings are not in the dsmserv.opt file and you can query their
current value by the query status command and change each one using set.

MAXSCHEDSESSIONS - Specifies the number of sessions that the server
can use for processing scheduled operations. This value is a percentage of
the total number of server sessions available via the MAXSESSION
parameter. Do not set this to 100 which is 100% of all client sessions;
otherwise, you could have a situation where all sessions are being used for
running client scheduled backups and you have no available sessions to run
a restore.

MAXCMDRETRIES - Maximum number of times that a scheduler on a client
node can retry a failed, scheduled command.

RETRYPERIOD - The number of minutes the scheduler on client node waits
between retry attempts after a scheduled command fails to process, or there
is a failed attempt to contact the server.

QUERYSCHEDPERIOD - Regulates how often client nodes contact the
server to check for scheduled work when the server is running in the client
polling scheduling mode.

SCHEDMODES - This option specifies if you want client-polling mode for the
clients to contact the server to pick up scheduled work or whether
server-prompted mode is used, which means the server contacts the node
when it is time to start a scheduled operation. Server-prompted mode means
there is less network traffic.
Chapter 12. Tivoli Storage Manager (ADSM) 341

12.4.2 Server options to improve memory performance
BUFPOOLSIZE

Purpose: This is the database buffer pool size; the size is in
kilobytes, which provides cache storage. A larger pool
means faster access times and better performance, as
more of the frequently used database pages can remain
cached in memory. However, a larger pool does require
more virtual memory. The recommended cache hit
percentage is 99 percent. To check the cache hit
percentage, use the query db f=d command.

Value: 256

Default: 2048

Table 38 gives some recommended sizes for the buffer pool.

Table 38. BufPoolSize recommended sizes

SELFTUNEBUFPOOLSIZE

Purpose: If this parameter is set to yes, the TSM server
automatically tunes the database buffer pool size. When
you activate this option, the server will check the cache hit
ratio each time inventory expiration is run. If the cache hit
statistics are less than 98%, TSM increases the database
buffer pool size. This is not as efficient as setting the
buffer pool size manually.

Value: yes/no

Default: no

Recommended: no

Memory size in MB BufPoolSize setting

64 32678

128 32678

256 66536

512 131072

1024 131072

2048 131072

4096 131072
342 RS/6000 SP System Performance Tuning Update

LOGPOOLSIZE

Purpose: This option specifies the size of the recovery log buffer
pool size in kilobytes. A large recovery log buffer pool may
increase the rate at which recovery log transactions are
committed to the database, but this will also require more
virtual memory. The maximum value of this parameter is
determined by the size of the virtual memory.

Minimum Value: 128

Default: 512

Recommended: 512

12.4.3 Server options to improve CPU performance
EXPINTERVAL

Purpose: The TSM server runs automatic inventory expiration, and
this option specifies the interval in hours for this process.
Inventory expiration removes client backup and archive
file copies from the server. Expiration processing is very
CPU intensive. Care should be taken to run this when
other TSM processes are not active. You need to set
EXPINTERVAL to zero to reschedule inventory expiration
from the default or run it manually. You can schedule this
to run at a quiet time every day via the schedule expire

inventory command or you can run “expire inventory”
manually.

Value: 0 - 336

Default: 24

Recommended: 0

MAXSESSION

Purpose: The number of simultaneous client sessions that can
connect to the server can affect the CPU utilization
especially, for example, with a gigabit adapter, which can
create a lot of work for the CPU.

Minimum Value: 2

Default: 25

Recommended: 40
Chapter 12. Tivoli Storage Manager (ADSM) 343

RESOURCEUTILIZATION

Purpose: This is a parameter that can affect server CPU
performance, even though it is set in the client dsm.sys
file. This option specifies the number of concurrent
sessions that a client can have open with a server. It is
only used for backups, not restores.

For example, if set to a value of 4, and there are some
larger files to be backed up, it can take some time. The
backup of larger files can be moved to separate sessions
while the smaller ones can be backed up via one. The
extra sessions are automatically opened with the server
as needed. If the CPU does end up processing a lot of
these concurrent sessions, the backup should be quicker,
but only if the CPU can cope with the extra work.

Value: 1 - 10

Default: 2

Recommended: 4

12.4.4 Server options to improve I/O performance
MOVEBATCHSIZE

Purpose: The number of files that should be batched in the same
server transaction for server storage pool backup/restore,
migration, reclamation or move data operations.

Value: 1 - 256

Default: 40

Recommended: 40 (bigger if there are a lot of small files)

MOVESIZETHRESH

Purpose: A threshold in megabytes for the amount of data moved as
a batch within the same server transaction. This
parameter works with the MOVEBATCHSIZE in the
following way. If the number of files in the batch becomes
equivalent to the MOVEBATCHSIZE before the
cumulative size of the files becomes greater than the
MOVESIZETHRESH, then the MOVEBATCHSIZE is used
to determine the number of files moved or copied in a
transaction. If the cumulative size of the files being
gathered for a move or copy operation exceeds the
MOVESIZETHRESH value before the number of files
344 RS/6000 SP System Performance Tuning Update

becomes equivalent to the MOVEBATCHSIZE, then the
MOVESIZETHRESH value is used instead.

Value: 1 - 500

Default: 500

Recommended: 500

TXNGROUPMAX

Purpose: Related to MOVESIZETHRESH and MOVEBATCHSIZE.
This gives a hard maximum limit to the number of files that
are transferred as a group between the client and server.

Value: 4 - 256

Default: 40

Recommended: 256

12.4.5 Server options to improve TSM server database performance
The performance of a TSM server database can be improved by considering
the following:

• It is recommended that the database does not exceed 70 GB in size.

• Run the unload/loaddatabase commands.

In environments where a large number of small files are being backed up,
fragmentation of the database can occur. Running these commands will
repack the db pages, reduce the amount of db space used, and also improve
database scan performance.

12.5 Client performance tuning

The default path for the client options file where these are set is:

/usr/tivoli/tsm/client/ba/bin/dsm.sys

The main factors that can affect client performance are:

• Network

• Memory

• CPU

• I/O

• Small Filesize
Chapter 12. Tivoli Storage Manager (ADSM) 345

12.5.1 Client options to improve network performance
TCPWINDOWSIZE

Purpose: As for the server, this option specifies the size of the
TCPIP sliding window in kilobytes.

Value: 1 - 2048

Default: 0 (this uses the default AIX window size)

Recommended: 128

TCPBUFFSIZE

Purpose: This parameter specifies the size of the internal TCP
communication buffer in kilobytes that is used to transfer
data between the client node and the server. A large
buffer can improve communication performance but does
require more memory. A size of 32 KB forces TSM to copy
data to its communication buffer and flush the buffer when
it fills.

Value: 0 - 32

Default: 4

Recommended: 32

TCPNODELAY

Purpose: As for the server, when set to “no”, this means the server
does not allow packets less that the MTU size to be sent
immediately over the network. Setting this to yes does
allow such packets to be sent immediately. For high speed
networks, such as the SP switch, setting this to “yes”
should improve network performance.

Value: no/yes

Default: no

Recommended: yes (only if you have a high speed network)

12.5.2 Client options to improve memory performance
COMPRESSION

Purpose: If specified in the client option file as “yes”, it will do the
compression in memory. Therefore, you do need larger
memory for this. This option compresses files before they
get sent to the TSM server. Data Compression will save
storage space, network capacity and server cycles, but
346 RS/6000 SP System Performance Tuning Update

may have an adverse effect on throughput, which can be
significantly slower, than if it is disabled. This is
dependent on processor speed. Compression may be
beneficial for a fast processor on a slow network.

Value: yes/no

Default: no

Recommended: no

MEMORYEFFICIENT

Purpose: When doing a backup, an object list will have to be
created. The more files and directories, the larger the list.
This requires a lot of memory; specifying this option as
“yes” will create a more efficient memory allocation,
although it can slow down performance significantly, so it
should only be used when really needed.

Value: yes/no

Default: no

Recommended: no

TXNBYTELIMIT

Purpose: Specifies the number of kilobytes the client can buffer
together in a transaction before it sends data to the
server. Increasing the amount of data per transaction will
increase the recovery log requirements on the server.
Increasing the amount of data per transaction will also
result in more data having to be retransmitted if a retry
occurs, which can negatively affect performance.

Value: 300 - 25600

Default: 2048

Recommended: 25600

12.5.3 Client options to improve CPU performance
RESOURCEUTILIZATION

Purpose: The smaller the value, the better for CPU performance.
The larger the value, the larger the number of concurrent
sessions allowed with the server, and the more stress is
placed on CPU resources.

Value: 1 - 10
Chapter 12. Tivoli Storage Manager (ADSM) 347

Default: 2

Recommended: 4

COMPRESSION - Setting this to yes can adversely affect CPU performance.

12.5.4 Client options to improve I/O performance
RESOURCEUTILIZATION - Unlike for CPU performance, setting a larger
value for RESOURCEUTILIZATION improves I/O performance, for example,
if you have multiple tape drives, it can help by doing parallel transfers. It is not
used for restores; multiple logical nodes still may be a good way to improve
I/O performance for those operations.

12.5.5 Client options to improve small file size performance
Both the parameters RESOURCEUTILIZATION and TXNBYTELIMIT set to a
higher value will increase performance on a system which has to deal with a
large number of small files.

12.6 Some test results

We first set up a local SCSI disk pool on the TSM server with another SP
node (exnode1) set up as a client. Communication between server and client
was over the SP switch.

Initial testing had, as the default, dsmserv.opt and dsm.sys files with no
parameters changes (except Servername and TCPServeraddress in
dsm.sys), as shown in Figure 32 on page 349.

When doing a backup, building an object list will use CPU resources.
Therefore, the larger the list, the more CPU resources will be affected.

Note
348 RS/6000 SP System Performance Tuning Update

Figure 32. Default client and server files

On backing up, the following results were observed:

Restoring gave the following output:

This meant that it had taken 55 minutes to only back up half a gigabyte to a
disk storage pool.

We then changed the client dsm.sys file, but left the server dsmserv.opt file
with its default values, as shown in Figure 33 on page 350:

dsm.sys file:
SErvername TSMTEST
COMMmethod TCPip
TCPPort 1500
TCPServeraddress 192.167.4.34

dsmserv.opt:
COMMmethod TCPIP
COMMmethod SHAREDMEM
COMMmethod HTTP
Chapter 12. Tivoli Storage Manager (ADSM) 349

Figure 33. Changed client dsm.sys file

The backup ran quicker:

However, no change was seen in the speed of the restore:

We then made changes to the server dsmserv.opt file, as shown inFigure 34
on page 351; all other parameters not listed were at default value.

dsm.sys
SErvername TSMTEST
COMMmethod TCPip
TCPPort 1500
TCPServeraddress 192.167.4.34
TCPWindowSize 128
TCPBuffSize 32
TCPNoDelay yes
TXNByteLimit 25600
350 RS/6000 SP System Performance Tuning Update

Figure 34. Changed server dsmserv.opt file

Once we had made the changes to both the server and client files, we saw a
dramatic increase in the restore rate: The elapsed processing time went from
55 minutes 26 seconds to 6 minutes 21 seconds. For example:

We then added the line:

RESOURCEUTILIZATION 4

to the client dsm.sys file. The backup did run quicker. For example:

To see how many sessions the client was actually using, we ran the q session

from the server:

dsmserv.opt file:
COMMmethod TCPIP
COMMmethod SHAREDMEM
COMMmethod HTTP
TCPWindowSize 128
BUFFPoolSize 131072
TXNGroup 256
Chapter 12. Tivoli Storage Manager (ADSM) 351

As a final test, we decided to run a restore with the changes in the server
dsmserv.opt file but with a default client dsm.sys file. Once again, the restore
was significantly slower, but not as slow as having a changed client dsm.sys
file and a default server dsmserv.opt file. For example:

It was our observation that significant improvements in performance,
especially with the time taken for a restore, could be achieved by tuning TSM
server and client files.
352 RS/6000 SP System Performance Tuning Update

Chapter 13. VSD

This chapter discusses the performance and tuning for IBM Virtual Shared
Disk (VSD). It describes VSD parameters and the two new enhancements in
VSD 3.2, concurrent VSD and VSD usage of KLAPI, which can help improve
the performance of your VSD subsystem.

Though an overview of VSD is provided, it is assumed that the reader has
some basic knowledge and experiences in installation, configuration and
managing of VSD.

For more detailed VSD information, consult PSSP: Managing Shared Disks,
SA22-7279.

13.1 Overview

VSD is a subsystem that allows data in logical volumes on disks physically
connected to one node to be transparently accessed by other nodes. VSD
only supports raw logical volumes. GPFS, described in Chapter 15, “Web
applications” on page 393, provides a similar function, global access to data,
but for the file system.

Figure 35 shows a sample configuration of a simplified VSD implementation.

Figure 35. VSD implementation

IP

Node 1
VSD

LVM IP

Node 2
VSD

LVM IP

Node N
VSD

LVM

...

IP Network

LV VG
© Copyright IBM Corp. 2000 353

Here node 1 is called a VSD server node, because it provides read and/or
write access to data on the disks it owns. Node 2 to Node n are called VSD
client nodes, because they request access to the data on VSD server nodes.

The client node can access VSD on the server node via the VSD layer, which
checks whether this node owns the VSD. If it is, the VSD layer routes the
request to the LVM layer to access the disk. If not, it routes the I/O requests to
the server that owns that VSD. The VSD server node accesses the data and
sends the results back to the client.

13.2 Tuning

The main VSD tunable areas are:

• Application buffer allocation

• I/O subsystem

• Switch adapter

• VSD cache buffer

• VSD request blocks

• VSD pbufs

• Buddy buffer

• Maximum I/O request size

The actual processing capability required for VSD service is a function of the
application I/O access patterns, the node model, the type of disk, and the disk
connection.

If you plan to run time-critical applications on a VSD server, remember that
servicing disk requests from other nodes might conflict with the demands of
these applications.

Make sure that you have sufficient resources to run the VSD program
efficiently. This includes enough buddy buffers of sufficient size to match your
file system block size, as well as sufficient rpoolsize and spoolsize blocks in
the communications subsystem.

13.2.1 Application considerations
Your application should put all allocated buffers on a page boundary.
354 RS/6000 SP System Performance Tuning Update

If your I/O buffer is not aligned on a page boundary, the VSD device driver will
not parallel I/O requests to underlying VSDs, and performance will be
degraded.

In addition, the KLAPI protocol, which is mentioned later in the chapter,
requires the data to be page aligned in order to avoid a data copy.

13.2.2 I/O subsystem considerations
The VSD device driver passes all its requests to the underlying LVM
subsystem. Thus, before you tune VSD, verify that the I/O subsystem is not
the bottleneck. See Section 6.3, “I/O” on page 141 for more information on
how to tune the I/O subsystem.

If an overloaded I/O subsystem is degrading your system’s performance,
tuning the VSD will not help. Instead, consider spreading the I/O load across
more disks or nodes.

With AIX 4.3.3, you may consider using the striping and mirroring logical
volume.

13.2.3 SP switch considerations
Several considerations need to be made regarding the SP switch:

mbufs and thewall
mbufs are used for data transfer between the client and the server nodes by
VSD subsystem's own UDP-like Internet protocol. thewall controls the
maximum amount of memory to be used for communication buffer area.

You need not do anything with thewall because the default setting for AIX
4.3.3 is sufficient for VSD usage.

Switch Send/Receive Pool
If you are using the switch (css0) as your communications adapter, the IBM
VSD component uses mbuf clusters to do I/O directly from the switch's send
and receive pools.

If you suspect that the switch pool may not be enough, use the appropriate
vdidl3 command (The exact command to be used depends on the type of
switch adapter you are using. This is mentioned in more detail in Section
5.2.6, “Sizing send and receive pool requirements” on page 107; you can also
use errpt to check the error log.

If you see the line:
Chapter 13. VSD 355

IFIOCTL_MGET(): send pool shortage

in the error log, you should consider increasing the size of the send and
receive pools.

Refer to Section 5.2, “SP Switch and SP Switch2 adapter tuning” on page 99
on how to display and change send and receive pool size.

Be aware that for the SP switch, you need to reboot the node after changing
the size, but for the SP switch2, you do not need to reboot.

maximum IP message size
This defines the largest size of the packets that the VSD software sends
between the client and the server.

Its value can vary between 512 bytes and 65024 bytes (63.5KB). The default
setting is 61440 bytes, which is the recommend value.

Larger values of max_IP_msg_size will result in fewer packets being required
to transfer the same amount of data and generally have better performance
than using a small packet size.

To display the maximum IP message size, use the following command:

dsh 'statvsd|grep max'

It is recommended that you set the maximum IP message size to 61440 when
you configure a VSD node and do not change it.

However, in case you need to change it, use the updatevsdnode command to
change the value in the SDR (so that it persists across nodes reboot) and
then use ctlvsd to change the current value:

updatevsdnode -n ALL -M 61440
dsh ctlvsd -M 61440

maximum buddy buffer size
Ensure that the maximum buddy buffer size is at least 256 KB.

Refer to “Buddy buffers” on page 359 for more details.

13.2.4 VSD parameters:
Here we discuss various parameters that can affect VSD performance.
356 RS/6000 SP System Performance Tuning Update

VSD cache buffer
Each VSD device driver, that is, each node, has a single cache buffer, shared
by cachable VSDs configured on and served by the node.

The cache buffer is used to store the most recently accessed data from the
cached VSDs (associated logical volumes) on the server node. The objective
is to minimize physical disk I/O activity. If the requested data is found in the
cache, it is read from the cache, rather than the corresponding logical
volume.

Data in the cache is stored in 4 KB blocks. The content of the cache is a
replica of the corresponding data blocks on the physical disks. Write-through
cache semantics apply; that is, the write operation is not complete until the
data is on the disk.

When you create VSDs with VSD perspectives or the createvsd command,
you specify the cache option or the nocache option.

IBM suggests that you specify nocache in most instances (especially in the
case of read-only or other than 4 KB applications) for the following reasons:

• Requests that are not exactly 4 KB and not aligned on a 4 KB boundary
will bypass the cache buffer, but will incur the overhead of searching the
cache blocks for overlapping pages.

• Every 4 KB I/O operation incurs the overhead of copying into or out of the
cache buffer, as well as the overhead of moving program data from the
processor cache due to the copy.

• There is overhead for maintaining an index on the blocks cached.

If you are running an application that involves heavy writing followed
immediately by reading, it might be advantageous to turn the cache buffer on
for some VSDs on a particular node.

To display whether a VSD named koavsd1n7 has enabled VSD cache or not,
use the command lsvsd -l and see the “option” column:

To enable the cache for koavsd1n7, use the command updatevsdtab and then
use the ha.vsd refresh command:

root@sp6n07:/: lsvsd -l koavsd1n7
minor state server lv_major lv_minor vsd-name option size(MB) server_list
1 ACT 7 38 1 koavsd1n7 nocache 32 7
Chapter 13. VSD 357

Be aware that Concurrent VSD does not support VSD cache.

VSD request blocks
One or more request blocks are allocated for each VSD request on a node
regardless whether the request is to the local or remote VSDs. They enable
VSD to keep track of the current outstanding VSD requests.

Since a large request may be broken up into smaller subrequests, the
number of request blocks may be several times higher than the actual
number of pending read/write requests.

VSD_request_blocks or vsd_request_count specifies the maximum number
of request blocks that are available on a node. Each request block is
approximately 76 bytes.

Prior to VSD 3.2, this was one of the most important tunables for VSD. In
VSD 3.2, this parameter is now internally controlled and tuned by the VSD
subsystem.

As a consequence, VSD ignores the value set in the SDR or the value on the
-r option in the updatevsdnode command (if set).

VSD pbufs
VSD pbufs or rw_request_count specifies the maximum number of pending
device requests for a specific VSD on its server node.

Each VSD, regardless of its activity and whether the node is a client or a
server, is allocated these pbufs. Each pbuf is 128 bytes long.

Prior to VSD 3.2, this was one of the most important tunables for VSD. In
VSD 3.2, this parameter is now internally controlled and tuned by VSD
subsystem.

As a consequence, VSD ignores the value set in the SDR or the value on the
-p option in the updatevsdnode command.

root@sp6en0:/: updatevsdtab -v koavsd1n7 -o cache
root@sp6en0:/: dsh ha.vsd refresh
n1: Quorum is already 6
n1: The request for subsystem refresh was asynchronously started.
...
n14: Quorum is already 6
n14: The request for subsystem refresh was asynchronously started.
root@sp6en0:/:
358 RS/6000 SP System Performance Tuning Update

Buddy buffers
The VSD server node uses a pinned memory area called buddy buffers to
temporarily store data for I/O operations originating at a client node.

In contrast to the data in the cache buffer, the data in a buddy buffer is purged
immediately after the I/O operation completes.

Buddy buffers are allocated in powers of two. If an I/O request size is not a
power of two, the smallest power of two that is larger than the request is
allocated. For example, for a request size of 24 KB, 32 KB is allocated on the
server.

Prior to VSD 3.2, VSD runs in interrupt mode, so it must have all resources
ready to be used. As a result, request block or pbuf are pre-allocated to the
maximum amount specified and pinned in the memory.

This can place quite a heavy load on the kernel heap if the parameters are
not specified correctly, for example, if you specify too many pbufs, the
system can crash due to the lack of kernel heap. Also, this approach of
memory allocation does not make an optimal usage of memory.

With VSD 3.2, VSD now runs as a normal process/thread; this enables it to
dynamically acquire memory as needed. As a result, request count and
pbuf are now allocated and pinned as needed.

Start from 0; it is allocated on demand (and kept for future use) until a low
water mark is reached. After that, the new allocation will be returned to the
system after usage in order to minimize the amount of pinned memory.

In case the allocation goes over a high water mark, the request will be
queued and the corresponding value of “request queue waiting for a
request block or pbuf” will be incremented.

However, this should rarely happen, because these water mark values had
been tested with heavy GPFS workload in the lab with no incidents of
request queue waiting.

This also helps save memory, instead of having 48 pbufs per each LV; we
now have just one shared pbuf pool that is used by all LVs on a node.

Note
Chapter 13. VSD 359

There are three parameters associated with the buddy buffer:

• Minimum buddy buffer size allocated to a single request

• Maximum buddy buffer size allocated to a single request

• Total size of the buddy buffer

If you are using the switch as your adapter for VSD, we recommend setting
4096 (4 KB) and 262144 (256 KB), respectively, for minimum and maximum
buddy buffer size allocated to a single request.

To display the minimum buddy buffer size, use the command vsdatalst -n

and see the “Buddy Buffer minimum size” column.

To set the minimum buddy buffer size to 4 MB (or 4096 KB) on node 1, use
the command:

updatevsdnode -n 1 -b 4096

To display the maximum buddy buffer size, use the command vsdatalst -n

and see the “Buddy Buffer maximum size” column.

To set the maximum buddy buffer size to 256 MB (or 262144 KB) on node 1,
use the command:

updatevsdnode -n 1 -x 262144

The total amount of memory that is available for buddy buffers is specified by
the number of maximum sized buddy buffers multiplied by the maximum
buddy buffer size.

To display the number of maximum sized buddy buffer, use the command
vsdatalst -n and see the “Buddy Buffer size: maxbufs” column.

We recommend you set the initial maximum number of buddy buffer in the
range of 32 to 96 (where the maximum buddy buffer size is 256 KB).

Buddy buffers are only used on the servers. On client nodes you may want
to set max_buddy_buffers to 1.

Buddy buffers are used only when a shortage in the switch buffer pool
occurs or when the size of the request is greater than the maximum IP
message size (60 KB).

KLAPI does not use the switch buffer pool; it always uses buddy buffers.

Note
360 RS/6000 SP System Performance Tuning Update

To set the number of maximum sized buddy buffer to 96 on all nodes, use the
following commands:

updatevsdnode -n ALL -s 96

If the statvsd command consistently shows requests queued waiting for
buddy buffers and the switch buffer pool is not at the maximum size (16 MB
for SP switch, 32 MB for SP switch2), instead of increasing your buddy
buffers, consider increasing your switch buffer pool size.

In case the switch buffer pool is already at the maximum size and you are
sure that there is no I/O bottleneck, monitor the value of buddy buffer
wait_queue size from the statvsd command.

buddy buffer wait_queue size, a new output from the statvsd command, is the
current number of VSD requests waiting in the queue. Its value varies
according to the demand for buddy buffer at the time the command runs.

If the output consistently shows a value of n for the buddy buffer wait_queue
size, you can increase the number of buddy buffer by n.

Maximum I/O request size
The value you assign to maximum buddy_buffer_size and the
max_IP_msg_size limits the maximum size of the request that the IBM VSD
subsystem sends across the switch.

For example, if you have:

• A request from a client to write 256 KB of data to a remote VSD

• A maximum buddy buffer size of 64 KB

• A maximum IP message size of 60 KB

the following transmission sequence occurs:

To make any buddy buffer related changes effective, you need to:

...stop the application that is using VSD...
dsh hc.vsd stop
dsh ha.vsd stop
ucfgvsd -a
ucfgvsd VSD0
...updatevsdnode command...
dsh ha_vsd reset
...start the application that is using VSD...

Note
Chapter 13. VSD 361

1. Since the VSD client knows that the maximum buddy buffer size on the
VSD server is 64 KB, it divides the 256 KB of data into four 64 KB
requests.

2. Since the maximum size of the packet is 60 KB, each 64 KB block of data
becomes one 60 KB packet and one 4 KB packet for transmission to the
server via IP.

3. At the server, the eight packets are reassembled into four 64 KB blocks of
data, each in a 64 KB buddy buffer

4. The server then has to perform four 64 KB write operations to disk and
return four acknowledgements to the client.

A better scenario for the same write operation would use the maximum buddy
buffer size of 256 KB:

• The same 256 KB client request to the remote VSD

• The maximum buddy buffer size of 256 KB

• The maximum IP message size of 60 KB

This produces the following transmission sequence:

1. Since the request can fit into a buddy buffer on the VSD server, the client
does not need to divide the request into a smaller size.

2. Since the maximum size of the packet is 60 KB, the 256 KB request
becomes four 60 KB packets and one 16 KB packet for transmission to the
server via IP.

3. At the server, the five packets are reassembled into one 256 KB block of
data in a single buddy buffer.

4. The server then performs one 256 KB write operation and returns an
acknowledgement to the client.

The second scenario is preferable to the first because the I/O operations at
the server are minimized.

This example also shows that you should configure the buddy buffer size to
match the request from the application and that the larger buddy buffer size
can give better performance.

13.2.5 Summary of VSD tuning recommendations
Here is a summary for tuning the VSD subsystem:

• Make sure that the application buffer allocation is aligned on a page
boundary.
362 RS/6000 SP System Performance Tuning Update

• Make sure that the I/O subsystem is not a bottleneck.

• Use the maximum size of switch send and receive pool.

• Set max_IP_msg_size to 61440 to maximize the switch packet size.

• Set the maximum buddy buffer size to at least 256 KB.

• On VSD server, set the number of buddy buffer to 32-96 initially then
monitor with statvsd command for buddy buffer wait_queue size.

• On VSD client, set the number of buddy buffer to 1.

13.3 Other VSD considerations

In this section, we describe the two new features in VSD 3.2, concurrent VSD
and VSD usage of KLAPI.

By exploiting these features, it is very likely that you can improve the
performance of your VSD subsystem.

13.3.1 Concurrent VSD
VSD 3.2 includes Concurrent VSD (CVSD), which allows you to use multiple
servers (currently limited to two) to satisfy disk requests by taking advantage
of the services of Concurrent Logical Volume Manager (CLVM) supplied by
AIX.

CVSD has potentials to improve VSD performance because:

• Not only one, but two VSD servers can now serve the requests for VSD.
This can help speed up the response time.

• Each VSD client in the system keeps track of which VSD server they used
to access CVSD the last time; the next time it needs to access that CVSD
again, it will use another server. This helps distribute the I/O requests
evenly among the two servers.

Since CVSD makes use of CLVM, it has the same limitation as CLVM, that
is, no mirror write consistency and bad block relocation.

VSD cache is not implemented for CVSD because the overhead of making
sure the cache coherency outweighs its benefits.

Only two servers and SSA disks are supported in the current release.

Note
Chapter 13. VSD 363

CVSD also helps make VSD more highly available.

• Prior to VSD 3.2, VSD will not be available during the takeover of a
primary node and during the takeback. With CVSD, this is improved
because CVSD is always available via the surviving node.

• When a node fails, Group Services will inform the RVSD subsystem. The
surviving node will fence the failed node so that it cannot access the
CVSD. The other client nodes will also be informed so that they know it is
not possible to get to that CVSD from the failed node anymore.

When the failed node comes back, it will be unfenced from the CVSD.
Other nodes will be informed that it is now possible to get to the CVSD
from this node.

This reduces the takeover and takeback time, because all that is needed
to do is to run fencevg or unfencevg command; there is no need to run
varyoffvg, varyonvg or importvg at all.

To implement CVSD:

1. Add the node to a cluster with the -c clustername option of the
updatevsdnode command.

2. Reboot.

3. To create a CVSD, specify -k CVSD option on the createvsd command.

13.3.2 VSD usage of KLAPI
The Kernel Low-level Application Programming Interface (KLAPI) protocol
has been introduced to meet the growing performance requirements of IBM’s
GPFS and VSD.

Only two nodes are allowed in a cluster.

A node can belong to only one cluster.

Use vsdatalst -c shows which node is in which cluster.

Note

A reboot is needed here since VSD will set the node number in the
node’s ssa device, and this setting requires reboot to make it effective.

Note
364 RS/6000 SP System Performance Tuning Update

The overhead of GPFS has been dominated by multiple data copies. Studies
have concluded that elimination of a data copy in GPFS is required to reduce
the overhead and improve node throughput. With many large RS/6000 SP
systems running GPFS with large amounts of data, these performance
enhancements are a necessity.

With data being written and read becoming larger, the VSD transport services
have been improved through KLAPI.

KLAPI is an efficient transport service for communication between clients and
servers and has been developed to aid VSD. KLAPI is a zero copy transport
protocol which supports fragmentation and reassemble of large messages,
packet flow control and recovery from lost packets.

The Message size can be as large as GPFS block size.

Packet flow control is introduced to prevent switch congestion when many
nodes send to one, for example, in the VSD environment. This helps reduce
the VSD retries which can significantly impact performance.

In short, KLAPI provides transport services to kernel subsystems that need to
communicate via the SP switch. KLAPI semantics for active messages are
similar to those for user space LAPI.

To exploit KLAPI, VSD utilizes KLAPI transport services and provides its own
buffer management on the server side. For GPFS, VSD manages direct DMA
between the buddy buffer and the GPFS pagepool using KLAPI services.

To utilize KLAPI transport services, VSD replaces calls to its own send and
receive functions with calls to the KLAPI active message interface.

The following examples are simplified to illustrate the difference in the data
flow when a GPFS application node (which is a VSD client) requests a write
to VSD server using IP and KLAPI.
Chapter 13. VSD 365

Figure 36. Write data flow: VSD using IP

Using IP, the data from the application is copied to the GPFS pagepool, which
is then copied to the send pool (1) (see Figure 36 for an overview). It is then
transmitted to the VSD server’s receive pool (2).

If the data is less than 60K (max IP message size), it is written to the disk
(3B), if not, it is copied to the buddy buffer (3A) and then written to disk (4).

Figure 37. Write data flow: VSD using KLAPI

But using KLAPI, after the data from the application is copied to the GPFS
pagepool, VSD transfer the data from the pagepool on the client to the buddy
buffer on the server directly via DMA.

From the examples, you can see that with KLAPI, there is zero copy, because
the data will be transferred directly between the buddy buffer and the
application buffer (GPFS pagepool in this case) See Figure 37 for an
overview.

GPFS
PAGEPOOL

SEND
POOL

VSD CLIENT

1
RECEIVE
POOL

VSD SERVER

BUDDY
BUFFER

3A
2

43B

GPFS
PAGEPOOL

VSD CLIENT VSD SERVER

BUDDY
BUFFER

1

2

366 RS/6000 SP System Performance Tuning Update

This helps reduce a lot of CPU usage spent in copying data from one buffer to
another. This can also help improve the performance, because the application
now has more available CPU time.

For VSD, one important difference between IP and KLAPI is that VSD with
KLAPI has flow control, while VSD with IP does not.

With IP, a lot of client nodes can send the packet to the server node and find
out that the receive pool on the server node is full. Those packets will be
dropped and need to be re-transmitted. This uses (and wastes) a lot of switch
network bandwidth.

With KLAPI, before a client node can start sending to the server node, a
buddy buffer has to be allocated and prepare for DMA access. So when the
client sends the packet, it will not be dropped, but put into that buddy buffer.

This also means that if a server runs out of buddy buffers, the client will know
about this and it will not send the packet but wait until a buddy buffer is
available. This helps reduce the amount of unnecessary traffic (retry) on the
switch network and provides flow control for the VSD subsystem.

To enable KLAPI:

1. Use dsh ‘statvsd | grep vsdd’ to verify whether KLAPI is enabled. If the
output says “VSD driver (vsdd): KLAPI interface” then KLAPI is enabled.

2. Use dsh ha.vsd stop to stop the RVSD subsystem.

3. Use dsh ctlvsd -l on to enable VSD to use KLAPI.

4. Use dsh ha_vsd reset to restart the RVSD subsystem.

KLAPI is not supported for use by Oracle Parallel Server. This is currently a
testing limitation only.

KLAPI protocol can only be used between nodes with VSD 3.2 installed.

KLAPI always uses buddy buffers (even for small requests).

Note
Chapter 13. VSD 367

368 RS/6000 SP System Performance Tuning Update

Chapter 14. GPFS

This chapter discusses performance and tuning for IBM General Parallel File
System for AIX (GPFS). It provides an overview of GPFS, and describes
various parameters in GPFS and its related subsystems that can have
performance implications in GPFS.

Though an overview of GPFS is provided, it is assumed that the reader has
some basic knowledge and experience in installation, configuration, and
managing of GPFS.

For more detailed GPFS information, consult the following manuals:

• IBM General Parallel File System for AIX: Concepts, Planning, and
Installation, GA22-7453

• IBM General Parallel File System for AIX: Administration and
Programming Reference, SA22-7452

• IBM General Parallel File System for AIX: Problem Determination Guide,
GA22-7434

• IBM General Parallel File System for AIX: Data Management API Guide,
GA22-7435

Also, check the following redbooks:

• GPFS: A Parallel File System, SG24-5165

• GPFS: Sizing and Tuning for GPFS, SG24-5610

14.1 Overview

GPFS is implemented as a standard AIX Virtual File System, which means
that most applications using standard AIX VFS calls (such as JFS calls) will
run on GPFS without any modification.

GPFS allows parallel applications simultaneous access to the same files, or
different files, from any node in the configuration while maintaining a high
level of data availability. It offers an extremely highly available file system by
utilizing both hardware and software redundancy where appropriate (for
example, disk takeover when a node fails via Recoverable Virtual Shared
Disk (RVSD), replicated log files, selectable data/metadata replication at the
file system level, and so on).

GPFS achieves a very high level of performance by having multiple nodes
acting in cooperation to provide server functions for a file system. This solves
© Copyright IBM Corp. 2000 369

the problem of running out of server capacity that occurs with NFS more
servers or disks can be added to improve performance.

Having multiple servers will not help much unless we can make sure that all
nodes are working together in parallel and the system workload is spread out
across them evenly, so none of them become a bottleneck.

The following are some examples of what GPFS does to spread the workload
across nodes:

• GPFS stripes data across disks on multiple nodes

• GPFS allows more disks and nodes to be added later

• GPFS can re-stripe the file system

• GPFS does not assign the same node to be the file system manager, if
possible

When you create a file system in GPFS, you can specify a block size of 16
KB, 64 KB, 256 KB, 512 KB, or 1024 KB. Block size is the largest amount of
data that is accessed in a single I/O operation. Each block is divided into 32
subblocks which is the smallest unit of disk space that can be allocated. For
example, using a block size of 256 KB, GPFS can read as much as 256 KB in
a single I/O operation and small files occupy at least 8 KB of disk space.

When GPFS writes data to the file system, it stripes the data into many blocks
of the block size, then writes each block to a disk in the file system. You can
specify the method GPFS should use for allocating each block to disk, for
example round robin or random, when you create the file system.

GPFS achieves the goal of being a highly available file system through its
ability to recover from various hardware and software failures. In most cases,
the end users can continue operations with only a slight delay or performance
degradation.

With the help of RVSD and twin-tailed disk or SSA looping connection, GPFS
is able to tolerate various hardware failures such as node failure, switch
adapter failure, disk adapter failure, and disk cable failure.

Furthermore, with the implementation of Concurrent Virtual Shared Disk
(CVSD), now there can be two active VSD servers for each VSD. Thus, even
if there is a failure with one server, that VSD is available via the other
surviving server. This greatly enhances VSD availability.
370 RS/6000 SP System Performance Tuning Update

GPFS can handle disk failures by:

• Using RAID-5 disks.

• Implementing disk mirroring.

• Using data and/or metadata replication.

When you create the GPFS file system, you can specify whether you
would like to replicate the data and/or the metadata for the file system.
You can select up to two replicas for data and metadata.

GPFS ensures that a copy of replica will always be available even when
there is a hardware failure (In certain cases, it may be able to survive
multiple failures).

Even when we do not use RAID-5 disk or implement disk mirroring and
data/metadata replication (and multiple failures occur), GPFS can still provide
access to the file as long as all the required metadata to access the file and
its data can still be accessed.

Moreover, the file system integrity in GPFS is always maintained because
GPFS replicates the log file of each node to another one. Thus when a node
fails, the other node can be used to recover from the failure. This not only
allows the file system integrity to be maintained, but also allows the file
system operation to continue with no disruption.

An example of a GPFS configuration is provided in Figure 38 on page 372.

CVSD does not replace RVSD. RVSD is required for CVSD operation.
CVSD just helps make the failover time shorter.

Note
Chapter 14. GPFS 371

Figure 38. GPFS overview

Nodes 1 to 3 are application nodes, which are nodes that have mounted a
GPFS file system and are running an application that accesses the file
system. Nodes 4 and 5 are VSD server nodes, which physically have a
number of disk drives attached. GPFS file systems are stored on one or more
disks in one or more VSD servers.

A GPFS nodeset is a group of nodes that all run the same level of GPFS and
operate on the same file system. Application nodes are always in a GPFS
nodeset while VSD server nodes may or may not be a part of the GPFS
nodeset. In the previous configuration, node 1 to 3 are in GPFS nodeset but
node 4 and 5 are not.

Each node may belong to only one GPFS nodeset. There can be more than
one GPFS nodes in a system partition. This feature enables you to create a
separate nodeset for testing the new level of GPFS code without affecting the
nodeset running the production tasks.

Node 1 Node 2 Node 3

Node 4

Application

GPFS

RVSD/VSD

CSS Switch

Dev. Driver

LVM

RVSD/VSD

CSS Switch

Application

GPFS

RVSD/VSD

CSS Switch

Application

GPFS
RVSD/VSD

CSS Switch

Node 5

Dev. Driver

LVM

RVSD/VSD

CSS Switch

SP Switch
372 RS/6000 SP System Performance Tuning Update

A GPFS file system is mounted and accessed on each node in a nodeset as if
it were a local file system. To access a GPFS file system across a nodeset or
a system partition, you need to mount it like an NFS file system.

14.2 Tuning

GPFS provides simultaneous access to the same or different files across SP
nodes with data integrity, high availability, and high performance. To achieve
this, GPFS exploits a number of facilities provided by the SP, such as Virtual
Shared Disk, Group Services, Switch subsystem, and other components of
the AIX operating system.

Tuning GPFS is a complicated and very difficult task. Not only do we need to
consider many GPFS parameters, but we need to consider other subsystems
that GPFS relies on.

We will now describe the parameters that must be considered for each of the
subsystems that GPFS relies on and end with GPFS itself.

14.2.1 Network tuning
Most of the network option parameters, for example, thewall, tcp_sendspace,
tcp_receivespace, rfc1323 and so on, are normally already tuned according
to the usage type of the node when it is installed. They can be used as the
initial values for GPFS.

Here we will discuss ipqmaxlen, a parameter that is not normally tuned on the
SP nodes.

ipqmaxlen
This parameter specifies the number of received packets that can be queued
on the IP protocol input queue. Since both GPFS and VSD software make
extensive use of the IP protocol, the default setting of 100 is often insufficient.

If this is set too low, dropped IP packets and consequent performance
degradation can result.

As a general guideline, we recommend that ipqmaxlen should be increased to
512 on both VSD servers and GPFS application nodes.

Refer to Section 4.3.2.2, “Networking-related tunables” on page 53 for more e
information on how to display and set this parameter.
Chapter 14. GPFS 373

14.2.2 Switch adapter tuning
The following parameters, spoolsize and rpoolsize, will severely impact GPFS
performance if they are not set correctly.

spoolsize/rpoolsize
The switch send pool is a pinned memory area used by the switch device
driver to store the data before sending it over the switch network.

The switch receive pool is a pinned memory area used by the switch device
driver to store the data after it receives it from the switch network.

The spoolsize parameter specifies the size in bytes for the switch send pool,
and the rpoolsize parameter specifies the size in bytes for the switch receive
pool.

It is critical that rpoolsize is set to the maximum size on virtual shared disk
servers, or it is very likely there will be dropped packets and unnecessary
retries on the VSD client nodes. As a result, the performance will be
degraded.

It is also critical that spoolsize is set to the maximum size on VSD servers or
there may be a shortage of send pool space, which causes the buddy buffers
to be used instead. However, this could result in a situation where all the
buddy buffers are used up, which will cause other VSD requests to queue
while waiting for the buddy buffer to be available. As a result, the performance
will be degraded.

We also recommend setting the two parameters to the maximum on GPFS
application nodes unless there is a severe shortage of memory.

ipqmaxlen is for IP protocol. If we configure GPFS to use LAPI protocol for
the daemons’ communication and configure VSD to use KLAPI protocol,
this parameter will have no effect on GPFS performance.

Note

If VSD is configured to use KLAPI, it does not use the switch buffer pool;
VSD with KLAPI always uses buddy buffers.

Note
374 RS/6000 SP System Performance Tuning Update

Refer to Section 5.2.1, “Switch adapter pools” on page 99 for more
information on how to display and set these parameters.

14.2.3 SSA adapter tuning
If you are using SSA RAID 5 disk arrays, these parameters max_coalesce
and queue_depth may be needed to be adjusted in order to obtain the
optimum performance from the disk array.

max_coalesce
This parameter has a high performance impact for sites that are using SSA
RAID 5 disk arrays. If the value is set too low, the write performance can be
seriously impacted.

max_coalesce is the maximum number of bytes that the SSA disk device
driver attempts to transfer to or from an SSA logical disk in one operation.

When there are multiple disk I/O requests in the device driver's queue, it
attempts to coalesce those requests into a smaller number of large requests.
The largest request (in terms of data transmitted) that the device driver will
build is limited by the max_coalesce parameter.

In general, increasing max_coalesce increases the chance that I/O
operations for contiguous data are executed as a single operation. This
clearly gives performance improvement when the parameter can be set to
maximize full stride write (write to all data disks in a disk array) operations.

Ideally, you should set max_coalesce to 64 KB * N (array full stride size) for
an N+P RAID array. The default is 0x20000, which corresponds to two 64 KB
strips (and applies to a 2+P array). So for an 8+P array, set the value to
0x80000, which is 8x64 KB.

For GPFS, it is recommended that, where possible, the setting of
max_coalesce matches with the array full stride size and sets the GPFS file
system block size to an integer multiple of the array full stride size.

1. For SP switch, the node must be rebooted in order for the changes to
take effect. For SP switch2, there is no need to reboot!

1. For SP switch, the maximum size for these pools is 16 MB. For SP
switch2, the maximum size is now 32 MB.

Note
Chapter 14. GPFS 375

For example, for an 4+P RAID array, set the max_coalesce to 64 KB * 4 or
256 KB and the GPFS file system block size to 256 KB or 512 KB (2 times the
array full stride size) or 1024 KB (4 times the array full stride size). For a 8+P
RAID array, set the max_coalesce to 64 KB * 8 or 512 KB and the GPFS file
system block size to 512 KB or 1024 KB (2 times the array full stride size).

From the preceding examples, you can see that for certain configurations,
such as 6+P, the optimum GPFS file system block size is 64 KB * 6 = 384 KB,
2 * 384 KB = 768 KB, or 3 * 384 KB = 1152 KB. However, all these file system
block sizes are not supported by GPFS. Hence, in this case, you should not
configure a RAID array for GPFS as 6+P.

Setting max_coalesce smaller than the array full stride size means that
several I/O operations have to be initiated in order to read a single file system
block.

On the other hand, setting max_coalesce greater than the array full stride
size results in degraded write performance for the GPFS file system block
size. This is because an additional overhead is incurred, because it has to
read the remaining disks in order to compute parity before writing the parity.

Refer to Section 6.3.3.2, “SSA” on page 146 for more information on how to
display and set this parameter.

queue_depth
queue_depth specifies the maximum number of commands that the SSA
device driver sends to a disk.

This parameter is not so critical to GPFS performance in RAID 5 arrays as the
max_coalesce parameter. Nevertheless, having a less than optimum value of
queue_depth may mean some of the total I/O bandwidth of the RAID array is
wasted.

The default value of queue_depth for an SSA logical disk is 3 for each
member disk configured into the array. So, for a 4+P array, the default setting
of queue_depth would be 15.

A guideline recommendation is to verify that queue_depth is set to 3*(N+P)
for a N+P array. This maximizes the chance of reading data from each
component of the array in parallel.

Refer to Section 6.3.3.2, “SSA” on page 146 for more information on how to
display and set this parameter.
376 RS/6000 SP System Performance Tuning Update

14.2.4 VSD tuning
In this section, we discuss various VSD tunables and some new features in
VSD 3.2 that can provide performance improvements to GPFS (that is, VSD
usage of KLAPI and Concurrent VSD [CVSD]).

Refer to Chapter 14, “GPFS” on page 369 for more information about all
parameters mentioned in this section and how to display and set them.

VSD_request_blocks
This parameter, sometimes called VSD Request Count, specifies the
maximum number of outstanding VSD requests on a particular node.

In VSD 3.2, it is now internally controlled and tuned by VSD subsystem.

VSD_pbufs
This parameter, sometimes called the Read/Write Request Count, specifies
the maximum number of outstanding requests that VSD device driver allows
for each underlying logical volume.

In VSD 3.2, it is now internally controlled and tuned by VSD subsystem.

VSD_max_buddy_buffer_size
The buddy buffer is a pinned area that VSD server node uses to temporarily
store data for I/O operations originated at a remote node. The data in the
buffer are purged immediately after the I/O operation completes.

This parameter, the maximum buddy buffer size, specifies the maximum size
of a buddy buffer. It should be set to the block size of the largest GPFS file
system in the system partition and to the same value on all VSD nodes.

Having the maximum size set lower than the block size of the largest GPFS
file system results in the extra overhead for acquiring the additional buddy
buffers required to contain a file system block size of data.

To change max_coalesce and queue_depth, the device must not be busy.
This means that you can only change it when the volume group that the
device belongs to is vary offline.

So we recommend that you set the parameters before assigning the disk to
the volume group or create any VSD on it.

Note
Chapter 14. GPFS 377

Having the maximum size greater than the file system block size results in
over allocating memory to the buddy buffer area.

VSD_max_buddy_buffers
This parameter, sometimes called the Number of Max-sized Buddy Buffers,
specifies the number of maximum buddy buffer.

It is used to calculate the buddy buffer area by multiplying it to the maximum
size of a buddy buffer. For example, if VSD_max_buddy_buffers is 32 and the
maximum buddy buffer size is 256 KB, the total buddy buffer area will be
32*256 KB = 8 MB.

Having an insufficient number of buddy buffer can seriously degrade
performance because requests for buddy buffers will become queued.

For VSD clients, which do not use the buddy buffer, we recommend setting
the maximum number of buddy buffers to 1 (because we can not specify zero
for the number of buddy buffers!).

For servers, we recommend the setting be 32 to 96 initially and monitor the
value of buddy buffer wait_queue size using the statvsd command.

buddy buffer wait_queue size, a new output from the statvsd command, is the
current number of VSD requests waiting in the queue. Its value varies
according to the demand for buddy buffers at the time the command runs.

If the output consistently shows a value of n for the buddy buffer wait_queue
size, and you are sure that the I/O subsystem is not the bottleneck, you can
increase the number of buddy buffers by n.

.

This parameter becomes more important and may need to be increased
when you enable VSD to use KLAPI because with IP, if the request is less
than maximum IP message size (60 KB), the switch send pool and receive
pool will be used. Buddy buffers are used only for requests larger than 60
KB.

However, KLAPI does not use the switch send pool and receive pool. It
always uses the buddy buffers.

Note
378 RS/6000 SP System Performance Tuning Update

VSD_maxIPmsgsz
This parameter, sometimes called Maximum IP Message Size, specifies the
largest packet size that VSD will send between the client and the server.

Larger values of VSD_maxIPmsgsz will result in fewer packets being required
to transfer the same amount of data.

It is recommended to set this parameter to 61140.

Other VSD considerations
Though they are not parameters we can adjust the value, the following things
can help improve your GPFS performance.

VSD usage of KLAPI
This is perhaps the most significant performance improvement for GPFS 1.3.
Refer to Section 13.3.2, “VSD usage of KLAPI” on page 364 for more detailed
information.

Concurrent VSD (CVSD)
By having two active VSD server nodes serving I/O requests for a CVSD, it is
possible to gain some performance improvement. Refer to Section 13.3.1,
“Concurrent VSD” on page 363 for more detailed information.

1 VSD per 1 hdisk
Having too few VSDs configured for the number of physical disks connected
to a system can seriously impact performance because the degree of
parallelism is reduced.

On the other hand, having multiple VSDs per physical disk can also seriously
impact performance because of the increased access contention on the disk.

For GPFS, configuring one VSD per hdisk optimizes GPFS performance.

The mmcrvsd command for creating VSD by default creates one VSD on each
physical disk specified.

Use the following command to create CVSD for GPFS usage:

mmcrvsd -c -F descriptorFile

The -c option tells the command to create CVSDs. You also must specify
two servers in each disk descriptor in the descriptor file.

Note
Chapter 14. GPFS 379

Dedicated VSD server
VSD servers do not have to be dedicated; GPFS and other applications can
run on the same nodes as the VSD servers themselves.

However, if possible, we would recommend dedicating the servers, because
dedicated VSD servers means it is easier to monitor, control, manage and
diagnose performance problems once they happen.

In situations where it is not possible to dedicate VSD servers, it is
recommended not to run applications that consume a lot of communication or
I/O resources on the VSD server nodes.

14.2.5 GPFS tuning
GPFS performance depends on the proper specification of its parameters. In
most cases, the parameters that have the greatest impact on performance
are the file system block size and the pagepool.

Some parameters affects specific workloads, for example, maxStatCache.
Many parameters are set to a good value by default and do not need to be
changed, for example, worker1Thread, worker2Thread, and worker3Thread.

The number of GPFS nodes
Though this is not a tunable parameter (that is, once set it can not be
changed later), we include it here since it has a certain performance impact to
GPFS if it is underestimated.

When creating a GPFS file system, we need to estimate the number of nodes
that will mount the file system. This input is used in the creation of GPFS data
structures that are essential for achieving the maximum degree of parallelism
in file system operations.

If the input value is not correct, the resulting data structures may limit GPFS’
ability to perform certain tasks efficiently, for example, the allocation of disk
space to a file.

If you cannot anticipate the number of nodes, allow the default value of 32 to
be applied. However, in case there is a possibility that the number of nodes
that mount the file system will exceed 64 (or 128), specify 64 (or 128).

File system block size
Although file system block size is a parameter that cannot be changed easily
(to change it means rebuilding the file system, which usually requires a lot of
effort), we include it here because it is one of the most important parameters
380 RS/6000 SP System Performance Tuning Update

that can affect the performance of GPFS. It is worth consideration before
deciding on the proper value.

The file system block size is specified at the file system creation time via the
-B option in the mmcrfs command.

GPFS 1.3 offers two more block sizes, 512 KB and 1024 KB, in addition to the
usual 16 KB, 64 KB, and 256 KB.

The 256 KB block size is the default and normally is the best block size for file
systems that contain large files accessed in large reads and writes.

The 16 KB block size optimizes use of disk storage at the expense of larger
data transfers and is recommended for applications having a large numbers
of small files.

The 64 KB block size offers a compromise. It makes more efficient use of disk
space than 256 KB, which allows faster I/O operations than 16 KB.

The 512 KB and 1024 KB block size may be more efficient when the data
accesses from the applications are larger than 256 KB, for example, technical
and scientific applications doing very big block I/O operations.

Besides the block size of data accessed by the application and the number
and size of the files in the file system, the use of RAID devices also needs to
be considered when determining the block size. With RAID devices, a larger
block size may be more effective and help you avoid the penalties involved in
small block write operation to RAID devices.

For example, in a RAID configuration utilizing 8 data disks and 1 parity disk (a
8+P configuration) which utilizes a 64 KB stripe size, the optimal file system
block size would be 512 KB (8 data disk * 64 KB stripe size). A 512 KB block
size would result in a single data write that encompassed the 8 data disks
and a parity write to the parity disk.

If we use a block size of 256 KB, write performance would be degraded. A
256 KB block size would result in a four-disk writing of 256 KB and a
subsequent read from the four remaining disks in order to compute the parity

If you create a file system with block sizes of 512 KB or 1024 KB, you will
only be able to access the information through GPFS 1.3, because prior
releases of GPFS do not support these block sizes.

Note
Chapter 14. GPFS 381

that is then written to the parity disk. This extra read degrades the overall
performance.

The current file system block size can be identified by executing the mmlsfs

command. For example:

pagepool
pagepool specifies the amount of pinned memory reserved for caching file
data, directory blocks and other file system metadata, such as indirect blocks
and allocation maps.

pagepool is one of the most important parameters that has a high impact on
GPFS performance because it allows GPFS to implement read and write
requests asynchronously via the read ahead and write behind mechanisms. It
also helps increase performance by allowing the reuse of cached data in the
pagepool.

Setting pagepool too high could impact overall systems performance because
of the reduced real memory available to applications.

On the other hand, setting pagepool too low could seriously degrade the
performance of certain types of GPFS applications, for example, ones that do
large sequential I/O operations.

A sufficiently large pagepool is necessary to allow an efficient read prefetch
and deferred write.

For applications that are doing large amounts of sequential read or write, or
are frequently re-reading various large sections of a file, increasing pagepool
from the default value significantly improves performance.

The setting of pagepool can also be particularly critical for applications which
do random I/O. For random read I/O, the benefits of a larger pagepool are
significant, because the chances a block is already available for read in the
pagepool is increased. Similarly, the performance of random writes will also
benefit if pagepool space is not constricted. This is because applications
might otherwise have to wait for pagepool space to be freed while dirty
buffers are flushed out to disk.

root@sp6en0:/: mmlsfs gpfsdev -B
mmrts: Executing "mmlsfs /dev/gpfsdev -B" on node sp6n05
flag value description
---- -------------- ------------------------------------
-B 262144 Block size
382 RS/6000 SP System Performance Tuning Update

The pagepool parameter can be set to between 4 MB and 512 MB per node.
The default setting is 20 MB.

The pagepool size may be reconfigured dynamically with the mmchconfig -i

command. For example, to change pagepool size on all nodes in the GPFS
nodeset 1 to 40M:

Please note the value must be suffixed with the character "M", and the -i flag
(introduced in GPFS 1.2) makes the change effective immediately without the
need to stop and restart GPFS daemons.

Because the setting of the pagepool parameter is so specific to the number of
I/O requests being generated from a node and the application I/O pattern, this
is one parameter that is worthwhile assessing on a per node basis.

Further, because it can be modified dynamically, changes to pagepool could
be implemented around GPFS applications. For example, a run of a specific
application sequence that would benefit from an increased pagepool could
have commands that increase the pagepool and reset it back to the original
values wrapped around the main application script.

Moreover, it would be relatively easy to repeat consecutive runs of an
application with a gradually incrementing pagepool to ascertain the minimum
level of pagepool necessary to deliver the optimum I/O throughput.

maxFilesToCache
MaxFilesToCache specifies the total number of different files that can be
cached at one time.

Every entry in the file cache requires some pageable memory to hold the file’s
i-node plus control data structure. This is in addition to any of the file’s data
and indirect blocks that might be cached in the pagepool area.

Setting it too high may not improve application performance but actually
degrade it. On the other hand, setting it too low could result in performance
penalties for applications that make use of a large number of files.

The maxFilesToCache parameter can be set to between 1 and 100,000. The
default setting is 1000.

root@sp6en0:/: mmchconfig pagepool=40M -C 1 -i
mmchconfig: Command successfully completed
mmchconfig: Propagating the changes to all affected nodes.
This is an asynchronous process.
Chapter 14. GPFS 383

This parameter should be set on each node to the maximum number of files
that will be accessed concurrently in the GPFS file system from a particular
node.

maxFilesToCache can be modified with the mmchconfig command. For
example, to change the maxFilesToCache parameter to 1500 on all nodes in
the GPFS nodeset 1, use the following:

Since this change is not dynamic, the GPFS subsystem must be stopped and
restarted for the change to take effect.

maxStatCache
maxStatCache specifies the number of entries in additional pageable memory
used to cache attributes of files that are not currently in the regular file cache.
This is useful to improve the performance of both the system and GPFS stat()
calls for applications with a working set that does not fit in the regular file
cache.

The maxStatCache parameter can be set to between 0 and 1,000,000. The
default setting is 4 times the maxFilesToCache.

For systems where applications test the existence of files or the properties of
files without actually opening them (for example, backup applications like
TSM usually does), increasing the value of maxStatCache can significantly
improve the performance.

maxStatCache can be modified with the mmchconfig command. For example,
to change the maxStatCache parameter to 4000 on node 10 which is a TSM
server, use the following:

Notice that since we only change the parameter on node 10, we use dsh to
send the command to run on node 10. Also notice that since node 10 can
belong to only one GPFS nodeset, there is no need to specify -C option on
the command.

root@sp6en0:/: mmchconfig maxFilesToCache=1500 -C 1
mmchconfig: Command successfully completed
mmchconfig: Propagating the changes to all affected nodes.
This is an asynchronous process.

root@sp6en0:/: dsh -w sp6n10 mmchconfig maxStatCache=3000
sp6n10: mmchconfig: Command successfully completed
sp6n10: mmchconfig: 6027-1371 Propagating the changes to all affected nodes.
sp6n10: This is an asynchronous process.
384 RS/6000 SP System Performance Tuning Update

prefetchThread
prefetchThreads is a parameter that specifies the maximum number of
threads that GPFS uses for the read ahead operation.

The minimum value for prefetchThreads is 2 and the maximum, which is the
default, is 72.

It is recommended not to change this parameter.

worker1Thread
worker1Thread is a parameter that specifies the maximum number of threads
that GPFS uses for the write behind operation.

The minimum value for worker1Threads is 1 and the maximum, which is the
default, is 48.

It is recommended not to change this parameter.

worker2Thread
worker2Thread is a parameter that specifies the maximum number of threads
that GPFS uses to exercise control over directory access and other
miscellaneous I/O operations.

The minimum value for worker2Threads is 1 and the maximum, which is the
default, is 24.

It is recommended not to change this parameter.

worker3Thread
worker3Thread is a parameter that specifies the maximum number of threads
that GPFS uses for the i-node prefetch operation.

The minimum value for worker3Threads is 1 and the maximum, which is the
default, is 24.

It is recommended not to change this parameter.
Chapter 14. GPFS 385

comm_protocol
In GPFS 1.3, the communication protocol between the GPFS daemons within
a nodeset can now be selected between TCP/IP or LAPI (Low-Level
Application Programming Interface).

This choice can be made when first configuring GPFS (the mmconfig

command) or when changing configuration parameters (the mmchconfig

command). The default is TCP.

How much performance improvement you receive by enabling LAPI depends
on the I/O access patterns and the types of your application. For example, if
your application reads/writes a lot of small files, there will be a lot of token
usage and hence a lot of communication traffic between Token Managers and
the Token Manager server. In this case, it is likely that you will gain significant
performance improvement.

It is also important that you understand what is required when choosing LAPI
as the communication protocol. A switch adapter window must be reserved
on each node in the GPFS nodeset.

To successfully reserve an adapter window for use by GPFS, all LoadLeveler
jobs must be stopped prior to issuing either the mmconfig or the mmchconfig

command, because if LoadLeveler is not stopped, it will reserve all adapter
windows for its use. If an adapter window cannot be reserved on each node
for use by GPFS, the command fails.

After reserving an adapter window on each node, the window can not be used
by any application (even LoadLeveler) until it is released.

The adapter window is released only when the communication protocol is
changed back to TCP or the node is deleted from the GPFS nodeset.

It is recommended not to change these *Thread parameters because
GPFS internally controls the number of these threads and respawns as
needed up to the limit specified by the corresponding parameter.

Having the default as the maximum value works well in almost all cases.
Only in rare circumstances, for example, when your I/O configuration
cannot cope with the workload, would you need to consider adjusting it
down.

Note
386 RS/6000 SP System Performance Tuning Update

For more detail information regarding adapter windows, see the PSSP:
Administration Guide, SA22-7348 and refer to the section on Understanding
Adapter Window.

To configure GPFS to use LAPI communication, we need to stop GPFS, use
mmchconfig to enable LAPI, and restart GPFS:

Another point that you need to be aware of is that after setting the
communication protocol to LAPI, GPFS must be stopped and restarted when
there are certain configuration changes, for example, when you add or delete
nodes.

This is due to the fact that there will be changes in the routing table on the
adapter window when you add/delete nodes and the switch adapter window
loads the route tables only when GPFS initializes.

Other GPFS considerations
Below are some other GPFS considerations.

data/metadata
It is possible to designate individual VSDs within a particular GPFS file
system to contain data only, metadata only, or both data and metadata. The
default is to use all VSDs for both data and metadata.

The idea of storing data and metadata on a separate set of disks seems
attractive at first, because metadata traffic tends to consist of relatively small
random reads and writes and it is quite different from the large sequential
I/Os of the typical GPFS application. Moreover, with the increasing use of
RAID devices to store the data, separating the metadata seems to be a good
idea in order to avoid the small block write penalty of RAID device.

However, if metadata is to be stored on a separate set of VSDs, we know,
from lab experience, that in order to prevent these set of disks from becoming
a bottleneck, it seems that we would need almost as many disks to store the
metadata as to store the data! This is generally impractical for most
installations.

root@sp6en0:/: dsh stopsrc -s mmfs

root@sp6en0:/: mmchconfig comm_protocol=LAPI -C 1
Verifying GPFS is stopped on all nodes ...
mmchconfig: Successfully changed communication protocol to LAPI
mmchconfig: Propagating the changes to all affected nodes.
This is an asynchronous process.

root@sp6en0:/: dsh startsrc -s mmfs
Chapter 14. GPFS 387

Availability considerations also strengthen the argument for interspersed data
and metadata. For example, isolating metadata on non RAID disks means
that if those disks fail, there will be little hope of repairing file system
consistency unless they are replicated (we recommend you always replicate
metadata). The advantages of storing data on RAID arrays configured with
hot-spare disk will be compromised if they rely on non RAID disks for storing
metadata.

Thus, we recommend adopting a general guideline of interspersing data and
metadata across VSDs and always replicate metadata.

File System manager location
One GPFS node for every GPFS file system has the responsibility for
performing File System manager services. The File System manager is
responsible for:

• Administering changes to the state of the file system

• Repairing the file system

• Administering file system allocation requests

• Administering file system token requests

When you configure GPFS with the mmconfig command, you can specify a list
of nodes to be included in the GPFS nodeset with the -n filename option.

Each line in the file contains the switch hostname and whether or not this
node should be included in the pool of nodes from which the File System
manager node is chosen.

The default is to have the node included in the pool. Specify <switch
hostname>:client if you don’t want this node to be a File System manager.

To identify the File System manager, use the mmlsmgr command. For example:

This method is recommended over modifying the individual
/var/mmfs/etc/cluster.preferences file, because it changes the preference
file on all nodes in the GPFS nodeset for you.

Note
388 RS/6000 SP System Performance Tuning Update

The mmlsmgr command displays the File System manager node for all file
systems; in the preceding example, node 5 is the File System manager for
gpfsdev.

Normally, the configuration manager attempts to balance File System
Managers by selecting a node that is not currently a File System Manager for
any other file system. However, since the Token Manager Server for a file
system resides on the same node as the File System manager, if there is a lot
of I/O activity going on in that file system that requires a lot of token usage,
this situation can affect the performance of other applications running on that
node. Thus, in certain circumstance, you might want to move the File System
manager to another node.

In prior releases, you can influence GPFS’ decision to choose File System
manager by listing the nodes in the /var/mmfs/etc/cluster.preferences file; you
cannot specify exactly which node will become the File System manager for a
file system. This has been changed in GPFS 1.3. A new command, mmchmgr, is
provided to facilitate the designation or change of the File System manager
location.

For example, to change the File System manager of gpfsdev device to node 7:

Metadata manager location
There is one metadata manager for each open file in the GPFS file system. It
is responsible for the integrity of the metadata of that file. GPFS selects the
node that first opens that file to be the metadata manager.

In some case, for example, when a file is accessed by multiple nodes and
those nodes are heavily stressed, there may be some merit in considering

root@sp6en0:/: mmlsmgr -C 1
mmrts: Executing "mmlsmgr " on node sp6n05
file system manager node
---------------- ------------------
gpfsdev 5 (sp6n05)

root@sp6en0:/: mmchmgr gpfsdev sp6n07
mmrts: Executing "mmchmgr /dev/gpfsdev sp6n07" on node sp6n05
GPFS: 6027-628 Sending migrate request to current manager node 5.
GPFS: 6027-629 Node 5 (sp6n05) resigned as manager for gpfsdev.
GPFS: 6027-630 Node 7 (sp6n07) appointed as manager for gpfsdev.
root@sp6en0:/: mmlsmgr -C 1
mmrts: Executing "mmlsmgr" on node sp6n05
file system manager node
---------------- ------------------
gpfsdev 7 (sp6n07)
Chapter 14. GPFS 389

opening that file first from a relatively quiet node so that it will be the
metadata manager for the file.

Non-tunable parameters

Table 39 shows the parameters that were previously tunable but have been
changed in GPFS 1.3.

Table 39. Parameters that are now internally controlled by GPFS

14.3 Summary of GPFS tuning recommendations

Table 40 summarizes the tuning recommendations for the GPFS subsystem:

Table 40. Summary for tuning a GPFS subsystem

Parameter Value

mallocsize Calculated from maxFilesToCache

indirect block size 4 KB

i-node size 512 bytes

GPFS daemon priority 40

Parameter Recommended setting for GPFS

ipqmaxlen 512

spoolsize 16 MB for SP switch, 32 MB for SP switch2

rpoolsize 16 MB for SP switch, 32 MB for SP switch2

max_coalesce Matches with the GPFS file system block size

queue_depth 3 * the total number of disk in RAID array

request blocks Internally controlled by VSD

pbufs Internally controlled by VSD

maximum buddy buffer size Matches with the GPFS file system block size

number of buddy buffer 32 to 96 initially, monitor and adjust as needed

maximum IP message size 61140

GPFS block size Depends on the application; default is 256 KB

pagepool Depends on the application; default is 20 MB

maxFilesToCache Depends on the application; default is 1000
390 RS/6000 SP System Performance Tuning Update

maxStatCache Depends on the application; default is four times of
maxFilesToCache

prefetchThread Do not change this parameter

worker1Thread Do not change this parameter

worker2Thread Do not change this parameter

worker3Thread Do not change this parameter

comm_protocol Set to LAPI, if possible

Parameter Recommended setting for GPFS
Chapter 14. GPFS 391

392 RS/6000 SP System Performance Tuning Update

Chapter 15. Web applications

In this chapter, we will show you how an SP System can be used as a
WebServer and how several products and their tuning capabilities can affect
the SP System. Most of the tuning actions are AIX-related, so there is no real
need to focus too much on SP related settings. We are not going into deep
detail because it would be too much information for this book (you can refer to
Websphere V3 Performance Tuning Guide, SG24-5657 for more information).
There are other applications, like ZEUS WebServer, that are also available for
RS/6000 AIX machines; you can also check http://www.zeus.com for more
information on these applications.

15.1 Tuning web applications on the SP

Today, we have a huge growing Internet market. Every day, millions of
Internet Users visit websites. They are looking for news, doing some
shopping, and much more. Hardware performance increases about 60
percent a year. The amount of users increases more than 90 percent a year
and the traffic almost 1000 percent a year. That leads us to a point where
application tuning is needed more than ever.

The 2000 Olympics in Sydney is an excellent example of the huge amount of
traffic that can occur all at once. The official Olympic homepage
(http://olympics.com) got more than 11 300 000 000 (11.3 billion) hits during
the games. That is more than 1.2 million hits per minute. Thus, we need to
look at several points.

One part of application tuning include Web Server Applications like IBM
WebSphere or the ZEUS WebServer.

15.1.1 Websphere - an overview
WebSphere Application Server V3 is one application from IBM that can be
used to build a Internet and/or Intranet sites. It is offered in three editions:

• WebSphere Application Server, Standard Edition

• WebSphere Application Server, Advanced Edition

• WebSphere Application Server, Enterprise Edition

What is tunable now in Websphere? What is the focus? Here are some
checkpoints to look at:

• The hardware capacity and settings
© Copyright IBM Corp. 2000 393

• The operating system settings

• The Web application settings

In general, upgrading the hardware is one step toward increasing
performance. We will not describe hardware related settings and AIX settings
too deeply, but we will give information on where to look at when using a
WebServer application.

15.1.2 What can be tuned?
There are many parts to tune in a WebServer installation:

• AIX TCP/IP Tuning

• WebSphere Engine

• Database tuning (Oracle,DB2 and more)

There are four fundamental decision points that have their own tuning
options:

1. The Web server (HTTP server)

2. The WebSphere Application Server Engine

3. The Java Virtual Machine (JVM)

4. The database server

Take a look at Figure 39 on page 395 for a visualization of these decision
points.

You can improve performance when you run the WebSphere Application
Server and the database server on separate servers.

Performance tip
394 RS/6000 SP System Performance Tuning Update

Figure 39. Fundamental tuning points of WebSphere application server settings

Refer to the following redbooks for particular tuning methods:

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• WebSphere V3 Performance Tuning Guide, SG24-5657

15.1.3 AIX tunables for web related applications
The tunable parameters from the no command give us many ways to tune
specific environments. See Table 41 on page 396 for a summary of what is
related to WebServer tunables:

Web
Server

Database
ServerRouter

Plug-
in

Servlet
Engine

EJB
Container

JVM

WebSphere Application
Server Engine

(1)

(2)

(3)

(4)
Chapter 15. Web applications 395

Table 41. Tunable no command parameters

For a detailed description of the no parameters refer to Section 4.3.2, “AIX
tunables” on page 46.

15.1.4 Performance test tools for webserver
There are some special tools that simulate the load on a web server. We will
give you an overview of what is available and where to get it:

• WebStone - Available at http://www.mindcraft.com

WebStone is an open source benchmark that is available as freeware from
Mindcraft. Originally developed by Silicon Graphics, WebStone measures
the performance of Web server software and hardware products.
Webstone simulates the activity of multiple Web clients, thus creating a
load on a web server. The load can be generated from either one client
computer or by multiple client computers (up to 100 simulated clients on a
single computer!). Because WebStone is freeware, it does not offer many
of the features available from other products.

Parameter Default Value tuned Value a

a. These values are results were taken from IBMs data sheets at
http://www.spec.org. Look for SPECWeb96.

sb_max 65536 262144

tcp_sendspace 4096 28000

tcp_recvspace 4096 28000

tcp_timewait 1 (15 seconds) 5

somaxconn 1024 8192

nbc_max_cache 131072 100000

nbc_pseg_limit b

b. New parameter available with AIX 4.3.3 and later.

0 10000

nbc_pseg c

c. New parameter available with AIX 4.3.3 and later.

0 20000

nbc_limit 0 786432

There is no ALL FOR ONE tuning solution; this is only a sample that can
help to improve performance.

Note
396 RS/6000 SP System Performance Tuning Update

• Apache Bench and JMeter - Available at http://www.apache.org

The IBM HTTP Server (IHS), which is included with WebSphere
Application Server, does include the Apache Bench (AB) tool on UNIX
platforms. Apache Bench is Perl script-based and allows the simulation of
a HTTP client load.

JMeter is another freely available tool from the Apache Software
Foundation. JMeter is a Java desktop application designed to test URL
behavior and measure performance. Apache JMeter may be used to test
server performance both on static and dynamic resources (files or CGI,
servlets, Perl scripts). Simple to use, JMeter is limited to 20 concurrent
requests per JMeter client, but can be used for initial performance testing.

• Rational Suite Performance Studio - Available at http://www.rational.com

Performance Studio offers support for a variety of clients, both Web and
non-Web based. Among the clients supported are HTML, DHTML,
Document Object Model, Visual Basic, Visual C++, Java, ActiveX, and
PowerBuilder. Performance Studio records user inputs for playback as
scripts that are used in performance testing.

• WebLoad - Available at http://www.radview.com

WebLoad from Radview provides support for the HTTP 1.0 and 1.1
protocols, including cookies, proxies, SSL, keep-alive, and client
certificates. Support is also provided for a variety of authentication
mechanisms, such as basic authentication, proxy, form, NT challenge
response, client certificate, and user agent.

• LoadRunner - Available at http://www.merc-int.com

LoadRunner from Mercury Interactive Corporation supports a variety of
different clients, including Web, ERP, database (DB), Java or remote
terminal emulator (RTE).

In addition to the tools discussed in this section, AKtools is available for
IBM employees only. AKtools is a set of internal IBM applications which
allow you to test Web application performance. It includes AKstress and
AKrecord. It is capable of simulating hundreds or even thousands of HTTP
clients. See the following URL for more information:

http://events.raleigh.ibm.com/aktools/docs/index.html

Information for IBM employees only
Chapter 15. Web applications 397

15.1.5 Monitoring tools
As with any other AIX based System, we can still monitor many instances
with our already known tools: ps, svmon and many others mentioned here and
in Chapter 10, “Resource monitoring” on page 203 and Chapter 11, “Tools” on
page 243. If you need more information, you may refer to these chapters.
Additionally, the Websphere Application Server Resource Analyzer provides a
number of summary and discrete monitoring functions for a variety of
resources.

Figure 40 gives you a short look at what the Resource Analyzer output can
look like.

Figure 40. Resource Analyzer with case1 (-mx64m)
398 RS/6000 SP System Performance Tuning Update

You have a lot of values you can monitor with the tool. It is much easier to
analyze your WebServer performance when you are able to make those plain
numbers visible (the values provided from AIX or the application). However,
this not be a description on how to use it; for more information on this subject,
refer to the WebSphere V3 Performance Tuning Guide, SG24-5657.
Chapter 15. Web applications 399

400 RS/6000 SP System Performance Tuning Update

Chapter 16. DB2 Universal Database

Relational Database Management Systems (RDBMS) have become more
and more the core IT systems of companies and large enterprises. High
performance of these systems is often vital for the success of a company, and
because the systems get bigger every year, the issue gets bigger as well.

Database performance is a large area with many different aspects. It is
dependent on a large number of factors, such as the hardware, the
applications, the workload, the layout of the disk subsystem, and an
uncounted number of system and database parameters.

Today, the scalability needed to handle large volumes of data capacity is
increasing at a rapid pace. As such, the RS/6000 SP system’s enormous data
capacity and scalability make it a very good choice for businesses facilitating
high volumes of data. Its parallel processing capabilities enhance
performance and throughput.

The architecture of the RS/6000 SP system, together with the DB2 UDB
database, provide a high-performance and scalable platform for any growing
data application.

This chapter will give some general ideas about DB2 UDB configuration in the
RS/6000 SP system and the best way to take advantage of its parallel
structure. We will also describe the last TPC-H record reached by IBM in
benchmarking with DB2 UDB and SP systems. This is a very good example
of tuning for performance that can be used as reference, but do not forget it is
only an special case; each particular database and system should be
configured and tuned depending of the own characteristics of them.

For complete information about DB2, refer to the following:

• DB2 UDB Administration Guide: Performance V6, SC09-2840

• DB2 UDB System Monitor Guide and Reference V5, S10J-8164

For detailed information about AIX, refer to the following:

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

Also, check these IBM redbooks:

• Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

• RS/6000 Performance Tools in Focus, SG24-4989
© Copyright IBM Corp. 2000 401

• RS/6000 Performance Tools in Focus, SG24-4989

16.1 General concepts about parallel databases

Large and parallel databases benefit from certain system architectures, such
as shared memory, shared disk, or shared nothing architectures. The
implementation of parallel databases also depends on the hardware
architecture on which the database system runs.

In a shared nothing environment, every CPU has its own memory and its own
set of disks and, therefore, does not have to compete for resources with other
processors (see Figure 41). These loosely coupled systems are linked by a
high speed interconnection. This environment is referred to as Massively
Parallel Processors (MPP). An implementation of this concept is the RS/6000
SP system.

Figure 41. Shared nothing

IBM implementation of parallel database concepts on AIX is DB2 Universal
Database Enterprise - Extended Edition (DB2 UDB EEE). This product is
based on the same code as DB2 UDB Enterprise Edition and extended with
the fileset DB2 UDB Parallel Extension that enables the distribution of data
and indexes over multiple database partitions. For this reason, it is also called
a partitioned database system or clustered system.

On an RS/6000 SP, you may decide to assign one partition to every single node
of your system, but it is also possible to declare several partitions per node.

On each database partition, one database manager is responsible for a
portion of the database’s data. Each database server has its own set of data.

d i s k s

p r o c p r o c p r o c p r o c

m e m m e m m e m m e m

O S O S O S O S

i n t e r - p r o c e s s o r c o n n e c t i o n

d i s k s d i s k sd i s k s
402 RS/6000 SP System Performance Tuning Update

The fact that data is partitioned across database partition servers is
transparent to users and applications.

DB2 UDB EEE executes everything in parallel. All database functions, such
as SELECT, INSERT, UPDATE, and DELETE, are performed in parallel on all
database partitions. Both database activities, such as data scan, index scan,
joins, sorts, index creation, or table reorganization and DB2 UDB utilities,
such as data load, backup, and restore, are executed simultaneously on all
partitions. The loading of very large amounts of data can be performed much
faster in this parallel database environment than on a serial database system.

Communication across all database nodes is realized by the Fast
Communication Manager (FCM). Each database partition has one FCM
daemon to provide communication support in order to handle DB2 UDB agent
requests and to manage message buffers. In an SP environment, the FCM
daemons interact over the SP Switch and TCP/IP sockets.

16.1.1 Inter-partition and intra-partition parallelism
DB2 UDB EEE architecture employs several parallel query techniques to
exploit all available system resources for query execution:

• Inter-partition parallelism means that the function is executed in parallel by
each database partition. An example would be when a user or application
issues an SQL statement, such as a SELECT statement, to fetch data with
certain conditions from many tables spread over multiple nodes. In this
case, the coordinator node sends this request to all database partitions.
The database manager on each node selects the data from tables stored
on the disks, sorts the data, and sends all rows that meet the selected
conditions back to the coordinator node. On this node, all rows are finally
merged and returned to the user or application. In this example, the
function (query) is shipped to all nodes, and only the data that satisfies
this request is sent back across the network. This concept reduces the
network traffic and is known as function shipping.

• Intra-partition parallelism allows different operators in the same query to
be executed in parallel by the same database partition node. If, for
instance, an application performs a query including a SCAN, a JOIN, and
a SORT, the database manager can execute this request in parallel
depending on the setting of dedicated DB2 UDB configuration parameters.

The DB2 UDB cost-based optimizer decides whether a user statement runs in
parallel or not, which stages of that user statement are parallelized, and how
these stages are parallelized.
Chapter 16. DB2 Universal Database 403

Figure 42. DB2 UDB EEE structure

16.1.2 Database partitioning
DB2 UDB EEE employs a flexible topology for data storage to achieve a high
degree of parallelism and performance. A database is set up to have a certain
number of database partitions - where each partition is a subset of a
database containing its own user data, indexes, transaction logs, and
configuration files.

Database partitioning is controlled via node groups that are defined to the
system. A node group is an object defining the number of partitions to be
used. Within the node group, tablespaces are defined and all tables are
created. A partition map exists for each node group defined to the database.

The partition map defines a specific database partition for each of a possible
4096 values. Each time a row is added to the database, the value of the
partitioning key (a column or a set of columns in the table defined as the
partitioning key) is hashed, resulting in a value between 0 and 4095. The row
is then added to the corresponding partition.

For each tablespace, one or more containers (files or devices) are identified
into which table data and indexes will be stored. By specifying more than one

Parti tioned D atabase

D atabase
P art ition
Server

Da tabase
Partition
Server

d isksdisks disksdisks

1 2 3 4 5 6 7 8

Database
Partit ion

Database
Partit ion

Database
P arti tion

Database
P arti tion

Database
Partit ion
Server

Da tabase
Partition
Server

High Perform ance Sw itch Toke n Ring Etherne t

n ode 1 n ode 2 node 3 node 4

Database Ins tance
404 RS/6000 SP System Performance Tuning Update

container per tablespace in each database partition, I/O parallelism can be
employed by the data manager for enhanced performance benefits.

The DB2 UDB EEE partitioning mechanism provides the following
advantages:

• Data is automatically distributed across multiple database partitioning,
which can be physically spread across independent servers, thereby
enabling databases that scale into the terabyte range.

• DB2 UDB EEE is aware of the partitioning scheme in the data definition
language (DDL), data manipulation SQL, and at run time. The DB2 UDB
EEE optimizer takes advantages of partitioning knowledge to evaluate the
costs of the different operations and thus choose the optimal execution
strategy for a given SQL statement.

• In the event that there is data skew after the initial distribution, DB2 UDB
EEE utilities can automatically analyze and correct the skew.

• Incremental database growth is supported by adding partitions to the
database, changing the partition map to include these new database
partitions, and automatically redistributing the data.

• Applications can call an API to determine the location of a row, and can
route the transaction directly to the node where the row is located. This
API can also be used by transaction processing applications, such as
CICS or Encina module (included in Websphere Application Server
Enterprise Edition V3.0, G325-3920) to route transactions to the
appropriate node and thus improve performance.

16.2 Tuning database systems for performance

As a general recommendation for tuning methodology the first step is
document the current system, carefully study the problems one by one, and
then change it. This must be done in both sides (system and database).

16.2.1 Document the current system
Before changing anything on the system or database, it is worth checking a
few basic parameters to make sure that they are either the default value (a
sensible number) and that we know when, by whom, and why they have been
changed. Many times default values are not the best setting and differ for
standard recommendations. So if they are changed, try to document the
reasons for that.

You should have an understanding of the following topics:
Chapter 16. DB2 Universal Database 405

• Machine details

- CPU rating and number of CPUs

- Memory size and type

- Disk types and configuration

- Disk speeds in seek time and throughput

- Disk usage and logical volume

- Adapter types and ratings

• Workload details

- The busy periods of the system so you can tune for these peaks in
workload.

- The number of users logging on and actually being busy during the
peak.

- The number of transactions per minute during the peaks.

- If there are online and batch peaks in the workload.

• AIX virtual memory parameters

Check that all the values are set to their default values. Use the vmtune

command for that. See Section 11.1.38, “vmtune” on page 330 for more
details.

• AIX system tunable parameters

Use the lsattr -E -l sys0 command to detail the AIX tunable parameters.

• Network parameters

Use the no -a command to document the network parameters. See
Section 4.3, “AIX network tunables” on page 45 for more details.

• Hardware configurations

Use the lscfg command to document the adapters.

• Document the RDBMS parameters

Use the DBA tools to output the database parameters currently in use:

> db2 get dbcfg for <database>
> db2 get dbmcfg

See IBM DB2 documentation for more details about these commands.
406 RS/6000 SP System Performance Tuning Update

• Check for errors

The first thing is to check is if the system is, in fact, trying to tell you that
there is a problem. In AIX, the first place to look is in the AIX system error
log. To do this, use the commands errpt | pg. Second, check the RDBMS
error logs; on a DB2 UDB system, these are located in the
$DIAGPATH/db2diag.log file. There may be only one file or one per
database partition, depending on the configuration.

• Upgrade to the latest fix levels

- For AIX - PTF, access the following:

http:/services.software.ibm.com/support/rs6000

- For hardware firmware, access the following:

http:/www.rs6000.ibm.com/support/micro

- For RDBMS fixes or PTF, access the following:

http:/www.ibm.com/software/data/support

- Application fixes or newer versions

16.2.2 Bottlenecks, utilization, and resources
The first thing to investigate is the utilization level of each of the system
resources (for example, CPU, system memory, database memory, and
network) and compare these to the levels we would like to find. Each of these
resources has an optimal level which, if exceeded, has a negative impact on
the overall system performance. These levels differ between workloads, and
various people have different opinions on these levels as well.

You can use Table 42 as a starting point for tuning.

Table 42. Bottleneck thresholds depend on the resource and workload

Resource Measured by OLTP DSS OLAP Batch

CPU Percent system
+ percent user
time

70 percent 80 percent 70 percent 100 percent

System
memory

See 1 99 percent 99 percent 99 percent 99 percent

RDBMS
memory

Cache and library
hit ratio

99 percent 80 percent 99 percent 60 percent

Adapters Percent busy and
throughput

50 percent 50 percent 50 percent 50 percent 2

Disks Percent busy 40 percent 40 percent 40 percent 60 percent 2
Chapter 16. DB2 Universal Database 407

Generally speaking, batch and DSS workloads can use higher utilization
levels because they are focused on throughput rather than response time.

In benchmark scenarios, better performance is reached by pushing the CPU
close to 100% busy with this distribution:

• DSS: 80% user - 20% kernel

• OLTP: 70% user - 30% kernel

But this is only possible when running very well tuned applications.

16.2.3 Insufficient CPU and latent demand
On well performing machines with many users attached, the workload varies
during the working day. The typical pattern is where there is a dip in workload
during the lunch time period, and the CPU is not 100 percent busy during the
peaks in mid-morning and mid-afternoon.

On an overworked system, the picture changes quite a lot, because during
the peaks, the CPU becomes 100 percent busy. It is nearly impossible to work
out how much CPU power is required to stop the CPU from becoming the
bottleneck. If the system is then tuned, the CPU may still be the bottleneck,
even though the tuning might improve the performance on the machine.

In these cases, the response times may improve even if the CPU is still
overworked. If the CPU is still overworked after tuning, and an upgrade is
recommended, it is still going to be very hard to estimate the CPU
requirements of the upgraded machine because the height of the peaks can
not be determined.

16.2.4 Insufficient memory
When a machine does not have sufficient memory, the symptoms can be
difficult to clearly detect. First, the machine might look like it has a disk or I/O

Network Transfers and
throughput

30 percent 40 percent 30 percent 60 percent 2

Notes:
1 AIX makes use of all available memory once it is running for any length of time.
2 Batch can stress the system higher than these levels, but checks need to be made in order to make sure

that other workloads or users of these resources are not affected.
OLTP: Online Transaction Processing
DSS: Decision Support Systems
OLAP: Online Analytical Processing

Resource Measured by OLTP DSS OLAP Batch
408 RS/6000 SP System Performance Tuning Update

throughput problem. This can be caused by simple UNIX paging and
swapping activity. AIX commands, such as vmstat, can highlight paging
activity. As the RDBMS buffer cache or pool takes up memory, one way is to
reduce its size in order to free memory. This may stop paging but may mean
the database cannot keep enough of the database in memory for high
performance, and this results in the database performing a lot of extra I/O
operations. This means paging I/O and database I/O have to be balanced,
and a compromise has to be reached, as shown in Figure 43.

Figure 43. Balancing paging I/O against database I/O

To determine if the database buffer cache or buffer pool is of sufficient size,
each database provides tools to provide details of the cache hit ratio. For
OLTP systems, this is normally in the region of 95 to 99 percent. The other
main usage of the memory by the RDBMS is for the shared_pool and log
buffers.

16.2.4.1 Insufficient disk I/O
If the database does not have sufficient disk I/O capability, this can be clearly
seen by monitoring the disk performance statistics and CPU statistics. If the
machine has high I/O wait CPU numbers, this can indicate I/O problems, but
care has to be taken in trusting this number. First, I/O wait is assigned in a
manner that is not clear to many people and has been changed in AIX 4.3.3
to make more sense. Refer to Section 11.1.37, “vmstat” on page 324 for more
details.

If the disk statistics are investigated, then there are three areas to check:

High

Low

Paging I/O

Size of Buffer Cache or Buffer Pool

Medium

Too small About right Too large

I/O rate

Database I/O

Sweet spot
Chapter 16. DB2 Universal Database 409

• Disk I/O is distributed across the disk evenly. It is the job of both the
system administrator and the database administrator to ensure the I/O is
spread across many disks. If one disk is overworked, and the others
underused, then the whole system performance can suffer. The iostat

command should be used to investigate this issue.

• Disks are not overworked. For a disk to perform well and respond quickly
to user demands, it is best to have the disk not running above 50 percent
busy, because it will mean that the queue for devices drivers can become
large and, as a result, response times grow. For large query DSS and
batch workload, the disks can be used above 50 percent busy. The iostat

command should be used to investigate this issue.

• Disk channel is not a limiting factor. The disk channel is the PCI or MCA
bus, SCSI, FCAL or SSA adapters, cables, and SSA loops. Any of these
can become limiting factors, especially when a lot of disks are attached on
the same channel. It is very hard to track if the channel is overworked and
to prove it is a limiting factor. The disks will appear to not be overworked,
but the CPU appears to be in I/O wait state. The nmon tool gives the
adapter busy and throughput statistics by adding up the statistics for all
the disks attached to the adapter. Also you can use SSA tools included in
AIX operating system. See AIX documentation for more details

16.2.5 Insufficient network resources
The general rule of thumb is to monitor network throughput and do not allow it
to be over 50 percent of the maximum throughput. Any collision detect
protocol network suffers with throughput problems above this level of network
traffic. See Chapter 4, “Network tuning” on page 21 for more details about this
topic.

16.2.6 Insufficient logical resource access
Within AIX and the RDBMS, access to logical resources is carefully controlled
to make sure that data is not corrupted. This control is implemented as locks,
latches, and semaphores. But whatever method is used, this restriction
means that many operations can not be performed in parallel, and for

The RDBMS logs (if placed on a dedicated disk or set of disks) are an
exception to most of the rules above. Logs should not be spread across
disks, are often overworked, and, if necessary, should have dedicated
adapters and cables.

Note
410 RS/6000 SP System Performance Tuning Update

important resources, the tasks are serialized. This can have a large impact on
performance.

Unfortunately, this is extremely hard to detect from observing CPU, memory,
and disk activity. Only internal examination of AIX or the RDBMS will reveal
the problem. AIX has trace facilities to allow this. See Section 11.1.36, “trace,
trcrpt” on page 322 for more details. DB2 UDB has the snapshot facility to
allow this to be investigated. See IBM DB2 UDB Administration Guide:
Performance, SCO9-2849 for more details.

16.2.7 What can we tune?
It is easy to think the only items we can change is a few disks and the
database tuning parameters. But there is quite a long list of things that can be
changed. For example:

• A little purchasing power - Performance tuning should always highlight
which component of the system should be considered for the next
upgrade. If this is relatively inexpensive (similar to a few days performance
tuning consultation), then it might be better to upgrade the machine
immediately rather than continue tuning. Also, it allows planning and
budgets to be prepared for longer term upgrades.

• Balancing the use of CPU, memory, and disk I/O - If one is overworked,
you might be able to use the others to compensate.

• Balancing the use of memory between AIX, user processes, RDBMS
processes, and the RDBMS shared memory.

• Balancing the various consumers of the RDBMS shared memory (buffer,
library, locks).

• Tuning disks by balancing speed over reliability with options, such as RAID
5, striping, and mirrors.

• Changing data placement on the disks via the AIX LVM options center,
middle, or edge.

• Removing hot spots by moving data between disks or hardware spreading
of data via stripes or RAID 5.

• Dedicating disks to particular tasks for maximum response time and
throughput. For example: the log disks.

• Ensuring equal use of disk and network I/O across adapters and that they
are not approaching their theoretical or practical limits.

• Balancing disk I/O against memory. One of the many benefits of using
memory is to reduce time-consuming disk I/O.
Chapter 16. DB2 Universal Database 411

• Ensuring all CPUs of SMP machines are at work. Many performance
problems are caused by a single batch process not making use of all the
CPUs in the system.

• Maximizing backup rate to reduce the backup window or minimizing user
interference with online backups. These considerations might affect the
usage of disks and reserving disks for backup purposes.

• Balancing workloads. Many performance problems are simply poor
management of workloads, in particular, batch operations or online
requested reports. Sometimes users are willing to change their working
habits if they realize they can improve performance (and their job) by
making small changes to their work patterns.

• Identifying and fixing poor application modules and SQL statements.

The database can help you work out the worst offenders. Many DBAs
assume they cannot change the application code or SQL. This means they
never investigate the SQL or try to get it improved. Having identified the
worst SQL examples and the ones used repeatedly, these will yield the
largest performance improvements:

- If you know other sites that use the same application or SQL, then find
out if they have the same list of issues.

- Join the appropriate user groups.

- Start providing feedback to the vendor or your own development team
and start increasing the pressure for getting these problems fixed.

- Although many developers resist making individual changes to
application code, they do welcome real production feedback to improve
their products performance in the longer term and for future releases.

• Start to think in parallel on SMP machines. Unless you can make use of all
the CPUs, you will be making use of a fraction of the available compute
power.

• Start to turn your attention toward logical resources, such as lock, spin
counts, time-out, delay flags, and database latches, when the machine
looks idle but responds badly.

• Finally, tuning the database via the parameters and options.

16.2.8 Top 20 DB2 parameters
The following topics show the most important database manager
configuration (dbm) and database configuration (db) parameters. These are
parameters that have a large impact on performance and should be tuned
first.
412 RS/6000 SP System Performance Tuning Update

To find a complete information about database manager, database and
environment configuration parameters and the way to tune them, you can
refer to IBM DB2 UDB Administration Guide: Performance, SC09-2840 or
Database Performance on AIX in DB2 and Oracle Environment, SG24-5511.

16.2.8.1 Buffer pool size (buffpage)
The buffer pool is the area of memory where database pages (table rows or
indexes) are temporarily read and manipulated. All buffer pools reside in
global memory, which is available to all applications using the database. The
purpose of the buffer pool is to improve database performance. Data can be
accessed much faster from memory than from disk.

• In an OLTP environment, it is recommended to allocate as much as 75
percent of the system’s memory that is left after taking out the memory
required by the operating system, applications running on the system, and
memory for communication to the buffer pools, under the following
conditions:

- There are multiple users connected to the database.

- This system is used as a database server only.

- The applications access the same data and index pages repeatedly.

- There is only one database installed.

Particularly in OLTP environments, where there is typically a repetitive
access to indexes, it is recommended to strive to have a buffer pool large
enough to keep all indexes in memory.

• In a DSS environment, it is recommended to allocate up to 50 percent of
the left over memory to the buffer pool. More memory is required to the
database sort parameters for large queries.

The buffer pool hit ratio (percentage of time that the database manager did
not need to load a page from disk into memory) should reach 100 percent.

The configuration of one or more buffer pools is the single most important
tuning area because it is here that most of the data manipulations take
place for applications connected to the database. This is valid for regular
data only (except large objects and long field data).

Never leave this parameter on its default value.

Buffer pool performance should be tracked permanently.

Note
Chapter 16. DB2 Universal Database 413

This can be monitored by DB2 UDB monitor utility (Snapshot monitor or Event
monitor).

16.2.8.2 Number of I/O servers (num_ioservers)
DB2 UDB can activate prefetchers that read data and index pages into the
buffer pool by anticipating their need with an application (asynchronously). To
enable prefetching, the database manager starts separate threads of control,
known as I/O servers, to perform page reading. As a result, the query
processing is divided into two parallel activities: Data processing (CPU) and
data page I/O. The I/O servers wait for prefetch requests from the CPU
processing activity.

Because one I/O server can serve only one I/O device (disk), it is
recommended to configure one or two more num_ioservers than the number
of physical devices on which the tablespace containers reside. It is better to
use additional I/O servers because there is a minimal overhead associated
with each.

16.2.8.3 Number of asynchronous page cleaners (num_iocleaners)
Page cleaners are DB2 UDB processes that monitor the buffer pool and
asynchronously write pages to disk before the space in the buffer pool is
required by another database agent. This means that the agents will not wait
for changed pages to be written out before being able to read a page.

• In an OLTP environment, where many transactions are run against the
database, it is recommended to set the value of this parameter to between
one and the number of physical storage devices used for the database.
Environments with high update transaction rates may require more page
cleaners to be configured. This is also valid for database systems with
large buffer pools.

• In a DSS environment that will not have updates, it is usual to set this
parameter to 0. The exception would be if the query workload results in
many TEMP tables being created. This can be determined by using the
Explain utility. In this case, it is recommended to set the number of I/O
cleaners to the number of disks that assigned to the TEMP tablespace.

You can use the command

> get snapshot for bufferpools on database_name

to monitor the write activity information from the buffer pools in order to
determine if the number of page cleaners must be increased or decreased.
414 RS/6000 SP System Performance Tuning Update

16.2.8.4 Changed pages threshold (chngpgs_thresh)
This parameter can be used to specify the level (percentage) of changed
pages at which the asynchronous page cleaners will be started if they are not
currently active. When the page cleaners are started, they will build a list of
the pages to write to disk. Once they have completed writing those pages to
disk, they will become inactive again and wait for the next trigger to start.
Therefore, this parameter is connected to the num_iocleaners parameter.

• In an OLTP environment, you should generally ensure that there are
enough clean pages in the buffer pool by setting the chngpgs_thresh value
to be equal to or less than the default value. A percentage larger than the
default (60 percent) can help performance if the database has a small
number of very large tables.

• In an DSS environment, these page cleaners are not used.

16.2.8.5 Sort heap size (sortheap)
The sortheap is a database configuration parameter. It is the amount of
private memory allocated to each process connected to a database at the
time of the sort. The memory is allocated only at the time of sort and
deallocated after sorting has been finished. It is possible for a single
application to have concurrent sorts active. The larger the table to be sorted,
the higher the value should be for this parameter. If the value is too large,
then the system can force to page if memory becomes overcommitted.

This is one of the most important areas to be tuned because a sort operation
done in real memory can significantly improve performance. It is
recommended that the remaining real memory that is not allocated to the AIX,
applications, and other DB2 UDB memory structures is allocated to the sort
operations.

If there is more data to be sorted than memory space, merge phases will be
required in order to finish the sort operation. A possible way to avoid this is to
increase the sortheap parameter.

The get snapshot for database database_name command will provide two
indicators that can be used for tuning the sortheap parameter:

• Total sort time
• Total sorts

It is recommended that you keep on increasing the sortheap parameter as
long as both of the following conditions are true:

• You have real memory available.
• The result value of the equation total sort time/total sorts is decreasing.
Chapter 16. DB2 Universal Database 415

16.2.8.6 Sort heap threshold (sheapthres)
This is a database manager configuration parameter. DB2 UDB uses this
parameter to control the sum of all sortheap allocations of all applications in
the instance. Therefore, this parameter impacts the total amount of memory
that can be allocated across the database manager instance for sortheap.

Explicit definition of the threshold prevents the database manager from using
excessive amounts of memory for large numbers of sorts. It is recommended
to set this value to a reasonable multiple of the largest sortheap parameter
defined in the database manager instance. This parameter should be at least
two times the largest sortheap value for any database within the instance.

It is important to be aware that, when using DB2 UDB V5.2, and when the
database manager parameter intra_parallel is enabled, the sheapthres does
not simply work as a limiting number anymore, but the amount of space
defined for this parameter is automatically allocated from memory.

16.2.8.7 Statement heap size (stmtheap)
The statement heap size is a database configuration parameter that specifies
the size of workspace used for the SQL compiler during the compilation of an
SQL statement. For dynamic SQL statements, this memory area will be used
during execution of the application. For static SQL statements, it is used
during the bind process. The memory will be allocated and released for every
SQL statement only.

For most cases, the default value, 204 pages, can be used. If an application
has very large SQL statements, and DB2 UDB reports an error when it
attempts to compile a statement, then the value of this parameter has to be
increased. The error messages issued are:

• SQL0101N The statement is too long

• SQL0437W Performance of this complex query may be sup-optimal. Reason

code 1.

These messages are sent to the applications that run the queries and are
also logged in the DB2 UDB error log file called db2diag.log.

16.2.8.8 Package cache size (pckcachesz)
This database configuration parameter is used to define the amount of
memory for caching static and dynamic SQL statements. Caching packages
allows the database manager to reduce its internal overhead by eliminating
the need to access the system catalogs when reloading a package or, in the
case of dynamic SQL, eliminating the need for compiling a query twice.
416 RS/6000 SP System Performance Tuning Update

The package cache is important in an OLTP environment where the same
query is used multiple times by multiple users within an application. To tune
this parameter, it is helpful to monitor the package cache hit ratio. This value
shows if the package cache is used effectively. If the hit ratio is large (> 90
percent), the package cache is performing well.

The package cache hit ratio can be obtained by the following formula:

(1 - (package cache inserts / package cache lookups)) * 100 percent

These indicators can be retrieved by the get snapshot for database on

database_name command.

16.2.8.9 Database heap size (dbheap)
Each database has one memory area called a database heap. It contains
control block information for tables, indexes, table spaces, and buffer pools. It
also contains space for the event monitor buffers, the log buffer (logbufsz),
and the catalog cache (catalogcache_sz). The memory will be allocated when
the first application connects to the database and keeps all control block
information until all applications are disconnected.

Each page in the buffer pool has a descriptor of about 140 bytes. For every 30
buffer pool pages, an additional page for overhead is needed in the database
heap. For databases with a large amount of buffer pool, it is necessary to
increase the database heap appropriately.

16.2.8.10 Maximum number of active applications (maxappls)
This database parameter specifies the maximum number of concurrent
applications that can be connected (both local and remote) to a database.
Since each application that attaches to a database causes some private
memory to be allocated, allowing a larger number of concurrent applications
will potentially use more memory.

Increasing the value of this parameter without decreasing the maxlocks
parameter or increasing the locklist parameter can cause the database’s limit
on locks to be reached more frequently, resulting in many lock escalation
problems.

16.2.8.11 Maximum number of agents (maxagents)
This parameter indicates the maximum number of database manager agents
(db2agent) available at any given time to accept application requests.There
are two types of connections possible that require the use of DB2 UDB
agents. Local connected applications require db2agents within the database
manager instance as well applications running on remote clients. The
Chapter 16. DB2 Universal Database 417

maxagents parameter value must be at least equal to the sum of both values.
This parameter is useful in memory constrained environments to limit the total
memory usage of the database manager because each additional agent
requires additional memory.

The value of maxagents should be at least the sum of the values for maxappls
in each database allowed to be accessed concurrently.

16.2.8.12 Maximum storage for lock list (locklist)
This parameter indicates the amount of storage that is allocated to the lock
list. There is one lock list per database, and it contains the locks held by all
applications concurrently connected to the database. Locking is required to
ensure data integrity; however, too much locking reduces concurrency. Both
rows and tables can be locked.

If the memory assigned for this parameter becomes full, the database
manager performs lock escalation. Lock escalation is the process of replacing
row locks with table locks, reducing the number of locks in the list. DB2 UDB
selects the transaction using the largest amount of the locklist and changes
the record locks on the same table to a table lock. Therefore, one lock (table
lock) replaces many locks (record locks) of a table. This reduces the
concurrency and the performance.

If lock escalations are causing performance or hang problems, it is
recommended to increase the value of this parameter.

16.2.8.13 DB2MEMDISCLAIM and DB2MEMMAXFREE
Depending on the workload being executed and the pool agents
configuration, it is possible to run into a situation where the committed
memory for each DB2 UDB agent will stay above 32 MB even when the agent
is idle. This behavior is expected and usually results in good performance, as
the memory is available for fast reuse. However, on a memory constrained
system, this may not be a desirable side effect. The DB2 command

> db2set DB2MEMDISCLAIM = yes

avoids this condition. This variable tells the AIX operating system to stop
paging the area of memory so that it no longer occupies any real storage.
This variable tells DB2 UDB to disclaim some or all memory once freed
depending on DB2MEMMAXFREE. This ensures that the memory is made
readily available for other processes as soon as it is freed.
DB2MEMMAXFREE specifies the amount of free memory that is retained by
each DB2 UDB agent. It is recommended to set this value to 8 MB by using:

> db2set DB2MEMMAXFREE = 8000000
418 RS/6000 SP System Performance Tuning Update

16.2.8.14 DB2_PARALLEL_IO
This registry variable can be used to force parallel I/O for a tablespace that
has a single container. When reading data from, or writing data to, tablespace
containers, the database manager may use parallel I/O if the number of
containers in the database is greater than 1. However, there are situations
when it would be beneficial to have parallel I/O enabled for single container
tablespaces. For example, if the container is created on a single RAID device
that is composed of more than one physical disk, you may want to issue
parallel read and write calls. The DB2_PARALLEL_IO variable can be set to
one specific tablespace or to all tablespaces of that instance. For example, to
enable parallel I/O for tablespace USERSPACE1 with tablespace ID 2, the
command is:

> db2set DB2_PARALLEL_IO = 2

16.2.8.15 DB2_STRIPED_CONTAINERS
When creating a DMS tablespace container (device or file), a one-page tag is
stored at the beginning of the container. The remaining pages are available
for data storage by DB2 UDB and are grouped into extent-sized blocks. When
using RAID devices for tablespace containers, it is suggested that the
tablespace is created with an extent size that is equal to, or a multiple of, the
RAID stripe size. However, because of the one page container tag, the
extents will not line up with the RAID stripes, and it may be necessary during
an I/O request to access more physical disks than would be optimal. DMS
table space containers can now be created in such a way that the tag exists in
its own (full) extent. This avoids the problem described above, but it requires
an extra extent of overhead within the container. To create containers in this
fashion, set the DB2 UDB command:

> db2set DB2_STRIPED_CONTAINERS=ON

Any DMS container that is created will have new containers with tags taking
up a full extent. Existing containers will remain unchanged.

16.2.8.16 Tablespace page size
Since Version 5.2, DB2 UDB provides the possibility to expand the page size
of tablespaces from the default 4 KB to 8 KB. Version 6.1 supports 16 KB or
32 KB. This allows larger tables and larger row lengths. For example, a table
created in a tablespace with a page size of 32 KB can reach a maximum size
of 512 GB.

A bufferpool using the same page size must be assigned to each tablespace.
For instance, if you have tablespaces with 4 KB, 8 KB, and 16 KB page sizes
within a database, the database must have at least three bufferpools that also
use a page size of 4 KB, 8 KB, and 16 KB.
Chapter 16. DB2 Universal Database 419

A tablespace page size larger than 4 KB is advantageous for tables with large
data rows. However, it is important to be aware that on a single data page
there will never exist more than 255 rows of data, regardless of the page size.

16.2.8.17 REORG
The performance of SQL statements that use indexes can be impaired after
many updates, deletes, or inserts have been made. Newly inserted rows can
often not be placed in a physical sequence that is the same as the logical
sequence defined by the index (unless you use clustered indexes). This
means that the Database Manager must perform additional read operations
to access the data because logically sequential data may be on different
physical data pages that are not sequential. The DB2 UDB REORG command
performs a reorganization of a table by reconstructing the rows to eliminate
fragmented data and by compacting information.

16.2.8.18 REORGCHK
Because the REORG utility needs a lot of time for reorganizing a table, it is
useful to run the REORGCHK command before running the REORG command. The
REORGCHK utility calculates statistics on the database to determine if tables
need to be reorganized or not.

16.3 DB2 UDB Implementation on RS/6000 SP: a real case

This section describes the latest performance record reached by IBM in
TPC-H, working with DB2 UDB 7.1 on RS/6000 SP platform, with AIX 4.3.3.
We detail here the complete infrastructure (hardware and software) used to
get it and the way this environment was configured and tuned.

You can find some relevant information in this report, but do not forget it is
only one case of DSS workload. Do not take it as an IBM’s recommendation
or general rule.

16.3.1 Hardware configuration
The RS/6000 SP configuration is:

• 32 wide nodes: 4-way SMP with 375 MHz Power3-II processors

• 4 GB memory per node

• 4 internal 9.1 GB SCSI disks per node

• 2 SSA adapters per node

• 4 frames

• 2 SP switch, each witch 4.8 GB/sec peak
420 RS/6000 SP System Performance Tuning Update

• Control Workstation: RS/6000 model F50

• SSA disks:

- (11) 7015 Expansion Racks

- (64) 7133-D40 disk drawers, each one with (16) 9.1 GB drives
(10,000RPM)

- 9.32 TB disk in 992 drives + 32 hot spares

For this measurement, wide nodes were used in order to exploit the additional
I/O bandwidth. To determine the number of nodes, the typical rule of thumb
was used; between 60 GB and 200 GB of raw data per node, although many
factors come into play when deciding this topic. For example, a high
percentage of unqueried data allows more data per node, while a low
percentage suggests less data per node.

Each node has an identical disk layout as shown in Figure 44 on page 422.
All data objects were spread across a total of 31 disks, 16 on the first adapter
and 15 on the second, with one disk reserved as a hot spare. Experience has
shown that reserving one disk for this purpose is well worth the slight
increase in expense and loss of performance, because the disk can be
swapped in to replace a failed disk very quickly.

This configuration results in a good balance of disk-to-adapter bandwidth,
with each adapter running very near its limit of about 90MB/sec. Only two of
the three available PCI buses in the nodes were used, however.

In this benchmark, eight disks per CPU were configured.

Ideally, a minimum of eight to sixteen disks per CPU is needed for optimal
performance in a balanced system.

Note
Chapter 16. DB2 Universal Database 421

Figure 44. The SSA disk layout.

16.3.2 Software configuration
For ease of management, all nodes have the same software at the same
levels:

• AIX 4.3.3

• PSSP 3.1.1

• DB2 UDB EEE V7.1

• IBM C Compiler V4.4

• Performance Toolbox V2.2

16.3.3 Database layout
The goal was to press the maximum number of disks into service, while
attempting to find some methods of reducing disk head movement.

SSA0

A1

A2

B1

B2

SSA1

A1

A2

B1

B2

hdisk21 hdisk23hdisk22hdisk20 hdisk25hdisk24 hdisk26 hdisk27

hdisk5 hdisk7hdisk6hdisk4 hdisk9hdisk8 hdisk10 hdisk11

SSA Disk Layout on Each Node

Hot spare

hdisk13 hdisk15hdisk14hdisk12 hdisk17hdisk16 hdisk18 hdisk19

hdisk29 hdisk31hdisk30hdisk28 hdisk33hdisk32 hdisk34 hdisk35
422 RS/6000 SP System Performance Tuning Update

Of the 32 disks per node, one was reserved as a hot spare and the remaining
31 disks were used for containers for all tablespaces. As indicated in Figure
45, data objects which are frequently accessed concurrently were placed in
adjacent physical partitions. Also, all primary logical volume copies were
grouped together in the center of each disk and placed in specific disk
partitions using the commands:

mklv -m <mapfile>
mklvcopy -m <mapfile>

The parallel-sequential scheduling policy, available in AIX 4.3.3, was set
using the flag -d ps on mklv (chlv). This caused the primary copy of each
logical volume to always be used for reads, except in the case of disk failure,
and writes to those logical volume copies are done in parallel. We also gained
some performance efficiency by turning off mirror write consistency:

chlv -wn <lvname>

Figure 45. Logical volume layout.

Outer
disk
edge

Orders index
Orders data
Temp
Lineitem data

Orders index
Orders data
Temp
Lineitem data

Orders index
Orders data
Temp
Lineitem data

Orders index
Orders data
Temp
Lineitem data
Lineitem index
Other data
Other index

Orders index
Orders data
Temp
Lineitem data
Lineitem index
Other data
Other index

Orders index
Orders data
Temp
Lineitem data
Lineitem index
Other data
Other index

Lineitem item
Other data
Other index

Lineitem item
Other data
Other index

Lineitem item
Other data
Other index

flatfiles flatfiles flatfiles

hdiskn-1 hdiskn hdiskn+1

P
rim

ar
y

co
pi

es
S

ec
on

da
ry

co
pi

es
S

ec
on

da
ry

co
pi

es

Head
remains
in center
38% of

disk
during
normal

operation

Inner
disk
edge

Logical Volume Layout
with offset-by-one mirroring
Chapter 16. DB2 Universal Database 423

16.3.4 Operating system tuning
The benchmark team follows well established guidelines for commercial
applications (see Section 4.7.3, “Tuning for commercial and database
environments” on page 89) prior to any fine tuning of performance once the
tuning of the database started. Some of the basic guidelines, as shown in
Table 43, include:

• Paging space and memory: one-to-one relationship between paging space
and memory. No paging appeared during benchmark in the power test and
minimal paging during the throughput test.

• Switch and Network: switch send and receive pools set to the
recommended value of 16 MB. The CWS was configured as a NFS file
server for the user’s home directories. NFS socket buffers size adjusted
accordingly.

• Virtual Memory Manager (VMM): of the vmtune parameters, maxpgahead
option (-R 128) is the most important. This affects the efficiency of reading
from the system temporary tablespace, which uses JFS file containers.
The settings of minperm, maxperm, minfree and maxfree are intended to
limit the amount of memory allocated for file buffering, in order to make
more memory available to DB2.

Table 43. System parameters tuned

Go to IBM Business Intelligent web page
(http://www.rs6000.ibm.com/solutions/bi) or in TPC Organization web page
(http://www.tpc.org) for a complete list of all AIX parameters.

Paging no parameters

4 GB paging space per node (1:1)
Database tuned for minimal paging

thewall = 1,048,576
sb_max = 3,000,000
tcp_sendspace = 221,184
tcp_recvspace = 221,184
udp_sendspace =65,536
udp_recvspace = 655,360
rfc1323 = 1

/usr/samples/kernel/vmtune

-R (maxpgahead) = 128
-f (minfree) = 128
-F (maxfree) = 256
-c (numclust) = 1
-k (npskill) = 512
-w (npswarn) = 2000
-p (minperm) = 5
-P (maxperm) = 15

nfso parameters

nfs_socketsize = 2,000,000
nfs_tcp_socketsize = 442,240

switch parameters

maxuprocs spoolsize = 16,777,216
rpoolsize = 16,777,216

4000
424 RS/6000 SP System Performance Tuning Update

16.3.5 Database tuning
This section lists some DB2 parameters tuned in the benchmark, as shown in
Table 44. Again, for a more detailed list, go to IBM DB2 web page or TPC
Organization web page. Also, you can find a complete table with the most
important configurable database parameters and their impact on performance
in the redbook Database Performance on AIX in DB2 UDB and Oracle
Environments, SG24-5511.

Table 44. DB2 UDB parameters tuned

16.3.6 System management and performance
The key to managing systems of this size is to seize every opportunity to
automate, document, and collect relevant data in order to minimize problems
and avoid repetitive and tedious tasks. Some of the things done in our system
that you can use are:

1. Use the inherent parallel structure of the RS/6000 SP and PSSP code by
rebooting nodes, doing system maintenance in parallel, using the dsh

command to propagate commands to all nodes simultaneously, and so on.
We kept all nodes as identical as possible, including the I/O subsystem.
Many of the database functions also take advantage of this symmetry.

2. Write generic scripts and maintain tools of common tasks, log all activities
and users on the system, create checklists of items to verify following a
reboot, prior to starting the database, and so on.

3. Certify disks at regular intervals to detect failing disks early and develop
an effective disk replacement procedure with the use of hot spares.

Exploit hardware Optimize query plans

cpuspeed
comm_bandwidth
intra_parallel
max_querydegree
dft_degree

db2_like_varchar
db2_sort_after_tq
db2_correlated_predicates
transferrate
db2_vector
db2_pred_factorize
db2_antijoin

Adjust memory-related parameters Optimize database runtime efficiency

buffpage
sortheap
sheapthres
db2memmaxfree
locklist
maxlocks
db2_memdisclaim

prefetchsize
num_ioservers
num_iocleaners
db2_mmap_write
db2_mmap_read
db2_rr_to_rs
Chapter 16. DB2 Universal Database 425

4. Monitor error logs daily, and have the system automatically send a page to
the systems administrator if specific events occur.

5. Collect detailed performance information on key metrics with the use of:

- Performance Toolbox: The nodes are monitored using the ptxrlog utility
using the variables listed in Table 45. The real time performance
monitor 3dmon was used to look at system resource imbalances.

Table 45. Variables used by ptxrlog

- iostat: Used to ensure even utilization across disks and monitor
aggregate I/O rates.

- vmstat: Used to monitor CPU utilization and paging activity.

- netstat: Used to monitor switch and ethernet traffic.

The following pictures are some of the graphics obtained from the
benchmark. The purpose of the charts is not to document a detailed analysis
but to illustrate typical behavior of the system during query and update
activity, and difference between power and throughput runs.

Variable Comment

CPU/cpu0/kern Kernel CPU utilization percent

CPU/cpu0/user User CPU utilization percent

CPU/cpu0/wait I/O wait percent

Mem/Virt/pgspgin Physical page-ins from paging space

Mem/Virt/pgspgout Physical page-outs to paging space

Mem/Real/numfrb Number of memory pages on the free list

IP/NetIF/en0/ioctet Bytes received over the ethernet

IP/NetIF/en0/ooctet Bytes transmitted over the ethernet

IP/NetIF/css0/ioctet Bytes received over the switch

IP/NetIF/css0/ooctet Bytes transmitted over the switch

Disk/hdisk0/busy hdisk0 (internal SCSI) percent busy

Disk/hdisk1/busy hdisk1 (internal SCSI) percent busy

Disk/hdisk4/busy hdisk4 (external SSA) percent busy

Disk/hdisk14/busy hdisk14 (external SSA) percent busy
426 RS/6000 SP System Performance Tuning Update

16.3.6.1 Power run
The CPU activity for the power run shows a fair amount of variation between
user busy and I/O wait time due to the inherent nature of the queries (as
shown inFigure 46); some have higher I/O requirements than others, while
others are CPU intensive. During the entire power run, kernel busy time
remained much lower than the other two metrics.

Figure 46. CPU utilization. TPC-H power run.

The activity on the SSA disks is typical of all database disks. Some paging
activity was present only during updates (beginning and end of the chart) and
in a couple of queries. It can be observed that I/O requirements vary greatly
by query ranging from an aggregate MB/s per node from none to peaking at
175 MB/s and averaging 82 MB/s for the entire power test.

One minute intervals

0

20

40

60

80

100

%
U

til
iz

at
io

n

IOWAIT IDLE KERNEL USER

CPU Utilization
TPC-H Power Run
Chapter 16. DB2 Universal Database 427

Figure 47. I/O characteristics. TPC-H power run

16.3.6.2 Throughput run
In the case of the throughput run, seven concurrent queries are executing at
any given time, followed by updates; these two phases (queries + updates)
are evident in the CPU utilization chart. During the queries, CPU and kernel
busy times are dominant, and there is small amount of I/O wait, which
indicates that we are still I/O constrained at times. Having more than one
stream of queries running concurrently allows for full use of the processors.
During the update phase, I/O wait goes up. (Refer to Figure 47 for an
overview.)

one minute intervals

0

50

100

150

200

A
gg

re
ga

te
M

B
/S

pe
r

no
de

31 SSA disks on 2 SSA adapters

I/O Characteristics
TPC-H Power Run
428 RS/6000 SP System Performance Tuning Update

Figure 48. CPU utilization. TPC-H throughput run.

The disks’ throughput shows a different pattern towards the end the run
indicating that the queries are completed and the updates are running, as
shown in Figure 48. The aggregate I/O bandwidth during the throughput
measurement, as shown in Figure 49 on page 430, is more consistently close
to its average 114 MB/s, 30% higher than the power run aggregate.

one minute intervals

0

20

40

60

80

100

%
U

til
iz

at
io

n

IOWAIT IDLE KERNEL USER

CPU Utilization
TPC-H Throughput Run (7 streams)
Chapter 16. DB2 Universal Database 429

Figure 49. I/O bandwidth. TPC-H throughput run.

16.3.7 Additional tuning observations
These are some tuning observations extracted from the test:

• Physical database layout is a very important factor

- Data distribution on disks (data, index, temp)

- Minimize head movement, maximize arms

- Minimal change observed with SSA fast write cache on

- Experiment with pagesizes, prefetchsizes for 128K I/O

• Memory management is a balancing act

- Multiple bufferpools provide flexibility

- Large sortheap space needed for multi-stream work

• Change Decimal datatype to Float datatype has significant impact

• Monitoring overhead is noticeable

• Excellent intra-parallel speedups

one minute intervals

0

50

100

150

200

A
gg

re
ga

te
M

B
/S

pe
r

no
de

31 SSA Disks on 2 SSA adapters

I/O Bandwidth
TPC-H Throughput Run (7 streams)
430 RS/6000 SP System Performance Tuning Update

- I/O bound queries don’t benefit

• Use row locking to improve performance
Chapter 16. DB2 Universal Database 431

432 RS/6000 SP System Performance Tuning Update

Chapter 17. Oracle

The purpose of this chapter is to provide information about the parallel
version of Oracle and allow you to gain an understanding of how the parallel
version work, how it benefits from the RS/6000 SP architecture, and in which
workload environments it is most efficiently used.

The Oracle8i Parallel Server (OPS) is a resource-sharing system that
increases availability and performance by partitioning the workload across
multiple nodes.

For a detailed information about AIX go to these manuals:

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

Also, check these IBM redbooks:

• Oracle8i Parallel Server on IBM SP Systems: Implementation Guide,
SG24-5591

• Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

• RS/6000 Performance Tools in Focus, SG24-4989

17.1 Oracle Parallel Server (OPS)

Oracle has implemented its RDBMS product on the IBM RS/6000 SP so that
it can run on multiple nodes of an SP system in parallel. This implementation
uses the shared disk model (every CPU has its own dedicated memory, but
all processors share the same disks within the system) and is the only one in
this topic, as the other parallel databases use shared nothing. The parallel
version of Oracle is like classic Oracle with a few additions.

• It makes use of the Oracle Parallel Query (OPQ) features that are also
available on classic Oracle, but here, not only does the query get split out
onto the CPUs of a single system, but also split out across the nodes of
the SP system. This feature is used a lot in DSS workloads where all the
CPUs in all of the different nodes can participate in working on the query
for maximum parallelization and reduced response times.

• The addition of the Oracle Parallel Server (OPS), which allows different
instances of Oracle to run on different nodes of the SP system having
shared access to a single database. OPS uses two extra subsystems to
achieve this; the Virtual Shared Disk (VSD) and the Distributed Lock
© Copyright IBM Corp. 2000 433

Manager (DLM). These two components are described later in this
chapter.

• Many Oracle tools have been enhanced to allow extra parallelization. For
example, parallel load and parallel indexes.

• To support very large databases, the new partitioned tables features is
very important. It reduces DBA time for load, index, and delete operations
of very large tables, and can also reduce query time.

Many of these extra features are also available in the classic version of
Oracle, but they become very important for OPS and with extremely large
databases.

17.1.1 Parallel Oracle architecture
Figure 50 on page 435 shows the various components of classic Oracle.
There are two major components:

1. The Instance - The processes connected and co-operating via the
SGA. The front end processes (also referred to as client processes and
server or shadow processes) are connected to users and execute the
SQL statements. The back end processes (also referred to as
background processes) are internal to Oracle for the redo log,
database updating, and recovery. They come and go with an Oracle
Instance.

2. The Database - All the disks and files that make up the database.
434 RS/6000 SP System Performance Tuning Update

Figure 50. An Oracle instance

In a Oracle Parallel Server, there are multiple copies of the instance and a
single database. Figure 51 on page 436 shows the overview level of Oracle
with multiple instances and one database. The database is, of course, made
up of lots of files and/or devices that are ultimately on a disk in the system.
This general architecture of the OPS is then mapped to the SP architecture
where each SP node is an RS/6000 computer on its own. Each node has:

• One CPU or multiple CPUs (in an SMP node)

• Memory

• Adapters

• Disks

On the SP system, there is also the High Speed Switch network (SP Switch)
that allows fast communication (low latency) and high bandwidth (large data
transfers) between the nodes of the SP.

Parameter Files

Data

Control Files

Front End

SGA
System Global Area
Shared Memory

Back End

Index

RollbackSystem/DD

Redo Log

OS.
AIX

Tmp/Sort

Archive
(disk or tape)
Chapter 17. Oracle 435

Figure 51. General Oracle Parallel Server architecture

With OPS, one instance of Oracle is run on each node of the SP, but there are
two problems with this architecture:

1. An individual disk is actually attached to one of the nodes. This makes it
impossible for an instance on one node to read data from disks that are
attached to another node.

2. All of these instances of Oracle may have local copies of data blocks, and
there is a risk of two of them updating the same data and corrupting the
database.

These two problems are addressed by two software systems:

1. The Virtual Shared Disk (VSD) makes it possible for OPS to read the data
from a remotely attached disk. The details are in Section 17.1.2, “Virtual
Shared Disk (VSD)” on page 438.

2. The Distributed Lock Manager (DLM) makes sure data corruption between
instances does not happen.The details are in Section 17.1.3, “Distributed
lock manager (DLM)” on page 439.

Figure 52 on page 437 shows the architecture of OPS when implemented on
the SP system. The database is spread across disks that are attached to all
the nodes of the SP. This spreads the I/O requirements evenly across disks,
adapters, and all of the nodes in order to reduce I/O bottlenecks.

Front End

SGA

Back
End

Front End

SGA

Back
End

Front End

SGA

Back
End

Front End

SGA

Back
End

Front End

SGA

Back
End

Logical Database

Disks that make up the database

One
Instance
436 RS/6000 SP System Performance Tuning Update

Figure 52. Parallel Oracle on SP systems

When an application connects to OPS, it actually connects to one of the
instances. As every instance has access to the entire database, simple
(OLTP type) queries are performed directly by that instance. If the query is
large, Oracle is able to split the query into sub-queries. For example, a full
table scan can be broken down into a number of sub-queries that each work
on a range of rows, and other sub-queries can merge the results together and
sort the results. On an SMP node, these sub-queries can be run on different
CPUs. For very large queries, the sub-queries can also be sent to other
nodes of the SP system, and the results are sent back to the original node.
So, in Parallel Oracle, there are two types of parallelization:

• Degree - The number of processes (and, therefore, CPUs) on an instance

• Instance - The number of instances to use

The decision on the amount of parallelization is made by the optimizer and is
based on the parameters set on one of the following:

• Table level parallelization settings

• Hints in the SQL statement

In general all the nodes in an OPS system on the SP are kept identical to
reduce system administration and DBA workloads. Due to the extra
dimension of multiple nodes and the large size of these databases, OPS is
considered complex when compared to a single SMP machine running on

Adapter Adapter Adapter Adapter Adapter

VSD - Virtual Shared Disk

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

DLM - Distributed Lock Manager
Chapter 17. Oracle 437

smaller databases with classic Oracle. However, the power and scalability of
the SP system does mean that much larger databases can be implemented,
and this is a requirement, particularly for DSS workloads.

17.1.2 Virtual Shared Disk (VSD)
This is an IBM supplied product that allows any of the nodes in the SP system
to read and write data from disks attached to other nodes. Figure 52 on page
437 shows that the VSD layer is between the Oracle Instance and the device
drivers and disk adapters. OPS does not have direct access to the disks but
opens VSD devices instead. The VSD layer then checks if the real disk is
attached to the local node, and if not, it works out which other node has it
attached:

• In the case of a local disk, the read/write request is passed by the VSD
directly to the regular logical volume device driver on the node.

• In the case of a remote disk, the request is sent by the VSD device driver
(via the SP Switch) to the VSD device driver on the node to which the disk
is attached. The receiving VSD device driver then passes the request to
the device driver of the second node, and the data is read or written on
behalf of the initial node. The data is also transferred over the SP Switch.

The difference in time between the local and remote disk I/O is small.

Figure 53. Oracle tables working with VSD operations

Row->Tables->Tablespace->File->VSD->LV

File 1

File 3

File 2

lv03

lv02

lv01

High Speed Switch

vsd01

vsd02

vsd03

N
od

e
B

Table

Tablespace

N
od

e
A

D
ev

ic
e

D
riv

er

VSD Device Driver

VSD Device Driver

VSD Device Driver

VSD Device Driver

VSD Device Driver

VSD Device Driver
438 RS/6000 SP System Performance Tuning Update

Figure 53 on page 438 shows the VSD structure in more detail. Node A thinks
it has three files that make up a tablespace, but the files are actually VSDs.
When Oracle reads from or writes to these files, the requests are passed over
the SP Switch (high speed Switch) to the right node.

In OPS, all Oracle data files are raw devices; there are no JFS based data
files except for the init.ora parameter files. Reading from, and writing to, a
table means I/O operations are performed to one or more of the files that
make up the tablespace in which the table resides. As far as Oracle knows,
these files behave like real devices but are actually VSD devices. If
necessary, the disk I/O requests are redirected to the node with the logical
volumes that contain the actual data where the regular logical volume
manager device driver actually does the disk I/O.

For more information about VSD tuning, refer to Chapter 13, “VSD” on page
353.

17.1.3 Distributed lock manager (DLM)
Figure 54 illustrates how DLM works:

Figure 54. Distributed lock manager operation

The following is a brief description on how the DLM works by taking a simple
example where the instances on the far right and far left want to update the
same block in the database. The order is as follows:

VSD - Virtual Shared Disk

DLM(1)Lock/OK
(2)Read

(3)Lock(4)Force

(5)W
rite

(7
)R

ea
d

(6)OK

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Front
End

SGA

Back
End

Adapter AdapterAdapterAdapter Adapter
Chapter 17. Oracle 439

1. The right instance wants the block, so it requests a lock from the DLM for
that block, and the DLM grants the lock because no other instance has the
lock.

2. The right instance reads the block into its local SGA buffer cache.

3. The left instance wants the block, so it requests a lock from the DLM for
that block, but the DLM finds that the block is locked.

4. The DLM requests the right instance to release the lock.

5. When the right instance has finished the transaction, it writes the block to
the disk via the VSD and informs the DLM that it no longer needs the lock
and releases it.

6. The DLM grants the lock to the left instance.

7. The left instance reads in the block.

Note that this example is for instances needing to update a block. In the case
of read access, multiple instances can have a read-only copy of a block, but if
an instance wants to update the block later, they all have to release the read
copy.

Improvements have been made in Oracle8i (Version 8.1.5 and later), which
improve OPS performance by eliminating the need for two disk operations
when one instance needs a read-only copy of a data block that is modified in
another instances cache.

In this case, a ping is replaced with a cache to cache transfer of the data
block over the switch or network. This is referred to as Cache Fusion. The
cache to cache transfer over the network, along with the required DLM
communication, is much faster than having one instance write the block out to
disk and the other instance read it from disk.

17.2 Oracle tuning

In this chapter, we cover the important items to make your Oracle database
run well on the AIX platform. These tuning details are AIX specific, and we do
not recommend using them on other platforms.

You can work with Oracle in SP systems in two ways:

• With Oracle Parallel Server, with a parallel database, using VSD and
taking advantages of the SP parallel structure. In this case, the database
is based in raw devices.
440 RS/6000 SP System Performance Tuning Update

• With the traditional version of Oracle in any node (or SP-attached server
node). In this case, the tuning for the database and the system is the same
as any other RS/6000 system. Both JFS or raw devices can be used. In
this chapter, we cover the two possibilities.

17.2.1 Oracle tuning order
There are several levels that need to be addressed in order to tune the Oracle
RDBMS:

1. Gather all information possible to build a picture of the machine and how it
is behaving.

2. Document the Oracle parameters. This can be done in different ways
using DBA tools.

3. Check for the obvious mistakes that degrade performance, in both AIX
and Oracle:

- Incorrect use of asynchronous I/O. The feature is a normal operation
on AIX because it reduces CPU use with no risk and is recommended
by IBM and Oracle.

- Incorrect disk subsystem installation. Not balancing disks between
SSA loops and adapters, mirror copies placed in the same adapter, etc.

- Redo log disks should be separated out onto a dedicated and mirrored
pair of disks.

- Oracle running out of memory. It must have a significant amount of
memory to operate at high performance level.

4. Tune the database and system for maximum performance, reviewing
these areas:

- Disk and I/O: Sections from Section 17.2.2.1, “AIX asynchronous I/O”
on page 442 to Section 17.2.2.6, “Disk sets for hot disk avoidance” on
page 445 cover these items.

- Memory: Sections from Section 17.2.2.7, “AIX sequential read ahead”
on page 446 to Section 17.2.2.10, “AIX buffer cache size” on page 447
cover this item.

- CPU: Go to Section 17.2.2.11, “SMP balanced CPU utilization” on page
449 for more information.

- Network: Go to Section 17.2.2.12, “Networking parameters” on page
450 for more information.

- Access method (SQL)

- Oracle contention (processes fighting for resources)
Chapter 17. Oracle 441

These last two items are only Oracle-related and will not be cover in this
redbook.

17.2.2 Tuning AIX for Oracle
This section contains the most common AIX tuning hints that should be
considered as normal operation. They are not in any particular order.

17.2.2.1 AIX asynchronous I/O
In the Oracle init.ora configuration file, set this to TRUE. For Oracle 7:

use_async_io = true

and for Oracle 8:

disk_asynch_io = true

Then set the minservers and maxservers using the AIX smit command
SMIT->Devices->Asynchronous I/O->Change/Show Characteristics of
Asynchronous I/O (or just type smit aio) to:

• MaxServers = 10 * number of disks, but with a maximum of 10 times
the number of processors in the machine.

• MinServers = MaxServers /2

For example, on a machine with 30 disks, Max Servers = 300 and MinServers
should be 150, but if this machine only has four CPUs, then MaxServers = 40
and MinServers = 20 is sufficient. Higher numbers will not hurt performance,
as it only results in more kernel processes running that do not actually get
used. See Section 6.3.11, “Asynchronous I/O” on page 169 for more details.

Using asynchronous I/O is likely to increase performance. There is no risk of
reducing performance, so it should always be used.

17.2.2.2 AIX Logical Volume Manager versus Oracle files
To spread out the data and disk workload across disks, you have two choices:

1. Use Oracle - As the Oracle DBA, use a lot of Oracle files and place them
onto disk by creating a logical volume on a particular disk, then monitor
the database objects (tables and indexes) in the files and move objects
between files to balance disk use. In this case, the AIX System
Administrator simply creates each Oracle file (JFS or raw logical volume)
on a separate disk.

2. Use AIX - As the AIX system administrator, use the AIX Logical Volume
Manager (LVM) to create each JFS or raw logical volume on multiple
disks. Use striping to spread data across disks and then monitor the AIX
442 RS/6000 SP System Performance Tuning Update

physical volumes. In this case, the Oracle DBA does not have to balance
disk use between Oracle files and, therefore, disks.

The AIX LVM has a lot of options you can tune, and striping data across disks
is very effective, as it makes full use of the disks in terms of usage, makes
excellent use of read-ahead for sequential I/O, and spreads disk I/O evenly
for better performance. For striping, you can use the following values to start:

• Stripe unit size = 32 KB or 64 KB

• max_coalesce = 64 KB

• minpgahead = 2

• maxpgahead = 16

Some recommendations about stripping in AIX:

• The striped LV size must be a multiple of the number of drives used. For
example, if the strip size is 32 KB, and the LV is spread across eight disks,
then the size of the LV must be a multiple of 32 * 8 K. This allows the LVM
to create the LV with a complete number of stripes and avoid a situation
where the last stripe does not cover all the disks.

• It is recommended that striped data and the database logs are on different
sets of disks.

• After AIX 4.3.3, the LVM allows striping and mirroring at the same time.
This has been tested for performance and works well.

Benchmarks have shown using AIX LVM to stripe data can increase
performance on disk bound systems up to three times normal. Disk bound
batch workloads particularly benefit from this.

17.2.2.3 Create logical volumes at a standardized size
When creating logical volumes in order to use them as Oracle files, create all
of them with standard size.

We recommend making all the files 1 GB or 2 GB on large machines. This
size of file does not cause large file problems and can be copied or moved
around the system. It is worth staying under the 2 GB limit because larger
files can still cause problems and lower performance. Some applications,
tools, and commands have problems with files larger than 2 GB because they

It is strongly recommended by IBM and Oracle that the benefits of the AIX
LVM are fully used.

Note
Chapter 17. Oracle 443

have not been re-coded to make use of the 64 bit file system calls required to
handle larger file sizes. To hold files larger than 2 GB in a JFS requires the
use of the large file support version of the JFS. This is not as efficient as the
regular JFS. There are occasions when smaller files are needed in the
database, and we recommend using 64 MB as a minimum.

17.2.2.4 AIX JFS versus raw devices
This is a much discussed subject with arguments in favor of both sides. The
two options are:

• JFS - If your database is not I/O bound, that is, your applications do a lot
of computation on small or infrequently retrieved data, then JFS is a good
choice, because its simpler to create, work with, administer, and back
up/recover.

Reading a block from a JFS file means it is moved from disk to the AIX
buffer cache or file systems cache and is then copied from the file systems
cache to the Oracle SGA for the process to access the data.

• Raw devices are harder to work with, as they do not appear in the file
system. Raw devices avoid the double buffering of data. This means the
data is read from disk straight to the Oracle SGA. The same is true for
writing to a raw device. Because the database does not use the AIX buffer
cache for data access, this cache size can be a lot smaller, and memory is
freed up and can be used to support a much larger Oracle SGA.

In Table 46, you can see the common memory distribution for JFS or raw
device databases:

Table 46. Memory distribution for JFS and raw device databases

Raw devices are faster. The number of databases that cannot benefit from
faster disk access is small. Therefore, raw devices are recommended for
performance reasons. The main problem is that some backup systems do not
directly support the backing up of raw devices.

From benchmark experience, moving to raw disks for disk I/O bound systems
is likely to increase performance by 0 - 50 percent provided the SGA size is
also adjusted to counteract that the AIX buffer cache is no longer used.

JFS database raw device database

33% for processes

33% for SGA

33% for file systems cache

33% for processes

60% for SGA

6% for file systems cache
444 RS/6000 SP System Performance Tuning Update

17.2.2.5 AIX disk geometry considerations
With the AIX LVM, you can place data (logical volumes for JFS use or raw
devices) on particular positions of the disk. The center part of the disk is the
fastest because, on average, the seek time to the center position is less than
a seek to or from the edges of the disk, which causes higher head
movements. Use the -a option of the mklv command to set this or, in SMIT,
the POSITION on physical volume option.

If the disk center position is the only part of the disk that is used, then the disk
average seek times will be much faster. This means the disk will appear to
have lower seek times than the average quoted for the entire disk. This option
should be considered if you have highly performance critical parts of the
RDBMS where maximum performance outweighs the extra costs.

This may increase performance by up to 10 percent.

17.2.2.6 Disk sets for hot disk avoidance
This redbook consistently recommends disk protection and avoiding hot disks
within the database.

For both RAID 5 and striped mirror disk protection, the data is spread across
multiple disks:

• For RAID 5, we recommend seven disks plus one parity disk for an eight
disk RAID 5.

• For striped mirror (both PP level or fine stripe on AIX 4.3.3), we
recommend spreading across eight or 16 disks.

The result is that a single hot disk is impossible, but you can still have hot
eight or 16 disk sets. But, the performance problems will be eight (or 16)
times smaller as a result.

The move from JFS to Raw devices is a simple process and does not
require exporting and importing the whole database, but can be done file
by file.

Note

When creating a database, create the performance critical logical volumes
first in the center of the disks to ensure they get the best possible
performance.

Logical Volume placement
Chapter 17. Oracle 445

It is traditional, and Oracle’s recommendation, to split index, data, and
temporary tablespaces onto different sets of disks. This means we should
have these groups of eight (or 16) disks assigned to one purpose or another.

For more information about I/O tuning go to Section 6.3, “I/O” on page 141.

17.2.2.7 AIX sequential read ahead
This only affects JFS file system based database files.

The Virtual Memory Manager spots sequential reading of JFS based
database files by watching the access pattern of read system calls. After a
number of sequential reads are noticed, it will attempt to read up to the
maxpgahead blocks of the file in advance. By default these, are:

• minpgahead 2

• maxpgahead 8

These can be increased to increase sequential reading ahead of data, which
will speed up sequential reads using vmtune. For example:

vmtune -r 512 -R 1024

Keep the numbers in powers of 2.

For more information about memory tuning, see Section 6.1, “Memory” on
page 115.

17.2.2.8 AIX paging space
Paging in any UNIX is very bad news because it can seriously reduce
performance. If paging gets bad, AIX will start swapping processes out.
Ideally, paging should be completely avoided. When users start and stop
large processes, there is likely to be some limited paging (this is how AIX gets
the program into memory), but this paging should be limited and short lived,
and no paging for long periods is the best. We recommend, in general,
spreading out paging space onto multiple disks.

Check to see what is in memory with ipcs and ps aux (check the RSS column
values) and use the vmstat command to monitor paging. See Section 6.1,
“Memory” on page 115 for more details, or the AIX manuals.

In large configurations, such as the RS/6000 S Series (SP-attached server
node) with 12 to 24 CPUs, AIX can support thousands of users and their
processes. With large numbers of programs running, there is a high chance
that they are going to change their working sets. This causes regular paging.
So, for this size of machine, benchmark people use the rule 10 pages per
446 RS/6000 SP System Performance Tuning Update

second per CPU. So, for a 12-way machine, 120 pages per second is
acceptable; zero is preferred.

17.2.2.9 AIX free memory
For JFS database files, there can be a copy of the disk block in both the
Oracle SGA buffer cache and in the AIX buffer cache. This double buffering
can affect performance and cause disk I/O bottlenecks. There are two AIX
buffer cache tuning parameters that determine the size of the free list:

• minfree - Below this limit, page stealing starts trying to reclaim memory
pages.

• maxfree - Above this limit, page stealing stops.

For a full explanation of these parameters, see the AIX documentation or
Section 6.1.2.4, “minfree and maxfree” on page 119.

On machines with large memory (1 GB or more), you should try to keep a
small amount of free memory. Making minfree and maxfree larger should
increase the free memory slightly. This means always wasting a little memory,
but also means disk I/O is not delayed. For example, keep 128 pages free by
using:

vmtune -f 128 -F 144

On machines with less memory (less than 1 GB), do not change these
parameters.

We recommend that only experienced AIX administrators change these limits
because if they are set wrong, they can cause a system to perform slowly or
strangely.

17.2.2.10 AIX buffer cache size
This depends a lot on the workload and I/O characteristics of your database
and whether you are using a JFS file system based database or raw devices.

There are two AIX buffer cache tuning parameters that determine the AIX
buffer cache size:

• minperm - Below this limit, file and code pages are stolen.

• maxperm - Above this limit, only file system pages are stolen.

The numbers are pages of memory used by the buffer cache; the system will
try to keep the AIX buffer cache size between minperm and maxperm
percentage of memory. Use the vmtune command with no parameters to
Chapter 17. Oracle 447

determine the current values of the minperm and maxperm. At the bottom of
the output is the total pages in the system. Look for:

number of valid memory pages = [number]

Also, at the bottom of the output is the percentages of memory that the values
of minperm and maxperm work out too, which is often more helpful. To
change minperm and maxperm, you have to work out the actual number of
pages that will work out to the percentages you are aiming for.

For a full explanation of these parameters, see the AIX documentation or
Section 6.1.2.6, “minperm and maxperm” on page 123.

The defaults should work out to approximately 20 percent and 80 percent of
memory respectively.

Buffer cache size for a JFS based database
For JFS based databases, you are using the AIX buffer cache.

On machines with large memory (1 GB or more), you will find that 20 percent
of memory is not available for file system cache (200 MB). This is a large
amount of memory. There are two cases to consider:

• On systems that have only a few or small applications, this memory is not
all used up by the application or RDBMS code. In this case, raising
maxperm will make more of this memory available for AIX buffer cache
use (for example, change maxperm to 95 percent of memory).

• On systems with very large applications, you might find that AIX keeps
stealing application code pages, which results in continuous paging of
application code. In this case, lowering maxperm will allow higher
percentage of memory to be allocated to application code and reduce
paging (for example, change maxperm to 70 percent of memory).

On machines with less memory, do not change these parameters or be very
careful, as the default values have been found to work well.

Buffer cache size for a raw device based database
For raw device (also called raw disk, partition, or logical volume) based
databases, you are not using the AIX buffer cache to any great extent. It is
actually being used for disk I/O for AIX processes and, for example, RDBMS
error log files, but the bulk of the RDBMS disk I/O is bypassing the AIX buffer
cache (that is a major point of using raw devices).

On machines with large memory (say 1 GB or more) that are only running an
RDBMS, you will find that between 20 percent and 80 percent of memory has
448 RS/6000 SP System Performance Tuning Update

been earmarked for the AIX buffer cache. But the Oracle SGA is occupying a
large part of memory. For example, the SGA might be 50 percent of memory;
so, the other 50 percent is used shared between processes and buffer cache.
This means the values of 20 percent to 80 percent are not sensible settings.
We might page out process memory (code or data) from memory
unnecessarily.

When the system is running normally, use the vmtune command with no
parameters to determine the amount of memory used for the buffer cache. At
the end of the output, you will find a line like:

number of file memory pages=[number] numperm=[num] percent of real
memory

The second number (the numperm percentage) is the one to think about. If
this is less than the minperm (on the line above), then we have the memory
pages being stolen from code and file system buffer cache equally. This
probably results in unnecessarily paging out processes.

Another way to look at this is to say that the file system buffer cache should
be 20 percent to 80 percent of the memory not occupied by the Oracle SGA.
If, for example, the SGA is 50 percent of memory, then the buffer cache
should be 10 percent to 40 percent. The important value is that of minperm.
You could never reach the 80 percent default value of maxperm because the
SGA is taking up a large part of memory.

There are a number of cases to consider:

• If minperm is greater than 20 percent of the non-SGA memory, set
minperm to be this value and reconsider once the system has settled
down.

• If the numperm number is greater than minperm, you should consider
allocating more memory to the Oracle SGA.

• If numperm is smaller than minperm, you are freeing process memory and
should reduce minperm. For example, change minperm to 2 percent of
memory.

17.2.2.11 SMP balanced CPU utilization
Most large systems are now SMP machines, as this allows multiple fast
processors to scale up to higher power machines. There is one small
drawback in that the application and database must have enough processes
to keep all the CPUs busy. If only one process is used, only one CPU can be
used (assuming it is a single threaded application), and, therefore, only a
fraction of the available power of the machine is used. Fortunately, Oracle has
Chapter 17. Oracle 449

multiple processes (one per user as a default) and for large tasks allows it to
be parallelized to make it effective on an SMP. It is worth checking that this is
actually happening, particularly for batch jobs that have, in the past, often
been implemented as a single process. Use the sar -P ALL 1 10 command to
check if all CPUs are busy. For more information about CPU tuning, go to
Section 6.2, “CPU” on page 129.

17.2.2.12 Networking parameters
For a complete description of this topic go to Chapter 4, “Network tuning” on
page 21 or more specifically to the section that describe the network
configuration for database environments, Section 4.7.3, “Tuning for
commercial and database environments” on page 89.

17.2.3 Top 10 Oracle parameters
The parameters that make the biggest difference in performance (and should,
therefore, be investigated in this order) are listed in the following sections.

17.2.3.1 db_block_size
This cannot be changed after the database has been created. It is vital to get
this correct before you start. As AIX does all I/O at a minimum of 4 KB, we do
not recommend any sizes that are smaller than this, as it will be slower.

We suggest the following Oracle block sizes:

db_block_size=4096 for:

• Small databases (less than 10 GB)

• JFS based databases (because AIX does 4 KB pages)

• OLTP workloads, where you typically only want one row in the block and
reading an extra block would not help

• Mixed workload (OLTP and DSS) databases to assist OLTP performance

db_block_size=8192 for:

• Large database (greater than 10 GB)

• DSS workload, where reading more rows in one go can help

• Large rows, where most of the rows of the database are large, and you will
get less wastage at the end of blocks with larger blocks

• Databases with batch workloads, where the dominant database load
involves using large table scans (and not indexed single row accesses)
450 RS/6000 SP System Performance Tuning Update

db_block_size=16384 for:

• For very large databases (greater than 200 GB) with DSS workloads

17.2.3.2 db_block_buffers
This value is the number of disk blocks stored in the SGA. This is the largest
part of the SGA. The memory size allocated will be:

db_block_buffers * db_block_size

If you have no idea how large to set the parameter (which is typical on a new
system until you start running tests), then set it so that the SGA is roughly 40
percent to 50 percent of memory.

If your database data is in a Journaled File system (JFS), then you will need
to allocate space in real memory for the AIX buffer cache. The AIX buffer
cache is dynamically controlled, but you should make sure sufficient memory
is available for it. However, if your data is held on raw devices, then disk I/O
does not use the AIX buffer cache, and it does not need to be large, and more
memory can be allocated to the Oracle buffers. Figure 55 shows this
difference.

Figure 55. SGA buffer cache memory sizes for raw device and JFS DBs

If you can estimate how much memory is left after allowing for

• AIX (32MB)

• The basic Oracle process

AIX Kernel

File Systemcache

SGA

Oracle processes

User processes

JFS database

75%

AIX Kernel

File Systemcache

SGA

Oracle processes

User processes

Raw device database

100% 90%
Chapter 17. Oracle 451

• The Oracle Servers

• The user application processes

then we recommend to allocate the following amount of the remaining
memory:

• For JFS based databases, 75 percent

• For raw devices, 90 percent

Once the system is running, make sure it is not paging (in this case reduce
the SGA size) or has free memory (make the SGA larger). The aim with the
number of buffers is to have a very high buffer cache hit ratio (greater than 95
percent).

17.2.3.3 use_async_io or disk_asynch_io
AIX fully supports the asynchronous I/O for both JFS and raw devices.

On Oracle 7, this parameter is called use_async_io.

On Oracle 8, this parameter was renamed to disk_asynch_io, and the default
is set to TRUE.

17.2.3.4 db_writers, db_writer_processes and dbwr_io_slaves
In Oracle 7, the name of the parameter is db_writers.

This parameter decides how many database writer processes are used to
update the database disks when disk block buffers in the SGA are modified.
Multiple database writers are often used to get around the lack of
asynchronous I/O in some operating systems, although it still works with
operating systems that fully support asynchronous I/O, such as AIX.

We have recommended, in the previous section, that asynchronous I/O is
used, so we recommend you use a single database writer to keep things
simple. Therefore, set this parameter to 1 to reduce the database writer
overhead.

In Oracle 8, this functionality is covered by two parameters called
db_writer_processes and dbwr_io_slaves.

The db_writer_processes parameter specifies the initial number of database
writer processes for an instance. In most cases, one database writer process
is enough, but it is recommended to use multiple processes to improve
performance for a system that writes a lot of data. The dbwr_io_slaves
parameter is similar to the Oracle 7 db_writers parameters. However, if the
452 RS/6000 SP System Performance Tuning Update

dbwr_io_slaves parameter is used, then only one database writer will be used
regardless of the setting for db_writer_processes.

Therefore, set the db_writer_processes parameter to 1 to reduce the
database writer overhead and leaving dbwr_io_slaves at the default value.

17.2.3.5 shared_pool_size
This parameter is very hard to determine before statistics are gathered about
the actual use of the shared pool. Its size can vary from a few MBs to very
large, like 100 MB, depending on the applications’ use of SQL statements.

If you have no statistical information, use the following defaults to create a
base of information:

• For smaller systems (128 MB to 512 MB of memory)

shared_pool_size = 3 MB

• For system with more than 1 GB

shared_pool_size = 30 MB

Some applications that make heavy use of the this area have a
shared_pool_size of up to 200 MB.

17.2.3.6 sort_area_size
This parameter sets the size of memory used to do in-memory sorts. In OLTP
environments, sorting is not common or does not involve large numbers of
rows. In Batch and DSS workloads, this is a major task on the system, and
larger in-memory sort areas are needed. Unlike the other parameters, this
space is allocated in the user process and not just once in the SGA. This
means that if 100 processes start a sort, then there is 100 times
sort_area_size space allocated in memory, so you need to be careful, or you
will run out of memory and start paging.

Set sort_area_size to be 200 KB on a small system with a lot of users, and at
2 MB on larger systems.

17.2.3.7 sql_trace
This parameter makes Oracle collect information about performance. This
creates an extra load on the system. Unless you require the information for
tuning, this should be set to FALSE.
Chapter 17. Oracle 453

17.2.3.8 timed_statistics
This parameter makes Oracle collect timing information about response
times, which creates an extra load on the system. Unless you require the
information for tuning, this should be set to FALSE.

17.2.3.9 optimizer_mode
If the application provider recommends to set this to RULE, do so. Otherwise,
you should set this to CHOOSE (which is the default for newer versions of
Oracle).

17.2.3.10 log_buffer
The redo log buffer is used to store the information to be sent to the redo log
disk. This buffer speeds up the database performance by allowing
transactions to record the updates to the database but not send nearly empty
log records to the redo log disk. If many transactions added to the log buffer
faster than they can be written to disk, then the buffer can get filled up. This is
very bad for performance.

We recommend a minimum of 128 KB, but many DBAs just set this to 1 MB to
make it extremely unlikely to ever fill up.

17.2.3.11 rollback_segments
The rollback segments contain the original contents of blocks that are
updated during a transaction.

We recommend a lot of small roll backs. For systems with less than 32 active
concurrent transactions at one time that are updating rows, create eight
rollback segments. However, working out the number of transactions in
advance is nearly impossible. If you have higher numbers of active
transactions, then Oracle recommends one rollback segment per four
transactions, but do not go higher than 50 rollback segments.
454 RS/6000 SP System Performance Tuning Update

Chapter 18. Lotus Notes

Lotus Domino Server and Lotus Notes Workstation is a client/server
environment that allows users (or clients) to communicate securely over a
local area network or telecommunications link, and create and access
documents residing on a shared computer (or server). With Lotus Domino
Server and Lotus Notes Workstation, people can work together regardless of
their software or hardware platform or technical, organizational, or
geographical boundaries. Lotus Notes Workstation combines an application
development environment, a document database, and a sophisticated
messaging system, giving you the power to create custom applications for
improving the quality of everyday business processes in areas such as
product development, customer service, sales, and account management. At
its most basic level, Lotus Notes Workstation is a document database,
serving as a repository for both textual and other information, for example,
images, presentations, and spreadsheets. Lotus Domino Server and Lotus
Notes Workstation provide the ability to distribute this information throughout
an enterprise via replication, yet only those who need to see the information
have access to it. In short, the intent is to improve Communication,
Coordination, and Collaboration across any enterprise.

The Domino Server It provides services to Notes Workstation users and other
Domino Servers, including storage and replication of shared databases and
mail routing. The Lotus Domino Server can run on PCs under OS/2 and
Windows NT. It can also run as a NetWare NLM, or under UNIX systems such
as IBM AIX, HP-UX and Sun Solaris.

Only the TCP/IP (Transmission Control Protocol/Internet Protocol) and
IPX/SPX (Internetwork Packet eXchange/Sequenced Packet eXchange)
network protocols are supported for Lotus Domino Server Release 4.5
running on AIX.

18.1 What can be tuned now in the SP and AIX environments?

The first recommendations to tune an AIX based machine, like our SPs, is to
upgrade the hardware.

• Add more memory (256 MB for 300 Users).

• Add L2 cache (if possible).

• Install a faster processor.

• Add additional processors on SMP systems.
© Copyright IBM Corp. 2000 455

• Use fast disk - Raid 0 with striping

That looks very easy from the software point of view and totally opposite to
what we mentioned in Chapter 15, “Web applications” on page 393. There we
talked about the yearly hardware performance increase compared with the
workload increase. But Lotus Notes is usually used in companies where the
number of employees is not growing 1000 percent a year. The price for
hardware is also getting cheaper, and in this particular case it is easier to
increase system performance by adding/buying new hardware. But we do
have some possibilities on the AIX side to tune some performance related
values:

• Use IPX/SPX instead of TCP/IP if you don't need TCP/IP functionality
such as IP-routing and so on.

• Use smit to increase the maximum number of processes allowed per user
to 102.

• Use smit to increase paging Space in the range of 300 to 500 MB.

• Use smit to set the maximum number of Licensed Users to 16.

• Set the SHARED_DPOOL variable as followed:

export SHARED_DPOOL=(1/4(Total Machine RAM in bytes)/10)

18.2 Transactional logging and how it operates

Transactional Logging is a new feature in Domino R5. It is essentially a new
method of writing out database changes to improve performance and to
ensure data integrity. Its main purpose is three-fold:

• To improve performance on the R5 server through sequential writes to the
Transactional Logs.

• Better data integrity by avoiding inconsistencies and data corruption

• Faster server restart and crash recovery

A Transactional Log is simply a binary file where transactions are written. The
transactions are saved in log extents that have a TXN extension. Each log
extent can grow to a maximum capacity of 64 MB before a new extent is
created and then written to. Multiple log extents collectively can grow to a
maximum size of 4 GB. The number of log extents created depends on the
setting specified in the Server document in the Maximum Log Size field.
456 RS/6000 SP System Performance Tuning Update

18.2.1 Performance improvement
When transactional logging is enabled on the server, the performance
improvement is mainly due to the nature of how transactional logging
operates. The writes to the Transactional Log are sequential. This is faster
since there is less head movement and there is never a need to search for a
place on the disk to write as there is in R4 or if transactional logging is not
enabled.

The Transactional Logs must be on a separate physical drive for there to be
any performance improvement. It is not sufficient to simply redirect the logs to
a separate partition or a separate logical drive. In general, if the transactional
logs are on a separate drive, a 10-20% improvement should be seen.
However, if the logs are put on the same drive, it is likely that there will be
approximately a 60% degradation.

In R4, writing to disk was time consuming. Modifications could occur across
multiple databases or different parts of one database. As a result, the head
had to move over various areas of disk to change or update data. This means
there was a significant amount of transaction time committing data to the
actual NSF (database). Without the benefit of transactional logging in R4,
fixup relies on the fact that 99.9% of the data is present in the NSF to correct
integrity problems.

In R5, when transactional logging is enabled, complete transactions are
"committed" to the Transactional Log. All writes are done to the transactional
log before they are ever written to the database. The writes are done
sequentially at least after each transaction so the Transactional Log is up to
date generally to the hundredth of a second. Again, because the writes are
sequential, there is less I/O and performance is improved. Please note that
view indexes and attachments are never transactionally logged.

When transactional logging writes transactions to the logs, an undo record
and a redo record are usually committed for each transaction. First an UNDO
log record is generated in the event of a system outage. This is done before a
change is written to a database. If a transaction is undone, a change is never
made to the actual NSF. Before committing a transaction, a REDO record is
also generated. It is used to re-apply a transaction from the transactional log
to the database in the event that it did not get flushed to the NSF before a
server outage. Undo and redo records ensure that if a change is half done it
will be fully undone, and if a change was completely done then it will be fully
re-done to the NSF.
Chapter 18. Lotus Notes 457

18.2.2 Flushing and hardening
Once changes are put into the Transactional Log, the changes must also
eventually be hardened to the database. This occurs through a process called
flushing. Any open database has an in-memory version of the database that
is held in the UBM (Unified Buffer Manager). Flushing moves all changes that
were made to the database but only kept in memory (UBM) to the actual NSF
file. There is no set interval for this as the UBM determines when flushing will
occur. It is usually done when there is a lull in the server activity. The DBIID
(Database Instance Identifier) is used to correlate the updates in the
Transactional Logs and in-memory to the respective database. It is important
to note, however, that the Transactional Logs are not read from during this
process because the Transactional Logs are mainly a write-only object. The
updates are read and flushed from the UBM. They are only read from the
Transactional Logs during crash recovery. Transactional logging is more
expedient because there are not a lot of read/writes to it during server
production. Otherwise performance would suffer and it would defeat one of
the purposes of transactional logging.

The Runtime/Restart Performance field in the Server document determines
how many MB of changes are kept in memory. The amount of space used is
bound by the "performance" level chosen in the Server document. There are
three choices: Standard (default), Favor Runtime, and Favor Restart
Recovery Time. If Standard is selected, the Redo. Limit is 49 MB. This means
that checkpoints during runtime are minimal and 49 MB worth of changes are
held in the UBM before they are flushed and hardened to databases. The
Favor Runtime choice has a Redo. Limit of 500 MB. This means that more
information is held in the UBM and hardened to the database less frequently.
There are also fewer checkpoints, making runtime faster but server startup
slower. The Favor Restart Recovery Time choice allows for more checkpoints
during runtime. There is less information held in the UBM and data is
hardened to databases more frequently. The trade-off is that production time
is slower but server restart is faster.

18.2.3 Crash recovery
After a server outage the Transactional Logs are played back. The Recovery
Point is used to determine the oldest log information that needs to be
re-applied to databases. It is the point that databases are restored to, which
is usually only a few milliseconds before the outage. Partial transactions will
be undone and rolled back to the last good state in an effort to avoid
corruption in the database. They will not be hardened to the database. It is
important to realize that transactional log recovery can only re-apply or undo
458 RS/6000 SP System Performance Tuning Update

transactions not written to disk at the time of the failure. Anything that has
already been hardened to a database is not touched by transactional logging.

Customers should not move databases away from a server and copy them
over from another server after a crash. If this is done, the DBIID will change
and information in the Transactional Log will not be applied to the database
(loss of data) because the DBIID in the Transactional Log will be inconsistent
with the DBIID in the newly copied database. If the DBIID changes and a
backup is not taken after the fact, the database cannot be successfully
restored (the backup will have the old DBIID and the transactional logger will
not "know" the old DBIID).

18.2.4 Transactional Logging NOTES.INI Parameters
Transactional logging is enabled in the Server document. All the fields in the
Server document map to specific NOTES.INI parameters.

The parameters are as follows:

• TRANSLOG_AutoFixup=0
Tells whether autofixup is Enabled or Disabled.

• TRANSLOG_UseAll=0
To use all available space or not.

• TRANSLOG_Style=0
Circular vs. Archive.

• TRANSLOG_Performance=2
Favor runtime, Standard, Favor restart recovery.

• TRANSLOG_Status=1
Whether transactional logging is Enabled or Disabled.

• TRANSLOG_Path=XXX
Specifies the path to the .TXN files.

18.3 Tuning servers for maximum performance

This section highlights Lotus Notes server tasks and discusses common
server performance problems.

18.3.1 Server tasks
Many server tasks are started by default. If you don’t need a particular task it
is much better to turn it off; tasks such as Calendaring and Scheduling can
Chapter 18. Lotus Notes 459

require up to 15 to 20 percent of the CPU. The table below summarizes the
main tasks you are able to disable:

Table 47. Server tasks that may be disabled

18.3.2 Server performance problems
The following are the most frequent performance problems seen when
running a Lotus Notes server. Most are solved by reconfiguring parameters in
the server notes.ini file.

18.3.2.1 It takes a long time to display views
Large view will take longer to display, but being able to cache these views in a
larger view buffer will speed performance as the server will not have to read
the view from the disk.To increase the view buffer you need to increase the
NSF_BUFFER_POOL_SIZE parameter in the notes.ini file. This setting
increases the maximum size of the cache for storing views (in bytes). You
should also see a corresponding decrease in I/O activity. We do not
recommend increasing it beyond 1/4 the physical memory.

18.3.2.2 It takes a long time to access databases
If database access is slow you can increase the NSF_DBCACHE_MAXENTRIES

parameter. This setting determines the maximum number of database
open/close handles in the cache. You can increase this up to 1872 entries.
This parameter is also found in the notes.ini file.

Large databases require more I/O and use more memory so upgrading the
I/O subsystem or adding more memory will improve the performance. If this is
not possible another solution would be to archive old or little used parts of the
database to reduce its size.

To increase database performance you can also split users across multiple
replicas to save burdening one database and server with all users. If you are

Task Name Turn it off if

Router You are not using the server for electronic mail or workflow.

Calconn
Sched

You are not using the server for calendaring and scheduling.

AMgr You do not run schedules agents. Agent Manager is not required for
WebQueryAgents.

Collector
Reporter

You do not want to track server statistics at regular intervals. You can
still generate server statistics on demand.
460 RS/6000 SP System Performance Tuning Update

using a single server you can put the highly used database on a different
hardware array and refer to it via a database link.

Using clusters can help too. They provide a means for load balancing heavily
used servers and/or databases. Key parameters here include
Server_Availability_Threshold and Server_MaxUsers.

18.3.2.3 CPU saturated
If you are seeing CPU bottlenecks being caused by Notes processes, it could
be an indexer problem. First, increase the number of indexer tasks (this is
only relevant if you have a multiprocessor system); multiple processors can
handle more than one indexer task and so the views are more likely to be up
to date. A good guideline is to set the number of indexers to the number of
CPUs minus one. For example if your server has 4 processors, use 3
indexers. Be careful not to run too many indexers, as this will prevent other
server processes from getting to the CPUs.

You can increase the notes.ini file setting UPDATE_SUPPRESSION_TIME.
This determines the minimum amount of time that must pass before the
indexer runs again.The default is 1 (the unit for this setting being in minutes).
Increasing this value means that the indexer will run less frequently, freeing
up server resources.

The UPDATE_SUPPRESSION_LIMIT parameter determines at what number
of view update requests the view will be updated and the indexer run. The
LIMIT parameter can override the TIME parameter if the LIMIT number of
parameters are received.
Chapter 18. Lotus Notes 461

462 RS/6000 SP System Performance Tuning Update

Chapter 19. Communication server

This document contains tips for network tuning in an SNA environment. It
applies to AIX Version 4.3.

For more information on network tuning in an SNA environment, refer to
publications Communications Server for AIX V4R2 Planning and Performance
Guide, SC31-8220 and IBM eNetwork Communications Server for AIX:
Understanding and Migrating to Version 5: Part 2 - Performance, SG24-2136.

19.1 Communications buffers (mbufs)

Communications Server uses mbufs to send and receive data across the
network, but it is just one of the subsystems that uses mbufs.
Communications Server mbuf resource utilization can affect the performance
of other subsystems such as TCP/IP, NFS, and AFS.

There are two ways to determine how much memory should be made
available as communications memory buffers (mbufs). This amount of
memory is defined using the maximum number of buffers or maxmbuf.

1. 4096 * # of communications adapters

This method counts the total number of communications adapters in the
RS/6000 (whether being used for SNA or not), and then multiplies this
number by 4096. The result is used as the setting for maxmbuf.

For example, if there are two Token-Ring adapters that are being used for
SNA and two Ethernet adapters that are being used for TCP/IP, the
calculation would be four adapters multiplied by 4096, or 16384. 16384
would be the number used for maxmbuf.

2. 25 percent of real memory

SNA generally requires more memory for buffers than other applications.
With the larger memory sizes that have become available, SNA will
usually operate efficiently if the maxmbuf parameter is set to a number equal
to 25% of real memory. In most circumstances, any number larger than 64
MB (65536) will not yield any appreciable benefit.

For example, if there is 128 MB of real memory on the machine, set the
maxmbuf parameter to 32 MB (32768). If there is 512 MB of memory, set
maxmbuf to the recommended maximum of 64 MB (65536).

If SNA_SRF errors are being logged in the system error log, this
parameter should be checked.
© Copyright IBM Corp. 2000 463

19.1.1 Setting maxmbuf
To check the current setting of this parameter, enter the following:

lsattr -El sys0 -a maxmbuf

To change this parameter, enter the following:

chdev -l sys0 -a maxmbuf=new_value

19.2 SNA DLC link parameters

Certain SNA DLC profile parameters significantly impact throughput of file
transfer applications. For Token-Ring and Ethernet, use the following
guidelines:

• The Transmit_Window_Count parameter on any node A should always be
greater than the Receive_Window_Count on any node B for any two
nodes that are connected to each other. This is true even if a node is not
an RS/6000.

• Using large values for Transmit_Window_Count and
Receive_Window_Count does not enhance throughput. Setting the
Transmit_Window_Count to 16 and Receive_Window_Count to a lesser
value should be sufficient for peak throughput.

For an SDLC connection, the Receive_Window_Count does not exist. With
SDLC, the primary_repoll_time_out parm setting must allow enough time for
the largest frame to travel to and from the secondary station. Otherwise,
unnecessary polls will flood the link, eventually bringing it down.

If the link speed is X bits per second and the largest frame is Y bits, then the
primary_repoll_time_out should be larger than 2(Y/X).

19.2.1 LAN-based DLC characteristics
The Token-Ring, Ethernet, and FDDI Data Link Controls contain a parameter
called the Depth of receive queue. This queue is logically between the device
handler and the data link control, and holds asynchronous event notifications

AIX 4.3, the default setting for the sys0 attribute maxmbuf is 0. This value is
known to cause problems with SNA. Set maxmbuf to any value other than 0.

This should be the same as the current setting for the no command’s
thewall setting.

Note
464 RS/6000 SP System Performance Tuning Update

such as the receipt of data packets. This queue defaults to a depth of 32
entries and can be changed by the operator if log entries indicate that the
device handler is overrunning the DLC due to heavy system activity. This
attribute should be changed in small increments because it directly affects
system storage availability.

To change this value, use the following fastpath command:

smit devices

Then follow these steps:

1. Select Communication.

2. Select the type of communication from the list displayed.

3. Select Services.

4. Select Data Link Control.

5. Select Change/Show Data Link Control.

6. Change the parameter value.

19.3 Memory

A rough estimate of the amount of memory required to run a certain number
of sessions is that one additional megabyte of memory will support about
seven additional sessions. The exact number will depend on traffic.

19.4 Paging space

It is advisable to keep the paging space used below 75 percent to ensure that
SNA resources will be available. If these resources must be "paged" out of
real memory, it is important that enough space is available to prevent SNA
from experiencing errors that could result in total failure of SNA
communications. If the percent used is over 75 percent, additional paging
space should be added.

To display total paging space and the approximate amount used, enter:

lsps -s

To display the amount of memory, enter:

bootinfo -r
Chapter 19. Communication server 465

19.5 File transfer applications

When using file transfer applications, the SNA LU 6.2 Mode Profile can be
configured to maximize throughput. Use the following guidelines.

• Larger request/response unit (RU) sizes generally correspond to higher
throughput. The following formula for RU sizes will provide optimum
throughput in most cases.

RU = (I-Field size) - (9 bytes)

• It is also very important to try to match the RU sizes on both sides of
communicating nodes, regardless of the platform. An RU size larger than
one calculated from the formula will result in segmentation of the data and
cause a slowdown in data transfer.

To find the I-field size, use the following command while the link station is
active:

sna -d l -o long |grep -p linkstation_name

Look for the field labeled “Max frame data (BTU) size”. This I-field size is
controlled from within the SNA DLC profile in the SNA configuration. The
I-field size should be system defined or matched exactly with the other
node configuration.

• Generally, increased throughput is also related to larger SEND and
RECEIVE session pacing window sizes. Try setting the SEND pacing and
RECEIVE pacing window sizes to the maximum value of 63.

When writing file transfer applications, use large buffers in the TP code. A
16K buffer size will speed up the transfer.
466 RS/6000 SP System Performance Tuning Update

Part 5. Appendices
© Copyright IBM Corp. 2000 467

468 RS/6000 SP System Performance Tuning Update

Appendix A. Performance toolbox for AIX and parallel extensions

The Performance toolbox for AIX (PTX/6000) is a tool to monitor and tune
system performance, and the Performance toolbox Parallel Extensions
(PTPE) is an extension of the Performance Toolbox for use in an RS/6000 SP
complex.

A.1 Performance toolbox for AIX (PTX/6000)

PTX/6000 uses a client/server model to monitor local and remote systems. It
presents the performance data graphically.

Figure 56 on page 469 illustrates the client/server model used by PTX/6000.
The server requests performance data from the nodes or other networked
computers. The nodes or networked computers in turn supply a stream of
performance data. The server displays the performance data graphically.
When monitoring is complete, the server informs the nodes or networked
computers to stop streaming performance data.

Figure 56. PTX/6000 network monitoring - client/server model

Control

perfserver

perfagent

Workstation

Networked
System

Node or

perfagent

Networked
System

Node or

perfagent

Networked
System

Node or

perfagent

Networked
System

Node or

perfagent

Request
Performance
Data

Performance
Data

Network
© Copyright IBM Corp. 2000 469

The ability to monitor local or remote systems and the network is important in
an RS/6000 SP environment, where a large number of nodes need to be
monitored using a single point of control.

PTX/6000 has the following features:

• Monitors system resources

• Analyzes system resource statistics

• Uses a Graphical User Interface (GUI)

• Is able to process Simple Network Management Protocol (SNMP)
requests

• Supports the RS/6000 SP Performance Toolbox Parallel Extensions
(PTPE)

• Has an Application Programming Interface (API) to create custom-written
applications for analysis of performance archives

A.1.1 PTX/6000 installation

In an RS/6000 SP environment, we recommend that PTX/6000 be installed
on the control workstation and any nodes that are to be monitored or
managed.

We also recommend that the control workstation be used as a PTX/6000
server. The control workstation is designed to be a single point of
management. Using a node introduces another point of management, and
adds an additional system overhead.

A.1.1.1 Installation of PTX/6000 on the control workstation
The steps we used to install PTX/6000 on our control workstation were:

1. Create a PTX/6000 install directory:

mkdir -p /spdata/sys1/install/ptx

2. Change the working directory to the install directory:

cd /spdata/sys1/install/ptx

3. Load the PTX/6000 file sets into the install directory. The method used will
vary depending on the location and media available, but use the smitty

bffcreate fastpath.

4. Install the PTX/6000 performance management software:

installp -aXd /spdata/sys1/install/ptx perfmgr

5. Install the PTX/6000 local monitoring software:
470 RS/6000 SP System Performance Tuning Update

installp -aXd /spdata/sys1/install/ptx perfmgr.local

6. Install the PTX/6000 network monitoring software:

installp -aXd /spdata/sys1/install/ptx perfmgr.network

7. Verify the installation:

lslpp -l perfmgr.*

8. The PTX/6000 agent software is a prerequisite. It should therefore already
be installed.

To check if it is installed, use lslpp -l perfagent.*.

If it has not been installed, use the following steps to install the PTX/6000
agent software:

a. Install the PTX/6000 remote agent:

installp -aXd /spdata/sys1/install/ptx perfagent.server

b. Install the PTX/6000 remote agent tools:

installp -aXd /spdata/sys1/install/ptx perfagent.tools

c. Verify the installation:

lslpp -l perfagent.*

9. Export the install directory from the control workstation to the nodes.

A.1.1.2 Installation of PTX/6000 on each node
To check if the perfagent software has already been installed, use lslpp -l

‘perfagent.*’. If perfagent.server, or perfagent.tools are not installed, the
following steps will install them:

1. NFS-mount the installation directory:

mount <control workstation>:/spdata/sys1/install /mnt

2. Install the PTX/6000 remote agent:

installp -aXd /mnt/ptx perfagent.server

3. Install the PTX/6000 remote agent tools:

installp -aXd /mnt/ptx perfagent.tools

4. Verify the installation:

lslpp -l ‘perfagent.*’
Appendix A. Performance toolbox for AIX and parallel extensions 471

A.2 Performance toolbox parallel extensions (PTPE)

PTPE is an extension of the Performance Toolbox (PTX/6000) for use in an
RS/6000 SP complex.

PTPE is a scalable performance monitor, and when installed in an RS/6000
SP complex, it provides easy access to performance information.

Any node or group of nodes can be monitored with a single point of control.
The performance parameters, and how the information is to be displayed, are
definable. Monitoring can be in real time, or the performance data can be
archived for later analysis.

PTPE performance statistics can be viewed as follows:

• On a per-node basis
• Averaged across a group of nodes
• Averaged across an RS/6000 SP complex

PTPE setup, configuration, and management has been integrated into
Perspectives. PTPE also supports configuration and setup using AIX
commands.

An API is provided. This allows development of customized applications to
extract information from a PTPE archive.

A.2.1 PTPE installation

PTPE must be installed on the control workstation and on each node.

Note: Install PTPE on the control workstation before installing PTPE on the
nodes.

The prerequisites before installing PTPE are:

1. AIX version 4 or later.

2. RS/6000 Cluster Technology.

3. Performance Aide for AIX must be installed on the control workstation and
all nodes that will be monitored.

4. Performance Toolbox (PTX/6000) must be installed on any node or control
workstation that will be used to display or analyze the performance data.

A.2.1.1 Installation of PTPE on the control workstation
The steps we used to install PTPE on the control workstation were:
472 RS/6000 SP System Performance Tuning Update

1. Create a PSSP install directory:

mkdir -p /spdata/sys1/install/pssplpp/PSSP-3.#

The name of the PSSP directory will depend on the version of PSSP that
is used; substitute # for the release number, such as 1 or 2.

2. Change the working directory to the PSSP install directory:

cd /spdata/sys1/install/pssplpp/PSSP-3.#

3. Load the PSSP software into the PSSP install directory. The method used
will vary depending on the location and media chosen. We used ftp to
retrieve the PSSP software from an ftp server or use smitty bffcreate if
the software is available in CD-ROM.

4. Install the PTPE programs:

installp -aXd /spdata/sys1/install/pssplpp/PSSP-3.# ptpe.program

5. Install the PTPE documentation:

installp -aXd /spdata/sys1/install/pssplpp/PSSP-3.# ptpe.docs

6. Verify the installation:

lslpp -l pte *

7. Register the PTPE spdmd daemon:

/usr/lpp/ptpe/bin/spdmdctrl -a

8. Export the PSSP install directory from the control workstation to the
nodes.

9. Create a PTPE monitoring group:

/usr/lpp/ptpe/bin/ptpegroup

A.2.1.2 Installation of PTPE on each node
The steps we used to install PTPE on each node were:

1. NFS-mount the PSSP install directory:

mount <control workstation>:/spdata/sys1/install/pssplpp /mnt

2. Install the PTPE programs:

installp -aXd /mnt/PSSP-3.# ptpe.program

3. Verify the installation:

lslpp -l pte *

4. Add a supplier resource entry:

cp /usr/samples/perfagent/server/xmservd.res /etc/perf
Appendix A. Performance toolbox for AIX and parallel extensions 473

echo "supplier: /usr/lpp/ptpe/bin/ptpertm -p" >>
/etc/perf/xmservd.res

5. Register the PTPE spdmd daemon:

/usr/lpp/ptpe/bin/spdmdctrl -a
474 RS/6000 SP System Performance Tuning Update

Appendix B. How to report performance problems to IBM

If you had no success using this book to solve possible performance
problems, or to make your SP System perform as “fast” as possible, you still
have a way to report the problem to IBM.

We will show you ways to report problems to IBM, and what you need to
provide us to make the best progress in solving your problem. There are tools
available to collect performance data. It is much easier than typing all the
different commands step by step. Support personnel world wide will ask you
for specific information, but here you have a common point to start with.

One useful tool that is provided by IBM is called perfpmr. You can simply
download it as an anonymous user from the following ftp server:

With the ftp tool of your choice (internet browser or ftp command) you can
chose your AIX Level for the perfpmr tool and download it to your local
machine. Follow the README instructions for further details.

The perfpmr tool is a collection of scripts used to gather performance data for
IBM customer support personnel to use in resolving AIX system or application
performance problems on RS/6000 systems. In addition to that tool, we
suggest you provide a snap -bgc output for additional data (lslpp output and
more). Please check you have enough file system space in /tmp before you
start collecting data.

Before or after collecting the data you may contact your local IBM
representative to open a Problem Record (PMR), which is the correct way to
proceed with such problems. Refer to Table 48 for a quick checklist.

Table 48. Checklist

How to report performance problems to IBM - CHECKLIST

Collect data with the IBM provided perfpmr tool. Refer toTable 50 on page 478 for usage
(use README for details).

Collect additional data with the snap -bgc command.

To use anonymous login, go to:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/

and select the appropriate AIX Version for the perfpmr tool.

Note
© Copyright IBM Corp. 2000 475

Hopefully, we can provide you with a solution after providing the requested
information. By using the above procedure, you can at least accelerate the
process.

Quick overview of perfpmr usage

In addition to the regularly used README for the perfpmr script, we provide
you with a short overview on how to run the program after you have

If not already done, CONTACT YOUR LOCAL IBM SUPPORT or Business Partner
to open a problem record

If you have Internet access, please look at:

http//ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.
html

for a World Wide Contact list that includes phone numbers, mailing addresses and
Internet addresses from A to Z.

You can also call the IBM International Assist Line for further details
(see also in the Internet at:
http://www.ibm.com/support/globalofferings/ial.html and
http://www.ibm.com/planetwide/)

USA: 1-800-IBM-4-YOU or 404-238-1234.
EMEA: (44) 0 1475-898-134

Send the data to the responsible Support function.

For the USA, send it via ftp to:

testcase.software.ibm.com

Contact your local IBM support representative for the ftp directory location where you
will store your test case file.

The mailing address is for USA Customers:

IBM Corp. / Zip 9551 / Bldg. 905
Attn.: AIX Testcase Dept. H8TS
11400 Burnet Road
Austin, Texas 78758-3493 USA

World Trade customers: please contact your local IBM representative for a ftp/mailing
address.

How to report performance problems to IBM - CHECKLIST
476 RS/6000 SP System Performance Tuning Update

successfully installed it on the node of your choice. Refer to Table 49 for
installation details.

Table 49. Installation of perfpmr

Now we are able run the perfpmr script simply by typing it. To gather more
information, we also issue the snap -bgc command, which will help you gather
general information about the system including lslpp, ODM data, and much
more. See Table 50 on page 478 for more details.

INSTALLING THE PACKAGE

The following assumes the tar file is in /tmp and named 'perf433.tar.Z'.

Login as root or use the 'su' command to obtain root authority

Create perf433 directory and move to that directory (this example assumes the directory
built is under /tmp)

mkdir /tmp/perf433
cd /tmp/perf433

Extract the shell scripts out of the compressed tar file:

zcat /tmp/perf433.tar.Z | tar -xvf -

Install the shell scripts

sh ./Install
Appendix B. How to report performance problems to IBM 477

Table 50. Usage of perfpmr

Usage of perfpmr and snap -bgc

Check for enough file system space in the /tmp directory or the directory you chose.
Thumbvalue: 12 MB file system space per processor (check with df -k command)

Create a working directory:
mkdir /tmp/perfdata
cd /tmp/perfdata

Attention HACMP users:
It is generally recommend HACMP deadman switch interval be lengthened while
performance data is being collected.

Collect our 'standard' PERF433 data for 600 seconds (600 seconds=10 minutes)
perfpmr.sh 600

Answer the questions in the provided file “PROBLEM.INFO” for general info

Now we need to tar the data into one compressed file:
cd /tmp/perfdata (or whatever directory used to collect the data)
cd ..
tar -cvf perfdata.tar perfdata
compress perfdata.tar
The resulting file will be named 'perfdata.tar.Z'.

Now we need the snap data:
snap -bgc

This command automatically creates a subdirectory in /tmp called /tmp/ibmsupt and
checks for file system space requirements. It also automatically creates a file named
snap.tar.Z in the /tmp/ibmsupt subdirectory.
You are now able to combine both files perfdata.tar.Z and snap.tar.Z in one file that will
be sent to IBM Support.
478 RS/6000 SP System Performance Tuning Update

Appendix C. Hardware details

In this appendix, we give an overview of the nodes and attached servers
available at the time the book was written, plus a node selection criteria
scheme that may help you find the right node for your application.

C.1 Node types

The SP processor nodes available for the SP are in most cases equivalent to
specific RS/6000 machines. The most recent nodes are all PCI-based
machines. and there are no more MCA nodes like the 135 MHz wide node
available (they have been withdrawn from marketing but there are still some
types used in current configurations). To give you an overview of some of the
different node types, refer to Table 51 on page 479

Table 51. SP nodes overview

Node Type Processor Data Cache MCA/PCI Slots
Available

Memory
Bus
Bandwidth

no
Switch

using
Switch

Thin Node 160 MHz (397) P2SC 128 KB 4 3 256-bit

Wide Node 135 MHz (595) P2SC 128 BK 7 6 256-bit

High Node 200 MHz (J50) PowerPC 1 32K + 2 MB L2 5 14 13 256-bit

Thin Node 332 MHz (H50) PowerPC 2 32K + 256 KB L2 5 2 6 2 7 128-bit

Wide Node 332 MHz (H50) PowerPC 2 32K + 256 KB L2 5 10 6 10 7 128-bit

S70 Node 125 MHz PowerPC 3 64K + 4 MB L2 5 11 6 8 8 Dual 512-bit

S7A Node 262 MHz PowerPC 4 64K + 8 MB L2 5 11 6 8 8 Dual 512-bit

S80 Node 450 MHz PowerPC 11 512K + 8 MB L2 5 11 6 8 8 Quad 512-bit

Thin Node 200 MHz (260) POWER3 9 64K + 4 MB L2 5 2 6 2 7 128-bit

Wide Node 200 MHz (260) POWER3 9 64K + 4 MB L2 5 10 6 10 7 128-bit

Thin Node 375 MHz (270) POWER3-II 12 64K + 8 MB L2 5 2 6 2 7 128-bit

Wide Node 375 MHz (270) POWER3-II 12 64K + 8 MB L2 5 10 6 10 7 128-bit

High Node 222MHz POWER3 13 64K + 4 MB L2 5 5 10 5 10 2048_bit

High Node 375MHz POWER3-II 14 64K + 8 MB L2 5 5 10 5 10 2048-bit
© Copyright IBM Corp. 2000 479

1. 2/4/6/8-way PowerPC 604e.
2. 2/4-way PowerPC 604+LX.
3. 4-way PowerPC RS64 64-bit.
4. 4-way PowerPC RS64 II 64-bit.
5. This data cache is for each pair of processors.
6. These slots are PCIs.
7. SP Switch MX Adapter does not use an I/O slot.
8. SP System Attachment Adapter requires 3 PCI slots (Adapter into Slot 10,

slots 9 and 11 remain empty).
9. 1/2-way 64-bit processor.
10. RIO expansion Box offers 8 PCI Slots, a maximum of 6 RIO boxes equals

53 total PCI Slots available (CPU + RIO)
11. 6-way PowerPC RS64 III 64-bit
12. 2/4-way POWER3-II 630+ 64-bit
13. 2/4/6/8-way POWER3 630FP 64-bit
14. 4/8/12/16-way POWER3-II 64-bit

Characteristics of these nodes vary by:

• The bandwidth of the internal bus

• The number of CPUs (the high nodes are SMP systems with 2, 4, 6, or 8
processors)

• The maximum amount of memory

• The number of available micro channels or PCI adapter slots

• The amount of memory bandwidth (one word = 32 bits)

The memory bandwidth is important when considering system performance.
The memory bandwidth word size specifies how many words of data can be
moved between memory and data cache per CPU cycle.

C.2 Roles of nodes

There are a variety of nodes to choose from when you configure an SP
system. The following is a short overview that gives some guidance for your
node selection.

The latest 375 MHz POWER3 SMP high node has over three times the
performance of it’s predecessor, the 222MHz POWER3 SMP high node. The
capability to have up to 6 external I/O Drawers (RIO) gives you a huge
number of PCI slots available (53 PCI slots). The upcoming SP Switch2, that
is only available for POWER3 SMP high nodes, offers you more than three
480 RS/6000 SP System Performance Tuning Update

times the bandwidth of the SP Switch for interconnecting POWER3 SMP high
nodes.

Thin node
Thin nodes are suitable for a wide range of applications, including all
commercial applications, and most scientific and technical applications.

Wide node
Wide nodes in some cases demonstrate superior performance over thin
nodes even though they share the same type and number of processors. This
is due to the existence of a second controller, in the wide node, that attaches
eight additional slots to the internal bus. For some I/O-related performance
this can be significant. For example, with SSA disks, the data rate
performance increases from about 40 MB/second on a thin PCI node to more
like 70 MB/second on a wide PCI node. This alone might be reason enough
for selecting wide nodes rather than thin nodes. The incremental cost in using
wide nodes rather than thin nodes may well be a good investment if balanced
performance is of importance. A specific application example where the extra
performance is likely to be observed when using a PCI wide node would be
when using the PCI node as a disk server node for a GPFS file system. Up to
double the bandwidth could be achieved with a wide node in this case.

High node
High nodes are more suited for multi threaded applications, such as
commercial database processing, that require significant number of PCI
adapters. The POWER3 SMP high nodes support the SP Switch with the SP
Switch MX2 adapter and the new SP Switch2 with the SP Switch2 adapter.

S70/S7A/S80 SP attached server
The S70/S7A/S80 Attached Server is a PowerPC RS/6000 model capable of
32- or 64-bit processing. It is best suited to be a powerful database server.
The S70/S7A nodes can have 4-, 8- or 12 processors and up to 32 GB of
memory. The S70 has a 125 MHz PowerPC RS64 processor. The S7A has a
PowerPC RS64II processor with 262 MHz. The S80 has a 450MHz PowerPC
RS64III processor and can have 6-, 12-, 18- or 24 processors and up to 64
GB of memory

Router node
Router nodes are dependent nodes that extend the RS/6000 SP system’s
capabilities. They are not housed in the frame but are dependent on the
switch existing in the environment. An RS/6000 SP Switch Router is a
high-performance I/O gateway for the RS/6000 SP system and provides the
fastest available means of communication between the RS/6000 SP system
and the outside world, or among multiple RS/6000 SP systems. The Ascend
Appendix C. Hardware details 481

GRF switched IP router can be connected to the SP switch via the SP Router
Adapter. The Switch Router Adapter provides a high-performance 100
MB/sec full duplex interface between the SP Switch and the Ascend GRF. The
GRF (IBM Machine Type 9077) is not supported on the new SP Switch2 that
is coming, it is restricted on just the SP Switch.

Codenames for the nodes
Do you wonder perhaps, when a Support Person asked you something about
your node? For example, you were already asked “Do you have a Silver
node?” and you were not able to answer that? During the design of new
hardware, this new hardware gets a Code Name. Here is a short overview of
actual code names for nodes that are used in SP Systems:

• Silver Node is a 332 MHz SMP Thin/Wide node.

• Winterhawk is a POWER3 SMP 200 MHz Thin/Wide node.

• Winterhawk2 is a POWER3 SMP 375 MHz Thin/Wide node.

• Nighthawk is a 222 MHz SMP High node.

• Nighthawk2 is a 375 MHz SMP High node.

If you have more questions regarding those kinds of questions, do not
hesitate to ask your Service representative.

C.3 Communication paths

Two communication paths between the nodes and the Control Workstation
(Ethernet network) and between the frame and the Control Workstation are
mandatory for an SP system. The switch network is optional.

RS232 Hardware monitoring line
The mandatory RS232 hardware monitoring line connects the CWS to each
RS/6000 SP frame, used primarily for node and frame hardware monitoring.

Ethernet
One of the prerequisites of the RS/6000 SP is an internal bnc or 10BaseT
network. The purpose of this mandatory network is to install the nodes’
operating systems and PSSP software, as well as to diagnose and maintain
the RS/6000 SP complex through the PSSP software.

C.4 System partitioning

System partitioning within the RS/6000 SP allows you to divide your system
into logically separate systems. The concept of system partitioning is very
482 RS/6000 SP System Performance Tuning Update

similar to the Virtual Machine in the mainframe environment, which supports
different machine "images" running in parallel; you can have a production
image and test image within the same machine. The RS/6000 SP provides
completely isolated environments within the complex.

Although RS/6000 SP system partitioning has been used as a migration tool
to isolate test environments, this is not its primary purpose. Running various
versions of AIX and PSSP is possible without having to partition.

Now that you can differentiate between production and testing within a
complex, you can simulate a production environment and take all necessary
steps to tune your system before migrating to the true production
environment.

C.5 Node selection process

There are different criteria for choosing the right node for your application.
One criterion may be capacity; how many adapters, how many internal disks,
or how much memory will fit into it.

Capacity
When selecting a node, you may choose to use the methodology shown in the
flowchart in Figure 57 on page 484. Look at the required capacity for
adapters, disks, and memory -- this will help you decide whether a thin node
has sufficient capacity. As you consider this area, take particular care to
include all adapters that will be required, both now and in the near future.
Appendix C. Hardware details 483

Figure 57. RS/6000 SP node selection based on capacity

Some of the selections that need to be made are quite straightforward
decisions and are based on concrete factors, such as the number of adapters
needed in this node, or the amount of memory required.

Performance
The flow chart in Figure 58 on page 485 can be used to help make the right
choice of nodes to select from a performance perspective. It assumes you
have already made a decision on the basis of capacity as discussed earlier.

How Many Micro
Channel or PCI

Adapters?

How Much Internal
Disk Space Needed?

How Much Memory
Required?

Thin Node,
Wide Node and
High Node,
all OK

Wide or High
Node Required

Thin Node,
Wide Node and
High Node,
all OK

Thin Node,
Wide Node and
High Node,
all OK

Wide
Node Required

High
Node Required

Thin Node
Capacity

Exceeded

Thin Node and
High Node

Capacity Exceeded

Thin Node and
Wide Node

Capacity Exceeded
484 RS/6000 SP System Performance Tuning Update

Figure 58. RS/6000 SP node selection based on performance

Performance measurements
It is important to select the correct nodes for the applications that we wish to
implement and that exploit the most appropriate architecture: serial or
parallel, uniproccesors or SMP processors. Make sure that you have a
cost-effective solution that also allows easy upgrades and a growth path as
required.

It is important not to be swayed in these considerations by any
price/performance considerations that force you to make compromises with
regard to the ideal nodes for a specific purpose. The good news is that
price/performance for all RS/6000 SP nodes, uniprocessor or high nodes, is
similar for the current selection of nodes.

Do we know the
required performance?

Does the application
supprt SMP?

Is the application
a parallel one?

Better to use
one type of node

Do application sizing

Uni-Processor
thin or wide

nodes to be used

Feasible to mix
node types

YES

YES

YES

NO

NO

NO

sizing complete

Now consider parallel
Appendix C. Hardware details 485

486 RS/6000 SP System Performance Tuning Update

Appendix D. Special notices

This publication is intended to help RS/6000 SP users, system administrators,
and systems engineers understand the available performance monitoring and
system tuning tools on RS/6000 SP and to undertake a detailed performance
analysis. The information in this publication is not intended as the
specification of any programming interfaces that are provided by RS/6000 SP
or POWERparallel System Support Programs. See the PUBLICATIONS
section of the IBM Programming Announcement for RS/6000 SP and
POWERparallel System Support Programs for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
© Copyright IBM Corp. 2000 487

reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

AS/400
IBM �

Lotus Notes
PAL
PowerPC 604
Redbooks Logo
SP
WebSphere

Domino
Lotus
OS/400
POWERParallel
Redbooks
RS/6000
System/390
488 RS/6000 SP System Performance Tuning Update

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

WebStone is a freeware product owned by Mindcraft, Inc.

Apache Bench and JMeter are owned by the Apache Software Foundation

Rational Suite Performance Studio is owned by the Rational Software
Corporation

Webload is owned by RadView Software, Inc

LoadRunner is owned by Mercury Interactive Software

Other company, product, and service names may be trademarks or service
marks of others.
Appendix D. Special notices 489

490 RS/6000 SP System Performance Tuning Update

Appendix E. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 495.

• Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

• GPFS: A Parallel File System, SG24-5165

• IBM eNetwork Communcations Server for AIX: Understanding and
Migrating to Version 5: Part 2 - Performance, SG24-2136

• Oracle8i Parallel Server on IBM SP Systems: Implementation Guide,
SG24-5591

• RS/6000 Performance Tools in Focus, SG24-4989

• Sizing and Tuning for GPFS, SG24-5610

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• Websphere V3 Performance Tuning Guide, SG24-5657

E.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 491

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

E.3 Other resources

These publications are also relevant as further information sources:

• AIX Command Reference, GBOF-1802

• AIX System Management Guide: Communications and Networks,
SC23-4127

• AIX Technical Reference Volume 1, SN32-9029

• Communications Server for AIX Planning and Performance Guide,
SC31-8220

• DB2 UDB Administration Guide: Performance V6, SC09-2840

• DB2 UDB System Monitor Guide and Reference V5, S10J-8164

• IBM PSSP Programs: Managing Shared Disks, SA22-7439

• IBM General Parallel File System for AIX: Administration and
Programming Reference, SA22-7452

• IBM General Parallel File System for AIX: Concepts, Planning, and
Installation, GA22-7453

• IBM General Parallel File System for AIX: Data Management API Guide,
GA22-7435

• IBM General Parallel File System for AIX: Installation and Tuning Guide,
GA22-7453

• IBM General Parallel File System for AIX: Problem Determination Guide,
GA22-7434

• IBM DB2 UDB Administration Guide: Performance, SC09-2840

• PSSP Administration Guide, SA22-7348

• PSSP: Managing Shared Disks, SA22-7279

• RS/6000 SP: Planning, Volume 1, Hardware and Physical Environment,
GA22-7280

• Websphere Application Server Enterprise Edition V3.0, G325-3920

E.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.tivoli.com/products/solutions/storage - General information
about Tivoli storage products
492 RS/6000 SP System Performance Tuning Update

• http://www.rs6000.ibm.com/support/sp - Main site for RS/6000 SP
information and support

• http://www.rs6000.ibm.com/support/sp/perf/ - RS/6000 SP Support Tuning
Information Page
Appendix E. Related publications 493

494 RS/6000 SP System Performance Tuning Update

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 495

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
496 RS/6000 SP System Performance Tuning Update

Index

Symbols
/dev/kmem 325
/dev/lv# 155
/dev/mem 246
/etc/environment 293
/etc/exports 69
/etc/filesystems 79, 224
/etc/hosts 111, 181, 238, 293
/etc/netsvc.conf 111, 181, 238
/etc/rc.net 41, 47, 182
/etc/rc.nfs 81
/etc/rc.sp 84
/etc/resolv.conf 238, 293
/etc/security/limits 204, 212, 309
/etc/trcfmt 322
/etc/xtab 69
/tftpboot 9, 84
/tftpboot/script.cust 13
/tftpboot/tuning.cust 9, 13, 84, 182
/tmp 254
/tmp/log 297
/unix 246
/usr 228, 230
/usr/lpp/ssp/css/estat 233
/usr/lpp/ssp/install/config 85
/usr/lpp/ssp/install/tuning.default 85
/usr/samples/kernel/schedtune 18, 137
/usr/samples/kernel/vmtune 18, 154
/usr/sbin/acct/accton 243
/usr/sbin/perf/diag_tool 298
/usr/sbin/perf/diag_tool/pdt_config 296
/usr/sbin/perf/diag_tool/pdt_report # 299
/usr/tivoli/tsm/client/ba/bin/dsm.sys 345
/usr/tivoli/tsm/server/bin/dsmserv.opt 339
/var/mmfs/etc/cluster.preferences 389
/var/perf/cfg/diag_tool/.collection.control 298
/var/perf/cfg/diag_tool/.files 300
/var/perf/cfg/diag_tool/.nodes 300
/var/perf/cfg/diag_tool/.reporting.list 298
/var/perf/cfg/diag_tool/.thresholds 300
/var/perf/tmp 298
/var/perf/tmp/PDT_REPORT 299
/var/samples/perfagent/server 319
© Copyright IBM Corp. 2000
Numerics
3dmon 217

A
accounting filesystem 243
acctcom 243
accton 243
accumulated CPU time (TIME) 219
ActiveX 397
Adapter driver 76
adapter queue 88, 90
Adapter queue overflows 201
Address Resolution Protocol 40
Address Resolution Protocol (ARP) 193
AIX commands

lsattr 406
no 406
vmtune 449

AIX network tunables 45, 190
AIX parameters

maxperm 447
minperm 447

AIX performance tools
lscfg 406
nmon 410
vmstat 409
vmtune 449

AIX tunables 46
AIX V4.3.3 132
AKtools 397
allocation methods for working storage 127
Apache Bench 397
Apache Software Foundation 397
application

data mining 90
application programming interface 470, 472
application spinner 221
application type

commercial 481
commercial database 481
technical 481

application_program command 140
ARP 40, 238
arp 41, 240

calculating entries 40
calculation 40

ARP cache 190
497

ARP cache sizing 41
ARP cache thrashing 240
ARP cache-related tunables

arpqsize 59
arpt_killc 59
arptab_bsiz 58
arptab_nb 58
ifsize 59

arpqsize 40, 41, 59
arpt_killc 59
arptab_bsiz 40, 58
arptab_bsize 84
arptab_nb 40, 41, 58, 84, 193
Ascend 481
Asynchronous I/O 442
ATM 29, 44
ATM tuning 112
atmstat 96
autorestart 18

B
back end processes 434
back-file system 78
Backup 412
bad-block relocation 156
Balanced systems 411
Balancing workloads 412
basic adapter settings 15

rx_que_size 16
rxbuf_pool_size 16
tx_que_size 16

basic AIX system settings 18
basic architecture 21
basic network settings 14
basic performance settings 13
Batch workload 450
benchmarking 7
bf (bigfoot) 244
bfrpt 244
biod 64
biod daemon 69
biod daemons 72
block size 370
bosboot 205
bottleneck 142
bottlenecks 22
Bottlenecks on the I/O bus or disks 201
buddy buffer wait_queue size 378

Buddy buffers sizing 201
buffer pools 29

C
Cache File System 78
cache option 357
caches 15
calculating the priority value for a process 133
center 175
changing the AIX network tunables 9
chdev 16, 19, 50, 80, 145, 151, 183
chfs 166
chgcss 99
chgcss parameter

rpoolsize 196, 354
spoolsize 196, 354

chlv 159
chnfs 73
Choosing minfree and maxfree settings 119
Choosing minperm and maxperm settings 124
chps 167
chvg 159
client server 469
client storage 117
client-polling 341
clr_q attribute 145
cluster technology 472
clustered system 402
col_dump 203, 247
collision detection 250
command

acctcom 243
accton 243
arp 41, 240
arp -a 231
atmstat 96, 284
awk 252
bosboot 205
chdev 16, 19, 50, 80, 98, 145, 151, 183
chfs 166
chgcss 99, 100, 102
chlv 159
chnfs 73
chps 167
chvg 159
col_dump 247
cp 167
crash 218, 246
498 RS/6000 SP System Performance Tuning Update

createvsd 357
cronadm 297
defragfs 179
dsh 189
entstat 96, 248, 284
errpt 81, 407
estat 251
exportfs 69
fddistat 96, 284
fencevg 364
filemon 228, 251
fileplace 256
fsck 165, 166
getlvcb 268
ha.vsd 357
hatstune 258
host 237, 293
ifcl_dump 260
ifconfig 29, 32, 55, 231
iostat 73, 216, 222, 260
ipcs 446
iptrace 192, 238, 262
lsattr 14, 15, 98, 100, 149, 152, 205, 232, 406
lslv 158, 223, 266
lsps 167, 265
lspv 223, 266
lsvg 223, 267
lsvsd 357
migratepv 159, 164
mklv 164, 445
mmchconfig 383, 384
mmcrfs 381
mmdf 270
mmfsadm 270
mmlsdisk 270
mmlsfs 270, 382
mmlsmgr 269, 388
mount 71, 291
ndb 231, 271
netpmon 240, 275
netstat 25, 27, 28, 44, 73, 76, 99, 196, 197,
231, 232, 281, 286
netstat -i 81
netstat -s 28
nfso 9, 45, 63
nfso -a 231
nfsstat 287
nfsstat -cr 80
nice 8, 133

no 9, 27, 40, 45, 46, 182, 191, 285, 406
route_expire 34
subnetsarelocal 35

no -a 231
nslookup 237, 293
ntpq 295
ntptrace 295
ping 263, 302
pprof 303
ps 290, 304, 446
pstat 213, 214, 218, 308
renice 8, 133
REORG 420
reorgvg 159, 177
rmdev 79
sar 139, 207, 215, 309, 450

block I/O 311
context switching 312
processor utilization 310
run queue 311
system calls 312

schedtune 8, 18, 130, 137
schedtune -t 138
sleep 244
spmon 313
ssaconn 147
startsrc -s 79
statvsd 313, 361
stopsrc -s 79
svmon 120, 125, 207, 314
svmon -dlC 208
svmon -dU 211
syncvg 159
tar 168
tcpdump 238, 317

ARP 318
TCP 318
timestamps 318

tokstat 96, 248, 284
topas 217, 319
tprof 320

processes 320
shared libraries 320

trace 322
traceroute 321
trcrpt 324
umount 165
unfencevg 364
updatevsdnode 358
499

updatevsdtab 357
varyoffvg 364
varyonvg 364
vdidl3 108, 355
vdidl3xx 108
vmstat 73, 130, 205, 207, 213, 324, 409

column descriptions 326
examples of usage 329

vmtune 9, 18, 120, 153, 154, 205, 330, 446
numperm 331

vsdatalst 360
xmperf 210, 331

Command tag queuing for non-IBM SCSI disks 145
commands

lscfg 406
vmtune 406

communication protocols for the SP Switch adapter
101
communications memory buffers 463
Computational memory or computational pages
118
Concurrent VSD 363
Connection oriented 291
Connectionless 291
consolidated system 22
cookies 397
CPU 129, 189

RT_GRQ variable 130
cpu 212
CPU monitoring tools 203
CPU tuning 408
CPU utilization (CP) 219
cpu_hard 212
crash 218, 246, 271
cronadm 297
CVSD implementation 364
CWS

ipforwarding 182
sb_max 182
tcp_mssdflt 182
tcp_recvspace 182
tcp_sendspace 182
thewall 182
udp_sendspace 182
upd_recvspace 182

CWS default route 22
cylinder 143

D
damage /etc/rc.net 84
damage /tftpboot/tuning.cust 84
Data

Placement policy 411
data 204
data/metadata 387
data_hard 204
database server 394
DB2 UDB

DB2MEMDISCLAIM 418
DB2MEMMAXFREE 418
Error log (db2diag.log) 416
Prefetchers 414

DB2 UDB commands
REORG 420
REORGCHK 420

DB2 UDB EEE
Fast Communication Manager (FCM) 403
Function shipping 403
Inter-partition parallelism 403
Intra-partition parallelism 403

DB2 UDB parameters
buffpage 413
catalogcache_sz 417
chngpgs_thresh 415
DB2_PARALLEL_IO 419
DB2_STRIPED_CONTAINERS 419
dbheap 417
intra_parallel 416
locklist 418
logbufsz 417
maxagents 417
maxappls 417
num_iocleaners 414
num_ioservers 414
pckcachesz 416
sheapthres 416
sortheap 415
stmtheap 416

DB2 UDB processes
db2agent 417

deadlocks 119
Dedicated disk 166
Deferred allocation 127
Deferred allocation algorithm 128
Deferred Page Space Allocation 166, 226
defrags 179
demux layer 28
500 RS/6000 SP System Performance Tuning Update

dependent node 481
Depth of receive queue 464
detailed host information 280
detailed interface information 279
Detailed protocol 278
Detecting bad blocks 156
device driver buffers 15
device driver transmit statistics 277, 278
Device drivers 232
Disk

Dedicated to particular tasks 411
I/O 410

Disk I/O pacing 167
disk I/O statistics 230
Disk mirroring 157
Disk placement within a loop 146
DISK_STORAGE_BALANCE 301
Distributed Lock Manager (DLM) 433, 439
dma_bus_mem 152
dma_mem setting 151
DNS 237
document your system 6
dog threads 28, 32

guidelines 32
double-buffering 126
dropped packets 75, 235
dsh 189
DSS 407, 450
dump options

cfgmgr 271
disk 271
malloc 271
pgalloc 271
stripe 271
tscomm 270

dynamic mtu discovery 283
dynamic tunables 9
dynamically changeable attributes 102

E
Early allocation 127
Early allocation algorithm 128
ECHO_REPLY 263
ECHO_REQUEST 263
edge 18
edge inter-disk allocation policy 18
Enabling KLAPI 367
Enhanced RAID 0 162

entstat 96, 248, 272
environment

Commercial Database 86
consolidated 22
homogeneous 22
parallel 111
parallel database 90
Scientific and Technical 86
server

typical 91
Server Configuration 86
Software Development 86

ERP 397
errpt 81
Escon 29

DATABUFFERSIZE 113
Interface MTU 113

Escon tuning 113
estat 251
Ethernet 29, 44, 191, 240
Ethernet network

collisions 249
Ethernet routing 22
Ethernet values 16
EVENT_HORIZON 302
Excessive aggregate memory requirements 201
exclusive 209
Exhaustion of switch pools 201
exportfs 69
extendednetstats 48, 196, 233
external server considerations 195
extracting logical volume information 268

F
Fast-Write Cache 147
FCS 44
FDDI 29, 44, 191
FDDI tuning 112
fddistat 96
File

/etc/hosts 111
file fragmentation 230
File System manager location 388
file transfer applications 466
filemon 228, 251
filemon command detailed output 255
filemon options

all 252
501

lv 252
pv 252
vm 252

Files
$DIAGPATH/db2diag.log 407
/dev/lv# 155
/dev/mem 246
/etc/environment 293
/etc/exports 69
/etc/hosts 181, 293
/etc/netsvc.conf 111, 181, 238
/etc/rc.net 41, 47, 182
/etc/rc.nfs 81
/etc/rc.sp 84
/etc/resolv.conf 238, 293
/etc/security/limits 204, 212, 309
/etc/trcfmt 322
/etc/xtab 69
/tftpboot/tuning.cust 9, 13, 84, 182
/tmp/log 297
/unix 246
/usr/tivoli/tsm/client/ba/bin/dsm.sys 345
/usr/tivoli/tsm/server/bin/dsmserv.opt 339
/var/mmfs/etc/cluster.preferences 389
bos.adt 18
bos.adt.samples 330
db2diag.log 416
dsm.sys 340, 352
dsmserv.opt 352
fma.data 230
ipreport.out 253
iptrace.out 253
notes.ini 460
nsi.all 233
pprof.cpu 303
pprof.famcpu 304
pprof.famind 304
pprof.namecpu 304
pprof.start 303
tftpboot/script.cust 13
tuning.cust 6, 22

fixed-priority thread 133
fixed-priority threads 138
fragments dropped after timeout 28
Frequency 184
frequency 259
front end processes 434
front-file system 78
FS_UTIL_LIMIT 301

fsck 165, 166
full-duplex ports 146
Function shipping 403

G
getlvcb 268
Gigabit Ethernet 29, 161
Gigabit Ethernet tuning 111
GPFS

LAPI 386
network tuning

ipqmaxlen 373
SSA adapter tuning

max_coalesce 375
queue_depth 376

Switch adapter tuning
spoolsize/rpoolsize 374

VSD tuning
1 VSD per 1 hdisk 379
Concurrent VSD (CVSD) 379
Dedicated VSD server 380
VSD usage of KLAPI 379
VSD_max_buddy_buffer_size 377
VSD_max_buddy_buffers 378
VSD_maxIPmsgsz 379
VSD_pbufs 377
VSD_request_blocks 377

GPFs
VSD tuning

others VSD considerations 379
GPFS 1.3 269
GPFS file system integrity 371
GPFS overview 369
GPFS replication 371
GPFS tuning

comm_protocol 386
File system block size 380
maxFilesToCache 383
maxStatCache 384
Number of GPFS nodes 380
pagepool 382
prefetchThread 385
worker1Thread 385
worker2Thread 385
worker3Thread 385

graphical user interface 470
GUI

see graphical user interface
502 RS/6000 SP System Performance Tuning Update

Gung ho reclamation 121

H
hardlimit 204, 212
hardware co-existence 483
hatstune 258
head 143
Header types

ICMP 264
IPX (PC protocol) 264
NFS (RPC) 264
TCP 264
UDP 264

high node 481
HiPPI 29, 44
HIPPI tuning 112
HiPS 29
homogeneous system 22
host 237, 293
Hosts 300
How to set minfree and maxfree 120
How to set minperm and maxperm 125
HTTP 1.0 397
HTTP server 394

I
I/O 190
I/O errors 156
I/O monitoring tools 203
I/O tuning 409
I/O wait 409
ICMP statistics 236
ifcl_dump 260
ifconfig 29, 32, 55
ifsize 59, 84
IN BAND percentage 225
initial considerations 21
initial settings

alternate tuning file 85
commercial 85
development 85
scientific & technical 85
typical server 85

initial tuning parameters 6
inner edge 175, 225
inner middle 175
input/output

pacing disable 169

installation of a node 85
inter-disk 174
inter-disk Tuning considerations 175
Internet Control Message Protocol (ICMP) 302
Internet Network layer 23
Internet Protocol (IP) 23
Internet Transport Layer 23
intra-disk 174
Intra-partition parallelism 403
iodone 174
iostat 73, 216, 222, 260
IP receive flow 27
IP send flow 27
IP tunables inheritance rules 45
ipfilter 264
ipforwarding 182
ipfragttl time 28
ipintrq overflows 27
ipqintrq 287
ipqmaxlen 14, 27, 57
ipreport 203, 262
iptrace 192, 238, 262
IPv4 45
IPv6 45

J
JFS log 175
JMeter 397
Journaled File System (JFS) 164
JVM 394

K
keep-alive 397
Kernel mode 136
kproc 189
kprocprio 173
ksh 209

L
Late allocation 127
Late allocation algorithm 128
Latent demand 408
limitations of the renice command 139
LoadRunner 397
local file system 78
Logical resource access tuning 410
Logical resources 412
503

logical resources 8
Logical Volume Device Driver (LVDD) 155
Logical Volume Manager (LVM) 141
Logical Volume placement 445
Lotus Notes

Database Instance Identifier 458
Favor Restart Recovery Time 458
Favor Runtime 458
flushing 458
load balancing parameter

Server_Availability_Threshold 461
Server_MaxUsers 461

performance improvement 457
performance problems

CPU bottlenecks 461
displaying large views 460
NSF_BUFFER_POOL_SIZE 460
NSF_DBCACHE_MAXENTRIES 460
slow database access 460

performance tuning parameter
UPDATE_SUPPRESSION_TIME 461

Standard (default) 458
Transactional Logging 456
Transactional Logs 457
tuning

AMgr 460
Calconn 460
Collector Reporter 460
Router 460

tuning for performance 459
lrud kernel process 119
lsattr 14, 15, 98, 100, 149, 152, 205
lslv 158, 223, 225, 227, 266
lsps 167, 226, 265
lspv 223, 224, 266
lsvg 223, 267
LVM reading of data from striped logical volumes
162
LVM writing of data from striped logical volumes
162
lvm_bufcnt parameter 163

M
MAC

address translation 193
Massively Parallel Processors (MPP) 402
Max Packets 249, 284
max_coalesce 149

max_coalesce setting 148
Max_ttl value 322
maxfree 424
maximum segment size 33

local network 33
remote network 33

maximum transmission unit 28
maxmbuf 31, 47, 463
maxpageahead 121
maxperm 123, 424
maxperm parameter 71
maxpgahead 153, 424
maxpout 168
maxrandwrt 155
maxreqs 172
maxservers 173
maxuproc 18
mbufs 29, 196, 233
Memory

Tuning 408
memory 115

insufficient 115
memory bandwidth 480
memory management 18, 29
Memory monitoring 213
Memory monitoring tools 203
memory pools 30
Memory related tunables 46

thewall 46
extendednetstats 48
maxmbuf 47
rfc1323 52
sb_max 47
tcp_recvspace 50
tcp_sendspace 49
udp_recvspace 51
use_isno 48

Memory size problems 201
MEMORY_FACTOR 301
Mercury Interactive Corporation 397
Metadata manager location 389
migratepv 159, 164
MIN_UTIL 301
minfree 424
minfree threshold 119
minfree/maxfree 18
minperm 424, 449
minperm/maxperm 18
504 RS/6000 SP System Performance Tuning Update

minpgahead 153
minpout 168
minservers 173
Mirror Write Consistency 158
Mirror Write Consistency (MWC) cache 155
Mirror write consistency check 158
Mirror write consistency record 158
Mirroring across different adapters 161
Mirroring across different adapters on different bus-
ses 161
Mirroring and striping at the same time 162
Mirroring on different disks 161
Mirroring-scheduling policies 160
mklv 164
mmdf 270
mmfsadm 270
mmlsdisk 270
mmlsfs 270
mmlsmgr 269
monitor CPU usage 212
Monitoring tools

CPU 203
I/O 203
Memory 203
Network 203

monitoring tools 23, 203
mount 71
mount command

rsize option 71
mount process for NFS 69
mountd daemon 69
MSS 33
MTU 27, 28, 55, 195
MTU discovery settings 234
multi-level run queue 130

Active 131
Idle 131
Stopped 131
Swapped 131
Zombie 131

Multiple client scaling problems 200
Multiple Collision Count 250, 284
Multiple paging spaces 166
multiuser workloads 7

N
Nagle Algorithm 42

specific rules 42

Nagle Algorithmn 191
Nagle problem 200
name resolution 293
nbc_limit 60
nbc_max_cache 61
nbc_min_cache 62
nbc_pseg 62
nbc_pseg_limit 63
NBC-related tunables

nbc_limit 60
nbc_max_cache 61
nbc_min_cache 62
nbc_pseg 62
nbc_pseg_limit 63

ndb 271, 272
netpmon 240, 275
netpmon options

all 276
cpu 276
dd 276
nfs 276
so 276
-t 276
-v 277

netstat 25, 27, 28, 44, 73, 76, 99, 196, 197, 251,
272, 281

Active connections 282
Adapter and network statistics 284
Communication subsystem summaries 281
Ierrs/Oerrs 232
Ipkts 232
Network memory usage 285
Opkts 232
Protocol statistics 286
Routing table 283

netstat -i 81
netstat -s 28
Network

Resource tuning 410
network

iptrace 192
network I/O statistics 241
network memory pools 30
Network monitoring tools 203
Network related tunables

ipforwarding 54
ipqmaxlen 57
MTU 55
tcp_mssdflt 54
505

tcp_nodelay 55
tcp_pmtu_discover 56
udp_pmtu_discover 57

network traffic considerations 106
Networking related tunables

subnetsarelocal 53
NFS 190

Cache File System 78
dropped packets 75

by the client 75
by the network 77
by the servers 76

mount process 69
timeo parameter 74

NFS client
badcalls 292
badxid 292
calls 292
cantconn 292
newcred 292
nomem 292
retrans 292
timeout 292

NFS file system 78
NFS mountpoint 291
NFS performance degradation 73
NFS server 288

badcalls 289
badlen 289
calls 289
dupchecks 290
dupreqs 290
nullrecv 289

NFS tuning 68, 201
biod daemon 69
checklist 79
examples 82
mountd daemon 69
nfsd daemon 69
Oerrs 79
read throughput 70
socket buffer overflows 80
write throughput 70

NFS Version 3 70
nfs_device_specific_bufs 65
nfs_dynamic_retrans option 74
nfs_max_threads 289
nfs_max_threads option 72
nfs_rfc1323 66

nfs_socketsize 64, 80, 82
nfs_tcp_socketsize 65, 82
nfsd 64
nfsd daemon 69
nfsd daemons 72
nfsd processes 247
nfsd threads 288
nfso 9, 45, 63
nfso command

nfs_dynamic_retrans option 74
nfs_max_threads option 72

NFS-related tunables
biod 64
nfs_device_specific_bufs 65
nfs_rfc1323 66
nfs_socketsize 64
nfs_tcp_socketsize 65
nfsd 64
nfso 63

nfsstat 287
nfsstat -cr 80
nice 8, 133, 139
nice value (NI) 219
no 9, 27, 40, 45, 46, 182, 191, 234

ARP cache tuning commands 40
arpt_killc 40

no variable
arpqsize 40
arptab_bsiz 40, 194
arptab_nb 40
ipforwarding 113
tcp_mssdflt 113
tcp_pmtu_discover 197
tcp_recvspace 90
tcp_sendspace 90
udp_pmtu_discover 197

nocache option 357
node

customization 85
gateway 200
identical workload 22
installation 85
migration 85

node groups 404
node selection

capacity 483
performance 484

nonfixed priority thread 133
nslookup 237, 293
506 RS/6000 SP System Performance Tuning Update

Interactive mode 293
NSORDER 111
ntpq 295
ntptrace 295
NUMBER_OF_BALANCE 301
numperm 449

O
Oerrs 76, 79
OLAP 407
OLTP 407, 409, 450
Only Station field 250
Oracle

Cache Fusion 440
Oracle Parallel Query (OPQ) 433
Oracle Parallel Server 433

Architecture 434
Database 434
Degree 437
Distributed Lock Manager (DLM) 433, 436, 439
Instance 434, 435, 437
Oracle Parallel Query (OPQ) 433
Virtual Shared Disk (VSD) 433, 436, 438

Oracle parameters
db_block_size 450
db_buffers 451
db_writer_processes 452
db_writers 452
dbwr_io_slaves 452
disk_asynch_io 452
log_buffer 454
optimizer_mode 454
rollback_segments 454
shared_pool_size 453
sort_area_size 453
sql_trace 453
timed_statistics 454
use_async_io 452

Other GPFS considerations
387

outer edge 175, 225
outer middle 175

P
packets 23, 235
page fault 122
page in 116
page steal 116

page-replacement algorithm 122
paging 189
PAGING_SPACE_BALANCE 301
parallel 160
parallel/round robin 160
parallel/sequential 160
partially damage /etc/rc.net 84
partitioned database system 402
PDT

Files and directories 300
percent CPU time (%CPU) 219
performance 469, 472

analysis 472
analyze 470
application programming interface 470
average value 472
data stream 469
definable value 472
graphical 469
local monitor 469, 470
manage 470
monitor 469, 470
network monitor 469, 470
PTX/6000 469
remote monitor 469, 470
simple network management protocol 470
single point monitor 470
system 469
toolbox 469
tune 469
user interface 470

Performance Diagnostic Tool 295
performance monitor 472

access 472
archive 472
real time 472
single point 472
statistic 472

Performance problem checklist
AIX network tunables 190
ARP cache 190
CPU 189
I/O 190
NFS 190
Processes 189
Switch send pool 190
Traffic flow 190
Transmit queue overflows 190
Users 189
507

Performance problems checklist
Paging 189

Performance Studio 397
performance tuning

objectives 21
performance tuning cycle 5
persistent storage 117
perspectives 472
physical layer 155
ping 263, 302
Poor application modules and SQL statements 412
PowerBuilder 397
pprof 303
priority (PRI) 219
process

resume 168
process mode switching 135

Kernel mode 135
User mode 135

process status (ST) 219
processes 189
processor binding (BND) 219
Protocols 235
ps 304
ps command

other optional combinations 307
ps command options

gvc 306
pstat 213, 214, 218, 308
PTPE 469, 470, 472

application programming interface 472
archive 472
install 472
installation 472
monitor group 473
node installation 473
prerequisites 472
scalable 472

PTX/6000 470, 472
extension 469, 472
install agent 471
install server 470
installation prerequisite 471
server 470

Q
q_err attribute 145
Qerr bit 145

queue length value 80
Queue Overflow 284
queue_depth 145
queue_depth setting 149

R
Radview 397
RAID 0 147
RAID 0+1 162
RAID 1 147
RAID 10 148
RAID 5 148
Random write-behind 155
Rational Suite Performance Studio 397
raw logical volume 227
read throughput 70
reading/writing logical partition copies 160
real memory 208
real memory management 117
real resources 8
receive flow 24
Receive/Transmit Errors 249
recommendations for ARP cache 41
Relocating bad blocks 157
renice 8, 133, 139
renice command limitations 139
reorgvg 159
Reports generated by PDT 298
Resource monitoring

monitoring tools 203
response time 8
retransmits 291
reverse name resolution 293
RFC 1122 38
RFC 1323 37
RFC 896 42
rfc1323 14, 44, 48, 52
rfc1323 parameter 44
rmdev 79
Rotational 143
route_expire no option 34
router

GRF 200
routing 45

gateway 111
static routing 45
switch 111

rpool 106
508 RS/6000 SP System Performance Tuning Update

rpoolsize 67
RS/6000 SP 402
rsize option 71
rss 204
rss_hard 204
RTE 397
rx_que_size 16
rxbuf_pool_size 16

S
S70 attached server 481
safe asynchronous writes 70
sar 207, 215, 309
sb_max 14, 47, 80, 182
scat_gat_pages setting 151
SCHED_FIFO 131
SCHED_FIFO2 132
SCHED_FIFO3 132
SCHED_OTHER 132
SCHED_RR 132
schedtune 8, 18, 130
schedtune -t 138
Scheduler

document initial settings 18
scheduler

Guidelines for R and D 137
Tuning examples using R and D 137

scheduler layer 155
scheduler queues 216
scheduling policies for logical volumes 160
scheduling policy (SCH) 219
sector 143
Secure Sockets Layer (SSL) 397
Seek 143
segments 116

client storage 117
persistent storage 117
working storage 117

send flow 24
Sensitivity 184
sensitivity 259
sequential 160
Sequential write-behind 154
serial line 482
server-prompted 341
setsockopt 199
setsockopt() 39
Setting minservers and maxservers 173

shared 209
shared nothing environment 402
SIGCHLD signal 131
SIGCONT signal 131
SIGSTOP signal 131
Silly Windows Avoidance Algorithm 38
simple network management protocol 470
Single Collision Count 250, 284
Single paging space 166
single parent multiple child 197
Single server problems 200
sizing memory 208
sleep 244
slow switch 4
small packets 87
SMP 412
SNA DLC profile parameters 464
SNMP

see simple network management protocol
SO_RCVBUF 192
SO_SNDBUF 192
SOCK_DGRAM sockets 31
SOCK_STREAM sockets 31
socket buffer overflows 25, 80, 235
Socket buffers 76
sockets 31
softlimits 204, 212
SP

adding or changing subsystems 21
DNS 111
monitoring 21
network topology 111
tuning files 6

SP environments 6
SP Ethernet 22, 482
SP Ethernet tuning 183
SP specific network tunables

rpoolsize 67
spoolsize 67

SP Switch 29, 44, 48, 196
SP switch

changing MTU size 191
SP Switch 2 161
SP Switch adapter

communication protocols 101
SP Switch attributes 102
SP switch pool sizing 201
SP Switch Router 235
SP Switch2 4, 29, 48, 196
509

SP Switch2 Communications Adapter 247
SP tuning 3

adapter queue overflows 96, 97
adapter tuning recommendations 99
ARP cache 193
changing adapter settings 98
commercial and database 89

characteristic 89
Ethernet network 110
high-speed tuning 86
initial tuning parameters 6
Nagle 191
network traffic considerations 106
PSSP 3.2 100
rpool 106
rpoolsize 99
sample switch pool calculation 109
Scientific and Technical 87

characteristics 87
Server Configuration 91

characteristics 92
small packets 87
Software Development 86
SP Switch2 100, 106
specific tuning recommendations 83
spool 106
spoolsize 99
transmit adapter queue 95
transmit queue 96
workload tunables summary 93
xmt_que_size 98

spmon 313
spool 106
spoolsize 67
SSA 161
SSA RAID 147
ssaconn 147
stack 204
stack_hard 204
standalone servers 3
startsrc -s 79
static routing 45
statvsd 313
stopsrc -s 79
strict_maxperm 123, 126
Striping 161
Subnet addressing 41
subnets 22
subnetting 35

Summary table for disk I/O 252
Summary table for file I/O 253
Summary table for logical volume I/O 254
summary table for socket calls 280
svmon 120, 125, 207, 314
svmon -dlC 208
svmon -dU 211
Switch adapter 233
switch running slow 4
Switch send pool 190
syncd daemon 155
Synchronization point file server accesses 201
syncvg 159
system

overhead 470
resource 470
resource statistic 470

system partitioning 482

T
tar 168
TCP acknowledgement 42
TCP receive flow 26
TCP send flow 26
TCP send window 38
TCP sliding window 36

Congestion avoidance 39
Nagle Algorithm 39
Silly Window Syndrome 38
Slow start 39

TCP sliding window improvements 38
TCP sliding windows

Delayed ACK 39
TCP statistics 236
TCP/IP

performance 86
TCP/IP concepts 23
tcp_mssdflt 14, 34, 48, 182, 195
TCP_NODELAY 39, 42, 275
tcp_nodelay 48, 55
tcp_pmtu_discover 14, 56, 200
tcp_recvspace 14, 36, 48, 50, 182, 195

optimal settings 196
TCP_RFC1323 275
tcp_sendspace 14, 36, 48, 49, 182, 195

optimal settings 196
TCP_STDURG 275
tcpdump 238, 239, 263, 317
510 RS/6000 SP System Performance Tuning Update

technical applications 481
thewall 14, 31, 46, 182, 197
thin node 481
thread 129
Thresholds 300
throughput 8
timeo parameter 74
timeouts 291
Tivoli Storage Manager 337

Client CPU options
COMPRESSION 348
RESOURCEUTILIZATION 347

Client I/O options
RESOURCEUTILIZATION 348

Client memory options
COMPRESSION 346
MEMORYEFFICIENT 347
TXNBYTELIMIT 347

Client network options
TCPBUFFSIZE 346
TCPNODELAY 346
TCPWINDOWSIZE 346

no parameters 339
Scheduling options

MAXCMDRETRIES 341
MAXSCHEDSESSIONS 341
QUERYSCHEDPERIOD 341
RETRYPERIOD 341
SCHEDMODES 341

Server CPU options
EXPINTERVAL 343
MAXSESSION 343
RESOURCEUTILIZATION 344

Server I/O options
MOVEBATCHSIZE 344
MOVESIZETHRESH 344
TXNGROUPMAX 345

Server memory options
BUFPOOLSIZE 342
LOGPOOLSIZE 343
SELFTUNEBUFPOOLSIZE 342

Server options
MAXSESSION 340
TCPNODELAY 340
TCPWINDOWSIZE 340
USELARGEBUFFERS 341

Token Errors fields 250
Token Ring 29, 44
Token-Ring 240

Token-ring tuning 112
Token-Ring values 16
tokstat 96, 248
Tools

netstat 281
topas 203, 217, 218, 319
topology considerations 22
Topology Services 184
tprof 320
trace facility 322
traceroute 321
track 143
traffic flow 190
Transfer 144
Transmission Control Protocol 23
transmit adapter queue

MCA 96
PCI 96

transmit queue 96
Transmit queue overflows 190
trcrpt 324
TREND_THRESHOLD 301
TS_Config class

frequency 184
sensitivity 184

tunable for the rc.net 84
Tuning

AIX system tunable parameters 406
AIX virtual memory parameters 406
Batch workload 407
Bottlenecks 407
Check for errors 407
CPU 408
Disk geometry considerations 445
Disk I/O 410
Document RDBMS parameters 406
DSS workload 407
File server 21
Hardware configurations 406
Hot disk avoidance 445
I/O 409
I/O wait 409
Latent demand 408
Logical resource access 410
Machine details 406
Memory 408
Memory - free memory 447
Network 410

Parameters 406
511

OLAP 407
OLTP 407, 409
Overworked system 408
Paging space 446
Resources 407
Sequential read ahead 446
SMP balanced CPU utilization 449
Upgrade to latest fix levels 407
Utilization 407
What can we tune? 411
Workload details 406

tuning 3
Tuning checklist for NFS 79
tuning cycle 5
Tuning DB2 UDB

Agents - maximum number of 417
Applications - db2agent usage 417
Buffer pool 414
Buffer pool hit ratio 413
Buffer pool size 413
Changed pages threshold 415
Control block information memory area 417
Database heap size 417
DMS tablespace container 419
DSS environment 413, 414
Event monitor buffers 417
I/O servers 414
Lock escalation 418
Lock list

Maximum storage 418
Locks 418
maximum number of active applications 417
Memory allocation 418
Memory disclaiming 418
OLTP environment 413, 414, 415, 417
Package cache size 416
Page cleaners 414
Parallel I/O 419
Process private memory 415
Sort heap threshold 416
Sort time 415
SQL compiler workspace 416
SQL statement caching 416
Statement heap size 416
Tablespace page size 419
Tablespace single containers 419

tuning files 6
Tuning Logical Volume Striping 163
tuning methodology 5

apply and manage new settings 9
document your system 6
establish new settings to reflect resource priori-
ties 9
evaluate the workload 6
identify critical resources 8
installation or migration 6
minimize the workloads critical resource require-
ments 8
monitor performance indices 9
record and keep track of system settings 9

tuning methology
set performance objectives 7

Tuning mirror write consistency 159
Tuning Oracle

AIX buffer cache 451
AIX LVM 442
Asynchronous I/O 442
Batch workloads 453
Buffer cache

Size 447
Size for a JFS based database 448

Buffer cache size for a raw device based data-
base 448
Disk geometry considerations 445
DSS workloads 453
Hot disk

Avoidance 445
JFS 451
JFS or raw devices 444
Logical volume creation 443
Oracle files 442
Paging

Paging space 446
Raw devices or JFS 444
Sequential read ahead 446
SGA 449

Buffer cache 451
SMP balanced CPU utilization 449

Tuning random write-behind 155
Tuning sequential write-behind 154
Tuning sequential-access read ahead 153
Tuning the Topology Services subsystem 184
tuning.cust 6
tx_que_size 16

U
UDP socket receive buffer 25
512 RS/6000 SP System Performance Tuning Update

UDP socket send buffer 25
udp_pmtu_discover 14, 57
udp_recvspace 14, 25, 51
udp_sendspace 14, 25, 182
umount 165
unexpected Nagle behavior 192
unlimited 204, 212
upd_recvspace 182
Upgrades 411
use_isno 48

tunable parameters for each available interface
48

User Datagram Protocol 23
User mode 136
user-space windows 101, 103, 104
Using the nice command 139
Using the renice command 140

V
vdidl3 108

allocd 108
bkt 108
comb & freed 109
fail 109
free 109
split 109
success 109

vdidl3xx 108
SPSMX 108
TB3 108
TB3PCI 108

Virtual Memory Management
page in 116
page steal 116
segments 116

Virtual Memory Manager 30, 116
document initial settings 18

Virtual Shared Disk (VSD) 433, 438
Visual Basic 397
Visual C++ 397
vmstat 73, 130, 205, 207, 213, 324
vmstat output 214
vmtune 9, 18, 120, 153, 154, 205, 206
VSD 353, 438

node down indication 184
SP switch considerations

maximum buddy buffer size 356
maximum IP message size 356

mbufs and thewall 355
send/receive pools 355

VSD and KLAPI 364
VSD performance parameters

buddy buffers 359
Maximum I/O request size 361
VSD cache buffer 357
VSD pbufs 358
VSD request blocks 358

VSD tunable areas 354
VSD tuning recommendations 362

W
Web server 394
WebLoad 397
WebSphere Application Server Engine 394
WebSphere Application Server Resource Analyz-
er 398
WebStone 396
wide node 481
win_maxsize 101, 102
win_minsize 101, 102
win_poolsize 101, 102
window 36, 101

IP 101
Service 101
User Space 101
VSD 101

window sizes 100
win_minsize 101

windows sizes
win_maxsize 101
win_poolsize 101

working storage 117
Workload Manager 8
write throughput 70
Write Verify 161
write_queue_mod setting 150
write-behind 154

random 154
sequential 154

X
xmperf 210, 230, 241
xmt_que_size 98

recommended setting 99
513

Z
zero copy transport protocol 365
zombie state 131
514 RS/6000 SP System Performance Tuning Update

© Copyright IBM Corp. 2000 515

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5340-01
RS/6000 SP System Performance Tuning Update

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

RS/6000 SP System

Perform
ance Tuning Update

®

SG24-5340-01 ISBN 0738419281

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

RS/6000 SP System
Performance Tuning
Update

What you always
wanted to know
about SP
performance but
were afraid to ask

New tuning
information about
PSSP 3.2 and AIX
4.3.3

Sample tuning
scripts included

This IBM redbook provides an updated version of the SP
System Performance Tuning Guide. It now includes new
information about changes in AIX V4.3.3 and PSSP V3.2 that
can affect your SP System performance. Also, new hardware
that is available especially for the SP, such as the new SP
Switch2, is described along with its enhancements and
tunables.

This redbook now includes information about certain
applications: Tivoli Storage Manager (ADSM), DB2, and GPFS,
just to name a few. To make this book comprehensive, we
added more specific information about monitoring your
system to increase performance. This also includes some
useful scripts that can help you improve system performance
or analyze the current settings of your system faster and
easier.

The reader of this book can range from a novice of
performance tuning to an experienced administrator.
Considerable thought has gone into the layout of the book.
Readers with greater experience in SP tuning have new
“quick reference” features, such as startmaps and part
guides: this will make referencing parameter and other
environment information easier. Full and clear explanation of
concepts and procedures are still provided.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Book layout
	Start map
	Part 1. Overview
	Chapter 1. Introduction
	1.1 Why tune?
	1.2 When to tune?
	1.3 Why SP tuning differs from normal AIX tuning?

	Chapter 2. Tuning methodology
	2.1 The SP performance tuning cycle

	Part 2. General tuning
	Chapter 3. Basic performance settings
	3.1 Basic network settings
	3.2 Basic adapter settings
	3.3 Basic AIX system settings

	Chapter 4. Network tuning
	4.1 Initial considerations
	4.1.1 General tuning recommendations
	4.1.2 Consolidated system challenges
	4.1.3 System topology considerations

	4.2 TCP/IP network overview for performance
	4.2.1 Send and receive flows in the TCP/IP protocol stack
	4.2.2 MTU
	4.2.3 Communication subsystem memory (mbuf) management
	4.2.4 Enabling thread usage on LAN adapters (dog threads)
	4.2.5 Tuning TCP maximum segment size
	4.2.6 TCP sliding window
	4.2.7 Address resolution
	4.2.8 Subnet addressing
	4.2.9 Description of the Nagle Algorithm
	4.2.10 Routing

	4.3 AIX network tunables
	4.3.1 IP tunable inheritance rules
	4.3.2 AIX tunables

	4.4 SP system-specific network tunables
	4.5 NFS tuning
	4.5.1 NFS overview for performance
	4.5.2 Read/write throughput
	4.5.3 Tuning the numbers of nfsd and biod daemons
	4.5.4 Tuning to avoid retransmits
	4.5.5 Dropped packets
	4.5.6 Cache file system
	4.5.7 Reduced requests for file attributes
	4.5.8 Disabling unused NFS ACL support
	4.5.9 NFS tuning checklist
	4.5.10 Examples of NFS configurations

	4.6 SP system-specific tuning recommendations
	4.6.1 IBM-supplied files of SP tunables

	4.7 Tuning the SP network for specific workloads
	4.7.1 Tuning for development environments
	4.7.2 Tuning for scientific and technical environments
	4.7.3 Tuning for commercial and database environments
	4.7.4 Tuning for server environments
	4.7.5 Summary of workload tunables

	Chapter 5. Adapter tuning
	5.1 Adapter queue size
	5.1.1 Transmit and receive queues
	5.1.2 Displaying adapter queue settings
	5.1.3 Changing adapter settings
	5.1.4 Adapter tuning recommendations

	5.2 SP Switch and SP Switch2 adapter tuning
	5.2.1 Switch adapter pools
	5.2.2 Window sizes
	5.2.3 Switch window reservation
	5.2.4 Switch pool allocation
	5.2.5 Switch buffer pool allocation considerations
	5.2.6 Sizing send and receive pool requirements
	5.2.7 Sample switch send pool size estimate
	5.2.8 Reducing send/receive pool requirements

	5.3 SP Ethernet tuning
	5.4 Gigabit ethernet performance tuning recommendations
	5.5 Token-Ring performance tuning recommendations
	5.6 FDDI performance tuning recommendations
	5.7 ATM performance tuning recommendations
	5.8 HIPPI performance tuning recommendations
	5.9 Escon interface tuning

	Chapter 6. Tuning other components in AIX
	6.1 Memory
	6.1.1 Virtual memory manager
	6.1.2 Real-memory management

	6.2 CPU
	6.2.1 Scheduler run queue management
	6.2.2 CPU tuning

	6.3 I/O
	6.3.1 Logical volume manager
	6.3.2 Data transfer path to and from disk
	6.3.3 Disk types
	6.3.4 Improving read and write performance (VMM)
	6.3.5 Logical Volume Device Driver
	6.3.6 Performance implications of disk mirroring
	6.3.7 Logical volume striping
	6.3.8 JFS and JFS log
	6.3.9 Paging space allocation
	6.3.10 Tuning I/O pacing
	6.3.11 Asynchronous I/O
	6.3.12 Logical volume policies
	6.3.13 File system fragmentation

	Chapter 7. Control workstation tuning
	7.1 Control workstation considerations
	7.2 Control workstation tuning
	7.2.1 Network tunables
	7.2.2 Adapter tuning
	7.2.3 Other AIX components tuning
	7.2.4 Other considerations

	Part 3. Problem determination and tools
	Chapter 8. Problem determination
	8.1 Performance problem checklist

	Chapter 9. Common performance problems
	9.1 The Nagle Algorithm
	9.2 Adapter queue overflows
	9.3 ARP cache tuning
	9.4 NFS performance in SP system
	9.5 External server considerations
	9.6 Single-server multiple-client node problems
	9.7 Gateway or router node problems
	9.8 Typical performance problems by environments

	Chapter 10. Resource monitoring
	10.1 IBM AIX monitoring tools and commands
	10.2 Monitoring memory
	10.2.1 System-wide monitoring
	10.2.2 Application specific monitoring
	10.2.3 User specific monitoring

	10.3 Monitoring CPU
	10.3.1 System-wide monitoring
	10.3.2 Application specific monitoring

	10.4 Monitoring disk I/O
	10.4.1 System-wide monitoring

	10.5 Monitoring Network I/O
	10.5.1 System-wide monitoring

	Chapter 11. Tools
	11.1 IBM AIX Monitoring tools and commands
	11.1.1 acctcom
	11.1.2 bf/bfrpt
	11.1.3 crash
	11.1.4 col_dump
	11.1.5 entstat/tokstat/atmstat/fddistat
	11.1.6 estat
	11.1.7 filemon
	11.1.8 fileplace
	11.1.9 hatstune
	11.1.10 ifcl_dump
	11.1.11 iostat
	11.1.12 iptrace/ipreport/ipfilter
	11.1.13 lsps
	11.1.14 lspv/lslv/lsvg/getlvcb
	11.1.15 mmlsmgr/mmdf/mmlsfs/mmlsdisk/mmfsadm
	11.1.16 ndb
	11.1.17 netpmon
	11.1.18 netstat
	11.1.19 nfsstat
	11.1.20 nslookup/host
	11.1.21 ntpq
	11.1.22 ntptrace
	11.1.23 Performance Diagnostic Tool (PDT)
	11.1.24 ping
	11.1.25 pprof
	11.1.26 ps
	11.1.27 pstat
	11.1.28 sar
	11.1.29 spmon
	11.1.30 statvsd
	11.1.31 svmon
	11.1.32 tcpdump
	11.1.33 topas
	11.1.34 tprof
	11.1.35 traceroute
	11.1.36 trace, trcrpt
	11.1.37 vmstat
	11.1.38 vmtune
	11.1.39 xmperf, 3dmon

	Part 4. Tuning selected products
	Chapter 12. Tivoli Storage Manager (ADSM)
	12.1 TSM tunables - quick reference
	12.2 Performance considerations
	12.3 SP network tunables
	12.4 Server performance tuning
	12.4.1 Server Options to improve network performance
	12.4.2 Server options to improve memory performance
	12.4.3 Server options to improve CPU performance
	12.4.4 Server options to improve I/O performance
	12.4.5 Server options to improve TSM server database performance

	12.5 Client performance tuning
	12.5.1 Client options to improve network performance
	12.5.2 Client options to improve memory performance
	12.5.3 Client options to improve CPU performance
	12.5.4 Client options to improve I/O performance
	12.5.5 Client options to improve small file size performance

	12.6 Some test results

	Chapter 13. VSD
	13.1 Overview
	13.2 Tuning
	13.2.1 Application considerations
	13.2.2 I/O subsystem considerations
	13.2.3 SP switch considerations
	13.2.4 VSD parameters:
	13.2.5 Summary of VSD tuning recommendations

	13.3 Other VSD considerations
	13.3.1 Concurrent VSD
	13.3.2 VSD usage of KLAPI

	Chapter 14. GPFS
	14.1 Overview
	14.2 Tuning
	14.2.1 Network tuning
	14.2.2 Switch adapter tuning
	14.2.3 SSA adapter tuning
	14.2.4 VSD tuning
	14.2.5 GPFS tuning

	14.3 Summary of GPFS tuning recommendations

	Chapter 15. Web applications
	15.1 Tuning web applications on the SP
	15.1.1 Websphere - an overview
	15.1.2 What can be tuned?
	15.1.3 AIX tunables for web related applications
	15.1.4 Performance test tools for webserver
	15.1.5 Monitoring tools

	Chapter 16. DB2 Universal Database
	16.1 General concepts about parallel databases
	16.1.1 Inter-partition and intra-partition parallelism
	16.1.2 Database partitioning

	16.2 Tuning database systems for performance
	16.2.1 Document the current system
	16.2.2 Bottlenecks, utilization, and resources
	16.2.3 Insufficient CPU and latent demand
	16.2.4 Insufficient memory
	16.2.5 Insufficient network resources
	16.2.6 Insufficient logical resource access
	16.2.7 What can we tune?
	16.2.8 Top 20 DB2 parameters

	16.3 DB2 UDB Implementation on RS/6000 SP: a real case
	16.3.1 Hardware configuration
	16.3.2 Software configuration
	16.3.3 Database layout
	16.3.4 Operating system tuning
	16.3.5 Database tuning
	16.3.6 System management and performance
	16.3.7 Additional tuning observations

	Chapter 17. Oracle
	17.1 Oracle Parallel Server (OPS)
	17.1.1 Parallel Oracle architecture
	17.1.2 Virtual Shared Disk (VSD)
	17.1.3 Distributed lock manager (DLM)

	17.2 Oracle tuning
	17.2.1 Oracle tuning order
	17.2.2 Tuning AIX for Oracle
	17.2.3 Top 10 Oracle parameters

	Chapter 18. Lotus Notes
	18.1 What can be tuned now in the SP and AIX environments?
	18.2 Transactional logging and how it operates
	18.2.1 Performance improvement
	18.2.2 Flushing and hardening
	18.2.3 Crash recovery
	18.2.4 Transactional Logging NOTES.INI Parameters

	18.3 Tuning servers for maximum performance
	18.3.1 Server tasks
	18.3.2 Server performance problems

	Chapter 19. Communication server
	19.1 Communications buffers (mbufs)
	19.1.1 Setting maxmbuf

	19.2 SNA DLC link parameters
	19.2.1 LAN-based DLC characteristics

	19.3 Memory
	19.4 Paging space
	19.5 File transfer applications

	Part 5. Appendices
	Appendix A. Performance toolbox for AIX and parallel extensions
	A.1 Performance toolbox for AIX (PTX/6000)
	A.1.1 PTX/6000 installation

	A.2 Performance toolbox parallel extensions (PTPE)
	A.2.1 PTPE installation

	Appendix B. How to report performance problems to IBM
	Appendix C. Hardware details
	C.1 Node types
	C.2 Roles of nodes
	C.3 Communication paths
	C.4 System partitioning
	C.5 Node selection process

	Appendix D. Special notices
	Appendix E. Related publications
	E.1 IBM Redbooks
	E.2 IBM Redbooks collections
	E.3 Other resources
	E.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

