
SG24-5241-00

International Technical Support Organization

http://www.redbooks.ibm.com

Developing Distributed Transaction
Applications with Encina

Hanspeter Nagel, Bill Ruchte, Radoslav Nikolov, Pankaj Gupta

Developing Distributed Transaction Applications with
Encina

December 1998

SG24-5241-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1998)

This edition applies to Encina Distributed transaction processing system version 2.5, for use with
Operating Systems UNIX and Windows NT.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 413.

Take Note!

Contents

Figures .ix

Tables. xiii

Preface . xv
The Team That Wrote This Redbook . xv
Comments Welcome . xvii

Part 1. Distributed Processing and Encina . 1

Chapter 1. Overview of Distributed Processing 3
1.1 Distributed Computing Environment . 4
1.2 Common Object Request Broker . 7
1.3 Web Server . 8
1.4 Transaction Processing . 10

1.4.1 Transaction Processing Monitor . 11
1.4.2 Encina Monitor . 11

Chapter 2. Overview of Encina . 13
2.1 Product Suite . 14

2.1.1 Encina Toolkit. 14
2.1.2 Encina Structured File Server . 15
2.1.3 Encina Recoverable Queuing Service. 15
2.1.4 Encina Monitor . 15
2.1.5 Encina Peer-to-Peer Communication . 15

2.2 Encina Connectivity . 16
2.2.1 Encina - Web . 16
2.2.2 Encina - OS/390 Interoperability . 19

2.3 Encina Resources . 26
2.3.1 Encina and Database Access . 26
2.3.2 Encina and RQS Access. 28

2.4 Encina++ . 29

Chapter 3. Encina Components. 33
3.1 Base Components . 33

3.1.1 Encina Toolkit. 33
3.1.2 Encina Monitor . 36
3.1.3 Transactional Remote Procedure Calls Service 37
3.1.4 Encina SFS . 40
3.1.5 Encina Recoverable Queuing Service. 42
3.1.6 Encina Peer to Peer Communication . 44
© Copyright IBM Corp. 1998 iii

3.2 Encina++ . 48
3.2.1 Encina++ Programming Model . 48
3.2.2 Encina++/DCE Programming . 49
3.2.3 Encina++/CORBA Programming . 49
3.2.4 Encina SFS++ . 50
3.2.5 Encina RQS++ . 50

3.3 Encina DE-Light Web Components . 51
3.3.1 DE-Light Gateway Server . 52
3.3.2 DE-Light C API . 53
3.3.3 DE-Light Java API . 53

3.4 EncinaBuilder . 55

Part 2. Encina Components Related to Application Development 57

Chapter 4. Encina Transaction Model . 59
4.1 Transactions . 59

4.1.1 Atomicity Consistency Isolation Durability (ACID) 59
4.1.2 Nested Transactions. 61

4.2 Rollback . 63
4.3 TRPC . 66

4.3.1 Interface Definitions . 67
4.4 Security . 72

Chapter 5. Using Encina Components . 77
5.1 Encina Monitor . 77

5.1.1 Run-time Environment . 77
5.1.2 Application Development Environment . 80
5.1.3 Client/Server Application Development . 83

5.2 Encina SFS . 93
5.2.1 File Names . 96
5.2.2 File Structure . 96
5.2.3 Creating an SFS File . 98
5.2.4 Opening an SFS File . 104
5.2.5 Performing I/O on an SFS File . 106
5.2.6 SFS File Access and Transactions . 110

5.3 Encina RQS . 111
5.3.1 Operations on Queues . 112
5.3.2 RQS Application Structure . 124
5.3.3 Managing Queues . 125
5.3.4 Managing Queue Sets . 127

5.4 Encina PPC . 127
5.4.1 LU 6.2 Conversations and Synchronization 129
5.4.2 Programming Interfaces . 133
iv Developing Distributed Transaction Applications with Encina

5.4.3 Distributed Program Link . 135

Chapter 6. Using Encina++ . 139
6.1 Overview of Encina++ Application Development. 139

6.1.1 Encina++ Interfaces . 139
6.1.2 Developing a Distributed Encina++ Application. 140

6.2 The Encina++ Programming Model . 141
6.3 Writing Encina++ Server Applications. 143
6.4 Writing Encina++ Client Applications . 146
6.5 Terminology . 147

6.5.1 Encina++/DCE Programming . 148
6.5.2 Encina++/CORBA Programming . 149
6.5.3 Encina SFS++ . 151
6.5.4 Encina RQS++ . 153

Chapter 7. Internet Access for Java Clients . 157
7.1 Access to DE-Light Gateways . 157

7.1.1 Establishing a Connection . 157
7.1.2 Closing a Connection . 159

7.2 Data Dictionaries . 159
7.2.1 Loading Data Dictionary Variables . 160
7.2.2 Retrieving Data Dictionary Variables . 161

7.3 Access to Encina Servers. 161
7.3.1 Making Remote Procedure Calls . 162
7.3.2 Making TRPC Calls . 163

7.4 Exceptions . 166
7.5 Java Client Security . 167

7.5.1 Setting the DE-Light Security Level . 167
7.5.2 Setting the DCE Security Level for the Gateway 169
7.5.3 Creating a Login Context . 171

7.6 Loading Gateways with IDL and TIDL Files 172
7.7 Short Example . 172

Part 3. Case Study . 177

Chapter 8. Analysis and Architecture Phase 179
8.1 Business Problem Analysis . 179

8.1.1 Case Study Business Problem . 179
8.1.2 The Use Case Model . 180

8.2 Existing Infrastructure Analysis . 183
8.2.1 Systems and Data . 184
8.2.2 Hardware Environment . 184
8.2.3 Network Environment . 184
 v

8.2.4 Languages and Tools . 184
8.3 Application Architecture . 184

8.3.1 Architectural Decisions . 185
8.3.2 Application Architecture Diagram . 187

8.4 Infrastructure Architecture . 188
8.4.1 DCE Cell Structure . 189
8.4.2 Encina Cell Structure . 189

Chapter 9. Design Phase . 191
9.1 Application Design . 191
9.2 Object Modeling . 191
9.3 Object Design. 193

9.3.1 Adding Implementation Classes . 193
9.3.2 Mapping the Functions . 195

9.4 Common Application Components and Standards 197
9.5 Data Design . 198
9.6 Transaction Design . 200
9.7 Naming Conventions . 202
9.8 Final Note Concerning the Design Approach 204

Chapter 10. Development Phase . 205
10.1 Development Environment . 205

10.1.1 Source Code and Version Control . 205
10.1.2 Build Management . 207
10.1.3 Code Partitioning . 207
10.1.4 Encina Infrastructure . 209
10.1.5 DCE Infrastructure . 209
10.1.6 Database Infrastructure . 209

10.2 Application Development . 210
10.2.1 Interface Coding . 210
10.2.2 Common Module Construction . 222
10.2.3 Database Processing . 233
10.2.4 RQS Queue Processing . 240
10.2.5 Host Access with PPC . 246
10.2.6 Server Construction . 256
10.2.7 Standard Client Construction . 275
10.2.8 Web Client Construction . 279

Part 4. Maintenance . 287

Chapter 11. Administration . 289
11.1 Naming Conventions . 289
11.2 System Security and User Administration . 291
vi Developing Distributed Transaction Applications with Encina

11.2.1 Encina Security Model . 291
11.2.2 Operating System Security . 292
11.2.3 DCE Security . 292
11.2.4 Encina Server Security . 295
11.2.5 DE-Light Clients and Gateways . 298
11.2.6 Encina++ and CORBA . 298

11.3 Encina System Monitoring . 298
11.4 Fault Tolerance and Encina . 299

11.4.1 Automatic Server Restart . 300
11.4.2 Multiple Server Instances . 300
11.4.3 Encina Volume Mirrors . 300
11.4.4 Examples of Failures . 302
11.4.5 Volume Backup and Recovery . 304
11.4.6 Robust Fault-Tolerant Configurations 306

11.5 Performance. 311

Chapter 12. Application Deployment . 315
12.1 Overview . 315
12.2 Staging Methods . 319
12.3 DCE and Encina Installation and Configuration 324

12.3.1 Operating System Preparation . 324
12.3.2 DCE and Encina Installation . 328
12.3.3 DCE Configuration . 328
12.3.4 Initial Encina Cell Configuration . 329
12.3.5 Automatic Restart Setup . 331
12.3.6 Encina Server Configuration . 342

12.4 Replicating Encina Cell Configuration. 343

Chapter 13. Troubleshooting . 347
13.1 Environment Setup . 347
13.2 Overall Encina Cell Status . 347

13.2.1 DCE and Encina Patch Levels . 348
13.2.2 Cell Configuration . 348
13.2.3 ACL Setup . 349
13.2.4 Endpoint Map . 350
13.2.5 DCE Processes and Servers . 350
13.2.6 Encina Nodes and Servers . 351

13.3 Encina Message Log Files . 351
13.4 Transaction Status . 354
13.5 Encina Trace Facility . 356

13.5.1 Selecting Trace Events . 356
13.5.2 Selecting Output Destination . 359
13.5.3 Reading Trace Output . 361
 vii

Appendix A. Encina Codes and Messages . 363
A.1 Error Codes. 363
A.2 Messages . 371

A.2.1 Monitor . 371
A.2.2 OTS . 387
A.2.3 PPC . 393
A.2.4 Client Core . 395
A.2.5 Server . 402
A.2.6 SFS. 408
A.2.7 RQS . 411

Appendix B. Special Notices . 413

Appendix C. Related Publications. 417
C.1 International Technical Support Organization Publications 417
C.2 Redbooks on CD-ROMs . 417
C.3 Other Publications . 418

How to Get ITSO Redbooks . 425
How IBM Employees Can Get ITSO Redbooks . 425
How Customers Can Get ITSO Redbooks. 426
IBM Redbook Order Form . 427

Glossary . 429

List of Abbreviations. 433

Index . 435

ITSO Redbook Evaluation . 443
viii Developing Distributed Transaction Applications with Encina

Figures

1. DCE Architecture . 5
2. Encina Overview . 13
3. DE-Light: Going through a Gateway . 17
4. DE-Light: Stand-alone Java Application . 18
5. OpenEdition DCE AS CICS and IMS Application Support Servers 19
6. Transactional Access from an Encina Client to IMS 21
7. DPL Access to CICS through the PPC Gateway . 25
8. Encina PPC Services. 45
9. Encina-to-SNA Conversation . 47
10. DE-Light Architecture Overview. 52
11. Downloading DE-Light Java Applets . 54
12. Java Clients Accessing Encina Servers. 55
13. Sample TIDL file . 68
14. Sample TACF File . 69
15. OrderProcessingSystem Sample File Structure . 70
16. Sample DCE-Only RPC Interface . 72
17. "Hello World" Tran-C Example. 82
18. Output of the "Hello World" Tran-C Example . 82
19. Sample TIDL for OrderProcIF . 84
20. Sample TACF for OrderProcIF . 85
21. Extract of orderprocif_manager.c (Part 1) . 86
22. Extract of orderprocif_manager.c (Part 2) . 87
23. Sample SFS Initialization Using Tran-C. 96
24. Sample Definition of an SFS Record Template . 99
25. Structure of the Index Field Specification . 101
26. Primary Index Structure . 101
27. Structure sfs_secondaryIndexSpec_t to Create Secondary Index 102
28. Creating a Relative SFS File . 103
29. Open File Descriptor Structure sfs_ofdSpec_t. 104
30. Example of an OFD Specification and File Open 106
31. Using sfs_ModifyFieldByKey to Decrement an Inventory 109
32. rqs_Enqueue Function. 113
33. rqs_Dequeue Function. 114
34. Dequeuing an Element from a Specific Queue . 116
35. Dequeuing from a Queue Set . 117
36. rqs_Requeue Function. 118
37. rqs_RequeueAndModify Function . 119
38. rqs_ElementRead Function . 120
39. rqs_ElementModify Function . 120
40. rqs_ElementDelete Function . 121
© Copyright IBM Corp. 1998 ix

41. rqs_ElementDropLock Function. 121
42. rqs_ElementIdCmp Function . 122
43. rqs_GetServerHandle Function . 124
44. Example of an RQS Client Initialization without Encina Monitor 125
45. rqs_Qcreate Function . 126
46. PPC Services Model . 128
47. SNA Peer-to-Peer Communication Model . 130
48. Using Tran-C to Allocate a Synclevel Syncpoint Transaction 133
49. Encina PPC Client Calling a CICS Transaction through DPL 135
50. Dynamic_Program_Link Function . 136
51. Example of a DPL Client . 138
52. Example of Initializing an Encina++ Server Application. 144
53. Example of Initializing an Encina++ Client Application 146
54. Example of a TCP Connection with a DE-Light Gateway 158
55. Sample Java Code for Basic Transaction Programming (TRPC) 165
56. (Part 1 of 3) Example of a Simple DE-Light Java Client 173
57. (Part 2 of 3) Example of a Simple DE-Light Java Client 174
58. (Part 3 of 3) Example of a Simple DE-Light Java Client 175
59. Use Case Diagram. 183
60. Application Architecture Diagram. 188
61. Business Objects Class Structure Diagram . 192
62. Implementation Class Diagram . 194
63. Extensions to the Implementation Class Diagram 195
64. Interaction Diagram for the finalizeOrder Function 196
65. Order Database Design Diagram. 200
66. Sample Source Code Directory Structure . 206
67. IDL Definition of the RpcReturn Structure . 211
68. IDL Definitions for the Product Data Structures . 212
69. (Part 1 of 2) IDL Definitions for the Order Data Structures 214
70. (Part 2 of 2) IDL Definitions for the Order Data Structures 215
71. IDL Definitions for the Verification Statistics Data Structure 215
72. (Part 1 of 2) The OrderProcCommon.idl File . 216
73. (Part 2 of 2) The OrderProcCommon.idl File . 217
74. TIDL Definition for the OrderProcIF Interface (OrderProcIF.tidl) 219
75. TIDL Definitions for the VerificationIF Interface (VerificationIF.tidl) 220
76. TACF Definition for the OrderProcIF Interface (OrderProcIF.tacf). 220
77. The RpcReturn Header File . 223
78. RpcReturn Implementation File . 224
79. Implementation File for LogEntry . 225
80. (Part 1 of 2) Error Processing Functions (StatusStrings.c) 227
81. (Part 2 of 2) Error Processing Functions (StatusStrings.c) 228
82. ServerConfig Structure and Associated Enumerations 229
83. Accessing the Environment Variables and Command Line Arguments. . 231
x Developing Distributed Transaction Applications with Encina

84. Sample Configuration Variable Set Function . 232
85. Using the Configuration Common Module during Server Startup 233
86. Order Database Function Prototypes (OrderDbDB2.h) 234
87. Registering the DBMS As an XA Resource . 236
88. (Part 1 of 3) Database Access Code for the getOrderInfo() Function . . . 237
89. (Part 2 of 3) Database Access Code for the getOrderInfo() Function . . . 238
90. (Part 3 of 3) Database Access Code for the getOrderInfo() Function . . . 239
91. Verify Queue Function Prototypes (VerifyQueue.h). 241
92. RQS Initialization . 242
93. Enqueue Processing for RQS . 243
94. Dequeuing from the Review Queue Set . 245
95. Disconnecting from RQS . 246
96. Product Database Functions (ProductDbPPC.h). 247
97. Conversation Pattern for the Product Database Access 249
98. Initializing PPC (from initProductDb.c). 250
99. The Side Information File. 251
100.Allocating a Conversation (from ProductDbPPC.c) 252
101.Sending Data through PPC (from ProductDbPPC.c) 252
102.Receiving Data through PPC (from ProductDbPPC.c) 253
103.Deallocation after a Receive (from ProductDbPPC.c). 253
104.(Part 1 of 2) The updateProductQty Function (from ProductDbPPC.c). . 255
105.(Part 2 of 2) The updateProductQty Function (from ProductDbPPC.c). . 256
106.Server Life-Cycle Functions (OrderProcServer.h). 257
107.OrderProcServer main() Function (from OrderProcServer.c) 258
108.Server Configuration: establishEnv() Function . 259
109.Exporting the Server’s Interface from OrderProcServer.c. 260
110.XA Resource Registration serverPreInit() (from OrderProcServer.c) . . . 261
111.Building the rmName String for DB2 (from OrderDbDB2.c) 261
112.Setting Server Options: setServerOptions() Function 262
113.Initializing the Server: initServer() Function. 263
114.Post-Initialization Processing: serverPostInit() Function 263
115.Listening for RPCs: serverListenLoop() Function 264
116.Server Shutdown Processing: closeVerifyQueue Function. 265
117.TIDL Definition for the orderItem() Function . 266
118.RPC Implementation of the orderItem Function 266
119.The VerificationServer’s serverPostInit Function 268
120.The Queue Processing Thread Function (from VerifyLoop.c) 270
121.Starting the Processing Thread: startVerifyThread() Function 271
122.Stopping the Processing Thread: stopVerifyThread() Function 271
123.Initializing the Shared Structure and Mutex (from VerifyStats.c) 272
124.Accessing the Shared Structure (from VerifyStats.c) 273
125.Initializing an Encina Client (from OrderProcClient.c) 276
126.Making the Initial RPC Call (from OrderProcClient.c) 277
 xi

127.Calling an RPC with an Output Parameter . 277
128.Using Double Indirection and Server-Side Memory 278
129.Getting the Gateway Information from the HTML Page 281
130.Establishing the Connection to the DE-Light Gateway 281
131.Instantiating the Interface Object. 282
132.Calling the reviewOrder() RPC Function . 283
133.PPC Gateway Definition Window . 297
134.Enabling Media Archiving . 305
135.Recovery Options Window . 305
136.Fault Tolerant Production Configuration . 307
137.Encina Server Failure Configuration . 309
138.Adding Extra Web Servers . 310
139.Adding Extra Encina Monitor Application Server (MAS) Machines 311
140.Monitor Application Server Advanced Options Window 313
141.Application Development Machine Configuration 320
142.Application Staging Environment . 322
143.Sample Production Environment. 323
144.Definition of Encina Mirror Volumes for Node Managers 326
145.(Part 1 of 4) Sample rc.encina Script . 333
146.(Part 2 of 4) Sample rc.encina Script . 334
147.(Part 3 of 4) Sample rc.encina Script . 335
148.(Part 4 of 4) Sample rc.encina Script . 336
149.Sample CELL_LIST File . 337
150.(Part 1 of 4) Sample rc.encina.servers Script . 338
151.(Part 2 of 4) Sample rc.encina.servers Script . 339
152.(Part 3 of 4) Sample rc.encina.servers Script . 340
153.(Part 4 of 4) Sample rc.encina.servers Script . 341
154.Sample Server Configuration Code. 343
155.Serious Messages Window . 353
156.Transaction Messages Window . 355
157.DCE Server Options Window . 359
xii Developing Distributed Transaction Applications with Encina

Tables

1. Simple Encina Monitor Configuration. 78
2. SFS File Organizations . 98
3. SFS Data Types for SFS Record Template Creation 99
4. Tasks to Start Communication from Encina Transactions to LUWs 132
5. TIDL Elements Unsupported by DE-Light . 162
6. DE-Light Client Security Levels . 168
7. DCE Security Levels for DE-Light Gateways. 169
8. Case Study Application Encina Objects. 290
9. Encina Account Environment Variables. 347
10. Important Encina Server Attributes . 349
11. Common Trace Masks. 358
12. The Manuals for IBM Transaction Server for Windows NT 418
© Copyright IBM Corp. 1998 xiii

xiv Developing Distributed Transaction Applications with Encina

Preface

This redbook is primarily intended for application developers, system
architects, and IT managers to understand the principals about transaction
application development using the Encina Software from IBM/Transarc.

The redbook consists of four parts. Part 1 gives a short introduction to
Transaction Processing and how to position the different Encina modules.

Part 2 discusses the specifics of the different Encina APIs, explains how to
use them and discusses some specific application design considerations.

Part 3 illustrates through a case study, how to design and develop a solution
utilizing the Encina APIs. After an analysis and architecture description, we
show how to design an Encina based solution, and how to develop the
necessary code. The software developed through this phase is partly
available on http://www.redbooks.ibm.com

Part 4 finally discusses the important issues about configuration,
administration, and maintenance of Encina infrastructure. In addition it also
covers the deployment tasks of Encina based applications and shows some
useful tools.

In the case study we describe in part 3 we study a fictional customer who
wants to enter the e-commerce market for direct sale. This gives him a
market advantage against his competitors because of faster delivery process
handling, higher degree of backoffice automation and better customer service
through individualized marketing. While you read this case study, you may
detect some needs already discussed in so many meetings....

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Hanspeter Nagel is an Senior Systems Engineer at the International
Technical Support Organization, San Jose Center. He writes extensively and
teaches IBM classes worldwide on all areas of Transaction Systems. Before
joining the ITSO, Hanspeter Nagel worked in the service organization of IBM
Switzerland where he was responsible for DCE, Security, and Distributed
Transaction Systems in several customer projects. You can reach him by
e-mail at hnag@us.ibm.com.
© Copyright IBM Corp. 1998 xv

Bill Ruchte is the Chief Technical Officer of Trifolium, an IBM Business
Partner specializing in Encina application development. Bill has been
involved in a number of large distributed system development efforts using
many different technologies. Prior to founding Trifolium, Bill worked for
Imonics and General Electric in system architecture and project management
roles. Bill is also an Adjunct Member of the Faculty at North Carolina State
University.

Pankaj Gupta is a Technical Consultant with Transarc Corp. in USA. Pankaj
Gupta has an extensive experience in all major client-server systems and
Encina Technology and worked in several large projects.

Radoslav Nikolov is a Technical Consultant with Transarc Corp. in USA.
Radoslav Nikolov has an extensive experiences in all major questions of
multi-platform client-server systems and managed several large projects in
this area.

Thanks to the following people for their invaluable contributions to this
project:

Maggie Cuttler, Emma Jacobs, Elsa Barron, Mary Comianos, and Laymond
M. Pon of the International Technical Support Organization, San Jose Center

Michael Lundblad
Transarc

Rose Palombo
Transarc

Tony Parente
Transarc

Douglas Ayers
Transarc

Doug Morin
Trifolium

Heiner Tschopp
IBM Switzerland
xvi Developing Distributed Transaction Applications with Encina

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 443
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xvii

xviii Developing Distributed Transaction Applications with Encina

Part 1. Distributed Processing and Encina

In Part 1 after a brief introduction to distributed transactions, their
components, and enabling standards, we provide an overview of the Encina
technology and the different Encina modules. This part is primarily for readers
who want to develop a general understanding of Encina.
© Copyright IBM Corp. 1998 1

2 Developing Distributed Transaction Applications with Encina

Chapter 1. Overview of Distributed Processing

In this chapter we provide an overview of distributed processing and the
technologies related to Encina.

Several trends have dramatically changed the way information is processed.
At the same time that the cost of personal computers and workstations has
been steadily decreasing, their computing power has been increasing. In
addition, local area networks and high-performance wide area networks are
becoming cheaper and faster. Thus it has become quite cost effective to
provide desktop computing power to users who can share information and
resources with one another.

Businesses are also evolving. Separate organizations are merging, resulting
in a combination of two completely different computer infrastructures.
Previously autonomous entities within an organization are interacting with
other entities within the organization or with other organizations, resulting in
information exchange among entities that have different computers and
different data representation methods.

The paradigm of computing is shifting from centralized computing to
distributed computing, that is, computing that involves the cooperation of two
or more machines communicating over a network. One advantage of this shift
is that the machines participating in the system can range from personal
computers to supercomputers; the network can connect machines in one
building or on different continents.

Another advantage of distributed computing is resource sharing. If
special-function hardware or software is available over the network, that
functionality does not have to be duplicated on every computer system that
needs to access it. For example, an organization could make a typesetting
service available over the network, allowing users throughout the
organization to submit their jobs to be typeset.

In addition to the cost-effectiveness of many small computers working
together, having many units connected to a network is the more flexible
configuration. If more resources are needed, another unit can be added in
place, rather than bringing the whole system down and replacing it. The
ability to replicate data and functionality has made distributed systems more
reliable and available than centralized systems. For example, when a file is
copied on two different machines, even if one machine is unavailable, the file
can still be accessed on the other machine. Likewise, if several printers are
© Copyright IBM Corp. 1998 3

attached to a network, even if an administrator takes one printer offline for
maintenance, users can use an alternative printer to print their files.

The shift from centralized computing to distributed computing raises several
new concerns. Because the data accessed could be anywhere in the
network, naming conventions must be in place to identify the data and
services must be available to locate data. Complicating this task is that the
location of the data may be dynamic, that is, the data may be moving from
one location to another over time. Additionally, the data could become
unavailable because of network or computer failures

An other concern is security. The system that maintains the data must allow
access to authorized external users and deny access to unauthorized
external users. The computer systems in a distributed system must cooperate
to exchange information and maintain data integrity.

1.1 Distributed Computing Environment

The Distributed Computing Environment (DCE) is a cross-platform,
comprehensive, integrated set of services that support the development, use,
and maintenance of distributed computing applications (see Figure 1 on page
5). The availability of a uniform set of distributed computing services
anywhere in the network gives applications an effective means of harnessing
the power inherent in networks of computers that may otherwise be unused.
DCE is available on a broad range of platforms from desktop systems to
UNIX workstations to mainframes and is an overall accepted standard.
4 Developing Distributed Transaction Applications with Encina

Figure 1. DCE Architecture

DCE offers a fully integrated, production-ready distributed computing
environment based on an architecture designed to accommodate new
distributed computing technologies in the future. It provides a
communications environment that supports information flow from wherever
information is stored to wherever it is needed, without exposing the network’s
complexity to the end user, system administrator or application developer.

The DCE architecture is a layered model that integrates a set of eight
fundamental technologies from the most basic supplier of services (the
operating system) to the highest level consumers of services (the
applications). Security and management services are essential to all layers of
the environment. To applications, DCE appears as a single logical system
Overview of Distributed Processing 5

that can be organized into two broad categories of services: the DCE Secure
Core and DCE Data Sharing services.

The DCE Secure Core services provide software developers with the tools to
create end-user applications and system software products for distributed
computing. These services include:

Thread Service: DCE supports multithreaded applications such as programs
that use lightweight processes to perform many actions concurrently. DCE
threads are based on the POSIX threading standard.

Remote Procedure Call (RPC): The DCE RPC is the fundamental
communications mechanism, allowing direct calls to procedures on remote
systems as if they were local procedure calls. This mechanism simplifies
development of distributed applications by eliminating the need to explicitly
program the network communications between the client and server. The
DCE RPC mechanism masks differences in data representation on different
hardware platforms, allowing distributed programs to work transparently
across heterogeneous systems.

Directory Services: The DCE Cell Directory Service (CDS) is the
mechanism for logically naming objects within a DCE cell (a group of client
and server machines). Applications identify resources by name, without
needing to know where the resources are located. DCE cells can also
participate in a worldwide directory service, using the DCE Global Directory
Service (GDS), which uses the Internet-style Domain Name Service (DNS).

Security Service: The DCE Security Service provides the mechanisms for
writing applications that support secure communications between clients and
servers. The Security Service enables processes on different machines to
confirm one another’s identities, allows a server to determine whether a given
user is authorized to access a particular resource, and supports several
security levels for protecting messages as they travel across the network.
The DCE Security Service is the foundation for enterprisewide security
solutions, such as the IBM single signon product and IntelliSoft Corp.’s
DCE/Snare.

Time Service: The DCE Distributed Time Service (DTS) synchronizes the
clocks on different machines in a distributed system.

Audit Service: The DCE Audit Service provides the mechanism for detecting
and recording critical events in distributed applications. The Audit Service
logs audit records on the basis of specified criteria. An administrative
command interface selects the events to be recorded on the basis of certain
6 Developing Distributed Transaction Applications with Encina

criteria. An event classification mechanism allows the logical grouping of a
set of events for ease of administration.

Naming Gateway: The DCE Naming Gateway enables Microsoft Windows
NT RPC clients to use the DCE Naming Service to locate servers without
installing additional DCE software on the client machine.

DCE offers these features and benefits:

 • Comprehensiveness: DCE encompasses all of the facilities necessary for
building distributed applications. It integrates all of these services into a
single, logical structure, enabling programmers and administrators to
develop and manage distributed applications as easily as traditional,
single-system programs.

 • Powerful APIs: DCE provides the developer with an integrated set of
high-level construct RPCs, threads, security, and naming services that
mask the complexity and diversity of the network. This simplifies the
development task and facilitates the porting of applications across
platforms.

 • High Performance: DCE is designed for high performance and availability.
Critical DCE servers can be replicated to support large numbers of clients
and ensure high availability.

 • Interoperability: DCE provides a high level of interoperability and supports
the construction of applications that interoperate seamlessly in
multivendor environments. DCE software is Open Software Foundation
(OSF) certified.

 • Portability: DCE is network independent and operating-system
independent and is backed as a standard by The Open Group
(X/OpenLtd., OSF), numerous end users, and independend software
vendors (ISVs), and most major computer vendors.

1.2 Common Object Request Broker

The Common Object Request Broker Architecture (CORBA) is a specification
of the Object Management Group (OMG). The objective of the CORBA
standard is to allow interoperability among diverse software and hardware
products available from different vendors. CORBA enables various vendors
to implement an application component with different underlying
implementations as long as they conform to the interface of the component.
Thus an application function can be invoked without regard to who has
implemented it or where it is located. CORBA 1.1, introduced in 1991 by
OMG, defined the interface definition language (IDL) and the application
Overview of Distributed Processing 7

programming interfaces (API) that enable client/server object interaction
within a specific implementation of an object request broker (ORB). The ORB
is the glue that matches a client request to an appropriate server
implementation. CORBA 2.0, adopted in December 1994, defines true
interoperability by specifying how ORBs from different vendors can
interoperate.

The ORB is the middleware that establishes the client-server relationship
between objects. Using an ORB, a client can transparently invoke a method
on a server object, which can be on the same machine or across a network.
The ORB intercepts the client call and is responsible for finding a server
object that can implement the request, pass it the parameters, invoke its
method, and return the results. The client is independent of the object’s
location, its programming language, its operating system, or any other
system aspects that are not part of an object's interface. The ORB thus
provides interoperability between applications on different machines in
heterogeneous distributed environments and seamlessly interconnects
multiple object systems.

The interface definition specifies the interface that an object supports. The
object can then be implemented in any operating system and with any
language, as long as it implements the required functionality and supports the
defined interface. ORBs allow programmers to choose an appropriate
operating system, execution environment, programming language, and
algorithms to support an interface definition.

Additionally, ORBs allow the integration of existing components. In an
ORB-based solution, developers simply model the legacy component, using
the same IDL they use for creating new objects, and write wrapper code that
translates between the standardized business and the legacy interfaces.

In summary, CORBA provides object-oriented standardization and
interoperability. With CORBA, users access information transparently, without
having to know on which software or hardware platform it resides or where it
is located on an enterprise’s network. The communications heart of
object-oriented systems, CORBA brings true interoperability to today's
computing environment.

1.3 Web Server

A Web server maintains information that users on the World Wide Web can
access. A user running a Web browser can access information stored on a
Web server. Typically the web server stores and maintains the data, and the
8 Developing Distributed Transaction Applications with Encina

browser formats and displays the data. Web browsers also support the
download and execution of applets, which are applications that can be
downloaded from the Web server and executed on the Web browser (client).
Thus, the World Wide Web supports a client/server environment.

With the growing popularity of the World Wide Web, existing
(non-Web-based) applications have to be migrated so that they can be
executed over the Web. Simple, straightforward application programs that run
on low-end client machines offer large numbers of users an effective means
to access Web servers and business-critical applications. Thus companies
can leverage the Web, using smaller client machines across their enterprises
for more efficient system operation.

The Internet DE-Light client, developed using the Java programming
language, supports access to existing DCE and Encina applications through
desktop PCs and workstations with Web browsers. The Internet DE-Light
client (and its applications) provides the following key features:

 • Portability of applications across a wide variety of platforms

 • Consistent application look and feel because of a simplified high-level
screen-definition interface

 • Dynamic linking for automatic downloading of applets

The Internet DE-Light client enables Java applets running on any platform to
invoke DCE- and Encina-based application servers located across the
network. Applets download automatically from the Web server any time a
browser accesses a Web page that requires DCE or Encina services. Specific
installation of Internet DE-Light client components is not required on the client
machine.

The client gateway protocol is simple and efficient and works well on low
bandwidth channels like the dial-up lines common for many Web users.

With the Internet DE-Light client, Encina developers can leverage Java's
benefits to create client applications that are visually consistent across
platforms, easier to manage and more portable than before, and compatible
with other DCE and Encina clients and existing application servers.

The Internet DE-Light client uses the secure sockets layer (SSL), an industry
standard, to protect data as it travels between the client and gateway across
the network. SSL provides data encryption and message integrity for a
TCP/IP connection. Once at the gateway, DCE credentials are obtained for
full-level security.
Overview of Distributed Processing 9

1.4 Transaction Processing

Transaction processing systems are widely used by enterprises to support
mission critical applications. These applications need to store and update
data reliably, provide concurrent access to data by hundreds or thousands of
users, and maintain data integrity despite failures of individual system
components.

A transaction is a tool for distributed systems programming that simplifies
failure scenarios, and it is a set of operations that transforms data from one
consistent state to another. This set of operations is an indivisible unit of
work, and, in some contexts, a transaction is referred to as a logical unit of
work.

Transactions provide ACID properties:

 • Atomicity. A transaction's changes are atomic: either all operations that
are part of the transaction occur or none occurs.

 • Consistency. A transaction moves data between consistent states.

 • Isolation. Even though transactions can execute concurrently, one
transaction does not see another's work in progress. The transactions
appear to run serially.

 • Durability. Once a transaction completes successfully, its changes survive
subsequent failures.

As an example, consider a transaction that transfers money from one account
to another. Such a transfer involves money being deducted from one account
and deposited in the other. Withdrawing the money from one account and
depositing it in the other account are two parts of an atomic transaction: if
both cannot be completed, neither must occur. If multiple requests are
processed against an account at the same time, they must be isolated so that
only a single transaction can affect the account at one time. If the bank's
central computer goes down just after the transfer, the correct balance must
still be shown when the system becomes available again; the change must be
durable. Note that consistency is a function of the application; if money is to
be transferred from one account to another, the application must subtract the
same amount of money from one account that it adds to the other account.

Transactions can be completed in one of two ways: they can commit or abort.
A successful transaction is said to commit. An unsuccessful transaction is
said to abort. Any data modifications made by an aborted transaction must be
completely undone (rolled back). In the above example, if money is
withdrawn from one account but a failure prevents the money from being
10 Developing Distributed Transaction Applications with Encina

deposited in the other account, any changes made to the first account must
be completely undone. The next time any source queries the account
balance, the correct balance must be shown.

In a distributed system, a transaction can access and update data across
many different computers. To maintain the ACID properties of the
transactions, these computer systems must cooperate with each other to
guarantee data integrity and availability.

1.4.1 Transaction Processing Monitor
Transaction processing is supported by programs called transaction
processing monitors (TP monitors). TP monitors perform the following three
types of functions:

 • System run-time functions: TP monitors provide an execution environment
that ensures the integrity, availability, and security of data. They also help
provide fast response time and high transaction throughput.

 • System administration functions: TP monitors provide administrative
support that lets users configure, monitor, and manage their transaction
systems.

 • Application development functions: TP monitors provide functions for use
in custom business applications, including functions to access data,
perform intercomputer communications, and design and manage the user
interface.

1.4.2 Encina Monitor
The Encina Monitor run-time environment coordinates TP applications and
resource managers and performs run-time administration tasks, such as load
balancing and collecting diagnostics. In addition, this environment provides
for other interactions with the execution environment, such as scheduling
calls for later execution and retrieving information about users, transactions,
and client/server bindings. The run-time environment provides support for
coordinating a transaction in a distributed environment. It supports database
access as well as access to data stored in mainframe systems. It provides a
secure environment for running applications.

The monitor run-time environment also monitors the state of the system and
the state of the server processes. In case of a failure of a server process, the
monitor detects the failure and automatically restarts the server, increasing
the availability of the system and providing additional robustness.
Overview of Distributed Processing 11

The monitor system administration interface is used to construct, initiate,
control, and terminate a monitor system. The monitor is administered through
monitor administrative and configuration interfaces.

Monitor applications are developed by using the monitor API in conjunction
with other Encina interfaces, such as Tran-C. The monitor saves the
programmer effort by performing some tasks, such as interaction with DCE
RPC and security, on the application’s behalf. Thus, the Encina monitor
simplifies the task of writing applications by automating several low-level
tasks.
12 Developing Distributed Transaction Applications with Encina

Chapter 2. Overview of Encina

Whereas DCE offers great value as a set of consistent and interoperable
cross-platform services, Encina extends these services by providing support
for such essential services as distributed transactions, load balancing, an
execution and systems administration infrastructure, and simplified
development. Encina is based on a modular, layered architecture that builds
on top of DCE. The lower layers of Encina extend DCE to form a set of core
technologies that enable client/server transaction processing and the
management of recoverable data.

A key benefit of Encina is its modular architecture, providing functionality in
an organized way (see Figure 2 on page 13).

Figure 2. Encina Overview

The Encina toolkit provides services for failure recovery, integrating with
relational databases through the industry-standard XA interface, and
distributed transactions. The Structured File Service (SFS) provides a
record-oriented file system that is very similar to VSAM on mainframes. The
Peer-to-Peer Communications (PPC) component provides Logical Unit 6.2
(LU 6.2) connectivity services to applications and data on mainframes and
© Copyright IBM Corp. 1998 13

other enterprise platforms. The Recoverable Queuing Service (RQS)
provides full-featured, fault-tolerant queuing services. The Encina Monitor
simplifies development, provides execution support for starting and stopping
servers, fault detection and correction, and single-image systems
management. While Encina uses a modular architecture, Encina-based
applications remain efficient and perform well because of the specific way in
which Encina uses shared libraries and links into application programs.

2.1 Product Suite

Encina is a modular system that is layered on top of the DCE services. The
Encina product suite consists of the following modules:

 • Encina Toolkit Executive

 • Encina Toolkit Server Core

 • Encina Structured File Server

 • Encina Recoverable Queuing Service

 • Encina Monitor

 • Encina PPC Executive

 • Encina PPC Gateway/SNA

Encina 2.5 additionally provides expanded support for object-oriented
programming by supporting the OMG’s Object Transaction Service (OTS) and
Object Concurrency Control Service (OCCS) on top of a commercial ORB.

2.1.1 Encina Toolkit
As shown in Figure 2 on page 13, the modules of the Encina Toolkit are
grouped into two major components:

 • Toolkit Executive: The Executive provides services that permit a process
to initiate, participate in, and commit distributed transactions. These
services include transactional extensions to DCE RPCs that ensure
transactional integrity over distributed computations transparently. The
Executive also supports nested transactions, a feature that provides
failure containment and simplifies application development.

 • Toolkit Server Core: Built on the Executive, the Server Core provides
facilities for managing recoverable data that is accessed and updated
transactionally. These facilities include a locking library to serialize data
access, a recoverable storage system to allow transactions to roll back or
roll forward after failures, and an X/Open XA interface to permit the use of
XA-compliant resource managers.
14 Developing Distributed Transaction Applications with Encina

The modular nature of the Toolkit provides a flexible environment for
developing transaction processing applications or moving existing transaction
processing applications from one computer system to another. In addition,
the Toolkit provides interfaces in the C programming language, which makes
it easily used on many systems.

2.1.2 Encina Structured File Server
The Encina SFS is a record-oriented file system that provides transactional
integrity, log-based recovery, and broad scalability. It supports very large
databases, and it is fully capable of participating in two-phase commit
protocols, allowing multiple SFS servers to be used in a single transaction.

SFS uses structured files, which are composed of records. It provides
X/Open ISAM-compliant and VSAM-like interfaces. The records themselves
are made up of fields. For example, each record can contain information
about an employee, with fields for the name, employee number, and salary.

2.1.3 Encina Recoverable Queuing Service
The RQS allows applications to queue transactional work for later
processing. Applications can then commit their transactions with the
assurance that the queued work will be completed transactional at a later
time.

2.1.4 Encina Monitor
The Encina Monitor, or just the Monitor, is a TP monitor that provides the
means to develop, run, and administer transaction processing applications. In
conjunction with resource managers, the Monitor provides an environment to
maintain large quantities of data in a consistent state, controlling which users
and clients access specific data through defined servers in specific ways. The
Monitor provides an open, modular system that is scalable and interoperates
with existing computing resources such as IBM mainframes running CICS.

2.1.5 Encina Peer-to-Peer Communication
PPC Services enable Encina transaction processing systems to interoperate
with systems, typically mainframes, that have Systems Network Architecture
(SNA) LU 6.2 communication interfaces. PPC Services provide bidirectional
transactional communications, which enable applications to share data
between mainframes and Encina. For example, Encina applications can both
make requests of services provided by mainframe-based applications and
service requests from mainframe systems, manipulating data on both
systems with transactional consistency in either case.
Overview of Encina 15

2.2 Encina Connectivity

Encina provides connectivity among various components. As mentioned
before Encina supports client/server computing in a distributed environment.
The transactional application may span multiple systems, using the DCE
facilities for name lookup, RPCs and security. Encina provides the
mechanisms for multiple systems to interact with each other to ensure the
consistency of data and maintain the ACID properties of transactions.

Additionally Encina supports connectivity with external components. An
example of an external component is a database back-end system that is
used to store data. In this section we describe how Encina provides
connectivity to several such systems.

2.2.1 Encina - Web
The DE-Light product is a set of APIs and a gateway server that you can use
to extend the power of the DCE and Transarc Encina to personal computers
and other systems that are not running as DCE clients.

You can use DE-Light to build clients that require less overall effort to create,
involve fewer administrative resources, and generate less network traffic than
standard DCE or Encina clients. Yet these DE-Light clients can still take
advantage of the benefits of load balancing, scalability, and server replication
that were formerly available only to full DCE and Encina clients. In addition,
DE-Light enables you to access DCE and Encina from systems that do not
support DCE but do support Java.

DE-Light is available as a separate product and consists of the following
three components:

 • Java API: Used to develop DE-Light Java client applications (also known
as "Internet DE-Light clients").

 • C API: Used to develop DE-Light C clients for the Microsoft Windows NT
and Windows 95 environments.

 • Gateway server: Enables communications between Internet DE-Light
clients and DCE or Encina servers.

In the DE Light environment, clients use a simplified RPC protocol to
communicate with a DE-Light gateway. The DE-Light gateway, a server
process running within the DCE cell, translates the simplified RPCs into full
DCE RPCs or Encina transactional RPCs (TRPCs) and communicates with
DCE or Encina servers on behalf of the clients. The gateway also translates
16 Developing Distributed Transaction Applications with Encina

communications from these servers into responses for the clients, thus
completing the communications loop between clients and servers.

Communications between Internet DE-Light clients and the DE-Light gateway
can use the TCP/IP, HTTP, or HTTPS transport protocols. Internet DE-Light
clients can use the Internet as the transport mechanism for secure
commercial applications. Clients need only connect to the Internet through a
local service provider to securely access DCE and Encina servers.

DE-Light Java clients can consist of either:

 • A java applet residing on a Web server or a stand-alone java application

 • A Java applet embedded in a HyperText Markup Language (HTML)
document residing on a Web server. With this type of client, a user
contacts a Web server through a Java-enabled Web browser, and the
browser automatically downloads the DE-Light Java client applet along
with the HTML document.

The DE-Light Java client applet then contacts the appropriate DE-Light
gateway. The gateway is a separate server that resides on a DCE client
machine. As shown in Figure 3 on page 17, the Web client can now
communicate with DCE or Encina servers through the DE-Light gateway.

In previous versions of Netscape and Microsoft Internet Explorer, the
gateway had to reside on the same machine as the Web server. With
Netscape Version 4.0 and Microsoft Internet Explorer Version 4.0, the use of
signed applets removes this restriction.

Figure 3. DE-Light: Going through a Gateway
Overview of Encina 17

Alternatively, the application can be written as a stand-alone Java application
(see Figure 4 on page 18). This DE-Light Java client communicates with a
DE-Light gateway at a known TCP/IP or HTTP address.

Figure 4. DE-Light: Stand-alone Java Application

DE-Light C clients use simplified RPCs to communicate with DE-Light
gateways. These simplified RPCs are translated by the gateway into full DCE
RPCs and TRPCs and are sent along to the appropriate DCE or Encina
servers. The gateway then translates the RPCs and TRPCs and returns any
output and status codes to the clients.

A traditional DCE or Encina application uses the DCE RPC mechanism to
communicate directly with DCE or Encina servers. The client application is
compiled with IDL information, which defines all of the DCE RPCs or Encina
TRPCs that clients understand. Each computer that runs these clients must
have installed and configured a full client implementation of DCE.

A DE-Light client accesses DCE or Encina servers through a proxy, or
intermediary: the DE-Light gateway. The DE-Light gateway runs on a DCE
client machine or server host machine and acts as an RPC client of the DCE
or Encina servers; it transmits and translates RPC requests from the DE-Light
client to the application servers and returns responses from those application
servers to the DE-Light client.

Because the DE-Light gateway acts as a DCE or Encina client, it must be
provided with information about the server interfaces with which it
communicates. The gateway acts as an IDL interpreter; it loads IDL or
transactional IDL (TIDL) files that provide information about the RPCs and
TRPCs clients use for communications. Because you can load and unload
18 Developing Distributed Transaction Applications with Encina

RPC definitions while the gateway is running, you can easily reconfigure the
gateway to support updated or new DE-Light applications.

2.2.2 Encina - OS/390 Interoperability
Frequently a newly designed Encina application has to access existing legacy
applications and data on a mainframe. Most legacy applications are
developed using CICS or Information Management System (IMS) on MVS.
Communication between distributed systems, such as AIX or Windows NT,
and MVS is through either SNA or TCP-IP.

2.2.2.1 The Application Support Server
The Application Support server (AS) enables a DCE client application located
anywhere in the DCE environment to access the resources of CICS and IMS
on OS/390 (see Figure 5 on page 19). To call a CICS or IMS application
program, the client program can use the DCE RPC.

Figure 5. OpenEdition DCE AS CICS and IMS Application Support Servers

The OS/390 environment for accessing CICS and IMS consists of an AS
server and OS/390 OpenEdition DCE. The AS server supports client
programs written in C and CICS and IMS application programs written in
COBOL or C.

The DCE RPC runtime handles the conversion of COBOL and C data types.
Components of the OS/390 OpenEdition DCE handle conversion of EBCDIC
and ASCII data types, if needed.
Overview of Encina 19

2.2.2.2 The OS/390 Encina Toolkit Executive
The OS/390 Encina Toolkit Executive enhances DCE RPCs with transactional
semantics by implementing a two-phase commit protocol that synchronizes
related pieces of work taking place in different processes. The protocol
guarantees that all processes successfully complete the work or that the work
is not performed at all. For example, changes to data either all fail or all
succeed. The goal is to ensure that each participant in a transaction, that is,
each resource manager updating data in the transaction, takes the same
action (commits or aborts). The OS/390 Encina Toolkit Executive provides the
necessary Encina interfaces such as TRAN, TRPC, Tran-C, and ThreadTid to
develop these transactional interfaces to IMS.

2.2.2.3 Encina-IMS Connection
As shown in Figure 5 on page 19, the AS server passes data to and from
IMS. To pass the data, the AS server must communicate with IMS. You can
use one of three methods of communication between IMS and the AS server:

 • Open Transaction Manager Access (OTMA)

 • APPC/IMS

 • IMS intersystem communications (ISC).

OTMA
OTMA is a transaction-based, connectionless, client-server protocol for
OS/390 in an MVS sysplex environment. It uses the MVS cross-system
coupling facility (XCF) as its transport layer. OTMA, although similar to the
ISC and APPC adapters, provides transactional capability when used with AS
IMS server of the OS/390 Encina Toolkit Executive. Because the OTMA
adapter supports the transactional RPC from Encina, it is the most interesting
one from an Encina perspective. Figure 6 on page 21 shows how an Encina
application can access IMS through TRPC and OTMA.
20 Developing Distributed Transaction Applications with Encina

Figure 6. Transactional Access from an Encina Client to IMS

APPC/IMS
APPC/IMS is a part of the IMS Transaction Manager (TM) and enables IMS
application programs to communicate with other programs through APPC.
APPC/IMS is based on APPC/MVS. AS for IMS with APPC supports implicit
communication between APPC/IMS and IMS. Therefore IMS transactions
communicate with APPC through the IMS message queue. Implicit support
lets APPC conversations call existing, unmodified IMS application programs
that use data language 1 (DL/I) calls for message handling, without the
explicit use of APPC verbs themselves.

ISC
The AS server appears to the IMS subsystem as a pool of ISC parallel
sessions. Each ISC parallel session is defined as a logical terminal to IMS.
The number of sessions that can run concurrently is the lesser of the
maximum number of ISC parallel sessions defined by the IMS administrator
for the AS server and the maximum number of sessions defined in VTAM.

2.2.2.4 TP Considerations for AS Servers for IMS with OTMA
An Encina client application begins a transaction by calling tran_Begin(). The
same application can later call tran_End() to try to commit the transaction.
Any participant in the transaction can call tran_Abort() to abort the
transaction.
Overview of Encina 21

Application programs can also use Tran-C, which simplifies transaction
demarcation, concurrency control, and exception handling. It provides the
transaction construct, which lets you bracket a transaction to delimit it, and it
provides clauses for successful completion or failure.

The AS server has a timeout clock that cancels a conversation with IMS if
either IMS or the client (between conversational transaction RPCs) does not
respond within an installation-defined interval (the default is 60 seconds). A
conversation that is canceled by the AS server is referred to as an orphaned
conversation. If you expect the default interval to be exceeded while
processing your client program or IMS transaction, you can contact your
administrator to adjust the interval to accommodate your transactions by
using the _ASU_EXPIRE environment variable. The same timeout value
applies to all transactions handled by an AS server.

The following restrictions apply to client programs that use the OTMA server
for transactional RPCs:

 • For a transactional RPC, the application does not issue commits from IMS
transactions, but it can issue rollbacks from IMS transactions. These affect
the outcome of the entire distributed sync point.

 • Errors that the AS server for IMS detects are reflected back to the client
through the op_rc and return code values. The client program should
examine these in addition to DCE and Encina aborts.

 • An IMS message region processing an IMS transaction, called as a result
of a transactional RPC, stays active until the global outcome is resolved.
Any locks this IMS transaction holds are retained during this time.
If an IMS transaction is called multiple times within a sync point, IMS must
be able to schedule each invocation in a separate message region.

 • If multiple transactions access the same IMS, IMS resource locks are
transferred to treat all resources as part of the same commit unit.
However, if non-IMS resources such as DB2 are involved, resource
requests from different IMS transactions may cause contention.

 • Encina allows transactions to be embedded within other transactions.
These embedded transactions are called nested transactions or
subtransactions. The OTMA interface in the AS server for IMS does not
support nested transactions.

 • If an application creates its own application identifier rather than using the
default Encina-generated identifier, the application identifier must be 40
characters or fewer.

 • Transactional IDL files can import IDL files but not other files containing
TIDL constructs.
22 Developing Distributed Transaction Applications with Encina

2.2.2.5 Encina CICS Connection through TCP-IP
The AS server coexists with all other ways of accessing CICS. The AS server
and CICS are connected through the CICS external interface, which is
supported by the multiregion operation (MRO) facility of CICS. Each RPC
from a client program is handled as a CICS task.

A client can make RPC calls to a COBOL or C program that is part of a
distributed program link (DPL) request, part of an EXEC CICS LINK local call,
or uses the COMMAREA to pass input and output parameters.

2.2.2.6 Mapping the COMMAREA to RPC Parameters
You have to define the RPC parameters in the same order and using the
same data types as the fields in the COMMAREA. You can group the
parameters in different ways:

 • Use a structure to define the entire COMMAREA and then specify the
structure as a single RPC parameter. You must specify the single
parameter as in, out.

 • Define each field in the COMMAREA as a separate RPC parameter.

 • Use a structure to group some fields and define other fields separately.

You must balance the convenience of defining the entire COMMAREA as one
RPC parameter with the possibility of negative performance when large
amounts of data are passed between the client and the server. When you
define only one RPC parameter, all fields in the COMMAREA are marshalled
and unmarshalled. When you define some RPC parameters as input and
some as output, only the required parameters are marshalled and
unmarshalled.

You can access application programs written in other languages, such as
Assembler and PL/I, if the parameters for the other language match the
COBOL data types and data alignments in the interface definition. The
parameters in the target application programs must follow the same rules
that apply to interlanguage calls from COBOL.

Note
Overview of Encina 23

2.2.2.7 Encina-CICS Connection through SNA
Encina PPC distributed program link (DPL) provides a way for Encina
applications to communicate with CICS applications (running on a mainframe,
for example) by using a mechanism that is conceptually similar to an Encina
TRPC. DPL allows Encina applications to interact with CICS DPL applications
(that is, CICS applications that use the EXEC CICS LINK command) and
other Encina DPL applications.

In PPC, DPL allows Encina applications to act as either the linking or the
linked-to program. Conceptually, linking to a remote program is like making a
TRPC to the remote program. Therefore, from an Encina point of view, the
linking program is a client, and the linked-to program is a server. Figure 7 on
page 25 shows how Encina and CICS systems communicate using DPL. DPL
is always used within the context of a transaction. The DPL client program
initializes and allocates a conversation with the DPL server. It then begins a
transaction. Within the transaction, it makes a Dynamic_Program_Link
(CMDPLINK) call to ship a function to the DPL server. The DPL server
executes the function and then returns control to the DPL client. Note that the
DPL server always has "sync on return." Therefore every DPL call that has
successfully completed on a server must initiate a commit on that server.

1. The output parameters must be large enough to contain the maximum
length you expect to be returned. You cannot define parameters to be of
varying length.

2. If the transaction program redefines the COMMAREA, the program
must restore the COMMAREA before it passes results back to the client
program.

Note
24 Developing Distributed Transaction Applications with Encina

Figure 7. DPL Access to CICS through the PPC Gateway

The PPC gateway server is the bridge between the Encina and CICS
applications, seamlesly linking the DPL client to the DPL server. Encina PPC
and DCE specify the logical and physical connections between the Encina
application and the PPC gateway server. SNA LU 6.2 specifies the logical
and physical connections between the PPC gateway server and the
mainframe. The PPC library handles the details, including syncpoint
processing, conversation deallocation, and security.

Data is passed between the client and the server through the COMMAREA.
The client and server must agree on the format and size of this buffer. The
client specifies the format of binary or string data that is passed back and
forth in the COMMAREA.

You do not have to include any special logic in the application to initialize
multiple conversations within the same transaction. DPL can reuse
conversations within a transaction. A PPC conversation is allocated for the
first Dynamic_Program_Link call during a transaction. The conversation is
reused for subsequent calls that have the same PPC allocation parameters. It
is automatically deallocated when the transaction commits. Encina PPC is
discussed in more detail in Chapter 3.1.6, “Encina Peer to Peer
Communication” on page 44.
Overview of Encina 25

2.3 Encina Resources

Encina facilitates access to transactional data. Several data storage systems,
most notably relational databases such as DB2 and queuing systems such as
MQSeries also support the notion of transactions. Encina interacts with these
resource managers, using the X/Open XA interface specifications.

The X/Open XA interface specifies a bidirectional interface between a
transaction manager (in this case Encina) and a resource manager. The
transaction manager drives the commitment of transactions and the data
recovery, while the resource manager acts as a participant.

Encina provides a module called TM-XA. This module supports the XA
interface by using the support of other Encina toolkit modules such as TRAN
and LOG. (We explain these modules in Chapter 3.) Applications using the
TM-XA Service provide the list of resource managers that use the XA
interface and set the transaction context before calling the resource
managers. The service handles commit coordination and recovery of the
resource managers automatically from the application’s point of view. The
TM-XA Service uses TRAN to implement these features.

The X/Open XA interface specification also describes what a resource
manager must do to support transactional access. Resource managers that
follow this specification are said to be XA-compliant and can participate in
distributed transactions with Encina.

2.3.1 Encina and Database Access
The X/Open XA interface specification describes a protocol by which Encina
must interact with the resource manager. Most of the interfacing tasks are
supported automatically by the Encina runtime environment, and the
programmer does not have to be concerned with the details of the
communication protocols between Encina and the resource manager.

The important step from the point of view of application development is to
register the resource manager with Encina. You must register the resource
manager with the Monitor environment, using the mon_RegisterRmi function
during Monitor initialization, before the call to the mon_InitServer function. You
must supply the following information:

 • The resource manager's XA switch. This switch is provided by the
relational database management system (RDBMS) vendor.

 • The name of this instance of the resource manager. This name must
match a name already configured with the Monitor. To register the
26 Developing Distributed Transaction Applications with Encina

resource manager, the Monitor uses the information already configured
about it.

The mon_RegisterRmi function returns an ID, which can be used in those
structured query language (SQL) calls that take an interface ID. With some
RDBMSs, this ID enables the application to work with multiple instances of
the RDBMS.

Typically, the RDBMS library exports the XA switch. You need only declare an
external variable of the appropriate name, as specified in the RDBMS
documentation. For example, the DB2 library exports its XA switch under the
db2xa_switch variable. Oracle exports its XA switch under the name xaosw.
The linker initializes this variable; you can use it in the call to the
mon_RegisterRmi function.

After the resource manager has been registered, you can access the
RDBMS. Embedding SQL code directly in an application is the simplest and
most common way to access RDBMSs programmatically.

Although the embedded SQL interface is straightforward, you can use only
one resource manager. If you want to use multiple resource managers (or
multiple instances of the same resource manager), there is no way to indicate
which SQL code is for which manager or which embedded SQL statements
are to be translated by which preprocessor. Calling the RDBMSs’ library
routines directly rather than using the preprocessor to translate embedded
SQL into library calls is one way to use multiple resource managers.
However, the functions used depend on which resource manager is used.
Alternatively, statements that access different relational databases can be
placed in different source files and precompiled separately. Each precompiler
produces the calls needed for the appropriate database.

Applications must also have a mechanism for deciding whether embedded
SQL statements execute correctly. When SQL statements are issued
interactively, the interactive system generally provides an indication of
whether the statement executed successfully. However, such a method does
not work from within a program, so another method is needed for embedded
SQL. Embedded SQL provides a standard mechanism for checking the
success of SQL statements, and many RDBMS products provide additional
mechanisms.

The SQL communications area (SQLCA) provides a standard error handling
mechanism. The SQL communications area defines the sqlca data structure.
This data structure has fields for error, warning, and status information.
These fields are updated by the RDBMS after each SQL statement is
Overview of Encina 27

executed. An application can then check these fields to determine whether
the SQL statement was successful. The sqlca field of most interest to
application developers is the sqlcode field, which contains the return code of
the most recently executed SQL statement.

You include the sqlca structure in a program by using an embedded SQL
include statement. After each SQL call, an application checks the sqlcode
field to determine whether the call was successful. If the call fails, you abort
the transaction.

2.3.2 Encina and RQS Access
The RQS allows applications to queue transactional work to be completed at
a later time. Applications can then commit any existing transactions with the
assurance that the queued work will not be lost.

Queues are linear data structures that can be used to pass information from
one application to another. Applications enqueue (add) elements to the tail of
a queue and dequeue (remove) elements from the head of a queue in a
first-in first-out (FIFO) manner. Enqueuing and dequeuing are performed from
within the scope of a user transaction. The RQS guarantees that, once an
element has been added to a queue and the transaction has committed, that
element remains in the queue until dequeued by another transaction.
Successfully enqueued elements are not lost because of system failures,
media failures, or failed dequeue attempts. If the dequeuing transaction is
aborted, the element is returned to the queue.

Each queue is maintained by one and only one RQS server. All interactions
with that queue are handled by the server. An application queues an element,
for example, by making an RPC to the RQS server, which then places the
element on the queue.

Client applications use queues to store data in the form of elements. An
element contains record-oriented data specific to an application. The fields of
an element store related pieces of the data. For example, a shipping element
might have fields for storing the customer ID, the item number, and the
number ordered.

Each element must have a type, which is specified when the element is
queued. An element type is a named specification that defines the data type
and size for each field of an element. Element types are independent of
queues; elements of different element types can be queued and dequeued
from the same queue. Types are typically defined administratively, although
28 Developing Distributed Transaction Applications with Encina

they can also be defined programmatically. The RQS provides a number of
field types that can be used when defining an element type.

Because the RQS uses the same underlying Encina toolkit, the toolkit
preserves the transactional semantics between the RQS data and the other
application data. You do not have to do any special coding to maintain the
transactional data integrity.

2.4 Encina++

Encina++ is a set of interfaces for programming Encina applications in C++ or
Java. Encina++ provides an object-oriented model for the development of
client and server application programs in a distributed transaction processing
environment.

Encina++ supports the development of object-oriented applications that are
based on the DCE, CORBA, or both.

Encina++ contains several different APIs. Some of these APIs are common to
both DCE and CORBA, and some are designed for only one or the other. The
applications you write can use some or all of these interfaces; which
interfaces you use depend on the requirements of a particular application.

The Encina++ programming interfaces common to both DCE and CORBA
provide client and server support and transaction demarcation capabilities.

The Encina C++ interface defines C++ classes and member functions that
enable the creation and management of client/server applications and
provide support for the underlying environment.

The Transactional-C++ (Tran-C++) interface defines C++ constructs and
macros as well as classes and member functions for distributed transaction
processing. This interface provides an object-oriented alternative to the
Encina Transactional-C (Tran-C) interface.

The OMG Object Transaction Service (OMG OTS) interface also defines C++
classes and member functions for distributed transactional processing. This
interface implements the OMG OTS specification.

Although the underlying functionality is the same, there are two
implementations of the common interfaces. These implementations, referred
to as Encina++/DCE and Encina++/CORBA, address the differences in DCE
and CORBA. Important differences include client and server stub generation
and binding methods.
Overview of Encina 29

To write Encina++/DCE applications, you must use Encina’s TIDL compiler to
generate stub files for communications between Encina++ clients and
servers, adding transactional semantics to remote procedures. Using TIDL,
you define which functions in the interface are transactional. To write
Encina++/CORBA applications, however, you use a CORBA IDL compiler
specific to the ORB being used. Using the CORBA IDL, you define entire
interfaces rather than individual functions as transactional.

Encina++/DCE clients bind to exported server objects by using constructors
defined in the client stubs generated by the TIDL compiler. In
Encina++/CORBA applications, however, clients use a binding method that is
specific to the ORB being used (or clients can use a CORBA Object Naming
Service, if available).

The Encina++ programming interfaces that are supported only for DCE
provide object-oriented access to two types of Encina servers offering
specialized services:

 • The Recoverable Queuing Service C++ interface (RQS++) defines C++
classes and functions for enqueuing and dequeuing data transactionally.

 • The Structured File Server C++ interface (SFS++) defines C++ classes
and functions for manipulating data stored in record-oriented files while
maintaining transactional integrity.

In addition, you can use Encina's data definition language (DDL) compiler to
generate stub files for RQS++ and SFS++ applications.

Encina++ provides two programming interfaces that are supported only for
CORBA: one defines a locking mechanism for CORBA-based servers, and
the other allows you to develop Java transactional clients that can
communicate with Encina++ servers:

 • The OCCS interface defines C++ classes and functions that enable
multiple clients to coordinate access to shared resources. This interface
implements the OMG Concurrency Control Service Proposal.

 • The Java OTS client interface defines Java classes and functions that
enable Java client applications to begin and control distributed
transactions. This interface implements the OMG OTS specification.

Encina++ offers the following features for object-oriented, distributed
transaction processing applications:

 • Initialization of clients and servers

 • Transparent and explicit binding
30 Developing Distributed Transaction Applications with Encina

 • Object registration and binding

 • Integration of XA-compliant databases

 • Transactional and nontransactional threads

 • Integrated exception handling

Encina++ enables you to develop several different types of client and server
applications in C++ as well as Java clients that access Encina++ servers.
Overview of Encina 31

32 Developing Distributed Transaction Applications with Encina

Chapter 3. Encina Components

Encina is a family of products for developing, executing, and administering
distributed transaction processing systems. A distributed system consists of
multiple software components that run in separate, independent processes
on different machines in a network. For example, a distributed operation can
require applications running on UNIX workstations and Windows NT
machines and data residing in a database on a mainframe. Even though the
software is distributed across a network, it can be accessed reliably by
multiple users as if it were running on a single system. The Encina family
consists of base components, object components, Web components, and
client components. In this chapter we take a close look at these different
components. In subsequent chapters we describe in more detail various
Encina components as they are used to develop a transactional client/server
application.

3.1 Base Components

In this section we provide a brief overview of Encina’s base components.

3.1.1 Encina Toolkit
The Encina Toolkit provides low-level services required for distributed
transaction processing systems. The Toolkit services implement a complete
transaction paradigm: nested, distributed, concurrent transactions with
recoverable storage. These transactions can be used to maintain the
consistency of data on a network in the face of communication failures,
system failures, and disk failures.

The Toolkit services provide the foundation on top of which Encina's extended
services are built. These extended services include higher-level facilities
(such as the Encina Monitor) that expand the Toolkit functionality to provide a
comprehensive environment for developing distributed transaction
processing applications.

The Encina Toolkit comprises several modules, implemented as function
libraries. Each module provides a different service. The Toolkit libraries
provide all of the functions required for transaction processing system
development. The modules of the Encina Toolkit are grouped into two major
components:

 • Toolkit Executive. The Executive provides services that permit a process
to initiate, participate in, and commit distributed transactions. These
services include transactional extensions to DCE RPCs that ensure
© Copyright IBM Corp. 1998 33

transactional integrity over distributed computations transparently. The
Executive also supports nested transactions, a feature that provides
failure containment and simplifies application development.

 • Toolkit Server Core. Built on the Executive, the Server Core provides
facilities for managing recoverable data, that is, data that is accessed and
updated transactional. These facilities include a locking library to serialize
data access, a recoverable storage system to allow transactions to roll
back or roll forward after failures, and an X/Open XA interface to permit
the use of XA-compliant resource managers.

The modules that make up the Toolkit Executive provide the functionality
necessary to write client applications. Client applications start transactions
and make transactional RPCs to Encina server applications. The primary
low-level modules of the Executive include Distributed Transaction Service
(TRAN), Transactional Remote Procedure Call (TRPC), and Thread-to-Tid
Mapping Service (ThreadTid). TRAN coordinates multiple transactions,
guarantees that transactions either commit or abort, and manages the
delivery of information about transaction outcome to the participants of the
transaction. TRPC carries additional information to identify the transaction on
whose behalf it is executing. A TRPC is similar to a standard RPC and is
discussed in detail in Chapter 3.1.3, “Transactional Remote Procedure Calls
Service” on page 37. ThreadTid maintains the association between a thread
and a transaction identifier (TID). It allows applications to determine which
transaction is associated with a particular thread.

The easiest way to build a Toolkit client application is to use Tran-C, a
C-language programming interface designed to simplify the development of
Encina transactional applications. Tran-C defines functions and constructs
that provide high-level interfaces to functionality that is commonly used in
transactional programming. The use of low-level Toolkit modules is not
usually necessary, as Tran-C provides most of the functionality offered by the
low-level components of the Toolkit Executive. There is little performance
penalty for using Tran-C in preference to using the low-level modules directly.

In some cases, however, aspects of the high-level interface provided by
Tran-C can conflict with the requirements of an application. For example,
Tran-C's exception handling facility can cause a conflict if another language
(such as C++) that has its own exception handling facility is used in the same
application. Under such circumstances, you might decide to use the low-level
modules directly instead of using Tran-C.
34 Developing Distributed Transaction Applications with Encina

Using the lower-level interfaces (such as TRAN) to begin and end
transactions provides increased flexibility but can result in programs that are
longer, less readable, and more difficult to maintain than Tran-C.

You can also use the lower-level interfaces of the Toolkit in conjunction with
Tran-C if you use them with caution. In particular, you must be very careful
when calling low-level Executive interfaces that perform activities normally
performed by Tran-C. For example, if you begin a transaction with Tran-C’s
transaction statement and attempt to commit it by calling the TRAN tran_End
function, the resulting behavior is undefined.

Situations in which you might want to use lower-level interfaces from within a
Tran-C application include requesting callbacks for specific states in the
execution of a transaction and setting application-specific properties. These
situations are fairly rare; in most cases, if you are developing client
applications only, you do not need to use the interfaces of the low-level
components.

The modules that make up the Encina Server Core, in combination with the
modules of the Executive, provide the functionality necessary to write
recoverable server applications that manage persistent data and accept
TRPCs to access that data. The primary low-level modules of the Server
Core used to write server applications include Recovery Service (REC), Log
Service (LOG), Volume Service (VOL), and Lock Service (LOCK). The Server
Core also includes the Transaction Manager-XA Service (TM-XA), which you
use to access and use XA-compliant resource managers in your transactions.
The REC Service guarantees the consistency of the permanent data used by
a distributed transaction service. It uses log records to undo or re-create
transactions. The LOG Service provides efficient and stable storage for
recording the actions of programs as they update recoverable data. It
ensures that accurate records of transactions are retained across system
shutdowns and restarts.The VOL Service provides a logical interface to
underlying physical storage. It enables volumes and files to span multiple
physical devices. The LOCK Service permits synchronization of accesses to
data. It enables transactions to lock resources before accessing or modifying
them. The TM-XA Service implements the transaction manager side of the
X/Open XA interface for coordinating distributed transactions with
XA-compliant resource managers.

The easiest way to build a Toolkit server application is to use Tran-C, REC,
and the high-level interface to LOCK provided by Tran-C. However, it is
important to remember that most of the underlying modules used by
higher-level Toolkit modules must still be initialized explicitly. For example,
Encina Components 35

although REC performs most of the calls to VOL interface functions required
by server applications, the Toolkit server application must still initialize VOL.

TM-XA allows XA-compliant databases (resource managers) to be accessed
from within Encina applications. In most cases, developers who must
integrate an application with external databases build an intermediary server
that allows multiple clients to access one or more external databases through
TM-XA. Although client applications can use TM-XA directly, TM-XA must be
used in conjunction with LOG because the client of an XA-compliant
database must be recoverable. This restriction makes it impractical for
end-user applications to use XA-compliant databases directly because each
end-user process would require its own log file.

An alternative to writing a Toolkit server is to write a Monitor application
server, using the Encina Monitor and Tran-C. The Monitor’s high-level
interfaces allow you to write server applications without needing to know all
the low-level details of the Toolkit. In addition, the Monitor provides facilities
for load balancing, scheduling, and so on, and it integrates support for
XA-compliant resource managers.

3.1.2 Encina Monitor
The Encina Monitor provides the means to develop, run, and administer
transaction processing applications. Monitor applications, which are
distributed client/server applications, use the Monitor API. The Monitor, in
conjunction with resource managers, provides an environment in which to
maintain large quantities of data in a consistent state. It controls which users
and clients access specific data through defined servers in specific ways. The
Monitor provides an open, modular system that is scalable and interoperates
with existing computing resources such as IBM mainframes running CICS. It
supports interoperation among a number of components: the operating
system, the OSF DCE, the Encina Toolkit, third-party RDBMSs such as
Informix and Oracle, third-party front ends (user interfaces) such as JYACC’s
JAM, and networks.

The Monitor provides three functional areas for a transaction processing
system:

 • The run-time environment

 • The system administration facility

 • The application development environment

The Monitor run-time environment coordinates transaction processing (TP)
applications and resource managers and performs run-time administration
36 Developing Distributed Transaction Applications with Encina

tasks, such as load balancing and collecting diagnostics. In addition, it
provides for other interactions with the execution environment, such as
scheduling calls for later execution and retrieving information about users,
transactions, and client/server bindings.

The Monitor system administration interface is used to construct, initiate,
control, and terminate a Monitor system. The Monitor is administered through
Monitor administrative and configuration interfaces.

Monitor applications are developed using the Monitor API in conjunction with
other Encina interfaces, such as Tran-C. The Monitor saves the programmer
effort by performing some tasks, such as interacting with DCE RPC and
security, on the application’s behalf.

Clients can use screen- or form-development tools to develop user
interfaces. The Monitor does not provide these tools but supports their
integration. Servers can be developed using Tran-C or other transactional
interfaces such as that provided by the Monitor API. The Monitor API
provides functionality to manage client and server application programs in a
distributed transaction processing environment.

3.1.3 Transactional Remote Procedure Calls Service
The Encina TRPC service enhances the DCE RPC package offered by the
OSF. DCE RPC is a remote procedure call system that implements
nontransactional RPCs for use by Encina Toolkit components.

TRPC provides the same basic interface as DCE RPC. However, there is one
significant difference. TRPC implements transactional and nontransactional
RPCs; DCE RPC implements nontransactional RPCs only. To accommodate
the transactional nature of TRPC, the TIDL was developed. TIDL simplifies
the writing of code using TRPCs. It is an extension of the DCE IDL. The TIDL
compiler is named tidl.

TRPC assumes a multithreaded environment. A thread package is a
prerequisite for DCE RPC, the underlying communication paradigm for
TRPC.

An RPC is a programming paradigm similar to the well-known procedure call
mechanism. Both transfer control and data within a program. When a remote
procedure is called, the parameters of the call are passed over the network to
the environment where the call is actually executed. Meanwhile, the calling
environment waits for the results of the procedure execution. Typically the
calling environment is a program that is referred to as a client. The
environment where the call is executed is referred to as a server. When the
Encina Components 37

server (the called environment) finishes executing the procedure, it ships the
results back to the client (the calling environment), which then resumes
execution as if returning from a local procedure call.

TRPCs are initiated from within the scope of a transaction. Each TRPC does
work on behalf of a transaction. The TIDL preprocessor adds additional
parameters to user-specified operations in an interface definition file. These
additional parameters are used to carry the TRAN state and data. TRPCs
carry the TRAN state and data along with the regular parameters of the RPC
and pass the parameters to the appropriate TRAN.

Although transactional applications commonly use TRPCs, some
transactional applications may also use nontransactional RPCs. Therefore,
TRPC provides a mechanism that allows an RPC to retain its
nontransactional semantics. TRPCs nontransactional RPCs are an enhanced
version of the DCE RPC.

TRPC consists of two components: a preprocessor and a library of functions.
The TIDL preprocessor, tidl, preprocesses interface definition files. It
produces a set of files that must be compiled and linked appropriately with
client and the server programs. It also produces an interface definition file
that must be processed by IDL.

The library of functions provides the relevant communication support for the
TRAN. TRPC also exports interface calls to the application developer. The
functions can be categorized as follows:

 • Functions to support the TRAN communication interface

 • Functions used to initialize the TRPC run-time interface, provide
information about communication protocols and end points, and register
callbacks

 • Functions that wrap certain DCE RPC run-time functions that manipulate
RPC handles

In Section 4.3, “TRPC” on page 66 we discuss the basics of how to program
TRPC.

3.1.3.1 Encina Threading Model
A single server program typically services requests made by multiple client
programs. To expedite the handling of multiple requests, most modern
client/server development environments provide a mechanism for
intraprocess multitasking. Encina supports the use of multiple parallel
execution sequences, called threads, within the single address space of a
process. A thread, also known as a lightweight process, is an execution
38 Developing Distributed Transaction Applications with Encina

environment within an address space. Threads that belong to the same
parent process normally do not interfere with each other. In most cases, it is
not necessary to protect portions of a process’s address space from various
threads of that process.

Within a threaded environment, interthread communication through shared
data structures is so simple that access to some portions of shared memory
must be restricted. Mutual exclusion facilities (mutexes) are used to restrict
access. A mutex is a synchronization object used to ensure that only one
thread can execute in a particular section of code or access a particular
portion of memory at a single time. A mutex has essentially two states: locked
(no other thread can execute the particular piece of code or access the
agreed upon memory) and unlocked (access is available to any thread).
Mutexes can be used to prevent incompatible accesses from occurring, such
as when one thread is reading some data while another thread is modifying it.

A transactional environment has many different types of access to shared
memory, not all of which need to be mutually exclusive. For example, multiple
threads can require read access to a portion of shared memory. Although it
would be bad if some other thread modified the memory, all threads wanting
simply to be able to read the data are compatible with each other. In this
situation, mutexes fail to provide an appropriate mutual-exclusion
mechanism. To overcome this shortcoming, the Encina Toolkit provides a
locking mechanism that provides multiple locking modes for portions of
shared memory. The Tran-C interface provides transactional mutexes and
locks for use in situations where finer control of access to shared memory is
required.

The Encina threading model is based on the DCE thread package, which
supports the Posix pthread specification. DCE supports multiple threads
within a process, allowing a client application to concurrently issue several
RPC calls, each of which executes within a single thread of control. Similarly
a server process can be a multithreaded process, allowing the server to
concurrently process multiple client requests. Programs must be carefully
written in a multithreaded environment, with appropriate mutexes to protect
shared variables.

An Encina server may consist of multiple threads. The number of threads
within a processing agent can be configured administratively. An Encina
server may be linked to other modules, such as a database. In this case,
depending on the ability of the database to support or not support multiple
threads, the interface between the Encina server and the database is
configured appropriately by the Encina administrator. Depending on the
Encina Components 39

configuration, Encina appropriately manages its threads by allowing or
disallowing them to concurrently access the database.

3.1.4 Encina SFS
The Encina SFS is a record-oriented file system that provides transactional
integrity, log-based recovery, and broad scalability. Many operating systems
support only byte stream access to data where all input and output data,
regardless of its source, is treated as an unformatted stream of bytes. SFS
uses structured files, which are composed of records. The records
themselves are made up of fields, and the field layout is defined when the file
is created. The SFS file system is based on X/Open ISAM standards. SFS is
ideally suited for applications that manage large amounts of record-based
data--for example, inventory records, customer orders, and employee files. In
a typical model, an SFS server application receives requests from one or
more SFS clients for access or modification to data. The way the records in a
file are arranged is referred to as the file organization. The records in a file
can be organized in one of three ways:

 • Entry-sequenced

 • Relative

 • B-tree clustered

The records in an entry-sequenced file are stored in the order in which they
are written to the file. New records are always appended to the end of the file.
When records are deleted from an entry-sequenced file, the space formerly
allocated to those records is not automatically reclaimed or reused. The only
way to reclaim this space is by using the sfs_ReorganizeFile function.
Entry-sequenced files can contain fixed-length or variable-length records. An
updated record must be no longer than the original record.

A relative file is an array of fixed-length slots. Records can be inserted in the
first free slot found from the beginning of the file, at the end of the file, or in a
specified slot in the file. Relative files are often used when records will be
accessed directly, by record number. Because all of the slots in a relative file
are the same size, SFS can calculate the position of a specific record,
identified by record number, by multiplying the record number by the record
slot size. The records in a relative file can consist of fixed or variable-length
fields, but the size of each slot in the file is that of the maximum record size
(which is calculated from the record specification when a relative file is
created). The records in a relative file can be updated or deleted in place.
Any slots freed when records are deleted can be reused by subsequent
insertions.
40 Developing Distributed Transaction Applications with Encina

A B-tree clustered file is a tree-structured file where records with adjacent
index values are clustered together to reduce the cost of searching for ranges
of records. The clustered file organization used in clustered SFS files is
automatically maintained by the SFS server. The records in a clustered file
are ordered on the basis of the contents of the primary index. Because the
SFS may move records to maintain clustering when new records are inserted
or deleted, there is no practical way to maintain direct references to individual
records. The records in a clustered file can be fixed or variable in length.
Records in clustered files can be updated or deleted. Disk space freed by
record deletions is automatically reused.

An SFS program is a client to an SFS server and data is accessed by making
calls to an SFS server. An SFS client must take the following actions to
process records in a file:

1. Initialize: SFS is automatically initialized when the program calls an SFS
function for the first time.

2. Open files: Any file that you are going to use must first be opened. When
a program opens a file, it specifies the name of the file that it wants to
access and how it wants to access it.

3. Processing operations: Programs have several options for handling
records. SFS can read or write records as a single buffer; the program is
then responsible for packing the field into or unpacking the fields from that
buffer. Alternatively, SFS can place some or all of the fields into their own
buffers. Programs also have the option to read or update only some fields
in a record. Records can be accessed randomly or sequentially. The
server maintains the transactional integrity of the data and provides
transactional access to the data that supports fine granularity of access
and top level and nested transactions.

4. Close files: A program should close any files after it has finished using
them, either explicitly or automatically at the end of a transaction.

Storing data in SFS files provides the following advantages:

 • Transaction protection: SFS provides both transactional and
nontransactional access to data stored in an SFS file. SFS uses the
services of the Encina Toolkit to recover from server problems, network
outages, and media failures. With transactional access, the state of the
SFS file after recovery reflects data changes from all committed
transactions. Any transactions in progress at the time of the failure are
either completed or undone.
Encina Components 41

 • Record-oriented files: SFS files can be created with entry-sequenced,
relative, or clustered organizations. Files can be accessed through
primary or secondary indexes.

 • Flexible storage management: An SFS file's data and its indexes can
reside on different volumes, and thus on different disks. This
independence gives you greater flexibility in controlling availability and
performance.

 • Import/export capability: SFS files can be stored and retrieved from a file,
disk, or tape device and can be transferred between SFS servers.

SFS is a non-hierarchical file system and its files are independent of the
operating system file system. SFS files can be accessed through sfsadmin
commands, and applications can access files through SFS functions. SFS is
simple and fast, but it is limited in flexibility when compared to RDBMSs. See
the Encina Administration Guide Volume 2 for a detailed discussion of SFS
administration and file management.

3.1.5 Encina Recoverable Queuing Service
Encina RQS is layered on top of the basic Toolkit Executive and Server Core
components. RQS enables applications to transactionally enqueue and
dequeue data. You can develop applications that transactionally update data
in a resource manager like a database and enqueue or dequeue data from a
queue, with the guarantee that both operations will either succeed or abort.

One advantage of the queuing model is that applications can off-load some
work to be done at a later time. This deferred mode of computing is in
contrast with the RPC style of communication where an application invokes a
service to do the processing as soon as it can. This model is particularly
advantageous when work can be deferred to be processed during offpeak
hours. The queuing model is also natural for work flow applications, where
the work flow can be modeled by queuing and dequeuing on a queue.

Queues are linear data structures that can be used to pass information from
one application to another. Applications enqueue (add) elements to the tail of
a queue and dequeue (remove) elements from the head of a queue in an
FIFO manner. Encina supports queues that may contain elements of different
data types. An element key is a sequence of one or more fields of an element
type used to retrieve the element.

An RQS server tracks a variety of statistics on queue activity, such as
processed and new element count, mean waiting time, and physical queue
size, for a collection period and for the lifetime of the queue. It can also track
42 Developing Distributed Transaction Applications with Encina

the work of a queue. The work is the volume of business represented by a
queue, for example, the total cost of a product or the number of ordered
books.

An application can requeue an element to another queue for subsequent
processing by another application. Requeuing is the process of moving an
element from one queue to another. A client application can request that an
element be requeued to a related queue, for example, moved from an "order"
queue to a "shipping" queue. When an application dequeues an element it
indicates its intent to requeue that element by identifying it as an orphan. An
orphan is an element that has been dequeued but not yet requeued. Orphan
is usually a transitory state; elements do not remain orphans beyond the
scope of a primary transaction.

Each queue is maintained by one and only one RQS server. All interactions
with that queue are handled by the server. An RQS server may contain
multiple queues and requests to access the data are sent to the server, which
processes the request. RQS provides support for both programmatic access
and administrative tasks.

Applications that select from several different queues when processing
dequeue requests can use queue sets to simplify the selection process. A
queue set is a collection of queues. A queue can belong to more than one
queue set. A queue that belongs to a queue set can be accessed either as
part of that queue set or individually.

3.1.5.1 Recoverable Queuing Service Locking
Locking guarantees the consistency of elements and queues in RQS. RQS
supports locking for the duration of an operation or for the duration of a
transaction.

Queues are traditionally FIFO data structures where the head and tail of the
queue are locked during enqueue and dequeue operations. This is known as
strong FIFO behavior. Strong FIFO behavior can severely limit concurrency in
a distributed transactional system. Suppose that every transaction that
wanted to dequeue from a particular queue had to wait while a concurrently
dequeuing transaction performed its work and committed. Such a system
would provide minimal concurrency. To maximize concurrency, RQS modifies
the semantics of FIFO behavior during enqueue and dequeue operations.
The head and tail of a queue are not locked during these operations. RQS
servers dequeue and enqueue elements from queues according to their
ability to obtain locks on those elements.
Encina Components 43

You can read more about locking in the Encina RQS Programming Guide.

3.1.6 Encina Peer to Peer Communication
Encina PPC Services provide the ability to transactionally access data stored
on mainframes and Perform a distributed two-phase commit of data stored
across UNIX servers and mainframes. Thus mainframe applications can
participate in an Encina transactional application, and Encina applications
can participate in mainframe transactional applications. The Encina PPC
Services supports a two-phase commit sync protocol (sync level 2) to commit
the transaction that accesses data on the mainframe and the UNIX server.

The PPC Services use the SNA LU 6.2 communication interface for
communication and support bidirectional communication. The PPC Services
provide functionality to bridge systems that run different network protocols
(TCP on one system and SNA on the other system). The PPC Services
support both the X/Open Common Programming Interface Communications
(CPI-C) and the IBM Systems Application Architecture (SAA) CPI-C. The
PPC Services also support the SAA Common Programming Interface
Resource Recovery (CPI-RR).

The PPC Services are implemented as a PPC Executive and a PPC gateway
product. The PPC Executive is a library that is run within the Encina cell. The
PPC gateway is a server that acts as a gateway between the DCE and SNA
communications protocols and allows Encina applications to communicate
with LU 6.2 applications.

Figure 8 on page 45 shows a typical configuration of the PPC Services where
an Encina PPC Executive application runs in a DCE cell and communicates

One consequence of locking is that elements are not necessarily
processed in strict FIFO order. Consider two transactions that concurrently
dequeue from a queue. Each obtains a lock on the first element that it can
lock in the queue, rather than on the head of the queue itself. Suppose that
one transaction obtains a write lock on the first element, and a second
transaction obtains a write lock on the second element. If the first
dequeuing transaction aborts, the second transaction effectively dequeues
an element that was not at the head of the queue. If the second transaction
subsequently commits, it has processed an element in the queue out of
FIFO order because the first element remains in the queue while the
second has been dequeued.

Note
44 Developing Distributed Transaction Applications with Encina

with a PPC gateway server running on the same DCE cell. The PPC gateway
server communicates with the mainframe through a SNA LU 6.2 connection
program. The PPC Services enable you to develop Encina applications that
act as either the coordinator or the subordinate in a transaction between an
Encina system and a mainframe host. Encina application programmers use
the CPI-C API for coding the PPC component. The PPC gateway translates
the CPI-C conversations from TCP/IP to LU 6.2.

Figure 8. Encina PPC Services

The two-way communication between two application programs over an LU
6.2 session (connection between two LUs) is called a conversation. The two
programs are partners in a conversation and exchange information. Each LU
6.2 session can carry one conversation at a time. To establish a conversation,
one program allocates it. Therefore the program specifies the LU, the mode,
and the transaction program with which it wants to communicate. The
program that allocates the conversation is called the allocator. The acceptor
is the recipient of an allocator’s conversation request and accepts the
conversation. To end a conversation, one side deallocates it, and its
counterpart receives notification of the deallocation.

Conversations involving PPC Executive applications are classified by the
conversation allocator and acceptor. The PPC uses following three
conversation types:
Encina Components 45

 • The Encina-to-SNA conversation is allocated by a PPC Executive
application and accepted by an LU 6.2 application running on a
mainframe. The PPC Executive application requests that a gateway server
allocate the conversation. The gateway server allocates the conversation
on behalf of the PPC Executive application.

 • The SNA-to-Encina conversation is allocated by an LU 6.2 application at
a mainframe to a PPC Executive application through a gateway server.
The LU 6.2 application at the mainframe allocates a conversation to a
gateway server. The gateway server forwards the conversation to the
correct PPC Executive application.

 • The Encina-to-Encina conversation is between two PPC Executive
applications. Encina-to-Encina conversations do not use the gateway
server.

A PPC Executive application that allocates a conversation must know the
identity of the desired acceptor. An application's conversation partner is
usually defined in the application's side information file. The information in a
side information file is accessed by a symbolic destination name.

Figure 9 on page 47 summarizes what happens when a PPC Executive
application allocates a conversation.
46 Developing Distributed Transaction Applications with Encina

Figure 9. Encina-to-SNA Conversation

1. When a PPC Executive application wants to allocate a conversation to a
SNA host, it first uses the symbolic destination name to determine
information about the peer to which it wants to connect.

2. The application must perform a DCE Directory Service lookup to locate the
remote LU alias (a name assigned to an LU in the SNA Server package on
the gateway server) for that SNA host.

3. If the lookup is successful, the DCE Directory Service returns the end
point of a gateway server that services the SNA host.

4. A PPC Executive conversation is allocated to the appropriate gateway
server.

5. An LU 6.2 conversation is allocated from the gateway server to the host
LU.

For Encina-to-SNA conversations, the remote LU alias for a SNA host and
the set of gateway servers that offer connectivity to it are stored in the DCE
Directory Service. The SNA connection between a gateway server and the
SNA host containing the remote LU is configured in the underlying SNA
Server package before the gateway server is started. When the gateway
Encina Components 47

server is started or configured, it automatically registers its remote LUs in the
DCE Directory Service.

3.2 Encina++

Encina++ is a set of interfaces for programming Encina applications in C++ or
Java. Encina++ provides an object-oriented model for the development of
client and server application programs in a distributed transaction processing
environment. Encina++ simplifies application development by providing
high-level interfaces to the Encina Toolkit development tools: the Encina
Monitor, the Encina RQS, and the Encina SFS.

Encina++ supports the development of object-oriented applications that are
based on the DCE, CORBA, or both. Encina++ contains several different
APIs. Some of these APIs are common to both DCE and CORBA, and some
are designed for only one or the other. The applications you write can use
some or all of these interfaces; which interfaces you use depends on the
requirements of a particular application.

3.2.1 Encina++ Programming Model
The Encina++ classes support a client/object programming model in which
clients access objects instead of servers. Servers export one or more
interfaces (classes) and one or more instances of each class (objects). The
client application can access objects exported by servers without you
knowing how the objects available in the system map to servers.

Clients can bind to objects exported by servers. They can bind to individual
objects when the objects are known, or they can bind to a class when the
objects are not known or when all objects of a specific class provide the same
capabilities. Typically, you specify a name for an object. Although each object
created has a universal unique identifier (UUID), naming an object allows
clients to bind to the object by name instead of by UUID.

Because of the PPC gateway server’s role, the gateway machine must be
physically secure. Applications that can directly access a SNA link are
implicitly trusted by the SNA host. If the gateway machine is physically
insecure, it is possible for an untrusted user to start a process on the
gateway server machine, which could then directly access a SNA link.

Note
48 Developing Distributed Transaction Applications with Encina

In Encina++, an IDL is used to specify the interfaces to objects in the form of
remote procedures. The remote procedures are used for communications
between the client and server applications. The interface compiler generates
files that include client stub and server stub classes for each interface. These
stub classes give the client and server a slightly different view of the same
interface.

Before RPCs can be made between a client and server, the server must be
available to receive requests from clients. Creating an instance of the server
stub class within a running server causes the object to be exported to the
namespace so that a client can locate and bind to it. The instance is referred
to as a server object.

3.2.2 Encina++/DCE Programming
Encina++ /DCE supports the development of transactional, object-oriented
applications for DCE. Encina++ /DCE applications use the DCE RPC
mechanism for communications between clients and servers. This
dependency on DCE RPCs affects interface definition, binding, and exception
handling.

In the DCE, the TIDL must be used to specify object interfaces in the form of
remote procedures. The TIDL compiler generates C++ stubs that include
client stub and server stub classes for each interface.

3.2.3 Encina++/CORBA Programming
Encina++ /CORBA supports the development of transactional,
object-oriented applications for the CORBA environment. Encina++ /CORBA
applications rely on an ORB for communication between clients and servers.
This dependency on an ORB affects interface definition, binding, and
exception handling.

In the CORBA environment, the CORBA IDL must be used to specify the
interfaces to objects. The operations defined by an object’s interface are used
for communication between the client and server applications. The CORBA
IDL compiler generates stub files that include client stub and server stub
classes for each interface.

An ORB-specific binding method can be used to bind the client to the server.
For Orbix, the IDL compiler generates a client stub class that corresponds to
the interface definition. The generated class contains a static member
function named _bind: Calling the _bind function creates an instance that is
bound to an object at the server. This instance of the client stub class is
referred to as a client proxy object.
Encina Components 49

When the binding function call is made on the client proxy object, the object is
bound to a corresponding remote object, referred to as a server object. The
client then communicates with the server object through the client proxy
object.

3.2.4 Encina SFS++
The SFS++ interface consists of a set of C++ classes for creating Encina SFS
applications. Together with other parts of Encina++ such as Tran-C++, SFS++
enables you to develop object-oriented Encina applications. The SFS++
classes contain functions that invoke the most commonly used features of
SFS.

SFS++ encapsulates SFS features into a set of classes.

The DDL provides a means for defining the data objects that are used by
SFS++ (and RQS++) to represent elements, records, and keys. Each type of
record or element is specified as an interface in a DDL file. Keys can be
specified for the data types.

To use DDL, you define the data objects you need for your SFS++ programs
in a DDL file. The DDL file is then processed by the ddl command. This
command generates header and source files containing C++ classes based
on the data objects specified in the DDL file.

SFS++ applications use objects of the generated classes as records for file
input and output. The same classes can also be used for creating SFS files.
Objects of the key classes generated by DDL can be used to access records
in SFS files and to add secondary indexes to SFS files.

Each SFS file can store records of only one record type. The record type
defines the data type for each field of the record. SFS++ applications use
DDL to define SFS record types. From these definitions, the ddl command
then generates a record class, derived from the Pos::Object class. The record
class represents the record type and contains constructors to create and
initialize record objects of that class.

3.2.5 Encina RQS++
The RQS++ interface consists of a set of C++ classes for creating Encina
RQS applications. Together with other parts of Encina++ such as Tran-C++, it
enables you to develop object-oriented RQS applications.

RQS++ encapsulates RQS features into a set of classes.
50 Developing Distributed Transaction Applications with Encina

The Rqs::Server class is an abstraction of an RQS server. It provides
methods for creating and deleting element types, queues, and queue sets.
Before performing any other RQS++ operations, an application must create
an Rqs::Server object by using the class constructor. The application must
specify the name of an actual running RQS server when it creates the
Rqs::Server object.

After creating the Rqs::Server object, the application can then use
Rqs::Server class member functions to create Rqs::Queue and
Rqs::QueueSet objects.

The Rqs::Queue class is an abstraction of an RQS queue. It provides
member functions for enqueuing and dequeuing elements, controlling access
to a queue, and getting cursors for sequentially scanning elements in a
queue. Before an application can enqueue, dequeue, or requeue elements to
a queue, it must create an object of the Rqs::Queue.

RQS++ applications use objects of the classes generated by DDL as the
elements that are enqueued, dequeued, and requeued. The generated
classes can also be used to define element types at the RQS server.

3.3 Encina DE-Light Web Components

The explosive growth of the Internet has created a need for a product that
allows access to Encina applications from the World Wide Web. The
increasing use of PCs has created the need for an easy way to build PC
clients using GUIs to access Encina applications without using DCE on the
client PC. The DCE Encina Lightweight Client (DE-Light) product addresses
these two needs.

DE-Light is a set of APIs and a gateway server that enable you to extend the
power of the DCE and Encina to PCs and other systems not running as DCE
clients. You can use DE-Light to build clients that require less overall effort to
create than standard DCE and Encina clients and still take advantage of the
benefits of distributed transactions, security, load balancing, scalability, and
server replication formerly restricted to full DCE and Encina clients.

DE-Light clients use simplified RPCs to communicate with a DE-Light
gateway. The clients do not use DCE for communication with the gateway.
The gateway translates the simplified RPC into full DCE RPC or Encina
TRPC and communicates with DCE or Encina servers on behalf of the clients.
The gateway also translates communications from these servers into
responses for the clients, thus completing the communications loop between
clients and servers.
Encina Components 51

Figure 10. DE-Light Architecture Overview

The DE-Light package consists of three components: gateway server, C API,
and Java API. The gateway server provides the RPC translation to the
DE-Light clients. The two APIs provide a set of calls to be used by C and
Java programs for accessing DCE and Encina servers through the simplified
RPC.

3.3.1 DE-Light Gateway Server
A standard DCE or Encina client application uses the DCE RPC mechanism
to communicate directly with DCE or Encina servers. The client application is
compiled with IDL information, which defines all of the DCE RPCs or Encina
TRPCs that clients understand. Each of these standard clients must run a full
client implementation of DCE.

A DE-Light client accesses DCE and Encina servers through a proxy: the
DE-Light gateway. The DE-Light gateway acts as a client of the DCE or
Encina server. It transmits RPC requests from the DE-Light client to the
servers and responses from the servers to the DE-Light client. Because the
gateway acts as a DCE or Encina client, it must be loaded with information
about the servers with which it communicates.
52 Developing Distributed Transaction Applications with Encina

The gateway acts as an IDL interpreter. It loads IDL or TIDL files that provide
information about the simplified RPCs and TRPCs clients use for
communications. These RPCs and TRPCs correspond directly to the RPCs
and TRPCs supported by DCE and Encina servers. Because you can load
and unload RPC definitions while the gateway is running, you can reconfigure
it easily to support updated or new DE-Light applications.

3.3.2 DE-Light C API
The DE-Light C API enables you to build clients for use in Microsoft
Windows 3.1 environments that do not run DCE. These C clients are “light,"
that is, they require very little disk storage or memory. They are also installed
easily by users, along with the client library they require for operation.

In the Microsoft Windows environment, DE-Light C clients use simplified
RPCs sent through a TCP/IP connection to communicate with DE-Light
gateways at known end points. These simplified RPCs are translated by the
gateway into full DCE RPCs and Encina TRPCs, and they are sent along to
the appropriate DCE or Encina servers. The gateway then translates the
RPCs and TRPCs returning from the servers into simplified RPCs, which are
sent back to the clients.

DE-Light C clients consist of client binaries, the drpc.dll library (which
contains the DE-Light functions), and a drpc.ini file (which sets a number of
initialization parameters, including the end point for the gateway).

Because the DE-Light C clients are intended for use within secure intranets,
the security capabilities for C clients are less robust than those for Java
clients. Although the connection between clients and gateways is not secure,
passwords are sent to the gateway in a “scrambled” form, rather than in clear
text.

3.3.3 DE-Light Java API
The DE-Light Java API is used to build Java applets and stand-alone Java
applications that connect with DCE and Encina servers through the DE-Light
gateway. DE-Light Java clients, like any Java clients, have certain
advantages over C clients:

 • Java clients are supported on virtually any computer.

 • They can use the Internet as the transport mechanism for secure
commercial applications.

 • They require minimal administration. Clients download the DE-Light Java
applets as required from standard Web servers.
Encina Components 53

 • They can use DE-Light security, which uses the SSL, in communications
with the gateway. DE-Light security is available only when you use Java
applets with Web browsers that support SSL.

 • They have a consistent look and feel, despite differences in computing
platforms.

DE-Light Java clients can be implemented in two ways: as Java applets and
as stand-alone java applications.

You can create a DE-Light Java applet embedded into a hypertext markup
language (HTML) document on a Web server. With this type of client, a user
contacts a Web server through a Java-enabled Web browser, and the
browser automatically downloads the DE-Light Java client applet along with
the HTML document (see Figure 11 on page 54).

Figure 11. Downloading DE-Light Java Applets

The Java client applet then contacts the appropriate DE-Light gateway and
performs its function. The DE-Light gateway is a separate server that must
reside on the same machine as the Web server. The Web client can now
communicate through the DE-Light gateway with DCE or Encina servers (see
Figure 12 on page 55).
54 Developing Distributed Transaction Applications with Encina

Figure 12. Java Clients Accessing Encina Servers

Alternatively, you can build a stand-alone Java application. This stand-alone
client communicates with a DE-Light gateway at a known TCP/IP or HTTP
address.

Communication between either type of client and the DE-Light gateway can
use either the TCP/IP or HTTP transport protocols. The gateway then
translates the simplified remote RPCs from the client into DCE RPCs or
Encina TRPCs and transmits them to the appropriate DCE or Encina servers.
The gateway also translates RPCs and TRPCs returning from the servers into
simplified RPCs and sends them back to the client.

You can configure both types of DE-Light Java clients to use SSL
connections to the DE-Light gateway server. The gateway server itself
belongs to the DCE cell that contains the DCE or Encina servers and
therefore uses DCE security to access those servers.

3.4 EncinaBuilder

EncinaBuilder streamlines Encina client application development by
integrating Encina for Windows with the PowerBuilder Enterprise application
development environment. By combining the power of Encina with the ease
of use of PowerBuilder, organizations can more rapidly deploy Encina-based
solutions throughout the enterprise.

EncinaBuilder automates the process of developing Encina clients. With
EncinaBuilder, you can:
Encina Components 55

 • Automatically generate Windows-based applications that access business
functions offered by Encina application servers

 • Use PowerBuilder's graphical, object-oriented development tools to create
and customize Windows-based Encina client applications

 • Rapidly deploy Encina clients by streamlining the development process

PowerBuilder applications can now scale to the enterprise level by relying on
Encina's three-tier client/server architecture to support larger numbers of
users and integrate a wide variety of data and resources. EncinaBuilder
enables PowerBuilder users to:

 • Develop and deploy large-scale client/server applications, using the
Encina Monitor and other Encina products

 • Transactional access and update heterogeneous data resources,
including RDBMSs, record-oriented files, queues, and mainframe systems

 • Capitalize on the robust, scalable execution and management
environment of the Encina Monitor

 • Integrate services of the OSF's DCE into PowerBuilder applications

With EncinaBuilder for Windows, Encina client applications are developed
easily and rapidly with PowerBuilder Enterprise application development
tools. Encina application servers make business functions available to client
programmers through well-defined interfaces. The interfaces are described in
a TIDL file.

Developers use EncinaBuilder's GUI to select and transform Encina
application server interfaces defined in the application server's TIDL file into
PowerBuilder callable objects. Once EncinaBuilder has populated the
PowerBuilder library, you can develop Encina for Windows client applications,
using standard features of the PowerBuilder graphical client/server
development environment.

In addition to generating PowerBuilder objects, EncinaBuilder creates a fully
functional PowerBuilder application that can be used immediately to invoke
the functions offered by the Encina application server. These sample
applications are customized with standard PowerBuilder features to create
graphical Encina client applications.

EncinaBuilder provides a library containing PowerBuilder user objects for
common transaction functions, including begin, commit, and rollback. The
library also contains objects encapsulating Encina Monitor functions, such as
setting authorization and authentication defaults, and application
management functions, such as initializing and terminating applications.
56 Developing Distributed Transaction Applications with Encina

Part 2. Encina Components Related to Application Development

In Part 2 we discuss in detail the Encina transaction model and the Encina
components related to application development and explain how to use and
program the components and connect Encina applications to the Internet.
Part 2 is particulary important for readers who are not familiar with Encina
application development and some of its details. It demonstrates how all
Encina modules work together, how interfaces must be defined, and how the
different application modules should be coded. Reading this part will prepare
you well for Part 3, where we show, through a case study, how to use the
Encina components.
© Copyright IBM Corp. 1998 57

58 Developing Distributed Transaction Applications with Encina

Chapter 4. Encina Transaction Model

In this chapter we provide background information about transaction
processing and transactional applications. We also describes programming
concepts with Encina TRPCs and their security implications.

4.1 Transactions

A transaction is a set of operations that transforms data from one consistent
state to another. This set of operations is an indivisible unit of work, and, in
some contexts, a transaction is referred to as a logical unit of work (LUW).
Transactions can run across different computers, using different programs
(executables) hosted by different operating systems. Although a transaction
may be distributed, made up of several different programs, and working with
different data sources, any client recognizes only the transaction call and not
the complexity behind it. Thus is it a perfect mechanism for three-tier
distributed computing models.

4.1.1 Atomicity Consistency Isolation Durability (ACID)
Transactions have four critical properties that have to be understood:

 • Atomicity. A transaction's changes are atomic; either all operations that
are part of the transaction occur or none occurs.

 • Consistency. A transaction moves data between consistent states.

 • Isolation. Even though transactions can execute concurrently, one
transaction does not see another's work in progress. The transactions
appear to run serially.

 • Durability. Once a transaction completes successfully, its changes survive
subsequent failures.

As an example, consider a transaction that transfers money from one account
to another. Such a transfer involves money being withdrawn from one
account and deposited in the other. Withdrawing the money from one account
and depositing it in the other account are two parts of an atomic transaction: if
both cannot be completed, neither must occur. If multiple requests are
processed against an account at the same time, they must be isolated so that
only a single transaction can affect the account at one time. If the bank's
central computer goes down just after the transfer, the correct balance must
still be shown when the system becomes available again; the change must be
durable. Note that consistency is a function of the application; if money is to
© Copyright IBM Corp. 1998 59

be transferred from one account to another, the application must subtract the
same amount of money from one account that it adds to the other account.

Transactions can be completed in one of two ways; they can commit or abort.
A successful transaction is said to commit. An unsuccessful transaction is
said to abort. Any data modifications made by an aborted transaction must be
completely undone (rolled back). In the above example, if money is
withdrawn from one account but a failure prevents the money from being
deposited in the other account, any changes made to the first account must
be completely undone. The next time any source queries the account
balance, the correct balance must be shown.

A distributed transaction is one that runs in multiple processes, usually on
several machines. Each process works for the transaction. Distributed
transactions, like local transactions, must adhere to the ACID properties.
However, maintaining these properties is greatly complicated for distributed
transactions because a failure can occur in any process, yet even in the event
of such a failure, each process must undo any work already done on behalf of
the transaction.

A distributed transaction processing system maintains the ACID properties in
distributed transactions by using two features:

 • Recoverable processes

Recoverable processes are those that log their actions and thus can
restore earlier states if a failure occurs.

 • A commit protocol

A commit protocol allows multiple processes to coordinate the committing
or aborting of a transaction. The most common commit protocol, and the
one used by Encina, is the two-phase commit protocol.

Recoverable processes can store two types of information: transaction state
information and descriptions of changes to data. This information allows a
process to participate in a two-phase commit and ensures isolation and
durability. Transaction state information must be stored by all recoverable
processes. However, only processes that manage application data (such as
resource managers) must store descriptions of changes to data. Not all
processes involved in a distributed transaction need to be recoverable. In
general, clients are not recoverable because they do not interact directly with
a resource manager.

The two-phase commit protocol, as the name implies, involves two phases: a
prepare phase and a resolution phase. In each transaction, one process acts
60 Developing Distributed Transaction Applications with Encina

as the coordinator. The coordinator oversees the activities of the other
participants in the transaction to ensure a consistent outcome.

In the prepare phase, the coordinator sends a message to each process in
the transaction, asking each process to prepare to commit. When a process
prepares, it guarantees that it can commit the transaction and makes a
permanent record of its work. After guaranteeing that it can commit, a
process can no longer unilaterally decide to abort. If a process cannot
prepare (that is, if it cannot guarantee that it can commit the transaction), it
must abort.

In the resolution phase, the coordinator tallies the responses. If all
participants are prepared to commit, the transaction coordinator commits the
transaction by writing a commit record to its stable storage and then informs
all the participants that the transaction has committed. If any participant
indicates that it cannot prepare, the transaction coordinator aborts the
transaction by writing an abort record to its stable storage and then informs
all participants that the transaction has aborted.

4.1.2 Nested Transactions
Using transactions does not always allow applications the granularity of error
isolation that may be desired. If the transaction aborts, all changes are rolled
back. Although this may be sufficient for a large number of transactions, for
more complicated transactions, you may want a finer granularity of error
isolation. For example, you may not want to undo all parts of a transaction
because of an error in one operation.

In such cases you can decompose a transaction into a number of
subtransactions. The failure of one transaction does not affect the other
subtransactions in a transaction. If a subtransaction fails, it can be simply
restarted without having to roll back or restart the other subtransactions. As
an example, for the transfer application described above, the withdrawal
operation and the deposit operation can be written as subtransactions within
the transfer transaction. Therefore if the deposit operation fails, it can be
retried without having to roll back either the entire transaction or the
withdrawal operation.

Standard tree terminology is used to describe relationships between nested
transactions. A nested transaction is considered an indivisible operation
within its enclosing transaction. Nested transactions have the same
transactional properties, although with somewhat weaker guarantees.
Subtransactions can be used to achieve safe parallelism and finer-granularity
failure isolation.
Encina Transaction Model 61

A transaction that is not nested within another is called a top-level
transaction. A subtransaction is a child of the enclosing (parent) transaction.
A parent may have several children; those children are siblings. The ancestor
and descendant relationships are the recursive closures of the parent and
child relationships. A top-level transaction and its descendants are
collectively known as a transaction family, or simply a family.

Subtransactions are simply another form of operation that can be performed
within a transaction. Whenever an application can perform work on behalf of
a transaction, it can instead create a subtransaction to do that work. A
subtransaction must be strictly nested within the enclosing transaction; it
must be completed (committed or aborted) before the enclosing transaction
can complete. Should the enclosing transaction abort, all effects of the
subtransaction are also undone.

The transaction properties of atomicity, serializability, and permanence apply
to top-level transactions; somewhat weaker properties apply to individual
subtransactions. Subtransactions retain the atomicity and consistency
properties. The isolation property is essentially the same: a subtransaction
cannot observe the effects of another subtransaction that may subsequently
abort independently of it. The permanence property applies only to top-level
transactions; a subtransaction is not permanent until its top-level ancestor
commits. These properties permit subtransactions to be used to achieve safe
parallelism within a transaction and to isolate failures within subtransactions.

A transaction can create several child transactions, each of which performs
part of the required work. The parent transaction does not perform any work
until all those children complete, so it does not observe their partial effects. A
child transaction can observe the previous effects of the parent transaction;
however, a transaction cannot observe any effects of a sibling until that
sibling completes. This isolation property permits the child transactions to
operate in parallel without interfering with one another.

Nested transactions offer several features. They:

 • Enable an application to isolate errors in certain operations

 • Allow an application to treat several related operations as a single atomic
operation

 • Operate concurrently

Nested transactions, like any other transactions, incur a performance cost.
Therefore, you should use them only when necessary.
62 Developing Distributed Transaction Applications with Encina

A nested transaction begins within the scope of another transaction. The
transaction that starts the nested transaction is called the parent of the
nested transaction. There are two types of nested transactions:

 • A nested top-level transaction commits or aborts independently of the
enclosing transaction

That is, after the nested transaction is created, it is completely
independent of the transaction that created it. The Tran-C top-level
construct for creating nested top-level transactions. The syntax of this
construct is identical to that of the transaction construct, but the topLevel
keyword is used instead of the transaction keyword.

 • A nested subtransaction commits with respect to the parent transaction

That is, even though the subtransaction commits, the permanence of its
effects depends on the parent transaction committing. If the parent
transaction aborts, the results of the nested transaction are backed out.
However, if the nested transaction aborts, the parent transaction is not
aborted. The easiest way to create a nested subtransaction in Tran-C is
simply to use a transaction block within the scope of an existing
transaction. Tran-C automatically makes the new transaction a
subtransaction of the existing transaction.

A series of nested subtransactions is viewed as a hierarchy of transactions.
When transactions are nested to an arbitrary depth, the transaction that is the
parent of the entire tree (family) of transactions is referred to as the top-level
transaction. If the top-level transaction aborts, all nested transactions are
aborted as well.

By default, nested subtransactions of the same parent transaction are
executed sequentially within the scope of the parent. The Tran-C concurrent
and cofor statements can be used to create subtransactions that execute
concurrently with each other on behalf of their parent transaction.

Most commercial RDBMSs, the XA interface, and Encina PPC Services do
not support nested transactions.

4.2 Rollback

If a transaction is aborted before it can be committed, the effects of the
transaction must be undone or rolled back. All components of a global
transaction must be rolled back in that case.

The Encina TRAN service implements a two-phase commit protocol to drive
the commitment and recovery of a transaction. When a transaction begins,
Encina Transaction Model 63

the event is logged in a log. Other events such as the prepare phase and the
commit or abort of a transaction are also logged in the log.

Encina recovery is invoked whenever the system is restarted. For example, if
a machine crashes and is restarted, Encina recovery takes place when
Encina is restarted on the machine. When Encina is restarted, it goes through
its log. It aborts transactions that were started but not prepared. For such
transactions, Encina applies undo records from the log to undo their effects.

If a transaction accesses other recoverable data, for example, RDBMSs or
data stored in a mainframe that is accessed through PPC, Encina must roll
back the changes made to the data by the transaction that is being rolled
back.

For RDBMSs, Encina uses the XA interface to coordinate the rollback. Encina
makes xa_rollback calls to the database for each transaction that is to be
rolled back. It is the responsibility of the database to roll back the data for
such transactions. Only those transactions that attempted to do any XA work
for that database are aborted.

For PPC, the connection between the Encina application and the mainframe
application must be syncpoint sync level 2. Sync level syncpoint is the
highest level of synchronization provided by LU 6.2. It provides transactional
conversations, which use the two-phase commit protocol, and rollback and
resynchronization capabilities.There are two ways in which an LUW can be
backed out (aborted):

 • Through the CPI-RR backout (SRRBACK) function

 • Through an asynchronous abort. An asynchronous abort results when an
application explicitly calls one of the Encina abort functions (such as abort
or tran_Abort). An asynchronous abort can also be due to an underlying
failure, such as a TRPC failure.

Any peer can initiate a backout by calling the backout (SRRBACK) function.
All other peers receive notification of this backout. The status code received
and the action the application must take in response to receiving this backout
request depend on which function returned the backout notification.

An asynchronous abort occurs whenever a transaction aborts by some
mechanism other than an application issuing a backout (SRRBACK) function
call. For example, if an application calls tran_Abort, it may cause an
asynchronous abort at any CPI-C site participating in the transaction. An
asynchronous abort can also occur as a result of a failure in the underlying
RPC mechanism. Asynchronous aborts are detected by the PPC Services.
64 Developing Distributed Transaction Applications with Encina

If the application asynchronously aborts the transaction, all sync level
syncpoint conversations are deallocated with a DEALLOCATE_ABEND type
return code. All of the application’s peers receive a
CM_DEALLOCATED_ABEND return code (such as
CM_DEALLOCATED_ABEND_SVC).

If an asynchronous abort occurs when the application is issuing a CPI-C or
CPI-RR function call, that call returns a product-specific error with the detail
set to PPC_ASYNC_ABORTED. It is possible that the asynchronous abort
will be detected during a CPI-RR function and that the function will receive a
status code making it appear as if the transaction backed out. When it
appears that the transaction naturally backed out, the PPC Services begin a
new transaction.

Any peer can initiate backout processing. The remote peer initiates backout
processing by calling Backout (SRRBACK).The PPC Executive application
can initiate a backout either in the server function or in the client (after the
TRPC returns). To do so, it can call any of the Encina functions that initiate an
asynchronous abort.

For a distributed transaction, Encina selects a two-phase commit coordinator
for the transaction. The coordinator is responsible for logging the
commit/rollback status of the transaction. Whenever a participant in a
transaction performs recovery, it must contact the coordinator to obtain the
status of transactions that are undecided. Only the coordinator can determine
the outcome of such transactions. For example, if a back-end database fails
and is restarted, it contacts the TM-XA service for the outcome of in-doubt
transactions. The TX-XA service contacts the transaction coordinator for such
transactions and then informs the database of the transaction outcome. The
database must then roll back the effects of aborted transactions.

In general, PPC transactions are distributed transactions: one application
starts the transaction, which is spread to other applications, on other hosts.
When a transaction is distributed over multiple hosts, one participant in the
transaction must be recoverable to allow the transaction to commit. This is
because the Encina DTS requires the coordinator of a transaction to be
recoverable. If the PPC Executive application is using the PPC SNA/Gateway
(that is, if it is an Encina-to-SNA or SNA-to-Encina conversation, not an
Encina-to-Encina conversation), the gateway server can act as the
coordinator because it is recoverable.

If no application involved in the transaction is recoverable, the transaction is
be aborted. Note that this occurs only when the transaction is distributed
across multiple hosts. If the application has local-only transaction processing,
Encina Transaction Model 65

the Encina DTS arranges for the transaction’s outcome status to be
committed.

To make the server transactional you must:

1. Make the server recoverable.

2. Modify the initialization steps so that your server initializes the parts of
Encina needed for transactions. Depending on the component you use,
you may also have to modify the way the server terminates.

3. Delimit (indicate the beginning and end of) the transaction, specifying
which operations are to be part of the transaction.

There is a bootstrap problem when restarting a server and recovering its
data. To recover data, the services employed by the Recovery Service (REC),
which is a lower-level module of the Encina Toolkit, requires some information
to reestablish their state relative to the application. However, this information
cannot be part of the recoverable data for the application because it must be
present to recover the application’s data. For example, the Volume Service
needs to know which volumes it created for the application before it can make
those volumes available for recovery. To solve this problem REC coordinates
with the Log Service, which maintains persistent data, so REC can provide a
single block of restart data that it can immediately pass to an application.

4.3 TRPC

The Encina TRPC Service enhances the DCE RPC package offered by the
OSF. DCE RPC is a remote procedure call system that implements
nontransactional RPCs for use by Encina Toolkit components.

TRPC provides the same basic interface as DCE RPC. However, there is one
significant difference. TRPC implements transactional and nontransactional
RPCs; DCE RPC implements nontransactional RPCs only. To accommodate
the transactional nature of TRPC, the TIDL was developed.

An RPC is a programming paradigm similar to the well-known procedure call
mechanism. Both mechanisms transfer control and data within a program.
When a remote procedure is called, the parameters of the call are passed
over the network to the environment where the call is actually executed.
Meanwhile, the calling environment waits for the results of the procedure
execution. Typically the calling environment is a program that is referred to as
a client. The environment where the call is executed is referred to as a server.
When the server (the called environment) finishes executing the procedure, it
66 Developing Distributed Transaction Applications with Encina

ships the results back to the client (the calling environment), which then
resumes execution as if returning from a local procedure call.

TRPCs are initiated from within the scope of a transaction. Each transactional
RPC does work on behalf of a transaction. The TIDL preprocessor adds
additional parameters to user-specified operations in an interface definition
file. These additional parameters are used to carry the TRAN state and data.
TRPCs carry the TRAN state and data along with the regular parameters of
the RPC and pass the parameters to the appropriate TRAN.

Although transactional applications commonly use TRPCs, some may also
use nontransactional RPCs. Therefore, TRPC provides a mechanism that
allows an RPC to retain its nontransactional semantics. TRPC’s
nontransactional RPCs are an enhanced version of the DCE RPC.

TRPC consists of two components: a preprocessor and a library of functions.
The TIDL preprocessor, tidl, preprocesses interface definition files. It
produces a set of files that must be compiled and linked appropriately with
the client and the server programs. It also produces an interface definition file
that must be processed by IDL.

4.3.1 Interface Definitions
A TIDL file contains the interface definition for a server. During the design
phase, the application designers decide which functions the server will
export, what their arguments will be, and so forth. In a TIDL file, you must
specify the following about each function (see Figure 13 on page 68):

 • The arguments to the function and their types

 • Whether the function is to be invoked transactional or nontransactional

 • Whether each argument is input, output, or both
Encina Transaction Model 67

Figure 13. Sample TIDL file

The error_status_t type is defined by DCE for error status. It is equivalent to
the unsigned long type, but it also specifies to DCE that it is a status
parameter or return value. This fact is used by DCE if you specify that DCE
use a status code to return errors it detects to your client rather than
generating exceptions.

The full TIDL file must include a universal unique identifier (UUID) generated
by the DCE uuidgen command. The UUID is a number that uniquely identifies
an interface across all network configurations. You can use the following
command to generate the UUID as well as the skeleton for the TIDL file:

% uuidgen -i -o OPS.tidl

With Monitor transparent binding the client automatically binds to a server
exporting an interface with this UUID when it makes an RPC. With explicit
binding, you would specify this UUID when obtaining a binding handle to the
server.

You must edit the skeleton produced by the uuidgen command to add the
interface name and the prototype for the function that makes up the interface.

A client or a server can use an attribute configuration file (ACF) or a
transactional attribute configuration file (TACF) to modify the way the TIDL
and IDL compilers create stubs. The TACF is used to control:

 • The way binding occurs

 • The way errors and exceptions are reported

 [
 uuid(002978fe-bb72-1ea6-b3fb-9e620404aa77),
 version(1.0)
]
 interface OrderInterface
 {

 import "tpm/mon_handle.idl";
 [nontransactional] error_status_t OrderItem(

[in] unsigned long stockNum,
[in] unsigned long numOrdered,
[in] unsigned long customerId);

}

68 Developing Distributed Transaction Applications with Encina

Unless you specify otherwise in a TACF, binding is explicit: the client must
obtain a binding handle to the server and use this handle in all RPCs. If the
client is using DCE automatic or implicit binding or the Monitor’s transparent
binding, you must specify that use in a TACF or an ACF (see Figure 14 on
page 69).

The TACF also allows communication errors and exceptions in the underlying
DCE layers to be returned to the client. Errors that are detected by the server
are returned to the client as status codes. However, errors detected by DCE
(for example, network communication errors) normally generate exceptions,
which typically cause the client to exit. Applications can be designed to
handle exceptions, but this is a more complicated programming task than
simply checking a status code. You can use a TACF to specify that such
exceptions are to be returned as status codes, which the client can handle in
the same way that it handles other status codes.

Figure 14. Sample TACF File

You compile the TIDL file, using the TIDL compiler, tidl, which produces a
number of files, including an IDL file. The IDL file must in turn be compiled by
the IDL compiler, idl, which produces the necessary stub files (the code that
turns the local procedure call into an RPC) and the OPS.h file. The TIDL
compiler automatically compiles the TACF for the interface if a TACF file
exists.

To implement TRPCs, the tidl command accepts an interface definition file
and produces the following:

 • IDL interface definition file - This file contains modified versions of the
operations in the TIDL interface definition file. Each operation in the IDL
interface has extra parameters to transmit and receive TRAN data and
callback data. The TIDL interface definition file is slightly different from the
IDL interface definition file. IDL accepts the modified interface definition
file and produces the native client and server stubs.

 /* TACF for OrderInterface */

 [implicit_handle (mon_handle_t handle)]
 interface OrderInterface
 {
 [comm_status, fault_status] OrderItem();

}

Encina Transaction Model 69

 • Shadow client stubs - These stubs are invoked when the client initiates
an RPC. The shadow client stubs then invoke the native client stubs
produced by IDL.

 • Shadow manager functions - These functions are invoked when the
RPC run time invokes manager functions within the server stubs. The
shadow manager functions eventually call the user-provided manager
functions.

 • Header file - Application programs need this file to get the type definitions
of the operation parameters and to return values. Both client and server
programs must include this file. The header file produced by tidl
automatically includes the header file produced by idl.

Figure 15 on page 70 shows the sample file structure of the OPS.

Figure 15. OrderProcessingSystem Sample File Structure
70 Developing Distributed Transaction Applications with Encina

Here is a description of the files in the OrderProcessing System file structure
shown in Figure 15 on page 70:

 • OPS.tidl: The TIDL file contains the interface description to be processed
by Encina's TIDL compiler. In addition to stub and header files, the
compiler generates an IDL file (in our example, OPS.idl) to be used as
input to the DCE IDL compiler.

 • OPS.tacf: The TACF specifies which of the operations defined in the
associated TIDL file are to be exported. Use of TACF enables the same
TIDL file to contain multiple definitions for an operation. Operations can be
exported selectively for different applications by modifying the TACF file.

 • OPS_client.c: This file contains the shadow client stubs that TIDL
produces. It must be compiled and linked with client programs. It contains
code that calls the TRPC run time and invokes the modified operations.

 • OPS_manager.c: This file contains the shadow manager stubs that TIDL
produces. It must be compiled and linked with the server. It contains code
that calls TRAN, invokes the callbacks, and calls the user-provided
manager function.

 • OPS_cswtch.c: This file must normally be compiled and linked with the
client programs. If an application that uses TIDL is to be used as both a
client and a server of an interface, it must not link with this file. Such an
application must invoke the RPC through the entry point vector initialized
in OPS_client.c.

 • OPS.h: The client and server programs must include this file instead of
the header file produced by IDL. The jill.h file includes the header file
produced by IDL.

 • _OPS.idl: This is the output interface definition file that must be
proceeded by the IDL compiler. TIDL also prefixes an underscore (_) to
each operation name in the interface definition file. Each operation in this
file also has some additional parameters for transmitting and receiving
transaction service data and callback data.

 • _OPS_cstub.c: This file contains the client stubs that marshal the input
parameters and unmarshal the output parameters. It is compiled and
linked with the client programs.

 • _OPS_sstub.c: This file contains the server side stubs that unmarshal the
input parameters and marshal the output parameters. It is compiled and
linked with the server programs.

 • _OPS.h: This file is expected to be included in the client and the server
programs when raw DCE RPC is used. The header file produced by TIDL
(OPS.h, in our example) automatically includes this file.
Encina Transaction Model 71

4.3.1.1 DCE-Only RPC Interfaces
TIDL allows an interface attribute to be defined for a DCE-only RPC interface
UUID. The dceOnlyRpcUuid attribute, as shown in Figure 16 on page 72, can
be specified in the interface attribute list of the TIDL file to supply an interface
UUID for a DCE-only RPC interface. The supplied UUID is used in the
DCE-only RPC IDL file generated by TIDL.

Figure 16. Sample DCE-Only RPC Interface

If a dceOnlyRpcUuid interface is specified, the TIDL compiler produces a
_dceOnlyRpc.idl intermediate file, which is proceeded by the DCE/IDL
compiler. In our example this file would be called OPS_dceOnlyRpcUuid.idl

This process produces the necessary files to be linked to client and server
programs to use RPC-only calls. For details about the process, see the
Encina Transactional Programming Guide.

4.4 Security

Encina uses the DCE security features to provide security for transactional
applications. The DCE Security Service provides the following security
features to protect DCE resources:

 • Authentication ensures that a principal (the DCE term for a user or
server) is who he or she claims to be.

 • Protection levels for RPCs control the frequency of authentication and
the degree of encryption for RPCs from clients to servers.

 • Authorization determines whether an authenticated principal is
authorized (that is, has the required permissions) to make a particular
request.

Authentication and protection levels are closely related. When a client is
authenticated with the DCE Security Service, it is given an encrypted ticket.
The client presents this ticket to a server as proof that it is who it claims to be.
The protection level defines how often the server checks the client's
authentication.

[uuid(003549e0-a1f5-1f1a-ba3e-9e620912aa77),
dceOnlyRpcUuid(00224c0a-a1f7-1f1a-a4c1-9e620912aa77),
version (1)]
72 Developing Distributed Transaction Applications with Encina

Servers running in the Encina environment can use all three security
features. When configuring a server, administrators determine whether to
make use of the features. User authentication is the most basic DCE security
mechanism. Protection levels provide further security control, and
authorization provides even more granular security control.

Servers check the security for an RPC by following a sequence from the most
basic to the most advanced security feature (authentication to authorization).
For users and applications to obtain access to Encina server resources as
authenticated, protected, and authorized clients, they must:

 • Be authenticated to DCE

 • Communicate (at least) at the minimum level of protection specified by the
server

 • Be authorized to access the resources

A client that is unauthenticated or underprotected is treated as an
unauthenticated client; unauthenticated clients are granted or denied access
to a resource according to the permissions that an administrator grants to
unauthenticated principals. A client that is authenticated and protected but
does not have adequate permissions for a resource is considered
authenticated but unauthorized; unauthorized clients are denied access to
resources.

Each Monitor cell that is started with DCE security has an access control list
(ACL) that controls administrative access to the cell. In addition, there are
ACLs that control administrative access to the node managers and managed
servers.

When a Monitor cell is first started, the principal named as the exclusive
authority is granted exclusive access to the cell manager. If you are using
Enconsole, the default exclusive authority is the encina_admin user.
Enconsole automatically grants full administrative permissions to the
encina_admin_group and then clears the exclusive authority.

If you are not using Enconsole, the exclusive authority must create entries on
the cell manager ACL. For example, the read (r), write (w), and administer (a)
permissions for the Monitor cell can be granted by adding the appropriate
entry to the cell manager ACL. After permissions have been set up, the
exclusive authority must be cleared by using the tkadmin clear
exclusiveauthority command.

If security is enabled, servers can have ACLs that grant permissions to
principals to perform administrative tasks such as listing and aborting
Encina Transaction Model 73

transactions. In the absence of an ACL for a specific server, the cell manager
ACL is used.

To create an ACL for a managed server, use the dcecp acl modify command.
The ACLs for administering managed servers are
/.:/cellname/ecm/server/servername, where cellname is the name of the
Monitor cell and servername is the name of the server, for example,
/.:/branch1/ecm/server/merchandise. To issue the dcecp acl modify
command, you must have the Encina Monitor administer (a) permission, and
the cell manager must be running with authorization enabled.

If security is enabled, application interfaces and the functions within them can
have ACLs that grant execute (x) permission to client principals. If a function
has an ACL, that ACL is used, and the interface ACL is ignored. Otherwise,
the ACL for the interface is used.

The ACLs for interfaces are
/.:/cellname/ecm/interface/interface_name, where interface_name is the
name of the interface exported by the Monitor application server-for example,
/.:/branch1/ecm/interface/merchandise.

The ACLs for functions are
/.:/cellname/ecm/interface/interface_name/function_name, where
interface_name is the name of the interface and function_name is the name
of a function in that interface, for example,
/.:/branch1/ecm/interface/merchandise/write_checks.

The Encina Monitor automatically uses a number of the DCE security
features. You do not have to modify the application to use security in the
Monitor environment. You specify the level of security to use when starting
the application server. You can use two security features:

 • RPC authentication. The administrator who starts the server specifies an
RPC authentication level. The Monitor rejects any RPCs from clients that
do not specify at least that level.

 • ACLs. ACLs can be placed on an entire interface or on individual functions
in an interface. The Monitor rejects RPCs from clients that are not granted
access by the appropriate ACL.

Note that in both cases, the program does not have to do anything. The
server never sees the rejected RPCs.

Each RQS server has an ACL governing access to it. When an RQS server is
first started, the principal named as the exclusive authority is granted
exclusive access to the server. If you are using Enconsole, the default
74 Developing Distributed Transaction Applications with Encina

exclusive authority is the encina_admin user. Enconsole automatically grants
full administrative permissions to the group encina_admin_group and then
clears the exclusive authority. A user holding the create (c) permission on a
server can create queues, queue sets, and element types in the server. Any
user who creates a queue or queue set is automatically granted full
permissions on the queue or queue set. For instance, when a queue is
created, its ACL initially consists of an entry that grants the creator all
permissions on the queue.

You can use ACLs to protect SFS objects against unauthorized access. Each
SFS server that is started with DCE security has an ACL that controls access
to the server and, indirectly, to the files that the server manages. In addition,
each SFS file has an ACL that controls access to it.

Users with the administer (A) permission on an SFS server automatically
acquire the administer (A), exclusive open (E), and query (Q) permissions on
all files managed by the server and create (C) and query (Q) permissions on
the server. Users with the administer (A) permission on an SFS file
automatically acquire the exclusive open (E) and query (Q) permissions on
that file. Note that the creator of a file automatically gets full permissions (A,
D, E, I, Q, R, and U) on the file.

For sfsadmin commands that modify a file or its indexes, file permissions are
checked first, followed by server permissions. Because the administer (A)
permission on a server indirectly grants full file permissions, lack of file
permissions does not necessarily prevent file modification commands.
Therefore, the administer (A) permission on a server should be granted
cautiously.

Each PPC gateway server using DCE security has an ACL that controls
access to the server. The ACL contains entries that grant specific access
permissions to specific users or groups.

In addition, for SNA-to-Encina conversations, the PPC gateway server
requires Monitor execute (x) permission on PPC Executive applications in the
Monitor to schedule conversations from LU 6.2 applications. The PPC
gateway server principal must be on the ACL for the LU name registered for
the PPC Executive application or on the ACL for the individual transaction
program name (TPN).

When a PPC gateway server is first started, the principal named as the
exclusive authority is granted exclusive access to the server. If you are using
Enconsole, the default exclusive authority is the encina_admin user.
Encina Transaction Model 75

Enconsole automatically grants full administrative permissions to the group
encina_admin_group and then clears the exclusive authority.

If security is enabled for a PPC gateway server, you must add entries to the
gateway server ACL to give principals access to it. You must have the PPC
administer (a) permission on the gateway server ACL to add an entry to the
ACL. Because users with administer (a) permission can grant anyone access
to the server, you should grant the administer (a) permission cautiously.
76 Developing Distributed Transaction Applications with Encina

Chapter 5. Using Encina Components

In this chapter we describe the Encina components in detail and explain how
to use them for application development.

5.1 Encina Monitor

The Encina Monitor provides features to simplify programming and automate
some of the basic tasks that a client/server application must perform. The
Monitor also provides a number of run-time and administrative benefits,
including load balancing and centralized administration.

The Encina Monitor provides three function areas to a transaction processing
system:

 • The run-time environment

 • The system administration facility

 • The application development environment

The Monitor run-time environment coordinates TP applications and resource
managers and performs run-time administration tasks, such as load
balancing and collecting diagnostics. In addition, this environment provides
for other interactions with the execution environment, such as scheduling
calls for later execution and retrieving information about users, transactions,
and client/server bindings.

The Monitor system administration interface is used to construct, initiate,
control, and terminate a Monitor system. The Monitor is administered through
Monitor administrative and configuration interfaces.

Monitor applications are developed by using the Monitor API in conjunction
with other Encina interfaces, such as Tran-C. The Monitor saves the
programmer effort by performing some tasks, such as interaction with DCE
RPC and security, on the application's behalf.

5.1.1 Run-time Environment
The Monitor run-time environment is not a single process. It consists of a
number of processes that together build the platform for TP applications. This
run-time environment is also called the Monitor cell. A Monitor cell is always
part of a DCE cell and uses DCE services. A DCE cell can contain one or
multiple Monitor cells. The processes that make up the Monitor cell can also
be distributed over different nodes (computer systems). These nodes are
© Copyright IBM Corp. 1998 77

called Monitor managed nodes. Figure 1 on page 78 shows a simple Encina
Monitor configuration.

A Monitor managed node is capable of simultaneously running one or more
client or application servers and one or more Monitor system processes.
Because of the value of the enterprise data entrusted to such a computer
system, a Monitor managed node usually is a highly trusted computer
system. Application servers must run on managed nodes. Clients do not have
to run on managed nodes.

Table 1. Simple Encina Monitor Configuration
78 Developing Distributed Transaction Applications with Encina

A Monitor cell contains the following components:

 • Cell manager - The part of the Monitor that monitors and controls the
node managers and data repository within the cell. The data in the cell
manager’s data repository describes the application servers configured to
run on each node in the cell and which users are authorized to use which
services. In addition to storing authorization data, the cell manager stores
information about active users, application servers, and the services in a
cell. The cell manager communicates with node managers, clients, and
DCE services.

 • Node manager - The part of Encina that controls all application servers on
a single managed node on behalf of the cell manager. The node manager
starts and monitors the application servers running on a single managed
node. Each managed node in the Monitor system must have a node
manager. The cell manager and its node managers monitor the system
constantly, detecting, reporting, and restarting application servers that
have failed. Therefore the node manager periodically polls its application
servers to confirm that they are still responding to requests. When an
application server fails to respond, the node manager notifies the cell
manager of the failure and automatically restarts the application server.
Node managers must be Monitor managed nodes; they cannot run on
public nodes.
Programmer intervention is not required to run the node manager. The
system administrator need only supply the necessary configuration
information.

 • Application server - Application servers process client requests and run
on managed nodes, usually interacting with one or more resource
managers in a manner specific to the resource manager. Application
servers can be recoverable or nonrecoverable. Recoverable servers that
fail can be restored to a consistent state, and transactions are guaranteed
either to commit or abort cleanly rather than being left in intermediate
states. A nonrecoverable server does not log and recover its data; if it
fails, any of its data that has not already been committed as part of a
distributed transaction is simply lost. An application server consists of one
or more processes called processing agents (PAs) that receive and handle
client requests for services. Processing agents are multithreaded
processes that execute requests received from clients. A single
application server with several processing agents only has to be
configured and started once, and its processing agents can be managed
as a single group. The Monitor automatically parcels out client requests
among the various processing agents, and you do not have to worry about
each processing agent individually. An application server can consist of up
to MON_MAX_PA_COUNT (64) PAs.
Using Encina Components 79

 • Application client - The part of the application through which a user
interacts with the Monitor system, making requests for services exported
by active application servers. Clients can be implemented in several ways.
They can be designed for single or multiple simultaneous users and have
command- or forms-based interfaces. The choice of interface type
depends on the expected demand, the expertise of the users, and other
user interface design issues. Clients are the only components that do not
have to run on managed nodes.

 • Resource manager - The resource manager is a component that
manages a shared resource, such as RDBMSs, MQSeries, or file system
servers. The Encina SFS and RQS are also examples of resource
managers.
The Encina Monitor supports two types of interaction with resource
managers. A native resource manager, such as the SFS, is one that
interacts with the Monitor through components of the Encina Toolkit
(TRAN, TRPC, or PPC, for example). Such resource managers provide
transactional consistency transparently to the Monitor. An XA-compliant
resource manager such as DB2 or MQSeries is one that interacts with the
Monitor using the X/Open XA interface. This type of resource manager is
registered with the Monitor and interoperates with the Monitor through the
Toolkit's TM-XA component.

5.1.2 Application Development Environment
The Monitor application development environment consists of the application
development tools, languages, and libraries that enable programmers to
develop application programs for the Monitor. The development environment
has three major components:

 • Tran-C, a collection of C language functions and macros that is used to
construct application servers and client applications

 • The RPC mechanism, which is used to define and execute client/server
interactions. We discuss this mechanism in Chapter 4.3, “TRPC” on page
66

 • The Monitor application development libraries

5.1.2.1 Transactional-C Programming Language
Encina's Tran-C is a C interface to the Encina Toolkit that simplifies the
development of transactional applications by greatly reducing the number of
necessary calls to the underlying Encina Toolkit. Tran-C consists of macros
and library functions that embrace the commonly used functionality of the
Encina Toolkit, eliminating the need for direct access to the Toolkit module
interfaces in most cases. Tran-C does not incorporate seldom-used routines
80 Developing Distributed Transaction Applications with Encina

from other Toolkit modules (for example, Transaction Service routines that
return information about the various relationships of transactions) or
Recovery Service routines.

Tran-C provides a simpler application development environment than that
provided by the Toolkit modules themselves. When directly using the
interfaces provided by the Toolkit modules, you must make all of the required
calls to each module and execute those calls in the correct sequence. For
example, most Toolkit modules have their own initialization calls. These calls
must be executed in the correct sequence, because some modules depend
on services provided by others and must therefore be initialized after those
other services. The Tran-C development environment is slightly more
restrictive than that provided by the Toolkit interfaces but is much easier to
use. It provides transactional extensions at the level of added language
constructs, rather than by adding function libraries. The difference between
developing applications by using the Toolkit or Tran-C is analogous to the
difference between writing applications in assembler and a high-level
language such as C.

Tran-C adds a number of important constructs to the C programming
language, where constructs are groups of associated phrases that together
make up an entity affecting the flow of control in a program. The most
important of these is the transaction construct, which consists of a transaction
clause, an onCommit or suspend clause, and an onAbort clause. Each clause
contains a statement, which can be a compound statement (a collection of
statements in brackets). Each transaction construct must contain an onAbort
clause. The onCommit and suspend clauses are optional and, if specified,
must precede the onAbort clause. Figure 17 on page 82 shows a "Hello
World" Tran-C example demonstrating how the transaction construct can be
implemented.
Using Encina Components 81

Figure 17. "Hello World" Tran-C Example

The program aborts all odd numbered and commits all even numbered
transactions. Figure 18 on page 82 shows an extract of the program’s output.

Figure 18. Output of the "Hello World" Tran-C Example

#include <tc/tc.h>
 inModule("helloworld");

 void main()
 {
 int i;
 inFunction("main");
 initTC();
 for(i=0;i<10;i++) {
 transaction {
 printf("Hello World - transaction %d\n", getTid());
 if (i % 2)
 abort("Odd Numbered Transactions are aborted...");
 }
 onCommit
 printf("\t(Transaction committed)\n");
 onAbort
 printf("Aborted in module : %s\n\t%s\n", abortModuleName(),
 abortReason());
 }
 }

Hello World - transaction 65536
 (Transaction committed)
 Hello World - transaction 1
 Aborted in module : helloworld
 Odd Numbered Transactions are aborted...
 Hello World - transaction 2
 (Transaction committed)
 Hello World - transaction 3
 Aborted in module : helloworld
 Odd Numbered Transactions are aborted...
 Hello World - transaction 4
 (Transaction committed)
 Hello World - transaction 5
 Aborted in module : helloworld
 Odd Numbered Transactions are aborted...
82 Developing Distributed Transaction Applications with Encina

The core of the "Hello World" program is a simple printf statement, enclosed
within the Tran-C transaction construct. Because the transaction construct is
executed 10 times, each iteration of the printf statement is actually executed
by a different transaction. In a transaction processing environment, each
transaction has a unique name, the TID. The Tran-C run-time system
automatically manages passing, generating, and manipulating the TIDs in
Tran-C programs. Ordinarily, a TID is transparent because it is seldom
necessary to know it for any given transaction.

This sample program illustrates the use of the Tran-C transaction construct in
a very simple situation. If you need more information about how to
incorporate RPCs or construct nested transactions, we recommend that you
read Transarc’s Encina Transactional Programming Guide.

5.1.2.2 Application Programming Interface
The Monitor contains a collection of functions to support the development of
distributed transaction processing applications, such as functions allowing
clients and application servers to register with the Monitor system and obtain
a binding for a given service. In addition to the functions needed to operate in
an Encina Monitor system, the Monitor is compatible with a number of the
Encina Toolkit components, so calls to the lower level components can be
made.

5.1.3 Client/Server Application Development
The technical steps to develop a Monitor client/server application are:

1. Define the interface.

2. Write the server.

3. Build the server.

4. Write the client.

5. Build the client.

We assume that the reader is familiar with the necessary analysis steps
needed in order to start with the interface definitions. Below we concentrate
on the technical part of the development process.

5.1.3.1 Defining the Interface
As discussed in Chapter 4.3, “TRPC” on page 66, an interface is a description
of a group of functions to be provided by an application server and the
arguments those functions take. An interface is exported by an application
server and typically has an ACL specifying who may use the interface.
Interfaces are specified with TIDL. Both TIDL and IDL are used in developing
Using Encina Components 83

Monitor applications; TIDL generates, as part of its output, the input to IDL. To
define an interface, first create a file that describes the interface. TIDL files
are usually named interface-name.tidl. Figure 19 on page 84 shows an
extract of the Order Processing Interface of our sample application, OPS.

Figure 19. Sample TIDL for OrderProcIF

The function descriptions are similar to standard C prototypes. The [in] and
[out] labels refer to the type of argument; input parameters are used but not
modified, and output parameters are placeholders for information to be
returned. A third option, [in, out], describes parameters that act as both input
and output.

[uuid(000b4aa0-7911-14cf-845a-00a024c008a6), version(1.0)]

interface OrderProcIF {

import "tpm/mon_handle.idl";
import "Common.idl";

/* is the server alive (ready to receive RPCs) */
[nontransactional] RpcReturn ping();

/* create an order */
[nontransactional] RpcReturn createOrder(
[out] long* orderId);

/* list all the products that can be ordered */
[nontransactional] RpcReturn listProducts(
[out] ProductListPtr* prodList);

/* add quantity of a product to order */
[nontransactional] RpcReturn orderItem(
[in] long orderId,
[in] long productId,
[in] long quantity);

/* review order using orderId, returns the original order,
 and up-to-date status */

[nontransactional] RpcReturn reviewOrder(
[in] long orderId,
[out] OrderInfoPtr* ordInfo);

}

84 Developing Distributed Transaction Applications with Encina

With transparent binding, there are three additional requirements for defining
the interface:

1. The TIDL file must import the mon_handle.idl file.

2. The functions specified in the TIDL file must not specify handles as
parameters.

3. You must provide a TACF that specifies that the binding handle is an
implicit handle.

With transparent binding, the client relies on the Monitor to create the binding
and obtains a handle to an application server that exports a requested
interface. The Monitor selects a server from all servers in the cell that export
the requested interface; the application cannot specify a particular application
server. Thus the Monitor can balance the workload among all available
servers that export an interface. Figure 20 on page 85 shows an example of
the required TACF for the Order Processing Interface. This input file is
required only with transparent binding.

Figure 20. Sample TACF for OrderProcIF

5.1.3.2 Writing the Server
Once the interface is defined, you must write the server and the client. Writing
the server consists of the following steps:

1. Implementing the manager functions

2. Writing the code needed for server initialization and server termination

Steps typically constitutes the bulk of the work. In our Order Processing
Interface example we produced the orderprocif_manager.c file, which has to
be linked together with the server main program. Functions such as ping_msr
are defined in this file and conform to the interface definition with regard to
the function’s input and output. Figure 21 on page 86 and Figure 22 on page
87 show an extract of orderprocif_manager.c describing the ping_msr
function.

[implicit_handle (mon_handle_t handle)]

interface OrderProcIF
{
}

Using Encina Components 85

Figure 21. Extract of orderprocif_manager.c (Part 1)

RpcReturn ENCINA_RPC_CALLING ping_msr
#ifdef IDL_PROTOTYPES

(
handle_trpcHandle_,
trpc_byteData_t applAndAddress_,
idl_ulong_int applAndAddressLength_,
trpc_callbackData_t inCallbackData_,
idl_ulong_int numOfInCallbackData_

)
#else

(
rpcHandle_,
applAndAddress_,
applAndAddressLength_,
inCallbackData_,
numOfInCallbackData_

)
handle_trpcHandle_;
trpc_byteData_t applAndAddress_;
idl_ulong_int applAndAddressLength_;
trpc_callbackData_t inCallbackData_;
idl_ulong_int numOfInCallbackData_;

#endif
{

trpcStub_call_tcallHandle_;
#define inMsg_ ((idl_byte *) 0)
#define inMsgLength_ ((idl_ulong_int) 0)
#define outMsg_ ((idl_byte *) 0)
#define outMsgLength_ ((idl_ulong_int *) 0)
#define remoteAddrString_ ((idl_byte *) 0)
#define remoteAddrStringLength_ ((idl_ulong_int) 0)

RpcReturn returnValue_;

trpcStub_EnterManagerStub(1, &callHandle_);
86 Developing Distributed Transaction Applications with Encina

Figure 22. Extract of orderprocif_manager.c (Part 2)

An application server consists of one or more processes called PAs that
receive and handle client requests for services. Processing agents are
multithreaded processes that execute requests received from clients. They
allow parallel processing without the administration overhead of running
several identical application servers. A single application server with several
processing agents only has to be configured and started once, and its
processing agents can be managed as a single group. The Monitor
automatically parcels out client requests among the various processing
agents; the programmer need not worry about each processing agent
individually.

The Monitor application server program runs under the control of the Monitor
and executes manager functions in response to the client requests. The

TRY
trpcStub_ManagerPrologue(1, &callHandle_, rpcHandle_,

 OrderProcIF_v1_0_s_ifspec,
 interfaceName_,
 "ping",
 applAndAddress_,
 applAndAddressLength_,
 inMsg_, inMsgLength_,
 inCallbackData_,
 numOfInCallbackData_);

returnValue_ = ping();

trpcStub_ManagerEpilogue(&callHandle_,
 outMsg_, outMsgLength_);

CATCH_ALL
trpcStub_ManagerCatchClause(&callHandle_, THIS_CATCH);

ENDTRY

return(returnValue_);
#undef inMsg_
#undef inMsgLength_
#undef outMsg_
#undef outMsgLength_
#undef remoteAddrString_
#undef remoteAddrStringLength
}

Using Encina Components 87

Monitor automatically handles the initialization of DCE, Toolkit, and Tran-C.
These components must not be initialized by the Monitor application server
main program. To enable the application server program to the Monitor, you
must program the following steps:

1. Perform any application-specific initialization that does not require DCE or
Encina, such as setting up the application environment.

2. Register any interfaces it will use by calling the mon_InitServerInterface
function. For example:
mon_status_t mst;

mst = mon_InitServerInterface(MON_SERVER_INTERFACE(OrderProcIF,1,0));

3. Register any PPC transaction program names (TPNs) by calling the
mon_RegisterTPN function. For example:
mon_status_t mst;

mon_ppcSchedMgr_t HandleDBQuery_MVS

mst = mon_RegisterTPN("UDBQUERY_MVS", HandleDBQuery_MVS);

The HandleDBQuery_MVS function is called when a PPC scheduling request
is received by this processing agent for the transaction MVSQUERY.

4. Register any XA resource managers by calling the mon_RegisterRmi
function. For example:
mon_status_t mst;

struct xa_switch_t *xaSwitchP;

char *rmName;

int *rmiID

mst = mon_RegisterRmi(xaSwitchP, rmName, &rmiID);

The function causes an X/Open XA-compliant resource manager to be
registered. The xaSwitchP identifies the resource manager where rmName
defines the instance. The value of rmiID can be used in SQL calls that take
an interface ID. This function must be called during server initialization,
before the mon_InitServerfunction is called, if it is called at all.

5. Register any Queued Request Facility (QRF) manager functions by calling
the mon_RegisterQrfManagerFunction function. When the QRF manager
function is registered, entries in specified RQS queues are automatically
routed to the appropriate application servers to be handled by the
registered manager functions.

6. Request initialization of TX instead of Tran-C (which is the default) by
calling the mon_ServerUsesTx function. The mon_ServerUsesTx function
causes the Monitor to call the tx_open function as part of server
initialization. Thus the application server need not explicitly invoke the
tx_open function.
88 Developing Distributed Transaction Applications with Encina

7. Enable the environment retrieval routines by calling the mon_RetrieveEnable
function. The mon_RetrieveEnable function turns environment retrieval on
or off. If the flag is TRUE (nonzero), the data that is returned from the
various environment retrieval functions is forwarded to other components;
if it is FALSE (zero), the data is not forwarded. Any calls to the
environment retrieval functions yield a null pointer. The environment
retrieval functions are disabled by default.
When environment retrieval is turned on, the cost of each RPC
initiated by the client or application server is significantly higher
than when environment retrieval is not enabled.

8. Set the scheduling policy by calling the mon_SetSchedulingPolicy function.
This function is used to specify whether a server permits shared access. If
exclusive access is desired, no call is necessary, but one may be made.
Once this call is made, the specified access occurs automatically in all
PAs for the server. Because all PAs use the same executable, it is not
possible to have some PAs provide shared access and others provide
exclusive access.

9. Use the mon_InitServer function to initialize the server and the underlying
Encina and DCE components. After this function returns, the server can
start transactions and make RPCs to other servers. This function is
optional, if the server does not call this function, initialization occurs
automatically when the mon_BeginService function is called. However, there
are certain tasks that may not be performed until after Encina has been
initialized, such as making transactional RPCs and initializing shared
memory. There may be situations when you may want to perform these
actions before the application server receives any RPCs. Such actions
must be performed between the call to the mon_InitServer function and the
call to the mon_BeginService function.

10.After initialization is complete, the server calls the mon_BeginService
function. This function registers the interfaces that were exported by the
server (using the mon_InitServerInterface function), enabling the server to
begin accepting RPCs. It does not return as long as the server is active. It
returns when the server is shut down, either administratively or through a
call to the mon_TerminateServer function.

11.To shut down the application server, the mon_TerminateServer function may
be called from within the program, causing the application server to shut
down after a short period to allow transactions to complete. However,
servers are usually shut down by system administrators using enccp or
enconsole.
Using Encina Components 89

5.1.3.3 Writing the Client
Unlike application servers, which usually run for a long time and may require
administrative intervention to be shut down, clients are typically run by a user
and terminated when the user no longer needs them. A typical client
application initializes, issues calls to application servers, cleans up, and exits.
Clients must include the mon_client.h header file and the header file
generated by tidl. Clients that use the JAM user interface must also include
mon_jam.h.

A client can incorporate an interactive user interface but can also use other
methods for generating the requests. Clients are the only components that do
not have to run on managed nodes. Clients can be implemented in several
ways. They can be designed for single or multiple simultaneous users and
can have command- or forms-based interfaces such as JAM. The choice of
interface type depends on the expected demand, the expertise of the users,
and other user interface design issues.

Client Initialization
The first action a client application must perform is initialization of the
Monitor. The mon_InitClient function initializes the DCE, Toolkit, and Tran-C
as well as the Monitor itself. Clients must not initialize these components
themselves. The mon_InitClient function must be called once in each client,
any other Monitor functions are called. Application servers that also act as
clients do not need to call this function.

The mon_InitClient function has the following syntax:

mon_status_t mon_InitClient(

 char *clientName,

 char *cellName)

The first argument, clientName, names the client. This name is used by
various Monitor environment retrieval functions to identify the client but not
for authorization. The second argument, cellName, is the name of the Monitor
cell.

Client - Server Binding
Before a client can make an RPC to an application server, it must bind to the
application server that exports that service. There are two ways in which a
client can bind to a server: transparent binding and explicit binding.

With transparent binding, the client relies on the Monitor to create the binding
and obtain a handle to an application server that exports a requested
90 Developing Distributed Transaction Applications with Encina

interface. The Monitor selects a server from all servers in the cell that export
the requested interface; the application cannot specify a particular application
server. Thus the Monitor can balance the workload among all available
servers that export an interface.

With explicit binding, the client specifies the application server to which it will
bind. The client obtains a binding handle to that server and explicitly uses that
handle in subsequent RPCs.

Explicit binding gives the client application a higher degree of control over the
binding process but is more complex than transparent binding. Transparent
binding accomplishes binding without specific application code and is the
preferred method.

When a client using transparent binding makes an RPC to a server, it obtains
a server handle to one of the server’s PAs. If the PA is busy, the client waits
until the PA becomes available. This is also called the no reservation mode
and is the default for transparent binding. A client can, however, choose to
reserve a PA on a short-term basis by calling the mon_AcquireReservations
function or issue a long-term reservation when the application uses explicit
binding only. The short-term reservation lasts for the duration of a
transaction.

Servers can specify three types of client access for processing agents:
exclusive, shared, and concurrent shared. With exclusive access only one
client can reserve the PA at any given time, and only one RPC from that client
can be active at any time; other RPCs are queued, and clients cannot
interfere with each other. This is the default behavior when clients reserve
PAs. With shared access more than one client can reserve the PA, but only
one RPC can be active at a time. With concurrent shared access more than
one client can use the PA, and multiple RPCs from those clients can be active
simultaneously. For more information about how to use PAs, see the Encina
Monitor Programming Guide.

Security
If an application uses security, clients must be able to perform the appropriate
operations to obtain principals and encrypt RPCs. As part of their
configuration, application server interfaces have information about security.
The client can control the DCE security level of the RPC in several ways:

 • Choose to do nothing. RPCs are made with the level set by the server.

 • Set default values for authentication. These values are used for all
transparent binding RPCs until new values are set.
Using Encina Components 91

 • Register a callback function that is called when each RPC is made by a
client if transparent binding is being used. The application itself then sets
the protection and authorization levels in the callback function. The DCE
rpc_binding_set_auth_info function is usually used to set these security
attributes. Security callbacks can be used, for example, to specify different
protection levels for different interfaces or principals. A security callback is
a function that is security related and executed before any RPC is sent.

 • Use the DCE Security Service functions to handle these issues if explicit
binding is used. See the OSF DCE Application Development Guide for
details.

The mon_SecuritySetDefaults function changes the default security levels for
all outgoing RPCs from the calling client. If there is a security callback, these
values are not used; otherwise, they are used until changed:

mon_status_t mon_SecuritySetDefaults(

 unsigned32 authnLevel,

 unsigned32 authzSvc)

The authnLevel argument specifies the DCE protection level and the
authzSvc argument specifies the DCE authorization level. You can specify
either rpc_c_authz_none or rpc_c_authz_dce.

The following call sets the highest level of authentication:

mon_SecuritySetDefaults(

 rpc_c_protect_level_pkt_privacy,

 rpc_c_authz_dce)

The following call turns off security for the client:

mon_SecuritySetDefaults(

 rpc_c_protect_level_none,

 rpc_c_authz_none)
92 Developing Distributed Transaction Applications with Encina

The mon_SecurityRegisterCallback function registers a function to perform any
application-specific security work and then return either TRUE or FALSE,
depending on whether the RPC should proceed. The
mon_SecurityRegisterCallback function takes one argument, the function to
register. It has the following syntax:

mon_status_t mon_SecurityRegisterCallback(

 mon_secCallback_t appl_SecurityCallback)

The function pointed to by the appl_SecurityCallback parameter is called
once before each RPC that uses transparent binding. The function is
responsible for setting any authentication and authorization attributes. If a
registered callback exists, mon_SecurityRegisterCallback replaces it.

Terminating the Client
The mon_ExitClient function replaces the C exit function in clients. When this
function is called, all unprepared transactions are aborted. The syntax for this
function is:

void mon_ExitClient(

 int status)

The mon_ExitClient function takes one argument, an integer value to return to
the calling environment (the shell, for instance). This value corresponds to
the argument that the exit function takes.

5.2 Encina SFS

The Encina SFS is a record-oriented file system that provides transactional
integrity, log-based recovery, and broad scalability. Many operating systems
support only byte-stream access to data: all input and output data, regardless
of its source, is treated as an unformatted stream of bytes. SFS uses
structured files, which are composed of records. The records themselves are
made up of fields. For example, each record may contain the information
about an employee, with fields for the name, employee number, and salary.
Although SFS looks like a database, it is not a database system but must be

Servers may have more stringent security requirements than clients.
Clients cannot dictate security; they can only indicate which security level
they will use.

Note
Using Encina Components 93

seen as an enhanced, structured data storage and retrieval environment. In
general, SFS is the transaction component that allows transaction programs
to access common data in a transactional manner (ACID properties),
regardless of whether the programs run on one system or are distributed
across different platforms.

All data in SFS files is managed by the SFS server. Programs that require
access to this data must submit their requests to that server, which retrieves
the requested data or performs the specified operation.

SFS provides both data processing and administrative functions. The data
processing functions provide the standard operations used to access and
modify data: read, insert, update, delete, lock, and unlock. The administrative
functions enable programs to create, query, and modify SFS files and
volumes, copy files, and delete files.

For system administrators, SFS also provides a system administration tool,
sfsadmin, which provides a command-line interface for the functionality
provided by the SFS administrative functions.

SFS brings the following benefits to transaction-oriented applications:

 • Transaction protection. SFS provides transactional access to data
stored in a file. Files managed by SFS are thus fully recoverable from
server problems, network outages, and media failures. SFS automatically
keeps a record of any changes made to the data stored in SFS files. SFS
ensures that any changes that were in progress when system problems
occurred are either completed or completely undone.

 • Record-oriented files. SFS supports record-oriented file types. SFS
organizes the records into fields and provides both record-level and
field-level access to data. Access to the records is through indexes,
enabling an application to easily and quickly access records on the basis
of one or more fields in the record.

 • Support for distributed computing and open systems. SFS provides a
consistent mechanism for requesting access to structured data across
multiple platforms. The client/server model used by SFS allows
applications to be easily and transparently distributed on the network.

 • Ease of porting existing applications. SFS enables you to port existing
structured file or database applications. SFS provides a logical rather than
physical data model, minimizing portability problems across systems with
different byte-ordering or other concerns.

 • ISAM compatibility. The Encina Transactional Indexed Sequential
Access Method (T-ISAM) library provides an X/Open ISAM-compliant
94 Developing Distributed Transaction Applications with Encina

method of accessing data stored in SFS. The T-ISAM library contains all of
the C-ISAM functions required for C-ISAM application source
compatibility.

 • COBOL record interface. The SFS External File Handler (EXTFH)
supports the use of Micro Focus COBOL with SFS. Existing COBOL
applications, using standard COBOL I/O statements, can be made to
access SFS files; the native COBOL I/O calls are transparently mapped to
SFS calls. See the Encina COBOL Programming Guide for more
information.

 • Compatibility with database systems. The Encina Transaction
Manager-XA (TM-XA) Service enables SFS applications to interact with
database applications that support the X/Open XA interface.

 • Compatibility with the RQS. Many SFS definitions are compatible with
the RQS. For example, the field types used by SFS have corresponding
types in RQS. Thus, applications can easily use both SFS and RQS.

SFS is built on top of the Encina Toolkit Server Core and the Encina Toolkit
Executive. It provides a higher-level set of functions for the manipulation of
structured data without requiring that the user be familiar with most of the
details of DCE or the Encina Toolkit. The transactional services required by
SFS are mostly transparent to the user. Because SFS uses those elements of
the Encina Toolkit that enable recovery in the event of failure, the programs
you write do not have to handle such failures; that is, your program need not
include any code to enable recovery or to directly access the Encina Toolkit
components used for recovery.

A program that uses SFS is a client to an SFS server. If that client processes
records in a file, the program must perform the following steps:

1. Perform the initialization. Calling an SFS function automatically
performs the internal initialization required by the SFS client library
functions. Therefore, SFS itself requires no special initialization. However,
SFS uses lower levels of the Encina Toolkit, which you must initialize:

 • TRPC

 • Tran-C (see Figure 23 on page 96)

 • Any other Encina components you are using

2. Open any SFS files the program is going to use. Any file that you are
going to use must first be opened. When a program opens a file, it
specifies the name of the file that it wants to access and how it wants to
access it. Section 5.2.4, “Opening an SFS File” on page 104 describes this
process in detail.
Using Encina Components 95

3. Perform I/O on the files. Programs have several options as to how to
handle records. SFS can read or write records as a single buffer; the
program is then responsible for packing the field into or unpacking the
fields from that buffer. Alternatively, SFS can place some or all of the fields
into their own buffers. Programs also have the option to read or update
only some fields in a record. Records can be accessed randomly or
sequentially.

4. Close the files. The Open File Descriptor (OFD) can be closed at any
time, regardless of whether any transaction in which it was involved has
actually completed. The sfs_CloseOfd function closes an OFD. This
function is not needed for OFDs for which autoClose was specified when
the file was opened because the OFD is automatically closed when the
transaction is resolved.

Figure 23. Sample SFS Initialization Using Tran-C

5.2.1 File Names
The full name of an SFS file is specified by giving the name of the server on
which it resides, followed by the name of the file itself. For example, if the
server name is /.:/encina/sfs/my_sfs_server and the file name is
my_first_file, the full file name would be
/.:/encina/sfs/my_sfs_server/my_first_file. The name in this form is referred
to as a fully qualified CDS file name. You pass this fully qualified CDS name
to any function that takes a file name as an argument, such as sfs_OpenFile.

5.2.2 File Structure
SFS files are record-oriented files; user data is organized as a collection of
records. A record is a grouping of related information with a predefined size
and a predefined number of fields that hold specific parts of the record’s
information. These fields can be of various predefined data types. The field

void InitWithTranC()
 {
 trpc_status_t status;

 preInitTC();
 status = trpc_InitWithTrdce();
 ENCINA_STATUS_CHECK(status);
 tc_InitTRPC();
 postInitTC();

 }
96 Developing Distributed Transaction Applications with Encina

layout of a record is defined when the file is created. The way the records in a
file are arranged is referred to as the file organization. The records in a file
can be organized in one of three ways:

 • Entry-sequenced

 • Relative

 • Clustered

The records in an entry-sequenced file are stored in the order in which they
are written into the file. New records are always appended to the end of the
file. When records are deleted from an entry-sequenced file, the space
formerly allocated to those records is not automatically reclaimed or reused.
The only way to reclaim this space is by using the sfs_ReorganizeFile
function. Entry-sequenced files are often used when records in the file will be
accessed in the order in which they are written to the file. This type of file
organization is frequently used for log files, audit trail files, or for any other
files that keep time-sequenced records of events. Each record in an
entry-sequenced file has an entry sequence number (ESN), which
corresponds to the order in which it was inserted into the file. The ESN is not
part of the record.Therefore you specify only the name of the primary index
when creating an entry-sequenced file in SFS.

A relative file is an array of fixed-length slots. Records can be inserted in the
first free slot found from the beginning of the file, at the end of the file, or in a
specified slot in the file. Relative files are often used when records will be
accessed directly, by record number. Because all of the slots in a relative file
are the same size, SFS can calculate the position of a specific record
(identified by record number) by multiplying the record number by the record
slot size. The primary index of a relative file is based on the relative slot
number (RSN), which represents the number of the slot occupied by a record.
The first relative slot number in a file is slot number 0, and the highest slot
number cannot exceed the maximum number of records specified when the
file was created. The RSN is a physical part of the user's data record. When a
relative file is created, at least one field must be of type sfs_unsignedInt32.
This field must be specified as the primary index.

A clustered file (also called a B-tree-clustered file) is a tree-structured file in
which records with adjacent index values are clustered together, to reduce
the cost of searching for ranges of records. The clustered file organization
used in clustered SFS files is automatically maintained by the SFS server.
Records in a clustered file do not have a numeric record index such as an
ESN or RSN. The primary index can be based on any field or combination of
fields. The records in a clustered file are ordered according to the contents of
Using Encina Components 97

the primary index. Because the SFS may move records to maintain clustering
when new records are inserted or deleted, there is no practical way to
maintain direct references to individual records. Disk space freed by record
deletions is automatically reused.

Table 2 on page 98 compares the three SFS file organizations.

Table 2. SFS File Organizations

5.2.3 Creating an SFS File
Each record in an SFS file is made up of one or multiple fields. The field
definitions from record to record throughout the file are consistent, and the
fields must be defined when the file is being created. The fields in an SFS file
are specified in an array of record field specifications. Each element of the
array is a data structure of type sfs_recordFieldSpec_t. Each structure
specifies the contents of one field in the record. The following information
about a field can be specified:

 • The fieldName field specifies the name of the field.

 • The fieldType field specifies the data type of the field.

Entry-Sequenced Relative Clustered

Data structure Sequence Array Tree

Maximum number
of records

2 **36-10 2 **32-10 2 **64-10

Storage associated
with each record

Fixed or variable
length

Fixed Fixed or variable
length

Record update
limitations

Must be less than
or equal to size of
record being
updated

Must be less than
or equal to
maximum record
size

Must be less than
or equal to
maximum record
size

Can space
occupied by
deleted records be
reused?

Not without
reorganizing the
file

Yes Yes

Primary index Implicit on entry
sequence number
(ESN)

Explicit on relative
slot number (RSN)

Explicit on any field
or fields (specified
at create time)

Optimized for
which type of
access

Chronological Direct access by
RSN

Access through
primary key value
98 Developing Distributed Transaction Applications with Encina

 • The fieldSize field specifies the size of the field. The field size applies
only to strings, byte arrays, and variable-length byte arrays. For strings
and byte arrays, the field size is the actual size of the field; for
variable-length byte arrays, it is the maximum size of the field.

 • The collatingLanguage field is currently unused and must be set to NULL.

Figure 24 on page 99 shows an example how to create an SFS record
template.

Figure 24. Sample Definition of an SFS Record Template

Table 3 on page 99 shows the data types that can be used to create an SFS
record template.

Table 3. SFS Data Types for SFS Record Template Creation

Data Type Description

sfs_unsignedInt16 Unsigned 16-bit integer

/* CreateFile- Creates inventory file if it does not already exist. */

void CreateFile(sfsFileName, sfsVolumeName)
 char *sfsFileName, *sfsVolumeName;
{
 sfs_fileSpec_t fileSpec;
 sfs_recordFieldSpec_t fieldSpecArray[2];
 sfs_indexFieldSpec_t indexFieldSpecArray[1];
 sfs_status_t status;

 inFunction("CreateFile");

 /* Record template: field description in order */
 fieldSpecArray[0].fieldName = STOCK_NUM_FIELD;
 fieldSpecArray[0].fieldType = sfs_unsignedInt32;
 fieldSpecArray[0].collatingLanguage = NULL;

 fieldSpecArray[1].fieldName = QUANTITY_FIELD;
 fieldSpecArray[1].fieldType = sfs_signedInt32;
 fieldSpecArray[1].collatingLanguage = NULL;

.

.

.
}

Using Encina Components 99

After you have defined the record template structure, you must do the index
specification. The index permits access to a record or range of records,
based on the value of some field or fields from those records. The value of
the fields on which an index is based provides the index key. The primary
index of an SFS file defines the physical organization of the records in the
file. Each SFS file has one and only one primary index. In addition, SFS files
can also have any number of secondary indexes. These secondary indexes
provide alternative access paths to the data by allowing different fields in the
record to be used as index keys. All secondary indexes are implemented as
B-trees. Each secondary index is stored in a separate area with its own
storage allocation, and any number of secondary indexes can be dynamically
created and deleted. Index names for a file must be unique.

sfs_signedInt16 Signed 16-bit integer

sfs_unsignedInt32 Unsigned 32-bit integer

sfs_signedInt32 Signed 32-bit integer

sfs_unsignedInt64 Unsigned 64-bit integer

sfs_signedInt64 Signed 64-bit integer

sfs_decimal A decimal number, representing a variable field from 1 to
18 bytes long

sfs_float 32-bit floating point number

sfs_double 64-bit floating point number

sfs_string Fixed-length array of 8-bit characters. The string must be
null-terminated.

sfs_nlsString Fixed-length array of 8-bit bytes. The string must be
null-terminated. The SFS default collating language,
specified when the server was started, is used to collate
all fields of type sfs_nlsString.

sfs_byteArray Fixed-length array of unsigned 8-bit bytes

sfs_varLenByteArray Variable length array of unsigned 8-bit bytes with a
4-byte long header

sfs_shortVarLenByteArray Variable length array of unsigned 8-bit bytes with a
2-byte long header

sfs_timestamp An 8-byte field consisting of two 4-byte unsigned integers

Data Type Description
100 Developing Distributed Transaction Applications with Encina

Both primary and secondary index specifications contain an array of index
field specifications, where each element of the array describes one of the
fields used in the index. The index field specifications refer to the fields in the
record specification for the file they will index. The order of the fields in the
index specification determines the order in which key comparisons are made.
Figure 25 on page 101 shows the structure that defines the index field.

Figure 25. Structure of the Index Field Specification

In this structure, the fieldName field is the name of a field in the record that is
to be included in the index. The indexFieldOrdering field can have one of two
values, sfs_ascending or sfs_descending.

Before creating an SFS file, the primary index must be specified. The primary
index specification includes the definition of a primary index name and a
primary index structure. Figure 26 on page 101 shows this structure where
the numFields field specifies the number of fields in the primary index and the
fieldSpecArrayP field specifies an array of specifications describing each field.
The unique field specifies whether key values in the index must be unique.
The unique field is ignored for entry-sequenced and relative files.

Figure 26. Primary Index Structure

A secondary index defines an alternative sequence in which the records of
the file can be accessed. A secondary index can be created after the file is
created. An index specification for a secondary index, like that for the primary
index, contains an array of index field specifications, where each element of
the array describes one of the fields used in the index. The order of the fields
in the index specification determines the order in which key comparisons are
made. To define a secondary index, you must create a structure of type
sfs_secondaryIndexSpec_t (Figure 27 on page 102) and then call the

typedef struct{
 char *fieldName;
 sfs_indexFieldOrdering_t indexFieldOrdering;
 } sfs_indexFieldSpec_t;

typedef struct{
 unsigned int unique;
 unsigned int numFields;
 sfs_indexFieldSpec_t *fieldSpecArrayP;}
sfs_primaryIndexSpec_t;
Using Encina Components 101

sfs_AddSecondaryIndex function. This structure contains the following
information about a secondary index:

 • The active field specifies whether the index is active (and is therefore
updated as the indexed data changes).

 • The unique field specifies whether duplicate key values are allowed in the
index.

 • The alternateRecordSpecP field specifies an alternate record
specification from which to derive the index fields.

 • The excludedKeyP field specifies a key value. Records with the specified
key value are omitted from this index.

 • The numFields and fieldSpecArrayP fields specify the fields on which
the index is based.

 • The storageSpec field specifies storage characteristics of the index area,
providing information such as the volume on which this secondary index
will be created and the size of the index area.

Figure 27. Structure sfs_secondaryIndexSpec_t to Create Secondary Index

Figure 28 on page 103 shows an example of how to define and create a
relative SFS file, by using a primary index only. You can create an SFS file
programmatically as well as administratively, using the sfsadmin tool. You can
also use either method to perform other administrative operations, including
copying files, creating new indexes, and getting status information about files.

 typedef struct{
 unsigned int active;
 unsigned int unique;
 sfs_recordSpec_t *alternateRecordSpecP;
 sfs_key_t *excludedKeyP;
 unsigned int numFields;
 sfs_indexFieldSpec_t *fieldSpecArrayP;
 sfs_storageSpec_t storageSpec;} sfs_secondaryIndexSpec_t;
102 Developing Distributed Transaction Applications with Encina

Figure 28. Creating a Relative SFS File

/* CreateFile- Creates inventory file if it does not already exist. */

void CreateFile(sfsFileName, sfsVolumeName)
 char *sfsFileName, *sfsVolumeName;
{
 sfs_fileSpec_t fileSpec;
 sfs_recordFieldSpec_t fieldSpecArray[2];
 sfs_indexFieldSpec_t indexFieldSpecArray[1];
 sfs_status_t status;

 inFunction("CreateFile");

 /* Record template: field description in order */
 fieldSpecArray[0].fieldName = STOCK_NUM_FIELD;
 fieldSpecArray[0].fieldType = sfs_unsignedInt32;
 fieldSpecArray[0].collatingLanguage = NULL;

 fieldSpecArray[1].fieldName = QUANTITY_FIELD;
 fieldSpecArray[1].fieldType = sfs_signedInt32;
 fieldSpecArray[1].collatingLanguage = NULL;

 /* Index key information */
 indexFieldSpecArray[0].fieldName = STOCK_NUM_FIELD;

 /* File specification */
 fileSpec.fileOrganization = sfs_relative;
 fileSpec.recordSpec.numFields = 2;
 fileSpec.recordSpec.fieldSpecArrayP = fieldSpecArray;
 fileSpec.primaryIndexName = STOCK_NUM_INDEX;
 fileSpec.primaryIndexSpec.unique = TRUE;
 fileSpec.primaryIndexSpec.numFields = 1;
 fileSpec.primaryIndexSpec.fieldSpecArrayP = indexFieldSpecArray;
 fileSpec.storageSpec.volumeName = sfsVolumeName;
 fileSpec.storageSpec.allocated = INITIAL_FILE_SIZE;
 fileSpec.maxNumberRecords.high = 0;
 fileSpec.maxNumberRecords.low = MERCHANDISE_TBL_SIZE;

 status = sfs_CreateFile(sfsFileName, &fileSpec);
 if (status != SFS_FILE_NAME_EXISTS)
 CHECK_STATUS(status);
}

Using Encina Components 103

5.2.4 Opening an SFS File
Before any operation on the contents of an SFS file can be performed, you
must open that file. To open an SFS file, follow these steps:

1. Prepare a complete description of the way in which you want to open the
file.

2. Call the sfs_OpenFile function.

The attribute fields of an OFD specification describe the following (see Figure
29 on page 104):

 • Access mode

 • File access authority

 • Consistency level

 • Isolation level

 • Maximum operation time

 • File closing behavior

 • Duplicate detection behavior

An OFD specification is a structure of type sfs_ofdSpec_t.

Figure 29. Open File Descriptor Structure sfs_ofdSpec_t

Below we briefly describe the attribute fields. See the Encina SFS
Programming Guide for more detailed information.

 • The accessMode field specifies whether the OFD requires exclusive
access to the file (sfs_exclusiveAccess) or can share access to the file
(sfs_sharedAccess).

typedef struct{
 sfs_accessMode_t accessMode;
 unsigned long authority;
 sfs_consistency_t consistency;
 sfs_isolationLevel_t isolationLevel;
 unsigned long operationTimeout;
 unsigned int autoClose;
 sfs_duplicateDetection_t duplicates;
 boolean operationalForce;} sfs_ofdSpec_t
104 Developing Distributed Transaction Applications with Encina

 • The authority field specifies the operations that can be performed on the
OFD: some combination of read, insert, update, delete, inquire, and
administer.

 • The consistency and isloationLevel fields specify whether the OFD is to be
used for transactional or nontransactional access and the extent to which
access to records through this OFD is isolated from concurrent access by
other users.

 • The operationTimeout field specifies the timeout period, in seconds, for
operations using the OFD.

 • The autoClose field specifies whether the OFD should be automatically
closed at the end of a transaction. If this field is set to TRUE, the file must
be opened from within a transaction and is automatically closed when that
transaction ends. If this field is set to FALSE, the OFD can be used by
successive transactions. OFDs that can be reused by successive
transactions are known as reusable OFDs.

 • The duplicates field specifies the degree of duplicate detection provided
by the OFD for active, nonunique indexes.

 • The operationalForce field species whether all of the changes related to
each operation made using this OFD are committed to disk before control
is returned to the user.

You use the sfs_OpenFile function to open a file and obtain an OFD for it.
Figure 30 on page 106 shows an example of creating an OFD specification
and opening a file. Note that the file is being opened with transactional
consistency and that autoClose is set to TRUE; thus, the file must be opened
from within a transaction, and the OFD will be automatically closed when the
transaction ends.
Using Encina Components 105

Figure 30. Example of an OFD Specification and File Open

5.2.5 Performing I/O on an SFS File
Records in an SFS file can be accessed either randomly or sequentially. Both
methods search an index using a specified key to select the record or range
of records to process. For random access, an index is used to locate a single
record that matches an index key value. Random access can be used only if
the index is unique, which means that duplicate key values are not allowed in
the index. Sequential access involves selecting multiple records by using key
values and then sequentially stepping through those records. Selecting
multiple records by using an index is known as selecting a range of records.
A range of records is selected by specifying key values that bind the records
you want to select, or by specifying an individual key value for which all
matching records should be selected. An entire file can be selected for
sequential processing if the boundary values supplied are the predefined
constants for the beginning and ending records in a file.

SFS provides functions for read, write, update, modify, and insert operations
in both sequential and random access modes.

5.2.5.1 Sequential Access to Records
During sequential processing, SFS uses a logical record pointer called the
current record pointer (CRP) to track which record in a selected range has
just been processed. Before you select a range of records, the CRP is

/* Set up OFD specification and open file */
 ofdSpec.accessMode = sfs_sharedAccess;
 ofdSpec.authority = SFS_READ_FILE | SFS_INSERT_FILE;
 ofdSpec.consistency = sfs_transactional;
 ofdSpec.isolationLevel = sfs_serializability;
 ofdSpec.operationTimeout = OPERATION_TIMEOUT;
 ofdSpec.autoClose = TRUE;
 ofdSpec.duplicates = sfs_noDetection;

 transaction {
 sfs_OpenFile(fileName, &ofdSpec, OPEN_TIMEOUT, &ofd);
 ...
 } onAbort {
 fprintf(stderr, "Could not open file %s; %s\n",
 fileName, abortReason());
 exit(1);
 }
106 Developing Distributed Transaction Applications with Encina

undefined. You define the CRP by using one of the SFS selection functions.
These functions take parameters that specify which records to include in the
range as well as a parameter that specifies whether the CRP initially will be
positioned at the beginning or end of the selected range of records. You must
use the sfs_read function to position the CRP. With this function you can also
specify that the record next or previous to the CRP be read.

The CRP is moved by a successful sequential read when the selector
parameter is set to sfs_next or sfs_previous. An unsuccessful read will not
move the CRP unless one of the following two status codes is returned:

 • SFS_INSUFFICIENT_BUFFER - If this status code is returned by a call to
the sfs_Read function, it indicates that a buffer supplied to the sfs_Read
call was not large enough to hold the entire record. In this case, the
portion of the record that could be fit in is returned, and the CRP is moved
such that sfs_current refers to the partially read record.

 • SFS_END_OF_KEY_RANGE - When this status code is returned by a call
to the sfs_Read function, the CRP is placed before or after the selected
range, depending on whether you just tried to read before the first record
or after the last record in the range.

Modifying the record does not change the CRP. Sequentially accessed
records can be selected in one of three ways:

 • The entire file can be selected and processing can begin at a specified
place in the file.

 • A record can be selected by a specified key value.

 • A range of records between two specified key values can be selected.

If the OFD used in a call to any of the functions that position the CRP is a
transactional OFD, the range must be selected from within the scope of a
transaction. You can find more information on record access methods in the
Encina SFS Programming Guide.

5.2.5.2 Random Access to Records
You can read, update, or delete records anywhere in a file according to their
key value. You must supply the name of a unique index and the value of a key
in that index. The key value supplied to any random access function that
selects a single record must be fully specified and must uniquely identify a
single record. If you want to access records randomly, using a nonunique
index, you must use a two-step process. First select a range (using the
sfs_SelectSingleKeyRange function), then access the records in that range.
Random access operations are independent of any sequential access
Using Encina Components 107

operations; they do not affect the range or the CRP. For example, if you
perform a sequential read, then a random read, the CRP still points at the
location of the sequential read.

Randomly accessed records can be modified by either updating the record or
changing a field in a record. With the sfs_UpdateByKey function, the record can
be updated by identifying its key value. During this operation a write lock is
automatically obtained on the record.

The sfs_ModifyFieldByKey function only modifies a single field; the rest of the
record is left untouched. The key value used when calling
sfs_ModifyFieldByKey must be fully specified and must uniquely identify a
single record. By default, a write lock is automatically obtained on the record
being modified. However, it is possible to set an increment lock instead of a
write lock. Figure 31 on page 109 is an extract from the Encina SFS
Programming Guide and shows how to use the sfs_ModifyFieldByKey function
to decrement an inventory.
108 Developing Distributed Transaction Applications with Encina

Figure 31. Using sfs_ModifyFieldByKey to Decrement an Inventory

telshop_status_t merch_OrderItem(stockNum, quantity)
 long int stockNum;
 long int quantity;
 {
 sfs_key_t key;
 long int newQuantity;
 sfs_ofd_t ofd = tranOfd;
 long int orderQuantity = -quantity;
 telshop_status_t returnStatus = TELSHOP_SUCCESS;
 sfs_status_t status;

 inFunction("merch_OrderItem");

 /* Start a subtransaction so we can back it out */
 /* if user orders too many. */
 transaction {
 /* Set up packed key. */
 key.keyFormat = sfs_packed;
 key.keyRecord.format = sfs_contiguous;
 key.keyRecord.buffer = (sfs_pointer_t)&stockNum;
 key.keyRecord.bufferLength = IGNORED;
 key.keyRecord.dataLength = sizeof(stockNum);

 /* Decrement the inventory. */
 status = sfs_ModifyFieldByKey(ofd, "stockNumIndex", &key,
 "quantity", sfs_modifyAdd, FALSE,
 (sfs_pointer_t)&orderQuantity,
 (sfs_pointer_t)&newQuantity);

 if (newQuantity < 0){
 returnStatus = TELSHOP_ILLEGAL_QTY;
 abort(TELSHOP_ABORT_MODIFY_FAILED);
 }
 /* Handle other status codes. */

 } onAbort {
 ...
 }

return returnStatus;
 }
Using Encina Components 109

5.2.5.3 Adding Records to an SFS File
The sfs_Insert function inserts a new record into an SFS file. The insertion
position of a record in a file is determined by the primary index, so the CRP is
not used and is not affected. The sfs_Insert function never overwrites an
existing record or modifies the CRP. SFS determines the location of the new
record on the basis of the key value and the file organization:

 • If the file is a clustered file, the record's primary key value determines its
location in the file.

 • If the file is an entry-sequenced file, the new record is inserted at the
current end-of-file. The end-of-file is not transactional maintained, that is,
it corresponds to the record after the highest current ESN. Because
multiple transactions are allowed to concurrently insert records into an
entry-sequenced file, records belonging to different transactions can be
interleaved.

 • If the file is a relative file, the primary key value (that is, the value of the
field that contains the RSN) determines the position of the record in the
file. For relative files, specifying the value SFS_FIRST_AVAILABLE_SLOT
causes the first available slot in the file to be reused; thus, space
consumption is optimized. Specifying SFS_AFTER_LAST_OCCUPIED_SLOT
causes the record to be written at the end of the file.

For a description of other I/O functions that help you manage keys, see
Encina SFS Programming Guide.

5.2.6 SFS File Access and Transactions
When you open a file, you specify whether you want a transactional OFD or a
nontransactional OFD. Transactional OFDs must be used within the scope of
a transaction. Any operations that use a nontransactional OFD do not
participate in any user transaction. Locks obtained by transactional OFDs are
held on behalf of a transaction. That is, if an application obtains two
transactional OFDs (ofd1 and ofd2), and ofd1 write locks a record, ofd2 can
still access that record. In general, locks held on behalf of a transaction are
held until the transaction completes. A transactional OFD cannot be used by
another transaction family until the transaction it is currently associated with
commits or aborts or until it is explicitly dissociated from the transaction.

Locks obtained by nontransactional OFDs are held on behalf of that OFD.
That is, if an application obtains two nontransactional OFDs (ofd1 and ofd2),
and ofd1 write locks a record, ofd2 cannot access that record. Locks held on
behalf of a nontransactional OFD are held for a duration based on the OFD's
isolation level.
110 Developing Distributed Transaction Applications with Encina

Transactional and nontransactional access to the same file is possible. The
type of file access required by an application depends on the function and
reliability requirements of the application. An application may, for example,
want to perform processing applications transactionally while performing
administrative operations nontransactional. This application could
simultaneously have two OFDs open on the file: a transactional OFD to
process the data in a file and a nontransactional OFD to perform
administrative operations on that same file.

5.3 Encina RQS

The Encina RQS enables applications to transactionally enqueue and
dequeue data. RQS supports flexibility in system configuration, reliability
based on the Encina transaction processing environment, large capacity for
enqueued data and number of elements, and concurrency for many users. An
application can store data related to a task in a queue. This data can be
subsequently processed by another program. This off-loading may be
desirable when use of a resource incurs an unacceptable time penalty during
peak usage hours, when one part of a transaction can take much longer than
other parts, or when a resource is temporarily unavailable. For example, the
confirmation of a sale can be completed in real time and the data associated
with the sale can be stored in an RQS queue for later processing.

A queue is a linear data structure and holds elements that are added
(enqueued) to the tail of a queue and removed (dequeued) from the head of
the queue in an FIFO manner. Similar to SFS each queue is maintained by
one RQS server. All interactions with that queue are handled by the server.
An RQS server may contain multiple queues to be accessed by different
functions or applications. Applications store data into a queue in the form of
elements. An element has a record-oriented format defined by the
application. The fields of an element store the related pieces of data. For
example, a billing element might have fields for storing the customer name,
customer account number, and current account balance.

Each element must have a type, which is specified when the element is
added to a queue. An element type is a named specification that defines the
data type and size for each field of an element. Element types are
independent of queues; elements of different types can be queued and
dequeued from the same queue. An element type also defines an element’s
keys. An element key is a sequence of one or more element fields to be used
as a basis for retrieving the element. An element type need not have any
associated element keys.
Using Encina Components 111

Queues support multiple simultaneous requests to enqueue and dequeue
elements, growing and shrinking in size according to the volume of requests.
An RQS server tracks a variety of statistics on queue activity, such as
processed and new element count, mean waiting time, and physical queue
size, for a collection period and for the lifetime of the queue. It can also track
the work of a queue. The work is the volume of business represented by a
queue, for example, dollars transferred or tons produced. A queue can keep a
running sum of the work as elements are enqueued and dequeued. Thus it is
easy to oversee and control an application’s infrastructure.

An application may requeue an element to another queue for subsequent
processing by another application. Requeuing is the process of moving an
element from one queue to another. When an element is dequeued by an
application, that application indicates its intent to requeue the element by
identifying it as an orphan. An orphan is an element that has been dequeued
but not yet requeued. This is usually a transitory state; elements do not
remain orphans beyond the scope of a primary transaction.

Applications that select from several different queues when processing
dequeue requests can use queue sets to simplify the selection process. A
queue set is a collection of queues. A queue can belong to more than one
queue set. A queue that belongs to a queue set can be accessed as part of
that queue set or can be accessed individually. Each queue in a queue set is
assigned to a priority class, which ranks the queue (or a group of queues) in
importance relative to other queues in the same queue set: "priority 1" is
higher than "priority 3" in the same queue set. Each priority class has an
associated service level, which defines how to distribute the dequeuing
service among the priority classes in the set. A service level is associated
with each priority class in a queue set to establish a weighted prioritization of
the member queues. The priority classes and service levels collectively
define the selection process for the queue set.

5.3.1 Operations on Queues
RQS is built on top of the Encina Toolkit Server Core and the Encina Toolkit
Executive. It provides higher level functions for administering and
manipulating RQS information. The transactional services required by RQS
are transparent, and you do not have to be familiar with most of the details of
DCE or the Encina toolkit.

The main operation functions used in an RQS application are:

 • Enqueuing

 • Dequeuing
112 Developing Distributed Transaction Applications with Encina

 • Batch request (multiple queue requests)

 • Requeuing

 • Random access to elements through element IDs

 • Scanning elements with cursors

 • Retrieving elements with keys

5.3.1.1 Enqueuing Elements
An application enqueues an element by identifying a target queue and
providing element data. The application must supply the type of the element.
This type must be defined before an element is enqueued. If the queue has
work accumulation enabled, the client must also provide a work value. For
each enqueue request, the RQS server creates an element to hold the data,
enqueues the element, and returns the element's newly created unique
identifier. Applications can enqueue elements in single requests or combine
multiple enqueue requests in a single operation to minimize RPCs.

Figure 32 on page 113 shows the rqs_Enqueue function that is used to
enqueue a single element.

Figure 32. rqs_Enqueue Function

The server argument specifies the RQS server handle that has been
specified at initialization. The queue string names the queue to enqueue the
element. The elementType specifies the element type name. The valueLen
argument specifies the length in bytes of the element data in the value
parameter. The value parameter is a packed buffer that adheres to the
specified element type. If work accumulation is enabled for this queue, workP

rqs_status_t rqs_Enqueue (

 IN rqs_serverHandle_t server,

 IN char *queue,

 IN char *elementType,

 IN unsigned long valueLen,

 IN rqs_pointer_t value,

 IN rqs_unsignedInt64_t *workP,

 OUT rqs_elementId_t *eltIdP);
Using Encina Components 113

points to the work quantity; if a null pointer is supplied, the work value is
treated as zero. If work accumulation is not enabled, the workP argument is
ignored. The eltIdP argument returns the new element’s unique ID. The
application can then use this ID to access or manipulate the data in that
element. Element IDs are unique to an RQS server; an RQS server will never
reissue an element ID, even if the element with which it was originally
associated is destroyed. Once an application dequeues or deletes the
element without requeuing it, the element’s ID becomes invalid.

5.3.1.2 Dequeuing Elements
An application can dequeue a single element from either a specific queue or
a queue set. To dequeue an element from a queue, an application uses the
rqs_Dequeue function. To dequeue an element from a queue set, it uses the
rqs_QSDequeue function. Whenever an application dequeues an element from
either a specific queue or a queue set, it must specify whether that element
should be deleted from the server when it is dequeued. It must also specify
what to do if no elements are available for dequeuing. Figure 33 on page 114
shows the rqs_Dequeue function.

Figure 33. rqs_Dequeue Function

The deleteOption argument specifies whether to delete the element from the
RQS server. It can have one of the following values:

 • If deleteOption is rqs_deleteElement, the element is deleted from the
server. The element's lifetime expires, and its ID becomes invalid.

 • If deleteOption is rqs_orphanElement, the element becomes an orphan
when it is dequeued; that is, it remains at the server but is not part of any
queue. An orphan element can subsequently be requeued by the
dequeuing transaction, any nested transactions, or any other transactions
in the transaction family that commit with respect to the dequeuing
transaction. If the element remains an orphan until the entire transaction
family commits, the element is deleted from the server.

The blockOnEmpty argument specifies what to do if there are no elements to
dequeue from the queue or queue set. If this argument is true, the

rqs_status_t rqs_Dequeue(
 IN rqs_serverHandle_t server,
 IN char *queue,
 IN rqs_elementDeleteOption_t deleteOption,
 IN rqs_boolean_t blockOnEmpty,
 OUT rqs_elementDescriptor_t **elementPP)
114 Developing Distributed Transaction Applications with Encina

rqs_emptyDequeueTimeout time-out class applies; the function waits for the
time-out period for an element to appear. If blockOnEmpty is false, the
rqs_operationAccessTimeout time-out class applies. In this case, this function
returns a status code indicating that no element is available, rather than
waiting for elements to appear in the queue.

Figure 34 on page 116 shows sample code, extracted from the Encina RQS
Programming Guide, which demonstrates the specific dequeue process from
within a Tran-C transaction.

Figure 35 on page 117 shows sample code that calls the rqs_QSDequeue
function. The sample code dequeues with the rqs_orphanElement delete
option so that other code in the sample shipping application can requeue the
element.
Using Encina Components 115

Figure 34. Dequeuing an Element from a Specific Queue

static void BillClient(rqs_serverHandle_t rqsHandle)
 {
 rqs_status_t status;
 rqs_elementDescriptor_t *elementP = NULL;

 /* Bill the customer */
 transaction {
 /* Test billing queue for client orders to be billed.
 * Dequeue element from the BillingQ; block if queue empty.
 */
 status = rqs_Dequeue(rqsHandle, BILLING_QUEUE,
 rqs_deleteElement,
 TRUE, /* Blocking dequeue */
 &elementP);
 if (status == RQS_TIMEOUT_EMPTY_DEQUEUE) {
 /* No orders currently in billing queue. */
 } else {
 /* Other errors fatal */
 CHECK_STATUS(status);
 }
 } onCommit {
 merchandise_shipBillRecord_t *billRecordP;

 if (elementP) {
 billRecordP =
 (merchandise_shipBillRecord_t *)elementP->value;

 printf("Billed customer %s for %d of item %d.\n",
 billRecordP->customer, billRecordP->quantity,
 billRecordP->stockNum);
 }
 } onAbort {
 printf("Billing transaction aborted: %s (%s)\n",
 abortReason(), abortModuleName());
 }

 /* Clean up */
 if (elementP)
 rqs_Free(elementP);
 }
116 Developing Distributed Transaction Applications with Encina

Figure 35. Dequeuing from a Queue Set

static rqs_elementDescriptor_t *ShipItem(rqs_serverHandle_t *rqsHandle)
 {
 rqs_elementDescriptor_t *elementP = NULL;
 rqs_status_t status;
 merchandise_shipBillRecord_t *billRecordP;

 /* Dequeue an item from a customer order; block if queue empty.
*/
 status = rqs_QSDequeue(rqsHandle, SHIPPING_QSET,
rqs_orphanElement,
 TRUE, /* Blocking dequeue */
 &elementP);

 switch (status) {
 case RQS_SUCCESS:
 /* If an item was dequeued (shipped), record the shipping
 /* time. */
 billRecordP=(merchandise_shipBillRecord_t \

*)elementP->value;
 /*
 * NOTE: the gettimeofday function is UNIX-specific.
 * NT applications can define a _timeb structure
 * and use the _ftime function.
 */
 gettimeofday((struct timeval *)&billRecordP->shipTime,

NULL);
 break;
 case RQS_TIMEOUT_EMPTY_DEQUEUE:
 /* No orders currently in shipping queue set. */
 break;
 default:
 /* Other errors are fatal. */
 CHECK_STATUS(status);
 break;
 }

 /* Return the dequeued (shipped) element, if any. */
 return elementP;
 }
Using Encina Components 117

5.3.1.3 Requeuing Elements
If an application specifies a value of rqs_orphanElement for the deleteOption
parameter when it dequeues an element, it can requeue that element into any
queue within the same server in one of two ways:

 • It can dequeue the element from one queue and requeue it to the same
queue or to another queue, using the rqs_Requeue function.

 • It can dequeue the element and then modify and requeue it, using the
rqs_RequeueAndModify function.

The requeuing transaction must commit with respect to the transaction
that dequeued the element!

Figure 36 on page 118 shows the rqs_Requeue function.

Figure 36. rqs_Requeue Function

The queue argument names the queue to which the RQS server requeues the
element, and orphanP identifies the element. The rqs_Requeue function takes a
work argument because an element's associated work value has a meaning
based on the convention of the queue containing that element. The
associated work can have different meanings in different queues. If work
accumulation is enabled for this queue, the workP argument points to the work
quantity. If a null pointer is supplied, the work value is treated as zero. If work
accumulation is not enabled, the workP argument is ignored.

Figure 37 on page 119 shows the rqs_RequeueAndModify function used to
requeue and modify an element.

rqs_status_t rqs_Requeue (
 IN rqs_serverHandle_t server,
 IN char *queue,
 IN rqs_elementId_t *orphanP,
 IN rqs_unsignedInt64_t *workP);
118 Developing Distributed Transaction Applications with Encina

Figure 37. rqs_RequeueAndModify Function

This function combines the functionality of the rqs_Requeue function and the
rqs_ElementModify function into a single operation. The arguments of the
rqs_RequeueAndModify function conform to the same constraints as the
arguments of these two functions. An application can change the type of an
element and the element’s value.

5.3.1.4 Random Access to Elements through Element IDs
When an application enqueues an element, the enqueuing function returns
an element ID to the application. Whenever an application has a valid
element ID, it can access and manipulate the element directly, as opposed to
accessing the element through a key, cursor, or dequeue operation. With
direct access to an element through its unique element ID, an application can
read, modify, or delete the element. It can also drop locks held on the
element.

Reading Elements
To read an element by element ID without dequeuing that element, use the
rqs_ElementRead function. This function returns a pointer to an
rqs_elementDescriptor_t structure and allows you to specify a lock mode and
the period of time for which that lock should be held. Figure 38 on page 120
shows the rqs_ElementRead function.

rqs_status_t rqs_RequeueAndModify (
 IN rqs_serverHandle_t server,
 IN char *queue,
 IN rqs_elementId_t *orphanP,
 IN rqs_unsignedInt64_t *workP,
 IN char *elementType,
 IN unsigned long valueLen,
 IN rqs_pointer_t value);

When accessing an element with an element ID, the application does not
specify a queue. Element IDs are unique at the server, and thus the
application can access elements through element IDs independent of a
queue.

Note
Using Encina Components 119

Figure 38. rqs_ElementRead Function

The eltIdP argument specifies the element ID of the element to read. The
eltLock argument specifies the lock mode required before reading the
element; possible values are rqs_noLock, rqs_readLock, rqs_upgradeLock, and
rqs_writeLock. The retainLock argument indicates whether the server should
retain the lock beyond the duration of this function call, which means the lock
is held for the duration of the calling transaction as long as the application
does not explicitly drop the lock.

Modifying Elements
The rqs_ElementModify function is used to modify an element’s data or change
its associated element type. Figure 39 on page 120 shows the function.

Figure 39. rqs_ElementModify Function

The elementType argument specifies the data element type. The valueLen
argument is the length of that element data. An application can change the
type of the data associated with the element by specifying a different element
type name in the elementType field. However, the element’s data must be
compatible with the data in the new element type name.

Deleting Elements
The rqs_ElementDelete function is used to delete an element and optionally to
make it an orphan. Figure 40 on page 121 shows this function.

rqs_status_t rqs_ElementRead (
 IN rqs_serverHandle_t server,
 IN rqs_elementId_t *eltIdP,
 IN rqs_elementLockMode_t eltLock,
 IN rqs_boolean_t retainLock,
 OUT rqs_elementDescriptor_t **elementPP);

rqs_status_t rqs_ElementModify (
 IN rqs_serverHandle_t server,
 IN rqs_elementId_t *eltIdP,
 IN char *elementType,
 IN unsigned long valueLen,
 IN rqs_pointer_t value);
120 Developing Distributed Transaction Applications with Encina

Figure 40. rqs_ElementDelete Function

The deleteOption argument specifies whether to delete the element or to
make it an orphan. The elementPP argument provides a location for the
function to return a pointer to an element descriptor. The returned element
descriptor reflects the state of the element immediately before the time of the
call, and the containingQueue in this element descriptor is the name of the
queue that held the element. If the element was an orphan at the time of this
call, the containing queue field is NULL and the work field contains a zero
work value.

Element Lock Droppings
The rqs_ElementDropLock function is used to drop a lock held on an element.
Figure 41 on page 121 shows this function.

Figure 41. rqs_ElementDropLock Function

This function drops one instance of a lock of mode eltLock that is held on the
specified element. The lock must have been acquired in a function call made
within the scope of the calling transaction. It is impossible to drop a lock
acquired by a parent, sibling, or child transaction. If the calling transaction
does not hold the indicated lock on the element, this function returns the
RQS_DROPLOCK_NONE status code. If the lock mode is rqs_writeLock, this function
returns the RQS_DROPLOCK_WRITE status code and does not drop any locks. If the
lock mode is rqs_noLock, this call has no effect.

The rqs_ElementListDropLocks function can be used to drop multiple locks
simultaneously. It also can be used to drop all instances of a lock held in a
particular mode on an element.

rqs_status_t rqs_ElementDelete (
 IN rqs_serverHandle_t server,
 IN rqs_elementId_t *eltIdP,
 IN rqs_elementDeleteOption_t deleteOption,
 OUT rqs_elementDescriptor_t **elementPP);

rqs_status_t rqs_ElementDropLock (
 IN rqs_serverHandle_t server,
 IN rqs_elementLockMode_t eltLock,
 IN rqs_elementId_t *eltIdP);
Using Encina Components 121

Comparing and Converting Element IDs
An element’s ID is guaranteed to be unique within a server for all time. An
RQS server can always determine whether an element ID it generated is
currently valid. Client applications are responsible for ensuring that they
always use element IDs with the server that generated them. Using an
element ID with an RQS server other than the server that originally generated
the element ID has undefined results. Figure 42 on page 122 shows the
rqs_ElementIdCmp function being used to identify whether or not two element
IDs point to the same element.

Figure 42. rqs_ElementIdCmp Function

This function returns zero if the IDs identify the same element. When the
elements are distinct, this function indicates which one was created first at
the server. A return value of -1 indicates that eltId1 was created before eltId2,
and a return value of 1 indicates that eltId2 was created before eltId1. This
function does not check the validity of the element IDs.

With the rqs_ElementIdToString function, an element ID can be converted to
text, which thereafter can be used to generate audit trails and program status
reports. This function does not check the validity of the element ID.

5.3.1.5 Scanning Elements with Cursors
A cursor is a logical, client-side object that is used to sequentially examine
the elements in a queue. Cursors are owned by a specific transaction when in
use, and only the owning transaction can use the cursor. Cursors have a lock
mode and locking policy associated with them. As the cursor advances, the
RQS server acquires element locks in the cursor’s mode on behalf of the
owning transaction. The locking policy for each cursor determines the
duration for which the server holds the lock. The cursor locking policies
supported by RQS enable locks to be held for three different periods of time:

 • For the duration of the advancing operation

 • Until the client advances the cursor again

 • For the duration of the transaction that owns the cursor

Each policy provides a different guarantee about whether the element data
returned to the client remains the same as the data for that element stored at
the RQS server.

int rqs_ElementIdCmp(
 IN rqs_elementId_t *eltId1P,
 IN rqs_elementId_t *eltId2P);
122 Developing Distributed Transaction Applications with Encina

Cursors are client-side objects and can therefore be shared between
transactions executing within the same application; they cannot be shared by
applications. Cursors are neither persistent nor recoverable. If the application
that creates a cursor terminates, that cursor ceases to exist. A transaction
can simulate recoverable cursors by copying an existing cursor at the
beginning of the transaction, using the new copy, and returning to the original
cursor if it becomes necessary to recover to a previous location in the queue.

Only one transaction can own and use a cursor at one time. A transaction
acquires cursor ownership by creating or copying a cursor within the scope of
that transaction. If the cursor is created outside the scope of a transaction,
the cursor is marked as "unowned," and a transaction can obtain ownership
by specifying that cursor when calling functions that require a cursor. When
an application creates a cursor, it specifies a lock mode and the locking policy
for the cursor. When a client calls a function that advances a cursor, that
operation moves through the specified queue, starting at the cursor’s current
location, trying to acquire a lock in the cursor’s lock mode on each element.
When an element can be locked in the specified mode, the function returns
an rqs_elementDescriptor_t structure. The server holds the lock according to
the locking policy specified for that cursor.

Cursors never refer to a particular element in a queue; a given cursor is
located between elements, before the first element, or after the last element.
When an application creates a cursor, it is located before the first element in
the queue. When an application advances a cursor, the cursor moves past
the first element on which it could acquire an appropriate lock and then
returns a descriptor for that element. Cursors maintain their relative positions
as applications dequeue, delete, and effectively insert surrounding elements
(the latter when a dequeuing or deleting transaction aborts). A cursor never
reads from a position in the queue past which it has already advanced unless
the cursor is reset to the beginning of the queue.

For more detailes on using RQS cursors, see the Encina RQS Programming
Guide.

5.3.1.6 Retrieving Elements with Keys
RQS provides a mechanism for key-based retrieval of elements. When an
element type is created, once or more keys can be declared for that element
type. When retrieving an element using a key, the application does not
specify a queue. Retrieving elements using keys is independent of the queue.
Therefore, the element can be on any queue on the server. For more
information about retrieving elements with keys, see the Encina RQS
Programming Guide.
Using Encina Components 123

5.3.2 RQS Application Structure
RQS applications are clients to one or more RQS servers. These applications
may also be servers themselves, publishing an interface and receiving RPCs
from other applications. As RQS clients, RQS applications have the following
basic life cycle:

1. Initialize Encina client components.

2. Look up an RQS server, using the DCE Directory Service, and obtain a
binding handle to a server.

3. Perform whatever work or user interaction for which the application was
designed and interact with RQS. The RQS server interaction involves
enqueuing elements, dequeuing elements, administrative modifications to
the server, performance querying, and other activities.

4. Terminate the application, closing and freeing the RQS server handle.

5.3.2.1 Initializing
RQS itself does not need to be initialized! However, to initialize an RQS
application, all of the underlying Encina components must be properly
initialized. If the application is running in the Monitor environment, underlying
Encina components are initialized automatically. If not running in the Monitor
environment, the application must initialize the underlying Encina
components. For example, if the application is using Tran-C to manage
transactions, it must initialize Tran-C.

5.3.2.2 Look up an RQS Server
When you develop general Encina clients using Tran-C, several steps are
required to look up a server in the DCE Directory Service, obtain a valid
binding handle, and connect to the server. RQS does this work for you, and
applications need only call the rqs_GetServerHandle function. This function
takes the RQS server name to look up in the DCE Directory Service and
returns a handle to the specified server. Figure 43 on page 124 shows the
rqs_GetServerHandle function.

Figure 43. rqs_GetServerHandle Function

rqs_status_t rqs_GetServerHandle(
 IN char *serverName
 OUT rqs_serverHandle_t *serverP);
124 Developing Distributed Transaction Applications with Encina

If the RQS server is unavailable for whatever reason, this function returns the
RQS_COMMUNICATION_ERROR status code. If this occurs, the client
should delay and try again using the same handle.

Figure 44 on page 125 shows the Initialize function from a sample
application. This function initializes the application and returns an RQS
server handle, which the client uses to communicate with the server.

Figure 44. Example of an RQS Client Initialization without Encina Monitor

5.3.2.3 Terminating an RQS Application
When an RQS application terminates with pending transactions that are
unprepared, the termination may cause locks to be held on behalf of the
pending transactions in the server. The server holds these locks until an
administrator, using the tkadmin tool, manually aborts the transaction in the
server.

5.3.3 Managing Queues
Queues are typically created by RQS administrators as part of configuring
and maintaining an RQS server. Applications can also create and destroy
queues. RQS also provides the "work accumulation facility," which is a
mechanism for customizing some of the statistics associated with queues.

The Transaction Service aborts transactions involved in communication
errors.

Note

static rqs_serverHandle_t Initialize(char *serverName)
 {
 rqs_serverHandle_t rqsHandle;
 rqs_status_t status;

 /* Initialize Tran-C and TRPC */
 preInitTC();
 tc_InitTRPC();
 postInitTC();
 /* Get a handle to RQS server */
 status = rqs_GetServerHandle(serverName, &rqsHandle);
 CHECK_STATUS(status);
 return(rqsHandle);
 }
Using Encina Components 125

5.3.3.1 Creating Queues
Applications can create queues with the rqs_QCreate function.

Figure 45. rqs_Qcreate Function

The queueName argument specifies the name of the new queue; no existing
queue within the server can have this name.

The accumState argument must be set to either workAccumulationEnabled or
workAccumulationDisabled and will be used by the work accumulation facility of
RQS. These arguments indicate whether or not a queue maintains a
cumulative sum of the work represented by the enqueued elements. The
work accumulation facility of RQS provides a mechanism for customizing the
statistics associated with queues at an RQS server. It enables applications to
measure the total volume of business (work) represented by the elements in
the queues at a server.

For a more detailed discussion of the work accumulation facility, see the
Encina RQS Programming Guide.

5.3.3.2 Destroying Queues
Applications destroy queues with the rqs_QDestroy function. Only the server
and the queue name need to be defined. After this function call, the queue no
longer exists. The RQS server removes the queue from any queue sets of
which it is a member. The elements in the queue are destroyed and their IDs
become invalid. The elements can no longer be retrieved. Once a queue is
destroyed, a new queue can be created by using the same name of the
destroyed queue.

To remove all elements in a queue without destroying that queue, use the
rqs_DeleteAllElements function. As with rqs_QDestroy, this function needs only
the server and the queue name defined. rqs_DeleteAllElements does not
modify any of the authentication, authorization, or statistical information
associated with a queue.

rqs_status_t rqs_QCreate (
 IN rqs_serverHandle_t server,
 IN char *queueName,
 IN rqs_workAccumulation_t *accumState);
126 Developing Distributed Transaction Applications with Encina

5.3.4 Managing Queue Sets
RQS supports queue sets. The following aspects must be managed on queue
sets:

 • Setting priority classes - Priorities define the ordering among queues
within a queue set. Whenever a queue is selected from a priority class
within a queue set, queues in that particular priority class are selected in a
round-robin fashion.

 • Setting service classes - A service level defines how dequeuing
requests are to be distributed among the priority classes; in other words,
how many dequeuing requests have to be executed in a specific queuing
class.

 • Creating queue sets - Group queues into queue sets.

 • Adding queues to queue sets - Add queues to an existing queue set.

 • Removing queues to queue sets - Remove a queue from a queue set.

 • Destroying queue sets - Destroy a queue set with all its members.

 • Maintaining queue statistics - RQS maintains information about each
queue associated with an RQS server, including general properties and
usage statistics. This information can be queried for further usage.

5.4 Encina PPC

Encina PPC Services enable Encina transaction processing systems to
interoperate with systems that have SNA LU 6.2 communication interfaces.
PPC Services support both the X/Open CPI-C and the IBM SAA CPI-C. PPC
Services also support SAA CPI-RR. These communication interfaces and the
distributed transaction processing model operate within the Encina
environment.

PPC Services offer the following features:

 • Integration and migration between mainframe and Encina environments.
Encina transaction processing systems can interoperate with systems
using SNA. PPC Services enable bidirectional communication, so that
both applications and data can be shared between mainframes and
Encina, with either side initiating communications.

 • LU 6.2 connectivity to the Encina Monitor. Thus an application running on
a SNA network can allocate a conversation through the PPC SNA
Gateway to an application in the Encina Monitor.

 • Flexible administrative tools that can be used from any platform
Using Encina Components 127

 • Concurrency. PPC Services provide thread-safe CPI-C and CPI-RR
routines for execution in the OSF DCE

PPC Services include two products, the PPC Executive and the PPC SNA
Gateway. The PPC Executive is a library that supports peer-to-peer
communications and two-phase commit transactional semantics. The PPC
SNA Gateway provides communication between Encina applications in a
DCE cell and LU 6.2 applications in a SNA network. This cross-network
communication is transparent to both peer applications involved.

Figure 46 on page 128 illustrates the PPC Services model for communicating
through a gateway server.

Figure 46. PPC Services Model

The gateway server runs on a machine that is part of a DCE cell and a SNA
network. The PPC SNA Gateway establishes a virtual link between a SNA LU
6.2 application on a mainframe and a PPC Executive application on a DCE
node.

You use the functionality provided by the PPC Executive to create programs
(PPC Executive applications) that communicate with other PPC applications,
such as those running on mainframes. In general, you need only be aware of
the PPC Executive library. The PPC SNA Gateway is transparent to
application programs. Only those programs performing certain administrative
128 Developing Distributed Transaction Applications with Encina

tasks need be aware of the gateway. Gateway configuration is typically
managed by the system administrator.

PPC Executive applications are fully integrated into the Encina DCE
environment; that is, an application can communicate with a mainframe,
using SNA, while using Encina and DCE to communicate with other
applications in the Encina DCE environment. An Encina-to-Encina
conversation is between two PPC Executive applications. Encina-to-Encina
conversations do not use the gateway server.

The peer-to-peer communication model differs from the client/server model
used by the rest of Encina. In the Encina client/server model, a client initiates
an RPC to a server and waits for a response. The server receives and
processes the RPC, then returns to the client. The client and server are not
peers. The server acts only on RPCs received from the client. A single path of
execution weaves from a client, through the server function, and then returns
to the client. In contrast, in the peer-to-peer model of LU 6.2, an application
allocates a conversation to another application, which starts processing the
conversation concurrently. The partners establish a conversational context,
sharing control of the conversation and exchanging data. The partners are
true peers. Either side can send or receive data, ask the other side to do
work, and so forth. While there is still an originator of a conversation, akin to
the client that originates an RPC, once the conversation is established there
is no distinction between the roles of the two partners.

PPC applications are written using CPI-C, as specified by IBM SAA and
X/Open. CPI-C provides a number of services, including:

 • Allocating, accepting, and deallocating conversations

 • Sending and receiving data

 • Synchronizing processing between programs

 • Notifying peers of errors

In addition to CPI-C, IBM SAA specifies the CPI-RR for transaction
demarcation. X/Open specifies the TX interface for the same purpose.

5.4.1 LU 6.2 Conversations and Synchronization
The logical unit (LU) serves as a port into the network and acts as an
intermediary between the end user and the network. The LU is engaged in
session establishment with one or more partner LUs and manages the
exchange of data with partner LUs. LU types define the sets of functions in an
LU that support end-user communication. LU 6.2 is the most flexible LU type
and is also known as APPC. The two-way communication of two application
Using Encina Components 129

programs over an LU 6.2 session is called a conversation. The two
application TPNs are partners in a conversation and exchange information.
Each LU 6.2 session can carry one conversation at a time. Figure 47 on page
130 shows the basics of the SNA peer-to-peer communication model.

Figure 47. SNA Peer-to-Peer Communication Model

To establish a conversation, one program allocates it; that is, it specifies the
LU, mode, and TPN with which it wants to communicate. The program that
allocates the conversation is called the allocator. The acceptor is the recipient
of an allocator’s conversation request. It accepts the conversation allocated
by another peer. To end a conversation, one peer deallocates it and its peer
receives notification of the deallocation. Between allocation and deallocation,
the peers can exchange data and do work on each other’s behalf.

For a program to allocate a conversation to a peer, it requires certain
initialization information, such as the peer’s TPN and the name of the partner
LU. This information is called side information. It is generally supplied and
maintained by the system administrator in a side information file, which a
program can read in before allocating a conversation. The information is
accessed by a symbolic destination name, which is independent of the actual
SNA parameters.

There are two types of conversation. Mapped conversations allow programs
to exchange arbitrary data records in formats agreed on by the programmers.
Basic conversations allow programs to exchange data in a standard format;
that is, a 2-byte length field followed by user data.

The synchronization level (synclevel) specifies the degree of synchronization
that occurs between peers in a conversation. The LU 6.2 protocol supports
three levels of synchronization:

 • synclevel syncpoint (SL2): Synclevel syncpoint is the highest level of
synchronization. It provides transactional conversations, which use the
130 Developing Distributed Transaction Applications with Encina

two-phase commit protocol, and rollback and resynchronization
capabilities.

 • synclevel confirm (SL1): Synclevel confirm provides simple
synchronization that involves a single message exchange rather than full
two-phase commit processing. This confirmation synchronization is
provided through a pair of functions that enable applications to explicitly
request confirmation and acknowledge the request. Synclevel confirm is
used for nontransactional conversations.

 • synclevel none (SL0): Synclevel none provides no confirmation or
syncpoint processing. For example, if a program sends data, it does not
receive automatic acknowledgment that its peer received that data. A
program cannot issue any calls that require higher synchronization levels.
Synclevel none is used for nontransactional conversations.

A synclevel syncpoint conversation works on behalf of a logical unit of work
(LUW). An LUW is a transaction, a set of operations that must be executed
together. No operations are performed if any one of them is not performed.
An LUW is identified by a logical unit of work identifier (LUWID), which is a
SNA global transaction identifier. LUWs can be chained; when one ends,
another starts automatically. There is always a syncpoint or a backout
between two LUWs. LUWs can be completed in one of two ways: they can be
committed or aborted. To commit an LUW (that is, to make all changes since
the last commit permanent), either peer calls for a syncpoint. A syncpoint is a
reference point to which resources can be returned if a failure occurs. To
abort an LUW (that is, to undo all changes since the last syncpoint), either
peer can back out the LUW.

This model of LUWs differs from the transaction model used in the rest of
Encina in which new transactions are not generally started when one ends
and in which work can occur outside the scope of the transaction. For
synclevel syncpoint conversations, no work occurs outside an LUW. Because
of this difference in models, PPC Executive applications using synclevel
syncpoint conversations must follow several rules to work correctly in the
Encina environment:

 • Start a transaction before allocating a conversation.

 • End the final transaction after the conversation has been deallocated.
Using Encina Components 131

Table 4 on page 132 summarizes how to start an LUW from an Encina
transaction.

Table 4. Tasks to Start Communication from Encina Transactions to LUWs

Tran-C differs from TRAN/threadTid and TX in that it cannot chain
transactions. The transaction construct delimits a single transaction, which
begins at the opening brace and ends at the closing brace. Thus, Tran-C can
be used only in applications that have one transaction per synclevel
syncpoint conversation. Furthermore, because Tran-C starts the transaction it
is working on, applications cannot accept (allocate only) synclevel syncpoint
conversations (and thus work on behalf of a transaction started by a peer) in
a transaction construct.

Figure 48 on page 133 illustrates the use of PPC Services with Tran-C. The
calls to initialize the conversation and set the synchronization level can also
be performed outside the transaction construct.

To Start First
Transaction

To Start Last
Transaction

Chaining
Allowed?

PPC Executive
allocators

Use Tran-C Do nothing (ended
by Tran-C)

No

Use
TRAN/threadTid or
TX

Use
TRAN/threadTid or
TX

Yes

PPC Executive
acceptors

Do nothing
(transaction is
started by the
allocator)

Use
TRAN/threadTid or
TX

Yes

PPC Executive
allocators inside
TRPC server
function

Do nothing
(transaction is
started by the client)

Do nothing No
132 Developing Distributed Transaction Applications with Encina

Figure 48. Using Tran-C to Allocate a Synclevel Syncpoint Transaction

To abort the transaction, the application can call the Tran-C abort function.
This function also deallocates the conversation. The transaction can also be
aborted by simply deallocating the conversation abnormally.

5.4.2 Programming Interfaces
PPC applications are written using CPI-C, as specified by IBM SAA and
X/Open. These CPI-C standards specify the programming interface used for
PPC communications. The PPC Services support both the X/Open and the
IBM SAA versions of the standard. The IBM SAA and X/Open interfaces are
nearly identical. The functions provide the same functionality, use the same
arguments, and generally return the same status codes. CPI-C provides a
number of services, including:

 • Allocating, accepting, and deallocating conversations

 • Sending and receiving data

 • Synchronizing processing between programs

 • Notifying peers of errors

An application can accept one conversation and allocate another and so
forth. Any peer in such an allocation tree can call for a syncpoint provided
that all of its conversations are in a send state. The commit is then received

transaction {
 /* Initialize the conv. and set requested synclevel */
 Initialize_Conversation(conversationId, symDestName,
 &returnCode);
 PPC_STATUS_CHECK(returnCode);
 Set_Sync_Level(&convId, CM_SYNC_POINT, &returnCode);
 PPC_STATUS_CHECK(returnCode);
 /* Allocate the conversation */
 Allocate(convId, &returnCode);
 PPC_STATUS_CHECK(returnCode);

 /* Exchange data with the other side */
 ...

 /* All synclevel syncpoint conversations in
 * deallocate state. See text. */

 } /* commit processing takes place here */
Using Encina Components 133

by all of its peers, which in turn call Commit to propagate the commit to their
peers.

Most Encina PPC Executive applications use the interface as defined in the
cpic.h header file, which also defines Encina-specific functions. There are a
few minor differences between the interface defined in this file and the
interface defined in the latest specifications. The primary differences are:

 • In the specifications, all functions return status by using an OUT
parameter to the function. As defined in cpic.h, functions also return status
in this way but in addition return the same status as a return value.

 • The data types are slightly different.

 • Other header files are provided for applications that need to be strictly
compliant. PPC Services only support using the CPI-C and CPI-RR
functions using the C programming language.

In addition to using any of the CPI-C and CPI-RR functions, an application
can use any of the Encina or DCE components.

Encina provides three components for managing transactions (that is, for
delimiting, starting, committing, and aborting transactions):

 • Tran-C

 • The lower level Encina Toolkit components (specifically, TRAN and
threadTid)

 • TX

These components are used by applications using synclevel syncpoint (SL2)
conversations.

Tran-C is the recommended mechanism for creating the transactions within
which transactional operations must be executed. Tran-C is discussed in
Section 5.1.2.1, “Transactional-C Programming Language” on page 80. The
transaction construct defines a scope within a program; all functions called
within that scope become part of that transaction. When the transaction
construct is encountered in a program, a transaction is automatically created
by Tran-C. When the end of the transaction construct is successfully reached,
Tran-C automatically attempts to commit the transaction. If the transaction is
aborted during the execution of the computations bound by the transaction
construct, Tran-C automatically transfers control to the end of that scope.
134 Developing Distributed Transaction Applications with Encina

5.4.3 Distributed Program Link
Encina PPC distributed program link (DPL) provides a mechanism for Encina
applications to communicate with Customer Information Control System
(CICS) applications that is conceptually similar to a TRPC. DPL allows
Encina applications to interact with CICS DPL applications (that is, CICS
applications that use the EXEC CICS LINK command) and other Encina DPL
applications. DPL always sets a syncpoint on its return.

As shown in Figure 49 on page 135, the PPC gateway server is the bridge
between the Encina and CICS applications, seamless linking the DPL client
to the DPL server. Encina PPC and DCE specify the logical and physical
connections between the Encina application and the PPC gateway server.
SNA LU 6.2 specifies the logical and physical connections between the PPC
gateway server and the mainframe. The PPC library handles the details,
including syncpoint processing, conversation deallocation, and security.

Figure 49. Encina PPC Client Calling a CICS Transaction through DPL

In PPC, DPL allows Encina applications to act as either the linking or the
linked-to program. Conceptually, linking to a remote program is like making a
TRPC to the remote program. Therefore, from an Encina point of view, the
linking program is a client, and the linked-to program is a server. If the server
function returns without error, DPL automatically sets a "syncpoint on return."

Data is passed between the client and the server through a single opaque
buffer called the communications area (COMMAREA). The client and server
must agree on the format and size of this buffer. The client specifies the
format of binary or string data that is passed back and forth in the
Using Encina Components 135

COMMAREA. Figure 50 on page 136 shows the Dynamic_Program_Link
function linking to a CICS program.

Figure 50. Dynamic_Program_Link Function

You do not have to include any special logic in the application to initialize
multiple conversations within the same transaction. DPL can reuse
conversations within a transaction. A PPC conversation is allocated for the
first Dynamic_Program_Link call during a transaction. The conversation is
reused for subsequent calls that have the same PPC allocation parameters. It
is automatically deallocated when the transaction commits.

5.4.3.1 Writing DPL Client Code
Writing a DPL client application is similar in many ways to writing a PPC
Executive application. Both applications must initialize PPC Services,
configure information about the remote application, and initialize a
conversation. DPL clients also use the same side information files as PPC
Executive applications. However, a DPL client application does not need to
follow the logic of the remote application to the same degree as a standard
PPC application. DPL’s transactional RPC-like interface allows more
flexibility in client application design. You also do not need to explicitly
deallocate and reallocate conversations between Dynamic_Program_Link
(CMDPLINK) calls, because DPL automatically reuses conversations within a
transaction whenever possible.

An Encina program acting as a DPL client must perform the following steps:

1. Initialize PPC by calling the cpic_Init function.

2. Configure information about the remote application to which the client is to
link. Typically, this information is stored in a side information file and read
into the program by calling the cpic_ReadSideInfo function.

3. Initialize the conversation by calling the Initialize_Conversation function.

CM_RETCODE Dynamic_Program_Link (
 IN CONVERSATION_ID conversationId,
 IN int isLastTrpcP,
 IN char *progName,
 IN char *invokingProgram,
 INOUT char *commArea,
 IN int commAreaLength,
 INOUT int *dataLengthP,
 OUT CM_RETCODE *returnCodeP);
136 Developing Distributed Transaction Applications with Encina

4. Set other conversation characteristics such as the synclevel. DPL requires
synclevel syncpoint (SL2) conversations.

5. Place any data to be sent to the remote application in the COMMAREA.

6. Optionally, specify the byte order or code page for the COMMAREA by
calling the Set_DPL_Locale (CMSDPLOC) function.

7. Start a transaction by using the Tran-C transaction construct.

8. Make the RPC by calling the Dynamic_Program_Link function.

9. Check for server errors by calling the Extract_DPL_Error (CMEDPLER)
function.

10.Process any data returned in the COMMAREA.

Steps 1 through 4 are required for all PPC applications that allocate
conversations. Steps 5 through 10 apply to DPL clients.

Figure 51 on page 138 shows a complete example of a DPL client. The
example, extracted from the Encina PPC Programming Guide, invokes a
function named QUERY in the remote program.
Using Encina Components 137

Figure 51. Example of a DPL Client

#define COMM_AREA_SIZE 1024
 void Link_To_Remote_Program (char *symDestName,
 char *tpn)
 {
 CONVERSATION_ID conversationId;
 char commArea[COMM_AREA_SIZE];
 CM_RETCODE returnCode;
 /* Initialize byte order and code page to local defaults */
 CM_DPLBYTEORDER byteOrder = CM_DPLBYTEORDER_LOCAL;
 CM_DPLCODEP codePage = CM_DPLCODEP_LOCAL
 /* Send entire COMMAREA */
 int dataLength = sizeof(commArea);
 /* Initialize PPC Services and read configuration information
 * from sideinfo file -- see Figure 2.3 */
 ...
 /* Initialize a PPC conversation, set the synchronization
 * level to synclevel 2, and allocate a conversation --
 * see Figure 2.7 */
 ...
 /* Initialize the COMMAREA and read input data into the
 * commArea buffer. */
 memset(commArea, 0, dataLength);
 sprintf(commArea, "Hello, CICS!");
 /* Optionally, set the byte order and code page of the server */
 Set_DPL_Locale(conversationId, byteOrder, codePage,
 &returnCode);
 /* Begin the transaction */
 transaction

 {
 /* Make the TRPC */
 Dynamic_Program_Link(conversationId,
 TRUE,
 "QUERY",
 "MY_PROGM",
 commArea,
 COMM_AREA_SIZE,
 &dataLength,
 &returnCode)
 /* Check the return code to detect any server errors */
 Extract_DPL_Error (conversationId,
 abendcode,
 *condCodeP,
 *returncode);
 /* Process return data */
 ...
 } onCommit{
 /* Do commit-specific processing here */
 } onAbort{
 /* Do abort-specific processing here */
 }
 }
138 Developing Distributed Transaction Applications with Encina

Chapter 6. Using Encina++

In this chapter we describe the basic steps for building applications that use
the Encina++ programming model. Encina++ is an extension to Encina that is
used to build object-oriented distributed computing systems. For a more
general description of Encina++, see Section 2.4, “Encina++” on page 29.
The Encina++ programming model is described in Section 6.2, “The
Encina++ Programming Model” on page 141.

6.1 Overview of Encina++ Application Development

An Encina++ application is written in an object-oriented language such as
C++. The objects can be accessed locally or remotely through an IDL
provided by DCE or CORBA (Orbix from IONA Technologies, Ltd.). Encina++
itself contains several APIs, some of which are common to both DCE and
CORBA, and some are designed for only one or the other. The interface you
use depends on the requirements of your particular application.

6.1.1 Encina++ Interfaces
Common interfaces:

 • The Encina C++ interface defines C++ classes and member functions that
enable the creation and management of client/server applications and
provide support for the underlying environment.

 • The Tran-C++ interface defines C++ constructs and macros as well as
classes and member functions for distributed transaction processing. This
interface provides an object-oriented alternative to the Encina Tran-C
interface.

 • The OMG OTS interface also defines C++ classes and member functions
for distributed transactional processing. This interface implements the
OTS specification as documented in OMG document 94.8.4.

DCE-only interfaces:

 • The RQS C++ interface (RQS++) defines C++ classes and functions for
enqueuing and dequeuing data transactional.

 • The SFS C++ interface (SFS++) defines C++ classes and functions for
manipulating data stored in record-oriented files while maintaining
transactional integrity.

CORBA-only interfaces:
© Copyright IBM Corp. 1998 139

 • The Object Concurrency Control Service (OCCS) interface defines C++
classes and functions that enable multiple clients to coordinate access to
shared resources. This interface implements the OMG Concurrency
Control Service Proposal as documented in OMG document 94.5.8.

 • The Java OTS client interface defines Java classes and functions that
enable Java client applications to begin and control distributed
transactions. This interface implements the OMG OTS specification as
documented in OMG document 94.8.4.

The Encina++ interfaces are designed to support functionality exported by
the Encina Monitor and can be used to create Monitor application servers and
clients in C++. Monitor application servers and clients can use DCE or
CORBA or both. See Section 5.1, “Encina Monitor” on page 77 for more
details on the Monitor.

The Encina++ interfaces also support the development of C++ client and
server applications that do not run under the control of the Encina Monitor.
Encina applications that do not use the Monitor are sometimes generally
referred to as Toolkit clients or servers. Toolkit applications can use DCE or
CORBA or both. Applications that use CORBA rely on the Orbix ORB from
IONA Technologies, Ltd.

RQS++ and SFS++ applications can be Monitor application servers or clients
or they can be Toolkit servers or clients. All RQS++ and SFS++ applications
require DCE, so they can use either DCE only or both DCE and CORBA.

6.1.2 Developing a Distributed Encina++ Application
The following steps are required to develop a distributed application in
Encina++:

1. Design the application and determine the local and remote objects and
procedures that are required.

2. Use an IDL to define the remote objects and procedures.

3. Compile the IDL files to generate client and server stub classes.

4. Write the application code for the client and server.

5. Compile and link the client and server applications.

Step 1, application design, is covered in Part 3, “Case Study” on page 177.
Steps 2, 3, and 5 depend on the environment, DCE or CORBA, for which you
are developing your application. The environment determines which IDL, IDL
compiler, and libraries to use to build your application.
140 Developing Distributed Transaction Applications with Encina

Step 4 involves some tasks that are environment-specific and some that are
not. The tasks that are common to both environments, such as initialization
and termination of Encina++ clients and servers, are covered in this chapter.

6.2 The Encina++ Programming Model

The Encina++ classes support a client/object programming model in which
clients access objects instead of servers. Servers export one or more
interfaces (classes) and one or more instances of each class (objects). The
client application can access objects exported by servers without you
knowing how the objects available in the system map to servers.

Clients can bind to objects exported by servers. They can bind to individual
objects when the objects are known, or they can bind to a class when the
objects are not known or when all objects of a specific class provide the same
capabilities. Typically, you specify a name for an object. Although each object
created has a UUID, naming an object allows clients to bind to the object by
name instead of by UUID.

In Encina++, an IDL is used to specify the interfaces to objects in the form of
remote procedures. The remote procedures are used for communication
between the client and server applications. The interface compiler generates
files that include client stub and server stub classes for each interface. These
stub classes give the client and server a slightly different view of the same
interface.

Before RPCs can be made between a client and server, the server must be
available to receive requests from clients. Creating an instance of the server
stub class within a running server causes the object to be exported to the
namespace so that a client can locate and bind to it. The instance is referred
to as a server object.

A client creates an instance of the corresponding client stub class; the
instance is referred to as a client proxy object. The client application uses the
client proxy object to bind the client to the server object. After the client proxy
object is bound to the server object, each member function call made on the
client proxy object invokes an RPC to the server object, which executes the
procedure and returns results to the client proxy object. The client
communicates with the server object through the client proxy object.

Normally, server objects must be created before the server begins listening
for RPCs so that clients can locate and bind to the server objects. Server
objects can also be created dynamically; you can use a factory to create
Using Encina++ 141

server objects while the server is listening for RPCs. A factory is an object
designed to create other objects that are managed by the server.

Before a server begins listening, it can create a factory object, exporting the
factory object to the namespace and enabling a client to bind to it. When the
factory object creates a server object, the factory object must return a unique
identifier, called an object reference, for the server object. Clients use the
object reference to create a client proxy object, so that the client proxy object
will bind directly to the server object. The client proxy object is created
automatically in CORBA applications, whereas in DCE applications, the client
must create the client proxy object explicitly.

Clients and servers are implemented as objects in Encina++ applications.
The Encina C++ interface supplies a client class and a server class that can
be used to initialize clients and servers; the Java OTS client interface
supplies a client class that can be used to initialize clients. Operations
available on an initialized server instance can be used to register XA
resources, make server objects available to clients, and listen for incoming
RPCs.

In a DCE environment, you can administer Encina++ application servers by
using the Enconsole administrative tool. In a CORBA environment, you can
administer Encina++ application servers by using the administrative tools
provided by your ORB.

Applications use transaction processing to ensure that data remains correct,
consistent, and secure. Transaction processing in an object-oriented
distributed environment enables distributed objects to meet the same
requirements. Encina++ supplies two different C++ interfaces for
object-oriented transaction processing: Tran-C++ and the OMG OTS. These
interfaces can be used either separately or together in an Encina++
application. Encina++ also supplies a Java language version of the OTS
interface for Java clients.

Tran-C++ provides constructs, macros, and classes that integrate
transactional semantics into the C++ programming language. In Tran-C++, a
transaction class is used to implement transactions as objects. The
constructs and macros use functionality defined for transaction objects to
simplify the creation and management of transactions in Encina++
applications.

Encina’s OMG OTS interface provides CORBA-compliant classes for
transaction processing. The OTS interface defines classes for two transaction
demarcation models. In the implicit model, the client implicitly passes the
142 Developing Distributed Transaction Applications with Encina

transaction context that defines a transaction to an object by associating the
context with the calling thread. In the explicit model, the transaction context
must be passed explicitly to an object as a parameter in a function call.

The Data Definition Language (DDL) provides a means for defining the data
objects that RQS++ and SFS++ use to represent elements, records, and
keys. Each type of record or element is specified as an interface in a DDL file.
Keys can be specified for the data types.

To use DDL, you define the data objects you need for your RQS++ and
SFS++ programs in a DDL file. The DDL file is then processed by the ddl
command, which generates header and source files containing C++ classes
based on the data objects specified in the DDL file.

SFS++ applications use objects of the generated classes as records for file
input and output. The same classes can also be used for creating SFS files.
Objects of the key classes generated by DDL can be used to access records
in SFS files and to add secondary indexes to SFS files.

RQS++ applications use objects of the classes generated by DDL as the
elements that are enqueued, dequeued, and requeued. The generated
classes can also be used to define element types at the RQS server.

6.3 Writing Encina++ Server Applications

To initialize an Encina++ server application, follow these steps:

1. Create one server class instance to manage the server.

2. Register any resources required by the server (optional).

3. Initialize underlying Encina services (optional).

4. Create one or more server objects.

5. Listen for incoming RPCs.

6. Terminate the server.
Using Encina++ 143

Figure 52. Example of Initializing an Encina++ Server Application

The first step is to create an instance of the Encina::Server class to represent
the application server. The class constructor takes no arguments.

int main(int argc, char *argv[])
 {
 // process command-line arguments...
// Step 1:
 // Create and initialize the server
 Encina::Server server;

// Step 2:
// Perform database initialization and get the XA switch and
 // the open and close strings for the resource
 dbInit(&xaSwitch, &open, &close);
 // Register a resource with the server
 server.RegisterResource(xaSwitch, open, close, 0);

// Step 3:
// Initialize the server
 server.Initialize();
// Initialize other Encina components...

// Step 4:
// Create server objects...

 try {
// Step 5:
 // Listen for incoming RPCs

server.Listen(Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS);
 }
 catch (...) {
// Step 6:
 cerr << "An exception was raised." << endl;
 server.Exit(1);
 }

// Step 6:
 server.Exit(0);
 return 0;
 }
144 Developing Distributed Transaction Applications with Encina

After the server instance is created, you must register any resources that
your server requires. The Encina::Server::RegisterResource function registers
XA-compliant resources and makes the server recoverable.

After you have created the server instance and registered any required
resources, you have to initialize the underlying Encina components and
services. Initialization can be done explicitly by calling the
Encina::Server::Initialize function. Calling this function is optional in certain
cases because the Encina::Server::Listen function (called as the final step in
your server application) initializes the underlying components and services if
they are not already initialized. You must call the Encina::Server::Initialize
function if you want to do application-specific initialization that relies on these
underlying components before the server begins listening for RPCs. If you
need more information about initializing Encina servers, see the Encina
Object-Oriented Programming Guide at http://www.transarc.com.

After the server is initialized, you must create one or more server objects to
handle incoming requests. Named server objects (as well as factory objects)
must be created before the server starts listening for RPCs.

After you have created the server objects, you must start the server listening
for incoming RPCs. Calling the Encina::Server::Listen function causes the
server to start accepting RPCs and sets the concurrency mode for the server.
The value passed as the function parameter sets the concurrency mode,
which determines whether transactions and incoming RPCs are serialized at
the server. This setting controls the type of access that the client has to the
server. For example, if you specify no serialization, the server starts a new
thread automatically for each transaction and RPC. See the programming
reference manual for the Encina::Server::ConcurrencyMode type for
descriptions of the available modes. The example in Figure 52 on page 144
shows the function being used to listen for RPCs. The
Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS concurrency mode
specifies that all TRPCs and transactions are serialized at the server. If the
server accesses a resource, such as a database, that does not have
thread-safe libraries, you must specify that the server serialize TRPCs and
transactions.

Terminating a server stops the server from listening for incoming RPCs and
stops the underlying Encina services. Normally, a server is shut down
administratively or through a system failure.

If you need to forcibly terminate the server application programmatically at
any time, you can use the Encina::Server::Exit function. The function never
returns; it takes one argument, which is an integer status value that is
Using Encina++ 145

returned to the calling environment. The example in Figure 52 on page 144
shows the function being used to terminate a server application when an
exception is thrown.

If the server is stopped in an orderly manner (not forcibly), the
Encina::Server::Listen function returns. Thus your server application can do
any necessary cleanup before the application exits.

6.4 Writing Encina++ Client Applications

Follow these steps to initialize an Encina++ client application (see Figure 53
on page 146):

1. Initialize underlying Encina services

2. Bind to a remote object

3. Terminate the client

Figure 53. Example of Initializing an Encina++ Client Application

int main(int argc, char *argv[])
 {
 // process command-line arguments

// Step 1:
 // Initialize the client
 Encina::Client::Initialize();

// Step 2:
 try {
 // Bind to a remote object
 }

// Step 3:
 catch (...) {
 cerr << "An exception was raised." << endl;
 Encina::Client::Exit(1);
 }

 // Perform work...

 return 0;
 }
146 Developing Distributed Transaction Applications with Encina

The Encina::Client::Initialize function initializes a client application and all
of the necessary underlying Encina components and services.

The client application uses the client stub class generated from the interface
definition to locate and bind to remote objects or servers that export the
requested interface. After the client application is initialized, you use an
instance of the client stub class, a client proxy object, to bind to a remote
object. The call you make to bind the client to a remote object depends on
whether your client is an Encina++/DCE or Encina++/CORBA application.
The client stub class includes member functions for the operations defined in
the interface. Once a proxy object is bound to a remote object, calling a
member function on the proxy object initiates an RPC, invoking the
corresponding method on the remote object.

Normally, a client application terminates at the end of the main routine (or
whenever the Encina::Client object is destroyed or goes out of scope). If you
need to terminate the client at any other time, you can use the
Encina::Client::Exit function. The function takes one argument, which is an
integer status value that is returned to the calling environment. Terminating
the client application also terminates all underlying Encina services for the
client application. All of the transactions in progress are completed (either
committed or aborted) before the application exits.

If the client application is interrupted by the user, it exits automatically,
aborting any transactions in progress.

6.5 Terminology

As discussed in Section 6.1.1, “Encina++ Interfaces” on page 139, Encina++
has the Encina++/DCE, the Encina++/CORBA, and the Encina++ common
interfaces. Although the underlying functionality is the same, the
Encina++/DCE and Encina++/CORBA implementations address the
differences in DCE and CORBA. Important differences include client and
server stub generation and binding methods.

To write Encina++/DCE applications, you must use Encina's TIDL compiler to
generate stub files for communications between Encina++ clients and

The functions of the Encina::Client class are static functions; it is not
necessary to create an instance of the class.

Note
Using Encina++ 147

servers, adding transactional semantics to remote procedures; using TIDL,
you define which functions in the interface are transactional.

To write Encina++/CORBA applications, however, you use a CORBA IDL
compiler specific to the ORB being used; using the CORBA IDL, you define
entire interfaces, rather than individual functions, as transactional.

Encina++/DCE clients bind to exported server objects by using constructors
defined in the client stubs generated by the TIDL compiler. In
Encina++/CORBA applications, however, clients use a binding method that is
specific to the ORB being used (or clients can use a CORBA Object Naming
Service, if available). Applications that use CORBA rely on the Orbix ORB
from IONA Technologies, Ltd.

6.5.1 Encina++/DCE Programming
Encina++ /DCE supports the development of transactional, object-oriented
applications for DCE. Encina++ /DCE applications use DCE’s RPC
mechanism for communication between clients and servers. This
dependency on DCE RPC affects interface definition, binding, and exception
handling.

In the DCE environment, the TIDL must be used to specify object interfaces
in the form of remote procedures. The TIDL compiler generates C++ stubs
that include client stub and server stub classes for each interface. These stub
classes give the client and server a slightly different view of the same
interface.

On the server side, two server stub classes are generated. The abstract
server stub class contains virtual functions that map to the remote procedures
defined in the interface. The concrete server stub class is derived from the
abstract server stub class. The server application developer typically
implements the remote procedures for the interface as member functions of
the concrete server stub class. The server application can instantiate objects
of the concrete class; these objects are then available to clients.

On the client side, a client stub class is generated. The client stub class
includes several constructors that hide the details of binding. These
constructors enable an instance of the class to represent a remote server
object; a client stub class instance acts as a proxy for the object to which it is
bound at the server. The client stub class defines member functions that map
to the remote procedures defined in the interface. Calls to the proxy object’s
member functions result in RPCs to the object that the proxy is bound to; the
148 Developing Distributed Transaction Applications with Encina

RPCs invoke the member functions that are defined in the concrete server
stub class.

TIDL is also used to define factory objects. The TIDL interface defining a
factory object must include remote procedures for creating and deleting
server objects. Typically, create and delete functions are defined for the
factory object.

Depending on the requirements of the client application, you can use one of
several methods to bind the client to the server. How you create an instance
(client proxy object) of the client stub class determines the binding method
used. The client proxy object can be bound to one of the following:

 • Any compatible server object at any server

 • A server object with a specific name

 • A specific server object created dynamically at a specific server

 • A specific server that exports the required interface

The first time a member function call is made on the client proxy object, the
proxy object is bound to a server object (or server) and the call is passed to
that server object. The client then communicates with the server object
through the client proxy object.

The Encina++ programming interfaces that are supported only for DCE
provide object-oriented access to RQS++ and SFS++. In addition, you can
use Encina's DDL compiler to generate stub files for RQS++ and SFS++
applications.

6.5.2 Encina++/CORBA Programming
Encina++ /CORBA supports the development of transactional,
object-oriented applications for the CORBA environment. Encina++ /CORBA
applications rely on an ORB for communication between clients and servers.
This dependency on an ORB affects interface definition, binding, and
exception handling.

In the CORBA environment, the CORBA IDL must be used to specify the
interfaces to objects. The operations defined by an object's interface are used
for communication between the client and server applications. The CORBA
IDL compiler generates stub files that include client stub and server stub
classes for each interface.
Using Encina++ 149

Depending on the requirements of the client application, to bind the client to
the server you can use either an Object Naming Service or a binding method
specific to the ORB.

Encina++ /CORBA relies on the Orbix implementation of the IDL-to-C++
mapping for the definition of interfaces and on the Orbix IDL compiler for
generating stub files. You define interfaces for objects in Encina++ /CORBA
applications in the same you define them in Orbix applications.

Objects that participate in transactions or make transactional requests on
other objects are called transactional objects. You make an object
transactional by specifying that its interface is derived from the
CosTransactions::TransactionalObject class in the IDL file. Interfaces to
objects must specify that the object is transactional if your application uses
Tran-C++ or the Current class to manage transactions implicitly.

An ORB-specific binding method can be used to bind the client to the server.
For Orbix, the IDL compiler generates a client stub class that corresponds to
the interface definition. The generated class contains a static member
function named _bind; calling the _bind function creates an instance (client
proxy object) that is bound to an object at the server.

When the binding function call is made on the client proxy object, the proxy
object is bound to a corresponding remote object, the server object. The
client then communicates with the server object through the client proxy
object.

To implement the server interface, you must define a C++ class and class
methods corresponding to the interface definition in the IDL file. The class
name must be different from the class name used by the client application.
Encina++ /CORBA server applications can use either of the Orbix
approaches to implementing the IDL interface: the Basic Object Adapter
(BOA) approach or the TIE approach. If you are using the BOA approach,
your implementation class must inherit from the BOA class defined in the
header file generated by the IDL compiler.

To create a server object in an Encina++ /CORBA server application, you
simply create an instance of the implementation class you defined for the
server. When a client application calls the binding method defined for the
client proxy object, the proxy object binds to the server object.

You must create one or more server objects before the server application
starts listening for incoming requests. You can use either the
Encina::Server::Listen function or the CORBA::Orbix::impl_is_ready function
150 Developing Distributed Transaction Applications with Encina

that Orbix provides to start the server listening. The difference between the
two functions is that Encina::Server::Listen automatically creates a pool of
threads that handle concurrent requests in servers that are thread aware,
unless you specify otherwise.

Before you run an Encina++ /CORBA server, you must specify a name for the
server. If the server is a shared Orbix server (started dynamically through the
Orbix daemon), you specify the server name by registering the server with the
Orbix daemon. If the server is a persistent Orbix server (started manually),
you specify the server name through the ENCINA_OTS_TK_SERVER_ARGS
environment variable or the -encina command-line switch.

For all Encina++ /CORBA servers that are recoverable servers, you must also
specify a name for the server’s restart files and the name of a log volume.
Restart files and log volumes can also be specified through the environment
variable or command-line switch.

6.5.3 Encina SFS++
The SFS++ interface consists of a set of C++ classes for creating Encina SFS
applications. Together with other parts of Encina++, such as Tran-C++,
SFS++ enables you to develop object-oriented Encina applications. The
SFS++ classes contain functions that invoke the most commonly used
features of SFS. Using these functions, SFS applications can perform the
following operations:

 • Insert, read, update, and delete records in SFS files

 • Create and delete SFS files

 • Add secondary indexes to existing SFS files

 • Set idle time-outs for SFS file objects and operation time-outs for
operations on SFS file objects

 • Get open file descriptors (OFDs) for file objects to allow use of SFS C
functions within SFS++ applications

The SFS++ interface does not support the following operations; however,
SFS++ allows you to call any of the SFS C functions to perform them:

 • Creation of entry-sequenced and relative files

 • Partial record reads and updates

 • Batch operations

SFS++ encapsulates SFS features into a set of classes.
Using Encina++ 151

The Sfs::Server class is an abstraction of an SFS server. It provides methods
for creating, opening, and deleting SFS files and for adding secondary
indexes to SFS files.

Before calling any SFS++ functions, an application must create an
Sfs::Server object by using the class constructor. The application must
specify the fully qualified name of a running SFS server when it creates the
Sfs::Server object.

The Sfs::File class is an abstraction of an SFS file. It provides functions for
selecting ranges of records within files and for inserting, reading, updating, or
deleting records from files.

An object of this type is returned when an application calls the
Sfs::Server::OpenFile function. There are no public constructors for the
Sfs::File class.

The Sfs::Volume class identifies an SFS data volume and a specific amount of
space on that volume to be used to store the contents of an SFS file or an
SFS file’s secondary index. Once defined, an Sfs::Volume object can be used
by the Sfs::Server::CreateFile and Sfs::Server::AddSecondaryIndex functions
to allocate storage space for files and secondary indexes.

The Sfs::Exceptions class defines the SFS++ exception classes. All SFS++
exception classes are derived from the OtsExceptions::Any class, allowing a
single C++ catch clause to be used to catch all SFS++ exceptions.

Each SFS file can store records of only one record type. The record type
defines the data type for each field of the record. SFS++ applications use
DDL to define SFS record types. From these definitions, the ddl command
then generates a record class, derived from the Pos::Object class. The record
class represents the record type and contains constructors to create and
initialize record objects of that class.

Each SFS file must have a primary index and can have one or more
secondary indexes. These indexes are used to access the records in the file.
SFS++ applications use DDL to define SFS indexes. From these definitions,
the ddl command then generates key classes, derived from the Pos::Key
class. The key class represents the key type and contains constructors to
create and initialize key objects of that class.
152 Developing Distributed Transaction Applications with Encina

6.5.4 Encina RQS++
The RQS++ interface consists of a set of C++ classes for creating Encina
RQS applications. Together with other parts of Encina++, such as Tran-C++,
it enables you to develop object-oriented RQS applications.

Using RQS++, an application can perform the following operations:

 • Enqueue, dequeue, and requeue elements to queues

 • Dequeue elements from queue sets

 • Use cursors to read elements

 • Create queues and queue sets

 • Add queues to queue sets and set service levels for queue sets

RQS++ does not support the following operations; however, RQS++ allows
you to call any of the RQS C functions to perform them:

 • Using element identifiers and keys to access elements

 • Callbacks

 • Batch operations

 • Administrative operations, such as gathering information about queues
and queue sets

RQS++ encapsulates RQS features into a set of classes. All of them are
contained within the Encina::Rqs class.

The Rqs::Server class is an abstraction of an RQS server. It provides methods
for creating and deleting element types, queues, and queue sets. Before
performing any other RQS++ operations, an application must create an
Rqs::Server object by using the class constructor. The application must
specify the name of an actual running RQS server when it creates the
Rqs::Server object.

After creating the Rqs::Server object, the application can then use Rqs::Server
class member functions to create Rqs::Queue and Rqs::QueueSet objects.

The Rqs::Queue class is an abstraction of an RQS queue. It provides member
functions for enqueuing and dequeuing elements, controlling access to a
queue, and getting cursors for sequentially scanning elements in a queue.
Before an application can enqueue, dequeue, or requeue elements to a
queue, it must create an object of this class.
Using Encina++ 153

The Rqs::Queue class has no public constructor. Instead, an object of this type
is returned when an application calls the Rqs::Server::GetQueue or
Rqs::Server::CreateQueue function.

The Rqs::QueueSet class represents a queue set. A queue set serves as a
dequeueing structure that regulates how elements are dequeued from its
member queues. An application simply dequeues from the queue set, and the
individual queue is chosen by the selection process defined for the set. The
Rqs::QueueSet class contains member functions for adding and removing
queues from a queue set, service levels, and dequeuing elements from a
queue set. Before an application can dequeue elements from a queue set, it
must create an object of this class.

The Rqs::QueueSet class has no public constructor. Instead, an object of this
type is returned to an application as a result of calling the
Rqs::Server::GetQueueSet or Rqs::Server::CreateQueueSet function.

The Rqs::Cursor class represents a cursor. A cursor is a logical, client-side
object that is used to sequentially examine the objects in a queue. The
Rqs::Cursor class has member functions that allow applications to use cursors
to read through the elements in a queue. It also provides a function to allow
the application to obtain a cursor handle, which can be used to access the C
functions that provide additional features for using cursors.

The Rqs::Cursor class has no public constructor. Instead, cursors are created
by using the Rqs::Queue::GetCursor function. Cursors are owned by a specific
transaction, and only the owning transaction can use the cursor. Cursors
have a lock mode and locking policy associated with them. As the cursor
advances, the RQS server acquires element locks in the cursor’s mode on
behalf of the owning transaction. The locking policy for each cursor
determines the duration for which the server holds the lock.

The Rqs::Object class represents RQS elements. An RQS element is
record-oriented data that can be stored in a queue. Each element must have
a type, which defines the data type and size for each field of the element. A
queue can store RQS elements of different types. When an application
dequeues an element from a queue that can store multiple types, the type of
the element is not known prior to the dequeue operation. In this case, the
dequeue operation returns an object of type Rqs::Object. The application can
then query the object to determine the element type (using the
Rqs::Object::GetType or Rqs::Object::IsOfType function) and convert the
object to an instance of the appropriate class.
154 Developing Distributed Transaction Applications with Encina

DDL must be used to define RQS elements used in RQS++ applications.
From these definitions, the ddl command then generates classes, derived
from the Pos::Object class, to represent element types.

Objects of the Rqs::Object type cannot be created by an application. They are
returned by RQS++ functions and must be converted to an instance of the
correct type.

The Rqs::Exceptions class defines the RQS++ exception classes. All system
exception classes are derived from the OtsExceptions::Any class, allowing a
single C++ catch clause to be used to catch all system exceptions.

To represent the elements it enqueues and dequeues, an application uses
classes defined by DDL and generated by the ddl command. The class
generated by DDL contains variables corresponding to the fields in the
element. It provides several constructors for the class and member functions
that automatically marshall and unmarshall the data to and from the fields
when elements are enqueued and dequeued.
Using Encina++ 155

156 Developing Distributed Transaction Applications with Encina

Chapter 7. Internet Access for Java Clients

In this chapter we describe how you can build Java applications that access
Encina servers through the DE-Light Java client API. A high level overview of
the DE-Light product suite is presented in Section 3.3, “Encina DE-Light Web
Components” on page 51.

The structure of a DE-Light Java client application is similar to that of other
Java client applications. The key difference between a DE-Light application
and other applications is that the DE-Light client can invoke Encina TRPCs to
perform transactional work on behalf of the client. The DE-Light client
application communicates with a DE-Light gateway, using a simplified RPC
protocol called the DE-Light Dynamic Remote Procedure Call (DRPC). The
DRPC protocol provides the tools for packaging up a TRPC to be invoked by
a DE-Light gateway. A DE-Light client application makes a TRPC by creating
a connection to a DE-Light gateway and then sending that gateway the
following information:

 • The name of the server to call

 • The name of the interface that exports the desired remote procedure

 • The name of the remote procedure to be executed

 • The arguments to the remote procedure

The DRPC protocol provides means for selecting a DE-Light gateway, using a
data dictionary for passing TRPC parameters between the client and the
server, using SSL security between the client and the gateway, and handling
exceptions.

7.1 Access to DE-Light Gateways

Before issuing TRPCs, a client must first establish a connection with a
DE-Light gateway. On completion of the RPC, the connection must be closed.

7.1.1 Establishing a Connection
You must create a DrpcConnection object to establish a connection with a
DE-Light gateway:

drpc = new DrpcConnection(gwy_name);

Here, the new operator creates a DrpcConnection object and returns a
reference to it, called drpc. The DrpcConnection(gwy_name) method is a
constructor, called by the new operator, that initializes the newly created
© Copyright IBM Corp. 1998 157

DrpcConnection object. The gwy_name argument is a string that specifies the
DE-Light gateway. This string must be constructed as follows:

protocol:machine-name[port-number]

where protocol refers to the transport protocol being used, machine-name is
the name of the machine on which the DE-Light gateway is running, and
port-number is the port number (or port numbers) where the DE-Light
gateway is listening. The DE-Light gateway administrator decides which port
number should be used.

Currently, TCP, HTTP, and HTTPS are the supported transport protocols. For
example, the gwy_name argument for a DE-Light gateway running on
machine prod_one could be one of the following strings:

tcp:prod_one[1234]
http:prod_one[5678]
http:prod_two[1234,5678]

Notice that when you use HTTPS you use the same specification as you
would use for HTTP, but you also specify a second port number. The first port
is the nonsecure port and the second is the secure port, which you need for
your HTTPS connection.

Figure 54 on page 158 shows the code used to create a DrpcConnection object
that makes a TCP connection with a DE-Light gateway using port 13013 on a
machine called prod_one:

Figure 54. Example of a TCP Connection with a DE-Light Gateway

IMPORTANT: Before establishing a connection with a DE-Light gateway, be
sure that the gateway has been loaded with the Encina server’s IDL or TIDL
file (see Section 7.6, “Loading Gateways with IDL and TIDL Files” on page
172).

DrpcConnection drpc;
try {
 drpc = new DrpcConnection("tcp:prod_one[13013]");
} catch (DrpcException e) {
 drpc = null;
 System.out.println("Failed to obtain DrpcConnection: " +
 e.toString());
}

158 Developing Distributed Transaction Applications with Encina

7.1.2 Closing a Connection
When your client application has finished making RPCs, close the connection
to the DE-Light gateway. Closing the connection frees resources at the
gateway. These resources can later be used to service other clients. Use the
close() method:

drpc.close();

where drpc is a reference to the DrpcConnection object created in the client
application when a connection was established.

When you close a connection that is using transactions, the active transaction
is aborted.

7.2 Data Dictionaries

DE-Light clients use data dictionaries to pass information to the Encina
servers through the DE-Light gateway. DE-Light considers a data dictionary
to be a mapping between variable names and their values. A data dictionary
entry includes the variable name and its value. The names of data dictionary
variables are strings. The values of the variables are to be passed to or
returned by remote procedures. DE-Light supplies a default data dictionary
with each gateway connection.

Once a connection has been established with the Encina server, the DE-Light
Java client can use the data dictionary for the connection to access the
Encina server, by following these steps:

1. Get a handle to the data dictionary to be used.

2. Use the data dictionary to set the values of any input parameters.

3. Make the RPC or TRPC.

4. Read the values of any output parameters from the data dictionary.

You can obtain the handle of your default data dictionary by using the
dictionary() method:

DrpcDictionary dict = drpc.dictionary();

where dict is a reference to the DrpcDictionary object being found, and drpc
is a reference to the DrpcConnection object defined earlier in the client
application.
Internet Access for Java Clients 159

7.2.1 Loading Data Dictionary Variables
Before making an RPC, you need to set the values of any input parameters
for the RPC in the data dictionary. The DrpcDictionary class provides the
put() method, which stores an object reference in the data dictionary. The
put() method takes two arguments: the name of the variable in the data
dictionary, and a reference to the object that holds the variable’s value.

To store scalar values, the DrpcDictionary class provides several convenience
methods, which convert scalar types to object references and then call the
put() method internally. The DrpcDictionary class provides the following
convenience methods:

putBoolean(String, boolean)
putByte(String, byte)
putChar(String, char)
putDouble(String, double)
putFloat(String, float)
putInt(String, int)
putLong(String, long)
putShort(String, short)
putUnsignedByte(String, byte)
putUnsignedShort(String, short)

For example, suppose a stock_OrderItem remote procedure has two input
arguments, one an integer, the other a string. The server’s IDL file exports the
remote procedure as follows:

void stock_OrderItem([in] long stockNum, [in] long name);

The integer parameter is set by calling the putInt() method:

dict.putInt("itemNum", 42);

where dict is a reference to a DrpcDictionary class defined earlier in the client
application and itemNum is the input parameter being defined in the data
dictionary. The value of itemNum is set to 42.

The string parameter is set by calling the put() method:

dict.put("itemName", "printer");

where "itemName" is the input parameter being defined in the data dictionary.
The value of itemName is set to the string “printer”.

The names of the variables in the data dictionary do not have to be the same
as the names of the parameters in the IDL file. In the previous example, the
data dictionary itemNum variable corresponds to the stockNum parameter in
160 Developing Distributed Transaction Applications with Encina

the stock_OrderItem remote procedure. Similarly, the data dictionary
itemName variable corresponds to the name parameter.

7.2.2 Retrieving Data Dictionary Variables
After an RPC returns, you can retrieve the values of output parameters from
the data dictionary. The DrpcDictionary class provides the get() method,
which retrieves an object reference from the data dictionary. The get()
method takes one argument: the name of the variable in the data dictionary.

To retrieve scalar values, the DrpcDictionary class provides several
convenient methods, which call get() internally and then convert the returned
object reference to a scalar value:

getBoolean(String)
getByte(String)
getChar(String)
getDouble(String)
getFloat(String)
getInt(String)
getLong(String)
getShort(String)

The following example retrieves one output parameter, an integer, from the
data dictionary through the getInt() method:

return dict.getInt("price");

where dict is a reference to the DrpcDictionary object created earlier in a
client application, and price is the output parameter being extracted from the
data dictionary.

7.3 Access to Encina Servers

You can use DE-Light Java clients to access both DCE and Encina servers by
using RPCs and TRPCs. The DCE IDL provides a number of attributes and
data types that you can use when defining an interface. At load time, the
DE-Light gateway rejects any RPC function declarations that use
unsupported elements. Table 5 on page 162 lists all TIDL elements that are
not supported by DE-Light. You should consult your release notes and the
DE-Light documentation to find out whether any of the supported elements
Internet Access for Java Clients 161

are interpreted differently in DE-Light from the way they are interpreted in
Encina.

Table 5. TIDL Elements Unsupported by DE-Light

7.3.1 Making Remote Procedure Calls
After setting the values of the input parameters in the data dictionary, you can
make an RPC by using the callRpc() method. This method takes one
argument, a string that describes the RPC to be invoked at the server. The
string has two parts: an RPC description and a parameter description.

The RPC description contains the following information:

 • The name of the server. This name must be specified for DCE and Encina
Toolkit servers. It should not be specified for Encina Monitor application
servers.

 • The name of the interface. This name is required if more than one remote
procedure of a given name is available at the gateway.

 • The name of the remote procedure. This name is required and must
always be specified.

Each part of the RPC description is specified by a list of keyword=value pairs,
separated by white space. The keywords are server, interface, and rpc. The
values are tokens, without white space, or constants. For example, an RPC
description could be specified as:

"server=/.:/servers/merchandise interface=merchandise rpc=OrderItem"

The parameter description is made up of the names of data dictionary
variables or constants. All function parameters must appear in the order given
in the prototype for the remote procedure as defined in the IDL or TIDL file. If
the remote procedure returns a value, the name of a dictionary variable in

DE-Light Constant Description

Attributes endpoint
exceptions
ignore
local
reflect_deletions

Type declarations pipe
union
ISO_MULTI_LINGUAL
ISO_UCS
162 Developing Distributed Transaction Applications with Encina

which the function is to place the return value must appear first in the
parameter list.

Each parameter in the parameter list can optionally be preceded by a tag that
shows its direction: [in], [out], [in,out] (or [inout]), or [return]. Constants in
parameter descriptions can be preceded only by the [in] tag. Constants in the
parameter description must be one of the following types:

String Constant
A (possibly empty) sequence of characters enclosed in double quote (“ “). If
the string constant is contained within another string, for example, if a string
constant is used as a parameter in the string argument to a callRpc() method
call, the string constant's double quotes must be preceded by a backslash
(\).

Integer Constant
A signed, 64-bit, long integer. A leading zero (0) indicates that the integer is
specified in octal; a leading 0x or 0X indicates that the integer is specified in
hexadecimal.

Floating Point Constant
A signed double that is written with a decimal point and an optional exponent,
which is converted as if by the valueOf method in the Double class.

Array Constant
Arrays are delimited by braces ({ }); the items in the array are separated by
commas. Arrays can contain strings, long integers, or doubles. For example,
an RPC call to an Encina monitor application server supporting the hello
interface looks like this:

// Note that the server name is not specified for
// Encina Monitor applications.
drpc.callRpc("interface=hello rpc=helloEncina" +

" [in] client_greeting [out] server_reply");

7.3.2 Making TRPC Calls
Basic TRPCs are similar to nontransactional RPCs except that they are
prefaced by a txBegin() method call (marking the beginning of the
transaction), and they end with one of the following method calls:

 • txCommit(), which commits all changes made by RPCs within the
transaction

 • txRollback(), which notifies the participants to roll back any changes made
by RPCs within the transaction
Internet Access for Java Clients 163

The basic steps in managing a transaction are:

1. Start the transaction by calling the txBegin() method.

2. Perform any actions that are part of the transaction (such as making
RPCs).

3. End the transaction by calling either the txCommit() method or the
txRollback() method.

Under TX, only the participant who started the transaction can initiate commit
processing. This occurs in an application when you call the txCommit()
method. However, calling this method does not mean that the transaction has
committed. It means only that you want to commit the transaction. Other
participants in the transaction must agree to commit.

Any participant in the transaction (the server, for example) can explicitly abort
the transaction if it encounters an error. If the transaction cannot be
committed, the txCommit() method throws an exception specifying that the
transaction has been aborted. The client can explicitly abort the transaction
by calling the txRollback() method.

The Java code sample in Figure 55 on page 165 shows the structure of a
basic transaction using the following methods:

txBegin()
txCommit()
txRollback()
txSetRollbackString()
txGetRollbackString()

Code not essential to the example in Figure 55 on page 165 has been omitted
(such as setting up parameters). Note that the sample block is enclosed by
try and catch statements to catch and handle exceptions. For more
information about exception handling, refer to Section 7.4, “Exceptions” on
page 166.
164 Developing Distributed Transaction Applications with Encina

Figure 55. Sample Java Code for Basic Transaction Programming (TRPC)

When you complete a transaction by using the txCommit() method, there is
some delay between the time the gateway receives the last transactional
RPC and the notification that the client has called the txCommit() method. You
can reduce the number of messages between the client and the gateway by

Transaction t = drpc.transaction();
try {
 t.txBegin();
 // Set up parameters (code omitted)...
 // Make the TRPC call
 drpc.callRpc("server=/.:/foo rpc=withdraw " +
 "[in] acct [in] amount [out] balance");
 // ... get values of out parameters (code omitted)
 // now commit or rollback the transaction.
 if (balance > 0) {
 // Attempt to commit. If another participant has rolled
 // back, an exception will be thrown.
 t.txCommit();
 }
 else {
 // Not enough funds, so roll the transaction back
 t.txSetRollbackString("Insufficient funds");
 t.txRollback();
 }
} catch (Exception e) {
 // Control arrives here if either the RPC failed, the
 // transaction commit failed or there was some other
 // runtime exception.
 if (t.txState() == t.TX_ACTIVE) {
 t.txSetRollbackString("Exception during transaction:" +
 e.toString());
 }
 // Roll back the transaction and report if the rollback fails.
 try {
 t.txRollback();
 } catch (DrpcTxException tExc) {
 throw new Exception("Rollback failed:" +
 tExc.toString());
 }
 // Report the reason for the rollback.
 throw new Exception("Transaction aborted:" +
 t.txGetRollbackString());
}

Internet Access for Java Clients 165

calling the declareLastCall() method before calling the final RPC in the
transaction. This tells the gateway to begin commit processing as soon as the
next transactional RPC completes successfully:

// ... code preceding the last RPC within a transaction
// ... transaction was started, more RPC were made
drpc.declareLastCall();
drpc.callRpc("server=/.:/foo rpc=withdraw " +
 "[in] acct [in] amount [out] balance");
// ... get values of out parameters (code omitted)
if (balance > 0) {

t.txCommit();
else {

// ... roll-back thetransaction in the usual way

7.4 Exceptions

Exceptions are used in Java to handle errors. A Java exception is an object
that describes an error that has occurred. When an error occurs, an
Exception object is created and thrown in the method that caused the
exception.

The try/catch block is used to manage exception handling. Basically, you try
to execute a block of code. If an error occurs, the system throws an
exception. You can choose to catch the exception based on its type. When
handling an exception, you can choose to throw the exception again to
enable others to catch and handle it as well.

The following example shows the basic form of an exception-handling block:

try {
 // block of code
} catch (Exception e) {
 // code to handle exceptions of type Exception
 throw(e); // re-throw the exception
}

DE-Light has defined two public exception classes. The DrpcException class
includes exceptions that can occur during DE-Light operations. The
DrpcTxException class includes exceptions that can occur during DE-Light
transactional operations.

These classes encapsulate DCE, Encina, and DE-Light error codes as Java
exceptions. Each exception contains an integer code number (drawn from the
DCE, Encina, and DE-Light error spaces) and a detail message.
166 Developing Distributed Transaction Applications with Encina

The detail message normally contains a translation of the error code, except
when the exception was raised during a transaction. In that case, the detail
message contains the transaction rollback string. (Note that rollback strings
are not always available to every participant in a transaction.)

7.5 Java Client Security

Creating a DE-Light application involves communications between a client, a
gateway, and a server. DE-Light security, which uses the SSL in Web browser
applets, is used for communication between the client and the gateway. DCE
security is used for communication between the gateway and the server.

7.5.1 Setting the DE-Light Security Level
DE-Light security is used in communications between the client and the
DE-Light gateway when there is an HTTPS end point (for instance,
http:prod_one[1234,5678]). DE-Light security uses the SSL in Web browsers
to provide various levels of security.

When you use the supported browsers to run a DE-Light client as a Web
browser applet, and that applet was loaded from a Web server, Java
connections can be made only to the same host from which the applet was
loaded. As a result, the Web server and the DE-Light gateway must be
running on the same host.

If your DE-Light client applet requires security, the following requirements
must also be met:

 • The gateway must have been configured to use security. It must have
been started with a secure end point and with a signed key ring file and
password combination. Optionally, the gateway's security range can also
be restricted by using the -S option with the drpcgwy command.

 • The browser must have SSLV2 enabled. See the Release Notes for a list
of the SSL-capable browsers that have been certified to work with
DE-Light.

 • The DE-Light client applet must request a security level that is compatible
with the set of ciphers that are available in both the browser and the
gateway. The set of available ciphers can be limited by export restrictions
or by the configuration of the gateway.
Internet Access for Java Clients 167

You can set the DE-Light security level by using the setSecurity() method.
The method takes the constants listed in Table 6 on page 168 as its values.

Table 6. DE-Light Client Security Levels

If the DE-Light security level is set to SEC_INHERIT, the DCE security level
in use between the gateway and the server is inherited for use between the
client and the gateway.

DE-Light Constant Description

SEC_NONE Use no DE-Light security.

SEC_BEST Use the highest available DE-Light
security level even if that means no
security.

SEC_INHERIT Continuously inherit the DE-Light
security level based on the DCE
security level in use between the
gateway and the server.

SEC_CIRCUIT_AUTH Use SSL security for privacy and
integrity protection only on the initial
request (while establishing the
connection).

SEC_PACKET_INTEGRITY Use SSL security for privacy and
integrity protection on the initial
request and for integrity protection
on all other requests.

SEC_PACKET_PRIVACY Use SSL security with a cipher key
that is 40 bits or greater.

SEC_ENCRYPT Identical to
SEC_PACKET_PRIVACY.

SEC_PACKET_PRIVACY_WORLD Use SSL security using only
US-exportable ciphers.

SEC_PACKET_PRIVACY_US Use SSL security with a cipher key
that is greater than 40 bits.

SEC_PACKET_PRIVACY_US_128 Use SSL security with a cipher key
that is 128 bits or greater.

SEC_MAX_VALUE Use the highest SSL security level
that is defined (currently 128 bits).
168 Developing Distributed Transaction Applications with Encina

To set the DE-Light security level, call the setSecurity() method:

drpc.setSecurity(value);

where drpc is a reference to a DrpcConnection object defined earlier in the
client application, and value is one of the constants listed Table 6 on page
168. For example, to set the DE-Light security level to SEC_NONE, use the
following code:

drpc.setSecurity(DrpcConnection.SEC_NONE);

If you are using a TCP or HTTP connection between the DE-Light Java client
and the DE-Light gateway, the only possible value for setSecurity() is
SEC_NONE.

7.5.2 Setting the DCE Security Level for the Gateway
The standard DCE security levels are available for use in communications
between the DE-Light gateway and the Encina servers.

You can set the DCE security level by using the setDceSecurityLevel()
method. The method takes the constants listed in Table 7 on page 169 as its
values.

Table 7. DCE Security Levels for DE-Light Gateways

DE-Light Constant DCE Value Description

DRPC_DCE_PROTECT_DEFAULT 0 - Default Use the rpc_c_protect_level_default
DCE security level for communications
between the gateway and the server.

DRPC_DCE_PROTECT_NONE 1 - None Use the rpc_c_protect_level_none
DCE security level for communication
between the gateway and the server.
This DCE security level specifies that
no authentication is performed, no
tickets are exchanged, and
transmissions are in the clear.

DRPC_DCE_PROTECT_CONNECT 2 - Connect Use the rpc_c_protect_level_connect
DCE security level for communication
between the gateway and the server.
This DCE security level specifies that
protection is performed only when the
client establishes a relationship with the
server.
Internet Access for Java Clients 169

Set the DCE security level using the setDceSecurityLevel() method:

drpc.setDceSecurityLevel(value);

DRPC_DCE_PROTECT_CALL 3 - Call Use the rpc_c_protect_level_call DCE
security level for communication
between the gateway and the server.
This DCE security level specifies that
protection is performed only at the
beginning of each RPC when the server
receives the request.

DRPC_DCE_PROTECT_PACKET 4 - Packet Use the rpc_c_protect_level_packet
DCE security level for communication
between the gateway and the server.
This DCE security level ensures that
all RPCs for a given secure
connection are from the same DCE
principal on the gateway.

DRPC_DCE_PROTECT_PKT_INTE
G

5 - Packet
Integrity

Use the
rpc_c_protect_level_pkt_integ DCE
security level for communication
between the gateway and the server.
This DCE security level ensures and
verifies that none of the data
transferred between the gateway and
the server has been modified.

DRPC_DCE_PROTECT_PKT_PRIV
ACY

6 - Packet
Privacy

Use the
rpc_c_protect_level_pkt_privacy DCE
security level for communication
between the gateway and the server.
This DCE security level specifies that
protection is performed as specified by
all of the other levels and that each
RPC argument value is also
encrypted.

DRPC_DCE_PROTECT_MAX_VAL
UE

6 - Packet
Privacy

Use the highest DCE security level
that is defined for communication
between the gateway and the server.
Currently, the maximum is packet
privacy.

DE-Light Constant DCE Value Description
170 Developing Distributed Transaction Applications with Encina

where drpc is a reference to a DrpcConnection object defined earlier in the
client application, and value is one of the constants listed Table 7 on page
169. For example, to set the DCE security level to
DRPC_DCE_PROTECT_NONE, use the following code:

drpc.setDceSecurityLevel(DrpcConnection.DRPC_DCE_PROTECT_NONE);

Notice that the DCE security level cannot be changed in the middle of a
transaction.

IMPORTANT: The DCE security levels set through this method are the
minimum DCE security levels that will be used. The server can request a
higher security level, and the gateway will comply.

To obtain the current DCE security level, call the getDceSecurityLevel()
method:

int level = drpc.getDceSecurityLevel();

7.5.3 Creating a Login Context
If your Encina server requires authenticated RPCs, your DE-Light Java client
has to authenticate to DCE before attempting any communication with the
Encina application. Because the Java client does not necessarily run within
the same DCE cell, it uses the DE-Light gateway to perform the
authentication to DCE. Therefore you have to create a DCE user for each
client that accesses the Encina application.

A DE-Light Java client can authenticate to DCE through the gateway by using
the dceLogin() method:

drpc.dceLogin(principal, password);

where drpc is a reference to a DrpcConnection object defined earlier in the
client application. The values of principal and password have already been
set, possibly by prompting the user using the Java applet to type them in. The
arguments, principal and password, are strings that hold the name of the
DCE principal to which you want to authenticate and the password for that
DCE principal.

The following code demonstrates how to authenticate to DCE at the DE-Light
gateway:

try {
 DrpcConnection drpc = new DrpcConnection(gwy_name);
 drpc.dceLogin(principal, password);
} catch (DrpcException e) {
 System.out.println("Login failed: " +
Internet Access for Java Clients 171

 e.toString());
}

IMPORTANT: Set the DE-Light and DCE security levels before creating a
login context to ensure that the login information is protected.

7.6 Loading Gateways with IDL and TIDL Files

In order for a DE-Light client to communicate with an Encina server, the
DE-Light gateway has to be configured to understand the interface exported
by the Encina server. This configuration is done by loading the TIDL file
describing the TRPC interface into the gateway. As soon as the interface has
been loaded the gateway is ready to receive requests from the client,
interpret them, and forward them to the corresponding Encina server.

The DE-Light gateway can dynamically load TIDL files. It can also be started
with a specified list of TIDL files that are loaded right away. You can specify
which TIDL files you need to load by using multiple -L and -X options to
drpcgwy.

Once the gateway is up and running, you can load additional TIDL files
through the gateway administrative utility, drpcadmin:

drpcadmin list interfaces -gateway /.:/orders/enc_prod/server/drpc-gateway
drpcadmin load YOUR.TIDL -gateway /.:/orders/enc_prod/server/drpc-gateway

The first command shows you which TIDL files are currently loaded in the
gateway /.:/orders/enc_prod/drpc-gateway. The second command loads the
TRPC interface described in the TIDL file, YOUR.TIDL, into the same
DE-Light gateway.

7.7 Short Example

Figure 56 on page 173 through Figure 58 on page 175 provide a short
example of how to write a simple DE-Light Java client. In the example the
client sends a single transactional request to an Encina Monitor server.
172 Developing Distributed Transaction Applications with Encina

Figure 56. (Part 1 of 3) Example of a Simple DE-Light Java Client

/**
 * This Java DE-Light example is intended to demonstrate the use of the
 * basic methods that are involved in creating an Encina DE-Light
Monitor
 * client.
 *
 * Note that in addition to the TIDL file Monitor clients require a
 * TACF file, which describes the server binding method, among other
things.
 *
 * HelloEncina is designed as a client for a client/server application
 * that supports a single TRPC with the following the TIDL signature:
 *
 * [transactional] void helloEncina (
 * [in,string] char client_greeting[],
 * [out,string] char server_reply[100]
 *);
 *
 * This example client is intended for illustrative purposes only and
 * no corresponding server is provided. See the ListRpc, Greet, and
 * Telshop examples for a more detailed look at writing Java
 * DE-Light applications.
 */
import COM.Transarc.Delight.*;
import java.io.*;
public class HelloEncina {
 /* DE-Light connection information */
 private static DrpcConnection drpc;
 /**
 * The main method is called to run this standalone applet.
 *
 * @param arg Specifies the DE-Light gateway name
 * to which the client is to bind.
 */
 public static void main(String arg[]) throws Exception {
 // Check the argument.
 if(arg.length < 1) {
 System.out.println("Usage: java HelloEncina" +
 " gateway-name");
 System.exit(1);
 }
Internet Access for Java Clients 173

Figure 57. (Part 2 of 3) Example of a Simple DE-Light Java Client

// Obtain a gateway connection, specifying the gateway
 // location.
 try {
 // The gateway argument should have the form:
 // proto:machine[proto-specific], e.g., tcp:gecko[1234]
 drpc = new DrpcConnection(arg[0]);

drpc.setDceSecurityLevel(DrpcConnection.DRPC_DCE_PROTECT_DEFAULT);
 } catch (DrpcException e) {
 // Control arrives here if the gateway connection fails.
 drpc = null;
 System.out.println("Failed to obtain DrpcConnection: " +
 e.toString());
 e.printStackTrace();
 System.exit(1);
 }
 // Get a reference to the default data dictionary
 // and the transaction context for the connection.
 DrpcDictionary dict = drpc.dictionary();
 Transaction t = drpc.transaction();
 // Make the TRPC.
 try {
 // Begin the transaction.
 t.txBegin();
 // Store the [in] parameter in the data dictionary.
 dict.put("client_greeting", "Hello server.");
 // Issue the call to the gateway/server.
 // Note that the server name is not specified for
 // Encina Monitor applications.
 drpc.callRpc("interface=hello rpc=helloEncina" +
 " [in] client_greeting [out] server_reply");
 // Retrieve the [out] parameter from the data dictionary.
 String reply = (String) dict.get("server_reply");
 System.out.println("The server said: " + reply);
 // Attempt to commit the transaction.
 t.txCommit();
174 Developing Distributed Transaction Applications with Encina

Figure 58. (Part 3 of 3) Example of a Simple DE-Light Java Client

} catch (Exception e) {
 // Control arrives here if either the RPC failed, the
 // transaction commit failed or there was some other
 // runtime exception.
 if (t.txState() == t.TX_ACTIVE) {
 t.txSetRollbackString("Exception during transaction:" +
 e.toString());
 }
 // Roll back the transaction and report if the rollback
fails.
 try {
 t.txRollback();
 } catch (DrpcTxException tExc) {
 throw new Exception("Rollback failed in helloEncina:" +
 tExc.toString());
 }
 // Report the reason for the rollback.
 throw new Exception("Transaction aborted in helloEncina:" +
 t.txGetRollbackString());
 }
 }
};
Internet Access for Java Clients 175

176 Developing Distributed Transaction Applications with Encina

Part 3. Case Study

How can I design my application using Encina technology? How do I start my
project? What are the infrastructure considerations I have to think about?
Where do I start coding? How do I code all the different interfaces? How can I
integrate an existing database into my new, multitier, distributed transaction
system architecture? How can I enable my distributed transaction system
architecture to the Web?

In Part 3 we discuss all of these questions and many more. We show you
through a case study how to architect, design, Web-enable, and code an
Encina multitier distributed transaction application. Although the application
we develop in this part is not a finished fully functional sample application,
you can download most of the modules we discuss and describe from
http://www.redbooks.ibm.com. There you must go to "additional material" and
click on book number SG245241.
© Copyright IBM Corp. 1998 177

178 Developing Distributed Transaction Applications with Encina

Chapter 8. Analysis and Architecture Phase

In this chapter we focus on issues related to understanding the business
problem at hand and establishing the high-level architectures for both the
software and the infrastructure. This phase begins with an examination of the
business processes at work in the environment and of the existing computing
infrastructure. Once these are well understood, we proceed with the
development of an architectural model for the application and for the
infrastructure in which the application will run.

8.1 Business Problem Analysis

The first and most critical step in the process of developing the case study
application is to fully understand the needs that exist and the objectives of the
effort. This requires that we first step back from the technical issues and
examine the business itself. When we look at the situation at this level we find
that a set of business processes drives the business in its current form. There
is also a new set of business processes, envisioned by the leaders of the
business, that represent an evolution from the current business. The new set
of business processes requires that current information systems be modified
or new information systems be developed.

In addition to the business processes, there is also a set of factors that are
important to the business or to the leaders of the business. Such factors
might include a desire to develop a competitive edge based on innovative
technology or a desire to minimize risk by implementing only "industry
standard" technology. Misunderstanding the drivers behind the business can
easily result in inappropriate decisions during the application development
process.

8.1.1 Case Study Business Problem
Our case study customer, ACME Widgets, produces and sells a range of
products. Its current business is based on selling its products through retail
outlets, not directly to the general public. However, in an effort to expand its
business, ACME wants to begin marketing its products directly. It does not
intend to open retail stores, however. Instead it will focus on marketing
activities that will promote sales through the Internet and by telephone.
ACME recognizes that new information systems have to be developed to
support this new type of business but wants to leverage its exiting systems as
much as possible. Clearly ACME sees that an innovative application of
technology such as direct sales through the Internet can be a competitive
advantage. However, the leaders of the business want to preserve their
© Copyright IBM Corp. 1998 179

existing investments in hardware, software, and application development as
much as possible. They also want to base the new development on proven
technologies that will allow for robust, scalable systems.

On the basis of conversations with critical business leaders and reviews of
company documents, we produced a model of the new business processes
required to implement this new line of business. For the purposes of our case
study, we have taken a very limited scope on the problem so that we can
show the entire process in a reasonable space. However, our experience has
been that the techniques we are using here will continue to work well with far
larger problems. It is just as important to use methodologies that scale up for
larger problems as it is to build software systems that scale up for higher
processing volumes.

8.1.2 The Use Case Model
For this case study we chose to use a business process analysis technique
known as use case analysis. This technique originated as part of Jacobson’s
work with object-oriented software development but has become widely
accepted as a business process engineering tool. For complete descriptions
of the technique see Jacobson’s Object-Oriented Software Engineering: A
Use Case Approach, and The Object Advantage, both published by the
Addison-Wesley Publishing Company.

The intent of the use case analysis is to produce a model of the business in
terms of actors and use cases. Actors are the people and things that are
affected in some way by a business process. Use cases are small-grained,
individually meaningful business processes. A use case model contains of all
the actors that are important within the scope of the problem being
considered. The model also contains all of the use cases which, taken
together, represent the complete set of processes that are implemented by
the business - again within the scope being considered. The relationships
between the actors and use cases are shown on a diagram known as a use
case diagram. In addition, the model contains complete narratives for each of
the use cases. The narratives describe, in business terms, the activities that
are performed as part of the use cases.

Using a tool specifically designed for use case modeling facilitates
construction and maintenance of the model. We use a tool called Rational
Rose from Rational Corporation to develop the case study model.
180 Developing Distributed Transaction Applications with Encina

8.1.2.1 Actors
The actors in the use case model are: External Customer, Order Operator,
Order Processor, and Product Database. These are roles that are played by
people and things considered to be "users" of the new system.

External Customer - The External Customer actor represents a person
accessing our system to build and submit an order for one or more of our
products. There is no assumption that the customer has ever placed an order
before.

Order Operator - The Order Operator actor represents an employee of our
company who is responsible for creating orders on behalf of a customer. The
Order Operator may work with the customer through any communications
medium, such as phone, fax, or e-mail.

Order Processor - The Order Processor actor represents an employee of the
company who is responsible for fulfilling the orders that are placed by, or on
behalf of, the External Customer.

Product Database - The Product Database actor represents the existing
product database in use by the company. This database is shown as an actor
because it is considered to be a fixed component that is not subject to change
in the new system.

8.1.2.2 Use Cases
The use cases that describe the granular business processes that are part of
the new business area are:

Place an Order - The Place an Order use case is responsible for the
sequence of activities that are required to be executed as part of creating,
constructing, and submitting an order. Here is the sequence of activities:
The requester uses an interface (Web-based, GUI, or command-line) to
provide one or more product selections. The product selection includes the
product identifier and a requested quantity. The requester then provides
information about shipping and payment, such as the ship-to name and
address and credit card information. All of the information submitted is
included in the "order data store." Once all of the information is provided, the
order is marked as completed. Finally, the order is verified through the Verify
Order use case.

Maintain Product Info - The Maintain Product Info use case is responsible
for providing access to the product info data store and for updating the data
store. The access requirements are:
Analysis and Architecture Phase 181

1. Produce a complete list of products to be produced that includes the
product ID, description, and price for each product, and the current
inventory level for each product.

2. Update the inventory level for a given product by a specified amount.

Verify Order - The Verify Order use case is responsible for examining the
payment information provided as part of an order, specifically the credit card
information, and verifying its accuracy. When the accuracy of the information
is verified, the order is marked as "ready to process" in the order info data
store. If the order cannot be approved because of incomplete or inaccurate
information, it is marked for review. The Mark Order for Review use case is
responsible for the activities involved in marking the order for review.

Review Order - The Review Order use case is responsible for providing
access to the information about orders that have previously been placed. The
use case is initiated by either the External Customer actor or the Order
Operator actor. The use case requires that an order number be provided. The
use case accesses the stored information about the specified order and
makes it available to the requester.

List Orders - The List Orders use case is responsible for accessing the order
data store and producing a list of the basic order information about each
order, including information about the status of the order, the recipient of the
order, and the payment method for the order.

Mark Order for Review - The Mark Order for Review use case extends the
Verify Order use case when a decision made within the Verify Order use case
calls for a manual review of the order. Review types can be either a "warning"
review or a "failure" review, depending on the severity of the problems with
the order information.

Print Review Report - The Print Review Report use case is responsible for
producing a formatted report of all orders that have been flagged for review.
Information that is critical for a manual review of the order is included in the
report. Additional information can be retrieved through the Review Order use
case. The system will produce the report whenever a user requests it.

8.1.2.3 Use Case Diagram
The relationships between actors and use cases are captured in the use
cases, but a more meaningful and concise representation can be shown in a
use case diagram. Figure 59 on page 183 shows the use case diagram that
summarizes the information for our model.
182 Developing Distributed Transaction Applications with Encina

Figure 59. Use Case Diagram

8.2 Existing Infrastructure Analysis

To develop an appropriate strategy for building a new information system, the
critical aspects of the existing infrastructure must be identified and
researched. Among the areas that must be considered are the existing
systems or data stores that will interface with the new systems, the hardware
environment, the network environment, and the development standards for
languages and tools.
Analysis and Architecture Phase 183

8.2.1 Systems and Data
Our initial analysis has identified that there is an existing product database
with associated programs for accessing the database. The database and the
associated program logic will be preserved. Our new system will use the
existing programs to access the product database. Our research reveals that
the product database system is based on VSAM and is accessed through
CICS programs. The CICS programs are layered into presentation programs
and access programs that communicate through APPC (LU 6.2).

No other existing systems are considered as part of the limited scope of our
case study. However, in more realistic scenarios it is common for a number of
existing systems, possibly on disparate platforms, to be actors relative to a
new system.

8.2.2 Hardware Environment
The hardware environment into which we will place our new system consists
of a host environment running MVS/ESA, RS/6000 servers running AIX, and
microcomputers running Windows NT.

8.2.3 Network Environment
The network environment in place consists of both a SNA network and
TCP/IP network. One of the AIX servers participates in the SNA network with
the host. All of the AIX servers and Windows NT computers participate in the
TCP/IP network. There is no existing DCE cell in place.

8.2.4 Languages and Tools
We have determined that the application development group has expertise in
COBOL, CICS, and C programming. Within the AIX and Windows NT
environments, the tools in use are the C-Set product suite and the Visual
Studio product suite, respectively.

8.3 Application Architecture

The next step is to develop a high-level, architectural description of the new
system. All of the information gathered previously feeds into the
considerations we now go through in developing the application architecture.
Typically this is an iterative process where the designers propose ideas for
portions of the architecture and then test these ideas against the
requirements. As portions of the architecture emerge from this process, the
new parts of the architecture must be tested for integration with the other
architectural pieces as well as against the requirements.
184 Developing Distributed Transaction Applications with Encina

8.3.1 Architectural Decisions
On the basis of the business requirements and drivers identified, we have
determined that the new application will be built as a distributed processing
system. We are going to be working with multiple interface points into our
application (in-house and from the Internet) and accessing data from multiple
sources (existing product data and new order data). A multitier distributed
transaction system architecture is well suited to this type of situation.

8.3.1.1 Distribution of Responsibility across Tiers
The need to support multiple types of interfaces, particularly a Web-based
interface, leads us to focus on a "light client" approach to the architecture.
The "light client" concept is based on the idea that the component of the
system that executes on the end user’s computer should focus on gathering
input from the user and presenting the results. All processing will be done by
"application server" programs with which the client programs communicate.
This approach allows the business logic to be coded only once (as part of the
application server program), rather than recoded for each different client
implementation.

8.3.1.2 Transactional Requirements
The need to deal with multiple data sources and to ensure that updates are
always synchronized between data sources leads us to conclude that a
transaction processing monitor environment is an appropriate architectural
choice. The use of a transaction processing infrastructure will enable us to
use the existing product database and to implement a new order database
without introducing data integrity problems between the data sources.

8.3.1.3 Synchronous and Asynchronous Processing Requirements
A review of the use cases shows a number of interactions between actors
and use cases that are clearly synchronous in nature. For example, the
Review Order use case is used by the External Customer actor to see the
contents of the current order. This must be implemented synchronously.
However, we will implement the Verify Order use case as an asynchronous
process to avoid potential processing bottlenecks. We will implement a
queue-based communication between the process that implements the Place
an Order use case and the process that implements the Verify Order use
case.

8.3.1.4 Encina Capabilities Supporting Architecture Needs
All of the critical architectural issues to be dealt with here are handled by the
Encina product suite. We can use the Encina Monitor environment to
implement application servers that perform the logic required by the
Analysis and Architecture Phase 185

application. We can use the standard Encina and DCE client libraries to
implement a Windows-based client program for in-house users. We can use
the DE-Light client and DE-Light Gateway to implement a Java applet client
for use by external customers over the Web. We can use the standard RPC
mechanisms for synchronous processing and an RQS server for
asynchronous processing. We will use the PPC Gateway component of
Encina to provide transactional access to the product database on the host.
We will use the XA resource management capabilities to implement our new
order database in a relational database in the distributed environment.

8.3.1.5 Mapping Use Cases to the Application Architecture
The use cases can be divided roughly into those that are directly accessed by
the External Customer or by the Order Operator as the External Customer’s
proxy, and those that are accessed by the Order Processor. Because we
have opted for a thin client approach in our architecture, the mapping of use
case responsibilities will be to application servers, exclusively. In this case we
will choose to have two separate application server types defined in our
architecture, with the responsibilities of each application server divided along
the use case boundaries identified in the previous sections.

The application server which supports the External-Customer-related use
cases will be called OrderProcServer and will implement the following use
cases:

 • Place an Order
 • Review Order
 • List Orders
 • Maintain Product Info

The application server that supports the Order Processor use cases will be
called the VerificationServer and will implement these use cases:

 • Verify Order
 • Mark Order for Review
 • Print Review Report

Notice that we place the Verify Order use case in the application server that
supports the Order Process use cases even though it is indirectly related to
the Place an Order use case, which is in the application server that supports
the External Customer use cases. Our reasoning here is twofold: first, the
requirements have already identified that there is a need to make the
verification processing asynchronous, and second the distribution of
responsibility would be skewed toward the OrderProcServer if it handled the
Verify Order use case in addition to the others already assigned to it. We are
applying a heuristic consideration at this point that is intended to avoid
186 Developing Distributed Transaction Applications with Encina

potential performance problems down the road. Our experience has shown
that a division of responsibility along the lines of related use cases and an
even distribution of responsibilities across application servers are good
starting points for an application server design.

8.3.2 Application Architecture Diagram
The architectural decisions described above are captured in a high-level
application architecture diagram (see Figure 60 on page 188). The major
components of the application are shown along with the communication
mechanisms that are used between the various components. Note the focus
here is on the application components and not on the hardware. One of the
strengths of Encina is that it provides great flexibility in how a system is
actually implemented. For example, our application architecture calls for two
Encina monitor application servers to be built. When these are implemented,
we may choose to run multiple instances of each server, possibly on different
computers.
Analysis and Architecture Phase 187

Figure 60. Application Architecture Diagram

8.4 Infrastructure Architecture

After considering the existing hardware and networking infrastructure and the
application architecture, we have to develop an infrastructure architecture. In
an Encina/DCE environment the infrastructure architecture is largely
concerned with the DCE cell structure, the Encina cell structure, and the
management strategies that affect the assignment of application components
to physical computers.

The infrastructure architecture referred to here is for the production
deployment of the application. There will, of course, also need to be an
infrastructure for the development environment.
188 Developing Distributed Transaction Applications with Encina

8.4.1 DCE Cell Structure
DCE provides the fundamental facilities on which Encina and the application
depend. A number of considerations led us to conclude that the best choice
for a production implementation is to implement the entire application within a
single DCE cell. Security services and naming services are cell-specific. An
Encina cell cannot span DCE cells. Although it is possible to implement an
application that spans multiple DCE cells, the mechanisms that must be
coded to make this work are not trivial. Thus, unless you find extraordinary
circumstances in the geographic distribution of computing devices or have
special security considerations, we recommend that you implement a single
DCE cell for the production application. Typically, many applications will
share the same DCE cell.

8.4.2 Encina Cell Structure
An Encina cell differs from a DCE cell in that only the computers that will run
application servers or Encina services are part of the Encina cell, not the
computers that simply run client programs. However, all of the computers that
are part of the application, including the clients, must be part of the DCE cell.

Thus the decision about Encina cell structure consists of deciding how to
divide the computers that are part of the DCE cell into one or more Encina
cells. The considerations that drive this decision are primarily related to fault
tolerance and fail-over. Because there is a single, nonredundant Encina Cell
Manager process, the architecture must make provisions for handling a loss
of this critical component.

One fail-over strategy is to implement multiple Encina cells, each of which
contains a complete set of the server components for the application. The
client can then respond to a loss of communication with the Encina cell by
rebinding to another cell. Because the other cell has identical components,
you do not have to change the client code to use the alternative set of
servers. In fact, if this strategy is implemented, there would typically be active
clients using each of the Encina cells. If a cell becomes unavailable, the
clients using that cell would join the other clients that were already attached
to the other cell. With this strategy computing resources are well utilized, but
there could be a performance degradation if all clients are forced to use the
same Encina cell.

Another fail-over strategy is to implement a single Encina cell for the
application but provide for quick recovery of the Encina Cell Manager in the
event of a problem. This can be done through a "hot swappable" hardware
implementation, or by having multiple Encina Cell Managers defined on
Analysis and Architecture Phase 189

different computers in the cell (with only one actually running at any point in
time).

The choice of fail-over strategies hinges on the critically of the application
and the expense involved in providing the level of fault tolerance. For our
case study application we will implement a single Encina cell.
190 Developing Distributed Transaction Applications with Encina

Chapter 9. Design Phase

During the design phase of the development life cycle we focus on the
internal structure of the various components of the application and of the
infrastructure. We make decisions regarding the layering of the software,
determine the structure of the new data, define the interfaces between the
application components, make decisions about error handling, and determine
the placement of the infrastructure components on the available computers.

9.1 Application Design

The design phase consists of a number of activities that are carried out
somewhat in parallel with iterations that successively refine the design of the
system. The activities are detailed analysis of each component, design of the
application logic, design of the application data sources, design of the server
interfaces, and design of the transactions within the system.

One of the discoveries we made during the business problem analysis was
that the programming expertise of the application development group was
largely in C. For this reason, we decided to develop the application in C,
using the standard Encina API as opposed to using C++ with the Encina++
API. Making this decision early on was significant because of the differences
in the capabilities between Encina and Encina++. Specifically, the standard
Encina API does not support dynamic server objects, which we might have
considered using for internal state management.

Despite the decision to implement in a nonobject language, there is still
benefit in doing the analysis and design of the application logic in terms of
business objects. Object-oriented analysis and design has proven to be more
effective in most cases than traditional techniques. The steps of this phase
will be documented in Rational Rose, building on the results of the use case
analysis described previously.

9.2 Object Modeling

The object modeling process is concerned primarily with identifying the
business objects and implementation objects whose data and behavior jointly
implement the overall functioning of the system. The information about the
objects that is developed in this activity is captured in a model, sometimes
referred to as the object model. The object analysis process contributes the
information about the business objects and their structural relationships that
is captured in a class structure diagram. The object model is refined by the
© Copyright IBM Corp. 1998 191

object design process, which focuses primarily on the behavior of the objects
and the functions required to provide the behavior.

An examination of the use case model reveals some, if not all, of the
business objects in the system. Most of the structural relationships between
the business objects are revealed as well. Reviewing an initial object model
with the key business people allows us to fill in any missing information. The
class structure diagram in Figure 61 on page 192 shows the results of this
process for our case study.

Figure 61. Business Objects Class Structure Diagram

The class structure diagram at this point shows the business classes and the
data associated with each class. The object design will identify the classes
needed to implement the working system and fill in the functions associated

1

1

Recipient

recipName : Name
recipAddr1 : AddrLine
recipAddr2 : AddrLine
recipCity : City
recipState : State
recipZip : Zip

1

1

PaymentMethod

paymentCardType : CardType
paymentCardNumber : CardNumber
paymentCardExpDate : Date
paymentCardHolder : Name
payment

0..*
1

Order

orderId : ID
orderDateTime : DateTime
orderStatus : Status
orderStatusDateTime : DateTime

1

1

1

1

0..*

OrderedProduct

quantity : Qty
productName : Name
productPrice : Amount

0..*
1

1

Product

productId : ID
productName : Name
productDescription : Desc
productInventory : Qty
productPrice : Amount

0..* 1
192 Developing Distributed Transaction Applications with Encina

with each object. The data design process will use the information in the
class structure diagram to determine a database design for the new data.

9.3 Object Design

The object design process results in a refined object model. The object model
is expanded to include objects that are introduced for implementation (rather
than business) reasons and the functions that implement the responsibilities
of each of the objects. In our case study, the implementation objects that we
will introduce are related to the multitier character of the application.

The functions that are required to implement the behavior of the system are
typically defined through a process called event trace modeling, which maps
the sequence of function calls that perform a larger-scale process. We will
use event trace modeling here.

9.3.1 Adding Implementation Classes
The nature of our application is that it will consist of a number of correlating
components, several of them implemented as Encina Monitor application
servers.

To represent each of the Encina Monitor application servers in our system, we
will introduce a class. The OrderProcServer will directly respond to client
requests, in the form of RPCs, so we will also introduce a class to represent
this interface, called OrderProcServer. Each of our data sources will be
represented by a class as well. These classes are OrderDB, ProductDB, and
VerifyQueue, representing, respectively, the new database containing the
order information, the existing product database on the host, and the RQS
queue used for asynchronous messaging. Figure 62 on page 194 shows the
relationships among the implementation classes.
Design Phase 193

Figure 62. Implementation Class Diagram

We opted to use separate classes to represent the order database, the
product database, and the verification messaging queue to gain some
flexibility in making implementation decisions. We have identified the need to
use a relational database for some of our data storage needs. We have not
made any decisions as to the particular database product that we will use. By
isolating the responsibility for accessing the relational database to one unit of
code, we can much more easily convert between implementations based on
different products. Similar considerations will cause us to isolate the
processing of the queues and of the host access. We might want to be able to
convert our application to use MQSeries as the queue manager instead of
RQS, or to use some mechanism other than PPC to communicate with the
host.

From an object modeling perspective, we can consider the implementations
of different versions of the same functionality to be subclasses derived from
an abstract base class. The extensions to the implementation class diagram
in Figure 63 on page 195 shows some of the possible subclasses for different
implementation decisions.

VerificationServer

Initialize()
Listen()
Shutdown()

OrderClient

OrderProcServer

Initialize()
Listen()
Shutdown()

OrderIFManager

listProducts()
orderItem()
reviewOrder()
viewOrders()
finalizeOrder()

VerifyQueue

addToReviewQueue()
removerFromReviewQueue()
addToVerifyQueue()
removerFromVerifyQueue()

ProductDB

getProductList()
updateProductQty()

OrderDB

getOrderProducts()
createOrder()
updateOrder()
listOrder()
194 Developing Distributed Transaction Applications with Encina

Figure 63. Extensions to the Implementation Class Diagram

9.3.2 Mapping the Functions
Each of the operations that our OrderProcServer will process is represented
by a function of the class that represents the server’s interface,
OrderProcIFManager. Note that the VerificationServer does not have an
interface that will be called from a client, and thus there is no corresponding
interface object for this server.

Each of the functions in the interface will be examined in more detail during
this phase of the lifecycle, and a diagram showing the sequence of function
calls required to implement the initial client request will be produced. These
diagrams are referred to as interaction diagrams, or event trace diagrams. In
the interest of space, not all of the diagrams will be shown. The diagram for
the finalizeOrder function is shown in Figure 64 on page 196. This diagram
shows one of the most complex functions we will need to implement, and
serves as a good example of how the transition will be made from the model
to the actual implementation of the software.

VerifyQueue

addToReviewQueue()
removerFromReviewQueue()
addToVerifyQueue()
removerFromVerifyQueue()

ProductDB

getProductList()
updateProductQty()

ProductDBPPC ProductDBMQ VerifyQueueRQSVerifyQueueMQOrderDBDB2 OrderDBOracle

OrderDB

getOrderProducts()
createOrder()
updateOrder()
listOrder()
Design Phase 195

Figure 64. Interaction Diagram for the finalizeOrder Function

Figure 64 on page 196 shows that the initial client request, finalizeOrder, is
made by passing the ID of the order as a parameter. The implementation of
this request proceeds to get the identified order from the order database,
update the product inventory in the product database for each of the products
on the order, add an entry on the verification queue for the asynchronous
request to the verification server, and update the order (to change the order
status). This sequence is shown as arrows between the lines representing
the objects. Each line is labeled with the function on the receiving object that
is being executed.

These diagrams work at a lower level of detail than those in the analysis
phase but are still at a fairly high level. Within each of the functions invoked
on the objects, for example, the getOrderProducts function on the OrderDB
object, there is still significant complexity of implementation. It is up to the
designer to determine the right level of detail to document at this point. In
general, the interactions between components should always be captured,
but the internals of the component’s implementation will be detailed only if it
is deemed to be complex enough to warrant the effort at this point. In our

client : OrderClient orderProcIFMgr :
OrderIFManager

orderDB : OrderDB productDB :
ProductDB

verifyQueue :
VerifyQueue

finalizeOrder (ID)

getOrderProducts (ID, Order*, RpcReturn*)

updateProductQty (ID, Qty, RpcReturn*)

add (ID, RpcReturn*)

updateOrder (Order, RpcReturn*)
196 Developing Distributed Transaction Applications with Encina

finalizeOrder diagram, the implementation of the getOrderProducts function of
the OrderDB will involve issuing database commands to a relational
database. The updateProductQty function of the ProductDB will involve a PPC
conversation with the host. The add function of the VerifyQueue will involve
issuing RQS commands to an RQS server. We cover these issues in detail in
Chapter 10, “Development Phase” on page 205.

9.4 Common Application Components and Standards

The identification of common application components that can be
standardized and shared throughout the development team is frequently left
for the implementation phase of a project but really should be addressed at
this point. On a project of any size, there will be some division of labor (a
topic addressed in some detail in Chapter 10, “Development Phase” on page
205) among developers. If we can identify aspects of the development that
can be standardized and reused instead of being “built from scratch” by each
team of developers, we can save development time and produce a neatly
structured application. Given that our application architecture places most of
the complexity of the system into the application servers, we must focus on
the application servers to identify commonalities. Among the candidates that
can be built as shared code modules or adopted as standards in the coding
are:

 • A standard error message structure and conventions for RPCs

 • A module to perform logging of messages to the server’s output log

 • A standard set of functions for server startup and processing

 • A module to generically process the results of Encina function calls

 • Standardized routines to access databases and other data stores

On a typical project, additional opportunities for developing common modules
will be identified during the development. We expect this to be the case and
will not consider it to be a failure of our foresight, but rather a test of our
resolve. It is easy to lose your focus on the “big picture” during the detailed
phases of implementation. This loss of focus causes you to miss or ignore
cases where you really should go back and create a new shared module.
When you decide to add a new common module during the implementation
phase, you will have to modify some existing code to take advantage of the
new module. In our experience, it is has always been worth the effort to do
this.
Design Phase 197

9.5 Data Design

The design of the new database for order information can proceed once the
class structure diagram of the business objects is complete. As we noted
earlier, many of the tasks in the design phase are conducted iteratively and
somewhat in parallel. The initial design of the database would probably be
done once the class structure diagram is complete, and before the interaction
diagrams are developed. Then, issues that arise during the design of the
interactions may cause the class structure and thus the database design to
evolve.

Our model shows that we have a collection of data concerning the order itself
and associated collections of recipient data and payment data. The
relationships between the classes representing this data are basically
“one-to-one," but allowing for the recipient and payment collections to be
optional. In a situation like this, the default translation between the objects
and the database design is to combine the collections into a single database
table. We will take this decision here and call for a single table, CustOrder,
which will have columns for each of the data items from the Order, Recipient,
and Payment objects.

The Order object is related to Product information through an intermediate
object, OrderProduct. This situation is interesting due to the fact that the
Product information will not be part of our new data because it already exists
in the host database. We do need to make provisions for the OrderProduct
information because it does not exist as part of the host product database.
Therefore we have chosen to include a table named OrderedProduct in our
new database design and to relate this table to the CustOrder in a
“one-to-many” fashion that allows the relationship to be optional. Typically, all
that would be done as part of this transition would be to include an orderId
column in OrderedProduct as a foreign key that establishes the
“one-to-many” relationship to the Order table, and a productId column that
does the same thing for the relationship to the Product table. However, since
the Product side of the original relationship between Orders and Products is
not part of our database, we have chosen to replicate some of the Product
information in our new database, specifically the productName and
productPrice data items. In database terms this is a denormalization of the
design. Denormalizing a database design is essentially a calculated risk.
Duplicated data has the potential to get out of synchronization and introduce
data integrity problems. However, having data readily available for processing
instead of incurring additional time to fetch it from the exclusive source can
yield significant performance improvements. Ours is clearly a case where
denormalization is warranted, because the alternative is to incur additional
198 Developing Distributed Transaction Applications with Encina

calls to the host system for Product data as part of the reviewOrder function
and elsewhere. In any event, because the productId is required to be part of
the OrderedProduct table but the RDBMS cannot treat it as a normal foreign
key, we have already introduced a denormalization of sorts. So, based on the
considerations above, we have two database tables, CustOrder and
OrderedProduct.

During our examination of the interactions that implement the interface of the
OrderProcServer, we were faced with the problem of how new order
identifiers are generated. The createOrder function requires that an identifier
be generated, but it is not clear where or how this should be done. In a
simplistic sense, we have three choices for where the ID will be generated: by
the client, by the application server, or by the database. The problem that
must be solved here is to ensure that the identifier generated is unique within
the system. If we attempt to generate the identifier within the client program,
we have to figure out how to keep one instance of the client program from
generating the same identifier as another instance of the client program in
use by another user. Although algorithms could be devised to guarantee a
unique identifier in this situation, they are difficult to implement. Considering
the application server as a possible generator of the order identifier raises the
same issue that we discussed for the client. Remember that there will usually
be multiple instances of the application server program running concurrently.
So we are left with the database as the most likely candidate for being the
generator of the identifier. As a rule of thumb, it is good practice to allow the
RDBMS to perform activities that are directly related to data integrity, such as
key generation and referential integrity checking.

There are several strategies for implementing key generation within a
RDBMS. Many database engines provide a built-in data type that can be used
as a primary key. These built-in data types are known by various names, such
as identity (Sybase) or sequence (Oracle). To use this facility, you simply
define the column to be of the appropriate type, and the generation of keys is
automatic. A problem with this approach is that it is somewhat proprietary, or
vendor-specific. And once the RDBMS generates the key, you typically have
to take additional steps to figure our just what key the RDBMS generated for
you. Another strategy that is widely used and is not proprietary to any DBMS
is the use of a special “next key” table to keep track of the keys that have
been generated. The next key table is the single source for identifiers and
thus can assure uniqueness. In an effort to avoid being database specific in
our case study application, we will implement the next key table approach to
key generation.

The final transition issue to be addressed is the determination of the data
types to use for the database columns. In the object model, the types were
Design Phase 199

left purposely vague to avoid dealing with too many details in the early stages
of the process. Now is the time to make the decisions about data types and
sizes. We have opted to keep the case study application simple by choosing
a limited number of different data types. We will use an integer data type for
identifiers. We will use char data types of various lengths for most of the other
columns, with the exception of the quantity column, which will be integer; the
price column, which will be a decimal type with a precision of 9 and a scale of
2; and the date/time columns, where we will use the database’s built-in
datetime data type. These data type mappings use ANSI standard SQL data
types and thus should be transportable across RDBMS products with little
effort.

Figure 65 on page 200 shows the final Order database design.

Figure 65. Order Database Design Diagram

9.6 Transaction Design

Critical to the design of distributed transaction processing systems is the
handling of transactions within the system. There is a strong interaction
between the architecture of the system and the details of the interactions
when it comes to designing the transactions.

The first step is to identify the processing where transactions will be required.
Where updates are made to more than one data source in the interaction
diagrams we have to introduce a transaction to ensure the integrity of the
200 Developing Distributed Transaction Applications with Encina

data sources. We also have to examine the logical sequence of calls that the
clients will make to the servers to see whether there are sets of
client-to-server calls that must be completed as a unit of work.

An examination of the interactions in our system reveals that several of the
implementations within the application servers will have to be transactional. A
good example is the finalizeOrder implementation, which updates the order
database, the product database, and the verification queue. You must
consider all of the interactions carefully to ensure that every instance of
multiple data source update is taken into account. An example of a
transactional requirement that would be easy to miss is the processing of the
VerificationSever. This process will need to dequeue an entry from the
verification queue, read an order from the order database, and update the
order’s status. Remembering that the dequeue operation is an update of the
verification queue, we see that this scenario must be transactional.

In our case study design none of the client requests to the servers will have to
be done within a unit of work. The semantics of each request are such that
each represents a complete operation that is independent of the other calls.
(Note that this does not imply that there are no sequencing requirements for
the calls; clearly there are such requirements in this case.) In fact, this is no
accident or coincidence. It is generally considered to be good practice to limit
the number of instances where a transaction has to be started within the
client process. Having the client as a participant in the coordinated commit
processing adds to the overhead of the commit and affects performance. In
the most extreme case, poor design could cause a transaction to be held
while a user views data on the screen, potentially causing a severe
concurrency problem in the system. In addition client-side transactions place
limits on the implementation of the client programs. For example, extending
an application by introducing remote client programs that communicate with
severs over slow or unreliable communication channels might be impractical
if the clients have to initiate transactions. The design process we have used
here has purposely avoided the need for client-side transactions. However, if
you find yourself in a situation where they are required, remember that the
coding techniques for client-side transactions are identical to the techniques
we will use within the servers to start and end transactions.

We know of no diagramming notation specifically for recording transaction
requirements, so we will simply list the instances where we have concluded
that transactions will be needed. They are:

 • OrderProcServer
 • finalizeOrder()

 • updates order database
Design Phase 201

 • updates product database
 • update verification queue

 • VerificationSever
 • processQueueEntry()

 • updates verification queue
 • updates order database

Now we need to validate our architectural decisions in light of these
transactional requirements. Taking the case study application, we find that
the components affected are the RDBMS in which we implement the order
database; the Product database on the host, which we are accessing through
the PPC gateway; and the verification queue, which is implemented with
RQS. The latter two components are certainly no problem, because PPC and
RQS can participate in the transactions through the native Encina transaction
mechanisms. We do have to issue one caution about PPC, however: PPC
servers to bridge between the Encina transactional environment and the
CICS transactional environment. The CICS system must be accessible from
the computer running the PPC gateway through a SNA connection that
supports the synclevel 2 protocol. Not all operating systems support a SNA
connection at synchlevel 2, so you must be sure that you are using an
operating system on the PPC gateway computer which does (for example,
AIX). The RDBMS cannot participate in native Encina transactions. Instead it
participates in Encina transactions as an external resource. Encina uses the
XA resource management protocol to manage transactions with external
resources. Most of the common RDBMS products support this standard, but
not all of them. Our case study application will actually be developed to run
against several different RDBMS products.

9.7 Naming Conventions

One of the things that we should always try to do when building systems is to
make them as easy to understand and as maintainable as possible. A simple
practice that pays big dividends over the life of a system is adherence to
naming conventions. A Consistent and convenient naming of the parts of the
system will make building and maintaining the system easy for the application
team. It will also make the job of learning the system easy for those who
come into the process later on.

The key to naming lies not in a particular standard, but in consistency and
common sense. Good naming conventions should give clear, meaningful
names to components of the system. The names should make clear what role
the component plays in the system. But be careful not to make the names so
specific that they reflect decisions that might change over time. An example
202 Developing Distributed Transaction Applications with Encina

from our case study might be the name we choose to give to the order
database. It is likely that we will have a particular RDBMS product in mind
when we do the design of the system. Perhaps we know that we will be using
DB2, and so we decide to name this component of the system
DB2OrderDatabase, thinking that this makes things very clear. Unfortunately,
that name will become not only unclear but inappropriate should we decide at
the last minute to use an Oracle RDBMS to implement the order database.
The name we have been using, OrderDB, makes the component’s role clear
without implying implementation decisions. Notice also that we use DB
instead of spelling out Database. In general, we favor using abbreviations
when they are part of the common parlance, and when they are applied
consistently. In the interest of consistency, we refer to our order database as
OrderDB and our product database as ProductDB (note the disparity in
implementation that this covers).

As a style in generating names, we are using a convention that concatenates
the words that form the name with no spaces between the words. Every word
after the first is capitalized. The first word may also be capitalized, depending
on that type of thing it is. This is a case-sensitive naming style, which is
appropriate for the environment in which we will be working.

We will use the following naming conventions:

 • Encina Monitor application servers: a name reflecting the business
processing that the server supports, followed by the word Server. The first
word is capitalized, for example, OrderProcServer.

 • Application server interfaces: a name reflecting the business processing
that the functions in the interface implement, followed by the abbreviation
IF, for Interface. The first word is capitalized, for example, OrderProcIF.

 • Function names: a name describing the actions to be performed, with the
first word not capitalized. Typically a phrase in the form of “verb” and
“object” makes a good name, for example, createOrder().

 • Data item names: a name describing the data, with the first word not
capitalized. If the data item is logically part of a larger structure, including
the structure name or an abbreviation as the first part of the name is a
good idea, for example, orderId.

 • Data structure names: a name describing the group of data items being
represented. The first word is capitalized, for example, Order.
Design Phase 203

9.8 Final Note Concerning the Design Approach

In this chapter we show how object modeling techniques can be used as part
of the design process for our nonobject, multitiered case study application.
Note, however, that the object modeling style we are using is somewhat
different from what we would have used had we decided on an
object-oriented implementation.

The most significant divergence from standard object modeling practice is the
division we made between the business objects and the server-related
objects. Our decision was to associate the functions exclusively with the
server-related objects, and keep the business objects as simple data-only
objects. This is contrary to the normal practice of distributing the functions
and data more uniformly across the objects in the system. By instituting this
division we are facilitating the translation of the server and interface objects
into Encina interface definitions (which have only functions, not data), and the
translation of the business objects into C structures (which have only data,
not functions). Object purists may object to this approach, but we found it
useful.
204 Developing Distributed Transaction Applications with Encina

Chapter 10. Development Phase

In this chapter we address the issues surrounding the actual coding of the
application. We begin by covering topics related to the environment and
project management. We proceed through the development of the application
code itself.

10.1 Development Environment

The first step in development is to implement a special environment where
the application can be developed without affecting production systems or
other systems under development. To accomplish this we have to install
separate instances of some or all of the infrastructure components on which
our application builds.

10.1.1 Source Code and Version Control
It is important to establish a strategy for code management and version
control from the beginning of the project. Encina development projects tend to
be complex from the standpoint of managing the code modules. Some of the
issues that complicate the management of code are:

 • Some code is generated by the TIDL and IDL compilers each time they
are run.

 • Multiple external libraries must be included to support DCE, Encina, the
RDBMS, PPC, RQS, and any other existing components that are used.

 • Clients and servers must share certain files, for example, the header file
describing the interface generated by the IDL compiler.

 • Frequently common code modules are shared among servers.

Managing the dependencies among all of these modules requires discipline
and planning on the part of the development team, and a strong source code
and version control product. Many such products are available, but it is
beyond the scope of this book to discuss them in detail. Each product has its
own strengths and weaknesses, but the decision to implement rigorous code
management and the determination to adhere to the practices and
procedures are much more important than the particular product that is
chosen.

Creating a directory structure that makes sense for your project is one of the
first things to consider. In general, we recommend that you have separate
directories for each server, and a separate directory structure for the common
code modules. Each client program should have a separate directory as well.
One approach that has proven useful is to maintain the interfaces separately
© Copyright IBM Corp. 1998 205

from the servers, in a directory specifically for the interfaces and the files
generated from them. You will also want to make provisions for including such
things as useful scripts and documentation in your source code structure.
Figure 66 on page 206 shows a sample code directory structure.

Figure 66. Sample Source Code Directory Structure

10.1.1.1 Multiplatform Source Code Issues
Our case study environment consists of a mixture of hardware, raising the
question of whether we should maintain separate source code structures on
each platform or try to have a single, uniform code base across all the
platforms. There are source code control products which can help
synchronize source across platforms. However, our experience has been that
this is difficult in practice. For the case study project we will choose to
maintain a single source code base that is buildable on either of our platforms
(AIX and NT). There will be some issues here, but not major ones. As we
proceed through the code development we will point them out as they arise.
206 Developing Distributed Transaction Applications with Encina

10.1.2 Build Management
On complex projects with many different components, keeping the executable
components of the system synchronized as development proceeds can be
difficult. It is important to adopt, and adhere to, a disciplined strategy for
building the executable components of the system. Looking ahead to the
coding of our fairly simple case study application, we can see that we will
have to build a library of interface-related files and a library of common code
modules. Both of our application servers will be dependent on these libraries,
and the clients will be dependent on the interface library (at least). We can
handle these dependencies in several different ways. One approach is to
adopt a standard practice that whenever either of the libraries changes, we
will rebuild all of the executable programs (clients and servers). This
approach will force us to immediately resolve any conflicts that might have
been introduced by a change in the interfaces or in the common code
modules. Another approach is to use a versioning scheme as part of our code
management, to maintain different versions of the libraries with different
“labels.” A group of developers working on an application server (for
example) could defer dealing with changes to a common module by
continuing to work with an earlier Version of the library. The former approach
is probably satisfactory for a small- or medium-sized project, but the latter will
probably be needed on large projects.

10.1.3 Code Partitioning
Part of the project management aspect of building distributed processing
systems is the division of labor for the various components that must be
developed. On any project involving more than one developer, there will need
to be some rules established as to who does what. Fortunately (or
unfortunately depending on your perspective), the type of system we are
considering can be subdivided in many different ways.

10.1.3.1 Client versus Server Division
One of the most natural dividing lines between system components is
between the client tier and the application server tier. It makes a lot of sense
to divide a development team along these lines. The skills required are quite
different, for one thing. On the client side the focus is on presentation and
ergonomics. On the server side the focus is on business logic and processing
efficiency. Another motivation for a division of this sort is that the
programming languages in use for the clients and for the servers often differ.

The challenges associated with this approach mostly revolve around the
design of the interfaces between the clients and the servers. If the exact
structure of the interface between the clients and the servers is not designed
Development Phase 207

up front, there will be constant changes on both sides as new issues in the
interface design surface and are resolved. It is possible to spend much more
time in meetings about interface issues than in writing code if you are not
careful.

10.1.3.2 Application Server Division
Another very natural way to divide a team’s efforts is along the boundaries
between application servers. If the recommendations we have made
previously have been followed, you will have designed application servers
that divide along reasonable functional lines based on your business
analysis. Forming separate teams to do the coding of each application server
allows the developers to become expert in a particular facet of the application
and of the business it supports. This is much easier than becoming expert in
the entire range of the system’s functionality. This dividing concept can be
used by itself or in conjunction with a client versus server division. If it is used
by itself, the team would be responsible for the development of the server and
of the client programs that access that server. If there is also a division along
the client and server lines, the team would focus exclusively on the
application server.

The challenges here are related to the management of the common code
components. Our case study problem exemplifies this well. Both of our
application servers will access the order database, and so it makes sense for
the database access routines to be part of the common code library.
However, if one group discovers a shortcoming in the database access
routines and makes a change, it is very likely that this will disrupt the
development efforts of the team working on the other server. For this type of
division to work, the design of the common code components should be
considered in some detail. There will also need to be mechanisms in place to
facilitate communication between the teams to handle the discovery of new
common module candidates. The degree of formality in these procedures
depends on the size of the project.

10.1.3.3 Common Code versus Server-Specific Code Division
The final dividing line we consider is along the lines of common code modules
as opposed to code that is specific to a given server. One team can focus on
providing all of the common code that is required across the system, and the
other teams can focus on the server-specific coding for each server. This is a
less obvious dividing line than the others because the distinction between
common code and server-specific code is often blurred and subject to change
during the project. However, having a group focused on the reusable code
does resolve some of the issues concerning communication between
separate groups independently trying to create reusable components.
208 Developing Distributed Transaction Applications with Encina

One of the challenges of this approach is to manage the dependencies
among the development teams. The server-specific teams will need to use
the common code modules as part of their development, so ideally these
modules would already exist when these teams start their work. In reality it is
likely that the common code module team and the server-specific teams will
be doing their work in parallel. A good strategy for dealing with this is to think
of it as a sort of “client/server” situation and concentrate first on detailing the
interfaces to the common code modules. Once these interfaces are
determined, the common code module team first provides “stub” versions of
the common code that implements the interface but in a trivial fashion, giving
the server-specific teams a library to use that supports the function calls in
their code. As the common code module team fills in the implementations of
the modules, new releases of the common library are built and made
available to the server-specific teams.

10.1.4 Encina Infrastructure
In the development environment, we will need to implement a small, isolated
Encina cell that we can control as needed for our project. Sharing a cell with
other projects is certainly possible, but life will be easier for everyone if each
project can have full control of its environment. We will use a simple,
one-machine Encina cell for our development. The development environment
will be Windows NT. For the production implementation we are targeting both
NT and AIX, but the Encina interfaces are the same on both platforms, so we
do not expect any issues there.

Our development Encina cell will be named /.:/encina/tricell1. The single
node in the cell is on a computer named Triserv2, and thus it will be named
/.:/encina/tricell1/node/Triserv2.

10.1.5 DCE Infrastructure
Organizations do not usually set up self-contained DCE cells for each
development project. Typically there will be a development DCE cell that is
shared across projects. In our experience, this usually works fine. For our
application development we will make the Triserv2 machine a client in an
existing DCE development cell.

10.1.6 Database Infrastructure
The ideal situation is to have available in development a dedicated database
server of the same type that you will have in production. Sharing a database
server with other development projects is usually satisfactory, as long as you
can have a separate database for your project’s tables and other database
Development Phase 209

entities. You will also want to have administrative authority over the database
objects that your project uses.

If you do not have access to the same type of database server you will use in
production, you can still make progress with development. Most of the SQL
that is used to access RDBMSs is standardized. The commands used to
create the database structures may be significantly different, but this does not
affect the application code. Beginning development with one type of database
and then shifting to the actual target database product can be done without
too much trouble. You do need to allow for time in the project to thoroughly
retest all of the database code against the new RDBMS after the switch is
made. One of the advantages of embedded SQL is to provide some insulation
from the RDBMS to facilitate product changes.

Our development effort for the case study application began before a copy of
DB2 was available for our use. We initially coded the database portions of the
project against a Sybase SQL Anywhere database running on Windows NT
and then migrated to the DB2 database near the end of the development
phase. The SQL Anywhere product does not support XA connections, so this
was a less than ideal situation. We coded each of the database access
routines in embedded SQL with a connect and disconnect command within
each function. When we made the switch to DB2, we removed the connect
and disconnect commands, added the Encina Monitor calls to initialize the
database as an XA resource, switched the build process to use the DB2
preprocessor instead of Sybase’s, and completed the conversion, with little
pain.

10.2 Application Development

In this section we proceed through the development of the application code.
The sequence of topics matches the considerations above concerning code
division and structure. Specifically, we use a combination of all three of the
code division strategies described above. We treat the development of the
client programs and server programs separately, develop each server
independently, and focus on the common code modules we have identified.

10.2.1 Interface Coding
Regardless of the decisions you have made about how to divide the
development effort, it is good practice to start your development effort by
creating the interfaces your servers will provide. Our application architecture
has two interfaces defined, OrderProcIF and VerificationIF. We determined
which responsibilities each server would have in terms of use cases and
210 Developing Distributed Transaction Applications with Encina

devised a set of functions required in the interface to support those
responsibilities. This set of functions was the result of the function mapping
with interaction diagrams described in Chapter 9, “Design Phase” on page
191.

Before we can actually code the interface definition as TIDL, we need to
examine the details of the interface and the data that is passing between the
clients and the servers. We will look for opportunities to define data structures
that will facilitate manipulation of the function parameters and return values
easier and create as many reusable definitions as possible.

10.2.1.1 Code File Structure
The code structure we will use for our interface definition code will consist of
a common file containing the structure definitions and separate files defining
each of the interfaces. The common file will be in IDL syntax and will be
called OrderProcCommon.idl. The interface files will, of course, be in TIDL
syntax and will be called OrderProcIF.tidl and VerificationIF.tidl.

10.2.1.2 RPC Return Structure
Our first decision will be to describe the return value from the functions in our
interfaces. It is usually a good idea to have a standardized return from RPCs
so that client programs can have generic processing routines for handling the
return values from the server. The strategy we will use here is to define a data
structure that contains result codes and error messages and have this
structure be the return value from all of our interface functions. Because we
have various components in the back end of the system that might generate
errors, we want to be able to return both a general return that signifies the
success or failure of the requested operation and a more specific return that
can contain component-specific error information. Figure 67 on page 211
shows the portion of the OrderProcCommon.idl file that defines this structure.

Figure 67. IDL Definition of the RpcReturn Structure

Notice that the data fields that are character arrays are intended to be treated
as null-terminated strings, and DCE is informed of this fact with the [string]

/* standard return structure */
typedef struct {
long retCode;
[string] char errorSystem[11];
[string] char errorCode[81];
} RpcReturn;

typedef [ptr] RpcReturn* RpcReturnPtr
Development Phase 211

qualifier. An additional byte is allocated to allow room for the null character at
the end.

10.2.1.3 Product Data Structures
The results of our analysis provide us with a set of functions and the data
groupings that the functions use as parameters. We will need to define a
structure in the OrderProcCommon.idl file for each of the structures that is
used in a function within either of the interfaces. In addition we will include a
type definition for a pointer to each of the structures.

One group of data used in several ways as a parameter is the product data.
We have the need to pass a single instance of product data and to pass a
variable size list of product structures. On the basis of the information
gathered about this data, we develop the IDL definitions and include them in
the OrderProcCommon.idl file (see Figure 68 on page 212). Notice the form
of the definition for the variable length list, ProductList. The structure consists
of a long integer field to hold the number of occurrences and a special IDL
definition for an array of ProductInfo structures.

Figure 68. IDL Definitions for the Product Data Structures

10.2.1.4 Order Data Structures
The order data group is a bit more complicated than the product data group.
The order consists of a set of data about the order itself and a list of ordered
products associated with the order. We approach the definition of the
structures by first creating a structure called BasicOrder, which describes the
data items concerning the order as a whole, basically the data items in the
CustOrder database table defined in the data modeling phase. We then
define a structure for a single instance of an ordered product, basically the

/* product information from the product database */
typedef struct {
long productId;
[string] char productName[21];
[string] char productDesc[201];
float productPrice;
long productInventory;
} ProductInfo;
typedef struct {
long numProds;
[size_is(numProds)] ProductInfo products[*];
} ProductList;
212 Developing Distributed Transaction Applications with Encina

data from the OrderedProduct table without the foreign key to the CustOrder
table, orderId. In addition we define a structure, OrderInfo, which consists of
the fields from the BasicOrder structure and a variable length list of
OrderedProduct structures. The form of the variable length list definition here
is the same as when it was used by itself with the ProductList structure.
Another formulation of the OrderInfo structure would be to use the
BasicOrder structure as a component of the OrderInfo structure, instead of
duplicating the field definitions. In fact, this would be the preferred approach
except for the fact that the current version of the DE-Light Gateway does not
handle nested structures as RPC parameters. Because we will access this
interface from a standard client and from a Web client, using the DE-Light
Gateway, we will use a formulation of the OrderItem that is compatible with
the Gateway. Finally we define pointer types for each of the structures. Figure
69 on page 214 to Figure 70 on page 215 shows the IDL syntax of the
OrderProcCommon.idl file for the order data structures.
Development Phase 213

Figure 69. (Part 1 of 2) IDL Definitions for the Order Data Structures

/* basic order information from the order database */
typedef struct {
long orderId;
[string] char orderDateTime[27];
[string] char orderStatus[11];
[string] char orderStatusDateTime[27];
[string] char recipName[21];
[string] char recipAddr1[51];
[string] char recipAddr2[51];
[string] char recipCity[16];
[string] char recipState[3];
[string] char recipZip[11];
[string] char paymentCardType[21];
[string] char paymentCardNumber[21];
[string] char paymentCardExpDate[11];
[string] char paymentCardHolder[21];
} BasicOrder;

/* ordered product data from the order database */
typedef struct {
long productId;
[string] char productName[21];
float productPrice;
long orderedQty;
} OrderedProduct;

/* variable length list structure of ordered products */
typedef struct {
long orderId;
[string] char orderDateTime[27];
[string] char orderStatus[11];
[string] char orderStatusDateTime[27];
[string] char recipName[21];
[string] char recipAddr1[51];
[string] char recipAddr2[51];
[string] char recipCity[16];
[string] char recipState[3];
[string] char recipZip[11];
[string] char paymentCardType[21];
[string] char paymentCardNumber[21];
214 Developing Distributed Transaction Applications with Encina

Figure 70. (Part 2 of 2) IDL Definitions for the Order Data Structures

10.2.1.5 Verification Statistics Data Structure
The structure of the verification statistics is provided from the verification
server’s interface. It is a simple structure with no lists, and so the definition is
straightforward. Figure 71 on page 215 shows the IDL definitions for this
structure.

Figure 71. IDL Definitions for the Verification Statistics Data Structure

10.2.1.6 Complete OrderProcCommon.idl File
All of the data structure definitions are coded within the scope of an interface
definition called Common. This name is arbitrary, because it is not ever
referenced directly. However, we are defining an interface, so we are required
to provide a UUID and version information as with any interface definition. We
used the uuidgen utility to produce the UUID for inclusion in the file. Figure 72
on page 216 to Figure 73 on page 217 shows the complete
OrderProcCommon.idl file.

/* variable length list structure of basic orders */
typedef struct {
long numOrders;
[size_is(numOrders)] BasicOrder orders[*];
} OrderList;

typedef [ptr] OrderedProduct* OrderedProductPtr;
typedef [ptr] BasicOrder* BasicOrderPtr;
typedef [ptr] OrderInfo* OrderInfoPtr;

/* verification statistics data */
typedef struct {
long numOrdersReviewed;
long numOrdersApproved;
long numOrdersFailWarning;
long numOrdersFailFatal;
} VerifyStats;
Development Phase 215

Figure 72. (Part 1 of 2) The OrderProcCommon.idl File

[uuid(00387520-78f9-14cf-ab42-00a024c008a6), version(1.0)]
interface Common
{
/*typedef [ptr,string] char* charPtr;*/
typedef struct {
long retCode;
[string] char errorSystem[11];
[string] char errorCode[81];
} RpcReturn;
typedef struct {
long productId;
[string] char productName[21];
[string] char productDesc[201];
float productPrice;
long productInventory;
} ProductInfo;
typedef struct {
long numProds;
[size_is(numProds)] ProductInfo products[*];
} ProductList;
typedef struct {
long productId;
[string] char productName[21];
float productPrice;
long orderedQty;
} OrderedProduct;
typedef struct {
long orderId;
[string] char orderDateTime[27];
[string] char orderStatus[11];
[string] char orderStatusDateTime[27];
[string] char recipName[21];
[string] char recipAddr1[51];
[string] char recipAddr2[51];
[string] char recipCity[16];
[string] char recipState[3];
[string] char recipZip[11];
216 Developing Distributed Transaction Applications with Encina

Figure 73. (Part 2 of 2) The OrderProcCommon.idl File

10.2.1.7 The OrderProcIF Interface
The task of coding the interface definitions in TIDL is fairly simple. We define
an interface and list the functions that are provided as part of the interface.
The only significant decision that has not been addressed is how we will deal
with the data being returned from the functions as output parameters. The
issue essentially is one of memory management, and the fundamental
question is, “Who will allocate the space for a return parameter and who will
free that space?” One strategy is to have the client allocate the space for the
parameter and specify the parameter as a pointer to the memory allocation

typedef struct {
long orderId;
[string] char orderDateTime[27];
[string] char orderStatus[11];
[string] char orderStatusDateTime[27];
[string] char recipName[21];
[string] char recipAddr1[51];
[string] char recipAddr2[51];
[string] char recipCity[16];
[string] char recipState[3];
[string] char recipZip[11];
[string] char paymentCardType[21];
[string] char paymentCardNumber[21];
[string] char paymentCardExpDate[11];
[string] char paymentCardHolder[21];
long numProds;
[size_is(numProds)] OrderedProduct item[*];
} OrderInfo;
typedef struct {
long numOrders;
[size_is(numOrders)] BasicOrder orders[*];
} OrderList;
typedef struct {
long numOrdersReviewed;
long numOrdersApproved;
long numOrdersFailWarning;
long numOrdersFailFatal;
} VerifyStats;
typedef [ptr] RpcReturn* RpcReturnPtr;
typedef [ptr] ProductInfo* ProductInfoPtr;
typedef [ptr] ProductList* ProductListPtr;
typedef [ptr] OrderedProduct* OrderedProductPtr;
typedef [ptr] BasicOrder* BasicOrderPtr;
Development Phase 217

for the parameter. This strategy works fine as long as the client knows how
much space to allocate before making the function call. In the case of a
variable length list (of which we will have several), we need to use a
mechanism that allows the server to allocate the space and the client to
receive an arbitrary-sized return and then free the space after use. This
mechanism calls for the parameter to be specified as a pointer to one of the
pointer data types defined in our OrderProcCommon.idl file. For example, we
would specify ProductListPtr* as the type of the parameter for the variable
length list of product structures. The server will allocate the appropriate space
according to the size of the list, include the list length in the long integer field
defined in the ProductList structure, and let DCE marshall the return to the
client. The server uses a special memory allocation call, rpc_ss_allocate().
The client uses double indirection to refer to the returned memory and a
special deallocation call, rpc_ss_client_free(), to release the space. As you
can see from the TIDL syntax for OrderProcIF in Figure 74 on page 219, we
use this mechanism for all returns involving structures, and we use the
simpler mechanism for returns that are not structures.

Other aspects of the TIDL definitions that are worth noting are the handling of
the char * input parameter to the orderItem function, the fact that we have
chosen to pass the productPrice as a long (also in the orderItem function),
and the inclusion of the pingOrderProcIF function. Passing parameters that
you want to be treated as character strings requires that you inform the IDL
compiler about this special treatment by defining the parameter as [in,string]
as we have done here. If the parameter is simply labeled as [in], the interface
will compile and build with no problems, but the character string your client
passes in the call will not arrive as a usable character string at the server, a
subtle problem that is difficult to track down. Our choice of a long data type
for the price, which is defined as a floating point number elsewhere, was
based on caution alone. The handling of floating point data tends to vary on
different platforms, and to make the interface definition portable across our
platforms, we chose to avoid any potential problems and convert our prices to
the long data type before passing them as a parameter. In fact, when we
originally coded the interface with float as the data type, the IDL compiler
generated a warning to the effect that special compile flags were required to
properly compile the source code it produced. Finally, the pingOrderProcIF
function is an example of a simple "hello, server” function that we regularly
include in every interface as a way of initially testing the communication
between the client and server. This function is implemented in the same way
as all the others, except that when we get to the RPC implementation function
in the server, we simply send back a valid RpcReturn structure with no
additional processing (except logging to the server output file). The function is
218 Developing Distributed Transaction Applications with Encina

typically left in the interface definition to avoid changing the interface during
development or the move to production.

Figure 74. TIDL Definition for the OrderProcIF Interface (OrderProcIF.tidl)

10.2.1.8 The VerificationIF Interface
The VerificationIF interface is much simpler than the OrderProcIF interface
but uses the same concepts for parameter passing. Figure 75 on page 220
shows the complete code for the VerificationIF interface.

[uuid(000b4aa0-7911-14cf-845a-00a024c008a6), version(1.0)]
interface OrderProcIF {
import "tpm/mon_handle.idl";
import "OrderProcCommon.idl";
/* is the server alive (ready to receive RPCs) */
[nontransactional] RpcReturn pingOrderProcIF();
/* create an order */
[nontransactional] RpcReturn createOrder(
[out] long* orderId);
/* list all the products that can be ordered */
[nontransactional] RpcReturn listProducts(
[out] ProductListPtr* prodList);
/* add quantity of a product to order */
[nontransactional] RpcReturn orderItem(
[in] long orderId,
[in] long productId,
[in,string] char * productName,
[in] long orderedQty,
[in] float productPrice);
/* review order using orderId, returns the original order,
 and up-to-date status */
[nontransactional] RpcReturn reviewOrder(
[in] long orderId,
[out] OrderInfoPtr* ordInfo);
/* view all orders */
[nontransactional] RpcReturn viewOrders(
[out] OrderListPtr* ordList);
Development Phase 219

Figure 75. TIDL Definitions for the VerificationIF Interface (VerificationIF.tidl)

Client Binding to the Interfaces
The TIDL files describe the interface, and another set of files, the TACF files,
describe how clients will access the interface. There are basically two
methods for client binding, explicit and implicit. By far the most commonly
used method for this type of application is implicit binding. Implicit binding
allows Encina to do most of the work for us by automatically finding an
available server with the right interface and performing load balancing across
the servers. We will use implicit binding in our case study application, to
simplify the syntax for the TACF files. We define the interface and specify that
an implicit RPC handle will be added automatically to the call. The two TACF
files we need are identical except for the name of the interface, but there
must be a TACF file for each of the TIDL files. The file names are the same as
those of the TIDL file except for the extension, which is .tacf for the TACF
files. The TIDL compiler knows to look for a file of this name, so it is not
referenced directly during the compile processing. Figure 76 on page 220
shows the TACF syntax for our OrderProcIF interface.

Figure 76. TACF Definition for the OrderProcIF Interface (OrderProcIF.tacf)

10.2.1.9 Compiling the Interface Definition Files
The process of converting the TIDL and TACF syntax in the source code
components consists of two steps, a TIDL compile and an IDL compile, for
each interface. The command used to do the TIDL compile on the
OrderProcIF.tidl file is:

tidl -Iencina_include_path -I. OrderProcIF.tidl

[uuid(0035b600-ba01-14d8-b5ad-00609735bb67),version(1.0)]
interface VerificationIF {
import "tpm/mon_handle.idl";
import "OrderProcCommon.idl";
[nontransactional] RpcReturn pingVerificationIF();
[nontransactional] RpcReturn showStats(
[out] VerifyStatsPtr * statsPtr);
[nontransactional] RpcReturn printReviewList();

[implicit_handle (mon_handle_t handle)]
interface OrderProcIF
{
}

220 Developing Distributed Transaction Applications with Encina

We show the command line as it would appear as part of a make file. The -I
directives are used to ensure that the compiler can find the files we are
importing, namely, the OrderProcCommon.idl file and the tpm/mon_handle.idl
file. The former is in the same directory as the .tidl file, and the latter is found
in the Encina include path, typically /opt/encina/include. A successful compile
will produce these files:

 • _OrderProcIF.idl
 • OrderProcIF_client.c
 • OrderProcIF_cswtch.c
 • OrderProcIF_manager.c

The _OrderProcIF.idl file becomes input to the next step, the IDL compile.
The OrderProcIF_client.c and OrderProcIF_cswtch.c files become part of the
client programs. The OrderProcIF_manager.c file becomes part of the server
program. Both of our TIDL files are processed in this way.

The command for the IDL compile is:

idl -no_mepv -keep c_source -cepv -Iencina_include_path \
-Idce_include_path -I. _OrderProcIF.idl

Notice that we include -I directives for both Encina and DCE include paths as
well as our local directory. These are not always required; their use depends
on what you include in your definitions. In addition, if your code management
scheme has placed files you reference with import statements in other
directories, you will need to include -I directives that point to these
directories. We will perform the IDL compile on the _OrderProcIF.idl and
_VerificationIF.idl files that result from our TIDL compiles, as well as on our
OrderProcCommon.idl file. From our _OrderProcIF file, the IDL compile will
produce these files:

 • _OrderProcIF.h
 • _OrderProcIF_cstub.c
 • _OrderProcIF_sstub.c

The .h file is referenced in both the client and the server. The _cstub.c file is
used in the client program, and the _sstub.c file is used in the server
program. The IDL compile of the OrderProcCommon.idl file will produce only
OrderProcCommon.h, because there are no functions defined in that file that
would require the client and server stub files.

For our application code management scheme, we chose to keep the
interface-related files separate from the server and client code. Thus the final
step in the interface building process is to create a library from the .c files that
can be linked with the client and server programs. We chose to build all of the
Development Phase 221

files from both interfaces into a single library. This is a reasonable choice for
a small project like this, but on a larger project you will want to create
separate libraries for each interface, and possibly separate client and server
libraries for each interface.

The standard C compiler on your target platform is used to compile the
source files. The compiler switches you need to use are different for each
environment, so make sure you check Appendix A of the Writing Encina
Applications manual (SC33-1760-01) for the correct compiler switches. Here
we only do a compile to create object files to include in a library, so there are
no linkage issues, yet. Use the appropriate tool for your platform to create the
library. For our code management scheme, we specify the output library file to
be placed in the /lib directory of our source code structure.

10.2.2 Common Module Construction
In Section 9.4, “Common Application Components and Standards” on page
197 we describe several areas where you could consider creating common
code modules that are reused across servers, and perhaps clients. In this
section we describe the code modules that we chose to make part of the
common code base for our case study application.

10.2.2.1 RPC Return Processing
We chose to use a common structure in our TIDL and IDL definitions to use
as the return from each of our RPCs. Thus we will have to manipulate this
structure quite a bit within both our servers and our clients. We will create a
common code module named RpcReturn, which will include functions to
initialize and display this structure. In addition we will define several symbols
for use with the numeric return code in the structure, to enable you to use
meaningful names instead of having to remember numbers when setting
return values. The RpcReturn.h file contains these definitions and the
function prototypes (see Figure 77 on page 223).
222 Developing Distributed Transaction Applications with Encina

Figure 77. The RpcReturn Header File

The RpcReturn.c file contains the function implementations (see Figure 78 on
page 224).

#include "OrderProcCommon.h"

/* error return code values */
#define GOODRETURN 0
#define WARNINGRETURN 1
#define FATALRETURN 2

void initRpcReturn(RpcReturn *ret);
void setRpcReturn(RpcReturn *ret, int rc, const char *es, const char
*ec);
Development Phase 223

Figure 78. RpcReturn Implementation File

10.2.2.2 Message Logging
Our application servers will each have an output file for messages. Encina
will use the file for severe messages generated within the server, but we can
use it for our own messages as well. A good mechanism for logging
messages is important for debugging during development and for monitoring
the server during production. The problem with generating messages to the
log for debugging the server is that you do not want to have these same
messages in the log when you run in production. However, you certainly do

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "RpcReturn.h"

void initRpcReturn(RpcReturn * ret) {
ret->retCode = GOODRETURN;
strcpy(ret->errorSystem, "");
strcpy(ret->errorCode, "");
}

void setRpcReturn(RpcReturn *ret, int rc, const char *es, const char
*ec) {
ret->retCode = rc;
strcpy(ret->errorSystem, es);
strcpy(ret->errorCode, ec);
}

char *formatRpcReturn(RpcReturn ret) {
char *fmtStr;
fmtStr = (char *)malloc(150);
fmtStr = "Return Info: [";
if (ret.retCode == 0) {
strcat(fmtStr,"Good Return");
}
else if (ret.retCode == 1) {
strcat(fmtStr, "Warning Return");
}
else if (ret.retCode == 2) {
strcat(fmtStr, "Fatal Return");
}
strcat(fmtStr,"] [");
strcat(fmtStr,ret.errorSystem);
224 Developing Distributed Transaction Applications with Encina

not want to make changes to your code (commenting out the logging code,
for example) between development and production. The solution we use is to
provide a function that writes messages to the log and allows the messages
to be categorized as informational, debugging, warnings, or errors. We will
also implement a configuration variable that can be set in the environment or
on the command line that specifies the type of messages to be displayed. In
way we can include all of the debugging messages that we want and simply
disable them with the configuration variable when we do not want them to be
written out. This logging function could be used within the clients as well,
because the statements are actually written to the stdout stream (which is
directed to the server output file in the case of the application server). The
logging common module is implemented in the LogEntry.h and LogEntry.c
files. Figure 79 on page 225 shows the LogEntry function

Figure 79. Implementation File for LogEntry

void LogEntry(int indentLevel, int msgType, char* msgText, ...) {
va_list argList;
char fmtStr[256];
char timeStr[30];
char msgTypeStr[10], msgIndentStr[50];
time_t currTime = time((time_t *) 0);
struct tm * tms = localtime(&currTime);
int i = 0;
if ((g_sconf.msgLevelMask & msgType) == msgType) {
switch(msgType) {
case INFOMSG: { strcpy(msgTypeStr, "INFO "); break; }
case ERRORMSG: { strcpy(msgTypeStr, "ERROR**"); break; }
case WARNINGMSG: { strcpy(msgTypeStr, "WARN "); break; }
case DEBUGMSG: { strcpy(msgTypeStr, "DEBUG "); break; }
case ALWAYS: { strcpy(msgTypeStr, "------>"); break; }
}
strcpy(msgIndentStr, "");
for (i = 1; i < indentLevel; i++) {
strcat(msgIndentStr, " ");
}
strncpy(timeStr,asctime(tms),24); /* strip off newline and null */
timeStr[24] = ’\0’;
sprintf(fmtStr,"%s :%s: %s%s\n",
timeStr, msgTypeStr, msgIndentStr, msgText);
va_start(argList, msgText);
vprintf(fmtStr, argList);
va_end(argList);
Development Phase 225

10.2.2.3 Standardized Error Checking
All of the functions that we will call from the Encina libraries return result
codes that describe the results of the processing. These return values are of
the unsigned long data type and are typed as enumerations. For the standard
Encina functions, such as the Encina Monitor functions, and the RQS
functions, there is a common structure to these enumerations. The good
results all have a value of 0, although the enumeration symbol is different (for
example, MON_SUCCESS for the monitor calls, RQS_SUCCESS for the
RQS calls). The enumeration symbols for bad returns are numbered
sequentially from a base number that is assigned to the component. The
result of this scheme is that the actual number that is returned from a function
call is difficult to interpret unless it is a good return. In the case of PPC
processing, the Encina PPC return values follow the scheme described here,
but the CPI-C functions have enumerations that do not use the base number
offset scheme.

Fortunately, the Encina libraries provide a set of function calls that can be
used to translate the Encina errors from their numeric values into symbols or
descriptive strings. Unfortunately, these calls do not work with the CPI-C
return values.

To facilitate the processing of returns from these calls, we will develop some
standard error checking functions based on the translation functions provided
by Encina. These functions are contained in the StatusStrings common
module. We will implement a function for processing standard Encina call
results, and another specifically to handle the CPI-C call returns (see Figure
80 on page 227 to Figure 81 on page 228).
226 Developing Distributed Transaction Applications with Encina

Figure 80. (Part 1 of 2) Error Processing Functions (StatusStrings.c)

int showStatus(char *fxn, unsigned long status) {
char *sym, *str;
unsigned long rc;

if (status == 0) {
LogEntry(2,DEBUGMSG,"%s processed successfully.",fxn);
return TRUE;
}
else {
sym = malloc(ENCINA_MAX_STATUS_STRING_SIZE + 1);
str = malloc(ENCINA_MAX_STATUS_STRING_SIZE + 1);

rc = encina_StatusToSymbol(status,
ENCINA_MAX_STATUS_STRING_SIZE, sym);
if (rc == ENCINA_STS_BUFFER_TOO_SMALL)
strcpy(sym,"*** Translation failed - buffer too small.");
if (rc == ENCINA_STS_CATOPEN_FAILED)
strcpy(sym,"*** Translation failed - cat open failed.");
if (rc == ENCINA_STS_UNKNOWN_ERROR)
strcpy(sym,"*** Translation failed - unknown failure.");
if (rc == ENCINA_STS_UNKNOWN_FACILITY)
strcpy(sym,"*** Translation failed - unknown facility.");

rc = encina_StatusToString(status, ENCINA_MAX_STATUS_STRING_SIZE, str
);
if (rc == ENCINA_STS_BUFFER_TOO_SMALL)
strcpy(str,"*** Translation failed - buffer too small.");
if (rc == ENCINA_STS_CATOPEN_FAILED)
strcpy(str,"*** Translation failed - cat open failed.");
if (rc == ENCINA_STS_UNKNOWN_ERROR)
strcpy(str,"*** Translation failed - unknown failure.");
if (rc == ENCINA_STS_UNKNOWN_FACILITY)
strcpy(str,"*** Translation failed - unknown facility.");

LogEntry(2,ERRORMSG,"%s FAILED with [%d]%s!",fxn,status,sym);
LogEntry(2,ERRORMSG,"==>%s",str);
Development Phase 227

Figure 81. (Part 2 of 2) Error Processing Functions (StatusStrings.c)

10.2.2.4 Server Configuration
Our application servers will be fairly complex. They will need to access a
RDBMS, use RQS queues, access the PPC gateway, and perform logging in
addition to the regular Encina server processing. All of these activities require
control information. For example, to access the database, we need the
database name, a user id, and a password. For RQS we need to know the
RQS server name and the names of the queues and queue sets we will
access. For PPC gateway access we need to know such things as our
partner logical unit name. In most cases, we could argue that it would not be
the best solution to hard code the values into the programs. We could use
#define statements in our code to give symbolic names that could easily be
changed in one place, but this would still require a recompile of the program
to effect the changes. The other option is to use environment variables or
command line arguments. An application server can be configured with either
of these techniques through the enconsole tool or enccp without requiring any
code changes or recompiles.

We will adopt a standardized way of configuring our servers through the use
of environment variables and command line arguments. First we have to
define a data structure that can be used globally to contain all of this control
information. Because we want to use the same structure for both of our
servers (and any potential future servers), we will assess the needs of each
server and create a structure that contains all of the necessary configuration
information. There is considerable commonality in the configuration
requirements, but sometimes only one server has need for a particular
configuration variable.

int showCpicStatus(char *fxn, unsigned long status) {
ppc_status_t pst;

if (status == 0) {
LogEntry(2,DEBUGMSG,"%s processed successfully.",fxn);
return TRUE;
}
else {
LogEntry(2,ERRORMSG,"%s FAILED with CM value=[%d]!",fxn,status);
if (status == CM_PRODUCT_SPECIFIC_ERROR) {
pst = cpic_GetProductSpecificDetail();
showStatus("Product specific details",pst);
}
return FALSE;
228 Developing Distributed Transaction Applications with Encina

We will implement server configuration strategy by creating a shared global
data structure containing all of the identified variables and including the
header file defining this structure with each of our server’s implementation
files. Because we want to get values from the environment or the command
line for each variable, we will implement a common function that checks for
an environment variable and a command line argument that corresponds to
the configuration variable. We will implement this function so that the caller
can specify which value, environment or command line, should be preferred if
both are present, and we will return an empty string if neither is available. For
each of the identified environment variables, we will implement a function that
retrieves the value for that variable. These functions will also access the
environment and the command line.

Figure 82 on page 229 shows the common structure we will use and several
enumerations that are used in the implementations of the functions that
manipulate the structure. The figure is an extract of the ServerConfig.h file.

Figure 82. ServerConfig Structure and Associated Enumerations

The function that actually gets the values from the environment and
command line is called getVariableValue (see Figure 83 on page 231). This
function takes parameters that give the command line switch, the
environment variable name, the preferred source for the value, and the

typedef struct {
int msgLevelMask;
int retrieveEnabled;
char schedulePolicy[22];
char dbUserId[33];
char dbPassword[33];
char dbName[33];
char ppcSideInfoName[81];
char ppcLuPartner[21];
char rqsName[81];
char pendingQueueName[81];
char pendingQueueSet[81];
char reviewQueueName[81];
char reviewQueueSet[81];
int verThrdDelay;
} ServerConfig;

extern ServerConfig g_sconf;

enum VarPrefEnum { PREFER_ENV, PREFER_CMD };
Development Phase 229

command line argument count and char array. The output parameters are an
enum value describing the source of the returned value, and the value itself
as a string.
230 Developing Distributed Transaction Applications with Encina

Figure 83. Accessing the Environment Variables and Command Line Arguments

void getVariableValue(char *cmdSwitch,
char *envVar,
enum VarPrefEnum preference,
int argc,
char *argv[],
enum VarSource *varSrc,
char *value)
{
char cmdVal[80], envVal[80];
int i;
strcpy(cmdVal,"");
for (i=0 ; i < argc ; i++) {
if (strcmp(argv[i],cmdSwitch) == 0) {
strcpy(cmdVal,argv[i+1]);
break;
}
}
if (getenv(envVar))
strcpy(envVal,getenv(envVar));
else
strcpy(envVal,"");
if (preference == PREFER_ENV)
if (strcmp(envVal,"") != 0) {
*varSrc = ENV;
strcpy(value,envVal);
}
else
if (strcmp(cmdVal,"") != 0) {
*varSrc = CMD;
strcpy(value,cmdVal);
}
else {
*varSrc = NONE;
strcpy(value,"");
}
if (preference == PREFER_CMD)
if (strcmp(cmdVal,"") != 0) {
*varSrc = CMD;
strcpy(value,cmdVal);
}
else
if (strcmp(envVal,"") != 0) {
*varSrc = ENV;
strcpy(value,envVal);
Development Phase 231

By using getVariableValue, we can then implement specific functions to
retrieve each of our configuration variables. Because the getVariableValue
function needs to know the command line switch to use and the environment
variable name, we have to standardize these items now. The code in Figure
84 on page 232 shows one of the configuration variable retrieval functions,
setEnvSchedulePolicy.

Figure 84. Sample Configuration Variable Set Function

We will use the functions associated with the configuration variables we need
to set for each server within the implementation files for the server. We cover
the structure of these files in detail later in this chapter; we present a section
of the setup routine for the OrderProcServer (Figure 85 on page 233) now to
complete the picture of the server configuration common code module.

/* set server scheduling policy - Defaults to MON_CONCURRENT_SHARED */
void setEnvSchedulePolicy(int argc, char **argv, enum VarPrefEnum pref
) {
char varValString[100];
enum VarSource varSrc;

getVariableValue("-sched","SCHEDULE_POLICY",pref,argc,argv,&varSrc,varV
alString);
LogEntry(2,INFOMSG,"Schedule policy string: [%s]. Source prefered:
[%s]. Actual source: [%s]",
varValString, getVarPrefString(pref), getVarSourceString(varSrc));
if (strcmp(varValString,"") == 0) {
strcpy(g_sconf.schedulePolicy,"MON_CONCURRENT_SHARED");
LogEntry(3,WARNINGMSG,"Defaulting to MON_CONCURRENT_SHARED");
}
else {
strcpy(g_sconf.schedulePolicy,varValString);
LogEntry(3,WARNINGMSG,"Schedule policy set to [%s]",
g_sconf.schedulePolicy);
}

232 Developing Distributed Transaction Applications with Encina

Figure 85. Using the Configuration Common Module during Server Startup

10.2.3 Database Processing
Both of our application servers will access the order database. In our analysis
and design efforts we considered the database as an object with certain

.

.

.
ServerConfig g_sconf;/* global server configuration structure*/
.
.
.
/**
**/
/* ORDERPROC SERVER MAIN FUNCTION
*/
/**
**/
int main(int argc, char* argv[]) {
LogEntry(1, ALWAYS, "OrderProcServer Start-Up Beginning...\n");
if (!EstablishEnv(argc, argv)) return 1;
.
.
.
/**
**/
/* ORDERPROC SERVER FUNCTION IMPLEMENTATIONS */
/**
**/
int EstablishEnv(int argc, char **argv){
/* merge the command line arguements and the
 environment variables to establish the working
 environment for the server */

LogEntry(1,ALWAYS, "Begining server environment set-up.");

/* write the possible config variabes to the log */
LogConfigOptions();

/* call the set up functions for the needed variables */
setEnvMsgLevel(argc,argv,PREFER_CMD);
setEnvRetriveEnable(argc,argv,PREFER_CMD);
setEnvSchedulePolicy(argc,argv,PREFER_CMD);
Development Phase 233

responsibilities. This section explains how that design approach pays off. As
a result of our interaction diagramming, we know all of the functions required
of the order database

10.2.3.1 Order Database Functions
We will implement a common code module containing all of the functions that
access the order database. This approach will help us in several ways. First,
it creates a reusable module that can be accessed from both servers, and
second, it facilitates the code build processing. Our build processing will
involve special preprocessing of the database code before the actual C
compile. By isolating this code into a single module, we prevent having to run
the database preprocessing over any other code. The functions implemented
as part of this common module are listed in the header file for the module,
OrderDbDB2.h, shown in Figure 86 on page 234.

Figure 86. Order Database Function Prototypes (OrderDbDB2.h)

10.2.3.2 Database Coding Strategy
We will use embedded SQL to access the database. The other option is to
work directly with the DBMS’s call level interface (CLI). The issues are not
necessarily easy to sort out in deciding which option to use. Embedded SQL
is much easier to write, is fairly standard across DBMS products, and
provides most of the capabilities of the CLI. However, it requires extra
preprocessing, and the resulting code may not be as efficient in all cases as
CLI code written by an experienced database programmer. Writing CLI
database access code provides full access to the capabilities of the DBMS
and can be quite efficient. It is also possible to write generic routines in CLI
for the common tasks that must be performed. However, CLI programming is
more difficult and it tends to be very DBMS specific. For our purposes, we will
use embedded SQL for the following reasons: The scope and complexity of
our database access needs are limited, and we have only one database to
access. In addition, we want to remain as flexible as possible in our choice of

void getRmName(char *rmName);
int orderDbInit();
int orderDbClose();
int createOrderKey(long* orderId, RpcReturn* retValue);
int addToOrder(long orderId, long productId, unsigned char *
productName, long orderedQty, long productPrice, RpcReturn* retValue);
int getOrderInfo(long orderId, OrderInfoPtr* ordInfo, RpcReturn*
retValue);
int getOrderList(OrderListPtr* ordList, RpcReturn* retValue);
int finalizeCustOrder(BasicOrder* basicOrder, RpcReturn* retValue);
234 Developing Distributed Transaction Applications with Encina

DBMS products, so the standardization aspects of embedded SQL are
important.

The contents of the order database common module are shown in their
entirety in the code listings. We will select one representative function here
and walk through the details. Our initial DBMS selection is the IBM DB2
Universal Database Version 5 from IBM, and the order database common
module code was written to work with this DB2. As stated earlier, though,
embedded SQL is similar across products.

10.2.3.3 XA Database Access
First we need to address the issue of accessing the database as an XA
resource. DBMS vendors must provide support for this standard and can do
so in various ways. In general, the DBMS must provide a data structure
known as an XA switch and define the structure of an open string, a close
string, and a serialization string. The XA switch structure is used for
communication between the application server and the database and is
provided by the DBMS vendor within a header file that we will either include
specifically or which is included automatically during preprocessing. For DB2,
the includes are generated for us. We simply need to include a reference in
our code to the structure defined by the DBMS vendor. We do this through the
following declaration:

extern static xa_switch_t XASWITCH;

where XASWITCH is the name of the structure defined by the DBMS. For
DB2, this structure is actually named db2xa_switch. In our code we include
the line exactly as shown above and then use a #define statement to
translate XASWITCH to db2xa_switch.

The open string, close string, and serialization string are described by the
DBMS vendor. They are the character strings that can be passed to the
DBMS to connect and disconnect from the database and to state whether we
want to serialize the XA communication or allow parallel requests. For DB2,
the open string contains the database name, the user id, and the password,
separated by commas. There is no close string, and the serialization string
can be omitted if we want to serialize the XA access (which we normally do).
One issue is that the Encina function call that uses these strings references
them all as one concatenated string that is separated by commas. Because
DB2 also uses comma separation within the strings, we must “escape” the
DB2 commas with a backslash to prevent the Encina function from
processing them as separators. Figure 87 on page 236 shows the code that
sets up the XA resource access.
Development Phase 235

Figure 87. Registering the DBMS As an XA Resource

After we register the database as an XA resource, we can write code just as
we would normally, except that we do not issue any CONNECT or
DISCONNECT commands, as this is taken care of for us through the XA
interface. We do not issue COMMIT or ROLLBACK statements because
Encina, not the DBMS, handles the transaction processing.

The code, before preprocessing, for the getOrderItem function shows a variety
of access methods, including the SELECT ... INTO process for getting a
single row of data and the CURSOR processing to retrieve multiple rows (see
Figure 88 on page 237 to Figure 90 on page 239).

Refer to your DBMS documentation for details about writing embedded SQL
for your particular database and for the exact information required to make an
XA connection to the database. However, there is so much similarity across
products that the code shown in Figure 88 on page 237 to Figure 90 on page
239 will probably work with very little change for most databases.

...
rmName = getRmName();
mst = mon_RegisterRmi(XASWITCH, rmName, &rmiId);
if (!showStatus("mon_RegisterRmi",mst)) return FALSE;
...
236 Developing Distributed Transaction Applications with Encina

Figure 88. (Part 1 of 3) Database Access Code for the getOrderInfo() Function

int getOrderInfo(long orderId, OrderInfoPtr* ordInfo, RpcReturn*
retValue)
{
char tmpErrorCode[80];
int indx = 0;
EXEC SQL WHENEVER SQLERROR GOTO error_exit;
EXEC SQL BEGIN DECLARE SECTION;
long db_orderId;
char db_orderDateTime[27];
char db_orderStatus[11];
char db_orderStatusDateTime[27];
char db_recipName[21];
char db_recipAddr1[51];
char db_recipAddr2[51];
char db_recipCity[16];
char db_recipState[3];
char db_recipZip[11];
char db_paymentCardType[21];
char db_paymentCardNumber[21];
char db_paymentCardExpDate[11];
char db_paymentCardHolder[21];
long db_numProds;
long db_productId;
char db_productName[21];
float db_productPrice;
long db_orderedQty;
EXEC SQL END DECLARE SECTION;
LogEntry(1, DEBUGMSG, "Begin OrderDbSqlAny::getOrderInfo()");
initRpcReturn(retValue);
db_orderId = orderId;
LogEntry(2, DEBUGMSG, "Selecting row count from OrderedProduct");
EXEC SQL
SELECT COUNT(*)
INTO :db_numProds
FROM dbo.OrderedProduct
WHERE orderId = :db_orderId;
/* allocate space */
Development Phase 237

Figure 89. (Part 2 of 3) Database Access Code for the getOrderInfo() Function

/* issue the select for the basic order info */
LogEntry(2, DEBUGMSG, "Selecting from CustOrder");
EXEC SQL
SELECT *
INTO
:db_orderId,
:db_orderDateTime,
:db_orderStatus,
:db_orderStatusDateTime,
:db_recipName,
:db_recipAddr1,
:db_recipAddr2,
:db_recipCity,
:db_recipState,
:db_recipZip,
:db_paymentCardType,
:db_paymentCardNumber,
:db_paymentCardExpDate,
:db_paymentCardHolder
FROM dbo.CustOrder
WHERE orderId = :db_orderId;
(*ordInfo)->orderId = db_orderId;
strcpy((*ordInfo)->orderDateTime, db_orderDateTime);
strcpy((*ordInfo)->orderStatus, db_orderStatus);
strcpy((*ordInfo)->orderStatusDateTime, db_orderStatusDateTime);
strcpy((*ordInfo)->recipName, db_recipName);
strcpy((*ordInfo)->recipAddr1, db_recipAddr1);
strcpy((*ordInfo)->recipAddr2, db_recipAddr2);
strcpy((*ordInfo)->recipCity, db_recipCity);
strcpy((*ordInfo)->recipState, db_recipState);
strcpy((*ordInfo)->recipZip, db_recipZip);
strcpy((*ordInfo)->paymentCardType, db_paymentCardType);
strcpy((*ordInfo)->paymentCardNumber, db_paymentCardNumber);
strcpy((*ordInfo)->paymentCardExpDate, db_paymentCardExpDate);
strcpy((*ordInfo)->paymentCardHolder, db_paymentCardHolder);
/* issue the select for the ordered product list */
LogEntry(2, DEBUGMSG, "Declaring cursor for product list");
EXEC SQL DECLARE c1 CURSOR FOR
SELECT productId, productName, productPrice, quantity
FROM OrderedProduct WHERE orderId = :db_orderId;
EXEC SQL OPEN c1;
EXEC SQL WHENEVER NOT FOUND GOTO not_found;
238 Developing Distributed Transaction Applications with Encina

Figure 90. (Part 3 of 3) Database Access Code for the getOrderInfo() Function

10.2.3.4 Non-XA Access to Databases
One final note about database access from Encina servers concerns using
the database nontransactionally. In general, you can include code within your
server to access a database just as you would if you were making this access
from a standard database client program. You would issue whatever logon or
connection commands that are required to establish a normal (non-XA)
connection to the DBMS. You would then issue whatever database
commands you wanted and disconnect. The database access code you write
will look just like what you would write for the XA processing except for the
inclusion of the connect and disconnect commands. It is possible to have a
mix of XA and non-XA database access within the same server.

There are a number of precautions to consider when mixing XA and non-XA
connections within Encina servers. First is the issue of thread safety. If the
database libraries are not thread safe, you will need to ensure that you
perform only one database activity at a time, regardless of the number of
threads that are processing in your server. Run your server with a
MON_EXCLUSIVE scheduling policy (in which case it runs only one
processing thread) or use a mutex to serialize the database operations
across multiple threads. Another issue arises when you attempt to mix XA
and non-XA connections within the same server. The two types of access
could deadlock!

(*ordInfo)->item[indx].productId = db_productId;
strcpy((char*)(*ordInfo)->item[indx].productName, db_productName);
(*ordInfo)->item[indx].productPrice = db_productPrice;
(*ordInfo)->item[indx].orderedQty = db_orderedQty;
}
not_found:
EXEC SQL WHENEVER NOT FOUND CONTINUE;
LogEntry(1, DEBUGMSG, "End OrderDbSqlAny::getOrderInfo()");
return TRUE;
error_exit:
EXEC SQL WHENEVER SQLERROR CONTINUE;
LogEntry(1, ERRORMSG, "OrderDbSqlAny::getOrderInfo() FAILED with %d",
sqlca.sqlcode);
sprintf(tmpErrorCode, "%d", sqlca.sqlcode);
setRpcReturn(retValue,FATALRETURN,"OrderDb",tmpErrorCode);
return FALSE;
}

Development Phase 239

10.2.4 RQS Queue Processing
In addition to accessing a relational database, each of our servers will also
access the RQS. The OrderProcServer will enqueue a queue item containing
the ID of a new order that has to be verified. The VerificationServer will
periodically remove items from the queue and use the order ID to access the
data in the database and verify the correctness of the order information,
specifically the payment information. After making a decision about the order,
the VerificationServer will either update the database status to approve the
order or set the status to either a failure or warning code. For orders that are
marked with a failure or warning, a queue item containing the order ID is
enqueued into another queue, which serves as a work list for manual reviews
of orders.

We will implement two queues, one for items pending review and one for
items marked for manual review. The enqueue operations will be done to
specific queues, but the dequeue processing will be done to queue sets
(mostly to demonstrate queue sets and their processing).

10.2.4.1 Verify Queue Functions
As with the order database, we considered the verification queues as an
object during the analysis and design. We have identified all of the operations
required of the queuing system to support both servers. We will implement
these functions in a common code module named VerifyQueue. Figure 91 on
page 241 shows the functions implemented as listed in the header file for this
module, VerifyQueue.h.
240 Developing Distributed Transaction Applications with Encina

Figure 91. Verify Queue Function Prototypes (VerifyQueue.h)

10.2.4.2 RQS Queue Processing Example
The programming interface to RQS is conceptually simple, consisting of
functions to initialize access to RQS, enqueue, dequeue, and disconnect.
However, there is some variety in how these operations can be done. You can
dequeue from either a specific queue or a queue set that may contain many
queues. You can associate “work” data with a queue entry when it is
enqueued and retrieve this data when you dequeue the queue entry. You can
also perform nonqueue operations such as searches by key. For our case
study application we will use enqueuing and dequeuing, using work data, and
process both queues and queue sets. We will not use the search capabilities
or use any of the administrative APIs that RQS provides.

The function call to initialize RQS is made as part of the server’s startup
processing. RQS must be initialized after the application server initialization
function has been called and before the server begins processing RPCs. We
will implement the initialization by calling the init VerifyQueue function from
within the serverPostInit function of the server’s implementation file. Figure
92 on page 242 shows the sections of code that perform the RQS
initialization.

#include <rqs/rqs.h>
#include "OrderProcCommon.h"

/* global variable for RQS server handle */
static rqs_serverHandle_t rqsHandle;

/* structure definition for queue elements */
typedef struct {
int orderId;
} QueueItem;

/* defined values for enqueue/dequeue "work" parm */
#define REVWARN 1
#define REVFAIL 2

int initVerifyQueue();
int addToVerifyQueue(QueueItem qItem, RpcReturn* ret);
int addToReviewQueue(QueueItem qItem, unsigned long workInd,
RpcReturn* ret);
int removeFromVerifyQueue(QueueItem* qItem, RpcReturn* ret);
Development Phase 241

Figure 92. RQS Initialization

The parameters to the rqs_GetServerHandle() function are a string containing
the full CDS name of the server (we get this from our server configuration
structure), and a pointer to an rqs_serverHandle_t variable. We defined the
rqs_handle_t variable as a global static variable, which allows any of the
functions within the VerifyQueue module to use it.

from the OrderProcServer.c file:

int ServerPostInit() {
.
.
.
if (!initVerifyQueue())
return FALSE;

return TRUE;
}

from the VerifyQueue.c file:

int initVerifyQueue() {
rqs_status_t rst;
LogEntry(1, DEBUGMSG, "Beginning VerifyQueue init for %s.",
g_sconf.rqsName);
if (strlen(g_sconf.rqsName) == 0) {
LogEntry(1,ERRORMSG,"RQS server name must be specified!");
return FALSE;
}
if (strlen(g_sconf.pendingQueueName) == 0) {
LogEntry(1,WARNINGMSG,"Pending queue name not specified!");
}
if (strlen(g_sconf.reviewQueueName) == 0) {
LogEntry(1,WARNINGMSG,"Review queue name not specified!");
}
if (strlen(g_sconf.pendingQueueSet) == 0) {
LogEntry(1,WARNINGMSG,"Pending queue set name not specified!");
}
if (strlen(g_sconf.reviewQueueSet) == 0) {
LogEntry(1,WARNINGMSG,"Review queue set name not specified!");
}

rst = rqs_GetServerHandle(g_sconf.rqsName, &rqsHandle);
242 Developing Distributed Transaction Applications with Encina

The queue item that we will enqueue and dequeue from our queues is very
simple, a single long integer for the order id. The code used to enqueue an
item to the queue for failed reviews will show both the enqueue process and
the manipulation of the work data that can be associated with a queue entry.
We use the work data to hold simple code specifying whether the order has a
warning failure or a fatal failure (see Figure 93 on page 243).

Figure 93. Enqueue Processing for RQS

The input parameters to the rqs_Enqueue() function are a handle to the server
(established by the initialization routine), the name of the server (from our
configuration structure), the name of the queue item structure as defined to
RQS, the length of the data being provided, a void pointer to the data to be
enqueued, and a pointer to the work data (variable of type
rqs_unsignedInt64_t). The rqs_unsignedInt_64_t type is a structure
consisting of two long integers, with variable names low and high. We place
our integer code into the low component of the structure. A generated ID for

int addToReviewQueue(QueueItem qItem, unsigned long workInd,
RpcReturn* ret) {
rqs_status_t rst;
int queueDataLen;
void* queueDataPtr;
rqs_unsignedInt64_t rqs_workInd;
rqs_elementId_t elemId;

LogEntry(1, DEBUGMSG, "Beginning ReviewQueue add.");
initRpcReturn(ret);
queueDataLen = sizeof(qItem.orderId);
queueDataPtr = malloc(queueDataLen);
memcpy(queueDataPtr, (void*)&(qItem.orderId), sizeof(qItem.orderId));
rqs_workInd.low = workInd;
rst = rqs_Enqueue(rqsHandle,
g_sconf.reviewQueueName,
"OrderIdQueEntry",
queueDataLen,
queueDataPtr,
&rqs_workInd,
&elemId);
if (!showStatus("rqs_Enqueue",rst)) {
setRpcReturn(ret,FATALRETURN,"","");
return FALSE;
}
free(queueDataPtr);
LogEntry(1, DEBUGMSG, "End of ReviewQueue add.");
Development Phase 243

the queue item is returned in an output parameter of type rqs_elementId_t.
We have no use for the returned element ID in this case, so we simply
provide a variable of the right type for the call and then ignore it. If you look at
the complete code listings, you will see that the enqueue operation for the
pending queue does not use a work data parameter, and the call by the
rqs_Enqueue is made with the value NULL as the work parameter.

Items from the queues are dequeued by referencing the queue set to which
the queue is assigned. Multiple queues may be assigned to a queue set. RQS
provides facilities for specifying priorities and weighting factors that affect
how items are actually dequeued from the queues within a set, but from a
programming standpoint, there is little difference between dequeuing from a
queue set and from a specific queue. Refer to the Encina Administration
Guides for information about creating queues and queue sets and specifying
the parameters associated with them. We will use queue sets to dequeue
items. Figure 94 on page 245 shows the code for dequeuing from the review
queue. Again, the work data is processed as part of the operation.
244 Developing Distributed Transaction Applications with Encina

Figure 94. Dequeuing from the Review Queue Set

The input parameters to the rqs_QSDequeue() function are the server handle,
the name of the queue (from our configuration structure), and a flag
specifying the disposition of the element after the dequeue (here we have it
deleted). The final parameter is the output pointer to a queue element
description structure (type rqs_elementDescriptor_t). The element descriptor
contains a number of things, including the name of the queue from which the
element was taken, a pointer to the queue item itself, and the work data. After
the dequeue operation, we use the pointer to the descriptor element to
access the queue item data (copying it into a variable of our QueueItem type).
We also access the work data, from the low component of the
rqs_unsignedInt64_t structure that defines work items.

Because we are letting RQS allocate the element descriptor structure, we
have to to be sure to free the memory allocation. A special function,

int removeFromReviewQueue(QueueItem* qItem, unsigned long* workInd,
RpcReturn* ret) {
rqs_status_t rst;
rqs_elementDescriptor_t* elementDescriptorPtr;
rqs_unsignedInt64_t rqs_workInd;
void* queueDataPtr;

LogEntry(1, DEBUGMSG, "Beginning ReviewQueue remove.");
initRpcReturn(ret);

rst = rqs_QSDequeue(rqsHandle,
g_sconf.reviewQueueSet,
rqs_deleteElement,
FALSE,
&elementDescriptorPtr);
if ((rst != RQS_SUCCESS)) {
setRpcReturn(ret,rst,"","");
if (rst == RQS_EMPTY_QSET)
LogEntry(2,DEBUGMSG,"PendingReviewQSet is empty");
return FALSE;
}
else {
queueDataPtr = elementDescriptorPtr->value;
memcpy(&(qItem->orderId), queueDataPtr, sizeof(qItem->orderId));
rqs_workInd = elementDescriptorPtr->work;
*workInd = rqs_workInd.low;
rqs_Free(elementDescriptorPtr);
Development Phase 245

rqs_Free(), takes a pointer to an element descriptor and safely releases the
memory allocation. You must always call the rqs_Free function after a
dequeue to avoid memory leaks and possible data corruption.

The last issue to cover with our RQS access is the disconnection process.
We perform this process during the shutdown phase of our server processing,
after the RPC listen loop has terminated and before the server program ends.
We handle the disconnection similary to the initialization. We call the
closeVerifyQueue() function that is part of our VerifyQueue module from within
the serverCleanUp() function of the server’s implementation file (see Figure 95
on page 246).

Figure 95. Disconnecting from RQS

The rqs_FreeServerHandle simply takes a handle to the server from which
you want to disconnect. Here we specify the global variable that has held the
handle since the initialization process established it.

10.2.5 Host Access with PPC
Our product database is on a host system and is accessible through a
connection to CICS. Within CICS there are programs that provide the data for

from OrderProcServer.c:

int ServerCleanUp() {
RpcReturn retValue;

if (!closeVerifyQueue(&retValue))
return FALSE;

return TRUE;
}

from VerifyQueue.c:

int closeVerifyQueue() {
rqs_status_t rst;

LogEntry(1, DEBUGMSG, "Beginning VerifyQueue close.");

rst = rqs_FreeServerHandle(rqsHandle);

if (!showStatus("rqs_FreeServerHandle",rst)) return FALSE;
246 Developing Distributed Transaction Applications with Encina

the two requests we will make, a listing of products, and an update of a
product’s inventory quantity. We will use these programs by invoking them
remotely through the services of the PPC Gateway. We will implement the
PPC access to the product database within a common module named
ProductDbPPC.

10.2.5.1 Product Database Functions
The header file for the module defines the functions we will implement (see
Figure 96 on page 247).

Figure 96. Product Database Functions (ProductDbPPC.h)

#define MAX_BUFFER_SIZE 32767

typedef struct {
char rqstName[10];
} ProductListInBuf;

typedef struct {
char productId[10];
char productName[25];
char productDesc[200];
char productPrice[15];
char productInventory[10];
} ProductListEntry;

typedef struct {
char rqstResult[4];
char listCount[4];
ProductListEntry entry[1];/* list of products with 1 place holder */
} ProductListOutBuf;

typedef struct {
char rqstName[10];
char productId[10];
char qtyChange[10];
} ProdQtyUpdateInBuf;

typedef struct {
char rqstResult[4];
} ProdQtyUpdateOutBuf;

int initProductDb();
Development Phase 247

10.2.5.2 PPC Coding Example
The PPC services can be used to support Encina-to-CICS conversations,
CICS-to-Encina conversations, and Encina-to-Encina conversations. We will
use only the first of these. For more information about the administration and
programming of PPC, see the Encina Server Administration Guide and the
PPC Services Programming Guide. For Encina-to-CICS communication we
will write routines in our server to make it a PPC Executive application that
uses the PPC gateway. In this mode, the PPC Executive functions allow us to
write a program that becomes the allocating partner in an LU 6.2
conversation. The PPC gateway serves as a bridge between the TCP/IP
network in which our programs run and the SNA network through which we
access CICS. The LU 6.2 protocol requires that the participants in the
conversation be defined as LUs. Part of the PPC gateway administration
involves establishing a connection between the PPC gateway and the SNA
process running on the same computer. The SNA process and the PPC
gateway must be configured to be recognized as a particular LU and to have
knowledge of other LUs that are potential conversation partners. Refer to the
appropriate SNA documentation for your product and the Encina
Administration Guide for details.

The basic outline for a PPC access to a CICS program is fairly simple. The
PPC communications must first be initialized. Then a conversation allocation
request is made. A series of send and receive calls are made to exchange
data with the conversation partner, followed by a deallocation. You may have
situations where you will design a new PPC interaction, but more often you
will be developing a new partner to work with an existing program. The
techniques for coding an allocator program are the same regardless of
whether the acceptor is a CICS program accessed through the PPC Gateway
or another Encina program accessed directly through the PPC Executive. It is
also possible to have an Encina application server be the acceptor for a CICS
allocator. The techniques for writing an Encina acceptor are the same
regardless of who the allocator is. Therefore it is possible to develop code for
an Encina-to-CICS conversation by using an Encina-to-Encina conversation
during the initial development. This is the strategy that we will use for the
case study application.

Figure 97 on page 249 outlines the pattern of the conversation we will
implement. The Partner 1 program is the allocator program, which will be the
OrderProcServer in our application. The Partner 2 program is the acceptor
program, which we will simulate initially with another Encina application
server, but which will later be the existing CICS program.
248 Developing Distributed Transaction Applications with Encina

Figure 97. Conversation Pattern for the Product Database Access

In this section we focus on the allocator code that we will use within the
OrderProcServer. Initializing a PPC allocator involves two calls to PPC
Executive functions. The first call is to the cpic_Init() function. There is one
parameter to this call; it names the LU by which it will be known to our partner
in the conversation. This is the fully qualified name in the form
NETWORK.LUNAME. The second call is to load a special PPC configuration
file known as the side information file. This file contains special syntax that
allows you to describe the conversation partners and the acceptor programs
you want to use. The cpic_ReadSideInfo() function takes a single parameter
that gives the file name of the side information file. The initProductDb function
contains these two calls. This function is called as part of the server’s
postinitialization processing (see Figure 98 on page 250).

cpic_Init

Initialize_Conversation

Set_Sync_Level

Allocate

Send_Data

Set_Send_Type

Receive (data)

cpic_Init

Accept_Conversation

Mon_RegisterTPN

cpic_ProvideAcceptData

Receive (data)

Receive (status)

Send_Data

Set_Send_Type

Receive (status) Receive (status)

Deallocate Receive (status)

Partner 1 Partner 2

Send
State

Send
State

Send
State

Receive
State

Receive
State

Receive
State

Commit CommitDealloc
State

Dealloc
State

cpic_ReadSideInfo
Init Init
Development Phase 249

Figure 98. Initializing PPC (from initProductDb.c)

Notice that the error processing is a little different here than elsewhere. All of
the calls in the CPI-C (PPC Executive) library have the potential to return an
error with the enumeration symbol of CM_PRODUCT_SPECIFIC_ERROR. If
this error is returned from the call, an addition function call,
cpic_GetProductSpecificDetail, returns a value of type ppc_status_t. This
return code provides more details for this type of error. The processing to get
product-specific error returns is handled within the showCpicStatus() function.

Figure 99 on page 251 shows the side information file we are using for our
case study application. You can find more details on the contents of side
information files in the Encina PPC Services Programming Guide.

int initProductDb() {
CM_RETCODE cmr;
LogEntry(1, DEBUGMSG, "Beginning ProductDbInit() function...");
if (strlen(g_sconf.ppcLuPartner) == 0) {
LogEntry(2,ERRORMSG,"PPC LU must be specified!");
return FALSE;
}
if (strlen(g_sconf.ppcSideInfoName) == 0) {
LogEntry(2,ERRORMSG,"PPC side info file name must be specified!");
return FALSE;
}
LogEntry(2,INFOMSG,"Initializing PPC with LU = [%s]",
g_sconf.ppcLuPartner);

cmr = cpic_Init(g_sconf.ppcLuPartner);
if (!showCpicStatus("cpic_Init",cmr)) return FALSE;
LogEntry(2,INFOMSG,"Reading side info file [%s]",
g_sconf.ppcSideInfoName);

cmr = cpic_ReadSideInfo(g_sconf.ppcSideInfoName);
if (!showCpicStatus("cpic_ReadSideInfo",cmr)) return FALSE;
LogEntry(1, DEBUGMSG, "End of ProductDbInit() function.");
250 Developing Distributed Transaction Applications with Encina

Figure 99. The Side Information File

Allocating a conversation consists of several related PPC function calls. We
first make a call to initialize the conversation. This call requires that we
provide a parameter of type CONVERSATION_ID. Despite the name, this is a
char * data type under the covers and must be initialized to an empty string.
The initialization call will set a unique value in the string. This conversation id
string is then used as an input function to each of the subsequent calls
throughout the conversation. The call also requires a symbolic destination
name. This is the key that selects a particular entry in the side information
file. The sideinfo entry is then paired with a partner entry, and between these
all of the information needed for the conversation is available. The next call
sets the synchronization level for the conversation. There are three
synchronization levels, levels 0, 1, and 2, that give the level of transaction
support. Level 0 indicates no transactions, and level 2 indicates full
transactional support. We will use synchronization level 2. The next call,
which is optional, sets the type of the conversation. Our choices are
“mapped” and “basic." Despite the names, the mapped conversation is much
simpler than the basic conversation. Mapped conversations allow the
participants to determine the structure of the data that is passed between
them. Basic conversations use a standardized structure. We will use mapped
conversations. Finally, we make a call to allocate the conversation. If this call
returns with a CM_OK return code, the program on the other end has been
activated and is expected to be ready to receive data. Our program is in the
“send” state after the allocate call. Figure 100 on page 252 shows the code
for allocating the conversation from the exchangeBuffers() function.

/* LU6.2 Application */
sideInfo {
"ORDERPRC",/* symbolic dest name */
"",/* mode name - defaults */
"ProductDb",/* partner name */
"CPICRCV",/* TPN - remote program */
ENCRYPT_NONE,/* encryption - not used */
SECURITY_NONE,/* security setting */
"",""/* user id and password -
ignore for SECURITY_NONE */
}

partner {
"ProductDb",/* partner name */
CONNECTION_GWY_TCP,/* connection type */
"SNAPI2"/* scheduler entry name -
Development Phase 251

Figure 100. Allocating a Conversation (from ProductDbPPC.c)

We will use a simple conversation pattern that calls for a single send and
receive exchange of data with our partner. Since we are the allocating party,
we send first. The first call we make is to set the type of the send. We want to
send and then immediately turn the conversation around so that we can
receive, so we use a send type of CM_SEND_AND_FLUSH. We then make a
call to the Send_Data function to send a buffer to our conversation partner. The
Send_Data function takes a pointer to a buffer of data, a pointer to an integer
giving the length of the buffer, and a pointer to a variable to hold code which
verifies that the conversation turnaround request has been acknowledged. Of
course the conversation ID and a return code are also part of the parameter
list. Figure 101 on page 252 shows the function calls related to the data send
operation.

Figure 101. Sending Data through PPC (from ProductDbPPC.c)

In our simple conversation pattern, we are now expecting to receive a buffer
from our partner followed by a deallocation of the conversation. We handle
both of these in one function, readAndEnd, because we expect that the function
call we make to receive the buffer will have a return parameter verifying that
our partner is deallocating following its send. This function is a little complex
because of the variations in how we might be notified of the deallocation and
the possibility that our partner might be notifying us that it is ending
abnormally. Figure 102 on page 253 shows the Receive function call.

...
Initialize_Conversation(convId, destName, &cmr);
if (!showCpicStatus("Initialize_Conversation",cmr)) return FALSE;

Set_Sync_Level(convId, &sl, &cmr);
if (!showCpicStatus("Set_Sync_Level",cmr)) return FALSE;

Allocate(convId, &cmr);
if (!showCpicStatus("Allocate",cmr)) return FALSE;

...
Set_Send_Type(convId, &sendType, &cmr);
if (!showCpicStatus("Set_Send_Type",cmr)) convError = TRUE;

Send_Data(convId, inbuf, &inbufLen, &requestToSendReceived, &cmr);
if (!showCpicStatus("Send_Data",cmr)) convError = TRUE;
...
252 Developing Distributed Transaction Applications with Encina

Figure 102. Receiving Data through PPC (from ProductDbPPC.c)

The parameters to the Receive function, following the conversation ID, begin
with a pointer to the buffer that is received and a pointer to an integer
containing the maximum length of the data buffer. The next parameter is an
indicator telling us whether the data we have received is all of the data that
needs to be sent. This indicator can be used to handle multibuffer transfers of
very large buffers. The next parameter is an integer giving the actual length of
the buffer that was transferred. This is followed by an indicator as to whether
any abnormal status has been returned, and the conversation turnaround
indicator as was used in the Send_Data call.

Once we have successfully received the data and the notification that we
have send control, we can initiate the deallocation of the conversation. Figure
103 on page 253 shows the code that ends the conversation.

Figure 103. Deallocation after a Receive (from ProductDbPPC.c)

To get a complete picture of the flow of the conversation, refer to the
complete code listing for the ProductDbPPC.c file.

Before moving on to the implementation of the business functions related to
the product database, we need to mention the issue of conversion between

maxLen = *outbufLenPtr; /* use the input value as the max */

LogEntry(3,DEBUGMSG,"Receiving data...");
Receive(convId, outbuf, &maxLen,
&dataReceived, outbufLenPtr,
&statusReceived, &requestToSendReceived,
&cmr);
if (!showCpicStatus("Receive",cmr)) convError = TRUE;

LogEntry(3,DEBUGMSG,"Receiving status...");
Receive(convId, outbuf, &maxLen,
&dataReceived, &dummyLen,
&statusReceived, &requestToSendReceived,
&cmr);

LogEntry(3,DEBUGMSG,"Deallocating conversation ...");
deallocType = CM_DEALLOCATE_SYNC_LEVEL;
Set_Deallocate_Type(convId, &deallocType, &cmr);
Deallocate(convId, &cmr);
if (!showCpicStatus("Deallocate",cmr)) convError = TRUE
Development Phase 253

EBCDIC and ASCII coded text data. If the CICS system that we are
conversing with is running on an MVS system, its character data will be
coded in EBCDIC. There are two function calls that convert between these
two character coding systems. The Convert_Outgoing function translates
ASCII data into EBCDIC data. The Convert_Incoming function translates
EBCDIC data into ASCII data. These calls need a pointer to the data buffer, a
length indicator, and return a result code. The conversion is done in place on
the buffer that is pointed to - meaning that the buffer after the call will be in
the altered coding scheme. The ASCII data will be null terminated after the
conversion. We do not use the conversion routines in our case study code
because the CICS system we are talking to is a CICS/6000 system running
on AIX using the ASCII coding scheme.

As an example of how the low-level function, exchangeBuffer(), is used to
actually transfer our product database data, we look at the updateProductQty
function. This function passes a buffer containing the information needed by
the CICS program to make the update and receives a buffer containing a
result code from the CICS program. We manage the buffers by defining
structures that describe the buffer we are sending and the buffer we are
receiving for this request. The structure definitions we will use are coded in
the ProductDbPPC.h file, shown in Figure 96 on page 247.

Notice how these buffers are defined. First, all of the data is in character
format, including the quantity field. We will make the decision here to
exchange all of our information as character data to avoid the problems with
numeric conversions between different systems. Because our partner here is
another UNIX process, there really is not that much of an issue. If our partner
were on an MVS platform, it would typically be a COBOL CICS program using
EBCDIC coding and a very different style of numeric representation. It is
typical to convert numeric data to character data for transfers and let the
partner program decide how to convert the character representation back into
a numeric format. In using these structures to map the buffer for us, we must
ensure that we do not allow the compiler to add extra bytes to the structure
(to achieve some level of alignment on word or double word boundaries in
memory). There are compiler switches that control the alignment option for
structures, and different compilers have different defaults, so be careful in
setting up your build options.

The code for the updateProductQty function begins by populating the structure
it will pass to the CICS program. It then calls the functions to allocate a
conversation, send the buffer, and receive the result. The buffer that is
returned is interpreted using the output structure (although it is trivial, in this
case we stick to the general processing pattern). The function ends after
interpreting the return code it finds in the returned data. Figure 104 on page
254 Developing Distributed Transaction Applications with Encina

255 to Figure 105 on page 256 shows the code for the updateProductQty
function.

Figure 104. (Part 1 of 2) The updateProductQty Function (from ProductDbPPC.c)

int updateProductQty(long productId, long qtyChange, RpcReturn *ret) {
SYNC_LEVEL sync = CM_NONE;
ProdQtyUpdateInBuf inbufStruct;
ProdQtyUpdateOutBuf outbufStruct;
char *inbuf;
char *outbuf;
int inbufLen;
int outbufLen;
char tmpStr[11];
char rqstReturnTmp[5];

LogEntry(2,DEBUGMSG,"Beginning updateProductQty function...");
/* populate the input buffer for the conversation */
strncpy(inbufStruct.rqstName, "PRODQTYUPD", 10);
sprintf(tmpStr,"%10d", productId);
strncpy(inbufStruct.productId, tmpStr, 10);
sprintf(tmpStr,"%10d", qtyChange);
strncpy(inbufStruct.qtyChange, tmpStr, 10);
inbufLen = sizeof(inbufStruct);
inbuf = malloc(inbufLen + 1);
memcpy(inbuf, &inbufStruct, inbufLen);
inbuf[inbufLen] = ’\0’;
outbufLen = sizeof(outbufStruct);
outbuf = malloc(outbufLen + 1);
memset(outbuf, ’ ’, outbufLen);
if (!exchangeBuffers("UPDPRQTY", sync, inbuf, inbufLen,
outbuf, &outbufLen)) {
free(inbuf);
free(outbuf);
setRpcReturn(ret,FATALRETURN,"","");
LogEntry(3,ERRORMSG,"The buffer exchange failed!");
return FALSE;
}
free(inbuf);
outbuf[outbufLen] = ’\0’;
memcpy(&outbufStruct, outbuf, outbufLen);
free(outbuf);
strncpy(rqstReturnTmp, outbufStruct.rqstResult, 4);
rqstReturnTmp[4] = ’\0’;
LogEntry(2,DEBUGMSG,"End of updateProductQty function...");
Development Phase 255

Figure 105. (Part 2 of 2) The updateProductQty Function (from ProductDbPPC.c)

10.2.6 Server Construction
In this section we describe the structure of the code that implements the
Encina Monitor application servers. The pattern of the code is basically the
same for each of our servers, but there are some differences. We consider
the OrderProcServer in detail and then look at the features of the
VerificationServer that are unique.

10.2.6.1 Monitor Application Server Life Cycle
The basic steps in the life cycle of a monitor application server are:

 • Establish the server’s processing environment by retrieving any
environment variables or command line arguments that will affect the
subsequent processing.

 • Register the interfaces the server provides with the Encina monitor.

 • Perform any server-specific processing that needs to be done before the
server goes through its own initialization routine. The most common
activity here is the registration of XA resources that you will use in
implementing the RPCs.

 • Set the server options that will affect how the server initializes itself.
Usually you will specifically set the server’s scheduling policy. The
scheduling policy determines whether or not the server will be able to
handle concurrent requests.

 • Initialize the server.

 • Perform any server-specific processing that needs to be done after the
server has initialized. The most common activity is the initialization of any

if (strcmp(rqstReturnTmp, "0000") == 0) {
setRpcReturn(ret,GOODRETURN,"","");
return TRUE;
}
else if (strcmp(rqstReturnTmp, "0001") == 0){
setRpcReturn(ret,WARNINGRETURN,"ProductDb",rqstReturnTmp);
return TRUE; /* convention here is good return for appl warning */
}
else {
setRpcReturn(ret,FATALRETURN,"ProductDb",rqstReturnTmp);
return FALSE;
}
}

256 Developing Distributed Transaction Applications with Encina

components that use native Encina transactions, such as PPC, RQS, or
SFS.

 • Begin the processing loop within which the server is available for
processing RPCs. This function executes the entire time the server is up.
During this time, clients can bind to the server and send RPCs to it.

 • Perform any cleanup and shutdown processing that needs to occur before
the server terminates. Typically you close any connections or files that are
opened during the startup routines.

We will create a server function for each of the steps in the life cycle. Some of
these functions will be the same for both servers. The main differences will be
in what we do during the server pre-init and server post-init functions. Figure
106 on page 257 shows the header file that defines the functions for the
OrderProcServer.

Figure 106. Server Life-Cycle Functions (OrderProcServer.h)

Notice the definition of the symbol XASWITCH that is included here. All of the
functions that deal with the switch will use XASWITCH as the parameter. We
define the actual name here so that we can easily change the name. Because
different database products have different names for the switch, we chose not
to use those names.

The server’s main function simply calls each of these functions in turn to
perform the required processing (see Figure 107 on page 258).

/* Function prototypes for the OrderProcServer */

#define XASWITCH db2xa_switch /* swtich name for use with DB2 */

int EstablishEnv(int argc, char* argv[]);
int ExportInterface();
int ServerPreInit();
int SetServerOptions();
int ServerInit();
int ServerPostInit();
int ServerListenLoop();
int ServerCleanUp();
Development Phase 257

Figure 107. OrderProcServer main() Function (from OrderProcServer.c)

Because we defined a common structure for the server configuration
variables, we simply choose which ones we need to use here and use the
common code modules we created to do the bulk of the work. Figure 108 on
page 259 shows the implementation of the establishEnv function.

#include <stdio.h>
#include <tpm/mon_server.h>
#include <LogEntry.h>
#include <ServerVariables.h>
#include <MonStatusStrings.h>
#include <OrderProcIF.h>
#include <OrderDbDB2.h>
#include <ProductDbPPC.h>
#include <ServerConfig.h>
#include <VerifyQueue.h>
#include <OrderProcServer.h>

ServerConfig g_sconf;/* global server configuration */

extern struct xa_switch_t XASWITCH;

/**
**/
/*************** ORDERPROC SERVER MAIN FUNCTION *****************/
/**
**/

int main(int argc, char* argv[]) {
LogEntry(1, ALWAYS, "OrderProcServer Start-Up Beginning...\n");
if (!EstablishEnv(argc, argv)) return 1;
if (!ExportInterface()) return 1;
if (!ServerPreInit()) return 1;
if (!SetServerOptions()) return 1;
if (!ServerInit()) return 1;
if (!ServerPostInit()) return 1;
if (!ServerListenLoop()) return 1;
if (!ServerCleanUp()) return 1;
LogEntry(1, ALWAYS, "OrderProcServer stopped gracefully.\n");
return 0;
}

258 Developing Distributed Transaction Applications with Encina

Figure 108. Server Configuration: establishEnv() Function

Each of our servers exports interfaces that provide RPC function entry points
to client programs. During server startup, we must register the interfaces that
are implemented within the server. We can register as many different
interfaces as we like. We register the interface through a call to the
mon_InitServerInterface function as shown in the implementation of the
ExportInterface() function from our OrderProcServer in Figure 109 on page
260.

int establishEnv(int argc, char **argv) {
/* merge the command line arguements and the
 environment variables to establish the working
 environment for the server */
LogEntry(2,DEBUGMSG, "Begining server environment set-up.");
/* write the possible config variabes to the log */
LogConfigOptions();
/* call the set up functions for the needed variables */
setEnvMsgLevel(argc,argv,PREFER_CMD);
setEnvRetriveEnable(argc,argv,PREFER_CMD);
setEnvSchedulePolicy(argc,argv,PREFER_CMD);
setEnvDbUserId(argc,argv,PREFER_CMD);
setEnvDbPassword(argc,argv,PREFER_CMD);
setEnvDbName(argc,argv,PREFER_CMD);
setEnvPpcSideInfo(argc,argv,PREFER_CMD);
setEnvPpcLuPartner(argc,argv,PREFER_CMD);
setEnvRqsServer(argc,argv,PREFER_CMD);
setEnvPendingQueue(argc,argv,PREFER_CMD);
setEnvPendingQSet(argc,argv,PREFER_CMD);
setEnvReviewQueue(argc,argv,PREFER_CMD);
setEnvReviewQSet(argc,argv,PREFER_CMD);
setEnvThreadDelay(argc,argv,PREFER_CMD);
Development Phase 259

Figure 109. Exporting the Server’s Interface from OrderProcServer.c

The parameters to the mon_InitServerInterface are specified using a macro
provided with the Encina include files. The function actually takes two
parameters; the interface and the entry point vector. These names are
generated by the TILD compiler and can be found in the generated code. To
simplify the coding of this call, the Encina header files define the
MON_SERVER_INTERFACE macro, which takes the interface name as
given in the TIDL source, the major version number, and the minor version
number and expands them into the same “mangled” name that is produced by
the TIDL compiler in the generated files. For this macro to work, you have to
be careful not to include any white space between the interface name and the
version numbers. After the successful execution of the
mon_InitServerInterface function, the Encina Cell Manager has been notified
that this interface will be provided by the server instance that is starting up.

The order in which we perform the interface initialization is not critical except
that all interfaces must be initialized before making the call to initialize the
server itself.

The next step in our startup process is to take care of any other processing
that must be done before the server is initialized. Typically this involves
registering any resources that we will access using the XA protocol. All XA
resources must be registered before server initialization. We include all of the
processing within the serverPreInit() function (see Figure 110 on page 261).

int exportInterface() {
mon_status_t mst;
LogEntry(2,DEBUGMSG, "Beginning interface export.");

mst = mon_InitServerInterface(MON_SERVER_INTERFACE(OrderProcIF,1,0));

if (!showStatus("init OrderProcIF interface",mst)) return FALSE;
LogEntry(2,DEBUGMSG, "End of interface export.");
return TRUE;
}

260 Developing Distributed Transaction Applications with Encina

Figure 110. XA Resource Registration serverPreInit() (from OrderProcServer.c)

The mon_RegisterRmi function registers the XA resource. The parameters are
the xa_switch_t variable provided by the vendor of the resource and a string
providing an open string, close string, and serialization option. This string is
referred to as the rmName. The function provides an output parameter giving
the registered resource an ID number. The strategy we are using here is to
use a #define statement to give the appropriate value to the XASWITCH
symbol, and to call a function within the OrderDB module to give us the
rmName string to use in the mon_RegisterRmi call. This allows us to make
the registration code generic rather than having it written specifically for a
given vendor’s product. Figure 110 on page 261 shows the getRmName()
function from the OrderDbDB2 implementation. Because DB2 uses commas
to separate the database name, user id, and password in the open string, and
the RM Name string is expected to be comma separated as well, we use
backslash to “escape” the commas within the open string.

Figure 111. Building the rmName String for DB2 (from OrderDbDB2.c)

int serverPreInit() {
int retCode;
mon_status_t mst;
char* rmName;
int rmiId;

LogEntry(2,DEBUGMSG, "Beginning server pre-initilization.");

LogEntry(3, DEBUGMSG, "Beginning OrderDB XA Resource registration.");
getRmName(rmName);

mst = mon_RegisterRmi(XASWITCH, rmName, &rmiId);

if (!showStatus("mon_RegisterRmi",mst)) return FALSE;

LogEntry(3, DEBUGMSG, "End of OrderDB XA Resource registration.");
LogEntry(2,DEBUGMSG, "End of server pre-initilization.");
return retCode;

void getRmName(char * rmName)
{
sprintf(rmName , "%s\\,%s\\,%s,,",
g_sconf.dbName,g_sconf.dbUserId,g_sconf.dbPassword);
}

Development Phase 261

The final step before actually initializing the server is to set the options that
affect how the server initialization will be done. Specifically we need to
specify whether we want to allow environment retrieval within RPC calls and
what the concurrency scheduling policy should be. With the environment
retrieval option turned on, calls can be made within the implementation of an
RPC that return various pieces of information about the context in which the
RPC is being called. Unfortunately, making this information available involves
considerable overhead, so this feature is usually disabled unless specifically
required. The concurrency scheduling policy setting specifies whether the
server will process RPCs one at a time or concurrently in multiple threads. If
the server is set to concurrent processing, there is a default of 5 threads
available for RPC processing. You can change this value by setting the value
of the ENCINA_TPOOL_SIZE environment variable to the number of threads
the server should support.

The calls to set these options are contained within our setServerOptions
function, which is shown in Figure 112 on page 262. Notice that we are using
the values set from our environment to make the calls to these functions.

Figure 112. Setting Server Options: setServerOptions() Function

int setServerOptions() {
mon_status_t mst;

LogEntry(2,DEBUGMSG, "Beginning set up of server options.");

/* set the environment retrieval flag */
mst = mon_RetrieveEnable(g_sconf.retrieveEnabled);
if (!showStatus("mon_RetrieveEnable",mst)) return FALSE;

/* set the scheduling policy for the server */
if (strcmp(g_sconf.schedulePolicy,"MON_CONCURRENT_SHARED") == 0) {
mst = mon_SetSchedulingPolicy(MON_CONCURRENT_SHARED);
}
else if (strcmp(g_sconf.schedulePolicy,"MON_EXCLUSIVE") == 0) {
mst = mon_SetSchedulingPolicy(MON_EXCLUSIVE);
}
else {
LogEntry(3,ERRORMSG,"The ServerConfig value for schedulePolicy is not
’MON_CONCURRENT_SHARED’ or ’MON_EXCLUSIVE’.");
LogEntry(3,ERRORMSG," Check the command line options and environment
variables.");
}
if (!showStatus("mon_SetSchedulingPolicy",mst)) return FALSE;
262 Developing Distributed Transaction Applications with Encina

Now we are ready to initialize the server with a call to mon_InitServer. This call
takes one parameter and after successful completion, the server is initialized
and capable of doing work, including transactional work. The serverInit()
function, shown in Figure 113 on page 263, performs this processing for our
server.

Figure 113. Initializing the Server: initServer() Function

Once the server is initialized, we can perform any processing that requires
transactions or any other type of server processing. This is the point in the
startup process where we need to initialize any of the native Encina
resources such as SFS, RQS, and PPC. In our case we will be using RQS
and PPC, so these facilities are initialized in our serverPostInit() function
(see Figure 114 on page 263).

Figure 114. Post-Initialization Processing: serverPostInit() Function

Our design calls for the actual initialization code to be part of the modules
that deal with the product database (for PPC) and the verification queue (for
RQS), so here we simply call the functions from these common modules. The

int serverInit() {
mon_status_t mst;

LogEntry(2,DEBUGMSG, "Beginning server initialization.");

mst = mon_InitServer();

if (!showStatus("mon_InitServer",mst)) return FALSE;

LogEntry(2,DEBUGMSG, "End of server initialization.");
return TRUE;

int ServerPostInit() {
LogEntry(2,DEBUGMSG, "Beginning server post initilization.");

if (!initProductDb())
return FALSE;

if (!initVerifyQueue())
return FALSE;

LogEntry(2,DEBUGMSG, "End of server post initilization.");
return TRUE;
Development Phase 263

implementations of these functions are covered in the common code sections
for the product database and the verification queue.

Finally we are at the point where the server can begin to handle RPC
requests, assuming that all has gone well so far. To begin the process of
listening for and processing RPCs, we make a call to the mon_BeginService
function. This function executes until the server shuts down. This processing
is contained within our serverListenLoop() function shown in Figure 115 on
page 264.

Figure 115. Listening for RPCs: serverListenLoop() Function

While the server is in the RPC listening loop, it monitors the IP ports that were
assigned to its interfaces during the previous steps in the startup. Through
the services of the Encina Cell Manager, clients are bound to the server.
When a bound client calls an RPC that is part of the server’s interface, the
server passes the RPC parameters to the function we have written to
implement the RPC. The server will invoke our function from the main server
thread or within a new thread, depending on whether the server is operating
in MON_EXCLUSIVE or MON_CONCURRENT_SHARED mode. The way in
which we implement RPCs is covered in the next section.

Server shutdown takes place because a shutdown request is received from
the Encina Cell Manger or due to a call to the mon_TerminateSever function.
Typically, the server waits for a shutdown request instead of having code to
shut itself down. The processing that needs to be performed as part of the
shutdown process depends on what is being done in the server. in general,
any resource that you have specifically opened should be closed now. The
shutdown processing for the OrderProcServer has only to end its access to
RQS. This is done through a call to the closeVerifyQueue function
implemented within the VerifyQueue common code module (see Figure 116 on
page 265).

int serverListenLoop() {
mon_status_t mst;

LogEntry(2,DEBUGMSG, "Beginning server RPC listen loop.");

mst = mon_BeginService();

if (!showStatus("mon_BeginService",mst)) return FALSE;
LogEntry(2,DEBUGMSG, "End of server RPC listen loop.");
return TRUE;
264 Developing Distributed Transaction Applications with Encina

Figure 116. Server Shutdown Processing: closeVerifyQueue Function

10.2.6.2 Implementing the Interface Functions

Each of the functions in each of the interfaces that the server supports must
be implemented by a function we code. The TIDL and IDL compilers
produced a set of code that handles the process of passing control and data
from a received RPC to the function that we have implemented. In general,
there is not much difference between coding a function to support an RPC
and coding any other function.

The signature of the function is defined by the function definition in the TIDL
file. If you look at the generated code, you will find that the functions you
defined in the TIDL are changed to include some additional parameters.
These additional parameters are added to the function call by the generated
code used on the client-side. The additional parameters are received and
processed within the server-side generated code so that when our function is
actually called, only the parameters specified originally in the TIDL source are
passed to us.

We have chosen to structure our code in such a way that all of the RPC
implementation functions are in a separate source code file. This is not
required, but it is a useful code organization strategy, because most of the
development activity will involve the RPC implementations, whereas the
server startup code will rarely change.

The functions that we need for RPC handling are defined in the generated
code, and so we do not code our own header file to define them. Sometimes
when you compile a server, your RPC implementation functions do not match
the signatures of the generated functions, or an interface function is not
implemented. When you try build the case study servers with a mistake of this
type, the compiler generates errors for all of the interface functions except for
the function that is in error or missing!

int serverCleanUp() {
RpcReturn retValue;

if (!closeVerifyQueue(&retValue))
return FALSE;

return TRUE;
}

Development Phase 265

If we have done a good job in modularizing our code and identifying common
code elements, our RPC implementations should be straightforward. Most of
the work will be done in the code modules already written. As an example of
an RPC implementation function, let’s start with the orderItem function. Figure
117 on page 266 shows the TIDL definition for this function.

Figure 117. TIDL Definition for the orderItem() Function

Figure 118 on page 266 shows the implementation of the orderItem function.

Figure 118. RPC Implementation of the orderItem Function

[nontransactional] RpcReturn orderItem(
[in] long orderId,
[in] long productId,
[in,string] char * productName,
[in] long orderedQty,
[in] float productPrice);

RpcReturn orderItem(long orderId,
long productId,
unsigned char *productName,
long orderedQty,
float productPrice) {
RpcReturn temp;

initRpcReturn(&temp);

LogEntry(1, INFOMSG, "OrderProcIFMgr::orderItem()");

transaction {
addToOrder(orderId, productId, productName,
orderedQty, productPrice, &temp);
if (temp.retCode != 0) {
abort("addToOrder abort");
}
} onCommit {
LogEntry(2,DEBUGMSG,"addToOrder transaction committed.");
} onAbort {
LogEntry(2,ERRORMSG,"addToOrder transaction aborted.");
LogEntry(3,ERRORMSG, abortReason());
temp.retCode = FATALRETURN;
266 Developing Distributed Transaction Applications with Encina

In this case, we have already identified and implemented the process of
adding an item to an existing order. This was a responsibility of the OrderDB
module and was implemented in the addToOrder() function. So our
implementation of the orderItem RPC simply has to call that function. We
begin by initializing the RpcReturn structure, which will be the return value
from our function and eventually the return value supplied to the client. We
implemented the initRpcReturn() function for this purpose, and so we use
that common code module here. Because we are accessing the order
database as an XA resource, we need to establish a transaction context by
placing our call to the addToOrder() function in the body of the transaction
block. Notice that the symbols transaction, onCommit, and onAbort are used
as if they were language elements. These symbols are actually macros that
are defined in the Encina header files. The transaction macro establishes a
transaction context. Any commands within the braces following transaction
are executed as part of that transaction. When the flow of program execution
reaches the closing brace, Encina attempts to commit the transaction. Each
of the resources referenced during the transaction must become part of a
distributed two-phase commit process. If all of the resources can commit,
control will pass to the commands following the onCommit symbol. If any of
the resources either explicitly or implicitly abort, control passes to the
commands following the onAbort symbol. Explicit aborts occur as a result of a
call to the abort() function. You can see that we make a call to this function,
with a string message as the parameter, if we get a bad return from the
addToOrder() function. We also could have made the abort() function call from
within the addToOrder() function. The message supplied when the abort()
function is called can be retrieved through the abortReason() function call. We
use this function call in onAbort processing to provide meaningful error
messages in the case of an aborted transaction.

The design approach we are using here calls for the RpcReturn structure to
be passed down to the lower-level functions from the RPC handling function.
The lower-level functions are expected to fill in appropriate values for the
return code, error system, and error code. This approach allows the
component that encountered the error to fill in meaningful error results while
the calling function need only check the return code. In the event of an abort,
we simply make sure the return code is set to the fatal error value and return
the RpcReturn structure.

The structure of each RPC implementation function is basically the same.
The complete contents of the OrderProcIFMgr function is included with the
source code for the case study application. You can download the source
code from http://www.redbooks.ibm.com "Additional Material".
Development Phase 267

10.2.6.3 Non-RPC Server Processing
In addition to performing processing as a result of RPCs, a server may have
to perform activities for other reasons. An example of this in our case study
application is the VerificationServer’s queue processing. This server is
responsible for getting queue items from the verification queue and
performing some business on the associated order. We will implement this as
a separate thread of control within the server. Thus the VerificationServer will
provide an RPC interface as well as maintain an autonomous processing
thread for queue processing.

The strategy for implementing the queue processing thread is to create a
thread during the server startup processing, before entering the server’s RPC
listening loop, specifically, in the serverPostInit() function. Figure 119 on
page 268 shows the VerificationServer’s serverPostInit() function.

Figure 119. The VerificationServer’s serverPostInit Function

The startVerifyThread() function uses DCE pthread functions to start a new
thread to execute the function that monitors the verification queue. The
function that executes within the thread is fairly straightforward. Here is an
outline of the function:

1. Pause for a short time before doing anything to allow the server to come
up fully.

int serverPostInit() {
int rc;
LogEntry(2,DEBUGMSG, "Beginning server post-init processing.");
if (!(rc=initVerifyQueue())) {
LogEntry(3,DEBUGMSG, "Server post-init processing:
initVerifyQueue():%d",rc);
return FALSE;
}
if (!(rc=initGlobalStats())) {
LogEntry(3,DEBUGMSG, "Server post-init processing:
initGlobalStats():%d",rc);
return FALSE;
}
if (!(rc=startVerifyThread())) {
LogEntry(3,DEBUGMSG, "Server post-init processing:
startVerifyThread():%d",rc);
return FALSE;
}
LogEntry(2,DEBUGMSG, "End of server post-init processing.");
268 Developing Distributed Transaction Applications with Encina

2. Set the normal pause between loop iterations on the basis of the server
configuration variable for the thread delay.

3. Attempt to dequeue an item from the queue.

4. If dequeuing is successful, process that item. Read the order from the
order database, make a decision on the validity of the order, and place an
item on the review queue if the order is not valid.

5. Continue to dequeue items and process them until a dequeue fails
because of an empty queue.

6. Sleep for the specified time before checking the verify queue again.

The code for the entire function is a bit lengthy for inclusion here (see the
complete code listings available for download on
http://www.redbooks.ibm.com), but we show the pertinent sections in Figure
120 on page 270.
Development Phase 269

Figure 120. The Queue Processing Thread Function (from VerifyLoop.c)

This function is structured to execute indefinitely. It will actually end when the
thread is stopped during server shutdown.

void * verifyLoop(void * dummy) {
struct timespec delaytime;

...

LogEntry(1,INFOMSG,"Beginning VerifyLoop() function.");
/* delay initially by 2 minutes after the server starts */
delaytime.tv_sec = 120;
delaytime.tv_nsec = 0;
pthread_delay_np(&delaytime);
/* set the subsequent delays based on the server variable */
delaytime.tv_sec = g_sconf.verThrdDelay;
LogEntry(2,DEBUGMSG,"verifyLoop() delaytime is %d seconds",
delaytime.tv_sec);
indx = 0;
do {
LogEntry(2,DEBUGMSG,"Looping in verifyLoop() function");
pthread_delay_np(&delaytime);
do {
transaction {
if (removeFromVerifyQueue(&qItem, &ret)) {
if (!getOrderInfo(qItem.orderId, &ordInfoPtr, &ret))
abort("FailedOrderDbRead");
/* actual verification would go here.
For this example we
simply use a ’round robin’ scheme to get
different decisions */

...

if (!updateCustOrder(&basicOrder, &ret))
abort("FailedOrderUpdate");
}
else if (ret.retCode != RQS_EMPTY_QSET) {
abort("VerifyDequeueAbort");
}
} onCommit { ...
} onAbort { ...
}
} while ((qItem.orderId != 0) && (ret.retCode == 0));
270 Developing Distributed Transaction Applications with Encina

The thread is created, causing the function in Figure 120 on page 270 to
begin execution within the startVerifyThread() function shown in Figure 121
on page 271.

Figure 121. Starting the Processing Thread: startVerifyThread() Function

The thread is stopped during server clean-up by calling the stopVerifyThread
function shown in Figure 122 on page 271.

Figure 122. Stopping the Processing Thread: stopVerifyThread() Function

10.2.6.4 Shared Structures within the Server
The VerificationServer code contains an interesting example of how to
manage shared structures within a server. The VerificationServer compiles
statistics on the results of its verification activities. A client program can
request these verification statistics, using the showStats RPC function in the
VerifiticationIF interface. The statistics are updated during the processing of
the verification thread. Thus there is the potential of conflicting access to this
structure. We solve this problem by assuring that only one thread at a time
accesses the structure. We guarantee this single-threaded access through
the use of a mutual exclusion (mutex) structure from the DCE pthread library.
Each of the functions that touches the statistics structure must first obtain a
mutex lock on the mutex structure associated with the statistics structure.

static pthread_t verThread;

...

int startVerifyThread() {
if (pthread_create(&verThread,
(struct __pt_attr* const*)pthread_attr_default,
verifyLoop,
NULL))
return FALSE; /* non-zero is bad return */
else
return TRUE;

int stopVerifyThread() {
if (pthread_cancel(verThread))
return FALSE; /* non-zero is bad return */
else
return TRUE;
}

Development Phase 271

The statistics structure and the mutex are declared as static variables in the
code module containing the statistics structure processing code. We begin by
declaring the statistics structure and the mutex as static variables for this
code module. These structures are initialized in unison within the
initVerifyStats() function and cleaned up in the cleanupGlobalStats()
function (see Figure 123 on page 272).

Figure 123. Initializing the Shared Structure and Mutex (from VerifyStats.c)

Initializing the structure simply gives the structure’s elements their initial
values. The mutex is initialized with a call to the pthread_mutex_init()
function.

Now each of the functions that accesses the statistics structure must include
the mutex locking and unlocking requests. When we process an RPC to
access the statistics, we will call the copyStats() function to get a current copy
of the statistics structure. The verification thread function will call
updateStats() to indicate the results of its processing. Note that we have
designed the interface to the statistics structure to be “large grained." Instead
of implementing accessor functions for each of the elements, we implement
functions that get and set the structure as a whole. This approach is
appropriate for a situation where the structure as a whole must be
synchronized across accesses from different threads. Figure 124 on page
273 shows the copyStats() and updateStats() functions.

/* global mutex to control access to stats structure */
static pthread_mutex_t g_Stats_mutex;
/* global stats structure */
static VerifyStats g_Stats;

int initGlobalStats() {
g_Stats.numOrdersReviewed = 0;
g_Stats.numOrdersApproved = 0;
g_Stats.numOrdersFailWarning = 0;
g_Stats.numOrdersFailFatal = 0;
if (pthread_mutex_init(&g_Stats_mutex, pthread_mutexattr_default))
return FALSE; /* non-zero is bad return */
else
return TRUE;
}
int cleanupGlobalStats() {
if (pthread_mutex_destroy(&g_Stats_mutex))
return FALSE; /* non-zero is bad return */
else
272 Developing Distributed Transaction Applications with Encina

Figure 124. Accessing the Shared Structure (from VerifyStats.c)

The pthread_mutex_lock function is called at the beginning of the copyStats()
and the updateStats() functions to get exclusive access to the structure, and
the pthread_mutex_unlock function is called at the end of each function to free
the structure for use by another thread.

The approach shown here is appropriate for structures that are shared within
a given processing agent. There are facilities within Encina for creating
structures that are shared across all of the processing agents of an
application server. Refer to the topics on “monitor shared memory regions” in
the Encina Monitor Programming Guide. For shared data that spans servers,
you have to use an external resource manager such as a database. In this
case the resource manager supplies the locking capabilities.

10.2.6.5 Building the Server Executable
Building the server executable program is somewhat platform dependent, but
there is a common strategy regardless of the platform. The code modules that
need to be compiled as part of the server are the server-side files generated
by the TIDL and IDL compilers. For the OrderProcIF interface and the
OrderProcServer, these files are:

int copyStats(VerifyStats * stats) {
if (pthread_mutex_lock(&g_Stats_mutex))
return FALSE;
stats->numOrdersReviewed = g_Stats.numOrdersReviewed;
stats->numOrdersApproved = g_Stats.numOrdersApproved;
stats->numOrdersFailWarning = g_Stats.numOrdersFailWarning;
stats->numOrdersFailFatal = g_Stats.numOrdersFailFatal;
if (pthread_mutex_unlock(&g_Stats_mutex))
return FALSE;
else
return TRUE;
}
int updateStats(int reviewed, int approved, int warn, int fatal) {
if (pthread_mutex_lock(&g_Stats_mutex))
return FALSE;
g_Stats.numOrdersReviewed += reviewed;
g_Stats.numOrdersApproved += approved;
g_Stats.numOrdersFailWarning += warn;
g_Stats.numOrdersFailFatal += fatal;
if (pthread_mutex_unlock(&g_Stats_mutex))
return FALSE;
Development Phase 273

 • From the TIDL compiler: OrderProcIF_manger.c
 • From the IDL compiler: _OrderProcIF_sstub.c
 • Specific to the OrderProcServer:

 • OrderProcServer.c
 • OrderProcIFMgr.c

 • Common Code Modules:
 • ServerConfig.c
 • StatusStrings.c
 • OrderDbDB2.c
 • ProductDbPPC.c
 • RpcReturn.c
 • LogEntry.c

If there are other server specific files, they must be included as well. This is
the case for the VerifyLoop.c and the VerifyStats.c files of our
VerficationServer.

Specific compiler switches may be required to properly compile the source
code for certain platforms and for different DCE implementations. Check
Appendix A of Writing Encina Applications and the DCE vendor’s
documentation.

For our build processing, we first compiled the TIDL and IDL generated files
into a library called OpsInterfaces and the common code modules into a
library called OpsCommon. Compiling the files and modules into libraries
facilitates the building of the server, because only the server-specific code is
actually compiled as part of the build.

The linkage stage of the build must pull in all of the libraries we have built: the
required Encina libraries, the DCE library, and any additional libraries
required by other products. The following Encina and DCE libraries are
required:

 • EncMonServ
 • EncServer
 • EncClient
 • Encina
 • DCE

Because we are also accessing RQS and PPC from the OrderProcServer, as
well as a DB2 database, we also link with the following libraries:

 • EncRqs
 • EncPpcExec
 • db2
274 Developing Distributed Transaction Applications with Encina

These are not the actual names of the library files, of course. If you are
building on the Windows NT platform, the actual files will have the names
listed above with an extension of .lib. On UNIX platforms, the files will be
prefixed with “lib” and have an extension of .a.

10.2.7 Standard Client Construction
In this section we explain how to access the servers from a standard client
program written in C.

10.2.7.1 Initializing the Client
Initializing an Encina monitor client is simply a matter of making a call to the
mon_InitClient() function. The parameters to this function call are a string
with a name of your choosing for the client, and the name of the Encina cell to
which the program will be a client.

You can establish the name of the Encina cell in various ways. The name can
be hard coded, read from the environment, or read from an initialization file.
We expect that the ENCINA_TPM_CELL environment variable is set before
program execution. We will use the value read from that environment variable
as the cell name to which we will connect. Figure 125 on page 276 shows the
code from our standard client program that reads the environment variable
and initializes the Encina client.
Development Phase 275

Figure 125. Initializing an Encina Client (from OrderProcClient.c)

10.2.7.2 Calling RPCs
Any of the functions defined in an interface can be accessed (assuming the
security authorizations allow it) simply by making a call as if the function were
within the current program. The first such call that is made to an interface
involves some overhead as the actual binding to the server is made at the
time of the first RPC request to that interface. To avoid having a user affected
by this initial delay, you can make an initial RPC call as part of the client
program’s startup. The "ping" function that we coded with each of our
interfaces is an ideal candidate because it does not require parameters and
does not do any meaningful processing on the server. Thus, in our client
program we make the RPC call shown in Figure 126 on page 277
immediately after we initialize to the cell.

char cellName[80];

...

strcpy(cellName, getenv("ENCINA_TPM_CELL"));
if (strcmp(cellName,"") == 0) {
fprintf(stdout,"No value set for ENCINA_TPM_CELL environment variable.
Program Exiting.\n");
return 0;
}

status = mon_InitClient("OrderProc Test Client", cellName);
if (status != MON_SUCCESS) {
fprintf(stdout,"Error initializing client for cell name=%s\n",
cellName);
return 0;
}
else {
fprintf(stdout,"Client Initialized to Encina cell name=%s\n",
276 Developing Distributed Transaction Applications with Encina

Figure 126. Making the Initial RPC Call (from OrderProcClient.c)

Making the RPC requests that actually implement the business logic is not
much more difficult. We have to manage the parameters that are being sent
in the call. We use the convention that simple data types are passed by value
if they are input only and by single indirect reference if they are input/output
parameters. The code for the createOrder() RPC request has a simple data
type parameter, the order ID, that is set on the server (see Figure 127 on
page 277). In this example, the parameter is specified as [out] in the TIDL.
The treatment would be basically the same for an [ingot] parameter except
that the variable would be given a value before the call.

Figure 127. Calling an RPC with an Output Parameter

We determined that when we were passing structures as parameters we
would use a double indirect reference to the structure to allow for variable
size returns where the size is determined on the server. In this case, there is
a special treatment of the memory allocation for the structure. Consider the
viewOrders RPC that returns a list of BasicOrder structures. We first declare
a variable that is a pointer to an OrderList structure. We then pass the
address of the pointer as a parameter to the RPC, giving the RPC a
double-indirect reference to the structure. We have not made any memory
allocation for the structure within our client code. On the server, the
rpc_ss_allocate() function will be used to allocate the appropriate number of
bytes based on the size of the list to be returned. This allocated memory is
transferred to the client where a matching allocation is made by the

RpcReturn retValue;

...

/***** ping *****/
retValue = pingOrderProcIF();
rpcReturnDisplay(retValue);

long orderId;

...

/***** create order *****/
retValue = createOrder(&orderId);
rpcReturnDisplay(retValue);
Development Phase 277

underlying DCE functions. We then manipulate this memory through the
pointer variable we declared initially. When we are done, we tell DCE to free
the memory that it allocated for us by calling the rpc_ss_client_free()
function. Figure 128 on page 278 shows the code that performs this
processing in the client.

Figure 128. Using Double Indirection and Server-Side Memory

That is really about all there is to RPC processing within a client program.
The complexity of the client lies mostly in the presentation logic and in
managing the user interaction.

10.2.7.3 Building the C Client Executable
Building the C client is a matter of compiling the client source with the TIDL
and IDL client-side generated files. For the OrderProcClient, these files are:

 • OrderProcClient.c
 • OrderProcIF_client.c
 • OrderProcIF_cswtch.c
 • _OrderProcIF_cstub.c

Specific compiler switches may be required to properly compile the source
code for certain platforms and for different DCE implementations. Check
Appendix A of Writing Encina Applications and the DCE vendor’s
documentation.

OrderList * orderList;

...

/***** view orders *****/
printf("Calling viewOrders() ...\n");
retValue = viewOrders(&orderList);
rpcReturnDisplay(retValue);
printf("There are %d orders in the CustOrder table\n",
orderList->numOrders);
for (indx = 0;indx < orderList->numOrders; indx++) {
printf(" Order id = %d\n", orderList->orders[indx].orderId);
printf(" Order date = %s\n",
orderList->orders[indx].orderDateTime);
printf(" Order status = %s\n",
orderList->orders[indx].orderStatus);
}
rpc_ss_client_free(&orderList);
278 Developing Distributed Transaction Applications with Encina

Linking the program requires that you include the following libraries:

 • EncMonCli
 • Encina
 • DCE

Of course, if additional products are used in the client, additional libraries
may be required.

10.2.7.4 Encina 2.5 and Microsoft Visual C++ with MFC
One final issue that bears mentioning concerns possible conflicts between
Encina, DCE, and the Microsoft Visual C++ development environment.
Although the clients we are building for the case study application do not use
the Microsoft Foundation Classes (MFC), other experiences have shown that
care must be taken in how code is managed in this environment. In particular,
there are name conflicts between the Microsoft RPC header files and the
DCE RPC header files. To compile a program that uses both Microsoft MFC
and Encina/DCE, you have to completely separate the code into different files
that are compiled separately. We have successfully done this in the past by
creating a set of wrapper functions that use structures as parameters that are
declared as standard C structures as opposed to IDL structures. The C
structures match the IDL structures exactly, and the wrapped functions match
the RPCs exactly except for the structure names (the wrapper functions using
the non-IDL structures). The wrapper functions simply pass the data and
control between the rest of the client code and the RPC functions. A header
file is created that declares the wrapper functions and a library is built
containing the wrapper functions and the RPC functions. The MFC client
code includes the header and links with the library. Calls to the wrapper
functions then become calls to the RPC functions, but the compile
dependencies between the DCE components and the MFC components are
eliminated. This is a messy situation that results from the way the Windows
header files are used within the Encina code in Version 2.5. This problem will
be resolved in future releases.

10.2.8 Web Client Construction
We will implement our Web client using the facilities of the DE-Light Gateway.
Specifically we will use the facilities within DE-Light that enable us to produce
Java language versions of the stub files similar to those we used to build the
C client. A special version of the IDL compiler, drpcidl, takes the TIDL source
code for an interface and produces Java language stub files. The following
command is used to produce the Java stub files for the OrderProcIF interface:

drpcidl -Iencina_include_path -Idce_include_path -stub java
OrderProcIF.tidl
Development Phase 279

The drpcidl compiler produces a number of different files. There is a file for
each of the structures that are defined in the OrderProcCommon.idl. These
files contain the Java code for a class that provides a wrapper for the
structure defined in the IDL source. A file is created that defines a Java class
for the interface as a whole, providing a member function for each of the
functions in the interface.

The structure wrapper classes provide accessor functions for the fields in the
structure. For each field there is a generated member function named by
prefixing the field name with get_ and set_. For example, for the retCode field
of the RpcReturn structure, the functions would be get_retCode() and
set_retCode(value). If the field is an array, the accessors include an additional
parameter for the index value.

The generated class that describes the interface itself has member functions
for processing the RPC function calls and accessing the parameters to those
functions. The style used here is that each of the parameters specified in the
TIDL source for the function has an accessor function in the interface class.
Each of the functions in the TIDL source becomes a member function of the
interface class. However, the interface class function has no parameters. To
actually call one of the RPC functions, you have to use the parameter
accessor functions to set values of the input parameters, call the RPC
function, and use the accessors for the output parameters to get the returned
data.

Here is the flow of processing in the Java program that uses these generated
classes:

1. Establish a connection to the DE-Light gateway by instantiating a
DrpcConnection object and specifying the gateway to which you want to
connect.

2. Instantiate an object from the generated interface class and give it the
connection object created above.

3. Call the RPCs by setting the input parameters, calling the interface
object’s RPC function, and accessing the return parameters.

For our case study Java applet, we structured the code such that all of the
RPC-related code is contained in a class named RpcHandler. We get the
DE-Light Gateway information from the parameter tags within the applet tag
on the HTML page. Figure 129 on page 281 shows the function from the
RpcHandler class that gets the gateway information.
280 Developing Distributed Transaction Applications with Encina

Figure 129. Getting the Gateway Information from the HTML Page

The connection is established through another member function of the
RpcHandler class which uses the getGatewayName() function (see Figure 130
on page 281).

Figure 130. Establishing the Connection to the DE-Light Gateway

The next step is to instantiate the interface object and set its connection
object. This is shown in Figure 131 on page 282.

private static String getGatewayName() {
String name = (
RPCHandler.getContext().getParameter("protocol") + ":" +
RPCHandler.getContext().getParameter("host") + "[" +
RPCHandler.getContext().getParameter("port") + "]");
return name;

private static boolean getDrpcConnection() {
boolean stat = true;
if (RPCHandler.c_drpc == null) {
try {
RPCHandler.c_drpc = new
DrpcConnection(RPCHandler.getGatewayName());
RPCHandler.c_drpc.setDceSecurityLevel(
DrpcConnection.DRPC_DCE_PROTECT_NONE);
RPCHandler.c_drpc.setSecurity(DrpcConnection.SEC_NONE);
} // end-try
catch (final DrpcException e) {
stat = false;
RPCHandler.c_drpc = null;
RPCHandler.getContext().showStatus(
"RPCHandler::getDrpcConnection() DrpcException: " +
e.getMessage());
} // end-catch
} // end-if
Development Phase 281

Figure 131. Instantiating the Interface Object

Now we can make the calls required to issue an RPC through the gateway,
using the reviewOrder function. Figure 132 on page 283 shows the code for
calling this function.

private boolean getOrderProcIF() {
boolean stat = RPCHandler.getDrpcConnection();
if (stat) {
if (this.m_stub == null) {
this.m_stub = new OrderProcIF();
this.m_stub.setHandle(RPCHandler.c_drpc);
//Server name must not be specified for RPCs to
// Encina Monitor servers
// the following line is for non-monitor servers
//this.m_stub.setServer(RPCHandler.getServerName());
} // end-if
} // end-if
return stat;
282 Developing Distributed Transaction Applications with Encina

Figure 132. Calling the reviewOrder() RPC Function

private boolean reviewOrder() {
boolean stat = false;
if (this.m_orderChanged) {
if (this.getOrderProcIF()) {
try {
// set the input parameter
this.m_stub.set_reviewOrder_orderId(
this.m_orderInfo.get_orderId());
// call the RPC function
OrderProcIF_RpcReturn ret = this.m_stub.reviewOrder();
if (ret.get_retCode() == 0) {
// get the output parameters
this.m_orderInfo =
this.m_stub.get_reviewOrder_ordInfo();
this.m_orderChanged = false;
stat = true;
} // end-if
else {
RPCHandler.getContext().showStatus(
"RPCHandler::reviewOrder() failed");
} // end-else
} // end-try
catch (final DrpcException e) {
RPCHandler.getContext().showStatus(
"RPCHandler::reviewOrder() DrpcException: " +
e.getMessage());
} // end-catch
catch (final Exception e) {
RPCHandler.getContext().showStatus(
"RPCHandler::reviewOrder() Exception: " +
e.getMessage());
} // end-catch
} // end-if
} // end-if
else {
Development Phase 283

284 Developing Distributed Transaction Applications with Encina

Development Phase 285

286 Developing Distributed Transaction Applications with Encina

Part 4. Maintenance

A staggering number of applications are developed with little or no focus on
their postdevelopment life. We believe that development teams should
always address three major issues from the very beginning of their project --
application deployment, system administration, and troubleshooting. Proper
planning for these phases of the project life cycle sharply decreases the risks
involved in deploying and operating the application; hence, fewer people and
monies are burned, and more customers are satisfied.

Encina is no exception when it comes to life after development. Arguably
Encina systems are even more vulnerable to problems in the deployment and
operational phases because of the heterogeneous and highly distributed
nature of the Encina applications.

In Part 4 we discuss various aspects of administering, deploying, and
troubleshooting Encina applications. Our focus is not so much on procedures
and syntax but on the concepts to consider when designing the application
and planning for its rollout.
© Copyright IBM Corp. 1998 287

288 Developing Distributed Transaction Applications with Encina

Chapter 11. Administration

The term “administration” is used for a wide variety of activities related to
support of an application in production. In this chapter we elaborate on a
range of topics that could loosely be considered as part of system
administration. Our focus is on presenting the issues and providing general
guidelines for dealing with them rather than spelling out rigorous procedures
for monitoring and analyzing problems. For more details on resolving Encina
application problems, see Chapter 13, “Troubleshooting” on page 347.

11.1 Naming Conventions

It is easy to overlook the issue of choosing and sticking to a sound naming
convention. There are more than plenty of reasons to enforce a sound set of
naming conventions, but we just mention few of them here. Following a good
naming convention makes your system administrator’s life much easier when
adding new objects to the system. It reduces unnecessary confusion between
the team members, and it makes it a lot easier to maintain knowledge about
your application.

Encina systems generally contain a large number of named objects, and a
sound naming convention is a definite must. When putting together the first
draft of your naming convention, think about these issues:

 • Encina naming is an integral part of your overall naming scheme.

 • Shorter names are easier to type and display.

 • Names should facilitate script writing.

 • Naming conventions should be easy to follow by humans too.

 • Naming conventions must allow for explosive future growth.

Now, given all that good advice, let us try to put together a naming convention
for our case study application.

Here are the rules we use:

 • Each Encina cell name is of the form /.:/<application>/enc_<cell type>,
where <application> is the name of the application, and <cell type>
describes what the cell is used for, prod (production), stage (staging),
release (official release).

 • All Encina servers are named <server>; the first letter of each word is in
upper case.
© Copyright IBM Corp. 1998 289

 • All backup servers are named <server>B.

 • The RQS, SFS, PPC, and other special servers are named <server>Rqs,
<server>Sfs, <server>Ppc, and so forth.

 • The interfaces are named <interface>IF, the first letter of each word is in
upper case.

 • The default Encina values are used for all user names, directories, and
CDS names.

This convention is quite simple. If your organization has different departments
managing different Encina applications, you may want to add an extra layer in
your Encina cell names, for example, /.:/orders/enc_prod could become
/.:/operations/orders/enc_prod.

Table 8 on page 290 presents the names of the objects we use for our case
study application.

Table 8. Case Study Application Encina Objects

The application also uses two RQS queues and two RQS queue sets. The
names of the queues are PendingVerifyQueue and ReviewVerifyQueue. The

Encina Object CDS Name

Cell cell /.:/orders/enc_prod

Node prod_one /.:/orders/enc_prod/node/prod_one

prod_two /.:/orders/enc_prod/node/prod_two

Server OrderProcServer /.:/orders/enc_prod/server/OrderProcServer

VerificationServer /.:/orders/enc_prod/server/OrderProcServe

OrderProcServerB /.:/orders/enc_prod/server/OrderProcServerB

VerificationServerB /.:/orders/enc_prod/server/OrderProcServerB

Interface OrderProcIF /.:/orders/enc_prod/ecm/interface/OrderProcIF

VerificationIF /.:/orders/enc_prod/ecm/interface/VerificationIF

RQS
server

ordersRqs /.:/orders/enc_prod/server/ordersRqs

PPC
server

ordersPpc /.:/orders/enc_prod/server/ordersPpc

DE-Light
gateway

ordersGtw /.:/orders/enc_prod/server/ordersGtw
290 Developing Distributed Transaction Applications with Encina

two queue sets are named PendingVerifyQueueSet and
ReviewVerifyQueueSet.

The CDS names for these fours objects are, respectively:

/.:/orders/enc_prod/server/ordersRqs/queue/PendingVerifyQueue
/.:/orders/enc_prod/server/ordersRqs/queue/ReviewVerifyQueue
/.:/orders/enc_prod/server/ordersRqs/queue/PendingVerifyQueueSet
/.:/orders/enc_prod/server/ordersRqs/queue/ReviewVerifyQueueSet

11.2 System Security and User Administration

In this era of increased system openness and tight Internet integration, you
can never spend enough effort on securing your system against unauthorized
access. From putting together a simple security procedure to inviting a
full-blown external security audit, it all helps. The trick is to realize that it is an
ongoing process and you should plan to dedicate sufficient resources to
security for as long as you intend to have your system operational.

For a nondistributed application, the operating system can be trusted to
protect resources from unauthorized access. This is not the case in open
distributed systems, however. Communications take place over an accessible
network, where messages between machines can be observed or forged. An
additional security system is required to control access to resources in a
distributed environment.

11.2.1 Encina Security Model
One of the major advantages of using Encina as your distributed transaction
and process monitor system is its strong security model based on the DCE
Security Service.

The DCE Security Service ensures that client processes can securely access
server processes and that servers can securely pass information to clients
based on their identity. Therefore each two participants in a communication
(called principals) can authenticate their counterparts and exchange
information in a secure fashion.

In addition to authentication and secure information exchange, Encina uses
Access Control Lists (ACLs) which allow you to specify which services are
available to which users. Therefore, each Encina application maintains three
levels of security -- operating system security, DCE security, Encina server
security. The operating system security facilities are used to allow users to
access the application machines. DCE security is used to allow users to
authenticate themselves to Encina servers across the entire distributed
Administration 291

environment. Finally, each Encina server is configured to provide a different
set of interfaces to the different authenticated users and groups.

11.2.2 Operating System Security
Before we explain which operating system users and groups you need to
create for Encina, we want to emphasize the importance of maintaining
proper operating system security, especially on the machines running the
DCE Security Service. Any compromise of security on your DCE security
servers automatically compromises the security of your entire Encina
application. Therefore, we advise you to dedicate a physically secure
machine as your DCE security server and ensure that no external access is
granted to anyone on that machine except for clients talking to the DCE
Security Service.

In most cases you need only two user accounts to run Encina applications on
your machine: the superuser account and the Encina account. The superuser
account is needed to install, configure, and run DCE (see Chapter 12.3, “DCE
and Encina Installation and Configuration” on page 324). You have to use the
superuser account because DCE provides the underlying infrastructure to
Encina, including security.

The superuser account is also used to configure the disk space required by
Encina and install the Encina software. Installing Encina as the superuser
ensures that no one else can alter any Encina files: executables, scripts, and
configuration files.

Once you have DCE up and running and Encina installed, do not use the
superuser account . Configuring the Encina cell and running the Encina
servers is done through the Encina account.

The Encina account is maintained by the Encina administrator, who may have
access to the superuser account. Nevertheless, a separate account should
be used for running and managing Encina to ensure that the Encina
application does not interfere with the operating system in any distracting
way.

The Encina account belongs to an Encina administration group. Other
members of this group are the operators. You have to decide whether you
need to separate the tasks of the operators from those of the administrators.

11.2.3 DCE Security
After you install and configure DCE (see Chapter 12.3, “DCE and Encina
Installation and Configuration” on page 324), only one DCE account is in
292 Developing Distributed Transaction Applications with Encina

place, the DCE cell administrator. We recommend that you stick to the default
name for this account, which is cell_admin.

Encina is designed to handle some of the DCE administration required for its
proper functioning. You have to perform a simple initial DCE setup before you
create the Encina cell. Part of this initial setup is creating the Encina
administrator user and the Encina administration group. This initial DCE
setup is performed for you by enconsole when you create the Encina cell.
Once DCE has been set up for Encina, you start using the Encina
administrator account for an Encina cell configuration and maintenance.

11.2.3.1 DCE Setup for Encina Servers
When you configure the Encina Cell Manager, the Node Managers, and the
application servers, Encina automatically creates the required DCE users and
DCE principals. A user is created for every server and manager. A random
DCE password is also generated for each user. DCE keeps the information
about users and their passwords in its security registry.

When an Encina server or manager is started, it has to provide its password
to DCE security for authentication. Therefore, the server has to “know” its
password. When Encina creates a server, it stores the generated password in
a file that resides on the machine running the server. This file is readable only
by the Encina user. It is called a keytab file and it is located in the server
working directory. Encina periodically changes the password of each of its
servers for additional protection. The keytab file is updated when the
password is changed.

The CDS names used for the Encina server principals can be configured
manually as part of the server configuration (see Chapter 12.3.6, “Encina
Server Configuration” on page 342). We recommend that you keep the
default convention; the name of the Encina server is used to generate the
CDS name for its principal:

/.:/<Encina cell name>/server/<server name>

The Cell Manager and Node Managers use DCE principals named,
respectively:

/.:/<Encina cell name>/ecm
/.:/<Encina cell name>/node/<node name>

For example, our Encina cell /.:/orders/enc_prod uses these principals for the
Cell Manager, Node Managers, RQS server, and PPC gateway:

/.:/orders/enc_prod/ecm
/.:/orders/enc_prod/node/prod_one
Administration 293

/.:/orders/enc_prod/node/prod_two
/.:/orders/enc_prod/server/ordersRqs
/.:/orders/enc_prod/server/ordersPpc

Any objects managed by an Encina server contain the CDS name of the
server as a prefix, for example, the RQS PendingVerifyQueue uses this CDS
name:

/.:/orders/enc_prod/server/ordersRqs/queue/PendingVerifyQueue

11.2.3.2 DCE Setup for Encina Clients
Encina automatically creates DCE users and DCE passwords for the Encina
servers, but you have to manage the DCE accounts and DCE passwords for
the Encina client applications. Therefore you have to create DCE accounts
for all users allowed to use the application. The users would then DCE login
(authenticate themselves to DCE) and run the client program that talks to the
Encina servers. These servers support different interfaces, and the interfaces
must be configured to allow users to access them. For example, when you
create the server OrderProcServer and add the OrderProcIF interface to it,
the ACL for the interface is automatically set to:

enccp -c acl show /.:/orders/enc_prod/ecm/interface/OrderProcIF
{group encina_admin_group x}
{group encina_servers_group x}

As you can see, all Encina servers have access to the interface; however,
clients are not allowed to use it. You have to manage the interface ACLs to
allow client applications to access the interfaces.

Instead of managing users on an individual level, you should create a few
DCE groups to reflect the different functions available to your users. For
example, our case study sample application provides two types of functions:
requests for ordering products and requests for processing the orders. The
first group of requests is supported by the OrderProcIF interface, and the
second group, by the VerificationIF interface. Users who have access to the
OrderProcIF are not necessarily allowed to access the other interface.
Therefore, we create two DCE groups (as the cell_admin DCE user) to model
the two types of users we have identified, the ops_customer group and the
ops_order group:

enccp -c create group ops_customer
enccp -c create group ops_order

We now modify the interface ACLs (as the encina_admin DCE user) to allow
users from their corresponding groups to access the interfaces:
294 Developing Distributed Transaction Applications with Encina

enccp -c acl modify /.:/orders/enc_prod/ecm/interface/OrderProcIF \
-add {group ops_customer x}

enccp -c acl modify /.:/orders/enc_prod/ecm/interface/VerificationIF \
-add {group ops_order x}

Every Encina interface is configured to allow access from the groups it serves
and nobody else. Every new user you add to the system is added to its
corresponding DCE groups. In this way you do not have to modify the Encina
server ACLs every time you add a new user. For example, a new customer is
introduced to the system, and you create (as cell_admin) a DCE account for
it, using enccp or dcecp:

enccp> principal create jsmith
enccp> group add -member jsmith
enccp> org add none -member jsmith
enccp> account create jsmith \
> -group ops_customer -password tempPass -organization none

DCE user jsmith is now ready to access the OrderProcIF without further DCE
setup because jsmith belong to the ops_customer group, which is allowed to
access the interface.

11.2.4 Encina Server Security
Although Encina sets up the correct ACLs for all its objects, it cannot
anticipate the entire ACL setup, and you have to modify the default ACLs as
you configure your servers and their objects. For example, when you add a
new server, you may want to restrict access to its interfaces according to
client identity. When you add an RQS queue, you have to decide who can
access it and change its ACL to reflect your setup.

11.2.4.1 Monitor Application Server (MAS) Interfaces
The default ACL for each interface exported by an Encina Monitor Application
Server (MAS) allows only the Encina administrator and the Encina operator to
access the interface. You have to establish which clients and other servers
need access to the interface and modify its ACLs. For example, the
OrderProcIF is created with the following default ACL:

enccp> acl show /.:/orders/enc_prod/ecm/interface/OrderProcIF
{group encina_admin_group x}
{group encina_servers_group x}

Therefore none of our users will have access to the interface unless we
modify the ACL. Since we want the OPS customers to be able to access the
Administration 295

interface, we modify the ACL to allow the ops_customer group to execute the
interface:

enccp> acl modify /.:/orders/enc_prod/ecm/interface/OrderProcIF
-add {group ops_customer x}

enccp> acl show /.:/orders/enc_prod/ecm/interface/OrderProcIF
{group encina_admin_group x}
{group encina_servers_group x}
{group ops_customer x}

11.2.4.2 RQS and SFS
The RQS server itself has an ACL that determines which servers can access
the RQS server. You have to modify this ACL to allow other servers to access
it. You also have to find out which RQS queues and queue sets are to be
accessed by which servers and set their corresponding ACLs. For example,
our RQS server, ordersRqs, is set up in this way:

enccp -c acl modify /.:/orders/enc_prod/server/ordersRqs \
-add {group encina_servers_group ---tq}

As a result of modifying the RQS server ACL, all Encina servers can now
access it:

enccp -c acl show /.:/orders/enc_prod/server/ordersRqs
{unauthenticated -----}
{group encina_admin_group caxtq}
{group encina_operator_group ----q}
{group encina_servers_group ---tq}
{any_other -----}

In addition to the server ACL, we modify the queue and queue set ACLs by
adding the following entry to each of them:

enccp> acl modify \
/.:/orders/enc_prod/server/ordersRqs/queue/PendingVerifyQueue \

-add {group encina_servers_group ladoxnemrpq}
enccp> acl modify \
/.:/orders/enc_prod/server/ordersRqs/queue/ReviewVerifyQueue \

-add {group encina_servers_group ladoxnemrpq}
enccp> acl modify \
/.:/orders/enc_prod/server/ordersRqs/queue/PendingVerifyQueueSet \

-add {group encina_servers_group ladoxnemrpq}
enccp> acl modify \
/.:/orders/enc_prod/server/ordersRqs/queue/ReviewVerifyQueueSet \

-add {group encina_servers_group ladoxnemrpq}
296 Developing Distributed Transaction Applications with Encina

Notice that in this example we take the easy way out and just allow all types
of access for all servers to all queues and queue sets. You can be more
restrictive by determining exactly which queues should be accessed by which
servers and grant the ACLs accordingly.

Similarly, you have to modify the ACL of your SFS server and the ACLs of all
its objects to allow proper access to them.

For complete information about the Encina ACLs, see Chapter 7, “Controlling
Access to Encina Resources,” in Transarc’s Encina Administration Guide
Volume Two: Basic Administration.

11.2.4.3 PPC
The PPC gateway requires some extra security configuration to deal with the
SNA access to a mainframe. Figure 133 on page 297 shows the two extra
parameters you have to specify when configuring the gateway: the Default
Logical Unit Name, and the Default Remote LU Profile Priority. Consult with
your mainframe personnel to find out which LU has been assigned to your
application and which profile priority you should use.

Figure 133. PPC Gateway Definition Window
Administration 297

11.2.5 DE-Light Clients and Gateways
Any DE-Light gateways you might have in your system provide two levels of
security: between the gateway and the DE-Light client, and between the
gateway and the Encina application. The Secure Sockets Layer (SSL) is used
to ensure the security of the connection between the DE-Light clients and the
gateway. DCE security is used to authenticate the gateway to the Encina
servers it talks to. Therefore, from an Encina standpoint, the DE-Light
gateway is considered a client to all other servers and its principal should
appear in the user groups already set up for the application. For example, our
DE-Light gateway uses the DCE principal
/.:/orders/enc_prod/server/ordersGwy. We have a group called
ops_customer, which contains all DCE users allowed to send customer
requests. Therefore, we add the ordersGwy principal to the ops_customer
group. This activity must be performed by the DCE cell administrator, unless
another user has granted encina_admin privileges to modify this group:

enccp -c group add ops_customer -member \
/.:/orders/enc_prod/server/ordersGwy

As a result of this operation the DE-Light gateway has the same privileges as
any other ops_customer user and can perform requests on behalf of those
customers.

For more information about the DE-Light security mechanisms see Chapter
7.5, “Java Client Security” on page 167.

11.2.6 Encina++ and CORBA
The Encina++ components are offered in two flavors, DCE and CORBA. The
DCE implementation of Encina++ relies on DCE for binding and security. The
CORBA implementation of Encina supports the development of transactional,
object-oriented applications for the CORBA environment. Encina++ /CORBA
applications rely on an object request broker (ORB) for communication
between clients and servers. This dependency on an ORB affects interface
definition, binding, and exception handling. Encina++ completely relies on the
Orbix ORB to provide authentication between clients and servers.

11.3 Encina System Monitoring

Encina applications consist of a potentially huge number of components.
Each of these components is defined by a variety of parameters that you
need to monitor. Chapter 13, “Troubleshooting” on page 347 describes in
detail how you can find out what is happening with your Encina application. In
particular, it provides a roadmap to all message log files generated by Encina.
298 Developing Distributed Transaction Applications with Encina

Although Encina takes care of its own servers, you should ensure that the
encinaNanny processes are always running. They in turn ensure that the
Encina Cell Manager and the Encina Node Managers are always running.

You should constantly monitor the enconsole View-->Serious Messages
window (also found in the file ecml.log), where all unexpected events
encountered by Encina are recorded.

Several components are of specific interest to monitoring. The RQS queues,
for instance, should never be full. Use the rqsadmin tool to find out the status
of a particular queue:

rqsadmin query queue -server <RQS server name> <queue name>

Disk storage space should also be closely monitored. First of all, you have to
ensure that there is always enough space for the Encina run-time files, such
as the message log files. We recommend that you periodically offload the
server.out files for all servers and restart the servers with an empty server.out
file, to keep track of the messages without filling in the disk.

In addition, you have to monitor the Encina volumes. They also should never
be full. If you need more space for any Encina volume, you can enlarge it. For
details on managing Encina volumes, see sections 2 and 3 of Transarc’s
Encina Administration Guide Volume Two: Basic Administration .

We recommend that you carefully consider which Encina parameters you
need to monitor and then put together a set of scripts to perform the checks
for you. You can run these scripts on a regular basis and view their output.

11.4 Fault Tolerance and Encina

One of the most important components of any application design is the ability
of the application system to handle failures. Encina applications consist of
many different components and run on different machines possibly linked
through different networks. Thus, proper Encina application design geared
toward fault tolerance is a definite must.

Encina provides several mechanisms to deal with a variety of system and
application failures. In this section we discuss automatic server restart,
interface redundancy, and Encina volume mirrors and show how you can
apply them to design and configure a robust, fault-tolerant Encina application.
Administration 299

11.4.1 Automatic Server Restart
The Node Managers control the Encina Servers. They ensure that the servers
are running at all times. On server failure, the Node Manager restarts the
server up to a specified number of times. Therefore, any software or
hardware failure that causes a server to fail is overcome by Encina.

The only Encina processes that are not managed by the Encina Node
Managers are the node managers themselves and the Cell Manager. Those
processes are looked after by the encinaNanny, which is spawned when you
start Encina from the rc.encina script (see Chapter 12.3.5, “Automatic Restart
Setup” on page 331 for more details on this script). We also recommend that
you use some automatic means of monitoring the encinaNanny processes as
well. Be aware that should the encinaNanny terminate, no immediate harm is
done to the system; however, any consequent failure of a Node or Cell
Manager goes unnoticed.

11.4.2 Multiple Server Instances
All Encina interfaces can be served by more than one Encina server. A
properly written client, as discussed in Chapter 10.2.7, “Standard Client
Construction” on page 275, attempts to bind to a server and, should it fail, it
tries to reach another server that provides the same interface. This
mechanism not only increases the fault tolerance of your application but also
provides for higher availability and better load balancing.

11.4.3 Encina Volume Mirrors
On the AIX operating system, you mirror an AIX logical volume by using an
AIX utility (you cannot use Encina). On other systems, you can mirror data by
using either an operating system facility or Encina's Volume Service. The
Windows NT operating system provides mirroring by using partitions in
mirrored sets.

Also, some machines are equipped with special hardware that transparently
replicates data. Before choosing Windows NT mirrored sets or
hardware-based replication in place of Encina replication, you should
understand the recoverability issues described below.

There are several factors to consider when selecting mirroring policies and
mechanisms. First, recall the following typical properties of disks:

 • They are permanent, except in the event of a failure. Mirroring, backups,
and logging are meant to protect against failures. In the case of Encina,
logging is also involved in providing transactional guarantees and can be
300 Developing Distributed Transaction Applications with Encina

used to bring backups up to date so that nothing is lost between the time
of the last backup and the time of a failure.

 • They store very large amounts of data and therefore rely on secondary
storage (typically disk-shaped magnetic media).

 • They are slow (compared to primary storage). In particular, they often
must wait for an internal component (the head) and the media they use to
physically move so that the head is over that very small portion of the
media involved in each individual data transfer. This operation typically
involves moving the head radially in or out and then waiting for rotation to
bring the proper portion of the spinning media under the head. This is a
high-latency operation and reduces the potential throughput for the entire
disk.

 • They store data in pages (4 KB). Each page includes extra information to
ensure that it either contains consistent data or is detectably bad and
contains no usable data. The page is thus an atomic unit of data storage.
An entire page is either successfully stored with the extra information or it
is not and is reported as bad when a read is attempted.

Mirroring introduces additional complexities. When data is mirrored, writing to
all copies of the data at once is not desirable. Simultaneous writes to disk
greatly increase the likelihood of multiple copies becoming bad should a
failure occur while the data is being written.

Besides the risk of bad copies, mirroring introduces the possibility of
unmatched copies. Comparing each copy for every read is expensive. The
typical way to deal with this problem is to find (and correct) any
inconsistencies when a system is brought back up after a failure. When the
amount of data is large and the importance of bringing the system up quickly
is high, a simple scheme such as scanning each page breaks down. Encina
implements a sophisticated logging scheme that addresses this and other
issues.

Another potential problem can occur when a write that needs to be atomic
spans multiple pages, and only some of those pages get written to a copy of
the data. This problem is addressed by Encina and may not be by other
mirroring schemes.

These considerations generally apply to both operating-system and
hardware-based data mirroring for two or more copies of the data. In
summary, Encina mirroring is likely to be the most reliable approach. The
performance difference between Encina and hardware-based schemes is
potentially significant. However, before choosing a hardware-based scheme,
be sure that it provides the required reliability. The performance difference
Administration 301

between Encina and operating system schemes may favor Encina in cases
where both the operating system and Encina are logging data; if the
operating system is not logging data, the reliability of its mirroring is reduced,
but the performance may be slightly higher.

We recommend that on your production machines you use mirrored disks. In
addition, Encina provides an extra mechanism for protecting your Encina
volumes. Encina allows you to use two raw disk partitions for an Encina
volume. You can add a mirror to a volume when the server is being defined or
when it is running. The two raw partitions are managed as a mirrored pair.
Therefore any updates to the primary Encina volume partition are made to its
mirror as well. Should one of the paired volumes become unavailable, Encina
switches automatically to the remaining partition, and an error message
appears in the Encina message log files (see Section 13.3, “Encina Message
Log Files” on page 351). Thus, you have to place the two partitions of a
mirrored Encina volume on two separate physical disks to benefit from the
Encina mirroring scheme.

You do not have to use disk mirroring and Encina volume mirroring at the
same time. A disk mirroring system that provides the necessary level of
integrity on failure is recommended because it usually provides better
performance and the mirrored disks can be used to store the rest of the
application (DCE, Encina, executables, configuration files, Encina and DCE
run-time files), which further increases the system fault tolerance. If the
mirroring software you have does not meet all the criteria listed at the
beginning of this section, we recommend that you use Encina mirroring.

11.4.4 Examples of Failures
Let us go back to our example and find out what happens during a single
component failure. Figure 143 on page 323 shows the production
configuration of our ordering system. We focus only on failures on machines
running the Encina components. Dealing with failures on any other machines
is beyond the scope of this book.

11.4.4.1 CPU Failure Recovery
As far as any Encina cell is concerned, there are two categories of CPU
failures. A CPU failure of the Encina Cell Manager machine leads to
unavailability of all Encina servers on that machine, including the Encina Cell
Manager. Any transactions in progress during the failure are aborted and then
rolled back.

The Encina Cell Manager itself is used for server management as well as the
ACL manager for all Encina objects. Hence, when the Cell Manager is down,
302 Developing Distributed Transaction Applications with Encina

clients cannot establish new bindings with Encina servers. However, the
existing connections to servers on other CPUs are not be affected. A properly
written client application binds to the server once and then uses the handle to
maintain the communication.

A CPU failure on a machine that does not run the Encina Cell Manager does
not affect the Encina Cell Manager. Therefore server and ACL management
through Encina is still possible. The interfaces provided by the application
servers on the failed CPU are also supported by the servers running on the
other CPU, and the Encina client applications are written in a way that allows
them to attempt to reconnect to a server. Therefore, all clients using the
servers upon failure will reconnect to the servers on the remaining CPU
providing the same interfaces. Any transactions in progress during the failure
are aborted and then rolled back. Hence, the application continues to operate
after a short period of failover time.

11.4.4.2 Communication Failure Recovery
Any communication failure results in machine unavailability. As far as a client
application is concerned, the communication failure means that a machine is
not available. Therefore, we treat the communication failures as CPU failures.

To reduce the risk of machine unavailability, we recommend using two
physical communication connections on each machine, for example, two
Ethernet cards with two IP addresses, so that if there is failure on one of the
channels, you have another communication link to the machine.

Encina automatically handles the two links (IP addresses). When an Encina
server is started, it registers its application interfaces with DCE. If the
machine happens to serve two IP addresses, the application interfaces are
advertised on both IP addresses. Should one of these IP addresses become
unavailable, clients can still access the server providing the advertised
application interface through the second IP address. Again, your client
application has to be written such that it can rebind to an application
interface. This ensures that when the connection to an Encina server is lost
due to a communication failure the client attempts to restablish it. Similarly to
CPU failures, a communication glitch does not affect the atomicity of the
transactions in progress. When the failure occurs, they are all aborted and
rolled back.

11.4.4.3 Disk Failure Recovery
The best guard against disk failures is to use mirrored disks. The recovery
procedure then depends on the particular setup you have. In addition, Encina
Administration 303

provides volume partition mirroring and restart file mirroring. For both
mechanisms Encina automatically detects a failure and picks up the
remaining undamaged partition. An error message is logged, and you can
restore the failed partition later on. As soon as the failed partition is restored
and ready for use, you can add it as a mirror to the remaining running
partition of your Encina volume. See Figure 144 on page 326 for a definition
of Encina mirror volumes.

11.4.5 Volume Backup and Recovery
Although the DCE and Encina executables, configuration files, and run-time
files are backed up as part of the regular backup procedure you establish for
your machines, Encina volumes require special care.

Encina volumes run on raw disk partitions (logical volumes on AIX), and their
format is different from the format of the files supported by your file system.
Encina volumes contain either data (such as the data volumes of the Encina
Cell Manager, RQS, or SFS) or data logs (such as the log volumes used by
various Encina components). You must back up all these volumes in order to
recover after a serious system failure that cannot be handled by any of the
mechanisms discussed in this chapter. Encina volumes cannot be backed up
by the operating system backup utilities because of their different format. You
have to use Encina to back up the volumes.

The Encina backup facility allows you to create two types of backup files: log
archive files and backup files. Log archive files back up log data in a server’s
log volume. They are automatically generated when media archiving is
enabled for a given server (Figure 134 on page 305). Log archive files are
stored in the server’s working directory by default. You can modify the
location of these files through the Encina/DCE Options->Recovery Options
Window for your server (Figure 135 on page 305). For our example, the log
archive files for the RQS server ordersRqs reside in this directory:

/opt/encinalocal/orders/enc_prod/server/ordersRqs/logArchive
304 Developing Distributed Transaction Applications with Encina

You can move the log archive files to offline data storage, using the regular
system backup procedure that is in place for a particular machine.

Figure 134. Enabling Media Archiving

Figure 135. Recovery Options Window

$ tkadmin query mediaarchiving -server
/.:/orders/enc_prod/server/ordersRqs
Media archiving is disabled.
$ tkadmin enable mediaarchiving -server
/.:/orders/enc_prod/server/ordersRqs
$ tkadmin query mediaarchiving -server
/.:/orders/enc_prod/server/ordersRqs
Media archiving is enabled.
Administration 305

The backup files back up application data in a server’s data volume. A
complete backup (consisting of one or more backup files) covers an entire
volume. You must manually create the backup files, using the tkadmin backup
lvol command. You can create a script that backs up all Encina data volumes
on a regular basis and stores the resulting backup files on the disk. Then you
have to move the backup files offline, using the regular system backup
procedure.

The backup files along with the corresponding log archive files are required to
restore a failed Encina data volume. To bring the data volume up to its latest
consistent state, you also need the log volume associated with the failed data
volume. For detailed procedures on Encina backup and restoration, see
Chapter 5, “Performing Backups,” of the Encina Administration Guide Volume
Two: Basic Administration.

11.4.6 Robust Fault-Tolerant Configurations
As you can certainly appreciate by now, designing and configuring a fault
tolerant system is not as simple as it may initially appear. Many components
can fail, and you have to think of the recovery needed after different types of
failures occur.

Our sample ordering system does not provide the fullest fault tolerance
available for an Encina application. The database server has no backup, and
the communication links are not duplicated. In addition, a failure of the
machine running the Encina Cell Manager will jeopardize any Encina server
management.

Figure 136 on page 307shows a more robust configuration that can provide a
10 to 15 minute failover time for any single component failure of the system.
306 Developing Distributed Transaction Applications with Encina

Figure 136. Fault Tolerant Production Configuration

All disks in the fault-tolerant production configuration are mirrored (see
Section 11.4.3, “Encina Volume Mirrors” on page 300 for mirroring
considerations). The Web servers run on two separate machines, using their
own copies of the replicated Web pages. Should one of them fail, the Internet
gateway (probably a fault-tolerant intelligent router) will forward all Web
requests to the remaining Web server. Each Web server runs an Encina Node
Manager (enm) and a DE-Light gateway.
Administration 307

Both Web servers are linked to the Internet gateway by a single network
interface. Should that interface fail, the other Web server will pick up the
traffic from the Internet gateway in the same way a CPU failure is handled.
Each Web server uses two network links to the local fault tolerant switch (or
dual LAN). Should any of those two links fail, the other one can be used to
access the Encina server.

The rest of the Encina cell runs on the Encina server machine. The database
server runs on a machine of its own, the database server. The database and
Encina disks are shared between the Encina server and the database server.
Each machine is connected to the local switch (or dual LAN) through two
links. A failure of any single link still allows the machine to continue its
service. Both machines are connected to the back-end mainframe, using
separate pairs of SNA links. The Encina machine runs the Encina Cell
Manager (ecm), the RQS server, the PPC gateway, and all MAS servers.

If the Encina server fails, the database server takes over its IP addresses and
starts running the Encina cell straight from the Encina disks. Thus, as far as
the outside world is concerned there is only a glitch in service as opposed to
a total blackout. The database server now takes on the load previously
shared between itself and the Encina server. Hence, the performance is
affected but the service is uninterrupted (see Figure 137 on page 309).
308 Developing Distributed Transaction Applications with Encina

Figure 137. Encina Server Failure Configuration

We present the Encina server failure configuration to give you an idea of what
a single point of failure fault tolerant system looks like. You can further
expand this scenario by adding more machines for performance reasons. For
example, you can introduce a third Web server (see Figure 138 on page 310).
Administration 309

Figure 138. Adding Extra Web Servers

You can also increase the number of machines running MAS servers and
replicate the interfaces across several different MAS servers on those
machines (see Figure 139 on page 311).
310 Developing Distributed Transaction Applications with Encina

Figure 139. Adding Extra Encina Monitor Application Server (MAS) Machines

Add new machines to the Encina cell in a way that ensures that the database
manager and the Encina Cell Manager can fail over to a backup machine.
The same applies to RQS and SFS servers. Because all these components
store data, if they fail, their backup processes must use the same data
depository. None of them has the capability of running a backup server
sharing the same data. The rest of the Encina servers only transfer data, and
if they fail, a backup running on another machine can take over without the
need to access the same data depository. Therefore, always keep the Cell
Manager and your RQS and SFS servers on a machine sharing its disks with
the database server, to fail over successfully.

11.5 Performance

Complex systems such as most Encina applications require performance
tune-up before production deployment. In addition, consequent performance
Administration 311

adjustments need to be made to keep up with the changing demands on the
system.

Given the many factors that affect the performance of a complex, distributed
multitier client/server system, we focus on a few techniques that you can use
to improve the performance of your Encina applications.

We recommend that you set up a special suite of performance or load tests
on the production configuration before the deployment date. We also
recommend that you use peak loads of a factor of 2 for the load tests to
ensure that your system is prepared to handle the unexpected.

Our experience shows that the performance bottleneck in most Encina
applications turns out to be either the communication infrastructure or the
database. Once you have shortened the communication paths between your
busiest components, increased the bandwidth available to you to the
maximum, and optimized database queries, it is worth looking at further
increasing your performance by tuning up the Encina components.

All Encina components communicate with each other and with DCE, but they
do not heavily use the disk. You can increase the performance of the Encina
servers and managers by examining the most loaded communication links
between them and then remapping them to different machines.

Encina provides a mechanism for balancing the load between the different
servers exporting the same interface. You can specify a priority when
configuring a server. The Monitor uses this priority to balance requests
among application servers that export the same interface. Client requests are
distributed over a group of application servers on the basis of their priority.
The priority is used only by clients that use transparent binding.

You can also increase the performance of an application server by using
more than one instance of that server running on the same machine. These
instances are called processing agents (PAs). You can define the number of
PAs for each of your application servers, using enconsole (see Figure 140 on
page 313).
312 Developing Distributed Transaction Applications with Encina

Figure 140. Monitor Application Server Advanced Options Window

In addition, you can specify how many threads you want for each PA. Encina
automatically manages multiple threads running within the same PA.

You can have one PA running one thread, in which case all requests sent to
any of the interfaces supported by the application server are executed
sequentially. By increasing the number of threads, you can have the same PA
handle several simultaneous requests from different clients. Because the
threads share the same process space, their management is fast, and
spawning a new thread requires little overhead. At the same time, your
executables must be thread safe, in order to use multiple threads. You must
write your own code in a thread safe fashion, and all libraries you link with
(most notably the database libraries) must be thread safe.
Administration 313

Alternatively, you can increase the number of PAs and keep each of them
with one thread only. The advantage of this scheme is that you do not need
thread-safe code. Also, if a PA dies for one reason or another, the remaining
PAs will handle the subsequent requests while the Encina Node Manager is
bringing the failed PA up. The disadvantage of using many PAs is that the
more processes you have on your system, the harder it is to manage them,
and the more time it takes for the system to switch context between them.

Our experience is that in many situations it is more effective to spend some
extra money on a better performing machine than to go through the
(expensive) route of developing and testing thread-safe application code and
third-party libraries. The latter approach is usually reserved for
high-performance-oriented real-time systems.

In addition to using the techniques described in this chapter, you can increase
the performance of your system by scaling it up. Introducing new hardware is
in most cases less expensive than spending time on performance tune-up
and testing.
314 Developing Distributed Transaction Applications with Encina

Chapter 12. Application Deployment

Applications become increasingly sophisticated with the development of
technology and the rise of customer demands. They run in heterogeneous
environments and interface with a wide variety of users and other
applications. At the same time, project deadlines are shrinking and budget
pressures are intensifying. As a result, the complexity of the systems
delivered increases, and their deployment into production sometimes takes
as long as their development.

In the face of this reality the issues of application deployment should be
considered from day one of the application design and development. The
application design should reflect the desired process of deploying the
application into its target production environment.

In this chapter we provide a brief overview of the application deployment
issues you should be aware of from the very start of your project. Then we
focus on three particular aspects of deployment on which Encina has the
most impact: staging methods, production environment installation and
configuration, and replicating the environment configuration.

12.1 Overview

When deploying applications you have to deal with a large variety of issues.
To fully appreciate the job ahead and to minimize the number of unpleasant
surprises, we recommend the following approach to application deployment:

 • Assign a deployment team leader on day one of your project.

 • Determine the deployment issues as early on as humanly possible.
Perform site surveys if you do not have the whole picture or if you doubt its
correctness.

 • Put together a living deployment plan. Get your customer to buy into it.

 • Start addressing the deployment issues as early as possible and in
parallel with your development effort. Dry run various deployment phases.

 • Track the progress of your deployment effort religiously.

It is hard to list all possible deployment issues you need to deal with but we
mention here the most common ones. All these issues are not limited to
Encina. In subsequent section of this chapter we discuss in greater detail
some of these issues in light of Encina deployment.
© Copyright IBM Corp. 1998 315

Psychological Aspects
Before you start planning any deployment ask yourself a simple question:
What does this deployment mean to my customer? Your number one priority
should be to plan and schedule the deployment around the customer’s
expectations and based on the context of your application. For example, if
you are deploying a new ticket reservation system, do not deploy in
December. If this is the first computer system your customer is about to use,
plan more time for user training. When assessing each of the deployment
issues in this chapter, make sure you think about its psychological aspects.
After all, the success of your system is measured only by the satisfaction of
your customer.

External Interfaces
Find out to what your system interfaces. Make sure to obtain as strict
technical specifications of the interfaces as you can. It is of utmost
importance to involve the customer in this process and to obtain its written
consent with your findings. Be prepared for the interfaces to change during
the development of the application and plan for changing your application
accordingly. Schedule an interface test of your application as early as
possible. Frequently a beautiful application cannot even start because, let’s
say, the external data feed no longer comes over X25 but over TCP/IP
instead.

Documentation and Procedures
Plan ahead for putting together decent documentation to go along with your
application. The documentation should not only describe the functionality of
the application but also the necessary procedures for using it and maintaining
it. Developing documantation is usually expensive; to compensate for
unexpected costs many managers simply force their technical staff to put
together a collection of bulleted lists which is then handed to the puzzled
customer.

Professional documentation enhances the effectiveness of your presentation.
Remember, the customer’s users have no idea what they are getting into, and
they tend to forget what they heard in the training courses as soon as they
walk out the door. You may have been focused on the application for months
and years. The new users, however, have other things to worry about, and
they will only have a short period of time to like the application or hate it. Your
documentation may be the turning point.

Acceptance Tests
You and your customer need to prepare test suites to be run during
application acceptance. It is important to prepare tests that not only allow you
to test the system requirements one after another but also give the customer
316 Developing Distributed Transaction Applications with Encina

a feel for how to use the new application. In this way, you have a better
chance to "buy" the key customer personnel in the application. These people
later on will become your best supporters and will spread the word among
their colleagues.

Performance Tests
Performance tests could be viewed as part of the acceptance tests, but we
separate them to emphasize the importance of testing the ability of your
application to handle peak loads. A carefully prepared set of tests should be
planned to demonstrate to your customer that the application behaves as
expected during peak hours. Think how you are going to measure the
performance. You may have to build measurement capabilities into your
system or purchase a third-party measurement product. Performance tests
require a lot of preparation and precise setup. Plan for several dry runs and
reruns.

Staging Methods
Whatever tests you do during development, you still have to test the
application in the target production environment before the rollout date. This
may not always be possible, so you have to emulate the production
environment in one way or another. Choose your staging strategy early on
and stick to it. See Section 12.2, “Staging Methods” on page 319 for more
detail on staging methods for Encina applications.

Installation and Configuration
Surprisingly many people start thinking about the installation and
configuration of the target operational environment two weeks before the
rollout date. Do not let this happen to you. You should be thinking about the
production configuration as soon as you start designing your application. See
Section 12.3, “DCE and Encina Installation and Configuration” on page 324
for details on configuring Encina applications.

Re-creating the Configured Environment
You may have to build your staging and production environments more than
once, so you must be prepared to do it quickly and without errors. Your ability
to re-create your environments is an issue that becomes even more
pronounced with Encina applications given the complexity of configuring
Encina cells. For further details see Section 12.4, “Replicating Encina Cell
Configuration” on page 343.

Initial Data Load
Many applications require some preexisting data for their proper functioning.
Sometimes this data is taken for granted, and you may not realize when you
first roll out your application that this data must be available to you. For some
Application Deployment 317

applications, such initial data may take weeks and months to gather. You
have to find out whether you need an initial data load, how long it is going to
take, who is going to collect the data, how the data is going to be
incorporated into the new application, and how are you going to verify its
correctness.

System Upgrades
What better time to think about system upgrades than the time when you start
planning your initial installation. Every system needs upgrades even if you
are certain that yours will be a one shot deal. This issue has many aspects
such as upgrading a live system and dealing with inconsistent data. Be
prepared to incorporate mechanisms for hardware and application upgrades
into your application design.

Users and Training
It is important to realize that different types of users will use the application.
They can be categorized by their roles, computer literacy, and stage of
involvement. Make sure to find out who the users will be and possibly meet
some of them early on to get a better feel for the kind of training they need to
start using your application. Remember that it is in your best interest to find
early supporters among users. You should try to identify those supporters
before the actual deployment and possibly involve them in your design, tests,
and other development stages.

Administration Routines
Topics such as data archiving, application security, and disaster recovery
always seem to come up at the end of the project and somehow nobody likes
to deal with them. Developers find it boring to think about backups, the
customer assumes the application will take care of the administrative details,
and everybody seems to believe that administration will just happen when the
system is rolled out.

You will be in a much better position if you plan for assigning a person
responsible for all aspects of system administration from the very beginning
of your project. Try to nail down an explicit set of administration routines that
you expect your customer to assume after the rollout. In addition, try to
involve the customer’s system administrators in the deployment process as
early as possible so that they can assume their roles as planned.

Deployment Team
Finally, but not lastly, you have to pick a good deployment team on the basis
of the issues you believe have to be dealt with during the rollout. A friendly
installation manager can be worth his or her weight in gold when unexpected
problems crop up and your technically skilled deployment team has been
318 Developing Distributed Transaction Applications with Encina

onsite for three weeks longer than initially anticipated. Think about the fact
that the first impression your customer has of your system is the most lasting
one, and your deployment team will be the one delivering that impression.

12.2 Staging Methods

Having a good staging strategy is an issue of project management
persistently underestimated by software developers. Numerous examples of
projects exist that proceed to develop everything without even thinking of how
the application will be actually brought into production. Deadlines come and
pass, and there is never enough time left for proper deployment, let alone
staging. Developers always somehow manage to deliver the application, and
that is when all the trouble begins. Users eagerly put their hands on their
brand new, expensive acquisition only to find out that it does not behave the
way the developers thought it would.

There are many reasons for such problems. Whatever they are there is a
cure: testing the application in the production environment. No matter how
rigorous the unit tests or any other tests for that matter, the application must
be tested in the actual production environment, which is always different from
the development and testing environments.

Of course, this is much easier said than done. In many cases it is impossible
to have access to the production environment long enough to test the system
properly. That is why the application must be staged into the production
environment. After the developers have completed their testing and the
application is believed to be ready for production, it should be installed in a
staging environment.

The staging environment should be as close to the production environment as
possible. All files installed on it should come from the project code
management system and should be version controlled. This includes not only
the executables but also configuration files, administrative scripts, data files,
and other support files needed for the proper operation of the application. The
software products required by the application, such as the operating system,
database engine, DCE, and Encina, should be installed according to a
documented procedure. The application itself as well as any initial data loads
should follow a documented procedure. The entire process should be
planned well ahead of development completion and handled by the people
responsible for application deployment.

While this may sound like overkill for small projects, we are certain that it is a
“necessary evil” regardless of project size. Staging provides the developers
Application Deployment 319

and the people deploying the system with a clear picture of what the system
will actually look like when users get their hands on it. It also greatly reduces
the risk of accidental misconfiguration, not to mention the well known “ooops,
we forgot about that” factor.

Encina applications are no exception. The way to handle the staging depends
on the size of your application. Below we use our case study application to
illustrate the main idea behind staging.

We have three different environments: the development machine, the staging
environment, and the production environment. The development machine is
configured as part of a development DCE cell (see Figure 141 on page 320).
We run several different Encina cells on this machine. The cells are used by
different developers to unit test their software. One of the cells is designated
as the release cell, /.:/orders/enc_release. This cell is configured to use a set
of executables that are built by the code management librarian using
controlled code obtained from our code management library. This cell is used
for regression testing and for demos of the current state of the application.

Figure 141. Application Development Machine Configuration
320 Developing Distributed Transaction Applications with Encina

The rest of the cells are used by the developers to run executables linked
against their code and the libraries from the latest release. One of those cells
is used to test the Encina server configuration scripts.

The staging environment consists of a stand-alone staging DCE cell (Figure
142 on page 322). The database server is identical to the production
database server. The Encina server machine is set up the same way the
production Encina server is set up. The Web server machine is configured
identically to one of the Web server machines we use for production. The
difference between the staging environment and the production environment
is the lack of a second Web server. We do not have it because we could not
afford it or so we thought. The other difference is that we use internal browser
machines for testing the Web interface through DE-Light and a staging region
on the mainframe.
Application Deployment 321

Figure 142. Application Staging Environment

The staging environment is configured using documented procedures for
setting up the operating system, the database, DCE, Encina, and the other
third-party products we use. The Encina servers are configured using the
configuration scripts developed and tested on the development machine. The
application files are pulled from the code management library and built and
released as per our official build release procedure. The staging database is
loaded with operational data. It is connected to a staging region on the
mainframe that also contains operational data.

We are going to run the entire suite of acceptance tests on the staging
environment. In addition, we are going to run some tests that the customers
are not going to see but which are needed for our own peace of mind. Every
322 Developing Distributed Transaction Applications with Encina

time we release a new version of our application, it gets tested in the staging
environment before it is released into production.

The production environment is run as a separate DCE cell (Figure 143 on
page 323). It is configured exactly as we configured the staging environment.
The only difference is that we configure two Web servers instead of one.

Figure 143. Sample Production Environment
Application Deployment 323

Any configuration changes required in the production environment are
included in the configuration update script. The script is then tested in the
development environment and submitted to the code management system. It
becomes part of the next release. The release could be a full release or just a
patch release (a subset of the full release). The next release is installed on
the staging environment first where we perform the necessary set of
regression tests (possibly a subset of the acceptance tests). As soon as we
are satisfied with the correctness of the new release, we move it into the
production environment in a scheduled manner during offpeak hours.

The same mechanism is used for introducing patches and new releases of
the third-party software products, such as the operating system, the database
engine, DCE, and Encina.

As you can see from the description of our staging process, correcting errors
after the initial release is an expensive process. There are always areas for
improvement in software applications, and new patches and software
versions are released regularly. You cannot avoid releasing new versions of
software. You can, however, increase the time between two consecutive
releases by strictly executing a thoroughly planned set of acceptance and
load tests before application rollout.

12.3 DCE and Encina Installation and Configuration

You have to be very careful when configuring DCE and Encina. Remember
that DCE and Encina are performed by the superuser and the Encina cell is
configured by the Encina user. Be sure to test your setup after each
installation and configuration step. Ideally, you should have a written
procedure describing the environment configuration. DCE and Encina must
be part of that procedure. In the sections that follow we provide an overview
of the Encina and DCE installation steps.

12.3.1 Operating System Preparation
Everything described in this section is performed by the superuser. We do not
recommend proceeding to any of the other steps before you have prepared
the operating system for DCE and Encina.

12.3.1.1 System Users and Groups
We suggest that you use three different operating system users in your
production environment; the superuser, and the Encina user, the operator
user. You may find that you need other users as well, a database user for
instance.
324 Developing Distributed Transaction Applications with Encina

The superuser owns all software installed on your system, such as DCE and
Encina. In addition, the superuser runs DCE.

The Encina user runs all Encina managers and servers. It is also used to
configure the Encina cell and the Encina servers. The actual owner of the
Encina account could be the same people who administer the operating
system, such as the system administrators.

The operator user has access to the Encina message log files. The operator
is allowed to start and stop Encina servers through enconsole; however, the
operator is not allowed to change the Encina configuration.

Before the installation of DCE and Encina, the system administrator creates
the encina and encinaop accounts for the Encina user and operator,
respectively. The system administrator also creates the group encina. The
initial two members of the group are the encina and encinaop users. For user
encina we recommend choosing a default file creation mask, such as 027 on
UNIX, that grants read access to the group only. This approach will eliminate
any unsanctioned access to files produced by Encina, such as the message
log files.

Once you have created the Encina user (encina), you must set up its
environment. The environment setup depends on your operating system, but
the following variables must be set:

 • PATH -- must include /opt/dce/bin, /opt/encina/bin, and /opt/encina/etc

 • ENCINA_TPM_CELL -- must be set to the full CDS name of the Encina
cell, such as /.:/orders/enc_prod. All Encina tools use this variable

In addition to these two variables you may want to set up some of the
variables discussed in Section 13.1, “Environment Setup” on page 347.

12.3.1.2 Disk Space Allocation
You have to allocate space for the DCE and Encina software, space for the
Encina and DCE run-time files, and space for the Encina volumes. For
fault-tolerance purposes, consider using mirrored disks for your entire
system. For more information on fault-tolerant design, see Section 11.4,
“Fault Tolerance and Encina” on page 299.

The amount of space required for the DCE and Encina software is specified
in the release notes for those products. All you have to do here is ensure that
there is enough space left on the devices that will host the software.
Application Deployment 325

The same applies to the DCE and Encina run-time files, which are located
under /opt/dcelocal and /opt/encinalocal by default. Make sure you have
sufficient space left in your /var/dce directory used by DCE. You even may
want to create an entire partition dedicated to /var/dce to avoid conflict
between DCE and other processes using /var.

Encina uses its own file system type for managing the data and log volumes
needed by several of its components. Unless your operating system provides
disk mirroring you should also create mirror volumes for all Encina volumes
(see Figure 144 on page 326).

Figure 144. Definition of Encina Mirror Volumes for Node Managers

Encina uses raw disk partitions (logical volumes on AIX) for creating its
volumes. Therefore, you must allocate a sufficient number of raw disk
partitions of the right size before installing Encina. You need a raw partition
for each volume used by Encina. There are two types of Encina volumes:
data volumes and log volumes. Data volumes are used by the Encina Cell
Manager, RQS, and SFS for storing Encina data. All these processes also
use log volumes to keep a log of any changes made to their data volumes.
The Encina Node Manager and the PPC gateway use log volumes only to
maintain transaction state information.

In our example, machine prod_one runs the Encina Cell Manager and the
Encina Node Manager. Therefore, you have to allocate three raw partitions,
two for the Cell Manager and one for the Node Manager. We can name these
partitions ecm_data, ecm_log and enm_log. If you do not have support for
mirrored disks, you have to allocate another three raw partitions,
ecm_data_mirror, ecm_log_mirror, and enm_log_mirror, for the mirror
volumes.
326 Developing Distributed Transaction Applications with Encina

If you want to add an RQS server to this machine later on, you have to create
two more raw partitions, rqs_data, and rqs_log. Again, if system mirroring is
not provided, you have to create two more raw partitions, rqs_data_mirror
and rqs_log_mirror, as mirror images for the RQS data and log volumes.

For more information about the volumes used by Encina see Transarc’s
Encina Administration Guide Volume Two: Basic Administration.

12.3.1.3 Directory Structure
You must grant the right ownership to all partitions you created in Section
12.3.1.2, “Disk Space Allocation” on page 325. Be aware that the Encina user
(encina) must exclusively own all device files associated with these raw
partitions. To prevent anyone else from accessing the devices, use the
following commands:

cd /dev
chown encina:encina ecm_data ecm_log enm_log
chown encina:encina ecm_data_mirror ecm_log_mirror enm_log_mirror
chmod 600 ecm_data ecm_log enm_log
chmod 600 ecm_data_mirror ecm_log_mirror enm_log_mirror

If you are running AIX and using the AIX mirroring capabilities, you do not
need the *_mirror volumes. AIX can automatically maintain mirror images of
the file partitions you have created. If you are using this feature, you have to
change the permissions and ownership of these devices as well:

chown encina:encina recm_data recm_log renm_log
chmod 600 recm_data recm_log renm_log

On Solaris machines you have to create raw partitions when formatting the
disks for the first time. You must create soft links to these partitions in /dev
and use those link names when configuring Encina. This allows for better
readability and configuration portability.

On Windows NT machines you must create one or more fully allocated
operating system files and use them as your Encina volumes. You can use
the Encina fileVol program (or your own program) to create the files. The
fileVol program creates a fully allocated operating system file. The command
syntax is:

fileVol filename filesize

Specify the name of the file to create as the filename argument and the size
of the file (in bytes or kilobytes) as the filesize argument. Specify bytes as an
integer and kilobytes as an integer followed by the letter k. For example, the
Application Deployment 327

following command creates a fully allocated 4000 KB operating system file
named D:\rqs_data:

fileVol D:\rqs_data 4000k

The next step is to link the Encina and DCE software directories to /opt/dce
and /opt/encina, respectively. Then you have to create the Encina working
directories, /opt/encinalocal and /opt/encinamirror, and change their
ownership to encina:

cd /opt
mkdir encinalocal encinamirror
chown encina:encina encinalocal encinamirror
chmod 750 encinalocal encinamirror

At this point you are ready to proceed to the installation of DCE and Encina.

12.3.2 DCE and Encina Installation
The superuser installs DCE and Encina. Follow the installation notes
provided for your platform. Make sure that you install all components needed
on each machine that is part of your environment. When in doubt, install
more. With DCE and Encina it does not hurt to install more components than
you need, provided you have sufficient disk space.

12.3.3 DCE Configuration
After you have installed the DCE and Encina packages, you can proceed to
configuring them. The exact mechanism for DCE configuration depends on
the DCE vendor and the target platform. The installation guides that come
with DCE cover the configuration aspects.

Before you start the DCE configuration you need to design the DCE topology
prior to configuring DCE. For more information about designing DCE cells,
see the redbooks Administering DCE and DFS 2.1 for AIX (SG244714-0) and
DCE Cell Design Considerations (SG244746-0).

The main rules we recommend are these:

 • Use as small a number of DCE cells as possible. One is enough for a
single site configuration. Production cells should be separate from
development cells.

 • Place your master CDS, security, and time servers on the most secure
machine on your system. Make sure the machine is physically secure too.
328 Developing Distributed Transaction Applications with Encina

 • Use at least one replica of CDS, the security server, and the time server.
The replicas should be accessible even if the link to the master is
unavailable.

Once you have decided on your DCE topology and read through the DCE
configuration procedure in your DCE installation guide and release notes, you
can proceed and configure the master CDS and security server. Make sure
that only the DCE administrator has access to the cell_admin (DCE
superuser) account. The DCE administrator will perform the initial Encina cell
configuration.

12.3.4 Initial Encina Cell Configuration
There are two stages to configuring your Encina application. During the first
stage the Encina Cell Manager and the Encina Node Managers are
configured. Also several DCE objects are set up for Encina. During the
second stage all Encina servers are configured. Section 12.3.6, “Encina
Server Configuration” on page 342 focuses on the second stage. Both stages
are performed by the Encina user.

To execute the initial Encina cell configuration, you need to have access to
the DCE cell_admin account because at this stage you set up various DCE
objects in the DCE CDS.

To login to your system as the Encina user, obtain the DCE cell administrator
credentials by logging into DCE as cell_admin (or whatever the cell
administrator account name might be), and start enconsole.

When enconsole asks you whether you want to define an Encina cell, answer
“Yes." The only option presented to you at this point by the main enconsole
window is Define->Cell. Examine all fields presented to you and type in the
correct information. You should have the information required for each field
ready by the time you start configuring the Encina production environment.
Generally, you can leave the default values. The fields that you do need to fill
in are the data and log volume names and the Encina cell name. Make sure
to set a correct value for the priority field under Process Options.

You are ready for the cold start of your cell as soon as you have defined it.
Encina distinguishes between cold and warm starts. The first time you start
any Encina server, it performs a cold start. The cold start involves some DCE
configuration and the creation of certain files, most notably the keyfile for the
started server and the server restart file. Every consequent startup is a warm
start. No configuration is performed. The server restart file is used instead.
Application Deployment 329

You can perform the cold start of your cell by selecting Actions->Start->Cell. It
takes some time to go through all the steps. If you encounter errors, read the
messages carefully and remove the cause of the errors. During the cold start
you are asked to enter the name of the Encina administrator DCE principal
and its password. If the name and password have not been created,
enconsole creates them for you.

The next step is to create and configure the Encina Node managers on all
machines that belong to the Encina cell. This process is similar to configuring
the Encina Cell Manager. With the Cell Manager running, select
Actions->Define->Node to define the Node Managers and
Actions->Start->Node to cold start them. Although you can define the Node
Managers from any machine within the Encina cell, you have to perform the
cold start from the machine on which the Node Manager is running. In order
to perform the cold start, you have to install DCE and Encina on that machine
and configure DCE.

Once you bring up the Encina cell, restart it, using the Cell Manager restart
script, rc.encina.cell. The startup script invokes the encinaNanny program,
which runs the Encina Cell Manager. Should the Cell Manager terminate for
any reason, encinaNanny will restart it. The Cell Manager restart script is
created during the Encina Cell Manager cold start and is located in its
working directory (/opt/encinalocal/<cell name>/ecm by default). You can stop
the Cell Manager by running:

rc.encina.cell stop

You can start the Cell Manager by running:

rc.encina.cell start

Similarly, restart the Node Managers on each machine by using the Encina
Node Manager restart scripts created during the cold start of the Node
Managers. These restart scripts, rc.encina.<node name>, are located in the
Node Managers working directories, /opt/encinalocal/<cell
name>/node/<node name> on each machine. Again, the two parameters that
you can use are stop and start:

rc.encina.prod_one stop
rc.encina.prod_one start
rc.encina.prod_two stop
rc.encina.prod_two start

IMPORTANT: Always start the Encina Cell Manager and the Encina Node
Manager with the startup scripts to ensure that they are controlled by an
encinaNanny.
330 Developing Distributed Transaction Applications with Encina

Use enconsole to manage the Encina servers but not the Cell Manager and
Node Managers. Section 12.3.5, “Automatic Restart Setup” on page 331
explains how to set up your system to automatically start the Cell and Node
Managers.

12.3.5 Automatic Restart Setup
Before proceeding with the setup of the Encina servers, configure DCE and
Encina for automatic startup on reboot. We recommend that you perform the
setup now so that you can easily test it without having to start up all servers.
Once you are confident that your autorestart configuration works, you can
finish off the application configuration.

Your operating system provides a means of running a defined set of
command scripts on reboot. AIX uses the /etc/inittab file to describe all
commands to be executed when the system is brought up. Sun Solaris uses
the /etc/rc*.d directories to describe which scripts need to be started.
Windows NT uses the startup folder located in the Start Menu folder for the
Administrator profile:

C:\WINNT\Profiles\Administrator\Start menu\Programs\Startup.

Your task is to determine the exact startup mechanism and then plug in the
DCE and Encina startup scripts in their appropriate place. DCE must be
started before you start Encina.

The DCE distribution for your operating system comes with a script called
rc.dce. You can use this script to start or stop DCE on your machine. The
exact location of the script depends on the vendor from whom you purchased
DCE. You have to test the script before using it for automatic startup. Login
as the superuser and run this command to shut down all DCE processes on
your machine:

rc.dce stop (on non-AIX machines)
dce.clean (on AIX)

Run this command to start up all DCE processes configured for your
machine:

rc.dce

Once you are convinced that rc.dce works properly, you can simply add a
reference to it in the system startup location. No further modification is
necessary.

As with DCE, you need to provide an Encina rc.encina startup script to the
system startup facility. Unlike rc.dce, it is your responsibility to create the
Application Deployment 331

rc.encina script because you have to decide what Encina processes should
be started on system reboot.

We recommend that you automatically start your Cell and Node Managers as
well as all your servers on reboot. Use the script shown in Figure 145 on page
333. The script is prepared for the machine running the Encina Cell Manager.
You can tailor it to any other machine on your system by removing the Cell
Manager startup section.
332 Developing Distributed Transaction Applications with Encina

Figure 145. (Part 1 of 4) Sample rc.encina Script

#!/bin/sh
#
Encina starter and stopper
#
#
#--
Rado Nikolov, Encina Support Group 12/02/97
#--
COMMON_ENV_DIR=/opt/dcelocal/etc
##
Import the definitions of the DCE/Encina Environment
##
if [-r $COMMON_ENV_DIR/DCE_ENCINA_ENVIRON]; then
 . $COMMON_ENV_DIR/DCE_ENCINA_ENVIRON
fi
CONFIG_FILE=/opt/encinalocal/CELL_LIST
if [! -f $CONFIG_FILE]; then

echo "No Encina cells configured in $CONFIG_FILE on this host"
exit 0

fi
CELL_LIST=‘sed -e '/̂ #/d' $CONFIG_FILE‘
if [-z "$NODE"]; then
 NODE=‘uname -n|sed -e s/\\\\..*//‘
fi
PATH=/opt/encina/bin:/opt/encina/etc:$PATH; export PATH
NLSPATH=/opt/encina/msg/%L/%N:/opt/dce/nls/msg/en_US.ASCII/%N;
export NLSPATH
LANG=C; export LANG
SHPS_IN_RC=3; export SHPS_IN_RC
killproc() { # NUKE the named process(es)
pid=‘/usr/bin/ps -ef |
 /usr/bin/grep $1 |
 /usr/bin/grep -v grep |
 /usr/bin/awk '{print $2}'‘
["$pid" != ""] && kill -TERM $pid
sleep 5
pid=‘/usr/bin/ps -ef |
 /usr/bin/grep $1 |
 /usr/bin/grep -v grep |
 /usr/bin/awk '{print $2}'‘
["$pid" != ""] && kill -KILL $pid
}

Application Deployment 333

Figure 146. (Part 2 of 4) Sample rc.encina Script

#
Main routine
#
case "$1" in
start)
for USER_CELL in $CELL_LIST
do
 set ‘echo $USER_CELL | sed 's/:/ /'‘
 CELL=$2 ; USER=$1
 CELL_DIR=/opt/encinalocal/$CELL
 ENCINA_TPM_CELL=/.:/$CELL
 export ENCINA_TPM_CELL
 echo "Monitor cell \"/.:/$CELL\" managed by user $USER"
 #
 # Start up ecm
 #
 if [-x $CELL_DIR/ecm/rc.encina.cell]; then
 su $USER -c "$CELL_DIR/ecm/rc.encina.cell start"
 fi
 #
 # Wait up to 120 secs for the cell manager to start
 #
 echo " # Waiting for Cell Manager to become fully

operational..."
 ecm_wait /.:/$CELL/ecm -t 120 -s ecm
 echo " # Cell Manager Operational - Continuing..."
 #
 # Enable and then start enm
 #
 echo " # Enabling Node Manager..."
 enccp -c encinaNodeManager enable $NODE
 if [$? -ne 0]; then

echo "Error enabling node $NODE. Exiting."
exit 1

 fi
 if [-x $CELL_DIR/node/$NODE/rc.encina.$NODE]; then
 su $USER -c "$CELL_DIR/node/$NODE/rc.encina.$NODE start"
 fi
334 Developing Distributed Transaction Applications with Encina

Figure 147. (Part 3 of 4) Sample rc.encina Script

 #
 # Wait up to 60 secs for the node manager to start
 #
 echo " # Waiting for Node Manager to become fully

operational..."
 enm_wait /.:/$CELL/node/$NODE -t 60 -s enm
 echo " # Node Manager Operational - Continuing..."
 #
 # Stop any servers that might still be running
 #
 if [-x $CELL_DIR/node/$NODE/rc.encina.servers]; then
 echo " # Shutting down any hanging servers ... "
 $CELL_DIR/node/$NODE/rc.encina.servers stop
 fi
 #
 # Start all servers
 #
 if [-x $CELL_DIR/node/$NODE/rc.encina.servers]; then
 echo " # Starting all servers ... "
 $CELL_DIR/node/$NODE/rc.encina.servers start
 fi
done
;;
stop)
 for USER_CELL in $CELL_LIST
 do
 set ‘echo $USER_CELL | sed 's/:/ /'‘
 CELL=$2 ; USER=$1
 CELL_DIR=/opt/encinalocal/$CELL
 ENCINA_TPM_CELL=/.:/$CELL
 export ENCINA_TPM_CELL
 echo "Monitor cell \"/.:/$CELL\" managed by user $USER"
 #
 # Stop all servers
 #
 if [-x $CELL_DIR/node/$NODE/rc.encina.servers]; then
 $CELL_DIR/node/$NODE/rc.encina.servers stop
 fi
 #
 # Stop the node and cell managers
 #
Application Deployment 335

Figure 148. (Part 4 of 4) Sample rc.encina Script

To use the rc.encina script as it is presented here you also have to create two
other files. One file, /opt/encinalocal/CELL_LIST, is owned by the Encina user
and contains the list of cells running on your machine (see Figure 149 on
page 337 for a sample CELL_LIST file). This file eables you to automate
various administrative tasks across different Encina cells, but you must keep
it up to date.

 #
 if [-x $CELL_DIR/node/$NODE/rc.encina.$NODE]; then
 $CELL_DIR/node/$NODE/rc.encina.$NODE stop -all
 fi
 if [-x $CELL_DIR/ecm/rc.encina.cell]; then
 $CELL_DIR/ecm/rc.encina.cell stop
 fi
 done
 #
 # kill any leftover encina manager processes
 #
 killproc encinaNanny
 killproc enm
 killproc ecm
;;
*)
echo "Usage: $0 { start | stop }"
;;
esac
exit 0
336 Developing Distributed Transaction Applications with Encina

Figure 149. Sample CELL_LIST File

The other file you have to create is rc.encina.servers (see Figure 150 on page
338). Place this file in /opt/encinalocal/<Encina cell name>/node/<node
name> on each of the machines in your Encina cell. The file is tailored to
each Encina cell and node. It describes the order in which the different
Encina servers on a given node are started.

#
This file contains the list of Encina cells running on this machine.
Each cell is specified on a single line.
There are no other lines in the file.
Each line has the following format:
<uid>:<Encina cell>
where <uid> is the UNIX user id running the cell and
<Encina cell> is the Encina cell name excluding the /.:/
prefix.
#
encina:orders/enc_prod
Application Deployment 337

Figure 150. (Part 1 of 4) Sample rc.encina.servers Script

#!/bin/sh
#
Encina server start-up script
#
###

#--
Rado Nikolov, Encina Support Group 12/02/97
#--

#
List all servers which must be running before any other servers are started

FIRST_SERVERS="ordersPpc"

Define the startup/shutdown order for all server groups

START_ORDER="node/bengal"
STOP_ORDER="node/bengal"

#
Define global variables

file used for temporary purposes
TMP_FILE=/tmp/pingtest.$$

sleep time (in secs) between two attempts to check a server status
SLEEP_TIME=3

Check if the specified server is running; return 1 if it is not
$1 -- server name

is_running()
{
 CURR_STATE=‘enccp -c genericServer show $1 -attribute currentState 2>&1 | \
 cut -d' ' -f2 | cut -d'}' -f1‘

 # Return success if the current state equals 3 (running)
 if ["$CURR_STATE" = "running"]; then
 return 0
 else
 return 1
 fi
}

338 Developing Distributed Transaction Applications with Encina

Figure 151. (Part 2 of 4) Sample rc.encina.servers Script

#!/bin/sh
#

Check if the specified server is listening; return 1 if it is not
$1 -- server name

is_listening()
{
 # Ping the server
 cdsping $ENCINA_TPM_CELL/server/$1 > $TMP_FILE 2>&1

 # Find out how many end points are listening
 POINTS=‘grep '_ip_' $TMP_FILE | wc -l | awk '{print $1}'‘
 LISTENING=‘grep ' is listening' $TMP_FILE | wc -l | awk '{print $1}'‘

 /bin/rm $TMP_FILE

 # Return success if at least one point is listening and none are not
 if ["$POINTS" = "$LISTENING" -a ! "$LISTENING" = "0"]; then
 return 0
 else
 return 1
 fi
}

Wait for the specified server to come up
$1 -- server name
$2 -- what to wait for: is_running or is_listening
$3 -- max number of attempts to check the server status

server_wait()
{
 # assume the server is down
 STATUS=1
 ATTEMPTS=0
 while [$ATTEMPTS -lt $3 -a $STATUS -eq 1]; do
 # Check the server status using the input method
 $2 $1
 STATUS=$?
 # wait for a while if it is not up yet
 if [$STATUS -eq 1]; then
 sleep $SLEEP_TIME
 fi
 ATTEMPTS=‘expr $ATTEMPTS + 1‘
 done

 return $STATUS
}

Application Deployment 339

Figure 152. (Part 3 of 4) Sample rc.encina.servers Script

#
MAIN
#

#
Use the first Encina cell in the CELL_LIST
unless ENCINA_TPM_CELL is already defined

if [-z "$ENCINA_TPM_CELL"]; then
 CONFIG_FILE=/opt/encinalocal/CELL_LIST
 if [! -f $CONFIG_FILE]; then
 echo "No Encina cells running on this host"
 exit 1
 else
 CELL=‘head -1 $CONFIG_FILE | sed -e '/^#/d' | cut -d: -f2‘
 ENCINA_TPM_CELL=/.:/$CELL
 export ENCINA_TPM_CELL
 fi
fi

#
Select action based on the first argument

case "$1" in
start)
 echo "\n##################\nServer Startup\n##################\n"

 #---
 # Start the servers in FIRST_SERVERS
 #---
 for server_name in $FIRST_SERVERS
 do
 echo " >> Starting server $server_name..."
 enccp -c genericServer start $server_name
 done

 #---
 # Wait for all FIRST_SERVERS to come up
 #---
 for server_name in $FIRST_SERVERS
 do
 echo " >> Waiting for server $server_name to come up..."
 # check up to 15 times if the server is running
 server_wait $server_name is_running 15

 # check if the server did start
 if [$? -eq 0]; then
 echo " Server $server_name is up and running."
 else
 echo " WARNING: Server $server_name is NOT running yet."
 fi
 done
340 Developing Distributed Transaction Applications with Encina

Figure 153. (Part 4 of 4) Sample rc.encina.servers Script

In addition to creating the Encina startup files, to ensure that the superuser of
each machine has sufficient DCE privileges to start the Encina cell. By
default, the superuser of a machine is granted privileges as the so-called self
principal. For example, the superuser on machine prod_one is automatically
granted a ticket as nodes/prod_one/self. The Encina cell is managed by the
members of the encina_admin_group. Therefore, you have to add the self
principal of each Encina machine to the encina_admin_group:

dce_login cell_admin
rgy_edit change -p node/prod_one/self -ng encina_admin_group.

Restart DCE on the machine to pick up the new credentials. Then open a new
terminal window as the superuser on your machine, and check the DCE

 #---
 # Start each server group in the order specified
 #---
 for server_set in $START_ORDER
 do
 echo " >> Starting server set $server_set..."
 enccp -c serverSet start $server_set
 done

 echo "############################\nServer Startup Completed"
 echo "############################\n"

 ;;
stop)
 echo "\n###################\nServer Shutdown\n###################\n"

 #---
 # Stop each server group in the order specified
 #---
 for server_set in $STOP_ORDER
 do
 echo " >> Shutting down server set $server_set..."
 enccp -c serverSet stop $server_set -gentleTimeout 5
 done

 echo "#############################\nServer Shutdown Completed"
 echo "#############################\n"
 ;;

*)
 echo "Usage: $0 { start | stop }"
 ;;
esac
exit 0
Application Deployment 341

credentials (use the klist) to make sure that encina_admin_group is in the list
of groups. Run the encina startup/shutdown script to test it:

rc.encina stop

The script, using the stop parameter, should shut down all servers on that
machine and the Encina Node Manager. If the machine is running the Encina
Cell Manager, it should be shut down too. Now run the script using the start
parameter:

rc.encina start

All Encina processes on that machine should come up in the correct order.

Reboot the machine after you are satisfied with the performance of the
rc.encina and rc.encina.servers scripts.

12.3.6 Encina Server Configuration
Configure the Encina servers by scripts, not with enconsole. Although
enconsole makes it easier to configure servers and change their
configuration, the configuration cannot be efficiently controlled. Imagine that
you configured 25 different servers in your development environment and that
you are now ready to move to your test (or staging) platform. All of a sudden
you are faced with the problem of reproducing the configuration of 25 servers
manually through enconsole. Apart from that being a tedious task, it is also
very error prone.

We suggest that you use enconsole for configuring the servers in your
development environment and experimenting with their configuration. Once
you have decided on the parameters you want to set for all servers, you are
better off creating an enccp script that creates the servers for you.

By running a script you can version control your server configuration and thus
re-create a clean configuration in your production should you begin to doubt
that a server has been misconfigured.

You can prepare the server configuration script in two ways. You can write the
script yourself and then maintain it when new servers are added, old ones
removed from the cell, and so on. Alternatively, you can put together a tool
that extracts the server configuration of a given Encina cell and generates an
enccp script for re-creating the cell (see Section 12.4, “Replicating Encina
Cell Configuration” on page 343).

Figure 154 on page 343 shows some sample configuration code. Refer to the
Encina documentation on enccp for more information about enccp syntax and
342 Developing Distributed Transaction Applications with Encina

capabilities. If you are running an older version of Encina, you can use the
emadmin tool to do the job. Do not use emadmin for server configuration if
you have enccp. Some incompatibilities between the two will jeopardize your
effort.

Figure 154. Sample Server Configuration Code

The DE-Light gateways described in Chapter 7, “Internet Access for Java
Clients” on page 157 are configured similarly to any other Encina server. You
can define them either as Toolkit servers through enconsole or, preferably,
through the configuration scripts. You need to use the command line options
-L and -X of the DE-Light gateway drpcgwy executable to specify the TRPC
interfaces you would like to load into the gateway. For more information about
configuring the DE-Light gateway, see the DE-Light documentation provided
with the product.

12.4 Replicating Encina Cell Configuration

During deployment it is often the case that you have to replicate the
configuration of a given machine (the original machine) to another machine
(the target machine). For example, you have run your system tests in the
staging environment and now you want to make sure that you configure the
production environment in exactly the same way. Or, you may have some

monitorApplicationServer create OrderProcServer -verbose -attribute \
 {executable /home/encina/ops/bin/OrderProcServer} -attribute \
 {interfaces OrderProcIF} -attribute \
 {node prod_one}

physicalVolume create ordersRqsData_pvol -regions /dev/rdsk1/disk1
logicalVolume create ordersRqsDataVol -physicalVolumes
ordersRqsData_pvol

physicalVolume create ordersRqsLog_pvol -regions /dev/rdsk1/disk2
logicalVolume create ordersRqsLogVol -physicalVolumes
ordersRqsData_pvol

rqs create testRqs -verbose -attribute \
 {dataVolumes ordersRqsDataVol} -attribute \

{logVolume ordersRqsLogVol} -attribute \
{executable /usr/bin/rqs} -attribute \

 {node prod_two}
Application Deployment 343

production problems and want to re-create the production environment
somewhere else and then try to reproduce the problems.

There are three approaches to replicating the configuration of a given
machine to another machine:

1. You can manually configure the target machine on the basis of the
configuration of the original machine.

2. You can prepare a script that generates a configuration file for the original
machine and another script that configures the target machine on the
basis of the configuration file.

3. You can have a set of configuration scripts that you use to configure the
original machine and apply those scripts to the target machine.

All three approaches are applicable to Encina applications. Some of them
require more upfront cost (writing and testing scripts); others require more
manual work during configuration, hence a higher chance of
misconfiguration.

Our recommendation is to use a set of configuration scripts on your original
and target machines. The advantage of this approach over the manual
configuration is that the configuration scripts can be code controlled, thereby
guaranteeing that you get the configuration you have envisioned. In addition
the approach forces you to think about the target configuration well before the
staging takes place, and it enables you to fall back to previous configurations
should a problem occur with a new setup you are trying to implement.

The disadvantage of using configuration scripts is that it is hard to modify
them. If you just want to change a single attribute you still have to go through
the process of changing the script, submitting it to your code management
system, fetching it, and releasing it. Although these activities may slow you
down, they guarantee that your change has been recorded and will be looked
at by at least one more person, the code management approver, thereby
reducing the possibility of introducing errors when changing the configuration.

You can combine the manual and configuration scripts approach. For
example, you can configure DCE manually, perform the initial Encina cell
configuration manually, and use configuration scripts for the Encina servers,
resource managers, and other objects. Be sure to include the manual steps of
your configuration in a published configuration procedure so that anyone can
redo it when necessary.

For our case study sample application, you can maintain the server
configuration scripts described in Section 12.3.6, “Encina Server
344 Developing Distributed Transaction Applications with Encina

Configuration” on page 342 under code control. Let’s say you have to change
the priority of the server ordersRqs to 35. You lock server configuration file in
your code management system, change the value of the priority attribute in
the file, submit it to your code management system, have your approver
agree on the change, and release the configuring file to the production
environment. When you re-create the server, the attribute change takes
effect.

As you can see the above approach can be tricky because you may have
some data in your queues that you do not want to lose. It may also be quite
tedious to maintain different scripts for the different servers, and you may not
want to reconfigure all your servers just because you changed one attribute
of one server.

To avoid these problems, you can use a variation of the configuration script
approach. You can have two configuration scripts. One script describes the
initial server configuration and is used when you first configure an Encina
cell. The other script (the configuration update script) contains any extra
changes you made to attributes that can be changed dynamically. You then
apply the configuration update script to your running servers. In this way you
do not lose data, and you may not even have to restart the servers.

You may have to further develop your set of configuration scripts according to
the complexity of your application. The main point is, do not use enconsole to
permanently change any server attributes. You are likely to forget what you
have done, but even if you do not forget, the administrator doing the job after
you will not even know about the changes.
Application Deployment 345

346 Developing Distributed Transaction Applications with Encina

Chapter 13. Troubleshooting

Troubleshooting Encina applications may prove a daunting task given the
complexity of distributed applications. Not only is the application spread over
a number of machines but also the machines may run different operating
systems and communicate through different protocols. In addition, the
support responsibilities may be distributed, so different organizations and
groups could be responsible for different machines and servers that are part
of one application.

Encina offers several powerful facilities that enable operators and system
administrators to monitor an Encina application. In this chapter we describe
the Encina message log files and trace facility and explain how to debug
Encina applications and troubleshoot some common DCE problems related to
Encina. We also provide a general framework for troubleshooting Encina
problems, present some of the most common problems encountered in
Encina applications, and suggest how to deal with those problems.

13.1 Environment Setup

You need to ensure that your environment variables are set up correctly
before you can do any monitoring and troubleshooting. The correct setup
depends on your particular application support infrastructure. We recommend
that you set the environment variables listed in Table 9 on page 347.

Table 9. Encina Account Environment Variables

13.2 Overall Encina Cell Status

Before you delve into tracking down a problem, you must ensure that the
Encina cell itself is installed, configured, and running properly. We cannot

Variable Name Recommended Value

ENCINA_TPM_CELL /.:/<your Encina cell name>

PATH Add the following directories to your existing PATH:
/opt/encina/bin /opt/encina/etc /opt/dce/bin.

NLSPATH Set according to the release notes.

LANG Set according to the release notes.

SMVARS Set according to the release notes.
© Copyright IBM Corp. 1998 347

overemphasize how often severe system problems turn out to be rooted in
improper installation and cell configuration.

Many parameters can be misconfigured or accidently altered in a complex
Encina environment. We strongly recommend that you develop a
well-thought-out procedure for checking the Encina cell configuration before
the application deployment and perform the checks on a regular basis.

Ideally, you should prepare a script that compares the cell configuration to a
“good” configuration profile which you generate on system deployment. In
addition, you should have a script that checks the cell status. You can even
configure the scripts to be run automatically and have their output sent to the
operators and the administrators.

13.2.1 DCE and Encina Patch Levels
Make sure that the system is running the correct patch levels for DCE and
Encina. You can find out the DCE patch level by examining the
/opt/dce/PATCH.LEVEL file. Make sure that the patch is for the OS version of
the examined machine.

The Encina patch level is determined by the fixes applied. You have to list all
files in /opt/encina/fixes to find out the latest applied fix.

13.2.2 Cell Configuration
Although you can obtain the cell configuration by using enconsole, we
recommend using the enccp tool. It will allow you to perform the checks
faster, and you can use it to prepare configuration check scripts (see the
beginning of Chapter 13.2, “Overall Encina Cell Status” on page 347 for more
information about these scripts.)

The following commands provide you with the configuration of the Encina Cell
Manager and the Encina Node Manager:

enccp -c ecm show
enccp -c enm show <node name>

You can use enccp to obtain a list of all servers and resource managers
configured for your cell:

enccp -c genericServer list

Once you have determined which servers are configured for your cell you can
look up their setup by running this enccp command for each server:

enccp -c genericServer show <server name>
348 Developing Distributed Transaction Applications with Encina

Similarly, you can find out the configuration of the resource managers by
running these commands:

enccp -c rm list
enccp -c rm show <resource manager name>

The output of these commands is quiet overwhelming. You are probably not
interested in all the attributes. Table 10 on page 349 lists the attributes to pay
attention to.

Table 10. Important Encina Server Attributes

13.2.3 ACL Setup
The Encina objects Access Control Lists (ACLs) are a common cause for
concern. The most common ACL problems with Encina are associated with
RQS queues, especially when clients access RQS servers from other Encina
cells.

Attribute Description

environment List of all variables passed to the server

cdsPathName Full CDS name of the server object

commandLineArgs Command line arguments passed to the server

executable Full executable name

interfaces List of all interfaces supported by the server

maxStartupAttempts Maximum number of startup attempts

name Server’s name

node Node on which the server is running

paCount Number of PAs for this server

principal DCE principal used by the server DCE account

processPriority Priority of server processes

type Server type, for example, generic, DCE, MAS,
RQS

userName Operating system user running the server

authorizationLevel DCE authorization required for the server

protectionLevel Level of communication security protection
Troubleshooting 349

Generally, each client should be allowed to access the servers it uses, and
each server using RQS should have access to the RQS server as well as to
the RQS queues and queue sets it needs. For more information see Encina
2.5 Administration Guide Volume 2: Basic Administration.

All ACLs are manipulated through enccp. You can find out what an ACL looks
like by running the following command within enccp:

enccp -c acl show <object>

In this example <object> is the full CDS name of the server, queue, and
queue set you are interested in, for example,
/.:/orders/enc_prod/server/ordersRqs,
/.:/orders/enc_prod/server/ordersRqs/queue/PendingVerifyQueue.

The default CDS name used by Encina for an RQS queue <queue name>
controlled by an RQS server <RQS server name> is:

<Encina cell name>/server/<RQS server name>/queue/<queue name>

You can find out which queues belong to a given RQS server by using
rqsadmin:

rqsadmin list queues -server <Encina cell name>/server/<RQS server name>

13.2.4 Endpoint Map
One common problem with Encina applications is a polluted DCE endpoint
map. This situation occurs when you change the IP address of a machine or
when a machine can serve more than one IP address while Encina is using
only some of them. These multiple IP addresses are usually used for
enhanced system availability. Improper DCE and Encina configuration in such
situations results in incorrect entries in the endpoint map, which leads to
improper server binding.

A quick way to find out the IP addresses advertised in the endpoint mapper is
to search for the word “binding” in the output of:

enccp -c endpoint show

Only the correct IP addresses should appear in the bindings.

13.2.5 DCE Processes and Servers
The /opt/dcelocal/etc/setup_state file (on AIX, the mkdce.data file) lists all
DCE processes configured to run on your machine. You can find out which
DCE processes are currently running by executing this command:
350 Developing Distributed Transaction Applications with Encina

dce.ps (on Solaris)
ps -ef | grep dce (on AIX)

If all processes listed in the setup state file are indeed present and you
suspect further DCE problems, refer to any DCE troubleshooting information
you may have access to such as Transarc’s DCE troubleshooting online
guide:

http://www.transarc.com/afs/transarc.com/Public/Support/dce/trouble/trouble.html

13.2.6 Encina Nodes and Servers
You can obtain the current status of all Encina nodes and servers through
enconsole. As soon as you bring up enconsole you will see a list of all servers
and their status displayed to the left.

If the servers seem to be in the correct state then double check their
availability by pinging them. Use the Ping menu item on the Actions menu to
ping the cell manager, all nodes, and all servers.

You can also use enccp to check whether a particular server or Cell Manager
is up and running. For example, you can check the Cell Manager for cell
/.:/orders/enc_prod in this way:

enccp -c server ping /.:/orders/enc_prod/ecm

Similarly, you can ping the OrderProcServer server and node prod_one:

enccp -c server ping /.:/orders/enc_prod/server/OrderProcServer
enccp -c server ping /.:/orders/enc_prod/node/prod_one

13.3 Encina Message Log Files

Every application using Encina consists of several processes running on
different machines. All Encina processes running under the Encina Monitor
generate messages that are sent to the standard output. The standard output
can be directed either to a file, which we refer to as a message log file, or to
the Encina Cell Manager through a series of RPCs.

The default name of the Encina Cell Monitor message log file is ecm.log. The
default name of the message log file for any other server and any Encina
Node Manager is server.out.

The default location of a process message log file is the working directory of
the process. The default working directories for the Encina Cell Manager, the
Encina Node Manager, and the Encina application servers, respectively, are:
Troubleshooting 351

 • /opt/encinalocal/<Encina cell name>/ecm

 • /opt/encinalocal/<Encina cell name>/node/<node name>

 • /opt/encinalocal/<Encina cell name>/server/<server name>

where <Encina cell name> is the name of the Encina cell, <node name> is
the name of the node on which the Encina Node Manager is running, and
<server name> is the name of the Encina application server.

For example, our sample application consists of an Encina cell named
/.:/orders/enc_prod. The cell runs on machines prod_one and prod_two.
Machine prod_one runs two applications servers: OrderProcServer, and
VerificationServer. Machine prod_two has only one server items. It also runs
the Encina Cell Manager. Both machines run an instance of the Encina Node
Manager.

The default names of all message log files on machine prod_one are:

 • /opt/encinalocal/orders/enc_prod/node/prod_one/server.out

 • /opt/encinalocal/orders/enc_prod/server/OrderProcServer/server.out

 • /opt/encinalocal/orders/enc_prod/server/VerificationServer/server.out

The default message log file names on machine prod_two are:

 • /opt/encinalocal/orders/enc_prod/ecm/ecm.log

 • /opt/encinalocal/orders/enc_prod/node/prod_two/server.out

 • /opt/encinalocal/orders/enc_prod/server/ordersRqs/server.out

 • /opt/encinalocal/orders/enc_prod/server/ordersPpc/server.out

The Encina message log files contain messages generated by the application
code as well as by the Encina functions. All important messages generated
by the Encina functions are automatically sent to the Encina Cell Manager
and appear in its ecm.log message log file. All messages placed in the
ecm.log file are also displayed in the Serious Messages window found under
the View main menu item of enconsole (Figure 155 on page 353).
352 Developing Distributed Transaction Applications with Encina

Figure 155. Serious Messages Window

The information you can find in these message log files usually refers to
unexpected events that have been captured by the Encina server generating
the file. For example, when the Encina Node Manager on machine prod_one
starts up server OrderProcServer, it writes a “Started Server
OrderProcServer” message into the file:

/opt/encinalocal/orders/enc_prod/node/prod_one/server.out

Because this is an important event, a “Server OrderProcServer is now
available” message appears on the Serious Messages window and it is
stored in the file:

/opt/encinalocal/orders/enc_prod/ecm/ecm.log.

Some of the messages in the message log files and the Serious Messages
window may contain an error code. If you want to find out more information
about the error code issue this command:

translateError <Encina or DCE error code>
Troubleshooting 353

The command displays a description of the error that you specify on the
command line. You can obtain an even more detailed explanation of your
problem by issuing this command:

pdgquery <DCE error code>

Notice that the pdgquery facility only works with DCE error codes. It displays
a description of the error along with suggestions on what you can do to deal
with the problem.

13.4 Transaction Status

The Encina Monitor coordinates the execution of transactions across several
resource managers. It guarantees that no participating transaction is
committed unless all participants have agreed to commit.

Managing distributed transactions, however, is quite complex because each
participant may abort the transaction at any time. In addition, the
communication between the Encina Monitor and the transaction participants
may also be interrupted at any time.

Sometimes an error occurs during the second phase of the commit protocol,
causing the Encina transaction to remain “hung” in a certain state for an
extended period of time. In those (rare) situations you have to examine the
“hung” transaction and find out who the transaction participants are. Then you
have to abort manually all participating transactions as well as the Encina
transaction.

You can determine the status of an Encina transaction that is executing by
examining the Transaction Messages window under the Views main menu
item of enconsole (see Figure 156 on page 355):
354 Developing Distributed Transaction Applications with Encina

Figure 156. Transaction Messages Window

Alternatively, you can use the command line facilities provided with Encina to
find out which transactions are running against a particular server, for
example, server OrderProcServer:

enccp -c transaction list -server OrderProcServer

Furthermore you can determine the participants of a given transaction:

enccp -c transaction show <transaction id> -server <server name>

Once you have determined who the participants are, you can determine the
status of their transactions, using the facilities provided by the database
vendor. When all participating transactions have been cleared, you have to
abort the Encina transaction itself:

enccp -c transaction abort <transaction id>

For more information about manipulating Encina transactions, consult the
Encina manuals or run the following command:

enccp -c transaction help
Troubleshooting 355

13.5 Encina Trace Facility

Although the Encina message log files provide a lot of information about the
events that occur within an Encina server, you may need to find out more
about the server state during each of those events. For instance, you can find
out that a server has terminated abnormally by looking at the Encina Node
Manager’s message log file, but you cannot determine why the server failed.
The Encina Trace Facility maintains this kind of more detailed information. It
provides tools that monitor error messages produced by the Encina servers.

When using the Encina Trace Facility, you have to decide which events you
want to trace, in other words, the type of information you are looking for;
select the output destination for the generated trace; and be able to use the
tools provided for reading and interpreting the trace.

Always ensure that you are tracing all participants involved in the problem
you are trying to resolve.

13.5.1 Selecting Trace Events
Encina supports several classes of events. Each event class is manipulated
as a whole. When you turn on a given event class, all events of the class are
recorded in the Encina trace. When you turn off an event class, information
about all events of the disabled class are removed from the generated trace.

Serious (sometimes referred to as critical) events are always triggered and
always appear in a trace. They are written to the server’s message log file
and displayed in the Serious Messages window by default (see Section 13.3,
“Encina Message Log Files” on page 351).

The dump event class is used for low-level state information and is
manipulated by using the tkadmin dump. More information about the dump
event class can be found in the Encina support documentation. Always
perform state dumps after collecting all other trace information from a running
server because state dumps may sometimes result in a server failure.

All other event classes provide information about the execution path of the
server. They are selectively triggered by using trace masks.

A trace mask is associated with every Encina component running in a server.
It describes which event classes you want to trigger for that Encina
component.

You specify a trace mask by listing the trace event classes that should be
triggered for a particular component, for example:
356 Developing Distributed Transaction Applications with Encina

trdce=basic+security

The above command indicates that all basic and security events for the trdce
component should be triggered.

You can determine which components are running in a given server by using
the following command:

tkadmin list trace -server <server name>

For example, you can find out the Encina components running in server
OrderProcServer in this way:

tkadmin list trace -server OrderProcServer

Encina Executive:
 epm=0

admin=default
 tran=trace_entry+trace_param
 trpc=default
 trdce=default
 threadTid=0
 Encina BDE:
 bde=0
 vendor_bpg:
 vendor_bpg=0

You can determine which classes are supported by a given component by
using tkadmin, for example:

tkadmin query trace -server OrderProcServer trdce

For more information about the available components and their event
classes, see the Encina documentation provided with the product, where you
can also find a complete description of the trace masks. For our purposes, it
is sufficient to say that you can describe the masks for the various
components in two different ways, for example:

trdce=all,tran=basic

or

trdce=tran=xa=all

In the first example the masks of the components that we want to trace are
presented as a comma separated list. In the second example we show how
you can trigger the same event class for several components. Table 11 on
Troubleshooting 357

page 358 presents the most common masks that we recommend for tracing
Encina server problems.

Table 11. Common Trace Masks

You can set the trace masks in several different ways. We recommend using
the enconsole tool to set the masks for the Encina server you want to monitor.
Use the DCE Server Options window (Figure 157 on page 359) to alter the
existing masks for a given server.

Mask Usage

vol=log=all Server startup problems

ots=all Encina++ issues

tmxa=xa or
tmxa=all

XA-related issues;
Do not neglect the vendor’s logging facility.

trpc=trdce=all,tran=basic The most generic mask one usually starts with;
good general starting point

all=all,bde=none Entire trace; generates huge amounts of data
358 Developing Distributed Transaction Applications with Encina

Figure 157. DCE Server Options Window

You can use the ENCINA_TRACE environment variable for setting the masks
for a server started outside the Encina Monitor. The syntax for setting the
variable in csh is:

setenv ENCINA_TRACE “trpc=tran=all,tmxa=xa”

If you are using ksh or Bourne sh, the correct syntax is:

ENCINA_TRACE=”trpc=tran=all,tmxa=xa”
export ENCINA_TRACE

Regardless of how you change the trace masks, you need to restart the
server for the change to take effect.

13.5.2 Selecting Output Destination
Trace data is always captured in the trace ringbuffer. The default size of the
ringbuffer is 64 KB. We recommend changing it to a higher value (128 KB is
Troubleshooting 359

usually sufficient) by using the ENCINA_TRACE_RING_SIZE variable. You
have to restart the server for the new size to take effect.

The contents of the ringbuffer can be stored in a specified trace output
destination. Because the contents are not immediately sent to the output
destination, you have to examine them. Use the following command to
examine the ringbuffers content:

tkadmin dump ringbuffer -server OrderProcServer dump_file

In this example the ringbuffer of server OrderProcServer is dumped into the
dump_file file. You can also dump the ringbuffer automatically when exiting a
particular server by setting the ENCINA_TRACE_BUFFER_DUMP_ON_EXIT
environment variable to 1.

You can send the trace from the ringbuffer to any open file stream, such as
stderr or stdout. Trace redirection, which you can do through enconsole,
occurs for each trace event class (see Figure 157 on page 359).

The basix syntax for a trace output destination is described in Chapter 9,
"Using the Trace Facility," in Transarc’s Encina Administration Guide Volume
Two: Basic Administration. It is fairly complicated and allows for a great deal
of flexibility. The following trace output destination is used commonly:

all=[unformatted]FILE:trace.out
all=[unformatted]FILE:/home/tester/trace.out

These strings specify that all trace event classes are sent to a file named
trace.out. The file resides in the server working directory unless it is fully
qualified. The events are not formatted, which reduces the performance cost
of having the event facility turned on. If you omit the [unformatted] string, the
trace.out file would contain formatted trace output information.

The destination type must appear in uppercase. The most common
destination types are:

 • FILE destination, which refers to a local operating system file. The valid
destinations for this class are complete or relative path names of a file.

 • STREAM destination, which refers to well-defined standard I/O streams.
The valid destinations are the standard output or standard error device (by
default, the server.out file in the server's working directory).

IMPORTANT: On Windows NT, applications that do not have standard output
or standard error devices cannot use the STREAM destination type. Such
applications can use environment variable ENCINA_TRACE_REDIRECT to
redirect trace output. The variable accepts any valid trace output destination.
360 Developing Distributed Transaction Applications with Encina

 • AIX destination, which refers to the local tracing and error logging facilities
on the AIX operating system. The valid destinations for this type are trace
and errlog.

You can list the trace destinations for all trace classes by using the tkadmin
list trace command. The command syntax is:

 tkadmin list redirect -server servername

For example, enter the following command to list the trace destinations of all
trace classes for a server:

tkadmin list redirect
 entry:
 event:
 param:
 audit: [formatted,unbuffered]STREAM:stderr
 dump:
 error: [formatted,unbuffered]STREAM:stderr
 fatal: [formatted,unbuffered]STREAM:stderr

Alternatively, you can use the ENCINA_TRACE_REDIRECT environment
variable for servers running outside the Encina Monitor, for example:

setenv ENCINA_TRACE_REDIRECT all=[unformatted]FILE:trace.out

13.5.3 Reading Trace Output
Regardless of how you obtained the trace for a given server it is always
stored in compressed format. Once you have the trace file, you can convert
the trace into human-readable form and then format it.

You need to format a trace file in several situations: when you explicitly
redirect the enabled trace event classes to a trace file (see Chapter 13.5.2,
“Selecting Output Destination” on page 359); when an automatic ringbuffer
dump is performed; and when you manually force a ringbuffer dump.

If you force a ringbuffer dump or redirect the trace to a file, you have to
convert that file into human-readable form. If the dump file was automatically
created, it is stored in the server’s working directory under the name
EncinaTraceBuffer.<pid>, where <pid> is the process identifier of the server.

Use this command to translate the trace file into human-readable form:

interpretTrace <file name> | indentTrace > trace.out
Troubleshooting 361

Each line of the trace contains the following fields: thread_id, time_stamp,
trace_unique_id, and class. To interpret the error codes that appear in the
trace, use this command:

translateError <error code>

You can also locate the origin of a trace message by using this command:

translateTraceId trace_unique_id

In addition, you can use hex2binary, translateTrpcAddress, and
translateTranMessage to obtain further information about the messages you
are getting in the trace.
362 Developing Distributed Transaction Applications with Encina

Appendix A. Encina Codes and Messages

A.1 Error Codes

ENC-adm-0001 (0x70084001) ADMIN_AUTH_FAILURE

Authorization failure

Explanation:

Permission for an administrative command has been denied. Check the
appropriate administrative access control list (ACL) to ensure that the
necessary permission has been granted to the principal. Ensure that the
appropriate principal is logged in and that the login context is valid (e.g. has
not expired).

ENC-sfs-0076 (0x7715a04c) SFS_COMMUNICATION_ERROR

A communication error occurred.

Explanation:

An Encina transactional RPC (TRPC) or DCE RPC from the sfs client to the
sfs server has failed. This could be caused by a wide range of environmental
problems, from a transient communication error to the termination of the
server process. Use default trpc tracing to identify the DCE exception caught
and verify the validity of the binding used for the RPC. Ensure that the client
process has a valid login context and check the viability of the server, using
rpcutil ping <server>.

ENC-trc-1031 (0x7796a407) TC_RPC_FAILURE_CODE

RPC failure

Explanation:
© Copyright IBM Corp. 1998 363

An Encina transactional RPC (TRPC) failure has been caught by the Tran-C
library. This could be caused by a wide range of environmental problems,
from a transient communication error to the termination of the server process.
Use default trpc tracing to identify the DCE exception caught and verify the
validity of the binding used for the RPC. Ensure that the client process has a
valid login context and check the viability of the server, using rpcutil ping
<server>.

ENC-mon-1036 (0x74d3d40c) MON_AUTHZ_VIOLATION

RPC rejected: client unauthorized

Explanation:

Permission to access a server manager function of a Monitor Application
Server (MAS) has been denied. Check the access control list (ACL) for the
specified interface or function to ensure that the necessary permission (x)
has been granted to the principal. Ensure that the appropriate principal is
logged in and that the login context is valid (e.g. has not expired).

ENC-ema-0017 (0x71ae0011) EMA_CHANGES_FAILED

Requested changes have failed.

Explanation:

The requested Encina Monitor Administration (EMA) command failed. For
server start requests, anything that prevents the specified server from
starting and initializing successfully will result in this error. Check the cell’s
serious event log and the server’s output file for messages.

ENC-vol-0007 (0x7857b007) VOL_DISK_PROTECTED

User is not permitted to access the disk.
364 Developing Distributed Transaction Applications with Encina

Explanation:

The application was unable to read from or write to the specified disk device.
Ensure that appropriate permissions have been granted for the device and
that the application is running under the proper identity to access the device.

ENC-trp-0010 (0x7797700a) TRPC_UNBOUND_TRAN_HANDLE

Could not get a fully bound transactional handle

Explanation:

The transactional RPC (TRPC) has failed because a fully bound transactional
handle could not be generated. This can be caused by a null or invalid TRPC
handle, or the failure of the DCE RPC to the target server. Check the client’s
default trpc tracing for the underlying cause (usually, a DCE status or
exception is identified as the root cause).

ENC-tra-1135 (0x7796846f) TRAN_ABORT_NO_SUITABLE_COORDINATOR

All acceptable applications refused to coordinate.

Explanation:

The transaction has been aborted because no suitable participant agreed to
coordinate commitment of the transaction. A distributed transaction requires
at least one recoverable participant to fill this role.

ENC-bde-0019 (0x706bc013) BDE_INVALID_PRIORITY

An invalid priority value was specified.

Explanation:
Encina Codes and Messages 365

The requested priority could not be set when starting a process. This
commonly occurs when the Encina Node Manager (enm) is not running as
root and the server to be started has specified a higher priority than that
under which the Node Manager process is running. The Node Manager must
either be run as root or all processes started by it must specify a priority equal
to or lower than the enm process.

ENC-vol-0016 (0x7857b010) VOL_INVALID_NAME

Client-provided volume or disk name is invalid.

Explanation:

An incorrect name has been specified to the Encina Volume Service (VOL).
The most common cause is that the specified physical device or file volume
does not exist, or that the specified logical volume name has not been
created.

ENC-sfs-0085 (0x7715a055) SFS_INSUFFICIENT_FILE_SYSTEM_ACCESS_RIGHTS

Insufficient file system privilege for requested operation.

Explanation:

Permission to access the Encina Structured File Server (SFS), or one of its
files, has been denied. Check the appropriate access control list (ACL) for
the server or file to ensure that the necessary permission has been granted to
the principal. Ensure that the appropriate principal is logged in and that the
login context is valid (e.g. has not expired).

ENC-sfs-0060 (0x7715a03c) SFS_OPERATION_TIMED_OUT

Timeout expired before operation completed.

Explanation:
366 Developing Distributed Transaction Applications with Encina

The requested Encina Structured File Server (SFS) operation timed out
before completion. This could be caused by a long-running operation or by a
conflict (e.g. a transactional lock conflict) that prevents the operation from
completing. Increase the operation timeout for the request or resolve the
conflict.

ENC-log-0258 (0x746f6102) LOG_NO_SPACE

Log volume is out of space.

Explanation:

An Encina Log Service (LOG) write request failed because the log is out of
free space. This can be caused by insufficient log space to support the
necessary transaction rate, an insufficient checkpoint interval, or long-running
transactions that prevent the log tail from advancing to free up log space.
Before this error, the following warning is issued, indicating that log
compression is occurring:

Compressing data on log volume <volume> for space reclamation.

Log compression is often accompanied by noticeably higher CPU utilization.
If compression does not complete before the log is full, or if enough space is
not reclaimed to support the current transaction rate, the above error will
result. Expand the log volume to provide enough log space to restart the
server and, if necessary, take administrative action to force the resolution of
any unresolved transactions.

ENC-bde-0018 (0x706bc012) BDE_INVALID_PATH

The specified file does not exist.

Explanation:

The specified path is invalid. This usually indicates that the path to a server
executable has been incorrectly specified. Check the path specified for the
server configuration and that the Encina Node Manager has permission to
access the path.
Encina Codes and Messages 367

ENC-mon-0001 (0x74d3d001) MON_CELL_UNAVAILABLE

Could not communicate with the Cell Manager.

Explanation:

An Encina Monitor application (usually, a client) failed to contact the Encina
Cell Manager (ecm). This could be caused by a wide range of environmental
problems, from a transient communication error to the termination of the
server process. Use default trpc tracing to identify the DCE exception caught
and verify the validity of the binding used for the RPC. Check the viability of
the server using, rpcutil ping <server>.

ENC-tra-1065 (0x77968429) TRAN_ABORT_COORDINATOR_MIGRATION_FAILURE

Coordinator migration timed out.

Explanation:

The transaction has been aborted because coordinator migration timed out.
By default, this message is attempted five times, delaying for 10 seconds
between attempts. If all participants are believed to be running and
reachable, use "trpc=all,tran=basic" tracing to determine the underlying
cause of the RPC failure.

ENC-ema-0014 (0x71ae000e) EMA_CALLER_NOT_AUTHORIZED

Caller is unauthorized to perform the operation.

Explanation:

Permission for an Encina Monitor Administration (EMA) command has been
denied. Check the administrative access control list (ACL) for the specified
monitor cell to ensure that the necessary permission has been granted to the
368 Developing Distributed Transaction Applications with Encina

principal. Ensure that the appropriate principal is logged in and that the login
context is valid (e.g. has not expired).

ENC-trp-0029 (0x7797701d) TRPC_RPC_FAILED

RPC failed for unknown reasons (most likely that DCE cannot pass right
status).

Explanation:

An Encina transactional RPC (TRPC) failed for unknown reasons. This is the
generic "RPC failure" status code for TRPC. This status is returned when
TRPC cannot successfully convert the exception caught into an appropriate
corresponding status. It is also used by the Recoverable Queuing Service
(RQS) when any exception is caught. Use default trpc tracing to identify the
exception caught.

ENC-tra-1064 (0x77968428) TRAN_ABORT_PREPARE_INFERIORS_TIMEOUT

The prepare phase timed out.

Explanation:

The transaction has been aborted because the prepare phase timed out. By
default, this message is attempted five times, delaying for 10 seconds
between attempts. If all participants are believed to be running and
reachable, use "trpc=all,tran=basic" tracing to determine the underlying
cause of the RPC failure.

ENC-ppc-0016 (0x7601a010) PPC_CONN_FAILURE_NO_RETRY

Connection failure, no retry

Explanation:
Encina Codes and Messages 369

The allocate request failed because Encina PPC was unable to establish a
SNA connection. This is commonly caused by a mismatch between the
"prof_name" entry of the side_info profile and the "local_lu_name" of the
local_lu_lu6.2 profile. Refer to the appropriate SNA configuration
documentation and the PPC section of the Encina Administration Guide
Volume 2 (Server Administration) for more information.

ENC-log-0256 (0x746f6100) LOG_VOL_ERROR

Error encountered while operating on a log volume.

Explanation:

An error occurred while reading from or writing to a log volume. This typically
indicates that the Encina Volume Service (VOL) encountered a hard I/O error.
Use the default VOL tracing to identify the underlying error.

ENC-ema-0016 (0x71ae0010) EMA_CELL_UNAVAILABLE

Failed to communicate with the Cell Manager

Explanation:

An Encina Monitor Administration (EMA) command failed because it could not
contact the Encina Cell Manager (ecm). This could be caused by a wide
range of environmental problems, from a transient communication error to the
termination of the server process. Use default trpc tracing to identify the DCE
exception caught and verify the validity of the binding used for the RPC.
Check the viability of the server, using rpcutil ping <server>.

ENC-eai-0015 (0x7190800f) ENCONSOLE_SERVER_EXITED

Server process exited prematurely

Explanation:
370 Developing Distributed Transaction Applications with Encina

An attempt to verify that a process exists failed, indicating that the process
terminated unexpectedly. Check the cell’s serious event log and the server’s
output file for messages indicating why the process terminated.

A.2 Messages

A.2.1 Monitor

ID: 0x60e43c16

Component: Monitor

Message: "ecm: Failed to create cell object : %k."

Variables: %k - Error status code.

Explanation:

Based on the error code. If the following error statuses get returned during a
cold start of the cell, they indicate an internal error and should be reported to
Transarc as such. If they occur during a warm start, they indicate corruption
of the data volume.

EMA_TYPE_DOES_NOT_EXIST
EMA_OPERATION_PROHIBITED
EMA_TYPE_SPEC_INCONSISTENT
EMA_VALTYPE_MISMATCH
EMA_VALTYPE_INVALID

The following error statuses are due to user errors:

EMA_NAME_INVALID - Either a space in the cell name or name was greater than
128 characters.

EMA_OBJECT_ALREADY_EXISTS - The user is trying to define another cell with the
same name in the present cell’s repository.

EMA_ATTRIBUTE_DOES_NOT_EXIST - This attribute does not exist i.e. is not an
instance of ema_typeAttribute. Check the list of attribute names specified
against the list specified in the manual.
Encina Codes and Messages 371

EMA_ATTRIBUTE_NOT_APPLICABLE - The attribute in question does not exist for the
object type (ema_typeCell) being created. Again go through the attribute list
for the cell.

EMA_ATTRIBUTE_MISSING - A required but undefaulted attribute has not been
specified. Again go through the manual to make sure that you have specified
all required, undefaulted attributes.

ID: 0x60e43c26

Component: Monitor

Message: "ecm: Failed to retrieve cell object : %k."

Variables: %k - Error status code.

Explanation: Based on the error code. The following error statuses point to
an Encina internal error and should be reported to Transarc as such:

EMA_LOCK_MODE_INVALID
EMA_LOCK_NOT_AVAILABLE

This public fatal is more likely to occur during a warm start when the cell
attributes are being retrieved. It indicates a possible corruption of the data
volume.

EMA_TYPE_DOES_NOT_EXIST
EMA_OPERATION_PROHIBITED
EMA_OBJECT_DOES_NOT_EXIST
EMA_ATTRIBUTE_NOT_APPLICABLE
EMA_ATTRIBUTE_NOT_PRESENT
EMA_VALTYPE_INVALID
EMA_ATTRIBUTE_DOES_NOT_EXIST

ID: 0x60e43c36

Component: Monitor

Message: "ecm: Cell name (%s) has been changed to (%s)"
372 Developing Distributed Transaction Applications with Encina

Variables: %s - Old cell name, %s - New cell name

Explanation:

The cell name was changed before warm start, indicating corruption of the
data volume.

ID: 0x60e44416

Component: Monitor

Message: "ecm: Could not initialize data volume : %s."

Variable: %s - Reason for abort

Explanation:

Based on reason for abort. AREA_VOLUME_TOO_SMALL - Data volume size is too
small. Increase volume size and retry. AREA_VOL_IN_USE - The volume is
already in use. Use a new volume for this cold start.

ID: 0x61140416

Component: Monitor

Message: "ecm: Failed to create attribute %s: %k"

Variables: %s - Name of erroneous attribute, %k - error status code.

Explanation:

If it returns an EMA error status, then it points to an internal error not a public
fatal. If the error is reported from either ROS, AREA or REC then it points to a
problem with the data volume. The data volume is either corrupt or out of
space and needs to be enlarged.

Encina Codes and Messages 373

ID: 0x61140816

Component: Monitor

Message: "ecm: Failed to create type %s : %k \n"

Variables: %s - Name of type, %k - error status code

Explanation:

If it returns an EMA_ error status, it points to an internal error not a public
fatal. If the error status is reported from either ROS, AREA or REC then it
points to a problem with the data volume. The data volume is either corrupt or
out of space and needs to be enlarged.

ID: 0x61141016

Component: Monitor

Message: "ecm: Failed to verify parent of type %s.\n"

Variables: %s - Name of the parent type

Explanation:

Errors occurs at warm start only and indicates corruption of a Cell Manager
data volume.

ID: 0x61141026

Component: Monitor

Message: "ecm: Failed to find required attr %s in type %s.\n"

Variables: %s - Name of the required attribute, %s - Name of the type

Explanation:
374 Developing Distributed Transaction Applications with Encina

Error occurs at warm start only and indicates corruption of a Cell Manager
data volume.

ID: 0x61141036

Component: Monitor

Message: "ecm: Failed to find optional attr %s in type %s.\n"

Variables: %s- Name of the optional attribute, %s -Name of the type

Explanation:

Error occurs at warm start only and indicates corruption of a Cell Manager
data volume.

ID: 0x61141046

Component: Monitor

Message: "ecm: Failed to verify type %s : %k \n"

Variables: %s - Type name, %k - error status code

Explanation:

Errors occurs at warm start only and indicates corruption of a Cell Manager
data volume.

ID: 0x61140c16

Component: Monitor

Message: "ecm: Failed to verify attribute %s (%d)\n"
Encina Codes and Messages 375

Variables: %s - Name of erroneous attribute, %k - error status code

Explanation:

Error occurs at warm start only and indicates corruption of a Cell Manager
data volume.

ID: 0x61140816

Component: Monitor

Message: "ecm: Failed to create type %s: (%k)"

Variables: %s - type name, usually "ema_typeCustomType", %k - error status
code.

Explanation:

If it returns an EMA_ error status, it points to an internal error not a public
fatal. If the error is reported from either ROS, AREA or REC then it points to a
problem with the data volume. The data volume is either corrupt or out of
space and needs to be enlarged.

ID: 0x60e4401c

Component: Monitor

Message: "ecm: Data volume name is required at cold start."

Variables: NONE

Explanation: The data volume name was not specified as a command line
argument for ecm.

ID: 0x61a01c2c
376 Developing Distributed Transaction Applications with Encina

Component: Monitor

Message: "ecm: Failed to open serious event log file %s: %k"

Variables: %s - Serious event file name, %k - status code

Explanation:

Points to problems in opening a file such as insufficient privileges or
insufficient disk space or network access problems.

ID: 0x61303c17

Component: Monitor

Message: "Cell name (%s) should be fully qualified."

Variables: %s - CDS name of cell

Explanation:

The cell name was not specified correctly as one of either /.../<cell-name> or
/.:/<cell-name>

ID: 0x61481836

Component: Monitor, Node Manager

Message: "enm: Failed to secure handle to the ecm: %k."

Variables: %k - status code returned from DCE call.

Explanation:

The node manager tried to stamp authentication information into the binding
handle used to communicate with the Cell Manager and failed.

User Response:
Encina Codes and Messages 377

Could be due to a DCE problem or to the node not possessing a valid DCE
login context. Check the error code and make sure that DCE is running
properly and the Node Manager is running as a valid DCE principal.

ID: 0x61481816

Component: Monitor, Node Manager

Message: "enm: Failed to get startup info from cell-mgr: %k"

Variables: %k - Status code returned from call to Cell Manager interface to
retrieve node info.

Explanation:

The call to the Cell Manager interface to retrieve the node info failed.

User Response:

First check that the Node Manager is defined in the repository and then check
that its desired state is set to running via an node start.

ID: 0x61483436

Component: Monitor, Node Manager

Message: "enm: keyfile specified is invalid."

Variables: NONE

Explanation:

Could not validate the key file for the node principal after obtaining node
startup options because:

1. The keyfile does not exist.

or

2. The Node Manager does not have permissions to open the file.
378 Developing Distributed Transaction Applications with Encina

or

3. The requested key is not present for the Node Manager principal.

User Response:

Check that the startup options specifying the node principal name and keyfile
are correct and that the keyfile has been created and has the correct
permissions.

ID: 0x61484426

Component: Monitor, Node Manager

Message: "enm: Failed to notify cell manager of availability: %k."

Variables: %k - status code. Could be a DCE status code, indicating a
problem with the RPC, or an EMA status code, indicating a problem with the
Cell Manager.

Explanation:

1. The RPC to the Cell Manager notifying it of the node manager’s availability
did not succeed.

or

2. The node does not exist in the repository.

or

3. The node has not been started i.e. its desiredState is not RUNNING.

User Response:

Check that DCE and the Cell Manager are running, there is an entry for the
Node Manager in the repository, and the node has been started.

ID: 0x61d40416

Component: Monitor, migrate
Encina Codes and Messages 379

Message: "Usage: %s <aclAttrList>"

Variables: %s - name of the executable (addacl)

Explanation:

Incorrect number of arguments.

User Response:

Provide required attribute list argument.

ID: 0x61d40426

Component: Monitor, migrate

Message: "Invalid attribute list format"

Variables: NONE

Explanation:

Argument is not a valid attribute list.

User Response:

Fix syntax errors in the input and retry. Attribute list syntax is specified in the
Encina Monitor Administrative Programmer’s Guide and Reference.

ID: 0x61d40436

Component: Monitor, migrate

Message: "ENCINA_TPM_CELL environment variable must be set."

Variables: NONE

Explanation:

The ENCINA_TPM_CELL environment variable was not set.
380 Developing Distributed Transaction Applications with Encina

User Response:

Rerun the program after setting the ENCINA_TPM_CELL environment
variable.

ID: 0x61d40446

Component: Monitor, migrate

Message: "addacl failed: %k"

Variables: %k - DCE status code. Could indicate problems obtaining a handle
to the Cell Manager, problems in obtaining the UUID of the ACL manager, or
problems updating the ACL.

Explanation:

The addition of the ACL failed due to any one of a variety of reasons (see the
variable entry).

User Response:

Check that the Cell Manager is up and DCE is running correctly. If
SEC_INSUFFICIENT_MEMORY is returned, try running the program after
stopping other programs. For other problems notify Transarc.

ID: 0x60d01816

Component: Monitor, qrf

Message: "Cannot create element type (%k)"

Variable: %k - RQS status code.

Explanation:

Tried to create an RQS element and failed.

User Response:
Encina Codes and Messages 381

Note the error code and inform Transarc.

ID: 0x617c1c36

Component: Monitor, server run time

Message: "Server startup environment not present."

Variables: NONE

Explanation:

The ENCINA_TPM_STARTUP_DATA environment variable was not set.
Normally it is set by the Node Manager process before the server process is
forked off. If the server is being started in debug mode, the user must set the
variable.

User Response:

Set the ENCINA_TPM_STARTUP_DATA environment variable and restart the
server if it is being started in debug mode. Otherwise inform Transarc.

ID: 0x617c1c2c

Component: Monitor, server run time

Message: "Server startup environment ’%s’ is invalid."

Variables: %s - the value of the ENCINA_TPM_STARTUP_DATA
environment variable.

Explanation:

1. ENCINA_TPM_STARTUP_DATA environment variable is not set to a valid
attribute list.

or

2. The variable does not specify the required cellName, nodeName,
serverName or paNumber attributes.
382 Developing Distributed Transaction Applications with Encina

User Response:

Ensure that the ENCINA_TPM_STARTUP_DATA environment variable is set
to the correct value and restart the server only if server is being restarted in
debug mode. Otherwise inform Transarc.

ID: 0x617c201c

Component: Monitor, server run time

Message: "%s: Failed to get handle to enm: %k."

Variables: %s - trace id, %k - DCE status.

Explanation:

Server could not bind to Node Manager.

User Response:

Check that the Node Manager is up. If server is being started in debug mode,
confirm whether the Node Name was specified correctly in
ENCINA_TPM_STARTUP_DATA and restart the server.

ID: 0x617c202c

Component: Monitor, server run time

Message: "Server was not started or PA 0 initialization has failed."

Variables: NONE

Explanation:

The server could not retrieve its startup information from the Node Manager.
This could be due to a problem in making the RPC to the node manager, the
node manager not being able to find the server object in the repository, or a
problem with PA 0 initialization.
Encina Codes and Messages 383

User Response:

To narrow the problem, retrieve the status code from the trace file from the
trace entry with the "0x617c2027: Failed to get startup info from enm. (%k)"
message.

ID: 0x617c281c

Component: Monitor, server run time

Message: "%s: Pings to the enm have failed."

Variable: %s - trace id.

Explanation:

The server failed to send an "I’m alive" message to the Node Manager, the
server does not exist in the repository, or the server has been stopped.

User Response:

Ensure that the Node Manager is running and restart the server.

ID: 0x617c6c1c

Component: Monitor, server run time

Message: "%s: Failed to notify the node manager:%k".

Variables: %s - trace id, %k - status code.

Explanation:

The server was ready to start listening for RPCs but could not successfully
notify the Node Manager. This could be due to either the node manager
having terminated prematurely, the node manager being unable to find the
server object in the repository, or the server has been stopped
administratively.
384 Developing Distributed Transaction Applications with Encina

User Response:

Examine the error code to determine whether the Node Manager needs to be
restarted or the repository needs to be updated and restart server.

ID: 0x6050d81c

Component: Monitor, server run time

Message: "Cell name (%s) should be fully qualified."

Variable: %s - the encina cell name that was specified.

Explanation:

The name of the encina cell was incorrectly specified. it must be either
/.../<dceCellName>/<cellName> or /.:/<cellName>

User Response:

Specify the encina cell name in the correct format.

ID: 0x61d00416

Component: Monitor, migrate

Message: "usage: %s <SFS server name> <cell name> [node name [del]]"

Variables: %s - the program name.

Explanation:

The program was run with an incorrect number of parameters.

User Response:

Rerun the program with the correct number of parameters.

Encina Codes and Messages 385

ID: 0x61d00c16

Component: Monitor, migrate

Message: "Cell configuration record not found: %k"

Variables: %k - Status code.

Explanation:

Could not retrieve the cell configuration record from the SFS server.

User Response:

Make sure the cell name argument was specified correctly to the program.
Check that the SFS server is up, there is a cell configuration record in the
SFS file, and the SFS file has not been corrupted.

ID: 0x61d0241c

Component: Monitor, migrate

Message: "Couldn’t initiate ACL scan: %k"

Variables: %k - status code

Explanation:

The ACL scan could not be initiated at the SFS server.

User Response:

The error could be due to a DCE problem, the SFS server being down, the
user principal not being authorized at the SFS server, or the SFS file being
corrupted. Examine the error code to take appropriate action.

386 Developing Distributed Transaction Applications with Encina

ID: 0x61d02426

Component: Monitor, migrate

Message: "ACL Scan terminated abnormally: %k"

Variables: %k - status code

Explanation:

The program could not complete the ACL scan.

User Response:

The error could be due to a DCE problem, the SFS server terminating
unexpectedly, or the SFS file being corrupted. Examine the error code to take
appropriate action.

ID: 0x61d0281c

Component: Monitor, migrate

Message: "Node configuration record not found: %k"

Variables: %k - status code

Explanation:

Could not retrieve the node configuration record from the SFS server.

User Response:

Check that the node name argument was specified correctly to the program,
the SFS server is up, and the SFS file has not been corrupted.

A.2.2 OTS
Encina Codes and Messages 387

ID: 0xd41fe8bc

Component: Encina++, DDL compiler

Message: "Could not open \"%s\"\n"

Variables: %s - The name of the output file

Explanation:

While processing the DDL file, an output file for the generated class could not
be created or opened.

User Response:

Check that the user has permission to create new files or that there is enough
free space in the destination file system.

ID: 0xd41fd03c

Component: Encina++, DDL compiler

Message: "The ddl must specify a primary index"

Variables: none

Explanation:

A primary index was not specified in the record being processed by the DDL
compiler.

User Response:

Add a primary index to the record.

ID: 0xd41fdc1c

Component: Encina++, client
388 Developing Distributed Transaction Applications with Encina

Message: "TPM cell name (ENCINA_TPM_CELL) must be set"

Variables: NONE

Explanation:

The name of the cell is required for correct operation of a client application
but the name was not specified.

User Response:

Set the ENCINA_TPM_CELL environment variable to the name of the cell
before executing the client application.

ID: 0xd41fe06c

Component: Encina++, Monitor client

Message: "mon_InitClient() failed: %k"

Variables: %k - The return code from mon_InitClient function converted into a
string.

Explanation:

A call on the mon_InitClient function failed with the
MON_PROTOCOL_ERROR return code. The reason was a duplicate attempt
to initialize the client application.

User Response:

Correct the user-written code to ensure that the client is initialized only once.

ID: 0xd41fe0b6

Component: Encina++, Monitor client

Message: "Inter cell binding not supported when binding by interface"
Encina Codes and Messages 389

Variables: NONE

Explanation:

An attempt was made to bind to another cell (by calling the Bind function
explicitly with the cell name as an argument) but the binding mode was
interface-based binding. This form of binding is not supported.

User Response:

Change the code to use another binding mode.

ID: 0xd41ff81c

Component: Encina++

Message: "Illegal call to join a thread that was not active"

Variables: NONE

Explanation:

A programming error has occurred. The user’s code attempted to join a
thread that was not active.

User Response:

Correct the code or debug the application as there may be a reason why the
thread was not active when an attempt was made to join it.

ID: 0xd41fe03c

Component: Encina++, Orbix server

Message: "No server name specified for Persistent Orbix server, set the
server name via ENCINA_OTS_TK_SERVER_ARGS env. variable or the
-encina command line switch."

Variables: NONE
390 Developing Distributed Transaction Applications with Encina

Explanation:

The server was registered as a "persistent" server with the Orbix daemon, but
the server name was not specified in the server startup information.

User Response:

Specify the server name in the startup information. The startup information is
a comma-separated string of name=value pairs that you can specify through
the -encina <startup info> command-line switch and argument or the
ENCINA_OTS_TK_SERVER_ARGS environment variable. The server name
is specified within the string as "serverName=<name>".

ID: 0xd41fe46c

Component: Encina++, server

Message: "For a cold start the ENCINA_OTS_TK_SERVER_ARGS
environment variable, or the \"-encina <encinaArgs>\" command line
argument, must specify the name of a device for the log.");

Variables: NONE

Explanation:

The server was cold started but the name of the log device on which the log
should be configured was not found in the server startup information.

User Response:

Specify the name of the log device in the startup information. The startup
information is a comma-separated string of name=value pairs that you can
specify through the -encina <startup info> command-line switch and
argument or the ENCINA_OTS_TK_SERVER_ARGS environment variable.
The server name is specified within the string as "logDevice=<name>".

ID: 0xd41fc81c
Encina Codes and Messages 391

Component: Encina++, server

Message: "Invalid encina argument specification (incorrect form)."

Variables: NONE

Explanation:

The server startup information is a comma-separated string of name=value
pairs that you can specify through the -encina <startup info> command-line
switch and argument or the ENCINA_OTS_TK_SERVER_ARGS environment
variable. While processing the string was found to be malformed.

User Response:

Correct the format of the startup information string so that it contains valid
name=value pairs separated by commas.

ID: 0xd41fd02c

Component: Encina++, server

Message: "For a recoverable server the ENCINA_OTS_TK_SERVER_ARGS
environment variable, or the "-encina <encinaArgs>" command line
argument, must specify the name of the restart files."

Variables:NONE

Explanation:

The server was unable to configure the log service because the restart
information for the volume on which the log service’s volume is configured
was not specified in the server startup information.

User Response:

Specify the restart file names in the startup information. The startup
information is a comma-separated string of name=value pairs that you can
specify through the -encina <startup info> command-line switch and
argument or the ENCINA_OTS_TK_SERVER_ARGS environment variable.
The restart files should be specified as a "restart string" that consists of a pair
of colon-separated (semi-colon-separated on NT) names where the restart
392 Developing Distributed Transaction Applications with Encina

state will be (or has been) stored. An example is:
"restartString=restart:restart.bak".

A.2.3 PPC

ID: 0x74182c76

Component: PPC, ppcgwy

Message: "Unable to set principal (%s): %k"

Variables: %s - This string specifies principal Name. PPC gateway executes
in the login context of this principal Name. %k - Results of an attempt to store
principal name.

Explanation:

The PPC gateway was unable to allocate enough memory for storing the
principal name.

User Response:

Make sure there is enough memory for the PPC gateway.

ID: 0x74182c86

Component: PPC, ppcgwy

Message: "Unable to set key file (%s): %k"

Variables: %s - This string specifies Key file name. Password for PPC
gateway principal is obtained from this Key file. %k - Results of an attempt to
store key file name.

Explanation:

The PPC gateway was unable to allocate enough memory for storing the key
file name.
Encina Codes and Messages 393

User Response:

Make sure there is enough memory for the PPC gateway.

ID: 0x74182c96

Component: PPC, ppcgwy

Message: "Unable to decode protection level (%s): %k"

Variable: %s - This is string specifying PPC gateway protection level. PPC
gateway decodes the string to get the protection level value. %k - The result
of an attempt to translate the protection level string to protection level Value.

Explanation:

Wrong protection level string was given.

User Response:

Check documentation to get the right protection level strings.

ID: 0x74182ca6

Component: PPC, ppcgwy

Message: "Invalid trace specification -- \%s\"

Variable: %s - This string indicates the direction in which all the PPC gateway
trace messages are redirected.

Explanation: Format of the user-specified redirection specification is wrong.

User Response:

Check documentation to get the right redirection specification.

**
394 Developing Distributed Transaction Applications with Encina

A.2.4 Client Core

ID: 0x84048816

Component: Admin command line interface

Message: "Unrecognized argument name: \"%s\""

Variable: %s - The unrecognized argument.

Explanation:

A switch in the command line is not recognized. An example is mistyping
"-server" switch as "-sever".

User Response:

Check the command for typos.

**

ID: 0x84048836

Component: Admin commmand line interface

Message: "Ambiguous argument name: \"%s\""

Variable: %s - The ambiguous argument.

Explanation:

The command line parser cannot uniquely determine a partial match of a
given switch. For example, if "-logvolume" and "-logfile" switches were both
valid for a command, a given switch "-log" would trigger this message.

User Response:

Use full name of the switch.

**

ID: 0xd8200816
Encina Codes and Messages 395

Component: TRDCE

Message: "Key management error is not recoverable."

Explanation:

A DCE security key management function has returned an error that cannot
be recovered with retry. For example, the application is not authorized to
perform the operation.

User Response:

Make sure DCE and the environment are set for key management to work.

**

ID: 0x280c0836

Component: TRPC

Message: "The runtime library being used does not match the version of TIDL
used.\nInterface name %s, function name %s, stubs version %d."

Variables: %s - Interface name of the RPC call. %s - Function name of the
RPC call. %d - Version of TIDL used.

Explanation:

TRPC run time detected that a TRPC stub file was generated by an
unmatching TIDL compiler.

User Response:

Make sure your TIDL files are compiled by a TIDL matching the TRPC run
time.

**

ID: 0x280c2057

Component: TRPC
396 Developing Distributed Transaction Applications with Encina

Message: "The TRPC runtime library does not match compiled manager
stubs.\nInterface name %s, function name %s, stubs version %d.\n"

Variable: %s - Interface name of the RPC call. %s - Function name of the
RPC call. %d - Version of stub.

Explanation:

TRPC run time detected that a manager stub file was generated by an
unmatching TIDL compiler.

User Response:

Make sure your TIDL files are compiled by a TIDL matching the TRPC run
time.

**

ID: 0x28106056

Component: Client TRPC

Message: "Runtime library could not acquire a string binding for a well-known
endpoint (%k)."

Variable: %k - Error code returned by an RPC string binding function.

Explanation:

A well-known endpoint binding specified through trpc_UseWkEndpoints or
trpc_BindWkEndpoints is invalid. Most likely, it has been incorrectly
specified, it has been corrupted, or sufficient memory could not be allocated
to return the string binding.

User Response:

Review the application’s use of these functions or ensure that the process
has not exceeded its memory limit and that sufficient swap space exists on
the machine, depending on the error returned.

**

ID: 0x28106066
Encina Codes and Messages 397

Component: TRPC

Message: "Runtime library could not parse the string binding for a well-known
endpoint (%k)."

Variable: %k - Error code returned by a RPC string binding function.

Explanation:

A well-known endpoint string binding could not be parsed, most likely
because sufficient memory could not be allocated for the parsed strings.

User Response:

Ensure that the process has not exceeded its memory limit and that sufficient
swap space exists on the machine.

**

ID: 0x28106076

Component: TRPC

Message: "Runtime library was provided a well-known endpoint that uses an
invalid protocol sequence (%k)."

Variable: %k - Error code returned by an RPC binding function.

Explanation:

A well-known endpoint binding specified through trpc_UseWkEndpoints or
trpc_BindWkEndpoints references an invalid or unsupported protocol
sequence.

User Response:

Review the bindings specified by the application for correctness.

**

ID: 0x28106086

Component: TRPC
398 Developing Distributed Transaction Applications with Encina

Message: "Runtime library was provided a well-known endpoint lacking
endpoint information."

Variable: %k - Error code returned by an RPC binding function.

Explanation:

A well-known endpoint binding specified through trpc_UseWkEndpoints or
trpc_BindWkEndpoints does not contain the required endpoint information.

User Response:

Review the bindings specified by the application for correctness.

**

ID: 0x28106c26

Component: TRPC

Message: "Runtime library could not create a dynamic endpoint for some
protocol sequence (%k)."

Variable: %k - Error code returned by an RPC binding function.

Explanation:

The DCE rpc_server_use_protseq call has failed. The DCE error returned
should indicate the reason for the failure. The most likely causes are that the
maximum number of network descriptors has been reached or some other
limitation has prevented socket creation.

User Response:

Find the cause indicated by the error code, such as exhaustion of the network
descriptors, and raise the limit.

**

ID: 0x28107016

Component: TRPC
Encina Codes and Messages 399

Message: "Runtime library has been given well-known endpoints that have
not been bound by the application."

Explanation:

The application has called trpc_UseWkEndpoints, but at least one endpoint
was specified for which no binding exists.

User Response:

Review the application for correctness and refer to the documentation for
trpc_UseWkEndpoints; the use of trpc_BindWkEndpoints may have been
intended.

**

ID: 0x28107026

Component: TRPC

Message: "Runtime library needs either a well-known endpoint or the ability
to use the name service because the application is recoverable."

Explanation:

A recoverable application must either permit the use of the name service or
provide a well-known endpoint. This error indicates that
trpc_SetEnvironment has been called to disable the use of the name service,
and yet no well-known endpoints have been specified.

User Response:

Change the application to allow the use of the name service, or use
trpc_UseWkEndpoints or trpc_BindWkEndpoints appropriately.

**

ID: 0x14343c1c

Component: Trace listener

Message: "Unable to decode protection level(%s): %k"
400 Developing Distributed Transaction Applications with Encina

Variable: %s - Protection level string specified in comamnd line. %k - Error
code of decoding protection level.

Explanation:

An invalid protection level string is specified.

User Response:

Make sure to specify a valid protection level.

**

ID: 0x14343c2c

Component: Trace listener

Message: "Unable to establish security: %k"

Variable: %k - Error code set by security management.

Explanation:

Trace listener is unable to establish security.

User Response:

Make sure server principal, key file, and other security options are set
correctly.

**

ID: 0x14343c4c

Component: Trace listener

Message: "Unable to register server with name %s (%k)."

Variable: %s - Server name. %k - Error code returned by DCE service.

Explanation:

Trace listener is unable to register the server with CDS.
Encina Codes and Messages 401

User Response:

Check the CDS directory, ENCINA_CDS_ROOT environment variable, and
server name for correctness.

**

ID: 0x14343c5c

Component: Trace listener

Message: "Unable to parse authorized principal (%s): %k"

Variable: %s - Server principal. %k - Error code.

Explanation:

Trace listener is unable parse the principal name.

User Response:

Make sure appropriate principal name is given.

**

A.2.5 Server

ID: 0xac081c16

Component: Server restart

Message: "No restart data found\n"

Explanation:

The restart file given in the server command line is not found or contains
invalid information.

User Response:

Make sure to supply valid restart files.

**
402 Developing Distributed Transaction Applications with Encina

ID: 0x1c2c0416

Component: VOL

Message: "Release and version numbers in VOL restart data are invalid."

Explanation:

Release and version information on a volume does not match the Encina
server version.

User Response:

Make sure the volume is not corrupted and was operated by a compatible
Encina server version.

**

ID: 0x1c2c0426

Component: VOL

Message: "The VOL restart data is corrupted."

Explanation:

Restart data on a volume is invalid.

User Response:

Make sure the volume is not corrupted and was operated by a compatible
Encina server.

**

ID: 0xc8340816

Component: Server command line parsing

Message: "Too many server-specific options."
Encina Codes and Messages 403

Explanation:

Too many server command line arguments are specified.

User Response:

Make sure appropriate arguments are specified.

**

ID: 0xc8341416

Component: Server command line parsing

Message: "Unable to set key file (%s): %k"

Variables: %s - Key file name specified on command line. %k - Error code by
a DCE key management function.

Explanation:

The server is unable to set the key file.

User Response:

Make sure the key file is valid and DCE security is running.

**

ID: 0xc8343816

Component: Server command line parsing

Message: "Unable to set authorized principal: %k"

Variables: %k - Error code by a DCE security acl function.

Explanation:

The server is unable to set authorization for specified server principal.

User Response:

Make sure the principal has been created and DCE security is running.
404 Developing Distributed Transaction Applications with Encina

**

ID: 0xc834141c

Component: Server command line parsing

Message: "Unable to decode protection level(%s): %k"

Variable: %s - Server principal. %k - Error code.

Explanation:

An invalid protection level string is specified.

User Response:

Make sure to specify a valid protection level.

**

ID: 0xc834142c

Component: Server command line parsing

Message: "Unable to establish security: %k"

Variable: %k - Error code set by security management.

Explanation:

The server is unable to establish security.

User Response:

Make sure the server principal, key file, and other security options are set
correctly.

**

ID: 0xc834181c
Encina Codes and Messages 405

Component: Server command line parsing

Message: "Illegal checkpoint interval specified: %s"

Variable: %s - Checkpoint interval specified in the command line.

Explanation:

A invalid checkpoint interval is specified.

User Response:

Examine the checkpoint interval for correctness.

**

ID: 0xc834182c

Component: Server command line parsing

Message: "VOL service restart info missing. Use a ’%s’ switch"

Variable: %s - The missing switch "-v"

Explanation:

Volume restart device is not specified.

User Response:

Use the "-v" switch to specified the restart device.

**

ID: 0xc834242c

Component: Server command line parsing

Message: "No server name provided. Use a ’%s’ switch."

Variable: %s - The missing switch "-n".

Explanation:
406 Developing Distributed Transaction Applications with Encina

Server name is not specified in the command line.

User Response:

Specify an appropriate server name with the "-n" switch.

**

ID: 0xc834281c

Component: Server command line parsing

Message: "Unable to register server with name %s (%k)."

Variable: %s - Server name. %k - Error code returned by DCE service.

Explanation:

The server failed to register the specified server name with CDS.

User Response:

Check the CDS directory, ENCINA_CDS_ROOT environment variable, and
server name for correctness.

**

ID: 0xc834381c

Component: Server command line parsing

Message: "Unable to parse authorized principal (%s): %k"

Variable: %s - Server principal. %k - Error code.

Explanation:

The server principal name cannot be parsed by DCE security service.

User Response:

Make sure appropriate principal name is given.

**
Encina Codes and Messages 407

A.2.6 SFS

ID: 0x582c4486

Component: SFS EMS

Message: "ENCINA_PRINCIPAL environment variable must be set."

Explanation:

When DCE security is in use, an SFS application in the form of a COBOL
program or through the ISAM interface must specify the DCE principal
running the application.

User Response:

Make sure the evironment variable is set to the appropriate DCE principal.

**

ID: 0x88042c26

Component: SFS EXTFH

Message: "extfh: Does NOT support interpretation of, %c, %c, %c , or %c.\n"

Variables: %c - Unsupported character ’&’. %c - Unsupported character ’>’.
%c - Unsupported character ’<’. %c - Unsupported character ’|’

Explanation:

MicroFocus COBOL allows certain characters in file names that are stored in
file name mapping environment variables. These characters tell the file
control to redirect input and output to this file rather than just use it like a
normal COBOL file. SFS does not support this feature.

User Response: Make sure those characters are not used.

**

ID: 0x88043816
408 Developing Distributed Transaction Applications with Encina

Component: SFS EXTFH

Message: "The %s environment variable must be set to use Encina EXTFH."

Variable: %s - The name of the missing environment variable.

Explanation:

When using SFS as a COBOL external file handler, the environment variables
for server name, and volume name must be set.

User Response:

Set the environment variables.

**

ID: 0x881c1416

Component: SFS EXTFH

Message: "extfh: Does NOT support NLS filename mapping.\n"

Explanation:

String "%NLS%" is specified in the file name mapping environment variable.
EXTFH does not support NLS file name mapping.

User Response: Make sure the string is not used.

**

ID: 0x88103c36

Component: SFS EXTFH

Message: "EXTFH: cannot do random read on sequential files"

Explanation:

Application found doing a random read on a sequential file.

User Response:
Encina Codes and Messages 409

Use appropriate file type for random reads.

**

ID: 0x50249836

Component: SFS server

Message: "SFS Server Initialization Failure: Invalid SFS Server Version.\n"

Explanation:

The server version found in the restart area does not match the current
server.

User Response:

Use appropriate server binary and make sure the volume is not corrupted.

**

ID: 0x502c781b

Component: SFS Server

Message: "sfs: Collating Language \"%s\" Could Not Be Found."

Variable: %s - Collating language specified in the server start command line.

Explanation:

When SFS is restarted, the collating language specified does not match the
one stored in the restart area.

User Response:

Do not specify a collating language for server restart. The server can find it
from the restart data.

**
410 Developing Distributed Transaction Applications with Encina

ID: 0x582c0846

Component: SFS TISAM

Message: "invalid %s environment value: %s.\n"

Variable: %s - Name of the environment variable ENCINA_TISAM_MODE.
%s - Value of the environment variable.

Explanation:

Environment variable ENCINA_TISAM_MODE is not set to one of the two
valid values: TISAM_STANDARD_MODE and
TISAM_COMPATIBILITY_MODE.

User Response:

Check the setting of this evironment variable.

**

A.2.7 RQS

ID: 0x8cc44416

Component: RQS client

Message: "rqs_Free: queue 0x%x belongs to too many queue sets (%d).\n"

Variable: %x - Pointer to the queue’s status structure. %d - Max number of
queue sets to which a queue may belong.

Explanation:

The number of queue sets to which a queue belongs exceeds
RQS_MAX_QSETS_PER_QUEUE.

User Response:

Observe the limit when inserting a queue into queue sets.

**
Encina Codes and Messages 411

ID: 0x8c556826

Component: RQS client

Message: "PostLogFileInit: Collating Language \"%s\" Could Not Be Found."

Variable: %s - Collating language specified in the server start command line.

Explanation:

When RQS is restarted, the collating language specified does not match the
one stored in the restart area.

User Response:

Do not specify a collating language for server restart. The server can find it
from the restart data.
412 Developing Distributed Transaction Applications with Encina

Appendix B. Special Notices

This publication is intended to help application developers and application
designers design, develop, and deploy their applications based on Encina
technology. The information in this publication is not intended as the
specification of any programming interfaces that are provided by Encina
products. See the PUBLICATIONS section of the IBM Programming
Announcement for TXSeries and Encina for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
© Copyright IBM Corp. 1998 413

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

IBM ACF/VTAM
AIX APPN
AS/400 C Set ++
CICS Transaction Server CICS/MVS
CICS/ESA CICS/VSE
CICS/400 CICSPlex
Database 2 DB2
MQSeries OS/2
Presentation Manager RACF
RISC System/6000 RS/6000
S/390 VTAM

C++ American Telephone and Telegraph
Company, Incorporated

C-bus Corollary, Inc.
CyberCash CyberCash, Inc.
DCE, OSF Open Software Foundation
DEC, VT100 Digital Equipment Corporation
Encina Transarc Corporation
Gopher University of Minnesota
414 Developing Distributed Transaction Applications with Encina

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

Intel, Pentium, MMX Intel Corporation
Java, Hot Java Sun Microsystems, Inc.
Kerberos, X Windows Massachusetts Institute of Technology
Lotus Notes Lotus Development Corporation.
NCSA Mosaic University of Illinois at Urbana

Champaign
Netscape Netscape Communications

Corporation
Oracle Oracle Corporation
PostScript Adobe Systems, Inc.
SecureWeb Terisa Systems
Windows NT, and Windows 95 Microsoft Corporation

C++ American Telephone and Telegraph
Company, Incorporated

C-bus Corollary, Inc.
Special Notices 415

416 Developing Distributed Transaction Applications with Encina

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 425.

 • Administering IBM DCE and DFS Version 2.1, SG24-4714

 • DCE Cell Design Considerations, SG24-4746

 • Accessing CICS Business Applications from the WWW, SG24-4547

 • IBM Internet Connection Secure Server, SG24-4805

 • Building a Firewall with the NetSP Secured Network Gateway, SG24-2577

 • CICS Clients Unmasked, SG24-2534

 • TCP/IP Tutorial and Technical Overview, GG24-3376

C.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022

Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044

AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 417

C.3 Other Publications

The publications listed in Table 12 are also relevant as further information
sources.

Table 12. The Manuals for IBM Transaction Server for Windows NT

Order Number Book Title Description

GC33-1878 Concepts and
Facilities

Provides a technical overview of the
concepts, services, and components of
IBM Transaction Server for Windows NT

GC33-1879 Quick Beginnings Provides step-by-step instructions for
getting a CICS server and an Encina
Monitor running and for installing the
CICS clients (including the CICS Client
for AIX) that run with Transaction Server

GC33-1880 Installation Guide Provides system administrators with
information about system requirements
and installing and configuring IBM
Transaction Server for Windows NT

SC33-1881 Administration
Guide (CICS)

Provides information for system
administrators about all aspects of
setting up and managing an operational
CICS for Windows NT system

SC33-1885 Administration
Reference (CICS)

Provides reference information for
system administrators on the commands
and definitions required to administer a
CICS system. Use in conjunction with
the Administration Guide (CICS)

SC33-1795 Basic Administration
(Encina)

Provides information for system
administrators about installing,
configuring, and managing the Encina
components of IBM Transaction Server
for Windows NT

SC33-1948 Server
Administration
(Encina)

Provides information for system
administrators about adminstering the
RQS, SFS, and PPC Gateway for Encina

SC33-1949 Advanced
Administration
(Encina)

Provides information for system
administrators about Encina
maintenance, recovery, security, and
performance
418 Developing Distributed Transaction Applications with Encina

SC33-1798 Administration
Reference (Encina)

Provides reference information for
system administrators on the commands
and definitions required to administer an
Encina system. Use in conjunction with
Basic Administration (Encina)

SC33-1882 Intercommunication
Guide

Describes how CICS for Windows NT
can communicate with other members of
the CICS family and any other system
that supports the LU 6.2 protocol

GC33-1883 Problem
Determination Guide

Provides guidance information to help in
resolving CICS application and system
problems and in using your support
organization

GC33-1886 Messages and
Codes

Lists the messages and codes that CICS
for Windows NT issues

SC33-1888 Application
Programming Guide
(CICS)

Provides guidance information for
application programmers about
preparing applications in COBOL, C, or
C++ using the CICS Application
Programming Interface (API) and
migrating CICS applications to and from
CICS for Windows NT

SC33-1887 Application
Programming
Reference (CICS)

Provides reference information for
application programmers to prepare
COBOL, C, or C++ applications using the
CICS API

SC33-1914 Encina Monitor
Programming Guide

Describes how to develop Encina
Monitor applications.

SC33-1915 Encina PPC
Services
Programming Guide

Describes the programming environment
and related utilities for the Encina PPC
Executive

SC33-1916 Encina RQS
Programming Guide

Describes the RQS programming
environment and how to develop Encina
RQS applications

SC33-1917 Encina SFS
Programming Guide

Describes the SFS programming
environment and how to develop Encina
SFS applications

Order Number Book Title Description
Related Publications 419

SC33-1918 Encina Toolkit
Programming Guide

Describes the organization of the Encina
Toolkit, the interaction between the
various modules of the Toolkit, and how
to use specific Toolkit interfaces to
develop distributed transactional
applications

SC33-1919 Encina
Transactional
Programming Guide

Describes how to develop distributed,
transactional applications using the
Encina Tran-C programming interface. It
also describes the Encina TX interface
and TIDL

SC33-1909 Encina C
Programming
Reference Volume 1

Provides reference information for the
data types and functions of Encina
Monitor, Transactional-C, Encina Monitor
Administration (EMA), X/Open TX, and
PPC Services interfaces

SC33-1910 Encina C
Programming
Reference Volume 2

Provides reference information for the
data types and functions of Encina RQS
and SFS interfaces

SC33-1911 Encina C
Programming
Reference Volume 3

Provides reference information for the
data types and functions of Encina
Distributed Transaction Service (TRAN),
Thread-to-Tid Mapping Service
(threadTid), and Transactional RPC
Service (TRPC) components of the
Encina Executive, and for the Encina
Abort Facility, Trace Facility, and
Transarc Encina DCE Utilities (TRDCE)

SC33-1912 Encina C
Programming
Reference Volume 4

Provides reference information for the
data types and functions of the Encina
Lock Service (LOCK), Log Service
(LOG), Recovery Service (REC),
Transaction Manager-XA Service
(TM-XA), and Volume Service (VOL)
components of the Encina Toolkit Server
Core, and for the Encina Restart Service

SC33-1913 Encina COBOL
Programming Guide
and Reference

Describes how to develop Encina
Monitor applications using COBOL

Order Number Book Title Description
420 Developing Distributed Transaction Applications with Encina

SC33-1760 Writing Encina
Applications

Provides guidance for application
programmers who want to learn how to
program in the Encina environment

SC33-1611 Encina SFS
Supplement to ISAM

Provides guidance about using the
Encina Transactional Indexed
Sequential Access Method (T-ISAM)
interface

SC33-1759 Encina++
Programming Guide
and Reference

Explains how to develop object-oriented
distributed applications using the
Encina++ extensions to the C++
language. It also provides reference
information for the Encina C++,
Transactional C++, and OMG Object
Transaction Service (OTS) C++
interfaces

IBM CICS Client, Version 2.0.1

SC33-1792 CICS Clients:
Administration

Provides system administrators with
information about installing, customizing,
and controlling the IBM CICS Clients for
DOS, OS/2, Windows, Windows NT,
Windows 95, and Macintosh

SC33-1793 CICS Clients:
Messages

Lists user, error log, and trace log
messages for the IBM CICS Clients for
DOS, OS/2, Windows, Windows NT,
Windows 95, and Macintosh

SC33-1821 CICS Clients:
Gateways

Describes how to set up and use the IBM
CICS gateway for Lotus Notes and the
IBM CICS Internet gateway, provided
with the CICS Client for OS/2 or the CICS
Client for Windows NT

CICS Family

SC33-1898 Using IBM
Communications
Server for AIX with
CICS

Describes how the IBM Communication
Server for AIX can provide either local
SNA CICS support to the CICS for AIX
region or be used within an Encina PPC
Gateway Server to provide gateway SNA
support

Order Number Book Title Description
Related Publications 421

All TXSeries documentation and manuals can be accessed online at
http://www.transarc.com.

SC33-1899 Using Microsoft SNA
Server Version 2
with CICS

Describes how the Microsoft SNA
Version 2 product can provide local SNA
support to the CICS for Windows NT
region

SC33-1715 Using Microsoft SNA
Server Version 3
with CICS

Describes how the Microsoft SNA
Version 3 product can provide local SNA
support to the CICS for Windows NT
region

SC33-1900 Using IBM
Communication
Server for Windows
NT with CICS

Describes how the IBM Communication
Server for Windows NT can provide local
SNA support for a CICS for Windows NT
region

SC33-0824 CICS Family:
Interproduct
Communication

Introduces the CICS intercommunication
functions for the CICS family of products

SC33-1435 CICS Family:
Client/Server
Programming

Provides information on using the CICS
External Call Interface (ECI) and CICS
External Programming Interface (EPI) to
develop client applications to use CICS
systems as servers

SC33-1007 CICS Family: API
Structure

Provides a cross-reference to the level of
support provided | by each member of
the CICS family for the CICS application
programming interface (API) and the
system programming INQUIRE and SET
commands

SC33-1923 CICS Family: OO
Programming in C++
for CICS Clients

Describes object-oriented programming
in C++ for the external call interface
(ECI) and external presentation interface
(EPI) using the classes and methods
provided with CICS Clients Version 2.0.1

SC33-1924 CICS Family: OO
Programming in
BASIC for CICS
Clients

Describes object-oriented programming
in Visual BASIC for the external call
interface (ECI) and external presentation
interface (EPI) using the classes and
methods provided with CICS Clients
Version 2.0.1

Order Number Book Title Description
422 Developing Distributed Transaction Applications with Encina

Related Publications 423

424 Developing Distributed Transaction Applications with Encina

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 425

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
426 Developing Distributed Transaction Applications with Encina

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 427

428 Developing Distributed Transaction Applications with Encina

Glossary

An excellent glossary of Internet and Internet
related terms is available at:

http://www.matisse.net/files/glossary.html

Other terms not covered in the
above-mentioned Web document or clarified in
this document are listed below.

anchor. An HTML element that defines a link
between Internet resources.

abend. Abnormal end of task.

API. Application programming interface. A set
of calling conventions defining how a service is
invoked through a software package.

APPC. Advanced program-to-program
communication. An implementation of the SNA
LU 6.2 protocol that allows interconnected
systems to communicate and share the
processing of programs.

asynchronous. Without regular time
relationship; unexpected or unpredictable with
respect to the execution of program instructions.
See synchronous.

browser. An application that displays World
Wide Web documents.

CERN. The Conseil Europeen pour la
Recherche Nucleaire (European Particle
Physics Laboratory), which developed hypertext
technologies.

distributed program link (DPL). Enables an
application program executing in one CICS
system to link (pass control) to a program in a
different CICS system. The linked-to program
executes and returns a result to the linking
program. This process is equivalent to remote
procedure calls (RPCs). You can write
applications that issue RPCs that can be
received by members of the CICS family.

distributed transaction processing (DTP).
Enables a transaction running in one CICS
system to communicate synchronously with
transactions running in other systems. The
transactions are designed and coded
© Copyright IBM Corp. 1998
specifically to communicate with each other.
This method is typically used by banks, for
example, in "just-in-time" stock replacement.

Customer Information Control System
(CICS). A distributed online transaction
processing system designed to support a
network of many terminals. The CICS family of
products is available for a variety of platforms
ranging from a single workstation to the largest
mainframe.

client. As in client/server computing, the
application that makes requests to the server
and, often, handles the interaction necessary
with the user.

client/server computing. A form of distributed
processing, in which the task required to be
processed is accomplished by a client portion
that requests services and a server portion that
fulfills those requests. The client and server
remain transparent to each other in terms of
location and platform. See client and server.

commit. An action that an application takes to
make permanent the changes it has made to
CICS resources.

Common Gateway Interface (CGI). The
defined standard for the communications
between HTTP servers and external executable
programs.

conversational. A communication model
where two distributed applications exchange
information by way of a conversation; typically
one application starts (or allocates) the
conversation, sends some data, and allows the
other application to send some data. Both
applications continue in turn until one decides to
finish (or deallocate). The conversational model
is a synchronous form of communication.

database. (1) A collection of interrelated data
stored together with controlled redundancy
according to a scheme to serve one or more
applications. (2) All data files stored in the
system. (3) A set of data stored together and
managed by a database management system.
 429

Distributed Computing Environment (DCE).
Adopted by the computer industry as a de facto
standard for distributed computing. DCE allows
computers from a variety of vendors to
communicate transparently and share resources
such as computing power, files, printers, and
other objects in the network.

delimiter. A character or sequence of
characters used as a separator in text or data
files.

distributed processing. An application or
systems model in which function and data can be
distributed across multiple computing resources
connected on a LAN or WAN. See client/server
computing.

external call interface (ECI). An application
programming interface (API) that enables a
non-CICS client application to call a CICS
program as a subroutine. The client application
communicates with the server CICS program
using a data area called a COMMAREA.

external presentation interface (EPI). An
application programming interface (API) that
allows a non-CICS application program to appear
to the CICS system as one or more standard
3270 terminals. The non-CICS application can
start CICS transactions and send and receive
standard 3270 data streams to those
transactions.

environment. The collective hardware and
software configuration of a system.

File Transfer Protocol (FTP). A protocol that
defines how to transfer files from one computer to
another.

forms. Parts of HTML documents that allow
users to enter data.

function shipping. Enables an application
program running in one CICS system to access
resources owned by another CICS system. In the
resource-owning system, a transaction is initiated
to perform the necessary operation; for example,
to access CICS files or temporary storage, and to
reply to the requester. The user is unaware of
these "behind-the-scenes" activities and need not
know where the resource actually exists.

gateway. Software that transfers data between
normally incompatible applications or between
networks.

gopher. Menu-based software for exploring
Internet resources.

Graphic Interchange Format (GIF). 256-color
graphic format.

graphical user interface (GUI). A style of user
interface that replaces the character-based
screen with an all-points-addressable,
high-resolution graphics screen. Windows display
multiple applications at the same time and allow
user input by means of a keyboard or a pointing
device such as a mouse, pen, or trackball.

home page. The default page shown at the first
connection to an HTTP server.

host. (1) In a computer network, a computer
providing services such as computation,
database access, and network control functions.
(2) In a multiple computer installation, the primary
or controlling computer.

hypertext. Text that activates connection to
other documents when selected.

Hypertext Markup Language (HTML).
Standard language used to create hypertext
documents.

Hypertext Transmission Protocol (HTTP).
Standard WWW client/server communications
protocol.

Internet Keyed Payment Protocol (iKP).
Proposed protocol for conducting secure
commercial financial transactions on the Internet.

intercommunication. Communication between
separate systems by means of Systems Network
Architecture (SNA), Transmission Control
Protocol/Internet Protocol (TCP/IP), and Network
Basic Input/Output System (NetBIOS) networking
facilities.

Internet. A collection of networks.

LU type 6.2 (LU 6.2). A type of logical unit used
for CICS intersystem communication (ISC). LU
6.2 architecture supports CICS
host-to-system-level products and CICS
430 Developing Distributed Transaction Applications with Encina

host-to-device-level products. APPC is the
protocol boundary of the LU 6.2 architecture.

logical unit of work (LUW). An update that
durably transforms a resource from one
consistent state to another consistent state. A
sequence of processing actions (for example,
database changes) that must be completed
before any of the individual actions can be
regarded as committed. When changes are
committed (by successful completion of the LUW
and recording of the synch point on the system
log), they do not need to be backed out after a
subsequent error within the task or region. The
end of an LUW is marked in a transaction by a
synch point that is issued by either the user
program or the CICS server, at the end of task. If
there are no user synch points, the entire task is
an LUW.

markup tag. Special character sequences put in
text used to pass information to a tool, such as a
document formatter.

NCSA Mosaic. A Web browser available on
multiple platforms.

Multipurpose Internet Mail Extension (MIME).
The Internet standard for mail that supports text,
images, audio, and video.

online transaction processing (OLTP). A style
of computing that supports interactive
applications in which requests submitted by
terminal users are processed as soon as they are
received. Results are returned to the requester in
a relatively short period of time. An online
transaction processing system supervises the
sharing of resources to allow efficient processing
of multiple transactions at the same time.

PostScript. The standard for presenting text
and graphics in a device-independent format.

protocol. (1) A formal set of conventions
governing the format and control of data. (2) A
set of procedures or rules for establishing and
controlling transmissions from a source device or
process to a target device or process.

proxy. A gateway that allows Web browsers to
pass on a network request (a URL) to an outside
agent.

pseudoconversational. A type of CICS
application design that appears to the user as a
continuous conversation but consists internally of
multiple tasks.

recovery. The use of archived copies to
reconstruct files, databases, or complete disk
images after they are lost or destroyed.

recoverable resources. Items whose integrity
CICS maintains in the event of a system error.
These include individual files and queues.

script. An executable program invoked by
HTTP servers.

server. Any computing resource dedicated to
responding to client requests. Servers can be
linked to clients through LANs or WANs to
perform services, such as printing, database
access, fax, and image processing, on behalf of
multiple clients at the same time.

Socket Secure (SOCKS). The gateway that
allows compliant client code (client code made
socket secure) to establish a session with a
remote host.

Standard Generalized Markup Language
(SGML). The standard that defines several
markup languages, HTML included.

synchronous. (1) Pertaining to two or more
processes that depend on the occurrence of a
specific event such as a common timing signal.
(2) Occurring with a regular or predictable time
relationship.

synchpoint. A logical point in execution of an
application program where the changes made to
the databases by the program are consistent and
complete and can be committed to the database.
The output, which has been held up to that point,
is sent to its destination, the input is removed
from the message queues, and the database
updates are made available to other applications.
When a program terminates abnormally, CICS
recovery and restart facilities do not back out
updates prior to the last completed synchpoint.

transaction. A unit of processing (consisting of
one or more application programs) initiated by a
single request. A transaction can require the
initiation of one or more tasks for its execution.
 431

transaction processing. A style of computing
that supports interactive applications in which
requests submitted by users are processed as
soon as they are received. Results are returned
to the requester in a relatively short period of
time. A transaction processing system supervises
the sharing of resources for processing multiple
transactions at the same time.

transaction routing. Enables a terminal
connected to one CICS system to run a
transaction in another CICS system. It is common
for CICS/ESA, CICS/VSE, and CICS/MVS users
to have a terminal-owning region (TOR) that
"owns" end-user network resources.
432 Developing Distributed Transaction Applications with Encina

List of Abbreviations

ACF access control file

ACL access control list

AIX Advanced Interactive
eXecutive

APA all points addressable

API application
programming interface

APPC Advanced
Program-to-Program
Communication

AS Application Support

ASCII American National
Standard Code for
Information
Interchange

BMS basic mapping support

CERN Conseil Europeen pour
la Recherche Nucleaire
(European Laboratory
for Particle Physics)

CGI Common Gateway
Interface

CICS Customer Information
Control System

CM/2 Communications
Manager/2

COMMAREA communication area

CRP current record pointer

CSD CICS system definition

DCE Distributed Computing
Environment

DEC Digital Equipment
Corporation

DNS Domain Name Server

DOS Disk Operating System

DPL distributed program link
© Copyright IBM Corp. 1998
DTP distributed transaction
processing

ECI external call interface

EPI external presentation
interface

ESA Enterprise Systems
Architecture

EXCI external CICS interface

FAT file allocation table

FTP File Transfer Protocol

GIF graphic interchange
format

HPFS High Performance File
System

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

IBM International Business
Machines Corporation

IDL Interface Definition
Language (see also
TIDL)

IETF Internet Engineering
Task Force

iKP Internet Keyed
Payment Protocol

IMS Information
Management System

IP Internet Protocol

ISC intersystem
communication

ITSO International Technical
Support Organization

LAN local area network

LUW logical unit of work
 433

MIME Multipurpose Internet
Mail Extension

NCSA National Center of
Supercomputing
Applications

OCCS Object Concurrency
Control Service

OLTP online transaction
processing

OMG Object Management
Group

ONC RPC Open Network
Computing Remote
Procedure Call

ORB Object Request Broker

OS/2 Operating System/2

OSF Open Software
Foundation Inc.

OTMA Open Transaction
Manager Access

OTS Object Transaction
Service

PGP pretty good privacy

PIN personal identification
number

PM Presentation Manager

POP Post Office Protocol

PPC peer to peer
communication

RACF Resource Access
Control Facility

RPC remote procedure call

RQS Recoverable Queuing
System

SET Secure Electronic
Transaction

SFS Structured File Server

S-HTTP Secure Hypertext
Transfer Protocol

SGML Standard Generalized
Markup Language

SMTP Simple Mail Transfer
Protocol

SNA Systems Network
Architecture

SNT signon table

SOCKS socket secure

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

TIDL Transactional Interface
Definition Language

TOR terminal owning region

TRUE task-related user exit

URI uniform resource
identifier

URL uniform resource
locator or universal
resource locator

WWW World Wide Web

WYSIWYG What you see is what
you get

W3 World Wide Web
(mostly used for
Intranet declaration)
434 Developing Distributed Transaction Applications with Encina

Index

Numerics
0x14343c1c 400
0x14343c2c 401
0x14343c4c 401
0x14343c5c 402
0x1c2c0416 403
0x1c2c0426 403
0x280c0836 396
0x280c2057 396
0x28106056 397
0x28106066 397
0x28106076 398
0x28106086 398
0x28106c26 399
0x28107016 399
0x28107026 400
0x50249836 410
0x502c781b 410
0x582c0846 411
0x582c4486 408
0x6050d81c 385
0x60d01816 381
0x60e43c16 371
0x60e43c26 372
0x60e43c36 372
0x60e4401c 376
0x60e44416 373
0x61140416 373
0x61140816 374, 376
0x61140c16 375
0x61141016 374
0x61141026 374
0x61141036 375
0x61141046 375
0x61303c17 377
0x61481816 378
0x61481836 377
0x61483436 378
0x61484426 379
0x617c1c2c 382
0x617c1c36 382
0x617c201c 383
0x617c202c 383
0x617c281c 384
0x617c6c1c 384
0x61a01c2c 376
© Copyright IBM Corp. 1998
0x61d00416 385
0x61d00c16 386
0x61d0241c 386
0x61d02426 387
0x61d0281c 387
0x61d40416 379
0x61d40426 380
0x61d40436 380
0x61d40446 381
0x74182c76 393
0x74182c86 393
0x74182c96 394
0x74182ca6 394
0x84048816 395
0x84048836 395
0x88042c26 408
0x88043816 408
0x88103c36 409
0x881c1416 409
0x8c556826 412
0x8cc44416 411
0xac081c16 402
0xc8340816 403
0xc8341416 404
0xc834141c 405
0xc834142c 405
0xc834181c 405
0xc834182c 406
0xc834242c 406
0xc834281c 407
0xc8343816 404
0xc834381c 407
0xd41fc81c 391
0xd41fd02c 392
0xd41fd03c 388
0xd41fdc1c 388
0xd41fe03c 390
0xd41fe06c 389
0xd41fe0b6 389
0xd41fe46c 391
0xd41fe8bc 388
0xd41ff81c 390
0xd8200816 395

A
ACF 68
ACID 10, 16, 59
435

atomicity 10
consistency 10
durability 10
isolation 10

ACL 73, 291
setup 349

administration 289
analysis 179
APPC 129
APPC/IMS 20
APPC/MVS 21
application architecture 184
application deployment 315
application design 191
application development 210
application standards 197

data access 197
error messages 197
function calls 197
message logging 197
server processing 197

Application Support Server 19
AS 19
ASCII 254
asynchronous abort 64
automatic server restart 300

B
backout 64
backup/recovery 304
build management 207
business processes 179

C
case study 179
CICS 19
client binding to interfaces 220
client construction 275
closeVerifyQueue 246
code partitioning 207
COMMAREA 23, 135
Commit protocol 60

two-phase commit 60
Convert_Incoming 254
Convert_Outgoing 254
CORBA 7, 30
CORBA Orbix impl_is_ready 150
CosTransactions TransactionalObject 150

CPI-C 127
cpic_Init 249
cpic_ReadSideInfo 249
CPI-RR 127
CRP 106
current record pointer 106
cursor 122

D
data design 198
data structures 212
database coding 234
database processing 233
db2xa_switch 235, 257
DCE 4, 13

Audit service 6
CDS 6
Directory service 6
Naming gateway 7
RPC 6
Security service 6
threads 6
Time service 6

DCE processes 350
DCE security 291, 292

ACL 291, 294
Encina clients 294
Encina interfaces 295
Encina servers 295
groups 294
servers 293
users 295

DCE setup (servers) 293
dceOnlyRpcUuid 72
DDL 30
DE-Light 9, 16, 51

accessing servers 161
clients 17, 18
connection 157
data dictionary 159
DrpcConnection 157
DrpcException 166
exceptions 166
gateway 16, 157
IDL 172
loading variables 160
login context 171
method
436 Developing Distributed Transaction Applications with Encina

callRpc 162
close 159
dceLogin 171
declareLastCall 166
dictionary 159
getDceSecurityLevel 171
getInt 161
put 160
putInt 160
setDceSecurityLevel 169
setSecurity 169
txBegin 163
txCommit 163
txGetRollbackString 164
txRollback 163
txSetRollbackString 164

retrieving variables 161
RPC calls 162
security 167

authentication 171
HTTPS 167
level 167
SSL 167

security level of gateway 169
security levels of client 168
TIDL 172
TRPC calls 163

development environment 205
directory structure 205
distributed processing 3
distributed transactions 13
DPL 24, 135
DRPC 157
drpcidl 279
Dynamic Remote Procedure Call 157
Dynamic_Program_Link 136

E
EBCDIC 19, 254
embedded SQL 27
ENC 369
ENC-adm-0001 363
ENC-bde-0018 367
ENC-bde-0019 365
ENC-eai-0015 370
ENC-ema-0014 368
ENC-ema-0016 370
ENC-ema-0017 364

ENCINA 347
Encina 13

database access 26
Monitor 14
PPC Executive 14
PPC Gateway/SNA 14
Recoverable Queuing Service 14
Structured File Server 14
Toolkit Executive 14
Toolkit Server Core 14

Encina cell status 347
Encina Client 147
Encina Client Exit 147
Encina Client Initialize 147
Encina connectivity 16
Encina data definition language 30
Encina monitor 15, 36, 77

API 36
application client 80
application server 79
Cell Manager 79
Managed node 78
Node manager 79
Resource manager 80
runtime 77

Encina nodes 351
Encina PPC 15, 44, 127

Acceptor 130
Allocator 130
API 133
Conversation 45, 130

Encina-to-Encina 46
Encina-to-SNA 46
SNA-to-Encina 46

CPI-C 44
CPI-RR 44
DPL 135

client code 136
Executive 128
Gateway/SNA 128
LU 6.2 129
LUW 131
LUWID 131
session 129
synclevel 130
synclevel confirm 131
synclevel none 131
synclevel syncpoint 130

Encina RQS 15, 28, 42, 111, 153
 437

application structure 124
createing queues 126
data structures 42
deleting elements 120
dequeue 28
dequeueing elements 114
destroying queues 126
elements 28
enqueue 28
enqueueing elements 113
key-based retrieval 123
locking 43
managing queues 125
modifying elements 120
operations 112
queue sets 127
random access 119
reading elements 119
requeueing elements 118
statistics 42

Encina Server 144
ConcurrencyMode 145
Exit 145
Initialize 145
Listen 145
RegisterResource 145

Encina Server Initialize 145
Encina Server Listen 150
Encina SFS 15, 40, 93

B-tree clustered 41
client program 95
entry-sequenced 40
file names 96
relative 40

Encina threading 38
Encina toolkit 14, 33

Executive 14, 33
Server core 14, 34

Encina trace facility 356
Encina Web 16, 51

C API 16
C Client 53
DE-Light 51
Gateway 16, 51
Java API 16
Java Client 53

Encina++ 29, 48
programming model 48
RQS++ 50

SFS++ 50
EncinaBuilder 55
ENC-log-0256 370
ENC-log-0258 367
ENC-mon-0001 368
ENC-mon-1036 364
ENC-ppc-0016 369
ENC-sfs-0060 366
ENC-sfs-0076 363
ENC-sfs-0085 366
ENC-tra-1065 368
ENC-tra-1135 365
ENC-trc-1031 363
ENC-trp-0010 365
ENC-trp-0029 369
ENC-vol-0007 364
ENC-vol-0016 366
Endpoint mapping 350
Entry sequence number 97
Environment 347
exchangeBuffer 254
exchangeBuffers 251
Explicit bindings 91
ExportInterface 259
Extract_DPL_Error 137

F
failure recovery 13, 302
fault tolerance 299, 306
function mapping 195

G
getGatewayName 281

I
IDL 30, 37

compiling idl 221
IMS 19
infrastructure analysis 183
infrastructure architecture 188
installation and configuration 324

automatic restart 331
DCE and Encina 328
DCE configuration 328
Encina cell 329
Encina servers 342
operating system preparation 324
438 Developing Distributed Transaction Applications with Encina

rc.encina.servers 338
interface coding 210
interface functions 265
Internet access 157
ISC 20

J
JAM 36
Java 9
Java language stub file 279

L
LANG 347
load balancing 13
LOCK 35
lock service 35
LOG 35
log files 351
log service 35
logical unit of work 131
LU 6.2 15, 127, 129

M
message files 351
message logging 224
middleware development infrastructure 209
mon_AcquireReservations 91
mon_BeginService 89, 264
mon_ExitClient 93
mon_InitClient 90
mon_InitClient() 275
mon_InitServer 89
mon_InitServerInterface 88, 259, 260
mon_RegisterQrfManagerFunction 88
mon_RegisterRmi 88, 261
mon_RegisterTPN 88
mon_RetrieveEnable 89
mon_SecurityRegisterCallback 93
mon_SecuritySetDefaults 92
mon_ServerUsesTx 88
mon_SetSchedulingPolicy 89
mon_TerminateServer 89
mon_TerminateSever 264
Monitor 11
Monitor application client 90
Monitor application server 85
Multi platform 206

MVS 19

N
naming conventions 202, 289
nested transactions 61
Non-RPC server 268

O
Object Concurrency Control Service 30
object design 193
object modeling 191
OCCS 14, 30
OFD 104

transactional 110
OFDnontransactional 110
OMG 7, 14
one-to-many 198
one-to-one 198
open file descriptor 104
ORB 8, 14, 30
OrderProcCommon.idl 215
orphan 112
OS/390 19
OTMA 20
OTS 14
OtsExceptions Any 152, 155

P
PATH 347
peer-to peer communication 13
performance 311
POS Key 152
POS Object 152, 155
PPC 13, 24
PPC coding 248
processing agent 79
pthread_mutex_lock 273

R
REC 35
recoverable processes 60
recovery service 35
relative slot number 97
replicating Encina cell 343
rollback 63
RPC Return 222
RPC Return structure 211
 439

rpc_binding_set_auth_info 92
rpc_c_authz_dce 92
rpc_c_authz_none 92
rpc_ss_client_free 278
RQS 14
Rqs Cursor 154
Rqs Exceptions 155
Rqs Object 154
Rqs Object GetType 154
Rqs Object IsOfType 154
Rqs Queue GetCursor 154
RQS queue processing 240
Rqs QueueSet 153, 154
Rqs Server 153
Rqs Server CreateQueue 154
Rqs Server CreateQueueSet 154
Rqs Server GetQueueSet 154
rqs_DeleteAllElements 126
rqs_Dequeue 114
rqs_ElementDelete 120
rqs_ElementDropLock 121
rqs_ElementIdCmp 122
rqs_ElementIdToString 122
rqs_ElementListDropLocks 121
rqs_ElementModify 120
rqs_ElementRead 119
rqs_Enqueue 113, 243
rqs_Free 246
rqs_GetServerHandle 124, 242
rqs_QCreate 126
rqs_QDestroy 126
rqs_QSDequeue 114, 245
rqs_Requeue 118
rqs_RequeueAndModify 118

S
security 72, 291

ACL 73
authentication 72
authorization 72
DE-Light 298
Encina++ and CORBA 298
RPC protection levels 72

server configuration 228
server construction 256
server life cycle 256
serverCleanUp 246
Service level 348

Set_DPL_Locale 137
SFS 13
SFS data types

sfs_byteArray 100
sfs_decimal 100
sfs_double 100
sfs_float 100
sfs_nlsString 100
sfs_shortVarLenByteArray 100
sfs_signedInt16 100
sfs_signedInt32 100
sfs_signedInt64 100
sfs_string 100
sfs_timestamp 100
sfs_unsignedInt16 99
sfs_unsignedInt32 100
sfs_unsignedInt64 100
sfs_varLenByteArray 100

SFS Exceptions 152
SFS file 152
SFS file access 106

random 107
sequential 106

SFS server 152
AddSecondaryIndex 152
CreateFile 152
OpenFile 152
volume 152

Sfs Server 152
sfs_AddSecondaryIndex 102
sfs_CloseOfd 96
sfs_indexFieldSpec_t 101
sfs_Insert 110
sfs_ModifyFieldByKey 108
sfs_ofdSpec_t 104
sfs_OpenFile 104
sfs_primaryIndexSpec_t 101
sfs_recordFieldSpec_t 98
sfs_secondaryIndexSpec_t 101
sfs_SelectSingleKeyRange 107
sfs_UpdateByKey 108
showCpicStatus 250
SL0 131
SL1 131
SL2 130
SMVARS 347
SNA 15
SNA peer to peer model 130
SQL communication area 27
440 Developing Distributed Transaction Applications with Encina

SQLCA 27
Data structure 27
data structure 27

SRRBACK 64
SSL 167
SSLV2 167
staging methods 319
stubs 69
synchronization levels 251
system monitoring 298

T
TACF 68, 220
Thread-to-Tid mapping 34
TID 34
TIDL 30, 37, 67, 217, 220

compiling tidl 220
TM-XA 26, 35
TP monitor 11
TRAN 34, 38
tran_Abort() 21
tran_Begin() 21
tran_End() 21
Tran-C 34, 80
transaction design 200
transaction identifier 34
transaction processing 10
transaction status 354
transparent bindings 90
troubleshooting 347
TRPC 16, 34, 35, 37, 66

interface definitions 67

U
use case model 180
uuidgen 68

V
verify queue 240
version control 205
VOL 35
volume mirroring 300
volume service 35
VSAM 13

W
Web browser 9

Web Client construction 279
Web server 8

X
XA 26
XA database access 235
XA interface 13
XA resources 256, 260
XA switch 27

db2xa (IBM DB2 switch) 27
mon_InitServer 26
mon_RegisterRmi 26, 27
xaosw (Oracle switch) 27

XASWITCH 235, 257
 441

442 Developing Distributed Transaction Applications with Encina

© Copyright IBM Corp. 1998 443

ITSO Redbook Evaluation

Developing Distributed Transaction Applications with Encina
SG24-5241-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

24
1-

00

Developing Distributed Transaction Applications with Encina SG24-5241-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Overview of Distributed Processing
	1.1 Distributed Computing Environment
	1.2 Common Object Request Broker
	1.3 Web Server
	1.4 Transaction Processing
	1.4.1 Transaction Processing Monitor
	1.4.2 Encina Monitor

	Chapter 2. Overview of Encina
	2.1 Product Suite
	2.1.1 Encina Toolkit
	2.1.2 Encina Structured File Server
	2.1.3 Encina Recoverable Queuing Service
	2.1.4 Encina Monitor
	2.1.5 Encina Peer-to-Peer Communication

	2.2 Encina Connectivity
	2.2.1 Encina - Web
	2.2.2 Encina - OS/390 Interoperability

	2.3 Encina Resources
	2.3.1 Encina and Database Access
	2.3.2 Encina and RQS Access

	2.4 Encina++

	Chapter 3. Encina Components
	3.1 Base Components
	3.1.1 Encina Toolkit
	3.1.2 Encina Monitor
	3.1.3 Transactional Remote Procedure Calls Service
	3.1.4 Encina SFS
	3.1.5 Encina Recoverable Queuing Service
	3.1.6 Encina Peer to Peer Communication

	3.2 Encina++
	3.2.1 Encina++ Programming Model
	3.2.2 Encina++/DCE Programming
	3.2.3 Encina++/CORBA Programming
	3.2.4 Encina SFS++
	3.2.5 Encina RQS++

	3.3 Encina DE-Light Web Components
	3.3.1 DE-Light Gateway Server
	3.3.2 DE-Light C API
	3.3.3 DE-Light Java API

	3.4 EncinaBuilder

	Chapter 4. Encina Transaction Model
	4.1 Transactions
	4.1.1 Atomicity Consistency Isolation Durability (ACID)
	4.1.2 Nested Transactions

	4.2 Rollback
	4.3 TRPC
	4.3.1 Interface Definitions

	4.4 Security

	Chapter 5. Using Encina Components
	5.1 Encina Monitor
	5.1.1 Run-time Environment
	5.1.2 Application Development Environment
	5.1.3 Client/Server Application Development

	5.2 Encina SFS
	5.2.1 File Names
	5.2.2 File Structure
	5.2.3 Creating an SFS File
	5.2.4 Opening an SFS File
	5.2.5 Performing I/O on an SFS File
	5.2.6 SFS File Access and Transactions

	5.3 Encina RQS
	5.3.1 Operations on Queues
	5.3.2 RQS Application Structure
	5.3.3 Managing Queues
	5.3.4 Managing Queue Sets

	5.4 Encina PPC
	5.4.1 LU 6.2 Conversations and Synchronization
	5.4.2 Programming Interfaces
	5.4.3 Distributed Program Link

	Chapter 6. Using Encina++
	6.1 Overview of Encina++ Application Development
	6.1.1 Encina++ Interfaces
	6.1.2 Developing a Distributed Encina++ Application

	6.2 The Encina++ Programming Model
	6.3 Writing Encina++ Server Applications
	6.4 Writing Encina++ Client Applications
	6.5 Terminology
	6.5.1 Encina++/DCE Programming
	6.5.2 Encina++/CORBA Programming
	6.5.3 Encina SFS++
	6.5.4 Encina RQS++

	Chapter 7. Internet Access for Java Clients
	7.1 Access to DE-Light Gateways
	7.1.1 Establishing a Connection
	7.1.2 Closing a Connection

	7.2 Data Dictionaries
	7.2.1 Loading Data Dictionary Variables
	7.2.2 Retrieving Data Dictionary Variables

	7.3 Access to Encina Servers
	7.3.1 Making Remote Procedure Calls
	7.3.2 Making TRPC Calls

	7.4 Exceptions
	7.5 Java Client Security
	7.5.1 Setting the DE-Light Security Level
	7.5.2 Setting the DCE Security Level for the Gateway
	7.5.3 Creating a Login Context

	7.6 Loading Gateways with IDL and TIDL Files
	7.7 Short Example

	Chapter 8. Analysis and Architecture Phase
	8.1 Business Problem Analysis
	8.1.1 Case Study Business Problem
	8.1.2 The Use Case Model

	8.2 Existing Infrastructure Analysis
	8.2.1 Systems and Data
	8.2.2 Hardware Environment
	8.2.3 Network Environment
	8.2.4 Languages and Tools

	8.3 Application Architecture
	8.3.1 Architectural Decisions
	8.3.2 Application Architecture Diagram

	8.4 Infrastructure Architecture
	8.4.1 DCE Cell Structure
	8.4.2 Encina Cell Structure

	Chapter 9. Design Phase
	9.1 Application Design
	9.2 Object Modeling
	9.3 Object Design
	9.3.1 Adding Implementation Classes
	9.3.2 Mapping the Functions

	9.4 Common Application Components and Standards
	9.5 Data Design
	9.6 Transaction Design
	9.7 Naming Conventions
	9.8 Final Note Concerning the Design Approach

	Chapter 10. Development Phase
	10.1 Development Environment
	10.1.1 Source Code and Version Control
	10.1.2 Build Management
	10.1.3 Code Partitioning
	10.1.4 Encina Infrastructure
	10.1.5 DCE Infrastructure
	10.1.6 Database Infrastructure

	10.2 Application Development
	10.2.1 Interface Coding
	10.2.2 Common Module Construction
	10.2.3 Database Processing
	10.2.4 RQS Queue Processing
	10.2.5 Host Access with PPC
	10.2.6 Server Construction
	10.2.7 Standard Client Construction
	10.2.8 Web Client Construction

	Chapter 11. Administration
	11.1 Naming Conventions
	11.2 System Security and User Administration
	11.2.1 Encina Security Model
	11.2.2 Operating System Security
	11.2.3 DCE Security
	11.2.4 Encina Server Security
	11.2.5 DE-Light Clients and Gateways
	11.2.6 Encina++ and CORBA

	11.3 Encina System Monitoring
	11.4 Fault Tolerance and Encina
	11.4.1 Automatic Server Restart
	11.4.2 Multiple Server Instances
	11.4.3 Encina Volume Mirrors
	11.4.4 Examples of Failures
	11.4.5 Volume Backup and Recovery
	11.4.6 Robust Fault-Tolerant Configurations

	11.5 Performance

	Chapter 12. Application Deployment
	12.1 Overview
	12.2 Staging Methods
	12.3 DCE and Encina Installation and Configuration
	12.3.1 Operating System Preparation
	12.3.2 DCE and Encina Installation
	12.3.3 DCE Configuration
	12.3.4 Initial Encina Cell Configuration
	12.3.5 Automatic Restart Setup
	12.3.6 Encina Server Configuration

	12.4 Replicating Encina Cell Configuration

	Chapter 13. Troubleshooting
	13.1 Environment Setup
	13.2 Overall Encina Cell Status
	13.2.1 DCE and Encina Patch Levels
	13.2.2 Cell Configuration
	13.2.3 ACL Setup
	13.2.4 Endpoint Map
	13.2.5 DCE Processes and Servers
	13.2.6 Encina Nodes and Servers

	13.3 Encina Message Log Files
	13.4 Transaction Status
	13.5 Encina Trace Facility
	13.5.1 Selecting Trace Events
	13.5.2 Selecting Output Destination
	13.5.3 Reading Trace Output

	Appendix A. Encina Codes and Messages
	A.1 Error Codes
	A.2 Messages
	A.2.1 Monitor
	A.2.2 OTS
	A.2.3 PPC
	A.2.4 Client Core
	A.2.5 Server
	A.2.6 SFS
	A.2.7 RQS

	Appendix B. Special Notices
	Appendix C. Related Publications
	C.1 International Technical Support Organization Publications
	C.2 Redbooks on CD-ROMs
	C.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

