
SG24-5140-00

International Technical Support Organization

http://www.redbooks.ibm.com

Securing Applications with Tivoli
Security Management Lockdown Modules

Richard Hawes, Edson Manoel, Holger Wieprecht, Joseph Walczak, Thomas Sant’Ana

Securing Applications with Tivoli
Security Management Lockdown Modules

June 1999

SG24-5140-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 1999)

This edition applies to Version 3.6 of Tivoli Security Management.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. OSJB Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 119.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii

Chapter 1. Introduction . 1
1.1 Obtaining Lockdown Updates . 5

Chapter 2. Introducing the Lockdown Module . 7
2.1 What a Lockdown Module Does . 7

2.1.1 Locking Down Applications and Operating Systems 8
2.1.2 What a Lockdown Module Is . 9
2.1.3 Why Use a Lockdown Module?. 9
2.1.4 Life Cycle of a Lockdown Module . 10

2.2 Building an LDF for an Application . 12
2.2.1 A Hypothetical Application . 13
2.2.2 Determining the Scope of the Lockdown Module 14
2.2.3 Hypothetical Application Lockdown Definition File 14
2.2.4 Complete Lockdown Definition File Structure 20
2.2.5 LDF Import Utility . 23
2.2.6 Security Profile Export Tool . 26
2.2.7 Lockdown Script . 27

2.3 Additional Uses for Lockdown Modules . 28

Chapter 3. Identifying Access Requirements . 31
3.1 UNIX and Windows NT Security . 31
3.2 Tools to Identify What to Protect . 32

3.2.1 Watching Windows NT Applications . 32
3.2.2 Watching UNIX with the TACF Trace . 37

3.3 Resource Considerations . 43
3.3.1 System Policy Considerations . 44
3.3.2 Windows NT 4.0 Considerations . 47
3.3.3 UNIX Considerations . 52
3.3.4 Application Considerations . 56

Chapter 4. Lockdown Descriptions . 59
4.1 The SAP/R3 Lockdown Module . 60

4.1.1 TSM Roles in the SAP/R3 LDF . 61
4.1.2 TSM Resources in the SAP/R3 LDF . 61
© Copyright IBM Corp. 1999 iii

4.2 The Tivoli Framework Lockdown Module . 62
4.2.1 Framework Security Considerations . 63
4.2.2 TSM Roles and Groups in the Framework LDF. 64
4.2.3 TSM Resources in the Framework LDF 67

4.3 The Lotus Domino Lockdown Module . 70
4.3.1 Lotus Domino Considerations . 71
4.3.2 Design Considerations of the Lotus Domino LDF 71
4.3.3 TSM Roles and Groups in the Lotus Domino LDF. 71
4.3.4 TSM Resources in the Lotus Domino LDF 73

4.4 The Netscape Enterprise Server Lockdown Module 74
4.4.1 Netscape Enterprise Server Considerations 74
4.4.2 Design Considerations for the Netscape LDF 75
4.4.3 TSM Resources in the Netscape LDF . 75
4.4.4 Further Design Considerations of the Netscape LDF 76
4.4.5 TSM Groups and Roles in the Netscape LDF 77

4.5 The Oracle Lockdown Module . 79
4.5.1 Oracle Considerations . 79
4.5.2 TSM Roles in the Oracle LDF . 80
4.5.3 Goals of the Oracle LDF . 81
4.5.4 Design Considerations of the Oracle LDF 82

4.6 The Windows NT Operating System Lockdown Module 83
4.6.1 TSM Roles and Groups in the Windows NT LDF 86
4.6.2 TSM Resources in the Windows NT LDF 89

4.7 The AIX Lockdown Module . 93
4.7.1 AIX Considerations. 94
4.7.2 Design Considerations of the AIX LDF . 95
4.7.3 TSM Resources in the AIX LDF . 96
4.7.4 Groups and Roles in the AIX LDF . 97

Appendix A. TSM Profile Tools . 101
A.1 The LDF Export Tool. 101

A.1.1 Export Tool Usage . 101
A.1.2 wldfexp Flags . 101
A.1.3 Variable Substitution. 102

A.2 The LDF Import Utility . 103
A.2.1 Import Utility Usage . 103
A.2.2 wldfimp Flags . 103
A.2.3 Import Utility Considerations. 104

Appendix B. Lockdown Definition File Format 105
B.1 LDF Component Notation . 105

B.1.1 Comments . 105
B.1.2 Tokens . 105
iv Securing Applications with Tivoli Security Management

B.1.3 Identifiers . 106
B.1.4 Lists . 107
B.1.5 Record Properties. 107
B.1.6 Other Parameters . 110

B.2 LDF Section Description . 111
B.2.1 LDF LOCKDOWN Section . 111
B.2.2 LDF VAR section . 112
B.2.3 LDF PROLOG Section . 113
B.2.4 LDF GROUPS Section . 114
B.2.5 LDF ROLES Section. 114
B.2.6 LDF RESOURCES Section . 115
B.2.7 LDF ACCESS Section . 115
B.2.8 LDF EPILOG Section . 117

Appendix C. Special Notices . 119

Appendix D. Related Publications. 123
D.1 International Technical Support Organization Publications 123
D.2 Redbooks on CD-ROMs . 123
D.3 Other Publications . 123

How to Get ITSO Redbooks . 125
IBM Redbook Fax Order Form . 126

List of Abbreviations. 127

Index . 133

ITSO Redbook Evaluation . 137
 v

vi Securing Applications with Tivoli Security Management

Figures

1. Security Groups and Roles Example . 2
2. Relationship Between Security Level and Costs . 4
3. Lockdown Module Life Cycle . 5
4. Lockdown Module Life Cycle . 10
5. HYPAPP LDF - Name and Variable Section . 15
6. HYPAPP LDF - Group Section . 16
7. HYPAPP LDF - Role Section . 17
8. HYPAPP LDF - Resource Declaration Section . 17
9. HYPAPP LDF - Access Declaration Section . 19
10. Dumpacl - File and Directory Sample Output . 33
11. Filemon - Sample Capture . 34
12. Handlex - Sample Capture of System Processes 36
13. Processes Properties Box . 37
14. Sample TACF Trace - The Beginning of a Telnet Session 40
© Copyright IBM Corp. 1999 vii

viii Securing Applications with Tivoli Security Management

Tables

1. TACF Trace Symbols. 41
2. Windows NT Rights . 87
3. Record Properties . 107
© Copyright IBM Corp. 1999 ix

x Securing Applications with Tivoli Security Management

Preface

A Tivoli Security Management solution can greatly enhance the role of a
security administrator. Role-based security and cross-platform management
ensure accurate, consistent, and efficient adherence to security policy.

However, the specification of access permissions for various resource types
across multiple platforms is a complex task. Tivoli Security Management
makes this task much simpler, but a sophisticated product such as Tivoli
Security Management requires careful planning and testing. Also, having the
capability to implement this protection across a wide range of resource types
means identifying what needs to be protected and how best to implement that
protection.

This redbook explains the concept of a Lockdown Module and how to go
about determining how to protect applications. A lockdown module allows you
to define access controls on resources and set up Tivoli security roles and
groups and then convert that definition into a script. When run, this script will
create all those definitions in a Tivoli Security Profile. This book demonstrates
the use of lockdown modules for the distribution of ready-made security
profiles for operating system platforms, applications, and even the Tivoli
Framework itself.

The Lockdown Definition File (LDF) import utility and script implementation
will be explored in more depth by Tivoli in the future, and we can expect to
see more modules as this idea develops.

Chapter 1 contains an introduction to the topic of locking down applications
and the use of lockdown modules. The modules explored in this redbook are
included on the accompanying CD.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Austin
Center.

Richard Hawes is a Senior Tivoli Security Specialist at the International
Technical Support Organization (ITSO), Austin Center. He writes extensively
on Tivoli Framework and Security issues and is a Tivoli Certified Enterprise
Consultant. Before joining the ITSO in early 1997, Richard worked for a
number of years as a trouble-shooting consultant for an IBM European
technical support team based in the UK.
© Copyright IBM Corp. 1999 xi

Edson Manoel is a Tivoli Project Leader in the International Technical
Support Organization (ITSO), Austin Center. He has many years of
experience in network products especially in distributed technologies and
networking protocols. Prior to joining the ITSO, Edson designed and
implemented systems and network management solutions with IBM Global
Services, Brazil.

Holger Wieprecht is a Systems Management Specialist based in Germany.
He has several years of experience in the computer networks field. Holger
has worked at IBM Global Services for four years. His areas of expertise
include AIX, Concepts and Implementation of Secure Internet Gateways and
Servers as well as Tivoli Systems Management.

Joseph Walczak is a Systems Engineer with Delta Technology/Delta Air
Lines. He has 10 years of computer security experience. His areas of
expertise include client/server security with both Windows NT and Unix as
well as security architecture/infrastructure and Tivoli Systems Management.
He has written several data communications security documents while in the
U.S. Navy as a Cryptologic Technician and then as a government contractor.

Thomas Sant’Ana is an IT Specialist for Engesoftware Consultoria de
Sistemas in Brazil. He has several years of experience in Tivoli deployment
and application development. He holds a degree in Bachelor of Computer
Science from Universidade de Brasilia. His areas of expertise include system
security, database administration, and object-oriented application design and
implementation.

Thanks to the following people for their invaluable contributions to this project:

Craig Sullivan
Mike Krajicek
Patrick McDowell
Stefan McKenzie
Tivoli Systems

Jochen Markus Weiss
IBM Germany

Comments Welcome

Congratulations or criticism, your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:
xii Securing Applications with Tivoli Security Management

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 137
to the fax number shown on the form.

 • Use the online evaluation form found at: http://www.redbooks.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xiii

xiv Securing Applications with Tivoli Security Management

Chapter 1. Introduction

In order to provide maximum flexibility and improvements in administrator
reliability and efficiency, Tivoli Security Management (TSM) abstracts away
from the security model of individual platforms. We still manage the
platform-specific security data, but we achieve cross-platform security
modeling through role-based security. The benefits of this abstraction are
significant, but it makes the implementation of the security model more
difficult. An ideal TSM implementation design would include the identification
of all job tasks in an organization as well as the IT resource access
requirements to fulfill each of those tasks. This data would form the basis of
TSM roles and resource data. All personnel would also be defined in TSM
groups. In a large organization, this can take some time.

Through this redbook and its accompanying CD, we will introduce you to a
faster method of improving the security of applications running under various
operating system platforms. Most major applications have some form of
security model within them, usually, to manage the authentication of users
trying to access data. However, the data files and binaries of most
applications are still subject to damage, whether intentional or not. This is
especially true in the UNIX environment where, by default, there is nothing to
prevent a root user from really messing up an application.

Tivoli Security Management (TSM) was the first security maintenance product
designed from the ground up to manage access control in a consistent
fashion in a distributed environment using a role-based security model. With
role-based security, we determine what resources people have access to
based upon the job tasks - or roles - that they need to perform. In TSM, these
resources may be of many different types such as files, printers, programs or
TCP services. They may also reside on different platform types such as
Windows NT, various flavors of UNIX and on OS/390 systems protected by
the OS/390 Security Server Resource Access Control Facility (RACF). Once
the resources that are required to complete a task have been identified, they
can all be listed in a role and the relevant access rights given. Tivoli security
groups can then be formed based around a job title, and those groups can
then be given all the roles they need in that position.

Once configured, the administrator does not have to worry about granting
access to a user to resources of many different types on many different
systems. Instead, the administrator adds the user to the right Tivoli security
group, and all the access rights are granted (at the next security profile
distribution) through the role relationships. The time savings for
© Copyright IBM Corp. 1999 1

administration can be huge once TSM is in place. The problem remains that
getting TSM configured and implemented is still complex.

In a small environment, the Tivoli GUI or a few Tivoli w commands are
adequate for the creation of TSM security records. But, when the
implementation becomes much larger, or the applications we need to secure
are more complex, not only is a great deal more planning and research
required, but the use of the GUI and even the command line can become
repetitive and time-consuming.

In this redbook, we introduce work being conducted within the TSM product
division to produce so-called Lockdown Modules. A lockdown module is a
way of defining a security profile that can be easily altered, expanded, and,
most significantly, reused in another location. With this book, we present
some examples of how lockdown modules can be ready-made for products
such as Windows NT, the Oracle RDBMS, Lotus Domino and SAP/R3. A
lockdown module will include the definition of roles that provide the required
level of access to perform different tasks with the subject application or
operating system. Some of ours also include groups as examples of usage,
but the implementation of a predefined module will involve the placement of
the roles into your own group structure. The ideal TSM implementation places
users in as few groups as possible, maybe even just one or two.

Figure 1. Security Groups and Roles Example

The example in Figure 1 shows how groups can represent job titles in an
organization, and the tasks people perform define access rights through
roles. The headquarters server administrator has access to resources similar
to the New York server administrator with the addition of managing the
Netscape server. The IT manager has roles that provide access to additional

HQ_Server_AdminHQ_IT_Manager NY_Server_Admin

Netscape_Admin

AIX_421_Admin

Corp_Employee

Payroll_DB_View

HR_DB_Update

HR_DB_View

GROUPS

ROLES
2 Securing Applications with Tivoli Security Management

information (such as the payroll database) as well as greater-than typical
access for the human resources database.

Besides the implementation of ready-made lockdown modules made
available from Tivoli, the most important activity will be the use of the module
creation process to simplify the deployment of TSM in areas specific to your
environment. We present a number of examples of lockdown modules as well
as details on how those modules were designed. Our discussion extends to
the tools we used to review how an application worked to ensure we did not
prevent them from operating once they were protected.

In this book, we concentrate on the management of access control and the
use of lockdown modules. You should consult the product manuals and other
references regarding TSM and role-based security, building a comprehensive
security policy, and understanding good TSM implementation design. This
topic is addressed further in the redbook Tivoli Security Management Design
Guide, SG24-5101.

In any security project, some balance has to be obtained between security
implementation and system productivty. There is little point in spending many
hours and a great deal of money to protect a resource that would only result
in minor inconvenience if compromised. Figure 2 illustrates this trade-off
between the decreasing risk associated with higher levels of security versus
the costs involved in achieving that level of security.

Locking down applications with Tivoli Security Management should be one
part of a coordinated Security Policy. While TSM greatly enhances access
control management and consistency, it is of little use if other aspects such
as physical access to servers or password controls are not considered.

Note
Introduction 3

Figure 2. Relationship Between Security Level and Costs

As the base of lockdown modules grows, implementing extra protection for
common applications will become much simpler and, therefore, cheaper to
perform. Different organizations will have different views on where the
optimum point on the security versus costs graph will be. Your own lockdown
module design process should take this cost factor into account and aim to
strike a balance in keeping with your security policy.

Part of the difficulty in defining TSM security profiles (and this is the same for
any security product) is working out what resources the application uses, how
it uses them, and how best to protect them. When we discuss the lockdown
module examples we have tried in Chapter 4, “Lockdown Descriptions” on
page 59, we try to describe how we decided on the resources to protect. In
Chapter 3, “Identifying Access Requirements” on page 31, we talk about the
tools we used and discuss considerations for working with each resource type
such as Windows NT directories and UNIX TCP services.

The utilities provided to build lockdown modules are interesting and useful in
their own right. In Chapter 2, “Introducing the Lockdown Module” on page 7,
we talk about the life cycle of the security data and use the picture shown in
Figure 3 on page 5.

Costs/
Risk

Costs

Risk
Security

Level
4 Securing Applications with Tivoli Security Management

Figure 3. Lockdown Module Life Cycle

The security data for a lockdown module can be defined in a flat-text file
called a Lockdown Definition File (LDF). We provide an LDF Import Utility
(wldfimp) which takes that file and converts it into a script that, when run,
places the security data into a profile.

We have a second tool, wldfexp, that has the opposite effect. It takes a
security profile and exports the data into our LDF format. This can make
security data much easier to read and manipulate and can provide other
benefits beyond the sharing of the data such as a backup and restore path, a
migration option between different environments, and so on.

1.1 Obtaining Lockdown Updates

The concept of Lockdown modules is very new. The intention, at the time of
writing, is that there will be more modules made available as well as updates
to the ones provided with this book.

Since this is such a new area, the location for updates may change, but you
should start by checking the following web sites:

IBM internal network:

http://w3.itso.ibm.com

Follow the Additional Materials link into the ITSO Materials Repository, then
select Redpiece and Tivoli Security Lockdown Modules.

Export

C
om

pil
e Apply

LockDown
Script

Security
Profile

LDF
File

Internet

Populate

Distribute

Endpoint
Introduction 5

Internet:

http://www.redbooks.ibm.com

Follow the Additional Materials link and find the SG245140 directory.

These locations are likely to change. Details will be posted in the above
locations if this is the case.
6 Securing Applications with Tivoli Security Management

Chapter 2. Introducing the Lockdown Module

One of the most important aspects of system security is the control of who
has access to what. Most operating systems have some form of access
control mechanism. The capability of these mechanisms varies from one
system to another. Applications often add their own access mechanisms as
well as using those of the underlying operating system. For example, a
database application may manage its own user accounts, but the access to
files such as audit logs may be left to the access control facilities of the
operating system.

Even when good access control mechanisms exist, the default configuration
of a system may not be secure enough for certain environments. Different
access restrictions may be needed in some cases or the default access
restrictions may be too weak (allowing administrators to have unrestricted
access to all resources).

Another possible concern is that operating systems and applications tend to
have all-powerful user accounts that are used for executing things on behalf
of the system. Users may be forced to use these accounts for maintenance
purposes, and this can lead to accidental as well as deliberate security
violations.

Tivoli Security Management (TSM) addresses these issues. It allows the
consistent control and implementation of user access mechanisms and the
deployment of system-wide security policies. Since it is such a sophisticated
product, deploying TSM effectively can be tricky, and it requires a good
knowledge of security, the operating system(s) and specific applications to be
protected.

Lockdown Modules are one way of making a TSM deployment faster and
easier. A Lockdown Module is a set of security information used to create a
profile for securing a certain operating system or application. We explore the
concept of the Lockdown Modules in this chapter, look at how to build your
own in Chapter 3, “Identifying Access Requirements” on page 31, and
describe some we generated in Chapter 4, “Lockdown Descriptions” on page
59.

2.1 What a Lockdown Module Does

The Lockdown Module goal is to make TSM deployment simpler and allow
the exchange of knowledge and experience. A module itself consists of a
number of parts. Each part represents security data in a different way.
© Copyright IBM Corp. 1999 7

Understanding these parts and the mechanism that converts one to another
should help you to understand the concept itself.

As in many aspects of security, the lockdown modules will be improved over
time. The different forms used in a module make improving and modifying
them easier.

The remainder of section 2.1 explains what we mean by locking down, what a
Lockdown Module is, why you might want to develop and design modules,
and how they come to be.

2.1.1 Locking Down Applications and Operating Systems
Locking down an application or operating system consists of restricting the
access permissions to resources so that the system is still usable but is less
susceptible to damage or unwanted access (be it accidental or deliberate).

The first goal is to avoid unwanted access to certain resources. Only people
with the correct authorization should be able to access a certain resource,
and the extent of this access must be controlled. A well implemented access
control can avoid unwanted access or damage to information and resources.

In many environments, there are several users accessing resources in a
specific system. Many of these users have to use user accounts that can
potentially disrupt system operation. Also, the accounts are frequently shared
by people that perform different activities in the system, some of whom may
not understand all the aspects involved in managing the system. In these
conditions, accidents can happen and easily cause unacceptable down times.

When locking down a system or application (or a subsystem), these goals
should be considered:

 • Ensure that users and the programs can operate properly and perform
their activities.

The lockdown modules provided as examples with this publication are
intended to be adapted to suit your own environment. Considerable testing
should be employed to ensure they operate as expected. All these
examples consider the role of the UNIX root user or the NT Administrator.
One aim of implementing TSM might be to restrict the capabilities of the
root user. Where this hasn’t already been done in a module, great care
should be taken in testing modifications to root access.

Note
8 Securing Applications with Tivoli Security Management

 • Ensure that the activities of a user do not affect other users (unless the
required effect of the activity does so).

 • Isolate subsystems so that administrators from one subsystem can
perform their activities but not access other subsystems.

 • Protect the system or subsystem from malicious external threats.

Attaining all these goals takes careful planning and time and effort. How
much to restrict a system versus the cost of implementing the restriction is a
business decision (see Figure 2 on page 4), but the effort can be rewarded
with benefits for the whole environment.

2.1.2 What a Lockdown Module Is
A Lockdown Module is a system-specific or application-specific Tivoli
Security Profile that can be modified to match your environment, applied on
an endpoint and then tested to lockdown the specific system or application.

Building Lockdown Modules breaks down the security management task into
each application or operating system that requires protection. Each module
defines Tivoli security roles that can be given to groups to enable them to
perform tasks that would otherwise be restricted. Tivoli security groups and
roles are one area of the module that is likely to require some customization
to fit into your security model.

2.1.3 Why Use a Lockdown Module?
The chief advantage of Lockdown Modules is that they are easy to use. Being
modular makes them easy to distribute, edit and manipulate. Well designed
modules can be applied together so that different aspects of the system are
addressed by each module, and the overall result is a fully-locked target.

Since modules are designed for specific components, they can easily be
handled independently. So, a module can be designed, tested, and altered on
its own, and then applied to its final environment.

Another interesting aspect of Lockdown Modules is that they can be
represented in a number of different formats. By exporting an existing
security profile into a Lockdown Definition File (LDF), it is possible to study
and modify a module isolated from the TMR environment. This also allows
the modules to be sent to other people and organizations.

Exchanging modules is a good way of checking and validating your profiles.
As in many other areas, knowledge of the application or system is the key for
effective use of the security tools. As Lockdown Modules are tested, it is
Introducing the Lockdown Module 9

recommended that updates and improvements be shared since this results in
better overall modules. See 1.1, “Obtaining Lockdown Updates” on page 5 for
information about updates to those modules already provided as well as any
new ones that may become available.

2.1.4 Life Cycle of a Lockdown Module
Much like applications, Lockdown Modules have a life cycle of their own.
Figure 4 shows this cycle.

Figure 4. Lockdown Module Life Cycle

Lockdown Module security data can exist in three forms:

 • LDF File
 • Lockdown Script
 • Security Profile

There are ways of transforming the Lockdown from one format to another.
The Security Profile is the final form. LDF files and Lockdown Scripts are the
means to get the profile created. LDF files can be developed by hand or
exported from an existing Tivoli security profile. (See 2.2.6, “Security Profile
Export Tool” on page 26.)

Note that, at different stages in the life cycle, we can modify the security data
in different ways. We can use the LDF file format as an easy way to add large
numbers of resources or role definitions, and use the security profile in TSM
for modifying group memberships and making more incremental changes.
There may even be occasions when it is useful to manipulate the scripts that

Export

C
om

pil
e Apply

LockDown
Script

Security
Profile

LDF
File

Internet

Populate

Distribute

Endpoint
10 Securing Applications with Tivoli Security Management

will generate security profiles so that we can perform more sophisticated
functions.

Lockdown modules can come from various sources. They will mostly be
created out of necessity within your own environment. Lockdown modules
provide a mechanism of exchange between departments or between
development, test and production environments. With time, it will be possible
to obtain them elsewhere. See 1.1, “Obtaining Lockdown Updates” on page 5
for information about updates to those modules already provided as well as
any new ones that may become available. Lockdown modules provide a
method for backing up and restoring security definitions. This method may be
preferable to using other options such as the Tivoli Migration tools since
lockdown modules are specific to security data.

2.1.4.1 Lockdown Definition File
The Lockdown Definition File (LDF) is in human-readable and editable file
format. It can be used to exchange Lockdown Modules and edit them. It can
be edited from scratch or obtained by exporting an existing security profile
using Tivoli migration tools or the export utility we provide (see 2.2.6,
“Security Profile Export Tool” on page 26). The LDF has a simple format and
is easy to build. Any editor that saves the file as plain text can be used to edit
the LDF file.

Another way of editing a Lockdown module is by changing the security profile.
This can be done either through the Desktop or by using the CLI commands.
The profile can then be exported to LDF format if required. Updates are very
likely to happen during the life of a Lockdown Module.

2.1.4.2 LDF Import Utility and Lockdown Script
The LDF import utility we provide (see 2.2.5, “LDF Import Utility” on page 23)
is used to transform an LDF into a shell script that can be run on UNIX or in
the Tivoli Windows NT bash environment to build a security profile. It does a
series of syntax checks and generates the script that will create the
Lockdown Module’s security profile. The script must be executed in the TMR

Lockdown Modules need thorough testing and validation. As good as any
module may be, it will almost certainly need modification to ensure it is
adequate and safe in your environment. Always experiment with the
modules in a stand-alone test environment. For UNIX targets, we
recommend the use of TACF Warning mode during testing.

Important
Introducing the Lockdown Module 11

Server or in a managed node that contains the TSM commands. Running the
script itself will not affect the security of your systems since it only creates the
profile. However, the profile should be thoroughly checked before distributing
it. As we have stated before, on UNIX (with TACF) we recommend the use of
Warning mode before fully implementing a profile.

As mentioned previously, there is an export tool supplied with the import
utility. It converts an existing security profile into an LDF file. This file can then
be edited and reapplied, or, it can be exchanged with other people. It is hoped
that, through constant exchange and updates, Lockdown Modules can be
improved and new ones introduced.

2.2 Building an LDF for an Application

A Lockdown module is essentially the security profile. Thus, it is a set of
security records that deal with Tivoli security Resources, Roles and Groups.
We assume, in this publication, that the reader is familiar with TSM Security
Profiles.

In this section, we describe in more detail the Lockdown Definition File (LDF).
The resulting security profile itself is no different than the normal security
profiles. The LDF, however, is a little different from the normal formats
(available through the Desktop or the wlssec command).

The LDF format will be described and demonstrated using a hypothetical
application. The Lockdown Module concept will make more sense when
shown in a specific context. Real applications can be very complex to secure
and would be too lengthy for an example such as this. Once you are familiar
with the LDF concepts, you can review the samples provided with this
publication (see Chapter 4, “Lockdown Descriptions” on page 59). For a
formal definition of the file format, see Appendix B, “Lockdown Definition File
Format” on page 105.

The script that is built from the LDF will delete the named profile if it
already exists in the named profile manager. Always check to ensure that
the names provided in the LDF and subsequent script will not result in the
deletion of a required profile. This behavior is determined by the ldfc.pre
file (also known as the preface).

Note
12 Securing Applications with Tivoli Security Management

2.2.1 A Hypothetical Application
This section will describe how you decide to secure an application by using a
hypothetical example.

HYPAPP is a UNIX application that works like many Client/Server
applications. Clients connect to the server and make requests of it to perform
an activity. There is an application-specific user authentication process, but
since we do not manage such authentication through TSM, this is not relevant
to the LDF. Here is a list of the main characteristics of our HYPAPP
application:

 • It can be installed in any directory or mount point. This initial directory
becomes the application’s home directory. Inside the home directory
(<home dir>) it creates these directories:

<home dir>/bin Contains all the binaries for the application.

<home dir>/bin/cfg Contains a series of configuration files used by the
client programs.

<home dir>/data Contains the data files used by the server, the
contents of this directory should only be updated by
the server process.

<home dir>/dump Contains the dump of the data files. These are used
for backup and restore operations.

 • All activities in the database directory and the dump directory are carried
out by a daemon named hypappd. This process also handles user requests.
If it is killed with transactions open, the consistency of the database may
be compromised. To start and stop the daemon, there is a special program
call hypctrl. This program has internal authentication and uses a service
TCP port to communicate with the daemon. The daemon runs under a
specific account using the user name hypapp.

 • Several maintenance and operational activities are required for the
application. These activities can be identified as the following roles:

Operation This involves starting and stopping the server. Other
activities are conducted internally through the
application’s binaries.

Administration Besides regular operator tasks, there are some
configuration and maintenance tasks that may be
performed. These include maintaining dump files,
configuring the server, and updating binaries.

Backup A snapshot of transactions and the database are sent to
the dump directory and, from there, must be transferred to
another device (normally tape).
Introducing the Lockdown Module 13

Normal Use Most activity is conducted by a user that accesses the
client part of the application and makes requests of the
server for specific activities.

 • Since there is an internal authentication built-in to the server operation,
any user can access the client binaries and attempt to connect to the
server.

The knowledge of how an application works is crucial for the creation of any
Lockdown Module. In the examples that follow, this sample application will be
used to provide matter and context to be added to the Lockdown. It will also
be used in the LDF examples.

2.2.2 Determining the Scope of the Lockdown Module
In order to design a Lockdown Module, it is necessary to set the goals for it.
Different environments will demand very different goals. In this example, the
Lockdown Module was designed to do the following:

 • The UNIX root user should not be able to interfere in the operation of the
applications.

 • Accessing the daemon process and starting it must be restricted.

 • Remote shutdown of the application through the service port must be
disabled.

 • Backup operation must occur without problem, but only authorized
operators can be allowed to read from the <home dir>/dump directory.

 • The <home dir>/data directory must be protected from all users; only the
application’s daemon should access it. This includes preventing the
operators and administrators from writing to the files.

2.2.3 Hypothetical Application Lockdown Definition File
This section contains the LDF used to generate the Lockdown Module for out
hypothetical application, HYPAPP. The whole file is shown split into
fragments that are explained individually. Comments on what is contained in
each fragment is provided after each one.

This first fragment contains the Lockdown name and variable declarations
(see Figure 5).
14 Securing Applications with Tivoli Security Management

Figure 5. HYPAPP LDF - Name and Variable Section

The name is the word after the keyword LOCKDOWN (separated by a space). It is
used as the name for the security profile, profile manager, and the output
script. Tivoli recommends a naming convention for Tivoli objects that helps
identify the object type and function. For example, a security profile will have
a name that describes what it secures and may have a suffix of _SP to
identify it as a security profile. The use of the LOCKDOWN variable in names of
security profiles and profile managers is determined by the Import Utility
preface file (ldfc.pre) and this may need some modification to build scripts
that are consistent with your naming convention.

The other element present in Figure 5 is the variable declaration block,
identified by the VAR heading. Everything from this heading to the next
reserved heading name will be interpreted as a variable declaration. In this
case, it is being used to declare the directory names to be used in a later
section of the LDF (the resource section). The main directory is
HYPAPPHOME representing the <home dir> mentioned previously. There are
several other directories that are subdirectories of this one. This is reflected
by the ${HYPAPPHOME} in the value of the variable. This indicates that the import

This is a LockDown Module for the HYPAPP application
#
This section informs the import utility of the LockDown Name
LOCKDOWN HypApp_LockDown

#
Variable declarations
#
VAR
 HYPAPPHOME=/usr/local/hypapp;
 HYPAPPBIN=${HYPAPPHOME}/bin;
 HYPAPPDB=${HYPAPPHOME}/data;
 HYPAPPDUMP=${HYPAPPHOME}/dump;
 HYPAPPCONFIG=${HYPAPPBIN}/cfg;
 HYPAPPD=${HYPAPPBIN}/hypappd;

When the resulting script is run, it will attempt to delete a profile manager
and profile of the name specified by LOCKDOWN if they already exist. If the
same name is used in a profile of a different name, it will not be affected.

Note
Introducing the Lockdown Module 15

utility must expand the HYPAPPHOME variable in these names. This happens
upon declaration of a variable or resource.

Using variables eases maintenance and allows more flexible lockdown
modules. Values for variables can be set when the import utility is invoked.

Figure 6 shows how Tivoli security groups are declared in the LDF.

Figure 6. HYPAPP LDF - Group Section

Groups declared here can be referred to in the LDF roles section. The group
names are followed by a quoted string. This string is an optional description
or comment for that group. This kind of construction is also used in other
declarations.

The name or comma-separated names optionally placed in the parentheses
immediately following the equal sign are names of the users that belong to
the group. After the names of group members, we can specify TSM
properties. In this example, they are setting the level of auditing that is
needed for these groups. For the Backup and Server Operator groups, all
access and logins are logged. For the daemon, all logins are logged but not
resource access. And, for the administrators group, all logins and resource
denials are logged. See B.2.4, “LDF GROUPS Section” on page 114 for more
information.

Figure 7 shows the roles defined in the HYPAPP LDF.

#
Group Declaration section
#
GROUPS
HAG_Admin "HYPAPP Administators" = (haadmin) audit(LA,RF);
HAG_Backup "HYPAPP Backup Operators" = (haoper) audit(LA,RA);
HAG_Operator "HYPAPP Server Operators" = (haoper) audit(LA,RA);
HAG_Deamon "Deamon Group" = (hypapp) audit(LA,RN);

The groups we define in the sample LDFs in this publication are to provide
examples of suggested use of roles. In your environment you will probably
not use these groups. Instead, you will add the roles that are created to
your own security group structure.

Note
16 Securing Applications with Tivoli Security Management

Figure 7. HYPAPP LDF - Role Section

These roles will later be used in the LDF access declaration section. The
parentheses after the equal sign can optionally contain the names of the
groups that have this role (they must have previously been declared in the
group section). To work with groups already existing in other profiles, we must
use other means such as the pass attribute or the PROLOG and EPILOG
sections - See Appendix B, “Lockdown Definition File Format” on page 105
for more information). Following the group associations, we can specify other
attributes. One of the roles has a parent role. This is indicated by the
parameter parent and the name in parentheses is that of the parent role. See
B.2.5, “LDF ROLES Section” on page 114 for more information.

After having declared roles and groups, the LDF contains the resource
declaration (shown in Figure 8).

Figure 8. HYPAPP LDF - Resource Declaration Section

#
Role Declaration Section
#
ROLES
 HAR_Backup "Backup Role" = (HAG_Backup);
 HAR_Admin "Adminatrator Role" = (HAG_Admin) parent(HAR_Operator);
 HAR_Operator "Server Operator Role" = (HAG_Operator) ;
 HAR_Deamon "Role of Deamon, for the deamon only" = (HAG_Deamon);

#
Resource Declaration Section
#

RESOURCES
 ${HYPAPPHOME}/* "HYPAPP base dir" = [R];
 ${HYPAPPBIN}/* "HYPAPP Binaries" = [RX];
 ${HYPAPPDB}/* "HYPAPP Data Files" = [N] audit(RF);
 ${HYPAPPDUMP}/* "HYPAPP Backup" = [N];
 ${HYPAPPCONFIG}/* "HYPAPP Config Files" = [R];
 FILE:${HYPAPPBIN}/hypctrl "HYPAPP Server Control Program" = [N];
 FILE:${HYPAPPD} "HYPAPP Deamon" = [N];
 PROGRAM:${HYPAPPD} "HYPAPP Deamon" = [N];
 PROCESS:${HYPAPPD} "HYPAPP Deamon Process" = [N];
 TCP:hpctrlport "HYPAPP Control TCP port" = [N] tcpaccess(+localhost);
Introducing the Lockdown Module 17

This declaration sets the default access to the resources (later modified for
roles in the ACCESS section). The access is defined by the standard TSM
letters enclosed in square brackets ([]).

The letters TSM uses to denote access can be found in the product
documentation in the TME 10 Security Management User’s Guide appendix
on Resource Types.

For this specific case, this declaration defines:

 • Read access to the home directory of the application.
 • Read and execute access to the binaries.
 • No access to the data files, and there is also auditing on resource access

failure for these files.
 • No access to the backup files.
 • Read access to configuration files.
 • The files hypappd and hypctrl (daemon program and server control

program respectively), are not accessible.
 • The daemon process is also protected (the PROCESS line).
 • The control port used to communicate to the daemon is also protected, no

access is granted except from the localhost (indicated by
tcpaccess(+localhost)).

All these declarations set the basic permission restrictions that are the goal of
the lockdown module. All that needs to be done now is to grant specific
access to resources for each role (see Figure 9).
18 Securing Applications with Tivoli Security Management

Figure 9. HYPAPP LDF - Access Declaration Section

Each little block starting with ROLE describes the specific access a certain role
has to resources. The resources and roles were all declared previously.
Again, the access permission is indicated by the letters enclosed by square
brackets, however, there is a special construction shown in this example:

${HYPAPPDB}/* ${HYPAPPD}[F]

This statement indicates that the permission is a conditional access. In the
example above, it means that full control [F] to the database directory
(${HYPAPPDB}/*) is granted for the role using the daemon program
(${HYPAPPD}). This type of access is extremely useful when locking down UNIX
systems and applications.

The grants shown in this segment will result in the following:

 • HAR_Backup can read from the dump directory (the default is no access).

#
Access Declaration Section
#

ACCESS

ROLE HAR_Backup =
 ${HYPAPPDUMP}/* [R];

ROLE HAR_Operator =
 ${HYPAPPBIN}/hypctrl [RX],
 FILE:${HYPAPPD} ${HYPAPPBIN}/hypctrl[X];

ROLE HAR_Deamon =
 PROGRAM:${HYPAPPD} [X],
 ${HYPAPPDB}/* ${HYPAPPD}[F],
 ${HYPAPPDUMP}/* ${HYPAPPD}[F],
 ${HYPAPPHOME}/* ${HYPAPPD}[F];

ROLE HAR_Admin =
 ${HYPAPPDB}/* [RX],
 ${HYPAPPBIN}/* [F],
 ${HYPAPPHOME}/* [F],
 ${HYPAPPCONFIG}/* [F];
Introducing the Lockdown Module 19

 • HAR_Operator can start and stop the server. This is done using the
hypctrl program and the hypappd program, both otherwise not accessible.

 • HAR_Deamon is used to grant conditional access to the program and,
while using it, have full control over all the other directories. This role is
only used to enable the daemon to do its job, it should not be granted to
real users.

 • HAR_Admin can read and execute in the database directory and has full
control over binaries, configuration files, and the home directory.

This completes the LDF file. The resulting Security Profile implements the
goals desired for this Lockdown Module.

2.2.4 Complete Lockdown Definition File Structure
The example in the previous section shows how to conceive and implement a
Lockdown module. The notation showed examples of how to specify TSM
entities in an LDF. The example did include almost all the possible elements
of an LDF. A typical file will contain all the sections used in the HYPAPP LDF
example.

The LDF import utility is composed of seven sections:

1. Variable Declaration (VAR)
2. Prolog (PROLOG)
3. Group Declaration (GROUPS)
4. Role Declaration (ROLES)
5. Resource Declaration (RESOURCES)
6. Access Declaration (ACCESS)
7. Epilog (EPILOG)

Each of these sections is optional but the order is significant and cannot be
changed. Sections 3 through 6 are used to create the records in the security
profile. References to groups, roles, and resources within the LDF must be
matched by a previous declaration. The use of existing TSM resources,
groups, and so on is possible by adding to the import script through the use of
the PROLOG and EPILOG sections or by using the pass parameter to pass
switches to the script commands.

The resulting import script will also include the ldfc.pre preface file.

Note
20 Securing Applications with Tivoli Security Management

2.2.4.1 Variable Declaration
This section is used to declare variables that will be expanded when found in
other declarations. This expansion occurs at conversion time and at the
moment in which the variable is found.

Variables can be used to enable LDF files to be able to handle instance
specific data such as the mount point, instance name, host names, and so
on. The value can be defined in the LDF file or in the arguments that are
passed to the import utility. If a variable used in a declaration is not found in
the variable declaration block, or is not supplied to the import utility, the
import utility will not accept the file.

It is possible to use the korn shell (ksh) variable notation for variables that
should be expanded during the script’s execution, that is, after the LDF has
been converted to a script and when that script is executed to build the
security profile. This also allows variables from the ksh environment to be
handled; the import utility does not modify them. The variables must exist or
be declared in the PROLOG section. The variable values must be valid for
the record type. Note that the variables are not stored in the security profile
and so are not used by TSM when the profile is distributed - the actual values
of the variables current at the time the import script was run will have been
stored in the profile.

For more information, see B.2.2, “LDF VAR section” on page 112.

2.2.4.2 Prolog
Prolog is used to include scripts that must be executed before the Security
Profile is created. This may be used for maintenance or to create information
that is to be used by the LDF.

We can use two types of variables in the LDF. Those of the form
${VARIABLE} must be defined in the LDF VAR section and are evaluated
by the import utility as it builds the import script. Those of the form
$VARIABLE are considered ksh variables by the import utility and are
placed into the import script as ksh variables. When the import script is run
to build the profile, the shell evaluates the variables. In this way, we can
specify variables in the LDF to improve readability and make alterations
easier, and we can use shell variables (for example in prolog scripts) to add
functionality to the LDF based on data that should be gathered at the time
the import script is run.

Note
Introducing the Lockdown Module 21

The script is included in the resulting script by the import utility and should be
a valid ksh script. If the LDF variables exist in the prolog script, they are
expanded. The import utility does not check for syntax or semantics in the
included prolog script. There is no need in the prolog script to create the
actual profile that will hold the lockdown module since this is created prior to
the prolog section. It is possible to modify the lockdown profile from the
prolog, but this may cause problems in the execution of the rest of the script.

For more information, see Appendix B.2.3, “LDF PROLOG Section” on page
113.

2.2.4.3 Groups Declaration
The Groups Declaration section specifies which groups will be created in the
Security Profile and, optionally, membership and other parameters for the
group. The groups are usually assigned to roles. There is no checking for the
existence of users named in the groups.

It is possible to use references to users stored in Tivoli user profiles from
Tivoli User Administration; again, there is no checking on the correctness of
this user data. If the user does not exist, the script will fail. User profile
references must always be quoted.

See B.2.4, “LDF GROUPS Section” on page 114.

2.2.4.4 Roles Declaration
TSM role records are created based on the declarations contained in this
section. It is also possible to assign groups to the roles using this section.
The specific access rights for a role are declared in the Access declaration
section. See 2.2.4.6, “Access Declaration” on page 23.

The declarations in this section are used only to define the role and role
properties, not the access permissions. Parent roles can be declared, but, as
in other sections, all parent roles and groups must be declared in the same
LDF file.

For more information, see B.2.5, “LDF ROLES Section” on page 114.

2.2.4.5 Resource Declaration
The TSM resource records are created based on the information declared in
this section. This section also declares the resources that can be placed in
role-specific access declarations.

Default access is specified in this section. Other TSM resource properties can
also be set in this section.
22 Securing Applications with Tivoli Security Management

For more information, see B.2.6, “LDF RESOURCES Section” on page 115.

2.2.4.6 Access Declaration
In the previous sections, roles, groups, and resources have been declared.
The last element that needs to be dealt with is the access that the roles will
have to resources. This is the purpose of this section. We separated this from
the declaration of the roles themselves to make the LDF file more readable
and more simply constructed.

Each statement can refer to a resource or a role. When it refers to a resource,
it is followed by a list of all roles and the access those roles have to the
resource. The other form refers to a role and then lists the resources that the
named role has access to. Both forms can be mixed and are equivalent.
Conditional access can also be granted.

All elements being referred to in this section must have been previously
declared, otherwise, the import utility will not accept the LDF file.

For more information, see Appendix B.2.7, “LDF ACCESS Section” on page
115.

2.2.4.7 Epilog
There are some things you may wish to do that are not part of the current LDF
import utility such as things relating to the fact that it requires every resource,
role and group to be declared in the LDF file. Another problem is that it does
not handle Tivoli User Administration (TUA) records. So, it may be required to
do some changes to the profile after it has been created.

The Epilog section is designed for this purpose. Its content and behavior is
the same as the Prolog section, but the includes are added to the script after
the Lockdown profile script has been created. This section is used for
updates and changes to the profile, such as adding resources from other
Security Profiles, integration with TUA, adding subscribers to the profile
manager, and so on.

The same restrictions and considerations for the prolog section apply to this
section. For more information, see Appendix B.2.3, “LDF PROLOG Section”
on page 113.

2.2.5 LDF Import Utility
In order to import an LDF file into a security profile it must be converted into a
script. The result of this conversion is the Lockdown Script. This script will
Introducing the Lockdown Module 23

create the lockdown module’s security profile. Conversion is the responsibility
of the LDF Import Utility and it is a simple process.

2.2.5.1 LDF Import Utility Components
There are two components for the import utility. The import script converter
itself, named wldfimp and the preface file named ldfc.pre. The converter is an
interpreter-specific binary. At the time of this writing, versions were available
for Solaris, AIX and Windows NT, with others to follow.

The preface is a ksh template used to generate the necessary environment
for the execution of the script. It is included at the beginning of the script and
ensures that the profile manager and security profile are validly specified in
the LDF. Other preface files can be used, assuming they ensure the
necessary environment exists for the remainder of the script (see “Script
Preface” on page 27).

2.2.5.2 Using the LDF Import Utility
The converter can be invoked in the following manner:

wldfimp lockdownldffile.ldf

The converter will read the file and check it for syntax and correct use of
options. Error messages are shown in this format:

W(11):Attempt to redefine variable, ignoring redefinition
E(48):Endpoint NT does not support resource type PROGRAM.
E(49):Endpoint NT does not support resource type PROCESS.

The E stands for error and the W for warning. The number in parenthesis is the
line number that is incorrect (unless the error is concerning a role parent
declaration, since these are checked at the end of the file).

An LDF is designed for one type of endpoint, and attempting to build scripts
for another interpreter type will cause errors. To specify which endpoint the
converter should assume for the LDF file, use the -nt or -ux flag (the default is
that of the interpreter it is run from).

This will convert the LDF file into a script that will import the data into a
security profile. There are several options available; to see them use:

wldfimp -?

One useful option is upper case D (-D). It allows variables to be defined or
redefined. The definition comes prior to that of the Variable (VAR) block in the
LDF. If the variable is redefined, the first definition is kept, and a warning is
issued.
24 Securing Applications with Tivoli Security Management

wldfimp -D HYPAPPHOME=/hypapp hypapp.ldf

Variable expansion also happens in these definitions; so, it is possible to
declare them as follows:

wldfimp -D HYPAPPHOME=/usr/local/hypapp -D ‘HYPADPPBIN=${HYPAPPHOME}/bin2’ hypapp.ldf

The single quotes (‘) are used to avoid ksh from trying to replace the
variable. Both values must be declared because there is no prior declaration
of HYPAPPHOME; so, it must also be declared.

For information on the other options, see Appendix A.2, “The LDF Import
Utility” on page 103.

2.2.5.3 LDF Import Utility Tricks and Tips
One important detail about the converter and output script operation is that
variables are handled twice. The first time is during the conversion of the LDF
file. The variables in the LDF format are replaced by their value. The next one
occurs when scripts replace the variables.

The first one handles variables in the format ${VARIABLE}, and the second
handles those in $VARIABLE format. Thus, it is possible to handle some
variables in the LDF and leave others to be handled by the script.

Variables handled by the script are treated just like normal ksh variables.
They must be set either in the ksh environment or in the prolog scripts. This
can be particularly useful when some of the information needed must be
gathered when the script is executed - such as a list of managed nodes.

For instance, when locking down the TMR, it is possible to use variables such
as $BINDIR, $DBDIR, and so on. Remember, however, that these variables
are interpreted when the script is executed, and they are not stored in the
profile. You cannot specify variables that are interpreted once the profile
reaches a target when the profile is distributed.

One way of getting the values in the variable is by using look-aside files. The
files contain text that will be turned into the values and are read by the prolog.
So, it is possible to rerun the script when new values are set for these files
and then distribute the new profile. Careful building of prolog and look-aside
files can make the tool very adaptable and powerful.

When exporting a profile, it may be advisable to keep the replacement
variables in a file. This makes it easier to reuse those variables if the profile is
exported again - an exported profile will not generate any variables without
Introducing the Lockdown Module 25

them being defined in a file. The export tool we provide can replace strings
with variable definitions as described in the next section.

2.2.6 Security Profile Export Tool
Since the Desktop will often be the starting point for the definition of
Lockdown Modules, it is fundamental to have some means of exporting the
existing profiles.

The wldfexp does exactly that. It takes an existing profile and creates the LDF
that would recreate it. The resulting LDF can be edited and reconverted to
produce the import script that will create the profile again.

Some editing may be necessary to make the LDF exchangeable. The export
tool already handles variable replacement in much the same way the import
utility does. But, a truly portable LDF will need some editing after it has been
exported.

To export a profile, issue the following command:

wldfexp HypApp_LockDown

HypApp_LockDown is the name of the security profile, and the export tool will
generate a file of this name with an ldf extension (in the example above
HypApp_LockDown.ldf). There are several other options that affect the general
output of the export tool.

One very important option is -V. This will create a variable definition and
allows the export tool to replace text in the name of a resource to its matching
variable. For example:

wldfexp -V ‘${HYPAPPHOME}=/usr/local/hypapp’ HypApp_LockDown

Each time the /usr/local/hypapp text is found, it will be replaced by
${HYPAPPHOME}. This allows the export to recreate the original LDF or to make
the LDF easier to change. It is possible to place all the variable replacements
in a file and use the -v option to load it. For example:

wldfexp -v hypapp.ldv HypApp_LockDown

Other very important options are the -nt and -ux . These specify what type of
module is being created. The LDF import utility provided with this book has a
specific version for each type of endpoint. Choose the correct one when
exporting a profile.

For more details on the option for the export tool see Appendix A.1, “The LDF
Export Tool” on page 101.
26 Securing Applications with Tivoli Security Management

2.2.7 Lockdown Script
The result of the import utility conversion of an LDF is a Lockdown script. This
script is used to generate the security profile for the Lockdown Module. A
lockdown script is composed of four parts:

1. Preface
2. Prolog
3. Lockdown Definition
4. Epilog

2.2.7.1 Script Preface
The preface is a standard profile that is used to create the necessary
infrastructure for the creation of the Lockdown Module on the TMR. There is a
default preface script, but this can be changed.

After its execution the following conditions must be met:

 • The profile manager for the security profile must exist. It’s name is given
by the $PRFMGR variable.

 • The security profile must exist. The name is given by the content of the
$PROFILE variable.

 • The security profile must be empty.

So, if you wish to change the preface, you must ensure that these conditions
are met. It is also recommended that the security profile reside in its own
profile manager since some security records must be unique within the profile
manager. Variable references in the LDF format (${VARNAME}) are expanded in
the preface file prior to its inclusion in the Lockdown script.

2.2.7.2 Script Prolog
The prolog comes after the preface, hence, when the security profile already
exists but is empty. It can be used to set variables that must be used in
subsequent parts, or to ensure other preconditions to the rest of the script.

A prolog is optional in the LDF script file, and this section only exists if there
is a prolog section in the LDF. Subsequent changes to the prolog files are not
reflected in the Lockdown script since the script includes the whole prolog
file. Variables in the LDF format are also expanded in the prolog files. The
import utility does not check the includes for syntax.

The prolog should not change the $PROFILE variable or populate the
profile since this can make the remainder of the script invalid.

Note
Introducing the Lockdown Module 27

2.2.7.3 Script Lockdown Definition
In the Lockdown definition part of the Lockdown script, the security profile
records are generated. The import utility tries to analyze and validate all the
input for this part so that it works properly, however, errors may occur. Some
options in the LDF allow the writer of the LDF to pass arguments that may be
incorrect.

This part creates the groups first, then the resources, and finally the roles.
Failures can propagate from one part to the other, that is, a role may fail to be
created because a resource referred to by it does not exist. When this occurs,
it may be necessary to analyze the script and verify the command that failed.
If you do not receive errors, there is normally no reason for changing or
studying this part.

2.2.7.4 Script Epilog
The epilog part is very similar to the prolog part, but it is executed after the
profile records have been generated. It can be very useful for modifying the
profile in other ways to handle options that are not dealt with by the LDF
import utility.

Unlike the prolog, anything can be done in the epilog: changes to the profile
and to variables, changes to the profile manager, and so on. Variables in LDF
format are converted to their contents in the security profile and all variables
declared in the preface and prolog are available.

The main purpose of the epilog is to allow a lockdown to perform activities
that the import utility does not handle. The epilog is optional.

2.3 Additional Uses for Lockdown Modules

There are other ways in which lockdown modules can be used to build an
effective TSM implementation. Examples include the subdivision of root
capabilities in UNIX. Typically, we would build up the necessary data in a
security profile and use wldfexp to export that to an LDF file. In LDF format, it
can be modified and extended, and prolog and epilog scripts can be added.

Tivoli provides a number of tools related to backup, such as the wbkupdb
command and equivalent GUI operation and utilities such as those provided
in the migration toolkit. However, there may be other times when you need a
solution specific to TSM. These utilities allow you to create archives of
security configuration data. In a very secure environment, it may be very
important to know what the security configuration was at any particular
moment in time. If the platform security model does not keep track of this type
28 Securing Applications with Tivoli Security Management

of information, you can save it from profiles after each set of changes.
Obviously, there can be differences between what is in a Tivoli security profile
and what is implemented on a system, but this may be an option for
maintaining such records as part of a larger auditing plan.
Introducing the Lockdown Module 29

30 Securing Applications with Tivoli Security Management

Chapter 3. Identifying Access Requirements

In this chapter, we describe the process required to identify what application
resources we can protect through a lockdown module.

When we look at what to protect, we need to understand not only what files
and other resources we are dealing with, but who we are to protect them
from. For example, it would be good practice to prevent the superuser (such
as a root ID on UNIX or Administrator in Windows NT) from modifying log
files, especially log files that contain auditing information.

With the Tivoli Access Control Facility (TACF) on UNIX, we can treat the root
user in the same way as any other and thus secure the system or an
application against accidental or deliberate damage. For Windows NT, we
can define the access control on a file such that the Administrator cannot
access it; but, remember that the Administrator ID can always grant itself the
access again. In Windows NT, the aim should be to maintain the minimum
number of Administrators and to have other operator functions managed
through NT user rights and other access controls.

3.1 UNIX and Windows NT Security

There are major differences in the security management capability we have
between the UNIX platforms and Windows NT. Due to the fact that different
versions of UNIX implement different security models, Tivoli uses the Tivoli
Access Control Facility (TACF) to provide a consistent security interface for
all supported UNIX platforms. TACF maintains its own security database to
check access permissions and allows us to treat all users, including root, in
exactly the same way. TACF implements TSM’s role-based security model
through Tivoli security groups and roles and provides a consistent access
control list (ACL) capability. TACF also enables us to protect more resource
types than is typically possible in a UNIX security model and more than we
can protect under Windows NT security including TCP service access, for
example.

When securing resources in UNIX, it is important to remember that, even if
TACF grants the requested access, the request still has to pass through the
regular UNIX security check before completing. If, for example, native UNIX
permissions do not allow access to a file, and the TACF daemon (seosd)
does allow Read, TACF passes the request, but UNIX returns access denied.
TACF is always checked first, then the request is passed on to UNIX.
© Copyright IBM Corp. 1999 31

The TSM implementation for managing Windows NT does not use a second
layer like this. Instead, since Windows NT has a security model that maps
well to TSM’s role-based security model and already uses an ACL
architecture, TSM merely applies accesses and roles to its resources using
the native Windows NT security API.

This improves productivity and consistency for administrators in a number of
ways. All platform types (including those that can be added to the base
product such as OS/390 and OS/400) can be managed using the same model
and using the same graphical and command line interfaces. The ability to
define security relationships between people and resources and apply them
across many different systems can save plenty of time over native methods
such as applying security properties and permissions on each file and
directory. Natively, this would involve right clicking on each file or directory,
bringing up its properties, bringing up the security permissions, changing
permissions, and applying them for each system, even if the same resource
was being protected on many different systems. TSM automates the process
by applying the permissions by roles and groups in one profile distribution.

Note that in TSM versions up to and including 3.6, there is an exception in
handling Windows NT files beneath a directory. In 3.6, we do not support
applying a directory’s permissions to the files within it, unless those files are
individually defined in TSM resource records with a default permission (which
is not recommended). From 3.6.1 onward, not only can we define access
rights to all existing files in a directory with wildcards, but we can also apply
directory permissions to all subordinate directories.

3.2 Tools to Identify What to Protect

Finding out how an application is operating can be a complex task. This
section presents some suggestions for making that task a little easier.

3.2.1 Watching Windows NT Applications
Setting up resources and their access properties can be time consuming and
difficult if having to use trial and error. Either access to a resource is set to be
too restrictive, and productivity declines, or it is set too weak, and security
can be compromised. In order to help determine which resources we needed
to add in our designs and the accesses that were minimally required, several
tools were used. TSM’s TACF has a trace facility (see 3.2.2, “Watching UNIX
with the TACF Trace” on page 37) which causes the TACF daemon (seosd) to
output messages that report its operations and actions to a trace file or a
console. TACF also has the ability to run in a “Warning Mode” to show access
32 Securing Applications with Tivoli Security Management

rule decisions without having to actually apply them. Unfortunately, no such
tool exists within Windows NT; so, we looked for third party tools that were
available on the Internet. The following tools are described here:

Dumpacl Windows NT ACL information tool

Filemon Track file system activity

HandleEx Determine activities of processes

3.2.1.1 Dumpacl
This utility from http://www.somarsoft.com can be used if you need a thorough
examination of Windows NT resources; we encourage you to use this or a
similar tool to help understand the security configuration of resources. This
utility can scan entire drives for file, directory permissions, registry, printers
and share information. Dumpacl also dumps user, group, and replication
information.

Figure 10. Dumpacl - File and Directory Sample Output

As you can see from Figure 10, the output is in an easy-to-read listbox
format. The various reports all use a similar format but with different headings
and, of course, data. This program has several reports (or dumps) that
include Dump Permissions for File System, Registry, Printers, Shares and
Shared Directory. You can also “dump” Users, Groups, Policies, Rights and
Services. These latter options are particularly useful for working directly with

Before using these tools, be sure to check the licensing agreements. Most
shareware and freeware products require registration when used for
commercial purposes.

Note
Identifying Access Requirements 33

Windows NT in areas not covered by TSM 3.6 (which allows us to manage
the access to Files, Registry, Printers and Shares).

3.2.1.2 Filemon
We used v4.0 of this GUI program, available from
http://www.sysinternals.com. This layers itself above all the file systems in
order to watch all file system activity. It can see all Input/Output Request
Packets (IRPs) and FastIO requests that are directed at drives. The program
can run continuously capturing all the activity on the system, or it can be
started and stopped using a capture button.

Figure 11. Filemon - Sample Capture

As shown in Figure 11, the information is displayed in columns that have the
following meaning:

Index number
Time Time of request
Process The process that executed the request. Examples shown include

System, oserv.exe, csrss.exe, and explorer.exe.
Request The request itself. In Figure 11 we can see requests such as

IRP_MJ_Write, Close, Create, and FastIO_query
Path Is the path of the resource, the file and/or directory.
Result The result of the request such as Success, Access denied, File

not found, and Buffer Overflow.
Other Possible values include request, offset, and lengths, but we do not

need to discuss them here.

The use of this monitoring software was ideal for watching what resources
were being used and what the results of the access were (such as success or
34 Securing Applications with Tivoli Security Management

access denied) and since it shows the processes and files in detail, there was
no guessing as to which file was involved and what operation was denied or
permitted.

Like most monitoring programs, we found it best to stop capture, clear the
screen, and start capture just before executing a user activity to get the best
results.

3.2.1.3 HandleEx
The HandleEx program from http://www.sysinternals.com shows you, using
a two-window GUI, what files, registry keys, and other objects have been
opened by processes or which DLLs they have loaded. These are separate
views; the DLL view is not discussed here, although if there are Windows
errors on a DLL file, you can use this to see where the conflict is. Usually, an
access conflict will come from locking a subdirectory since locking down
individual DLL files was not found to be productive, and we recommend you
do not do it. The most important feature of this software is the ability to show
you who owns each process.

As shown in Figure 12, in the upper window of the program, you have a view
of the process, such as WINLOGON.EXE or SPOOLSS.EXE, the process identifier
(PID), description, owner of the process, a priority number, and the number of
handles (not shown in the figure). We were not concerned with the priority or
number of handles for the lockdown module. Although not used here, the DLL
view can be obtained by clicking on the DLL button on the taskbar.

The Windows NT architecture runs most, if not all, of its processes as
SYSTEM owner. Access to any files and registries was not hindered by
anything we used TSM 3.6 to lock down.

Note
Identifying Access Requirements 35

Figure 12. Handlex - Sample Capture of System Processes

The lower window shows the handle number in hexadecimal, the handle type
which encompasses keys, files, threads, ObjDirectory, and WinStation. The
last column shows the name of the handle, which, for some handles, is also a
directory and file path.
36 Securing Applications with Tivoli Security Management

Figure 13. Processes Properties Box

Right clicking on a process, such as SPOOLSS.EXE in Figure 12, brings up a
second window, shown in Figure 13, giving the properties of the process. This
includes the process path, owner, and whether it has a parent process. Note
that care should be taken since this window gives the ability to kill the
process in a similar way to the Windows NT Task Manager.

Refer to 4.6, “The Windows NT Operating System Lockdown Module” on
page 83 to see the results of our use of these tools.

3.2.2 Watching UNIX with the TACF Trace
In the case of UNIX operating systems, the TACF security layer provides us
with the necessary information about the TACF activities relating to applying
rights to resource requests. The trace also gives us a good idea of which
resources are being accessed by what process and therefore a good
understanding of how an operating system or application works.

This again is helpful in identifying the resources we need to lock down. With
TACF, we can also grant conditional rights for access through a certain
program, and so, we can use the trace to check what conditional accesses
we might want to grant in order to create an application Lockdown Module.
Identifying Access Requirements 37

Conditional access is supported for the UNIX endpoint entity PROGRAM
type. This specifies access to a resource when executing the specified
program or application. For example, you might specify that updates to
database files can only be made through the database application binaries.
Note that there is no equivalent feature we can exploit on current versions of
Windows NT.

3.2.2.1 Controlling a TACF Trace
The TACF Trace is controlled through the TACF control console, which is
invoked by:

secons command [parameters]

The secons utility provides a control console to the TACF daemons and
performs operations such as:

 • Controls tracing of the TACF authorization daemon (seosd)

 • Enables and disables login

 • Gets login status

 • Displays run-time statistics

 • Shuts down the TACF server daemons

A deeper discussion of all the secons commands can be found in the product
documentation in the Security Management Reference Manual for TACF. In
this chapter, we are only interested in the trace control commands that will be
explained in more detail:

-t+ Enables tracing - causes the TACF daemon seosd to
dump messages that specify its operations and actions
to the trace file.

-t- Disables tracing - stops the TACF daemon seosd from
dumping messages to the trace file.

-tt Toggles tracing status between enabled and disabled.

-ts Displays the current tracing status.

-tc Clears the trace file - removes all records from the trace
file.

-tv [size in KB] Online trace view - starts a browse session on the trace
file and operates in a manner similar to the tail -f
system utility. If the trace is running, you will see entries
live as they are added to the trace file.
Optionally, you can specify a size so that only the last
38 Securing Applications with Tivoli Security Management

kilobytes, as specified, are shown.
To stop this operation, press the Ctrl-C key combination

-tv [-file <filename>] Browse the specified file instead of
/usr/seos/log/seosd.trace. This option can be used,
whether seosd is running or not.

For instance, you could use the following command sequence to run a TACF
trace. Note, that the above mentioned control commands are only available to
the TSM administration account (tmesec by default), therefore, unless we
have added other TSM administration accounts, we have to log in as tmesec
in order to run the trace.

1. secons -tc to clear the logfile

2. secons -t+ to enable tracing

3. run the target command, program or program action

4. secons -tt to toggle the trace status to disabled or
secons -t- to disable the TACF trace completely

Depending on the program to trace and the time the trace is running, the
trace file should be cleared from time to time to guarantee a file size that still
allows you to invoke an editor on the trace file (such as vi) for detailed
analysis.

3.2.2.2 Reading a TACF Trace
We found it useful to have at least two windows open while tracing. One
showing the complete tracefile, the other filtering for Warning Mode or Deny
messages, depending on the default resource rights. This can easily be done
by piping the trace file output to the grep command:

tail -f /usr/seos/log/seosd.trace | grep "Result: ’D’"

Before starting the TACF trace, make sure there is sufficient space in the
file system. The trace file can grow quickly, depending on the applications
that are running and the resources that are locked.

Note

After shutdown and restart of the seosd daemon the tracing is disabled by
default, although the last active trace file is kept. This behavior as well as
the name and type of the trace file can be changed by editing the seos.ini
file. Refer to the product documentation for details.

Note
Identifying Access Requirements 39

This will show events one might not have noticed while watching all the TACF
messages at once.

The use of tail -f is recommended over the secons view option (secons -v) if
the logfile /usr/seos/log/* (/usr/seos is linked to /usr/local/Tivoli/TACF) is
defined as a Tivoli security resource itself. Otherwise, every request of the
secons -v command will be individually validated and logged by TACF.

For further investigation, it might be useful to clear the trace file just before
starting the target application or to send a message to the tracefile as a
marker by invoking secons -m <message>.

Figure 14. Sample TACF Trace - The Beginning of a Telnet Session

Figure 14 shows us a sample TACF trace output. It was taken while initiating
a telnet session to a locked-down system.

The TACF trace messages begin with a date and time prefix ending in the
greater-than sign (>) followed by an event type word in uppercase letters

09 Mar 1999 15:34:41> INET : P=6694 , from 9.3.240.117:1351 port 23
09 Mar 1999 15:34:41> INET > Result: ’P’ 9.3.240.117->23, [0,-1], stg=408 gtsg=408
 Why? Default access of TCP service
09 Mar 1999 15:34:41> FORK : P=6694 U=0 G=-1 Child=14626
Pgm:/usr/sbin/inetd
09 Mar 1999 15:34:41> FILE : P=14626 (/usr/sbin/inetd) U=0 (D=a0004 I=889)
READ, :/etc/passwd
09 Mar 1999 15:34:41> FILE > P=14626 (/usr/sbin/inetd) U=0 /etc/passwd
BYPASS
09 Mar 1999 15:34:41> FILE : P=14626 (/usr/sbin/inetd) U=0 (D=a0004 I=890)
READ, :/etc/security/passwd
09 Mar 1999 15:34:41> FILE > (/usr/sbin/inetd) Result: ’P’ [stage=57 gstag=57
ACEEH=3 rv=0(/etc/security/passwd)]
 Why? Resource ACL check for user groups
09 Mar 1999 15:34:41> EXECsu : P=14626 U=0 G=0 (D=a0005 I=8543)
Pgm:/usr/sbin/telnetd Attached to: 9.3.240.117
09 Mar 1999 15:34:41> EXECARGS: ’telnetd’
09 Mar 1999 15:34:41> EXEC > Result: ’P’ [stage=59 gstag=59 ACEEH=3
rv=0(/usr/sbin/telnetd)]
 Why? Resource universal access check
09 Mar 1999 15:34:41> FILE : P=14626 (/usr/sbin/telnetd) U=0 (D=a0004 I=817
) READ, :/etc/netsvc.conf
09 Mar 1999 15:34:41> FILE > (/usr/sbin/telnetd) Result: ’P’ [stage=57 gstag=57
ACEEH=3 rv=0(/etc/netsvc.conf)]
 Why? Resource ACL check for user groups
09 Mar 1999 15:34:41> FILE : P=14626 (/usr/sbin/telnetd) U=0 (D=a0004 I=133
) READ, :/etc/hosts
09 Mar 1999 15:34:41> FILE > (/usr/sbin/telnetd) Result: ’P’ [stage=57 gstag=57
ACEEH=3 rv=0(/etc/hosts)]
 Why? Resource ACL check for user groups
40 Securing Applications with Tivoli Security Management

(such as INET or FILE) and a symbol such as a colon (:), exclamation point
(!), or the greater-than symbol (>).

The meanings of these symbols are shown in Table 1:

Table 1. TACF Trace Symbols

There are at least 35 events with many more subevents. The event
arguments are explained in detail in the Security Management Reference
Manual for TACF, which is product documentation. Fortunately, one can
easily guess what most of them mean because of the descriptions given in
the trace. TACF will generally tell you what request took place (that is what
was intercepted) and the next entry will usually be the access decision made
by TACF. So, in the first two entries in the example in Figure 14, we can see
that TACF intercepted an incoming internet request. This request detail
includes the IP address of the issuer 9.3.240.117 from local port 1351 and the
port number (23 - telnet) that was requested. The second entry shows the
access result (explained next in the FILE event example).

In the first FILE event, we can see some additional important information you
can get out of the trace file. There is a U=0 entry. This is the user ID under
which a program is running. This is significant because TACF applies its
rights to the original user ID. For example, if a user logs in under their own
name and then uses the su command to switch to the root user, TACF still
regards them as the original user. This is a useful feature for delegating the
authority of administrators. You can allow someone to su to root so that UNIX
will allow a function to be performed, but you can still use TACF to restrict
what the user can do based on the ID they logged in with.

Near the end of the example, in Figure 14, for instance, the telnet Daemon is
running with root permissions. This can be seen by observing the U (U=0)
argument.

Symbol Meaning

colon (:) TACF was signaled for an event or took an action.

greater-than (>) TACF made an authorization decision resulting in D
(Deny), P (Permit) or BYPASS.
BYPASS indicates that the event did not require the
interpretation of an access rule - For example, a setuid
request to the same user ID as the current user ID.

exclamation (!) TACF detected an error - for example a request from an
unknown process.
Identifying Access Requirements 41

The FILE event type also has a request log entry and a result log entry. In the
first FILE event, we can see a request from process 6694 (P=6694)
/usr/sbin/inetd associated with user ID 0 (U=0) for READ access to
/etc/passwd. If you really want to get into the details, the trace entry also
shows the device and i-node of the file being accessed (d=a0004 I=889).

After the TACF authorization decision is made, it is stated in the trace in an
entry where a greater-than symbol follows the event type. You will see
something like Result: ‘P’ at the beginning of the entry or BYPASS at the end.
P indicates permit, a D would indicate Deny and BYPASS means TACF did
not need to invoke a rule. Knowing who accessed what resource and in what
manner is the information necessary to create adequate resource definitions
in our lockdown module, as well as default and role-based resource access
rights.

The result of a deny or permit also includes a Why? statement showing the
reason why a deny or permit resulted. The result of this Internet request as
shown in line two is ‘P’ (permit). The detailed reason text including the Why?
keyword is the description that indicates which stage and granting stage
phase of the decision flow made the final decision to permit or deny the
TCP/IP service for the requesting host. In our case (stage 57), the Default

access of TCP service granted permission. This correlates to the default
access specified in the resource record in our security profile for the
UNIX:TCP resource named telnet, or, if there is no resource for telnet
defined. Stage and granting stage codes are in the TACF product
documentation in the TACF Status Codes chapter.

By default, TACF maintains a look-aside buffer database of UNIX user IDs.
If this database goes out of synchronization with the system files, TACF
may think that a user is someone other than whoever they logged in as
resulting in incorrect access checking. The trace will show you who TACF
thinks is performing the request and you can match this back to login
names with look-aside database commands. Refer to the sebuildla
command in the product documentation for more details.

Problem Determination Tip

TCP Services must be specified as a name if the name is defined in the
/etc/services file, otherwise you must specify the service by port number.

Note
42 Securing Applications with Tivoli Security Management

In the next line, the TACF trace reports that the above-mentioned process
6684 running with user ID U=0 (root permission) forked (FORK:) a child process
with the number 14626. The program running in the parent process (and
initially also in the child process) is the internet daemon inetd, shown with the
full path Pgm:/usr/sbin/inetd. Note that TACF never denies a fork request; it is
always granted.

The next three lines indicate that our inetd process attempted to access a
TACF-protected file stated by the event argument FILE:. As mentioned
previously, the trace shows the device (D=a004) and inode (I=889) of the
requested file as well as the access mode (READ) and the accessed file
(/etc/passwd).

The keyword BYPASS indicates that the event did not require the interpretation
of an access rule. Compare this to the next event line where the inetd
process tries to access /etc/security/passwd in READ mode and a decision was
made with the Result: ‘P’ , indicating a permit result. The stage and granting
stage (gstage) are mapped to a text string reason. In our case, the Resource

ACL check for user groups granted permission. This equates to permissions
granted to a role in a security profile.

After checking the UNIX password files, the Internet daemon invokes the
telnet daemon. Because the program /usr/sbin/telnetd is a setuid or setgid
program, the EXECsu: event argument indicates the invocation under user ID
0. TACF will decide whether to grant its execution by invoking the database
access rule decision mechanism. If the ip-address to which the process is
attached is extractable, TACF reports this in the message text (Attached to:

9.3.240.117).

As the sample TACF trace shows, the telnet daemon itself accesses two
more files with the Result: ‘P’ (permit) in both cases.

3.3 Resource Considerations

This section looks at specific considerations for using TSM system policies
and for looking at resources when protecting operating systems or
applications. By discussing examples of resources to protect, the aim is to
help you determine what would apply in your environment.

We look at these topics grouped in the following way:

 • System Policies

 • Windows NT Considerations by resource type
Identifying Access Requirements 43

 • UNIX Considerations by resource type

 • Application considerations

You will notice that almost all of the sample LDF files are for UNIX
applications. This is because we wanted to include examples of conditional
access and other resource protection such as TCP services. For some
applications, the Windows NT LDF will be something of a subset of the UNIX
equivalent. The path names will, of course, need alteration, but the majority of
the work regarding pieces to consider has been done in the UNIX LDF.

3.3.1 System Policy Considerations
System policies apply to the whole target operating system, not something
that is specific to individual users, groups or resources. This means that
every user of the system must follow the policy or rules. Although TSM for
Windows NT and TSM for UNIX (with TACF) are slightly different in their
management implementation, they both use the same system policy record.
Windows NT implements different policy parameters than UNIX. For example,
A UNIX system policy can manage a policy to use only alphanumeric
characters in a password. This will be explained in more detail later in this
section, but Windows NT does not have this ability. Attributes defined in the
system policy record that are not applicable to the endpoint type are ignored
during profile distribution. To show what parameters they do share, we can
use the policy parameter for password length as an example. If the system
policy requires a password of 9 characters or more, this would apply to both a
UNIX user and a Windows NT user.

Since system policy is not something that needs to be used in every security
profile, we have not used it in the LDFs. We have included more detail on
system policy in this section for background information to help you
determine adequate system policies.

System policy consists of a Password Policy, Login Policy and for TACF there
is a Resource Type Access Policy. In TSM 3.6.1 we have the added capability
of specifying audit policy for NT system events.

3.3.1.1 System Password Policy
Granting access to computer systems through an authentication process of
user name and password is universal. The password policy defines
requirements and regulations in the use and makeup of these passwords.
This can ensure strong passwords and gives fewer chances for passwords to
be compromised which, in turn, leads to fewer intrusions. The password
policy regulations and some suggested parameters are as follows. For a
further explanation of these, see the redbook Tivoli Security Management
44 Securing Applications with Tivoli Security Management

Design Guide, SG24-5101, or the Tivoli Security Management User’s Guide
which is product documentation.

Maximum Days between Password Changes
The maximum number of days between Password Changes is 45 to 60 days;
this depends on the production site. If the amount of users is great and there
is no single sign-on solution, users may have to remember several
passwords. Then, you may want to use the extended time of 60 days. More
than 60 increases the window of opportunity if a password has been
compromised.

Minimum Days between Password Changes
The minimum number of days between password changes is 7 days; use this
minimum password age value in conjunction with Password history depth to
stop users from cycling between two favorite passwords.

Password History depth
The password history depth is 10 passwords; if we look at the math, it gives
us 70 days before the user can revert back to a previously used password.
min. password age x password history depth = min. password reuse time

Minimum password length
The minimum password length is 8 to 9 characters; The Windows NT
password length should be set over 7 in case any LANMAN hashes are used;
this makes it much harder to break the password. Passwords over 9 will be
too long and cause the user to write down the password in most cases.
LANMAN hashes are used in environments where LANMAN authentication is
allowed alongside Windows NT authentication (which is the default). This
allows older Windows and other servers to participate in a Windows NT
domain. Refer to Microsoft Knowledge Base article Q147706 for more
information about LANMAN authentication and how to disable it.

Allowable character requirement parameters in TSM for Unix only are as
follows:

Minimum Alphabetic
One alphabetic character must be included.

Minimum Numeric
One numeric character must be included.

Minimum Alphanumeric
One alphanumeric character must be included.
Identifying Access Requirements 45

By putting 1 for each and in combination with 8-9 minimum password length,
this assures an alphanumeric password of 8-9 characters long, which is what
we suggest since most password cracking programs do not handle a mix of
alphabetic and numeric very well. The inclusion of special characters is even
more desirable as shown later.

Minimum Uppercase
Minimum Uppercase is zero; we recommend this not be a requirement since
case may not be significant in some platforms in a multi-platform
environment.

Minimum Lowercase
Minimum Lowercase is zero for the same reason as above.

Maximum Repeated
Maximum Repeated is three; this gives the user the ability to use a character
up to 3 times consecutively in a password.

Minimum Special (Special Characters - !,*,?)
Minimum Special is zero to one; Zero for normal production environments
and one for more sensitive areas since inclusion of special characters makes
the password much harder to guess.

3.3.1.2 System Login Policy
This policy deals with the regulations on actually logging into a system.
Consider it as the next logical step from the password. Once password rules
have been accepted or followed, there are rules for the actual login.

Account Lockout
Lockout duration should be 60 minutes. Much less and users with malicious
intent would have less time to wait to continue the attack and if it is set any
higher, it will stop productivity for a user who may just be having a bad day
with typing.

Password quality checking for TACF depends on the setoptions
configuration and the user must use sepass to make password changes in
order to have the quality checks take place.

UNIX Password Setting
46 Securing Applications with Tivoli Security Management

Failed Login Attempts
It is not recommended that a value less than 3 be used. A user needs to be
given a couple chances to reenter a password due to possible typing errors.

Time span setting for lockouts
Here, NT and UNIX implement this in different ways, but a happy medium can
be found based on the customer requirements. UNIX, or, in this instance,
TACF, considers the time span as the whole period for counting failed logins,
and for Windows NT, time span is how long between each login to wait before
resetting the count. For Unix, the setting should be 60 minutes, and for
Windows NT, it should be 30 minutes. In determining a happy medium, just
remember that the larger the value, the fewer chances a hacker has to try a
different password each day. However, at the same time, the larger the value,
the greater chance there is of a genuine user mistyping passwords three
times (or whatever the value) within the resultant time period.

3.3.1.3 System Resource Type Access Policy
We do not implement TACF Resource Type Access Policy in our lockdown
modules. This policy allows you to specify a default for an entire resource
type if nothing else is specified. This may be required in very sensitive
environments, but, depending on the number of accesses, this can have a
significant performance impact when every access to a resource of the set
type must be checked. In fact, even if you set this for the UX:FILE resource
type, this will have no effect. TACF ignores this due to the potential
performance impact.

3.3.2 Windows NT 4.0 Considerations
In order to decide which resources and access control levels we needed to
implement in our lockdown module with TSM 3.6, we found that an approach
based on an understanding of the resource types and their limitations and
strengths was the best course of action. Several authoritative documents
were then reviewed which gave more precise security resource lockdown
suggestions. One document we read was Windows NT Security Guidelines -
A study for NSA (National Security Agency) Research by Trusted Systems
Services. This document looked at Windows NT’s C2 compliance and broke
down the NSA Orange Book to describe what methods and resources must

The root user in Unix and the Administrator user on Windows NT (if not
renamed or assigned to another user, it would apply to them) cannot be
locked out. Note also that Sun OS 4 does not support lockouts.

Note
Identifying Access Requirements 47

be taken to closely match that of the C2 compliance. The second document
was a paper from Microsoft, Securing Windows NT Installation, October 23,
1997, Microsoft Corporation. This document was mostly helpful from the
registry perspective.

We will now look at the resource types we can manage through TSM.

3.3.2.1 NT:DIRECTORY
This resource type protects accesses to NTFS directories. The directory
access ACL is modified by an NT:DIRECTORY record. Every NTFS file and
directory has an owner who has a special status. The owner of that resource
can manage the permissions of that resource in the same way as the
Administrator account. They can even deny the Administrator the right to
access that resource. So resources created by the user are owned and
managed by the user unless the administrator takes ownership away. As of
TSM 3.6 and 3.6.1, TSM does not manage the way Windows NT treats the
permissions of file owners (specified through the Windows NT group
CREATOR OWNER). If changes are required, they must be done using native
Windows NT tools.

3.3.2.2 NT:FILE
The NT:FILE resource type sets restrictions on the ability to perform actions
on files in an NTFS file system. Windows NT’s native security structure
consists of two permission ACL’s in the file/directory resource: Directory
ACLs and newly created file ACLs, shown in native NT as two sets of
permissions after the directory name as in C:\Directory (RWX) (RWX).

The implementation of asterisk wildcard characters (*) for directory and file
resources as in C:\WINNT\System32* changes between 3.6 and 3.6.1. In

TSM 3.6.1 provides enhanced capability when managing Windows NT
resource types. Our work was focused around 3.6, and where applicable in
the following sections, we mention what else could be considered using
TSM 3.6.1.

In many implementations, we expect that Tivoli administration will be used
for setting global policies in areas that can apply to multiple targets; local
Windows NT administrators will continue to use Windows NT
administration tools to perform certain fine-tuning functions. The aim
should be to avoid using local tools to perform administration functions that
are also performed using TSM - this will prevent synchronization problems.

Note
48 Securing Applications with Tivoli Security Management

3.6, a file resource specified with an asterisk only sets the default
permissions for all files subsequently created in the specified directory after
the profile is distributed, not for any files already in the directory. No other
wildcard characters such as question marks are allowed.

In 3.6.1, we can use the question mark wildcard character (?) and we have
the option to specify existing files, subsequently created files, or both. Our
lockdown used the 3.6 model.

In 3.6, if you wished to apply permissions to existing files, you either needed
to explicitly specify each file (not recommended due to the amount of
resource records that would be required) or use the Windows NT utilities to
“Replace Permissions on Existing Files or Subdirectories” which then pushes
the permissions to existing files and/or subdirectories. (Note that TSM 3.6.1
has added the capability of replacing permission on existing files and
subdirectories).

Even in securing applications, as already stated, we suggest limiting the use
of security applied directly to individual files with the security NT:FILE
resource only for important single files for the following reasons:

 • It is too much work to administer every file separately. You would have to
define one security profile record of the type NT:FILE for each file.

 • When you define access permissions directly for a single file, they will be
set when the Tivoli profile is distributed to the target (managed node or
endpoint). If you locally set the file permissions of the directory in which
the file resides, the previous set of file access permissions can be
overridden because Windows NT provides an option to apply new
directory permissions to all files already in the directory. Using the TSM
3.6.1 Apply Permissions option can also override permissions set on
individual files depending on the order in which profiles are distributed.

Therefore, if you are setting access permissions on single files, you have to
make sure that the default permissions of the directory in which the files
reside are not modified locally on the Windows NT system since they could
potentially be applied to all the files in the directory overwriting permissions
set on individual files.

The TSM 3.6.1 improvements are implemented in the Resource Default
Access panel and Resource Access Audit Control panel. From the CLI, the
new parameters include two additional key words: Apply and Recurse.

Apply Existing Allows permission values to be applied to existing files that
match the wildcard pattern.
Identifying Access Requirements 49

Apply NewOnly Allows permission values to be applied to only newly
created files. (3.6 capability).

Apply All Allows permission values to be applied to both newly
created and existing files.

Recurse Allows permission values to be applied to all subdirectories
(not just those matching the wildcard) similar to the /S flag
on the NT DIR command.

3.3.2.3 NT:SHARE
This resource type restricts access (through the network) to shared
directories and their contents. This lockdown file does not include share
resources due to the site-specific nature of these resources (See also 4.6,
“The Windows NT Operating System Lockdown Module” on page 83). Native
administration Windows NT shares that contain the dollar sign ($) are not
managed by TSM 3.6. Note that auditing of shares is not supported in NT; so,
it is also not supported in TSM 3.6. It is a common practice to audit the files
and directories themselves on the host machine. You are not auditing the
share, but the file and directory as a resource.

If you want to place different access restrictions on individual files or
subdirectories that are available on the network in a share, you must create
separate resource records for these files and subdirectories. In other words,
the share of share\sub\file1.dat with No Access is one resource and share of
share\sub\file2.dat with Read/Write is another resource. Share resources
cannot use wildcards, they must be name-specific. TSM 3.6.1 revised the
ability of the TSM Populate tool to allow itself to populate resource type
NT:SHARE using either the GUI or wpopulate / wpopsec. TSM 3.6 would only
populate the SYSTEM (user rights) resource in addition to the Roles and
Groups, of course.

3.3.2.4 NT:REGISTRY
This type sets restrictions on the ability to edit and control entries in the NT
Registry. The first thing to note is that it is not possible to use wildcard
characters to specify multiple registry hives or keys. There are several means
within Windows NT to access and edit the registry. For example, you can use
the utilities in the Windows NT Control Panel or Setup Applications. Here,
concerns with securing applications appear.

By using the Filemon or HandleEX programs mentioned in 3.2.1, “Watching
Windows NT Applications” on page 32, we watched the programs as they
executed and installed to see which registry hives and keys they required. We
have to be able to protect the registry without preventing applications from
50 Securing Applications with Tivoli Security Management

installing for example (unless that is our aim). One way of protecting the
registry is by preventing the use of applications that modify it. There is the
possibility to change values of the registry directly using the operating system
with REGEDIT.exe or REGEDT32.exe. In our lockdown module that you can see in
4.6, “The Windows NT Operating System Lockdown Module” on page 83, has
denied access to the Run... command, CMD.exe and various other executables
including REGEDIT and REGEDT32. There are many shareware tools that make
changes to the registry. Therefore, it is of little use to protect the registry by
restricting the access to the Windows NT registry editor. Users can find other
ways to make modifications. Unless you directly manipulate the capabilities
of the CREATOR OWNER group, users can pull shareware tools from the
Internet, install them, and have full control of the programs.

Our Windows NT lockdown example has locked out users from installing to a
degree, but the possibility is always there. The Windows NT registry has to be
secured with its native security. That is, we must create NT:REGISTRY
resources to modify registry ACLs to prevent unauthorized changes. This is a
topic that is also covered in the redbook Tivoli Security Management Design
Guide, SG24-5101.

The default permissions of the hives are set reasonably well in NT 4.0; with
some exceptions, the Everyone group has read access to all the data. In our
lockdown file, we have used the Microsoft recommendations from their paper
Securing Windows NT Installation in locking down access to hives and keys
from the Everyone group (default access=No Access). Care should be taken
not to modify the access for the SYSTEM group. The operating system needs
to have access to all the information.

3.3.2.5 NT:SYSTEM
The NT:SYSTEM resource defines the user rights for a Windows NT system.
This resource type can be given any name, but only one SYSTEM resource
should be distributed to a machine. There is no auditing of this type. We
found it most useful to simply populate user rights from a default Windows NT
installation. Populating creates the SYSTEM record named User Rights.

The Tivoli Security Management User’s Guide product documentation lists all
the rights and their descriptions in the NT Resource Types appendix.
Examples of rights include Shutdown, Remote Access, and Install Devices.

In our lockdown, this resource was the key in security role development. In
order to make the basic lockdown flexible for the different production sites,
very few if any NT:FILE or NT:DIRECTORY resources were named for the
various security roles. The NT native User Rights were sufficient with an
underlying restrictive security group (such as Domain Users). This is
Identifying Access Requirements 51

explained in 4.6, “The Windows NT Operating System Lockdown Module” on
page 83. Key items to note about our lockdown with this resource type is that
Local Logon and Remote Access were allowed for everyone due to the
domain structures that again, differ with different sites. Backup, a right given
to Backup operators, overrides access permissions granted to individual files
and directories. The TSM User Rights properties closely map to those of
native Windows NT.

3.3.2.6 NT:PRINTER
The NT:PRINTER type represents a logical printer defined within the
Windows NT Print Manager. Each PRINTER record sets restrictions on the
ability to submit jobs to a printer and control jobs sent by others. This
lockdown file does not include PRINTER resources due to the site specific
nature of these resources, but mention will be made of them in 4.6, “The
Windows NT Operating System Lockdown Module” on page 83. If you intend
to implement printer resources in TSM 3.6, you should be aware that there is
no Manage Documents permissions for this resource type. only Access - the
ability to print, No Access, and Full Control - the ability to print and manage
documents. TSM 3.6.1 has added the management of the Windows NT
permission of Manage Documents. It also has the added capability to
populate NT:PRINTER by using the TSM Populate tool in the GUI or
wpopulate / wpopsec.

3.3.3 UNIX Considerations
The Tivoli Access Control Facility (TACF) is an object-oriented security
system. The TACF database describes two types of objects: accessors and
resources. Users and groups are accessors: they access resources.
Resources are objects to be protected, such as files and services. Each
record in the TACF database describes either an accessor or a resource.

Each object belongs to a class. A class is a collection of objects of the same
type. For example, TERMINAL is a class containing objects that are terminals
protected by TACF. The concept of classes or types of resources is well
known to mainframe security administrators.

In this section, we will describe TACF resources and classes discussing
considerations to take account of when using them to lock down UNIX or an
application running under UNIX.

3.3.3.1 TACF Resources
In TACF terminology, a resource is an entity that can be accessed by
accessors (users and groups). The most common type of resource is a file.
You access a file when you read information from it or write information to it.
52 Securing Applications with Tivoli Security Management

Other types of resources are terminals (accessed when you sign on) or
directories.

The properties of the protected resource are stored in the resource’s record.
A record is a collection of data consisting of the name and properties of a
resource or accessor. These properties tell who defined the record, the date
when the record was defined, and so on. In general, the most important
information contained in a resource record is a list of the accessors that are
authorized to access the resource. This list is referred to as the access
control list (ACL).

A security resource may appear more than once in the list of resources
assigned to a security role where each entry has unique access rights. For
example, a security group may have different access to a resource when
accessing it through a specific program (known as conditional access) than
when accessing it directly.

3.3.3.2 TACF Classes
A class is a group of object records that are of a similar type. For example,
the TERMINAL class contains all objects that are of type terminal, such as
tty1, tty2, and tty3. The FILE class contains definitions for files and file
masks; the PROGRAM class contains the records that protect trusted
programs from being modified.

TACF contains four types of pre-defined classes:

Accessor Objects that access resources

Definition Objects that define security entities, such as security labels
and categories

Installation Objects that are protected by access rules

Resource Objects that are protected by access rules

Because our intention in this Redbook is to develop lockdown definition files
in order to secure applications with Tivoli Security Management, we will
concentrate on the Resource type classes. You can refer to the TSM product
manuals for TACF for more information on the other classes and types. If you
wish to make use of those classes, you can do so using the TACF command
line interface (selang).

Resources within Role Resource Definitions can only be deleted if no
conditional right access is defined.

Note
Identifying Access Requirements 53

Most classes implemented in the current Tivoli Security Management Version
3.6 and accessible in Security Profile Resource Records are of the class type
Resource. Exceptions include the UX:SECFILE which is the TACF class type
of Definition. Furthermore, one can define UX:GROUP records through
Security Group Records of type Definition as well as UX:USER records of
type Accessor.

Note that there are currently 21 classes predefined by TACF, but the following
classes are the ones currently managed through Tivoli Security Management.
The list contains the class name in bold type followed by a description.

UX:CONNECT The CONNECT class protects the outgoing connection.
Each object in this class defines which users can access
which internet hosts.

UX:FILE Each object of this class defines the access allowed to a
file or directory.

UX:PROCESS Each object of this class defines an executable file that,
when running as a process, is to be protected against
KILL attempts.
Major daemons and database servers are good
candidates for such protection because these processes
are the main targets for service-denial attacks.
Before defining the program in the PROCESS class, the
file must also be defined in the FILE class.

UX:PROGRAM This class defines programs that are considered part of
the trusted computing base. Programs in this class are
trusted programs; they cannot have security breaches and
are monitored by the TACF watchdog daemon to ensure
they are not modified. A system or security administrator
can only define programs marked as setuid or setgid in
the UNIX file system as trusted programs within TACF.

UX:SECFILE The SECFILE class is similar to the PROGRAM class in
that it stores information about program files. However,
objects of the SECFILE class cannot appear in a
conditional access control list. This class is intended to
provide verification for important files in the system. The
watchdog daemon scans these files and ensures the
information known about these files is not modified.

UX:SURROGATE This class defines restrictions that protect the user from
other users when they make substitute user ID (su)
requests. TACF treats the surrogate request as an
54 Securing Applications with Tivoli Security Management

abstract resource that can be accessed only by authorized
users.

UX:TERMINAL The TERMINAL class defines objects that represent the
terminals of the local host, another host on the network, or
X-Terminals from which a login session can be made.
Terminals are checked during user login. Users can sign
on from a terminal only if they have been authorized to
use the terminal.

UX:TCP The TCP class includes records for TCP/IP services, such
as mail, ftp or http. Each record’s ACL can specify access
types not only for individual hosts that may request the
service, but also for HOSTNET and HOSTNP resources.
Services must be specified as a name if the name is
defined in the /etc/services file, otherwise you must
specify services by port number.

UX:HOST Each object of this class defines a host (client). The host
is identified by either its name or its IP address. For each
client (HOST object), there is a property that lists the
service rules that govern the services the local host may
provide to the client while using Internet communication,
for example, <hostname> or fully qualified <IP-address>.

UX:HOSTNET Each object in this class defines a group consisting of all
hosts on a particular network. HOSTNET objects define
access rules that govern the access other hosts on the
specific network have to the local host when they are
using Internet communication. The name of each object
consists of mask and match values for the IP address
such as <Network IP-address Mask>/<Match Mask>.

UX:HOSTNP Each object in this class defines a group of hosts where
the hosts belonging to the group all have the same name
pattern. Every HOSTNP object’s name contains a
wildcard, for example, <*.domain-name>.

The following three host classes are only accessible using the UX:TCP
class - while defining TCP resource access rights.

Note
Identifying Access Requirements 55

3.3.4 Application Considerations
By discussing each of the resource types in the previous two sections, we
hope you have developed some ideas about what is reasonable to achieve in
securing applications. In addition, 3.2.1, “Watching Windows NT Applications”
on page 32 and 3.2.2, “Watching UNIX with the TACF Trace” on page 37
should help you start looking into what you need to do.

The lists in the next sections summarize things to consider when designing
lockdown modules.

3.3.4.1 Windows NT
The following is a list of considerations to keep in mind when protecting
Windows NT installations with TSM:

 • Most system processes run under Administrator rights.

 • Administrator can’t be locked out using Windows NT features exposed in
TSM. The administrator can be prevented from accessing a resource, but
the administrator can also grant himself the rights to a resource.
Protection of this type would involve restricting who has access to the
Administrator ID and, instead, defining more users with the rights they
need to perform administrative functions. Auditing should be used to
monitor the actions of the true Administrator.

 • While it would be nice to have some of the TACF resource types such as
TCP and CONNECT, they are not currently available in Windows NT. Tivoli
plans to implement the management of these capabilities when they are a
part of the operating system, perhaps in Windows 2000.

3.3.4.2 UNIX
In our experiments with lockdown modules, we felt it was worth documenting
some of the considerations and differences between different flavors. Our
LDFs are for Solaris and AIX; so, the notes came from our experiences with
those, but similar considerations exist on all platforms:

 • The AIX System Backup Facility needs to read all Files through some
dedicated programs

 • AIX uses the System Resource Controller to control certain Daemons.

 • Part of your security policy might include the use of the /etc/securetcpip
script on AIX which disables all non-secure daemons like rlogind and tftpd.

 • Increasing the security of the hardware and operating systems (for
example for use as Firewalls, DMZ-Servers, and so on)

 • Security in general
56 Securing Applications with Tivoli Security Management

 • Deactivation of unneeded Services/Daemons

 • Penetration Tests

 • Password Policies

 • Backdoor Checks (setuid, setgid files, unowned files and so on)

 • Trusted Hosts

3.3.4.3 Database Server Applications
Database servers handle some security features such as user authentication,
but most may also require some access protection to avoid accidental or
deliberate damage.

When looking at this type of application, consider the following:

 • Does the application allow you to specify conditional resource access for
only some programs or processes (mostly only the daemons)?

 • Does the application usually employ a well structured file system or
directory structure?

 • Does the application keep database files, logfiles, and config files in
separate directories (which makes it easier to design resource roles)?

3.3.4.4 Application Server
Our experiences with Netscape Enterprise Server gave a very different
example of application lockdown compared to the database servers.

 • Few (one to four) daemon processes.

 • Very complicated conditional resource accesses are required due to the
use of a program for every little task.

 • Directories tend to be less well structured from a TSM implementation
perspective (such as configuration files and binaries being together in one
directory.
Identifying Access Requirements 57

58 Securing Applications with Tivoli Security Management

Chapter 4. Lockdown Descriptions

This chapter provides detailed descriptions of lockdown modules that we
developed as examples. You will notice we have a heavy bias in the UNIX
arena. There are a number of reasons for this. For example, the UNIX
platform can be more challenging to address since we can handle conditional
access of resources. What we can manage in terms of resources in Windows
NT is mostly a subset of what we handle for UNIX. For many applications, we
can take a UNIX application (LDF) and change it relatively easily to a
Windows NT one by removing some resource types and changing file
references to the Windows format.

The examples provided on the CD are for the following environments:

 • A typical SAP/R3 implementation

 • The Tivoli Framework 3.6 on UNIX

 • Lotus Domino 4.6 on UNIX

 • Netscape Enterprise Server 3.6 on UNIX

 • Oracle database on UNIX

 • The Windows NT Server 4.0 operating system

 • IBM AIX 4.2 operating system

 • Solaris operating system

See 1.1, “Obtaining Lockdown Updates” on page 5 for information about
updates to the modules provided with this book.

These modules provide protection against unauthorized access. The features
of TSM allow us to concentrate on file systems and, where appropriate,
network access. One aim in the UNIX environment was to enable the
protection of resources from accidental or other modification by the root user
where this was practical.

Although a Solaris LDF is included on the accompanying CD, no
description appears for it in this publication. You can find more background
information in the (more comprehensive) AIX module in 4.7, “The AIX
Lockdown Module” on page 93.

Note
© Copyright IBM Corp. 1999 59

During our investigations, we considered other applications suitable for
lockdown modules. These might include office suites, mail servers, and other
databases and operating systems.

When we considered things like Firewall products, we felt that these were in a
similar category to the Tivoli Framework in terms of how applicable TSM
might be (see 4.2, “The Tivoli Framework Lockdown Module” on page 62).
Firewalls have special considerations, and the addition of TACF to a firewall
system may only be required in certain special circumstances. A firewall
already has many security features (and many of these can be managed by
Tivoli in other ways as with CheckPoint Firewall’s integration with Tivoli and
Tivoli User Administration). A firewall is likely to be physically very secure and
very few people would be given root access to the machine. Most firewall
vendors would prefer the system used for the firewall to be as clean as
possible, that is, with all non-essential features removed or disabled.

The LDF contains all the definitions required to build a security profile
including roles, resources, and access rights.

4.1 The SAP/R3 Lockdown Module

Extending the security of an SAP/R3 implementation will be very dependent
on the implementation. The R/3 environment will most likely exist across
multiple environments supported by TSM and will involve other applications
for which lockdown modules may or may not already exist. The intention is
that this LDF will provide a starting point on UNIX and that the review of other
modules, such as “The Oracle Lockdown Module” on page 79, will help
identify what changes may be necessary in any environment. The directory
structure will at least be consistent across UNIX variants. Note that with
Windows NT, there will be multiple usr/sap/SID directories on multiple disks
that will need to be maintained.

Note that this LDF has a number of variables that will need to be identified
and defined prior to implementing it including the three character system
identifier (SID) for the R/3 system and the database.

In the LDF files we typically define one or more security groups. It is highly
recommended that you actually apply the roles we define to your own
group structure. An ideal Tivoli security group structure results in users
being members of very few groups (maybe just one or two) to make user
access control management simpler.

Note
60 Securing Applications with Tivoli Security Management

4.1.1 TSM Roles in the SAP/R3 LDF
We defined two roles in the LDF with sample groups as follows:

GROUPS
 SAPAdmin "SAP Administrator" = (${SID}adm) audit(LF,RF) ;
 SAPSystem "SAP System" = audit(LF,RF) ;
ROLES
 "SAP System" "SAP System" = (SAPSystem) ;
 "SAP Administrator Role" "SAP Administrator Role" = (SAPAdmin) ;

The roles were determined as follows:

SAP System
This role is for the R/3 administrators typically defined in the
sapsys UNIX group. It contains the DVEBMGS resources with
Read and Execute access. We also specify All access to the
transaction files and directories and the home directory. In our
sample groups, we gave this role to the SAP System group which
should be populated with members of the UNIX sapsys group.

SAP Administrator Role
This role is for the owner of all the R3 processes on the system as
well as the file system directories and files that are used to run the
system. This contains all the resources of the LDF with all access
to those resources. In our sample groups, we gave this role to the
SAP Administrator group and it is likely that this will contain very
few - possibly just one user ID. This is the ID SAP will use to
start/stop the R/3 system, administer the file systems, and so on.

4.1.2 TSM Resources in the SAP/R3 LDF
The directory structure revolves around the system identifier (SID); so, in the
LDF, we use a variable ${SID} to identify this to the resource declarations.
You will need to specify this variable.

The SAP binaries and other installed data are stored under the /sapmnt
directory structure, and we defined default access of Read and Execute to
these directories with the exception of /sapmnt/${SID}/global where we
specified No Access as the default. These file systems do not need to be
accessed outside of the roles we specify.

RESOURCES
/sapmnt/${SID}/exe = [RX] audit(RN) ;
/sapmnt/${SID}/global = [N] audit(RN) ;
/sapmnt/${SID}/gui = [RX] audit(RN) ;
/sapmnt/${SID}/profile = [RX] audit(RN) ;
Lockdown Descriptions 61

In the DVEBMGS directories, we specify the SAP instance through a variable.
You must set this variable for the LDF. You could add a prolog script that
retrieved this from .sapconf. We specify a default access of read to the
directory and No Access to the files within it; the same definition is created for
the /usr/sap/${SID}/SYS directory and files:

/usr/sap/${SID}/DVEBMGS${INSTANCE} = [R] audit(RN) ;
 /usr/sap/${SID}/DVEBMGS${INSTANCE}/* = [N] audit(RN) ;
 /usr/sap/${SID}/SYS = [RX] audit(RN) ;
 /usr/sap/${SID}/SYS/* = [RX] audit(RN) ;

We lock out the /usr/sap/trans transaction directories with default read access
to the directories and No Access to the files. However, the .sapconf file needs
to be readable by multiple users; so, we add a specific resource record for
that.

/usr/sap/${SID} = [RX] audit(RN) ;
/usr/sap/trans = [RX] audit(RN) ;

 /usr/sap/trans/* = [N] audit(RN) ;
 /usr/sap/trans/.sapconf = [RX] audit(RN) ;

The last resource entry sets the default access to No Access for the home
directory of the SAP Administrator ID (note that some installations will not use
a home directory):

/home/${SID}adm = [N] audit(RN) ;
/home/${SID}adm/* = [N] audit(RN) ;

We have not defined any process or TCP services resources in this LDF and
did not attempt to define conditional access.

4.2 The Tivoli Framework Lockdown Module

In this section, we are going to describe the procedures to implement an LDF
on the Tivoli Enterprise Framework working in a UNIX environment. The
UNIX Framework LDF implementation is largely a super-set of what you can
also achieve for Windows NT. For an example of locking down the Windows
NT environment, refer to 4.6, “The Windows NT Operating System Lockdown
Module” on page 83.

In investigating the requirements for a Tivoli Framework lockdown module,
we found that, unless you have a requirement for extremely restrictive levels
of security, there is little that needs to be added through the use of TSM. The
important thing is to make use of existing Framework security.
62 Securing Applications with Tivoli Security Management

4.2.1 Framework Security Considerations
As you may already know, the Tivoli Framework environment has a number of
security mechanisms and features, since it has been designed to provide
secure and reliable invocation of distributed applications. It provides security
capabilities and such role-based administrator services as:

 • Installation password that prevents unauthorized client additions to the
management network.

 • Implementation of authentication and authorization. The system
authenticates that you are who you say you are, and when an
authenticated user attempts to perform some operation, the system
verifies that you have the correct level of authority. This also applies when
any Tivoli application action takes place.

 • Strong encryption using DES and the use of Kerberos authentication
service.

 • Tivoli Administrators. After installing the TMR Server, you can define a
Tivoli administrator that can perform functions that require root access but
who logs on from a name different from root. In this way you won’t need to
share the root user’s password. The Tivoli super user, also known as the
Tivoli root user, does not need to have logged in to a machine as root or
Administrator. The Tivoli root user can be assigned to any user name
using wauthadmin.

Note that, by default, the TMR server installation defines root (or the user
that was used to install Tivoli) as the Tivoli root user. Managed nodes do
not do this and should not need the root login defined as the Tivoli root
user.

 • Tivoli administrators can have their capability defined by policy regions
and authorization roles which are becoming increasingly fine-grained
(such as the Tivoli User Administration Admin_Mod_Password role
introduced in 3.6.1). The Tivoli administrator can perform tasks requiring
high privilege levels without automatically gaining privilege in undesirable
areas.

Note that there is a distinction between these Tivoli administrator
authorization roles and the TSM concept of Role-based security.

In spite of such security features being available, there may be certain
especially sensitive environments where you might wish to employ additional
security protection and auditing.

We assume here, or at least expect, that the network environment where the
TMR Server and all Managed Nodes reside is not open to outside attacks or
Lockdown Descriptions 63

has some measures in place to guard against them. The TMR server must
also be regarded as a security-sensitive device and placed where only
authorized people have physical access to it. It is very important that the
password of the root (UNIX) or Administrator (Windows NT) user ID in the
TMR Server should be known only by appropriate Tivoli support and
administrative personnel. The recommendation is that the TMR server is
dedicated to the Tivoli environment thus reducing any requirement for those
not involved in systems management to have access to the machine.

In a general view, our security scheme is aimed at avoiding unauthorized
access to the resources available in a typical Tivoli environment installation.
Such resources include binaries, configuration files, log files, audit files,
processes and daemons, communication between the TMR Server and its
respective Managed Nodes and Endpoints, protecting them against data
corruption, modification, halting and TCP port interception.

4.2.2 TSM Roles and Groups in the Framework LDF
We created four new roles, and, to show examples of their use in groups, we
also created sample groups. These appear in the LDF as follows:

GROUPS
Admin_kill "Admin_kill" = (shamu) audit(LF,RF) ;
Administrators "Administrators" = (root) audit(LF,RF) ;
Backup_operators "Backup_operators" = (back_op1) audit(LF,RF) ;
Super_TACF "Super user for TACF" = (tmesec) audit(LA,RA) ;

ROLES
Role_of_Super "Role_of_Super" = (Super_TACF) ;
Role_of_Administrators "Role_of_Administrators" = (Administrators) ;
Role_of_Backup_operators "Role_of_Backup_operators"=(Backup_operators);
Role_of_admin_kill "Role_of_admin_kill" = (Admin_kill)

parent(Role_of_Administrators) ;

We declare a few sample users in these groups to demonstrate likely
allocations of users to groups and roles. The shamu and back_op1 user
names were chosen as examples and, as with all the lockdown modules, the
group definitions will need modification for your own environment.

The roles were determined as follows:

Role_of_Super
This role contains all resources defined in the LDF and is
assigned Full Control access. In our sample groups we gave this
role to the Super_TACF group and only placed tmesec in this
group. This is the ID that owns the TACF database and its
associated files. This TACF user ID, by default, has the
64 Securing Applications with Tivoli Security Management

permissions that allow it full control on all system resources.

Adding a user to the Super_TACF group will give them full control
over the resources defined in the LDF. This allows access to the
resources without making the person a true TACF administrator.
To make them a TACF administrator, they would need to be
specifically added as one, for example, by running the Add /
Remove TACF Auditors / Administrators job, or by specifying
other users as TACF administrators at TACF installation time.

Role_of_Administrators
This role is intended for root-level administrators of the machine
on which the Tivoli Framework resides, in other words people who
need a reasonable amount of control over the machine but do not
need access to TACF itself. The Tivoli Framework runs as root
itself, and, so, we need to ensure the root ID has the required
authority to work with Framework directories.

When the Tivoli Framework executes a method, it will normally be
executed with the privileges provided by the operating system.
For security purposes, all Tivoli methods normally run as an
unprivileged user. On a UNIX system, this is the user nobody. A
programmer can set a particular privilege for a method, if required,
in order to perform system management operations. When the
method is invoked, it runs as if a particular privileged user had
invoked it.

For the Framework, this privileged user is typically the user root or
the UID/GID defined for the Tivoli administrator. In our case, we
have defined only the root user as a Tivoli Administrator.

This role allows full access to Tivoli resources, however, it still
does not allow root user to kill Tivoli processes or to delete
database and log files. It also allows Read Only access to TACF
resources.

The Role_of_Administrators role has the following access rights defined:

ROLE "Role_of_Administrators" =

It is not good practice to set the root user as a TACF administrator. It would
give root the ability to kill TACF processes and change your security
policies.

Note
Lockdown Descriptions 65

/etc/Tivoli [F],
/etc/Tivoli/* [F],
/usr/lib/X11/app-defaults/Tivoli [F],
${BINMP} [F] ,
${BINMP}/* [F],
${VARMP} [F],
${VARMP}/* [F],
${VARMP}/${HOSTNAME}.db/odb.bdb [RWU],
${VARMP}/${HOSTNAME}.db/gwdb.bdb [RWU],
${VARMP}/${HOSTNAME}.db/gwdb.log [RWU],
${VARMP}/${HOSTNAME}.db/notice.log [RWU],
${VARMP}/${HOSTNAME}.db/odb.log [RWU],
${VARMP}/${HOSTNAME}.db/odtrace.log [RWU],
${VARMP}/${HOSTNAME}.db/oservlog [RWU],
${VARMP}/${HOSTNAME}.db/oservlog.start [RWU],
${VARMP}/${HOSTNAME}.db/epmgrlog [RWU],
${TACFDIR} [RX],
${TACFDIR}/* [R],

See Appendix B.2.3, “LDF PROLOG Section” on page 113 for a description of
the prolog where you can use a script to set variables before the LDF file is
interpreted.

Role_of_admin_kill
We wanted one group of administrators whose users have the
ability to kill sensitive Tivoli Framework daemons.The Group
Admin_kill was assigned the role Role_of_admin_kill. Any groups
with this role, have the same privileges as those with the
Role_of_Administrators role, PLUS the ability to stop Tivoli
processes. You should not include the root user in this group.
Even if some other user performs an su to a user defined in this
group or to root, they will not be capable of killing any Tivoli

We have defined some variables in order to keep the LDF as generic as
possible. You may change them according to your installation, prior to the
profile manager definition, by editing the FW3.6_UX_LockDown.ldf file. Our
variables were defined as follows:

VAR
 BINMP=/usr/local/Tivoli;
 VARMP=/var/spool/Tivoli;
 TACFDIR=${BINMP}/TACF;
 INTERP=aix4-r1 ;
 HOSTNAME=dover ;

Note
66 Securing Applications with Tivoli Security Management

process, as TACF recognizes the original user ID and refuses the
action.

Role_of_Backup_operators
The Backup_operators Group and the Role_of_Backup_operators
has been created to grant access to users in charge of backing up
the system. Groups that have this role have Read access to all
resources defined in the LDF. The user back_op1 is defined as a
sample user.

4.2.3 TSM Resources in the Framework LDF
This section describes the actual resources protected through the LDF. Note
that in the Framework LDF, all resource protections are set to warning mode.
This means that TACF will perform the check and report on the defined result
but will always grant the access.

4.2.3.1 Files and Directories
Every FILE resource defined in the lockdown file, except the TACF FILE
resources, are assigned default access as Read Only and audit control on
both successes and failures. It is very important to have as much information
as possible in case you need to check the TACF log files through the secons
utility.The TACF resources are assigned the default access of None.

All binaries must be world executable as well as their directories:

${BINMP}/bin = [RX] audit(RA) ;
${BINMP}/bin/* = [RX] audit(RA) ;
${BINMP}/bin/${INTERP} = [RX] audit(RA) ;
${BINMP}/bin/${INTERP}/* = [RX] audit(RA) ;
${BINMP}/lib = [RX] audit(RA) ;
${BINMP}/lib/* = [RX] audit(RA) ;

During the installation time and during task creation or modification, the write
and update permissions are used. In our test environment, that responsibility
was assigned only to the root user. You might define other users to perform
this kind of operation, however, this user should be in a group with the
Role_of_Administrator role in the LDF.

There are some resources we do not want to grant read and execute only
access to. For example, the tasks and UserLink data stored in
$BINDIR/TAS need to be writeable.

Note
Lockdown Descriptions 67

4.2.3.2 Processes and Daemons
We have also defined both TACF and Tivoli Framework main processes and
daemons with default access of No Access protecting them from being killed.
We have considered the case where we have the TMR Server acting as both
Endpoint Manager and Endpoint Gateway.

PROCESS:${TACFDIR}/bin/seagent "TACF process" = [N] audit(RA) ;
PROCESS:${TACFDIR}/bin/seosd "TACF process" = [N] audit(RA) ;
PROCESS:${TACFDIR}/bin/seoswd "TACF process" = [N] audit(RA) ;
PROCESS:${BINMP}/bin/${INTERP}/TMF/LCF/ep_mgr = [N] audit(RA) ;
PROCESS:${BINMP}/bin/${INTERP}/TMF/LCF/gateway = [N] audit(RA) ;
PROCESS:${BINMP}/bin/${INTERP}/bin/oserv = [N] audit(RA) ;

Note that the built-in Framework authentication prevents unauthorized users
from stopping these daemons through Tivoli commands such as odadmin
shutdown or etc/Tivoli/oserv.rc stop.

4.2.3.3 Network Communication Resources
In a typical TME installation, three types of network servers are found:

 • The Object Dispatcher (oserv) on all Managed Nodes and Endpoint
Gateways

 • The Tivoli Management Agent gateway daemon (gateway) on all Endpoint
Gateways

 • The TMA daemon (lcfd) on all TMA Endpoints

The built-in security of the Framework includes a number of features to
prevent security problems with these services. In order for actions to be
performed, the principal initiating the action has to be authenticated and
authorized. There are also a number of actions that can be taken to reduce
the openings for an attack. These include oserv settings through the odadmin
command:

allow_client_install
This can inhibit the addition of managed nodes.

set_allow_rconnect
This determines whether or not administrators can connect to this
oserv using the Tivoli Desktop for Windows.

set_install_pw
This sets a password preventing a Tivoli administrator from
installing new products unless they know this password.

set_port_range
This sets the range of ports the oserv will use in addition to port
94.
68 Securing Applications with Tivoli Security Management

TMA endpoint connection rules can be determined through gateway policies.

If we wanted to implement further protection using TSM, we need to
remember the following: all managed nodes (including gateways) may
potentially communicate with each other and must communicate with the
TMR Server. Managed nodes may also need to communicate with nodes in
another TMR. TMA endpoints must be able to communicate with their
gateway, but it is not necessary for them to communicate with the TMR server
or other endpoints (from a Tivoli perspective).

The oserv daemon coordinates communications between the TMR Server
and all managed nodes and gateways. In a normal situation, It keeps the TCP
port 94 continuously open. However, if the data to be transferred is larger
than 16K bytes (alterable since 3.2), oserv establishes Inter Object
Messaging (IOM) and bulk data transfer (BDT) and allocates the next port
number available based on ephemeral ports and any port range set on the
oserv with odadmin set_port_range. The communication between TMA
endpoints and their gateway is done by using the TCP port 9494 on the
gateway and the TCP port 9495 on the TMA endpoint (Tivoli Framework
version 3.6 and 3.2 used TCP port 9494 on the Endpoint by default).
Endpoint to gateway communications does not use BDT/IOM.

We also looked at Inter-TMR communications. Multiple TMR servers can be
linked together and the communication between them is also done over TCP
port 94.

In our LDF, we locked the TCP port 94, TCP port 9494 and the TCP port
9495. Since the TCP port 94 is referred to in the /etc/services file as objcall,
we had to define the entry in the LDF by its name.

TCP:9494 "Lock TCP port 9494 " = [N] audit(RA) ;
TCP:9495 "Lock TCP port 9495 " = [N] audit(RA) ;
TCP:objcall "Lock TCP Port 94 " = [N] audit(RA) ;

After running the Framework Lockdown script and before distributing the
profile, you would need to open the Framework Lockdown Security Profile
and check the IP addresses defined to have access. Alternatively, you could

This port protection is included as an example of what can be done. Due to
the built-in protection provided by the Framework, we recommend the
removal of this type of port protection for most installations. You should
include this if you are concerned about certain types of attacks, such as
denial of service port attacks.

Note
Lockdown Descriptions 69

add a prolog script that determines these addresses and provides them to the
rest of the LDF as a variable. See Appendix B.2.3, “LDF PROLOG Section”
on page 113 for more details. They MUST include the IP addresses that need
to connect to the following ports:

To port 94:

 • The TMR Server, all managed nodes and gateways you have defined in
your Tivoli environment will need access including all managed nodes
from interconnected TMRs.

 • All machines that will need access to the TMR using the Tivoli Desktop.
 • All machines that should have access to the TMR using WEB Interface.

To port 9494:

 • All TMA endpoints that could potentially use the gateway must have
access to 9494 on the gateway.

 • All gateways will need 9494 access to 3.6 or older TMA endpoints.

To port 9495:

 • All gateways need 9495 access to any TMA endpoint they could
potentially be called upon to service.

4.3 The Lotus Domino Lockdown Module

Lotus Domino is a good example of an application for which we can provide a
meaningful lockdown module. You generally want to be sure that the data
files and logs are not accessed by anyone other than authorized
administrators. You also want to be sure that the Lotus daemons are not
accidentally killed. The information in this section details our considerations
when developing the sample Lotus Domino LDF.

Note that Lotus Domino has its own security built-in such as user
authentication. The aim of the module is to protect Domino resources even
further. Direct management of Domino, including the monitoring of processes
and the management of events, can be achieved through Tivoli using the
Tivoli Module for Domino.

With this configuration, for every new managed node, gateway, or TMA
endpoint you add to your Tivoli environment, you must first include its IP
address in the TCP ports Access list as appropriate and redistribute the
security profile.

Note
70 Securing Applications with Tivoli Security Management

4.3.1 Lotus Domino Considerations
Our design of the Lotus Domino Lockdown Definition File was based around
Lotus Domino version 4.6 running on AIX version 4.2.1. The resources to be
protected, the directory structure and running daemon processes, are the
same for Lotus Domino 5.0.

Development of this LDF depended on a Domino administrator providing
some basic information. This is how we expect modules can be developed in
production environments. The Tivoli Security Operator doesn’t necessarily
need to know how to install and operate the application. What he needs to
know in order to create a sufficient lockdown module is just a basic idea of
how the application works, how to start and stop it, and how to test normal
operation while tracing with the TACF log.

4.3.2 Design Considerations of the Lotus Domino LDF
Discussions with a notes administrator revealed that there are two basic
UX:FILE resources to be protected.

The first of these is the /dominodata directory. Access to this directory should
only be granted to one of the several server processes. One exception to this
is the notes.ini file. This has to changeable by the notes administrator in
order to properly administer the domino server. It will also be backed up by
the server process. Therefore, we have specified a resource definition for
/dominodata/notes.in*.

The second important resource is /opt/lotus or, as in our case, linked to
/usr/domino/lotus, the /usr/domino directory. The domino binaries to be found
in this directory only need to be executed by the domino administrator while
starting the server. If, on other platforms, the need for version updates arises,
you could implement another role with full access to this resource like
Role_of_DominoUpdate with resource rights of /usr/domino/* [F].

There are a number of Domino daemon processes that we specify in Tivoli
resource records of type UX:PROCESS. These must have full access to the
/dominodata directory, and they themselves should also be protected by
TSM. Note that in customized installations, there might exist other domino
processes besides the basic server processes. These would need to be
added to the lockdown file.

4.3.3 TSM Roles and Groups in the Lotus Domino LDF
For normal domino server operations, we found it necessary to grant the
server control capabilities to the domino administrator. This includes server
Lockdown Descriptions 71

start-up and shutdown as well as some more fine-grained control through the
notes.ini file. Also, the administrator has to be able to control certain Domino
processes such as the ability to kill these processes if necessary. However,
the domino server administrator should not have the right to access any files
within the /dominodata directory for security reasons; so, we protect the
databases against unwanted modifications.

Our LDF defines a number of security roles that can be allocated in your
group structure to those security groups that match the corresponding job
tasks. For example, if you have a group responsible for system maintenance,
you will probably want to add the Role_of_SystemBackupDomino to that
group. These roles are described below. However, we have also defined a
security group. This group has one member that we defined in Tivoli User
Administration prior to the Domino installation. The user in our group will be
the TMEUserMember notes with UNIX group notes. These user and group
records represent the user-ID and group-ID that the server processes are
running under. The security group definition in the LDF is as follows:

GROUPS
Domino_Administrator “Domino Administrator” = audit(LN,RN) ;

This user itself was defined in the Tivoli User Profile named
Domino4.6_LockDown_UP which resides as well as the Tivoli Security Profile
Domino4.6_LockDown_SP within the Tivoli Profile Manager
Domino4.6_LockDown_PM.

The following Security Roles were defined in the LDF:

ROLES
Role_of_DominoServerControl “Role of Domino Server Control” = (Domino
Administrator) ;
Role_of_DominoWebAdmin “Role of Domino Web Admin” = (Domino
Administrator) ;
Role_of_SystemBackupDomino “Role of System Backup for Domino Resources”
= (“AIX4.2_LockDown_SP:System_Administrators”) ;

The Role_of_DominoServerControl reflects the above-mentioned resource
Domino administrator.

Furthermore, we defined the role of Domino Web administration named
Role_of_DominoWebAdmin. This role is necessary to administer the Domino
server through the web-interface and it grants the following resource rights:

ACCESS
ROLE “Role_of_DominoWebAdmin” = /dominodata/domino [RX],

/dominodata/domino/* [F];
72 Securing Applications with Tivoli Security Management

The first line of resource rights is necessary to provide the ability to change
the directory to /dominodata/domino, and the second line gives full access to
the server web-interface binaries contained in this directory.

The last role, named Role_of_SystemBackupDomino, grants some resource
rights to the AIX backup facility. These resources are only accessible with
conditional rights:

ACCESS
ROLE “Role_of_SystemBackupDomino” =

/dominodata/* ,
/dominodata/* /usr/sbin/backbyname [R] ,
/dominodata/* /usr/bin/find [RX] ,
/dominodata/domino [RX] ,
/dominodata/domino/* ,
/dominodata/domino/* /usr/sbin/backbyname [R] ,
/dominodata/domino/* /usr/bin/find [RX] ,
/usr/domino/* ,
/usr/domino/* /usr/sbin/backbyname [R] ,
/usr/domino/* /usr/bin/find [RX] ;

This role is intended to enable the AIX system backup facility to create a
bootable system backup image. We don’t intend to use this role to backup
domino server data and, therefore, we don’t need a restore role.

Note that AIX system backups result in bootable system images which will
restore the complete system as it was at the time of the backup.

4.3.4 TSM Resources in the Lotus Domino LDF
The resources we need to take care of in this lockdown module are mainly
Lotus Domino server processes. This is why we have 19 processes defined
and only some basic directories in our implementation. These processes are
controlled through the main server process, which itself is started by the
domino start-up script. The data resources we protect are as follows:

RESOURCES
/dominodata/* "Domino Data" = [N] ;
/dominodata/domino "Domino HTML Directory" = [RX] ;
/dominodata/domino/* "Domino HTML Content" = [R] ;
/dominodata/notes.in* "Notes Initialization File" = [R] ;

Then, we ensure only read access to the domino binaries and processes:

/usr/domino/* "Domino Binaries" = [R] ;
/usr/domino/lotus/bin/server "Domino Startup Script FILE" = [R] ;
/usr/domino/lotus/notes/latest/ibmpow/adminp "Domino Process" = [R] ;
/usr/domino/lotus/notes/latest/ibmpow/amgr "Domino Process" = [R] ;
Lockdown Descriptions 73

... and so on ...

Then, we specify the default access for the PROCESS records such as:

PROCESS:/usr/domino/lotus/bin/server "Domino Startup Script PROCESS"
= [N] ;
PROCESS:/usr/domino/lotus/notes/latest/ibmpow/adminp "Domino Process"
= [N] ;
PROCESS:/usr/domino/lotus/notes/latest/ibmpow/amgr "Domino Process"
= [N] ;
... and so on ...

4.4 The Netscape Enterprise Server Lockdown Module

This lockdown was designed around Netscape Enterprise Version 3.6. Most
of the content will apply to earlier releases and is likely to continue to apply to
newer releases. The interesting thing about this LDF is that it could also apply
to many other products from the same company.

4.4.1 Netscape Enterprise Server Considerations
Because of the common Netscape Server architecture, many parts of this
lockdown module will apply to other Netscape Server products such as the
Proxy Server or the Fast-track Server.

This is due to the separation of the Administration Server and the application
server(s) which run as different processes and even under different user IDs.
To be more specific, Netscape always uses the same Administration Server in
its products; this is great in terms of security administration since we
essentially have reusable lockdown modules.

The Administration Server normally has to run under the root user ID in order
to properly control the application server(s). This means you can have more
than one application server at a time that will be generated, started, and
stopped by the Administration Server and that normally runs under a user ID
with only restricted operating system rights like nobody or, as in our case,
under the limited rights of the user netscape and group netscape.

The operating system user ID and group ID has to be created before the
actual product installation. In our case, this was done with Tivoli User
Administration and, therefore, resulted in a User Profile named
NS_EPS3.6_LockDown_UP that also resided as the Security Profile named
NS_EPS3.6_Lockdown_SP in the NS_EPS3.6_LockDown_PM Profile
Manager.
74 Securing Applications with Tivoli Security Management

4.4.2 Design Considerations for the Netscape LDF
While looking at the Netscape Enterprise Server resources we found that the
application home directory is a good starting point on the search for
resources to be locked down. So, you’ll see in 4.4.3, “TSM Resources in the
Netscape LDF” on page 75 our first resource to be in the ldf-file was the
application home directory /usr/netscape/suitespot itself. We applied the
default access of read [R] to this directory which will be enhanced using roles
to allow changing into this directory and other actions as appropriate. To give
basic protection to other application resources, we applied read access to all
resources contained in the /usr/netscape/suitespot/* directory.

We considered granting no [N] rights at all at this stage, but then every single
resource the application would need to read would have to be listed in the
resource list separately for role-based rights. Also, the UNIX permissions that
are not changed by TSM ensure a certain level of security. We also need to
consider the need for read access for backup purposes.

This was the basic step and it covered all UX:FILE based resources. To be
more specific for other resources and to have a proper resource list to apply
role-based resource rights, we further investigated the resources contained in
the application home directory. This is described in more detail in the next
section.

4.4.3 TSM Resources in the Netscape LDF
We started with the Administration Server directories, which, for obvious
reasons, have to be in the resource list for later role-based protection. At this
point, we discovered that the directory structure of the Netscape Enterprise
Server isn’t well separated from a security perspective. Log files are mixed
with configuration files, and binaries for the Administration Server are in the
same subdirectories as the application servers.

RESOURCES
/usr/netscape/suitespot "NS EPS Home Directory" = [R] ;
/usr/netscape/suitespot/* "NS EPS Home Directory Content" = [R] ;
/usr/netscape/suitespot/*-admin "NS Admin Server Control" = [R] ;
/usr/netscape/suitespot/admin*/* "NS Admin Server Conf/Log/ACL" = [R] ;
/usr/netscape/suitespot/admin-serv/logs "NS Admin Server Log Directory" =
[RX] ;
/usr/netscape/suitespot/admin-serv/logs/* "NS Amin Server Log Files" = [N]
;

Note that, in some cases, we use wildcards in directory names. This is to
avoid a dependence on specific installations. Netscape uses the host name in
these places.
Lockdown Descriptions 75

Besides the Administration Server, we discovered some resources for the
application server, the daemon binaries, log file directories, and some
database directories.

/usr/netscape/suitespot/alias/* "key-aliases" = [R] ;
/usr/netscape/suitespot/bin/admin/??/*.db "*.db" = [R] ;
/usr/netscape/suitespot/bin/admin/ns-admin "NS Admin Server FILE" = [R] ;
/usr/netscape/suitespot/bin/admin/ns-cron "NS Cron Daemon FILE" = [R] ;
/usr/netscape/suitespot/bin/https/admin/bin/* "db, mime" = [R] ;
/usr/netscape/suitespot/bin/https/ns-httpd "NS WebServer FILE" = [R] ;
/usr/netscape/suitespot/bin/https/uxwdog "NS Watchdog Daemon FILE" = [R] ;
/usr/netscape/suitespot/docs/* "NS docs Directory" = [R] ;
/usr/netscape/suitespot/https-*/* "WebServer Directory" = [R] ;
/usr/netscape/suitespot/https-*/logs/* "NS WebServer Log Files" = [N] ;
/usr/netscape/suitespot/manual/* "Manuals" = [R] ;
/usr/netscape/suitespot/plugins/* "NS EPS Plugins" = [R] ;
/usr/netscape/suitespot/userdb/* "NS User DB" = [R] ;

Note that, besides the daemon binaries, we also included the daemon
processes as UX:PROCESS resources in our list as well as the
Administration Server UX:TCP port giving only predetermined workstations
the right to access the Administration Server for control and modification
purposes.

PROCESS:/usr/netscape/suitespot/bin/admin/ns-admin "NS Admin Server
PROCESS" = [N] ;
PROCESS:/usr/netscape/suitespot/bin/admin/ns-cron "NS Cron Daemon
PROCESS" = [N] ;
PROCESS:/usr/netscape/suitespot/bin/https/ns-httpd "NS WebServer
PROCESS" = [N] ;
PROCESS:/usr/netscape/suitespot/bin/https/uxwdog "NS Watchdog Daemon
PROCESS" = [N] ;
TCP:8081 "Admin Server Port" = [N] pass(TCPAccess:"$TCP8081HOSTS") ;

Note that we need to pass this script a list of hosts that should have access in
the $TCP8081HOSTS variable.

4.4.4 Further Design Considerations of the Netscape LDF
Apart from the basic resource considerations, there are some more resources
and relations to be taken care of.

In terms of active daemons, we already discovered the Administration Server
process as well as the Application Server process(es). There are two more
processes which become active when special tasks within the Netscape
implementation have to be scheduled. These are the ns-cron (Netscape cron)
daemon and the uxwdog (watchdog) daemon.
76 Securing Applications with Tivoli Security Management

Unfortunately, most resource accesses are not handled by the daemon
processes themselves but through many tool programs which will be
launched by the main daemons. This makes it very difficult to apply proper
conditional rights within the role-based resource rights. We tried
experimenting with conditional access rights for the Administration Server
tasks but decided against pursuing this for the application server after finding
it nearly impossible to discover all the tools the application server is using for
its configuration features. Examples of the conditional access rights we gave
through roles can be found in 4.4.5, “TSM Groups and Roles in the Netscape
LDF” on page 77.

More necessary resource accesses were discovered after applying the
default resource rights and the basic role-based access rights. The only way
to find these resource accesses is to trace using the TACF log file either for
warning mode messages or for deny statements if not in warning mode. Note
that many of the Netscape administration/configuration tools can become
unstable if TACF denies them resource access. They then have to be killed
manually. Therefore, we recommend using the TACF warning mode while
exploring the range of the applied access rights for any application or while
testing this LDF in your environment.

4.4.5 TSM Groups and Roles in the Netscape LDF
This lockdown definition file comes with a simple group example structure
containing three groups:

GROUPS
Netscape_EPS_Administrators "Netscape EPS Administrators" = audit(LF,RF) ;
Netscape_EPS_Auditors "Netscape EPS Auditors" = audit(LF,RF) ;
Netscape_EPS_WebAdministrators "Netscape EPS WebAdministrators" =
audit(LF,RF) ;

Your own group structure might attach roles to more generic groups. For
example, a group named HQ_Server_Administrators might manage all server
applications; so, they would have something like the
Role_of_AdminServerControl (see below).

We introduce four Roles, two of them granting accesses for the
Netscape_EPS_Administrators Group:

ROLES
Role_of_AdminServerControl "Role of AdminServer Control" =
(Netscape_EPS_Administrators) ;
Role_of_WebContentAdministration "Role of WebContent Administration" =
(Netscape_EPS_WebAdministrators) ;
Lockdown Descriptions 77

Role_of_WebServerAdministration "Role of WebServer Administration" =
(Netscape_EPS_Administrators) ;
Role_of_WebServerAudit "Role of WebServer Audit" = (Netscape_EPS_Auditors)
;

Role_of_AdminServerControl
This role is intended to grant the necessary rights to start, stop,
and restart the Administration Server using three scripts named
start-admin, stop-admin, and restart-admin. In the ACCESS
section, we define this as follows:

ROLE "Role_of_AdminServerControl" = /usr/netscape/suitespot/*-admin [RX];

Role_of_WebContentAdministration
The main purpose of the Netscape Enterprise Server is to serve
clients with the requested web-content. This content needs to be
administered as well. In larger implementations, it might be useful
to introduce some more specific roles for this content
administration area while applying rights to a more structured
web-content directory:

ROLE "Role_of_WebContentAdministration" = /usr/netscape/suitespot/docs/*
[F];

Role_of_WebServerAdministration
Besides the right to start, stop, or even kill the daemons, this role
grants four main access blocks to the administrator. The first are
the administration rights for the Administration Server itself -
implemented with conditional access rights and preventing any
unauthorized configuration for this part of the application being
run under the root user ID. Second, we added the necessary
conditional rights to the /usr/netscape/suitespot/alias/* resources
containing the authentication keys and key aliases. Third are the
conditional rights to the application server log files to prevent
tampering with these security-relevant files that might contain
user-related information as well. And, finally, we add the
necessary conditional rights to control and maintain the Netscape
user database if kept in a local LDAP structure. (See the LDF for
the full role definition.)

Note that, in this more general implementation, some specific resources
require conditional access rights (such as /usr/netscape/suitespot/admin*/*
/usr/bin/mv [F]). These native unix programs are mostly used to control log
files, to create them if necessary or to rotate them if specified. To prevent the
administrator from using these files for administrative tasks not intended by
the developers, one might want to investigate the application in more detail.
This results in a longer resource list, more role-based conditional rights, and
78 Securing Applications with Tivoli Security Management

the potential for problems when upgrading to newer versions. Remember, the
normal UNIX rights exist to provide some protection for the operating system
resources.

Role_of_WebServerAudit
A group with this role is able to administer the Administration
Server log file thus providing the ability to separate general server
administration from auditing. This is achieved with a simple
definition as follows:

ROLE "Role_of_WebServerAudit" =
/usr/netscape/suitespot/admin-serv/logs [RX],
/usr/netscape/suitespot/admin-serv/logs/* [F];

4.5 The Oracle Lockdown Module

Relational databases are a common choice for security protection. You
generally want to be sure that the database files and logs are not tampered
with by anyone other than authorized administrators. You also want to be
sure that the database daemons are not accidentally killed. The information in
this section details our considerations when developing the sample Oracle
LDF. This can be a useful starting point for considering other databases and
similar applications.

Note that most RDMBSs have some form of security built-in such as user
management. The aim of the module is to protect database resources even
further.

4.5.1 Oracle Considerations
The first goal of the Oracle Lockdown is to allow only database administrators
(DBA) full access to the resources that compose the Oracle server. Oracle
operates in a fairly simple manner, for example, in its use of processes.

Potential resources for protection can be divided into the following groups:

 • Database files
 • Audit logs
 • Configuration files
 • Binaries

Most of the resources are also grouped into different directories according to
their general purpose.

The directory structure for Oracle database installations is set by the Oracle
Financial Analyzer (OFA) standard. The Lockdown module considers the OFA
Lockdown Descriptions 79

standard and has been designed to adapt to different options. This directory
structure ensures the grouping of the resources and makes it easy to lock
down entire directories within the installation. OFA assumes that all
directories are created under a group of mount points.

All the Oracle programs run under the oracle account. This user is also the
owner of all the files under the OFA mount points. So, this user installs the
software and runs it. Some activities require the root account during
installations. The Lockdown Module is designed to be applied after the
database software has been installed.

Oracle itself runs as a set of daemons. On the process list, each instance of
the daemon has a different name, but, the binary is the same for all of them
(the oracle executable in the bin directory). All access to the database files is
done by this program; so, other users and programs do not need direct
access to these files. Starting and stopping the database involves another
program called svrmgrl; this program starts the oracle program.

Most programs have to read configuration files that exist within the OFA
directory structure. These files should only be updated by the DBA since
erroneous changes may cause problems in the operation.

The heart of Oracle lies in the data files and the control files. Control files are
used to define how to load the databases, and the data files are the data that
composes the database. Once these have been loaded, everything is
handled by Oracle-specific authentication and security schemes.

4.5.2 TSM Roles in the Oracle LDF
In the operation of an Oracle database, there are several job tasks and,
therefore, roles that can be easily identified. They correspond to the main
activities performed when operating the database:

Administration This involves changing configuration files and modifying
the way the database works. This also involves installing
and updating software.

Backup Backup is done in two ways in Oracle. Incremental backup
is done by copying the archive (transaction) logs. The full
backup is done by copying the data files on an instance
that is not operating.

Restore Restoring involves copying back data files and then
applying transaction logs (archive logs) on the restored
files. This is normally done from outside the daemon
processes using OS-specific copy mechanisms.
80 Securing Applications with Tivoli Security Management

Operate Starting and stopping the database is required here. It
may be necessary to stop the database in order to change
the configuration or to perform a backup, stop the host,
and so on.

Use This is the catch-all class of activity; most really important
activity is done here but only using the database programs
to access data files. Essentially, all that is needed is to
connect from the database daemon, and it will handle the
actual operation.

This may not be the extensive list of activities and roles needed, but it covers
most of the activities to be dealt with from the TSM point of view.

4.5.3 Goals of the Oracle LDF
The Oracle Lockdown was designed to allow the Oracle database to continue
its normal operation while protecting the data files from other users including
root. The oracle user account is assumed to be the one on which the daemon
is executed.

Backup and restore operations must be possible, otherwise, the database
directory should be restricted to access only through the daemon.
Configuration files should be protected so that only a valid database
administrator (DBA) can handle them. An operator must be capable of
starting and stopping the database. Installing new binaries must be possible,
but only a DBA is allowed to use them.

The oracle user should not be used as a work account. DBA and operators
should log in using their normal account and then switch to the oracle user.
This allows the server to run on the oracle account while maintenance tasks
are handled by other accounts. This allows a finer control to be granted to the
oracle account. Under TACF, authorizations for UNIX user activities will be
checked against the account they logged on this.

The purpose of this design is to ensure that only database administrators
have complete access to the data files. These files should only be handled by
the daemon, and, thus, having other users (such as root) accessing them can
be potentially dangerous. Oracle’s default installation is already reasonably
secure. The goal of this added level of security is to avoid accidental
shutdown of the instance or damage to the data files.
Lockdown Descriptions 81

4.5.4 Design Considerations of the Oracle LDF
Determining what to lock down was done by analyzing the TACF trace logs.
This allowed us to determine which resources where used and what kind of
access was needed. It also allowed an easy verification of the resource
names. Since the resources include many wild cards, being sure the correct
resources are being protected is crucial. To achieve this, TACF was placed in
warning mode to test the module.

The trace file included all information necessary to determine the resources.
It includes what program, what file, what kind of access, what rule (resource
name) was used, and if it was accepted or not.

To determine exactly what was being treated, we stripped all the irrelevant
information from the trace output. The result was then sorted out and
analyzed. The analysis of the file accesses alone allowed us to determine
how the Oracle Database starts up.

The next step involved determining which roles would be created. This
process is somewhat difficult because there are no set rules for the definition
of roles. A simple approach is to make two levels: users and administrators.
This is a valid set of roles but lacks the refinement that may be necessary in a
complex environment.

The final choice was for a more divided structure. In a database, we have the
programs that service the clients, the administrators, and the users as basic
roles. Also commonly used are roles for backup and restore of the database
as well as starting and stopping the service. These were listed above and
chosen as the ones to be created.

Users will have the default access. There was no intent of eliminating any
user from using the client part of the server. The reason is that Oracle itself
can filter out undesired users (by means of its internal user authentication).
So, default access to the resources should allow anyone to use the client
part.

The other tasks require more access to the datafile, audit, and configuration
directories. Each of them has a different access level. Backup can read the
datafiles, and restoring it may be necessary to write to the directory. The write
access is necessary because backup in Oracle can be done by copying the
datafiles. If this kind of external backup is not used, the role of restore should
not be used.

Administration was granted full control to the binary, audit, and configuration
files. Configuration and binaries must be accessed by the DBA, but the audit
82 Securing Applications with Tivoli Security Management

files can be protected. Whether to protect them or not is a site specific issue
and the general LDF does not protect them from the DBA. One reason is that
the DBA is normally the person best suited to study these files, but this may
not be the case in all places.

One interesting effect of protecting the audit logs is that, if the user cannot
write to the logs, he cannot start or stop the database service. Service
start-up and shutdown is handled by a server manager application (named
svrmgrl). This program has to be able to write an audit trail; if it cannot, it will
not work. As a result of this characteristic and the design of the LDF files,
only Operators can start and stop the database (DBA is a child role of
Operators; so, a DBA can also start and stop the database).

The daemon that runs the service can be started by any user in the operator
group. But, due to Oracle’s design, the service runs under the name of the
user that started it. So, to avoid the server running in a user account the
operator must switch to the oracle user prior to starting the server.

This also means that anyone that starts the server must have the same
conditional access to the data files as the oracle user. This is a problem in the
lockdown design. It is impossible to completely isolate the oracle user since it
is needed to effectively run the database. The oracle user is granted a DBA
access to the resources. This is not a severe restriction because, normally,
the DBA will log in as the oracle user to perform activities. But, attempts to
design a lockdown module that isolates the oracle user could also be
considered.

Start-up of the database was tricky and required many grants to work
effectively. Another problem encountered occurs when using the client tools.
If the Oracle Listener is not active or the connection is done in a local level
(not using the listener), the user must run the daemon process. This is how
the client tool works on the same machine. This means that all the users
would have to have conditional access to the data files. This is highly
undesirable and potentially dangerous. So, the LDF is written to allow
connection only through SQLNet (Oracle’s network connection API). An
attempt to do it directly will result in error messages.

4.6 The Windows NT Operating System Lockdown Module

In this and other Redbooks concerning Windows NT, we strongly recommend
and assume that NTFS is being used versus FAT, a topic discussed in the
redbook Tivoli Security Management Design Guide, SG24-5101. NTFS brings
additional features such as local folder and file-level permissions, ownership,
Lockdown Descriptions 83

and auditing. An understanding of the Windows NT operating system and its
relationship to TSM is the first step in considering resource requirements.
This section is not intended to explain in detail the NT operating system or
TSM, but, instead, we will look at the capabilities of TSM with NT in order to
understand what we need to look at with regards to managing the protection
of Windows NT resources. Refer also to 3.3.2, “Windows NT 4.0
Considerations” on page 47 where we discuss other considerations of TSM
for NT.

The Tivoli security model with groups and roles maps closely to the one that
is implemented in the Windows NT operating system. The Tivoli security
groups correspond to the Windows NT global groups, and the Tivoli security
roles correspond to the Windows NT local groups. The Administrator account
natively has full control of resources and is treated the same with TSM.

In our LDF, the TSM group Domain Users and TSM role Users are equated to
the Interactive NT group Everyone; so, by locking down resources with
Default Access, you are locking/changing Everyone’s access to that
resource. The overall picture of locking down the Windows NT operating
system was from the most restrictive (Users) to the most open
(Administrators) with varying degrees in between for the roles, again,
because the administrator account must have full control of NT by default, we
did not attempt to separate many different administrative abilities. In TSM for
Windows NT, it is much easier to add restrictions and child groups and roles
than it is to remove them. This lockdown provides protection on a standard
domain-structured (versus peer to peer) Windows NT network using native
global and local groups and users. In 3.3.2, “Windows NT 4.0 Considerations”
on page 47, we give ideas and considerations for the general use of TSM to
manage Windows NT access control.

This lockdown file does not include shares or printer resources due to the
very site-specific nature of these resources, and note that TSM 3.6 does not
manage Native NT shares, that is, Admin shares that contain the dollar sign
($). See also 3.3.2.6, “NT:PRINTER” on page 52 and 3.3.2.3, “NT:SHARE” on
page 50.

Every NTFS file and directory has an owner who has a special status. The
owner of that resource can manage the permissions of that resource as if
they were the Administrator account. They can even deny the Administrator
the right to access that resource. The bottom line is that resources created by
the user are owned and managed by the user unless the Administrator takes
ownership. Windows NT allows you to modify the way Windows NT treats the
permissions of file owners (specified through the Windows NT group
CREATOR OWNER). TSM 3.6 does not provide any facility to alter the way
84 Securing Applications with Tivoli Security Management

Windows NT treats the permissions of the CREATOR OWNER group. If you
must modify these permissions, you must use native Windows NT tools.

In creating the lockdown file, we started by populating a profile using the TSM
populate utility, populating the groups, roles, and the NT user rights. In a
standard installation, populating creates TSM security groups and roles from
the NT Global groups and local groups and the TSM security resources as
follows:

Security Groups (NT Global Groups):
Domain Admins, Domain Users, Domain Guests.

Security Roles (NT Local Groups):
Administrators, Backup Operators, Print Operators, Account
Operators, Replicator, Power Users, Users, Guests.

Resources:
NT:SYSTEM from NT User Rights. In version 3.6.1 NT:PRINTER
and NT:SHARE resource types will also populate but we do not
include these in our LDF for reasons already stated.

We implement our security management in two stages. First, we secure
certain resources (such as sensitive directories, files and some registry
entries) with security resource records that define a restricted default access
level. Then, we allow specific roles a greater capability over those resources
by modifying the NT user rights for those roles. This provides us with the level
of protection we desire without having to individually name a large number of
file and directory resources to be modified in all the roles.

For the lockdown, we removed the management of the group Domain Guests
and the role Guests from the populated profile; we do not need to manage
these in our LDF to achieve what we need. We suggest that depending on the
company’s security policy and legacy or current architecture, Guest groups
and roles should not be managed from TSM. By default, Windows NT has the
Guest accounts disabled, and unless the customer/company has allowed
guest access, it should remain disabled. If the customer has the guest
account enabled, lockdown of the guest role needs to be done according to
the requirements that the company security policy has set for that account.

This lockdown also does not manage the roles of Print Operators, Server
Operators, and Replicator, since their use is likely to be unique for each
production site. We have designed this lockdown file so that if those roles are
desirable, modification of this lockdown to accommodate those roles would
be easier than to remove those roles and adjust the resources if they are not.
Lockdown Descriptions 85

4.6.1 TSM Roles and Groups in the Windows NT LDF
The roles we defined and the groups we used to demonstrate them were
defined as follows (note we must use double quotes for strings that contain
spaces):

GROUPS
"Domain Admins" "Designated administrators of the domain" =
(newadmin,Administrator) audit(LF,RF) ;
"Domain Users" "All domain users" = (newuser,testuser) audit(LF,RF) ;

ROLES
"Account Operators" "Members can administer domain user and group
accounts";
Administrators "Members can fully administer the computer/domain" =
("Domain Admins") pass(NTGroups:"Domain Admins") ;
"Backup Operators" "Members can bypass file security to back up files" =
pass(NTGroups:"Domain Users") ;
"Power Users" "Users with the right to shutdown a system" = ("Domain
Users") ;
Users "Ordinary users" = pass(NTGroups:"Domain Users") ;

The roles were determined as follows:

Administrators
Groups with this role (such as Domain Admins which includes the
Administrator user in our example) have access rights determined
by the NT:SYSTEM user rights. We grant this role the rights S RS
RA MD MA B RB CT ID TO which can be interpreted using Table 2
on page 87. This effectively gives users in groups with this role full
access to manage the system.

As with other LDF examples, we have not set access time
restrictions. Access times can be set at a production site if there
are clear working times of the employees, and company policy
does not allow work after hours for reasons such as classified
working environment, physical security, and so on.

Users
Groups such as Domain Users that have his role have their access
rights determined by the NT:SYSTEM user rights RA. This can be
interpreted by Table 2 on page 87 and allows the user to access
this computer from the network.

Account Operators
Groups with this role receive access based on the NT:SYSTEM
user rights RA MD. From Table 2 on page 87 we can see the MD
right allows groups with this role to manage the domain by adding
86 Securing Applications with Tivoli Security Management

workstations and member servers. This is in addition to the same
remote access right also given to those with the Users role.

Backup Operators
Groups with this role receive access based on the NT:SYSTEM
user rights RA B. From Table 2 on page 87 we can see the B right
allows groups with this role to perform backups in addition to the
rights of the Users role. Being able to backup the data does not
mean they have full access to it. If they were able to restore the
data the ACLs for the data will also be restored along with it.

Power Users
Groups with this role receive access based on the NT:SYSTEM
user rights S RA. From Table 2 on page 87, we can see the S right
allows groups with this role to perform a shutdown in addition to
the rights of the Users role.

As you can see, Windows NT operating system resource protection
management is achieved with our TSM roles through assigning only one
resource, NT:SYSTEM user rights. This is because of the NT built-in (or
INTERACTIVE) group Everyone. Individual resources in this LDF need not be
assigned to every role. We create the resources in TSM to apply the default
accesses which will assign permissions to everyone including the group
Domain Users.

We use NT:SYSTEM user rights resource in our roles to modify the rights in a
more global fashion. The rights are summarized in the following table (see
also the discussion of the system resource type in 4.6.2.1, “System” on page
89):

Table 2. Windows NT Rights

LDF / CLI
Option

Name in Tivoli
Desktop

Name of Windows NT Right

S Shutdown Shut down the system

RA Remote Access Access this computer from network

MA Manage Audit Manage auditing and security log

RB Restore Restore files and directories

ID Install Devices Load and unload device drivers

TO Take Ownership Take ownership of files and other objects

RS Remote Shutdown Force shutdown from a remote system

MD Manage Domain Add workstations and member servers to domain
Lockdown Descriptions 87

The Windows NT Account Operator role, Backup Operators role, and Power
User roles are not assigned to a TSM group because the created resources
default access rights will apply to all roles (Windows NT local groups). In this
LDF, we do not assign example groups to all the roles available. In a
production site, you will have groups based on the company, and certain
groups will have these roles.

If you need to protect resources in a more granular fashion than the NT rights
system allows, you will need to specifically name those resources in the
security role and modify the access permissions accordingly. For example, if
you need groups with the Users role to be able to write to a certain directory
that normally they would not have access to, you would need to name that
directory as a resource in the User’s role and set the permission for the role
on that resource to Write.

It is not advisable to assign rights and resources to individual users because
this defeats the object and benefits of role-based management. It makes
administration more difficult and increases the possibility of leaving
undesirable access rights with a user. Although it is possible to specify
individual users in resource access control in Windows NT, this capability is
not exposed through TSM, and we recommend that you avoid doing it.

In a production site, it should be mandatory to place resources in each role to
change access permissions and auditing based on the role’s job function and
according to what files will need to be secured. In this LDF, no application
program files were included, just the operating system files and directories.
Resources for each role can be added or altered with protection for
applications on a workstation and server.

B Backup Back up files and directories

CT Change Time Change the system time

LL Local Logon Log on Locally

LDF / CLI
Option

Name in Tivoli
Desktop

Name of Windows NT Right

Users and new users being added to a system should be placed in a group
with the User’s role. This ensures they will fall under the default access
permissions.

Note
88 Securing Applications with Tivoli Security Management

Our aim in the LDF was to tighten the default accesses on resources and
rights for the role Users. The Administrators role has full control with no
restrictions; so, the role of Administrators is effectively exempt from the
default accesses we set on the resources. A recommended model for
managing Windows NT is that very few people have access to the
Administrator (or equivalent) login ID. The tasks people need to perform will
depend on the job roles they have that we implement in Tivoli security roles -
and, where possible, these roles have their access defined by the NT user
rights.

The key to this LDF was modifying the default accesses to certain key
resources. This can be used as a base secure lockdown role that can be built
upon by granting access at higher levels (such as Power User, Server
Operator). In the case of a company that requires the Guest account, even
tighter restrictions can be imposed. Default access in NT is the foundation for
developing a good security architecture with TSM.

4.6.2 TSM Resources in the Windows NT LDF
This section details the actual resources defined and protected in the LDF.

4.6.2.1 System
Populating the resources in NT with TSM 3.6 maps the NT User Rights to a
Tivoli security SYSTEM resource named User Rights. NT User Rights is the
core facility for granting permissions to a TSM role. Since this is the basis for
how roles are developed in NT as well as in TSM, and since you should only
have one resource type of NT:SYSTEM being distributed to any given target,
we will explain some more about what the User Rights are, what they can do
for TSM, and how important they are in this LDF.

The user rights policies in native NT are accessed using Administrator Tools.
The User Rights Policy grants task or job rights as opposed to resource rights
(permissions) to the NT local groups (mapped to and managed by TSM
roles). Rights such as Shutdown the system, Access this computer from
network, Add workstations and member servers to domain, and Log on locally
are just a few. Part of the TSM product documentation, the Tivoli Security
Management User’s Guide, lists the rights handled by TSM. The base rights
that we used for a standard user (through the Users role) was Remote
Access allowing for login of a user no matter which domain architecture a site
was using. Advanced user rights such as Bypass traverse checking or Create
a token object, and Debug programs are not managed by TSM. If these rights
are required, the NT user rights policy tool must be used.
Lockdown Descriptions 89

As stated earlier, the base user role in the LDF is assigned Remote Access.
Administrators have all rights given to them in Native NT. In the middle levels
of access are the roles of Power User which have the file access permissions
set by the defaults in the resource records (they are not modified by the role)
plus the ability to Shutdown the system in the NT:SYSTEM resource record
user rights. Backup Operators have the NT:SYSTEM user right of Backup.
The reason we don’t have to give them more than just default access
permissions for the files and directories we are protecting in our resource
records is because the native NT Backup files and directories right overrides
access permissions granted to individual files and directories for backup
purposes. If this was not the case, we would have to assign them
administrator abilities or read access to otherwise protected directories.
Account Operators have the added rights to Manage Domain.

4.6.2.2 Files and Directories
The files and directories resources are the most time-consuming. This LDF is
based on the documentation from Trusted System’s NSA study paper,
Microsoft Corporation’s security paper, and Microsoft’s knowledge base for
Windows NT operating systems.

We have included part of a Framework 3.6 lockdown in case the Windows NT
system is also a managed node. This can be removed if this is not the case.
The following directories are assigned to No Access with auditing set to
SUCCESS; so, if a user was trying to access the directories/files, it would be
logged.

DIRECTORY:"c:\Secmgmt" = [N] audit(RS)
DIRECTORY:"c:\Tivoli" = [N] audit(RS)
DIRECTORY:"c:\Tivoli\trip" = [N] audit(RS)

With the native NT architecture running services and programs using the
internal Windows NT SYSTEM group, denying access to these directories
has no effect on Tivoli functions (like oserv.exe and odadmin). We do not
modify the Windows NT SYSTEM group in our LDF - TSM does not allow this
operation, and any attempt to do this locally should be subjected to rigorous
testing.

The nerve center of the Windows NT operating system is the winnt\system32
directory and the files that fall under it.

DIRECTORY:"c:\WINNT\system32\" = [R]
"c:\WINNT\system32*" = [RW]

The LDF example above shows that the directory is set to Read only, and
newly created files will be set to read and write. TSM 3.6.1 has a finer grain of
90 Securing Applications with Tivoli Security Management

permissions in its ability to manage the directory and file resource types, and
it is possible to restrict all existing files in the system32 directory in 3.6.1. The
use of the tools in 3.2.1, “Watching Windows NT Applications” on page 32 will
be needed if that ability is employed to ensure that you are not denying
access to a vital file in the system32 directory.

The RAS system shown here with the NT:DIRECTORY and NT:FILE
resources are:

DIRECTORY:"c:\WINNT\system32\ras" = [N]
"c:\WINNT\system32\ras*" = [N] audit(RN)

They have been assigned No Access due to the security implications of using
the Remote Access Service. If you use RAS, this will have to be modified to
fit your needs.

Included in the LDF are the registry editing tools, but, as explained in 3.3.2.4,
“NT:REGISTRY” on page 50, there are many work-arounds to this, but, for the
standard user, it prevents accidental editing by curious accountants and
administrative assistants. Refer to 4.6.2.3, “Registry” on page 92 to see how
we can protect the registry entries themselves.

"c:\WINNT\Reg.reg" = [N]
"c:\WINNT\Regedit.exe" = [N] audit(RS)
"c:\WINNT\system32\Regedt32.cnt" = [R] audit(RS)
"c:\WINNT\system32\Regedt32.exe" = [N] audit(RS)
"c:\WINNT\system32\Regedt32.hlp" = [R] audit(RS)
"c:\WINNT\system32\Regsvr32.exe" = [N] audit(RS)

We have protected the .ini files from users trying to change setup
configurations to fit a possible back-door at a later time; this also prevents
accidental damage of the files from inexperienced operators.

"c:\WINNT\system.ini" = [R] audit(RS)
“c:\WINNT\win.ini - [R] audit(RS)

The standard network executables for accessing other systems and for
investigating or scanning the network are the next items protected.

"c:\WINNT\system32\FTP.exe" = [N] audit(RS)
"c:\WINNT\system32\Finger.exe" = [N]audit(RS)
“c:\WINNT\system32\telnet.exe” = [N] audit(RS)

In most situations, none of these tools are required to do a standard user’s
job. Users who are serious about executing most of these types of files can
go to the Internet and download similar programs which will give them the
same functions. TSM 3.6.1 has a finer grain of ability to prevent execution of
Lockdown Descriptions 91

newly created files and directories that could also prevent this addition of
outside tools from happening.

Familiar to most users, the following files are usually accessed from the main
window using the Start button or through the CTL-ALT-DEL key sequence.
Setting the default accesses on these files prevents the standard user from
accessing the Task Manager from the Command line.

"c:\WINNT\system32\cmd.exe" = [N] audit(RS)
“c:\WINNT\system32\taskmgr.exe = [R] audit(RS)
“c:\WINNT\system32\taskman.exe = [R] audit(RS)

The next resources are UNIX-style commands.

"c:\WINNT\system32\rcp.exe" = [N] audit(RS)
"c:\WINNT\system32\rexec.exe" = [N] audit(RS)
"c:\WINNT\system32\rpcss.exe" = [N] audit(RS)
"c:\WINNT\system32\rsh.exe" = [N] audit(RS)

Restricting the use of these files prevents work-arounds to accessing other
machines especially UNIX boxes. In UNIX, the Tivoli security resource
UX:TCP is used to restrict access to other machines using TCP, and
UX:CONNECT restricts access through programs like these. We do not have
the same resource type currently for Windows NT; so, to prevent access, we
have locked these down as individual files.

4.6.2.3 Registry
To protect the registry from users, we have attempted to remove access to
the various registry editing programs using files resources in the previous
section. However, as mentioned earlier, for someone who wants to modify the
registry, locking them out of editors will not be sufficient. This LDF assigned
Read only access on some of the more important hives and keys in Windows
NT. The LDF did not attempt a lockdown of any program’s or application’s
registry keys.

Windows NT does protect itself from even the administrator accounts on
certain important keys such as HKEY_LOCAL_MACHINE\Security which
stores the security information and HKEY_LOCAL_MACHINE\SAM which
contains the user and group security information. Important keys to protect
are HKEY_LOCAL_MACHINE\Software (by default Everyone has Read
access only) and HKEY_LOCAL_MACHINE\System (again, Read by
Everyone is the default).The LDF is just a sample collection of what should be
locked down as a minimum.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion
contains several hives that we found to be of value in applying a read-only
92 Securing Applications with Tivoli Security Management

access permission to a standard user. At a production site, It is recommended
that you create resources with default values even if NT already contains that
same permission by default. This is the case in many of the registry entries
we defined in the LDF. The reasoning behind this is that in a large
environment, changes from administrators, whether intentional or
unintentional, can change defaults to open up resources without being
noticed. If a profile contains the resource, upon distribution, any NT default
resource that may have been changed can be set correctly through a profile
distribution.

4.7 The AIX Lockdown Module

Securing operating systems requires much more work than just locking down
a single application. There are several aspects you must keep in mind,
especially in the case of UNIX operating systems where we implement a
second layer of security - the Tivoli Access Control Facility (TACF).

We can use the fact that the native operating system security is still
operative, and we can use TACF to implement stronger, consistent,
role-based resource access rights. The important thing to avoid is the
disruption of normal operating system operations. Therefore, the
development of an operating system lockdown module is a longer process
that should include continued testing and monitoring after implementation.
The TACF log file should be used extensively to watch for operating system
internal problems that might not be noticed otherwise. We recommend the
use of the forwarding of serious TACF errors to the Tivoli Enterprise Console
once the implementation is in use.

While UNIX operating systems can be regarded as generally secure, they
have one real problem in the case of distributed administration - the special
position of the super user root. Once an administrator has to log on as root in
order to perform administration operations, he or she is granted universal
operating system rights - rights you might not want to grant in certain
environments. Even if there is no malicious intent, systems can be rendered
inoperable by genuine mistakes. TACF treats root in the same way as any
other user when deciding whether or not to grant access to a resource.

Therefore, TACF is the perfect tool to split the universal root rights into
specific job tasks (roles) which can be granted to groups of administrators
according to their needs. There are many advantages for doing this, and you
will have seen examples in our application lockdown modules. The
administrator logs in using their own (non-root) ID and then switch user (su) to
Lockdown Descriptions 93

root if required by the function. The activities that administrator can perform
(including the ability to su to root) are all determined by TACF rules.

Again, note that this is done by implementing a second layer of security to the
UNIX operating system in a non-intrusive way, that is, without the need for a
kernel rebuild.

To use the role-based security functions, it is best to prevent direct root logon
to the system, and, instead, force the administrators to su to root. Doing so
enables the operating system to log these actions into a log file and gives
TACF the opportunity to identify the original user and grant the corresponding
rights.

Unfortunately, in the case of operating systems, these role-based resource
rights require the discovery and evaluation of many operating system
resources, and, therefore, a deeper understanding of the operating system
and its resource functions and dependencies. The AIX LDF described in the
remainder of this chapter should be carefully examined and adapted to your
individual needs as well as being thoroughly tested for proper operating
system functions.

4.7.1 AIX Considerations
AIX has natively offered a form of role-based security function since version
4.2.1. Tivoli Security Management doesn’t use these capabilities because
they are not available or consistent with other UNIX platforms. However,
some helpful AIX role definitions can be found in /etc/security/roles to give
you an idea of what additional roles might be useful in your environment.

Note that certain AIX Installations might be different depending on the
installed AIX version or the installed filesets. Furthermore, the provided
resource list might not match the reality due to the fact that some
security-relevant files have to be created manually in order to take effect.

As mentioned above, TACF uses the login-ID the user originally logged in
with to apply role-based resource rights to the user. We could try to restrict
the capabilities of root and grant all the necessary rights to individual users to
allow them to perform root-type functions. It is much simpler and easier to
maintain a configuration where users switch to root as they need to when
working on the system. Therefore, it is necessary to prevent the root user
from direct system logons. This can be done using the AIX SMIT utility smit
chuser, then select -> root -> User can LOGIN (REMOTELY)? -> ’false’ . For
systems in a physically secure environment, one might still grant local logins
to root using the system console and only prevent remote login attempts.
94 Securing Applications with Tivoli Security Management

Another important AIX system feature is the option of creating bootable
system backups (mksysb). To create the corresponding file archive, the
system needs to read every UX:FILE resource. This has to be kept in mind
when defining default resource rights of none [N]. In our lockdown modules,
we therefore defined a SystemBackup Role defining conditional rights to
these resources. This role was granted to our sample System_Administrators
group in order to perform these system backups.

Note that TACF itself defines three UX:FILE resources with default access of
none. To change this for our backup role, we had to include these resources
in our resource list for granting the required rights. Another way of granting
access to these resources is to make the backup program a privileged
program. We didn’t test this, but the following description was found on the
Tivoli support web page:

Question: mksysb fails on a box running TACF as root - cannot access
“/usr/local/Tivoli/TACF/seosdb”

Answer: The seosdb directory entries are protected by TACF. You can
make the backup program a privileged program which should allow it to
work with this directory. You will need to update a file called privpgms.init
which (by default) resides in /usr/seos/etc.

If the file does not exist, an internal list is used. When the file is created it
is used instead. You should check what is currently used. Look at the
startup messages for “INFO: privileged program xxx is registered”. Each
program listed needs a separate line in the new file. A line should then be
added for the backup program. Each entry (line) should give the full path
name to the program. You will then need to restart TACF and check that
the backup program is in the startup messages.

Before showing you the LDF details, there is one more AIX security feature
we want to mention. AIX provides a script named /etc/securetcpip to disable
certain insecure programs like tftp, rcp, rlogin and so on. You should consider
running this script as a part of your security policy.

4.7.2 Design Considerations of the AIX LDF
Where to start is generally answered more easily in the case of locking down
applications. It is more complicated in the case of operating systems.

One can check the current user ID that TACF will base its security
decisions on by invoking the sewhoami command.

Note
Lockdown Descriptions 95

A good starting point is to identify a basic collection of security-relevant
resources to include in the lockdown definition file. Another starting point
would be to consider the requirements of one or two specific roles like
System Administrator or Network Administrator. You can then start assigning
resources to these roles.

In our case, it turned out to be a bit of both. We started with some roles we
wanted to implement and discovered many resources we wanted to assign to
these roles. Then, while discovering many more security-relevant resources,
the need for more roles became apparent and so on.

You should be careful not to completely lock out the root or tmesec users
while distributing resource definitions to the system that are set too strong
and end up preventing normal operating system functions. It proved to be
helpful having a tmesec session open for test and problem determination
while distributing new profiles. You might also want to deactivate the
automatic TACF daemon startup in /etc/inittab while running the system in
development mode.

While we normally recommend the TACF warning mode when designing and
testing application lockdown modules, we preferred to work without this TACF
feature in the case of the AIX lockdown to immediately notice malfunctions in
the operating system. While tracing for deny-messages in the TACF log file,
the operating system turned out to be very stable when denying resource
access and providing the user with meaningful error messages.

4.7.3 TSM Resources in the AIX LDF
As already mentioned, we started our resource investigation with some
security-relevant files like /etc/passwd and /etc/security/passwd of the type
UX:FILE. While reviewing the AIX LDF, you will notice that we tried some
relational resource access with these files due to the fact that user relevant
information is stored in here.

The first two roles we tried to implement were the
Role_of_SystemAdministrator and Role_of_NetworkAdministrator resulting in
some more resources of type UX:FILE, including several system startup and
configuration files.

This activity showed it was required of some more roles for different
administration tasks as described in the next section. The corresponding
resources were then easily discovered. A good source for further role-based
resource investigation are the operating system man pages which usually
96 Securing Applications with Tivoli Security Management

provide a list of related files. Other sources of information are a company
security policy (if available) and AIX operating system documentation.

A continuous watch of the TACF trace file completes the picture of system
resource requests and, of course, the resource list.

Another group of resources of type UX:PROCESS had to be added and
assigned to the roles to include all the main system processes (daemons).
These daemons resulted in UX:FILE resources again enlarging our resource
list.

Furthermore, some files of resource type UX:PROGRAM have to be added
and can be found by searching for files with the setuid/setgid bit set.

This will complete our list of different resource types. In production
environments, you could think about the need to include control for
communication ports (UX:TCP) or to control the login capabilities with
resources of UX:TERMINAL type.

4.7.4 Groups and Roles in the AIX LDF
The following information describes groups and roles in the AIX LDF:

GROUPS
Everyone "Everyone" = audit(LF,RF) ;
Network_Administrators "Network Administrators" = audit(LF,RF) ;
Root_User "Root User Group" = (root) audit(LF,RF) ;
Secure_Users "Secure Users" = audit(LF,RF) ;
System_Administrators "System Administrators" = audit(LF,RF) ;

ROLES
Role_of_Accounting "Role of Accounting" = (System_Administrators) ;
Role_of_Auditor "Role of Auditor" = (System_Administrators) ;
Role_of_Everyone "Role of Everyone" =
(System_Administrators,Everyone,Secure_Users) ;
Role_of_HomeDirectoryAccess "Role of Home Directory Access" =
(Secure_Users) ;
Role_of_NetworkAdministrator "Role of Network Administrator" =
(Network_Administrators,Root_User) ;
Role_of_SystemAdministrator "Role of System Administrator" =
(System_Administrators,Root_User)
pass(UXResTypeAccess:"CONNECT,SURROGATE") ;
Role_of_SystemBackup "Role of System Backup" =
(System_Administrators,Root_User) pass(UXResTypeAccess:"CONNECT") ;
Role_of_SystemResourceControl "Role of System Resource Control" =
(System_Administrators,Root_User) ;
Role_of_SystemShutdown "Role of System Shutdown" =
(Root_User,System_Administrators) ;
Lockdown Descriptions 97

Role_of_UserAdministration "Role of User Administration" =
(System_Administrators) ;
Role_of_root "Role of root" = (Root_User)
pass(UXResTypeAccess:"CONNECT,PROCESS") ;

Role_of_Everyone
This role is assigned to the sample group Everyone.
Role_of_Everyone provides conditional resource rights to some
important files like /etc/passwd and /etc/security/passwd. This list
resulted from tracing normal operating system usage with the
TACF trace facility and might not be complete for all
implementations. Furthermore, the role defines necessary access
rights to schedule cron jobs and to display a process list. This is
the right place to insert additional resource rights you wish to
grant to every user. In a real implementation, you would give this
role to every group that required general access to this system.

Role_of_NetworkAdministrator
This role defines the resource access to all relevant configuration
files, programs, and processes to administer the networking
options of the operating system. Our sample group is named
Network_Administrator.

Role_of_SystemAdministrator
This role is granting access to some configuration files and
system startup resources as well as to some daemons we saw
needed to be administered by the system administrator. This can
easily be adapted for production environments by simply changing
the assignments in the LDF file. This demonstrates the power and
flexibility of this TSM resource definition meta format. This is an
important role for a group such as System_Administrators.

Note the usage of some conditional rights for additional access to the system
password files as well as to force the configuration of some important system
files through the appropriate tools.

For example:

/etc/rc.tcpip /usr/sbin/chrctcp[F],
/etc/security/sysck.cfg /usr/sbin/chtcb[RW],

To provide consistency for installing software products using the AIX
installation tool, we granted the following conditional right:

/var/adm/sw/* /usr/sbin/installp[RW],
98 Securing Applications with Tivoli Security Management

In another attempt to force the administrator to use the appropriate tools for
system administration tasks, we allowed the definition of cron jobs only
through the crontab program:

/var/spool/cron/crontabs/root /usr/bin/crontab[F],

In our example, we have some more roles assigned to the
System_Administrators group presented here in alphabetical order:

Role_of_Accounting
Provides access to major accounting information files. In live
environments, you might want to grant this role to a separate
function if accounting is necessary.

Role_of_Auditor
Grants access to system log files for auditing purposes. In live
environments, you might not grant this role to the administrators
group so you separate accounting functions from administrator
functions.

Role_of_Everyone
Of course, the administrators also need basic access through
conditional rights to the system password files or the user login
records.

Role_of_SystemBackup
This role basically grants conditional rights to all resources with
default rights of none [N] to the system backup facility (mksysb).
Note that in cases of no access to directories, additional rights
must be granted to the /usr/bin/find command to ensure proper
operation of the system backup.

Role_of_SystemResourceControl
Due to the fact that some daemons in the AIX operating system
are controlled through the system resource controller (SRC), we
provided a separate role for control of these resources while
granting access to the basic SRC control mechanisms. To provide
the corresponding UX:PROCESS protection, one must include
this resource definition as well as the UX:FILE expression of the
process.

Role_of_SystemShutdown
Grants the ability to shut down the system or perform a system
reboot.

Role_of_UserAdministration
This role provides an administrator with the necessary resource
rights to perform user administration. Note that in our example,
Lockdown Descriptions 99

the corresponding system files can only be accessed using
conditional rights.

We included two more groups with corresponding roles. The one named
Secure_Users with the Role_of_HomeDirectoryAccess gives an example of
how to protect a home directory against access by any other user, even root
and the administrators.

The other group named Root_User implements the option of still having a
super user (root) outside the TACF functionality of splitting root capabilities.

Note that the Root_User group is granted additional resource rights using the
Role_of_NetworkAdministrator, Role_of_SystemAdministrator,
Role_of_SystemResourceControl and Role_of_Shutdown. In the sample LDF
file, this provides full system control using the root user and should be
restricted in customer environments.
100 Securing Applications with Tivoli Security Management

Appendix A. TSM Profile Tools

This appendix describes the wldfexp tool provided on the accompanying CD
which will export a Tivoli Security Profile into the Lockdown Definition File
(LDF) format suitable for modification for use in a lockdown module.

Also included here is a man page type overview of the wldfimp LDF import
utility. For a more detailed description of the use of wldfimp, refer to Appendix
B, “Lockdown Definition File Format” on page 105.

A.1 The LDF Export Tool

The LDF export tool (wldfexp) reads an existing security profile and creates
an LDF file that can be used to recreate the original profile. The tool does not
handle TSM System Policy records, but these are not part of a typical
Lockdown Module.

A.1.1 Export Tool Usage

The LDF export tool is named wldfexp. The only mandatory parameter is the
security profile name. Its usage is as follows:

wldfexp [flags] <profile name>

<profile name> This is the name of the profile being exported. It is also the
name of the resulting LDF (profile name with LDF
extension, and spaces converted into underscores).

A.1.2 wldfexp Flags

LDF files are best kept endpoint-type specific, and the security profile may
contain data for both UNIX and Windows NT platforms. However, the export
cannot handle both simultaneously. Note that other endpoints such as RACF
are not supported in this version.

-nt Extracts NT-specific records from the profile.

-ux Extracts UNIX-specific records from the profile.

The following flags deal with wldfexp behavior.

-f Read the data from existing files instead of the TSM profiles. Normally
wldfexp gets it’s information directly from the TMR using TSM, but, in
some cases, it is necessary to get it from files. The files contain the
output of the wlssec command. Using this flag without the files will not
generate an error but will result in an empty LDF. You can also use this
flag after the wldfexp has been executed with the -k flag.
© Copyright IBM Corp. 1999 101

-k wldfexp creates some temporary files to contain the data extracted
from the profile. These are normally deleted after the tool has
completed execution. Since wlssec can take some time, this option can
make constant reruns of the tool faster. This is very useful when trying
to adjust the resulting LDF (for example, when defining the variables).
To do this, run the wldfexp once with this flag which keeps the
temporary files, and then run it in the future with this flag and the -f
flag.

-s The normal ACCESS section is generated in the order the data is
exported from the security profile. This can cause confusing LDF files.
The -s flag makes the tool sort the ACCESS entries by resource
name.

-t Disable TCPAccess conversion to variables. The normal behavior of
wldfexp is to take the TCPAccess statement and convert the access
list into a ksh variable. This makes it easy to set up the access list; the
variable just has to be set in the prolog files.

Variable substitution options:

-v <var file> Load variable substitutions from a file. The format of this file is
described below. <var file> is the file name to be loaded and
more than one can be specified.

-V <var def> Add a variable to the replacement list; see the information
below on how to define the variable.

-vd List the variables that have been defined; this is useful for
checking the variable declaration.

A.1.3 Variable Substitution

Variable substitution is an important requirement when exporting Lockdown
Modules for reuse. Note that there is no checking as to whether the variables
are correct or make sense. Trial and error may be needed to obtain the best
variables.

The substitution occurs in resource names only. A name is checked against
all the variable substitutions in the order they were declared. If there is a
match, the name is replaced with the variable. Variables that were declared in
the LDF format (that is ${VARNAME}) are also included in the LDF file in the
VAR declaration section.

Variables can be declared in a file or when invoking the export tool. The
format is:

<variable name>=<variable value>
102 Securing Applications with Tivoli Security Management

The variable value is used for string matching, and, when it is found, variable
name is used to replace the original value. As substitutions are applied one at
a time, subsequent substitutions for the same name result in the new
substitution being used.

If declared in a file, no quotes are needed; the file is just a number of
declarations. Each one must be on a line by itself with no comments or blank
lines. If declared on the command invocation, quotes may be needed. Simple
quotes should be used if the declaration contains a dollar sign ($) in it. Here
is an example of a variable substitution file:

${HYPAPPHOME}=/usr/local/hypapp
${HYPAPPBIN}=${HYPAPPHOME}/bin
${HYPAPPDB}=${HYPAPPHOME}/data
${HYPAPPDUMP}=${HYPAPPHOME}/dump
${HYPAPPCONFIG}=${HYPAPPBIN}/cfg
${HYPAPPD}=${HYPAPPBIN}/hypappd
$HOSTFILE=/etc/host

Where we have provided a variable substitution file with an LDF, it is named
with an ldv extension. If a Lockdown Module is exported on a regular basis, it
may be useful to save and update the variable files in order to allow easy
export.

A.2 The LDF Import Utility

The LDF import utility is provided to convert LDF files into the script that will
create the Lockdown Module’s security profile. Several checks are performed
to make sure the script is valid. For the correct format of the LDF files, see
Appendix B, “Lockdown Definition File Format” on page 105.

A.2.1 Import Utility Usage

The conversion utility has a few options, and the basic use is:

wldfimp [flags] <filename>

<filename> is the name of the LDF file. The file must be a valid LDF file
matching the endpoint type specified to the utility.

A.2.2 wldfimp Flags

The import utility deals with one kind of endpoint at a time. Specifying a
Lockdown for the wrong type will cause the file to be refused by wldfimp.
These are the endpoint type options:

-ux Tells the utility to treat the LDF file as a UNIX Lockdown definition.
TSM Profile Tools 103

-nt Tells the utility to treat the LDF file as a Windows NT Lockdown
definition.

Other options:

-v This is verbose mode; show processing options and track
progress.

-D <vardef> Define a variable. These variables are defined before
those of the LDF file; so, this can be used to pass
site-dependent information.

-o <filename> Write output script to a file specified by <filename>. By
default, the file name is set to the Lockdown file’s name
with an extension of .sh.

-p <filename> Use <filename> as the preface file. The default preface file
is ldfc.pre from the same directory of the compiler.

A.2.3 Import Utility Considerations

When using variable definitions at invocation time, remember that these
definitions take effect before those contained in the LDF file. If the variable is
redeclared in the LDF file, a warning is issued. Variable expansion is done
immediately for each -D option; so, the following command will define HOME
as /usr/local and VARB as /usr/local/app:

wldfimp -D HOME=/usr/local -D ‘VARB=${HOME}/app’ sample.ldf

If another preface file is specified, it must ensure that these conditions are
met:

 • The Profile Manager target for the security profile must exist. It’s name is
given by the ${PRFMGR} variable.

 • The security profile must exist. The name is given by the content of the
${PROFILE} variable.

 • The security profile must be empty.
104 Securing Applications with Tivoli Security Management

Appendix B. Lockdown Definition File Format

This appendix provides a more formal description of the format and usage of
the Lockdown Definition File (LDF) and is intended as a reference.

B.1 LDF Component Notation

The LDF import utility reads the source file (a plain text file). Each topic below
describes what types of text and markers can appear in the LDF file. The
description of the layout of each section of the file starts in “LDF Section
Description” on page 111.

B.1.1 Comments

The comment symbol is used to inform the import utility that it must ignore the
text that follows to the end of the line. For the LDF import utility, the
comments symbol is the pound or hash sign (#). The comment may begin in
any position on the line.

B.1.2 Tokens

Tokens are words or symbols that have a special meaning in the LDF
language. When one of them is found, the import utility first checks to see if
that token is expected. The tokens usually indicate the start of a new section
in the LDF. The following words are considered tokens in the LDF:

 • LOCKDOWN
 • VAR
 • PROLOG
 • GROUPS
 • ROLES
 • RESOURCES
 • EPILOG
 • ROLE
 • RESOURCE
 • ACCESS

The LDF import utility is case-sensitive, and the following characters are also
considered tokens:

: ; , () [] =

All the other characters will be considered part of an identifier (see below).
© Copyright IBM Corp. 1999 105

B.1.3 Identifiers

In the descriptions of the LDF sections that follow, we use the term identifier,
or Ident to represent a name or identifier. In the case of the LDF, almost
everything except the tokens is a name. Two things can be considered a
name: a string of characters that are not tokens and a quoted string that can
include words that would otherwise be considered tokens. These must be
quoted using the double quotation mark ("). Between the quotes, everything
is part of the name. So, if you need to use a character or name that is also a
token, it should be quoted. Here are some examples of strings that would be
seen by the import utility as Ident:

 • /usr/local/Tivoli
 • $BINDIR/TACF
 • "C:\Winnt\System32\User Profiles"
 • C:\Winnt
 • "Human Resources Role"

When declaring Groups, Roles, and Resources, it is possible to specify the
name of the resource and a description for it before specifying other
parameters. This is shown as two Ident separated by a space. The
description is optional and should be enclosed in quotation marks. This is not
mandatory. The first word is assumed to be the record name, and the second
and subsequent words are assumed to be the description. Caution should be
taken when declaring record names that are composed of multiple words
separated by a space. A record name that contains spaces should also be
enclosed in quotes. If the name is not enclosed in quotation marks, only the
first word will be used as the record name, and subsequent words will
become part of the record description text.

Individual entries within an LDF section must be separated with a
semicolon (;). Parameters within an entry are separated in the same way
as the equivalent command-line options, usually with a space or a comma
(,).

Note

The import utility has a special case for the colon token (:). Normally, the
colon is considered a token and thus cannot be used inside the name
without the use of quoted strings, but if the colon follows a single letter, the
whole string is considered a path specification and treated as an Ident.

Note
106 Securing Applications with Tivoli Security Management

For example the entry:

My Group Group of People = (user1, user2) audit(LF,RF)

Will result in a group being created called My with the text description of
Group Group of People. In order to specify this correctly, we need quotes
around the name of the group:

"My Group" Group of People = (user1, user2) audit(LF,RF)

B.1.4 Lists

Lists can be defined in various parts of the LDF. They are a list of identifiers
separated by commas and enclosed in parentheses. Acceptable values in the
list depend on where in the LDF the list is being used. The import utility
notifies you when there are errors on the structure of a list. When used in
GROUPS and ROLES declarations, the content of the list is subjected to
variable expansion. A list will be of the form:

(item1, item2, item3)

B.1.5 Record Properties

Each of the three Tivoli Security Management record types (Group, Role, and
Resource) have a set of attributes that can optionally be defined. They
govern specific aspects of the record’s behavior. All of them can be set
through the GUI and CLI interface of TSM.

In the LDF, we have a data type known as Record Properties which makes
the LDF capable of defining these attributes. The basic properties are
handled by the normal declaration format. No FILE resource has any
meaning without a name and default access permission. However, other
aspects may be necessary for control (like time restrictions and auditing). It is
for these optional attributes that we define the Record Property for LDF.

The actual value of the property and where it can be used depends on many
aspects, but the general format is:

PropertyName <parameters>

The valid names and expected parameters are listed in Table 3. A more
detailed analysis of each property type is provided after the table.

Table 3. Record Properties

Name Parameter Example of usage Notes

trusted trusted Unix only

nottrustred nottrusted Unix only
Lockdown Definition File Format 107

B.1.5.1 Trusted, Nottrusted and Warning Properties
These properties are available only in a UNIX LDF and only for resource
declarations. They take no parameter and are mapped to the security CLI
equivalent options as follows:

 • trusted is mapped to attribute Trusted=T.
 • nottrusted is mapped to attribute Trusted=F.
 • warning is mapped to attribute Warning=T.

B.1.5.2 Time and Days Properties
These properties are used to define Group LoginTimes and Resource
AccessTimes (only available for UNIX Lockdown). If used in the group
declaration, they are mapped to LoginTimes attribute. When used in a
resource declaration, they are mapped to AccessTimes attribute.

If only one of the two is specified, the other is set to its default value. If neither
are specified, the default values are used.

The valid values are those used by the normal TSM CLI commands. (See the
description of security group attributes for wcrtsec in the product manual:
TME 10 Security Management User’s Guide.)

B.1.5.3 Audit Property
The audit property is available in two declarations: resource and group. In the
group declarations, it is mapped to the LoginAudit and ResAudit attributes of
the group. On the resource declaration, it is mapped to the ResAudit attribute.

The values accepted must be one of:

warning warning Unix only

time (####:####) time(0800:1800) Valid for Logon and on
Unix for access to
resources.

days List days(Mon,Tue,Sat) as time above

audit List audit(LA,RF)

tcpaccess List tcpacces(+dover) Unix only

parent parent role parent(rolename) Only for roles

pass attribute:value pass(NTName:"Adm")

Name Parameter Example of usage Notes
108 Securing Applications with Tivoli Security Management

LN, LS, LF, LA For Login auditing levels of None, Success, Failure and All
respectively.

RN, RS, RF, RA For Resource auditing levels of None, Success, Failure and
All respectively.

Login auditing can only be specified for group declarations. The same audit
property statement can be used for setting up both Resource and Login
auditing. Resource auditing can be set in both group and resource
declarations.

B.1.5.4 Tcpaccess Property
This property is only available for a UNIX LDF and for the TCP resource type.
It is mapped to the TCPAccess attribute of the resource record. The
parameter is a list of host (or host addresses). Each host name or address
must be preceded by a plus sign (+) or minus sign (-) indicating access or no
access respectively. For example:

tcpaccess(+dover, -bath, +london)

Note that in many cases, the list of hosts is not available when the LDF is
created. It may be interesting to use another strategy to specify the list of
hosts. Instead of using the tcpaccess property, use the pass property as
follows:

pass(TCPAccess:"$HOSTLIST")

The ksh variable $HOSTLIST must be set in one of the Prolog files. It must
also be in the format specified for the TCPAccess attribute (See the
description of security resource attributes for the wcrtsec command in the
product manual: TME 10 Security Management User’s Guide.)

B.1.5.5 Parent Property
This property is used to specify a parent role (as in the Parent attribute of the
Role Record in TSM). It is therefore only valid in role declarations. The parent
role must be declared within the same LDF. There cannot be a circular role
parent relationship (such as where RoleA is parent of RoleB that is parent of
RoleA).

The checking for the existence of the role is only done after all roles have
been declared; so, the order in which they are declared here is not relevant.

B.1.5.6 Pass Property
This property is not mapped to any specific attribute. It is used to allow the
creator of the LDF to specify other attributes that are not handled by the LDF
import utility. Here is an example:
Lockdown Definition File Format 109

ROLE newrole = pass(NTGroups:"Domain Administrators");

The NTGroups attribute is not handled by the import utility. But, by using the
pass property, the import utility passes the argument to the specific wcrtsec
command in the resulting LDF script.

What the import utility does is the following:

pass(AttributeName:AttributeValue)

Is added to the wcrtsec command as an additional:

-s AttributeName="AttributeValue"

That is added to the proper wcrtsec command in the output script. The pass
properties are placed after the ordinary properties and other fields in the LDF.

B.1.6 Other Parameters

Some LDF parameters do not fit in the previous categories and are described
in this section. They are used in many places throughout the LDF.

B.1.6.1 Permission
The Permission parameter is used to define both default access rights and
role access rights. This must be a character string enclosed in square
brackets ([]) that represents the valid permissions for the resource. The
characters used to indicate the permissions are the same used in the CLI
commands. Neither commas nor spaces are allowed. Here are some
examples of valid Permissions:

 • [RWD] For a FILE resource type, this would be translated to the access
permissions Read (R), Write (W) and Delete (D).

 • [BMDRS] For a Windows NT SYSTEM resource type, this would be
translated to the following access permissions: Backup (B), Manage
Domain (MD), and Remote Shutdown (RS).

 • [FN] would be translated as Full Control (F), No Access (N), but this is
illegal; so, the import utility will not accept it.

The import utility does not do any kind of checking on either the passed
attribute’s name or its value. Using the pass property with improper values
or attribute names may cause the resulting script to fail.

Important
110 Securing Applications with Tivoli Security Management

B.1.6.2 ResourceName
The ResourceName parameter format is used to identify resources in
resource declarations and access permission declarations. The LDF import
utility handles two types of declarations. The first one is only the resource
name, and the second is resource type and resource name separated by a
colon. In the first, where resource type is omitted, the resource is assumed to
be of the FILE resource type. Here are some examples of resource names:

 • /usr/local/Tivoli/*
 • FILE:/usr/local/Tivoli/* (this is equivalent to the former one)
 • DIRECTORY:C:\Winnt
 • FILE:"C:\Some Directory\some file.doc"
 • PROCESS:${BINDIR}/oserv
 • TCP:objcall
 • objcall (this would be understood as FILE:objcall)

B.2 LDF Section Description

The following text describes each of the LDF sections. Each section begins
with a token that identifies the section. Some of the sections may be omitted,
see the section descriptions for details. Note that the sections must appear in
the following order:

 • LOCKDOWN
 • VAR
 • PROLOG
 • GROUPS
 • ROLES
 • RESOURCES
 • ACCESS
 • EPILOG

B.2.1 LDF LOCKDOWN Section

This section is in the following form:

LOCKDOWN LockDownName <ident>

The LockDownName identifier defines the name of the output file and of the
security profile that will be created by the script created by the LDF import
utility. The name may contain spaces if it is quoted; the second Ident can be
used to specify a comment or remark (it is ignored by the import utility). The
import utility output file name will automatically have .sh appended to the
LockDownName.
Lockdown Definition File Format 111

B.2.2 LDF VAR section

Variable declaration in the LDF is straightforward:

VAR ident = ident; <ident = ident;>

Each variable has an Ident as a name and another for its value. Once a
variable is declared in the LDF, it can be used almost anywhere else in the
LDF including subsequent variable declarations by surrounding it with curly
brackets and preceding it with a dollar sign as in ${VARNAME}. It is also
possible to declare these LDF variables when the import utility is invoked or
to use externally defined variables using the normal format for the import
utility host (such as $VARNAME for UNIX or bash on Windows NT).

Variables can be used in various parts of an LDF including the prolog and
epilog files. They are not expanded inside comments and properties. The
following examples show how to declare variables and use them inside other
declarations.

VAR
TIVDIR=/usr/local/Tivoli;
BINDIR=${TIVDIR}/bin;

The expansion happens at the moment a variable or name is declared. Thus,
the variable BINDIR would equate to the value /usr/local/Tivoli/bin.

Variable expansion also occurs in resource declarations, group declarations,
and role declarations. Here is an example of a resource declaration using
variables:

FILE:${BINDIR}/generic/* = [N];

It is equivalent to the following declaration (assuming the variable value is the
one given in the VAR example above):

FILE:/usr/local/Tivoli/bin/generic/* = [N];

Variable expansion also occurs in the Prolog, Epilog and Preface files. So it is
possible to export the variables from the LDF into these scripts. The
expansion occurs when these files are processed. There are three LDF

Variable names can be any valid Ident; so, they may include names like
~/home$A?DIR. This is a valid name, and it will be handled by the import
utility, but it makes the LDF difficult to read and maintain and should be
avoided.

Note
112 Securing Applications with Tivoli Security Management

variables that are defined automatically by the import utility (if they are not
defined in the LDF or through the command line). These variables are:

PROFILE Name of the security profile that will be created to contain the
Lockdown records. The default name is the name of the
Lockdown module as specified by LockDownName (see B.2.1,
“LDF LOCKDOWN Section” on page 111). You may specify this
variable to create the profile with another name.

PRFMGR Name of the profile manager where the security profile will be
created. The default value is the same as that of the PROFILE
variable.

REGION The default value is TME 10 Security, and it is used to indicate
in which policy region the profile manager will be created.

B.2.3 LDF PROLOG Section

The PROLOG and EPILOG sections have the same format. They are
declared as a list of file names separated by commas:

PROLOG
filename <, filename>

The following is an example of a valid Prolog section:

PROLOG script1.sh, script2.sh, script3.sh

The specified files are included into the script file generated by the LDF
import utility. For this reason, they must be valid korn shell (ksh) scripts. The
import utility does not do any kind of checking on the syntax and content of
the files. The import utility only performs variable expansions and includes
the lines of the script into the output script.

If PERL or csh scripts need to be executed in the prolog, a prolog ksh file can
be used to call the desired scripts (like a normal call from a ksh script).

Another important item to note is that these scripts are executed as part of
the import utility’s output script. They are executed only on the host where the
Lockdown script is executed not on the Endpoint where the Lockdown profile

Specify the names for these variables with care. The import utility is
unaware of the names of existing regions, profile managers, and profiles
and may generate a script that can fail to run due, for example, to a profile
of the same name already existing.

Note
Lockdown Definition File Format 113

will be applied. In order to execute scripts on the Endpoints themselves, you
need to use Tivoli Task Libraries or AEF actions which are outside the scope
of the Lockdown module.

The scripts included using PROLOG should not change the REGION,
PROFILE or PRFMGR variables because this may cause the remainder of
the import script to fail.

B.2.4 LDF GROUPS Section

This section of the LDF file is used to declare the security groups that will be
created by the Lockdown definition as follows:

GROUPS
Groupname = <UserList> <RecordProps> ;

A GROUP section is composed of one or more group declarations. Each of
these can be just a group name (which will create an empty group). We can
also specify a list of users, and/or a set of properties, for example to define
auditing on the security group record.

RecordProps is an optional set of properties (see B.1.5, “Record Properties”
on page 107). UserList is an optional comma-separated list of user names
(see B.1.4, “Lists” on page 107). If the user name refers to a Tivoli user profile
it must be qualified as such and enclosed in single quotes such as:

GROUPS
MyAdmins = (’US_All_UP:TivUser1’ , root)

Here, the group members will be TivUser1, who is specified in a Tivoli user
profile named US_All_UP, and the user named root.

Variable expansion occurs in both the name of the group and the user names
but not for the record properties.

B.2.5 LDF ROLES Section

This section of the LDF file is used to declare the security roles that will be
created by the Lockdown definition script. This should not be confused with
the ROLE entry used to update access to resources in the ACCESS section
(see B.2.7, “LDF ACCESS Section” on page 115). The ROLES section uses
the format:

ROLES
Rolename = <GroupList> <Recordprops> ;
114 Securing Applications with Tivoli Security Management

The ROLES section is composed of one or more role declarations. Each of
these can be formed by either the role name or the role name and a list of
groups and/or role properties.

GroupList is an optional list of group names (see B.1.4, “Lists” on page 107).
The names declared in the list must have been declared in the Group
Declaration section of the LDF. If it is necessary to set up different groups
than those declared in the group section; this should be done using the pass
property (see B.1.5.6, “Pass Property” on page 109) and/or an Epilog file (see
B.2.8, “LDF EPILOG Section” on page 117).

RecordProps is an optional set of Role properties (see B.1.5, “Record
Properties” on page 107).

Variable expansion occurs in the role name and in the group list but not in the
record properties.

B.2.6 LDF RESOURCES Section

This section is used to declare all the resources that will be handled by the
Lockdown definition. It has the form:

RESOURCES
ResourceName <ident> = Permission <RecordProps> ;

Only resources declared in this section may be used in the role ACCESS
section (see B.2.7, “LDF ACCESS Section” on page 115).

The RESOURCES section is composed of one or more resource
declarations. Each of these is composed of a ResourceName and a
Permission (see B.1.6, “Other Parameters” on page 110). Optionally, there
can also be a set of RecordProps (see B.1.5, “Record Properties” on page
107). The ResourceName can be followed by an optional identifier that can
be used as a comment.

Permission defines the Default Access Permission for the resource. In this
section, it is not possible to add conditional access permissions. This can be
done using the ACCESS section which is described next.

B.2.7 LDF ACCESS Section

This is the most important part of the LDF file. This section is used to define
which access permissions are granted to a specific role and on certain
resources attached to that role. It has the form:

ACCESS
ROLE Ident <role access parameters>
Lockdown Definition File Format 115

RESOURCE restype <resource access parameters>

A grant can be done in two ways: Either by Role or by Resource. The option
is identified by the ROLE and RESOURCE tokens respectively.

When the grant is done to a role, we can list all the resources we wish to
define access for in that role. This will be the preferred method if we have a
small number of roles to define. The statement should be in this format:

ROLE RoleName =
FILE:/filename [R],
PROCESS:/processname [A];

After the equal sign, all you have is a list of comma-separated resources and
the access granted to the role named after the ROLE token.

The other way of specifying access permissions is by listing which roles have
what access to a given resource. This form is better when you wish to define
the access for many roles to similar resources and where the parent/child
relationship is not sufficient to meet your needs. To achieve this, use the
following format:

RESOURCE PROCESS:/processname =
RoleNameA [A],
RoleNameB [A],
RoleNameC [N];

The resource on which the permissions will be given is the one immediately
after the RESOURCE token. After the equal sign is a list of comma-separated
role names and the access each one has to the specified resource.

In both formats, it is possible to grant conditional access to resources. In
order to specify a conditional access to a resource, the AccessDefinition must
follow the first option (with ViaAccess and Permission). The format for
conditional access in the LDF is:

ROLE RoleName = /etc/passwd /usr/bin/passwd[RW];
RESOURCE /etc/passwd = RoleName /usr/bin/passwd[RW];

Both are equivalent, and will generate the following on the RoleName role:

-s UXTMEResAccess="/etc/passwd perms(R,W) via(PROGRAM:/usr/bin/passwd)"
116 Securing Applications with Tivoli Security Management

B.2.8 LDF EPILOG Section

The EPILOG and PROLOG sections have the same format. They are
declared as a list of file names separated by commas:

EPILOG
filename <, filename>

The following is an example of a valid EPILOG section:

EPILOG scriptx.sh, scripty.sh, scriptz.sh

The specified files are included into the script file generated by the LDF
import utility. For this reason, they must be valid korn shell (ksh) scripts. The
import utility does not do any kind of checking on the syntax and content of
the files. The import utility only performs variable expansions and includes
the lines of the script into the output script.

If PERL or csh scripts need to be executed in the epilog, an epilog ksh file
can be used to call the desired scripts (like a normal call from a ksh script).

Another important item to note is that these scripts are executed as part of
the import utility’s output script. They are executed only on the host where the
Lockdown script is executed not on the Endpoint where the Lockdown profile
will be applied. In order to execute scripts on the Endpoints themselves, you
need to use Tivoli Task Libraries or AEF actions which are outside the scope
of the Lockdown module.

The scripts included using EPILOG should not change the REGION,
PROFILE or PRFMGR variables because this may cause the remainder of
the LDF import script to fail.

At the time of writing, the import utility only supported the ROLE declaration
of access and not the RESOURCE declaration. See 1.1, “Obtaining
Lockdown Updates” on page 5 for information about obtaining updates to
the LDF files and the utilities.

Note
Lockdown Definition File Format 117

118 Securing Applications with Tivoli Security Management

Appendix C. Special Notices

This publication is intended to help those implementing Tivoli Security
Management achieve a working environment more rapidly. The information in
this publication is not intended as the specification of any programming
interfaces that are provided by the Tivoli Security products. See the
PUBLICATIONS section of the IBM Programming Announcement for Tivoli
Security Management for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
© Copyright IBM Corp. 1999 119

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

AS/400 AT
BookManager CICS
CT DB2
eNetwork Home Director
IBM Language Environment
OS/390 OS/400
PROFS RACF
RS/6000 S/390
SP System/390
XT 400
120 Securing Applications with Tivoli Security Management

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

MMX, Pentium, and ProShare are trademarks of Intel Corporation in the
United States, other countries, or both.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC. (For further information, see
http//www.setco.org/aboutmark.html).

Other company, product, and service names may be trademarks or service
marks of others.
Special Notices 121

122 Securing Applications with Tivoli Security Management

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications, see “How to Get ITSO
Redbooks” on page 125.

 • Tivoli Security Management Design Guide, SG24-5101

 • Managing Access from Desktop to Datacenter: Introducing TME 10
Security Management, SG24-2021

 • Tivoli Enterprise Internals and Problem Determination, SG24-2034-01

D.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Order a
subscription and receive updates 2-4 times a year.

D.3 Other Publications

The following Microsoft publications mentioned in this redbook are Microsoft
Knowledge Base documents and can be found at the following Web site:
http://www.microsoft.com/NTServer/nts/techdetails/overview/WpGlobal.asp

 • Microsoft Windows NT - Securing Windows NT Installation, October
23,1997, Microsoft Corporation

CD-ROM Title Collection Kit
Number

Tivoli Redbooks Collection SK2T-8044
System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbook SK2T-8038
Lotus Redbooks Collection SK2T-8039
AS/400 Redbooks Collection SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PostScript) SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1999 123

 • How to Disable LM Authentication on Windows NT, Microsoft Knowledge
Base article Q147706.

The following Trusted Systems Services document mentioned in this redbook
can be found at the following Website:
http://www.trustedsystems.com/NSAGuide.htm

 • Windows NT Security Guidelines, A study for NSA Research by Trusted
Systems Services

The following Tivoli Publications are product documentation, which can only
be obtained by purchasing the associated Tivoli product:

 • TME 10 Security Management User Guide

 • Security Management Reference Manual for TACF
124 Securing Applications with Tivoli Security Management

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1998 125

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
126 All About Tivoli Management Agents

List of Abbreviations

ACC AutoPack Control
Center

ACE Access Control Entries

ACF Adapter Configuration
Facility

ACL Access Control List or
Access List (RACF)

ACP (logfile) Adapter
Configuration Profile

ADE Application
Development
Environment

ADSTAR ADSTAR Distributed
Storage Manager

AEF Tivoli 10 Application
Extension Facility

AIX Advanced Interactive
eXecutive (IBM UNIX)

ALI Authentication,
Location, and
Inheritance

AMS Application
Management
Specification

ANSI American National
Standards Institute

APAR Authorized Program
Analysis Report

APF Authorized Program
Facility

API Application
Programming Interface

ARP Access Resolution
Protocol

AS/400 Application System/400

BARC Before, After, Remove,
and Configuration
(script)
© Copyright IBM Corp. 1999
BAROC Basic Recorder of
Objects in C

BDC Backup Domain
Controller

BDT Bulk Data Transfer

BO Behavior Object

BOA Basic Object Adapter

CCMS Configuration and
Change Management
System

CBPDO Custom Built Product
Delivery Offering

CCMS Configuration and
Change Management
System

CDS Cell Directory Service
(DCE)

CICS Customer Information
Control System

CIM Configuration
Information Manager

CIO Chief Information
Officer

CLI Command Line
Interface

CORBA Common Object
Request Broker
Architecture

CSNW Client Services for
NetWare

CT-LIB Client-Library (Sybase)

DAC Discretionary Access
Control

DAP Directory Access
Protocol

DB Database

DB2 IBM DataBase 2
 127

DBA Database Administrator

DCE Distributed Computing
Environment

DES Data Encryption
Standard

DFS Distributed File System

DFW Desktop for Windows

DHCP Dynamic Host
Configuration Protocol

DII Dynamic Invocation
Interface

DLL Dynamic Link Library

DM Domain Manager

DMTF Desktop Management
Task Force

DN Distinguished Name

DNS Domain Name
System/Server

DO Display Object

DPO Default Policy Object

DRM Default Routing
Manager

DSA Digital Signature
Algorithm

DSB Directory Service
Broker (DASCOM)

DSL Dialog Specification
Language

DTS Distributed Time
Service (DCE)

EDI Electronic Data
Interchange

EGID Effective Group ID

EHLLAPI Enhanced High Level
Language APIS

EIF Event Integration
Facility

EP Endpoint

ERA Extended Registry
Attributes

ES1 Enhanced Scalability
Release 1

ESM Enterprise Server
Management

FAT File Allocation Table

FQHN Fully Qualified Host
Name

FSFI Free Space
Fragmentation Index

FSP File Security Packet

FTP File Transfer Protocol

GCOS GE Computer
Operating System field

GDA Global Directory Agent

GEM Global Enterprise
Manager

GID Group Identifier

GRE Generic Routing
Encapsulation

GSNW Gateway Services for
NetWare

GSO (IBM or Tivoli) Global
Sign-On

GSSAPI Generic Security
Service API

GTF Generalized Trace
Facility

GUI Graphical User
Interface

HACMP High Availability Cluster
Multi-Processing

HFS Hierarchical File
System

HR Human Resources

HTTP Hypertext Transport
Protocol
128 Securing Applications with Tivoli Security Management

IANA Internet Assigned
Number Authority

IBM International Business
Machines Corporation

IDL Interface Definition
Language

IOM Inter Object Messaging

IPC Inter-Process
Communication

IPX/SPX Internet Packet
eXchange/Sequenced
Packet eXchange

IRF Inherited Rights Filter

IT Information Technology

ITSO International Technical
Support Organization

JCL Job Control Language

JES Job Entry Subsystem

LAN Local Area Network

LC Logon Coordinator

LCF Lightweight Client
Framework - Now
known as Tivoli
Management Agent

LDAP Lightweight Directory
Access Protocol

LE Language Environment

LQM Local Queue Manager

LSA Local Security Authority

LSF Logon Script File

LUID Login User ID

MAC Message
Authentication Code

MAC Mandatory Access
Control

MCSL Monitoring Capabilities
Subscription Language

MDist Multiplexed Distribution

MIF Management
Information File

MVS Multiple Virtual Storage

NAC Network Application
Consortium

NAT Network Address
Translation

NDS Novell Directory
Services

NetBEUI NetBios Extended User
Interface

NetBIOS Network Basic Input
Output System

NFS Network File System

NIS Network Information
System

NLM Netware Loadable
Module

NLS National Language
Support

NQM Network Queue
Manager

NTFS NT File System

NWMS NetWare Managed Site

OCI Oracle Call Interface

ODBC Open Database
Connectivity

OID Object Identifier

OMG Object Management
Group

OOB Out of Band

ORB Object Request Broker

PAT Port Address
Translation

PCMN PC Managed Node

PCOMM (IBM eNetwork)
Personal
Communications (for
Windows NT and 95)
 129

PDC Primary Domain
Controller

PD/PSI Problem
Determination/Problem
Source Isolation

PIN Personal Identification
Number

PKM Personal Key Manager

PO Prototype Object

PTF Program Template File

PTF Program Temporary Fix

PROFS Professional Office
System

RACF Remote Access Control
Facility

RAM Random Access
Memory

RCS Revision Control
System

RDBMS Relational Database
Management System

REXX Restructured Extended
Executor Language

RFC Request For Comments

RGID Real Group ID

RID Real User ID

RIM RDBMS Interface
Module

RPC Remote Procedure Call

RRSF RACF Remote Sharing
Facility

SAF System Authorization
Facility

SAM Security Account
Manager

SCD Spoolmate
Configuration Database

SDSF Spool Display and
Search Facility

SeOS Security Operating
System

SHS Secure Hash Standard

SID Security Identifier

SIS Software Installation
Service

SLIP Serial Line Internet
Protocol

SMB Server Message Block

SMF System Management
Facility

SMIT Systems Management
Interface Tool (AIX)

SMP/E System Modification
Program Extended

SNMP Simple Network
Management Protocol

SRM Security Reference
Monitor

SSO Single Sign-On

SVC System V
Communication

TACF Tivoli Access Control
Facility

TAP Tivoli Authentication
Package

TCB Trusted Computing
Base

TCL Tool Command
Language

TCP/IP Transport Control
Protocol/Internet
Protocol

TEC Tivoli Enterprise
Console

TEIDL Tivoli-Extended IDL

TIR Tivoli Information
Router
130 Securing Applications with Tivoli Security Management

TLI Transport Layer
Interface

TLL Task Library Language

TMA Tivoli Management
Agent

TME Tivoli Management
Environment (now
known as Tivoli
Enterprise)

TMF Tivoli Management
Framework

TMR Tivoli Management
Region or TME 10
Management Region

TNR Tivoli Name Registry

TNWR TME 10 NetWare
Repeater

TRAA Tivoli Remote Access
Account

TRIP Used to Refer to the
Tivoli Remote
Execution Service

TSM Tivoli Security
Management

TSO Time Sharing Option

TSO/E TSO Extensions

TP Transaction Program

TUA Tivoli User
Administration

UACC Universal Access
Authority

UCT Universal Coordinated
Time

UED Unison Enterprise
Database

UID User Identifier

URL Uniform Resource
Locator

VM Virtual Machine

VPO Validation Policy Object

VPN Virtual Private Network

WAN Wide Area Network

WINS Windows Internet
Naming Service

WTO Write To Operator

XBO Extended Behavior
Object

XPG/4 X/Open Portability
Guide Issue 4

XSSO X/Open Single Sign-On
 131

132 Securing Applications with Tivoli Security Management

Index

Symbols
$PRFMGR 27, 113
$PROFILE 27, 113
$REGION 113

A
abbreviations 127
ACCESS keyword 23, 115
AccessTimes 108
AIX 93
allow_client_install, Tivoli Framework 68
audit 108
authentication 63
authorization 63

B
bypass access, Tivoli Access Control Facility 41

C
classes, Tivoli Access Control Facility 52
comment, in LDF 105
conditional access 38, 53, 116
CREATOR OWNER, Windows NT 85

D
deny access,Tivoli Access Control Facility 41
Dumpacl 33

E
EPILOG keyword 23, 117
error, using import utility 24
export tool 26, 101

F
Filemon 34
firewall 60

G
group

See security group
GROUPS keyword 16, 22, 114
© Copyright IBM Corp. 1999
H
HandleEx 35

I
import utility 11, 24, 103

K
keywords

ACCESS 19, 23, 115
EPILOG 23, 117
GROUPS 16, 22, 114
LOCKDOWN 111
PROLOG 21, 113
RESOURCE 116
RESOURCES 22, 115
ROLE 19, 116
ROLES 17, 22, 114
VAR 21, 112

L
LDF

See lockdown definition file
ldfc.pre 12, 20, 24, 104
ldv

See variable substitution file
lists, in an LDF 107
lockdown definition file 5, 9, 10, 11

example 14
LOCKDOWN keyword 15, 111
lockdown script 10, 11, 23, 27
login policy 46
LoginAudit 108
LoginTimes 108
look-aside database 42
Lotus Domino 70

M
mksysb 95

N
Netscape Enterprise Server 74
NT:DIRECTORY 48
NT:FILE 48
NT:PRINTER 52
NT:REGISTRY 50
133

NT:SHARE 50
NT:SYSTEM 51, 87

O
odadmin shutdown 68
Oracle RDBMS 79

P
parent role 109
pass, LDF property 109
passing data to import script 109
password policy 44
permissions 110
permit access, Tivoli Access Control Facility 41
preface, import utility 12, 20, 24, 104
PROLOG keyword 21, 113

R
registry, Windows NT 92
ResAudit 108
resource 1

See also security resource
RESOURCE keyword 116
RESOURCES keyword 22, 115
role

See security role
ROLE keyword 19, 116
role-based security 1
ROLES keyword 17, 22, 114
root user 93

disable login 94

S
SAP/R3 60
secons 38
securetcpip 95
security group 1
security policy 3
security profile 10
security role 1
seosd 31
set_allow_rconnect, Tivoli Framework 68
set_install_pw, Tivoli Framework 68
set_port_range, Tivoli Framework 68
sewhoami 95
SQLNet 83
su 93

svrmgrl 80
system policy 44

T
TACF

 See Tivoli Access Control Facility
TCPAccess 109
Tivoli Access Control Facility 31, 65

bypass access 41
class 52
deny access 41
look-aside database 42
permit access 41
TCP services 42
trace 37, 41

Tivoli administrator roles 63
Tivoli Enterprise Framework 62
tmesec 39
token, in LDF 105
trace, Tivoli Access Control Facility 37, 40

U
UNIX 93
UX:CONNECT 54
UX:FILE 54
UX:HOST 55
UX:HOSTNET 55
UX:HOSTNP 55
UX:PROCESS 54
UX:PROGRAM 54
UX:SECFILE 54
UX:SURROGATE 54
UX:TCP 55
UX:TERMINAL 55

V
VAR keyword 21, 112
variable substitution file 103
variables 102, 104
variables, declaring for LDF 21, 112

W
wauthadmin 63
wcrtsec 110
Windows NT 83

CREATOR OWNER 84
global groups 85
134 Securing Applications with Tivoli Security Management

local groups 85
registry 92
user rights 51, 87

wldfexp 5, 26, 101
wldfimp 5, 24, 103
wlssec 101
 135

136 Securing Applications with Tivoli Security Management

© Copyright IBM Corp. 1999 137

ITSO Redbook Evaluation

Securing Applications with Tivoli Security Management Lockdown Modules
SG24-5140-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-5140-00

Securing A
pplications w

ith T
ivoli Security M

anagem
ent L

ockdow
n M

odules
S

G
24-5140-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 Obtaining Lockdown Updates

	Chapter 2. Introducing the Lockdown Module
	2.1 What a Lockdown Module Does
	2.1.1 Locking Down Applications and Operating Systems
	2.1.2 What a Lockdown Module Is
	2.1.3 Why Use a Lockdown Module?
	2.1.4 Life Cycle of a Lockdown Module

	2.2 Building an LDF for an Application
	2.2.1 A Hypothetical Application
	2.2.2 Determining the Scope of the Lockdown Module
	2.2.3 Hypothetical Application Lockdown Definition File
	2.2.4 Complete Lockdown Definition File Structure
	2.2.5 LDF Import Utility
	2.2.6 Security Profile Export Tool
	2.2.7 Lockdown Script

	2.3 Additional Uses for Lockdown Modules

	Chapter 3. Identifying Access Requirements
	3.1 UNIX and Windows NT Security
	3.2 Tools to Identify What to Protect
	3.2.1 Watching Windows NT Applications
	3.2.2 Watching UNIX with the TACF Trace

	3.3 Resource Considerations
	3.3.1 System Policy Considerations
	3.3.2 Windows NT 4.0 Considerations
	3.3.3 UNIX Considerations
	3.3.4 Application Considerations

	Chapter 4. Lockdown Descriptions
	4.1 The SAP/R3 Lockdown Module
	4.1.1 TSM Roles in the SAP/R3 LDF
	4.1.2 TSM Resources in the SAP/R3 LDF

	4.2 The Tivoli Framework Lockdown Module
	4.2.1 Framework Security Considerations
	4.2.2 TSM Roles and Groups in the Framework LDF
	4.2.3 TSM Resources in the Framework LDF

	4.3 The Lotus Domino Lockdown Module
	4.3.1 Lotus Domino Considerations
	4.3.2 Design Considerations of the Lotus Domino LDF
	4.3.3 TSM Roles and Groups in the Lotus Domino LDF
	4.3.4 TSM Resources in the Lotus Domino LDF

	4.4 The Netscape Enterprise Server Lockdown Module
	4.4.1 Netscape Enterprise Server Considerations
	4.4.2 Design Considerations for the Netscape LDF
	4.4.3 TSM Resources in the Netscape LDF
	4.4.4 Further Design Considerations of the Netscape LDF
	4.4.5 TSM Groups and Roles in the Netscape LDF

	4.5 The Oracle Lockdown Module
	4.5.1 Oracle Considerations
	4.5.2 TSM Roles in the Oracle LDF
	4.5.3 Goals of the Oracle LDF
	4.5.4 Design Considerations of the Oracle LDF

	4.6 The Windows NT Operating System Lockdown Module
	4.6.1 TSM Roles and Groups in the Windows NT LDF
	4.6.2 TSM Resources in the Windows NT LDF

	4.7 The AIX Lockdown Module
	4.7.1 AIX Considerations
	4.7.2 Design Considerations of the AIX LDF
	4.7.3 TSM Resources in the AIX LDF
	4.7.4 Groups and Roles in the AIX LDF

	Appendix A. TSM Profile Tools
	A.1 The LDF Export Tool
	A.1.1 Export Tool Usage
	A.1.2 wldfexp Flags
	A.1.3 Variable Substitution

	A.2 The LDF Import Utility
	A.2.1 Import Utility Usage
	A.2.2 wldfimp Flags
	A.2.3 Import Utility Considerations

	Appendix B. Lockdown Definition File Format
	B.1 LDF Component Notation
	B.1.1 Comments
	B.1.2 Tokens
	B.1.3 Identifiers
	B.1.4 Lists
	B.1.5 Record Properties
	B.1.6 Other Parameters

	B.2 LDF Section Description
	B.2.1 LDF LOCKDOWN Section
	B.2.2 LDF VAR section
	B.2.3 LDF PROLOG Section
	B.2.4 LDF GROUPS Section
	B.2.5 LDF ROLES Section
	B.2.6 LDF RESOURCES Section
	B.2.7 LDF ACCESS Section
	B.2.8 LDF EPILOG Section

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

