
Understanding LDAP

Heinz Johner, Larry Brown, Franz-Stefan Hinner, Wolfgang Reis, Johan Westman

SG24-4986-00

International Technical Support Organization

http://www.redbooks.ibm.com

Understanding LDAP

SG24-4986-00

June 1998

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 1998)

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 161.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii

Chapter 1. LDAP: The New Common Directory 1
1.1 What is a Directory? . 2

1.1.1 Differences Between Directories and Databases 2
1.1.2 Directory Clients and Servers . 4
1.1.3 Distributed Directories . 6
1.1.4 Directory Security . 7

1.2 The Directory as Infrastructure . 8
1.2.1 Directory-Enabled Applications. 8
1.2.2 The Benefits of a Common Directory . 9

1.3 LDAP History and Standards . 10
1.3.1 OSI and the Internet . 10
1.3.2 X.500: The Directory Service Standard. 11
1.3.3 LDAP: Lightweight Access to X.500 . 12

1.4 LDAP: Protocol or Directory? . 14
1.5 The LDAP Road Map . 15
1.6 The Quick Start: A Public LDAP Example . 16

Chapter 2. LDAP Concepts and Architecture . 19
2.1 Overview of LDAP Architecture . 19
2.2 The LDAP Models . 24

2.2.1 The Information Model . 25
2.2.2 The Naming Model . 28
2.2.3 The Functional Model . 35
2.2.4 The Security Model. 42

2.3 Security . 43
2.3.1 No Authentication . 44
2.3.2 Basic Authentication . 44
2.3.3 Simple Authentication and Security Layer (SASL) 45

2.4 Manageability . 49
2.4.1 LDAP Command Line Tools . 50
2.4.2 LDAP Data Interchange Format (LDIF) . 50

2.5 Platform Support . 56
© Copyright IBM Corp. 1998 iii

Chapter 3. Designing and Maintaining an LDAP Directory 57
3.1 Directory Design Guidelines . 57

3.1.1 Defining the Data Model . 58
3.1.2 Security Policy . 65
3.1.3 Physical Design . 69

3.2 Migration Planning . 73
3.3 Example Scenarios . 76

3.3.1 Small Organization . 76
3.3.2 Large Organization . 79

Chapter 4. Building LDAP-Enabled Applications 85
4.1 LDAP Software Development Kits (SDKs) . 86
4.2 The C Language API to LDAP . 86

4.2.1 Getting Started . 86
4.2.2 Synchronous and Asynchronous Use of the API 91
4.2.3 A Synchronous Search Example . 92
4.2.4 More about Search Filters . 96
4.2.5 Parsing Search Results . 96
4.2.6 An Asynchronous Example . 99
4.2.7 Error Handling . 104
4.2.8 Authentication Methods . 108
4.2.9 Multithreaded Applications . 113

4.3 LDAP Command Line Tools . 115
4.3.1 The Search Tool: ldapsearch . 116
4.3.2 The ldapmodify and ldapadd Utilities . 117
4.3.3 The ldapdelete Tool . 118
4.3.4 The ldapmodrdn Tool . 119
4.3.5 Security Considerations . 119

4.4 LDAP URLs . 120
4.4.1 Uses of LDAP URLs . 122
4.4.2 LDAP URL APIs . 123

4.5 The Java Naming and Directory Interface (JNDI) 124
4.5.1 JNDI Example Program . 127

Chapter 5. The Future of LDAP . 131
5.1 The IETF LDAP Road Map . 131

5.1.1 Access Control Requirements for LDAP 132
5.1.2 Scrolling View Browsing of Search Results 133
5.1.3 LDAP Clients Finding LDAP Servers . 133

5.2 Distributed Computing Environment (DCE) and LDAP 133
5.2.1 LDAP Interface for the GDA . 135
5.2.2 LDAP Interface for the CDS . 135
5.2.3 Future LDAP Integration . 136
iv Understanding LDAP

5.3 Other Middleware Software . 137
5.4 The Directory-Enabled Networks Initiative . 138

Appendix A. Other LDAP References . 139
A.1 The Internet Engineering Task Force (IETF) . 139
A.2 The University of Michigan (UMICH) . 140
A.3 Software Development Kits. 140
A.4 Other Sources. 140

A.4.1 Vendors Mentioned in this Book . 141
A.4.2 LDAP, General . 141
A.4.3 Request for Comments (RFCs) . 142
A.4.4 Security . 142

Appendix B. LDAP Products and Services . 143
B.1 IBM Product Offerings. 143

B.1.1 IBM eNetwork LDAP Directory . 143
B.1.2 IBM eNetwork X.500 Directory for AIX . 144
B.1.3 IBM eNetwork LDAP Client Pack for Multiplatforms 145

B.2 Lotus Domino . 146
B.3 Tivoli User Administration: LDAP Endpoint. 147
B.4 Other LDAP Server Products . 148

B.4.1 Netscape Directory Server . 148
B.4.2 Novell LDAP Services for NDS. 149
B.4.3 Microsoft Active Directory . 149

B.5 LDAP Enabled Clients and Applications . 150
B.6 LDAP Development Kits and Tools. 150
B.7 Public LDAP Services . 151

Appendix C. LDAP C Language API Functions and Error Codes. . . . 153
C.1 C Language API Calls . 153

C.1.1 Functions to Establish and Terminate a Connection 153
C.1.2 Session-Handling Functions. 154
C.1.3 Interacting with the Server . 154
C.1.4 Error Handling . 155
C.1.5 Analyzing Results . 156
C.1.6 Freeing Memory . 157
C.1.7 Other Functions . 157

C.2 LDAP API Error Codes . 158

Appendix D. Special Notices . 161

Appendix E. Related Publications . 163
E.1 International Technical Support Organization Publications 163
E.2 Redbooks on CD-ROMs . 163
 v

E.3 Other Publications. 164

How to Get ITSO Redbooks . 165
How IBM Employees Can Get ITSO Redbooks . 165
How Customers Can Get ITSO Redbooks. 166
IBM Redbook Order Form . 167

List of Abbreviations. 169

Index . 171

ITSO Redbook Evaluation . 177
vi Understanding LDAP

Figures

1. Directory Client/Server Interaction . 5
2. LDAP Server Acting as a Gateway to an X.500 Server 14
3. Stand-Alone LDAP Server . 15
4. Search an Internet Directory . 17
5. Results Searching an Internet Directory . 18
6. Entries, Attributes and Values . 25
7. Example Directory Information Tree (DIT) . 29
8. Distinguished Name Grammar. 31
9. Example DIT Showing Suffixes and Referrals . 33
10. Referral Followed by Client . 34
11. Server Chaining . 34
12. Search Parameters . 38
13. SASL Mechanism . 46
14. SSL/TLS in Relationship with Other Protocols. 47
15. SSL/TLS Handshake . 48
16. DNS-Type Naming Model for the Directory Tree . 62
17. Modified Tree Representation of an Organization 63
18. Sample ACL Attribute Entry . 68
19. Setup of a Load Balancing, Replicated LDAP Cluster 70
20. Example of an Organization’s Network . 71
21. Handling Referrals in a Partitioned Namespace . 71
22. Migration and Data Consolidation . 74
23. Migration from Existing Directory Services to LDAP 75
24. Example Directory Tree with Attributes for a Small Organization 78
25. Partitioned Namespace Setup for the ABC Organization 81
26. A Load Balanced, Replicated, and Partitioned Directory Service 83
27. Synchronous Versus Asynchronous Calls . 91
28. Different Search Scopes . 95
29. Result of a Search Request . 97
30. Multiple Parallel Threads . 114
31. JNDI API and SPI Interfaces . 126
32. LDAP Interface for the GDA. 135
33. LDAP Interface for NSI . 136
34. Tivoli Database Versus the Real Configuration . 147
© Copyright IBM Corp. 1998 vii

viii Understanding LDAP

Tables

1. Example ACL for an Employee’s Directory Entry . 8
2. Some of the LDAP Attribute Syntaxes . 26
3. Common LDAP Attributes . 26
4. Object Classes and Required Attributes . 27
5. Attribute Type String Representations . 32
6. Search Filter Operators . 39
7. Boolean Operators. 40
8. Update Operations. 40
9. Authentication Operations . 41
10. Description of LDIF Fields . 52
11. LDIF Fields for Specifying Organization Entries . 53
12. LDIF Fields for Specifying an Organizational Unit 54
13. LDIF Fields for Specifying an Organizational Unit 55
14. ACL Structure for Web Content Administration Using Two Groups. 69
15. LDAP URL APIs. 124
16. JNDI Directory Context Environment Properties 127
17. Functions that Initialize and Terminate a Connection 153
18. Session-Handling Functions . 154
19. Functions that Send or Receive Data . 154
20. Functions for Error Handling . 155
21. Parsing the Results . 156
22. Memory-Freeing Functions . 157
23. Other Functions . 157
© Copyright IBM Corp. 1998 ix

x Understanding LDAP

Preface

Lightweight Directory Access Protocol (LDAP) is a fast-growing technology
for accessing common directory information. LDAP has been embraced and
implemented in most network-oriented middleware. As an open,
vendor-neutral standard, LDAP provides an extendable architecture for
centralized storage and management of information that needs to be
available for today’s distributed systems and services.

After a fast start, it can be assumed that LDAP has become the de facto
access method for directory information, much the same as the Domain
Name System (DNS) is used for IP address look-up on almost any system on
an intranet and on the Internet. LDAP is currently supported in most network
operating systems, groupware and even shrink-wrapped network
applications.

This redbook was written for those readers who need to understand the basic
principles and concepts of LDAP. Some background knowledge about
heterogeneous, distributed systems is assumed and is highly beneficial when
reading this book. Because this redbook is not meant to be an LDAP
implementation guide, it does not contain product-related or vendor-specific
information other than that used in examples.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Heinz Johner is an Advisory Systems Engineer at the International Technical
Support Organization, Austin Center. He writes extensively on all areas of the
Distributed Computing Environment (DCE). Before joining the ITSO, he
worked in the services organization of IBM Switzerland and was responsible
for DCE and Systems Management in medium and large customer projects.

Larry Brown, Ph.D. is a Professional Services Technical Consultant for
Transarc Corporation in the United States. He has 15 years of experience in
the software industry and received his degree in Computer Engineering from
Florida Atlantic University. His areas of expertise include distributed systems
and transaction processing.

Franz-Stefan Hinner is a Systems Engineer at the Technical Marketing &
Sales Support in Germany. He has been with IBM for 12 years. His areas of
expertise include Network Operating Systems, like Warp Server, Windows NT
© Copyright IBM Corp. 1998 xi

Novell NetWare, Distributed Computing Environment (DCE), Directory &
Security Services (DSS), and Global Sign-On (GSO).

Wolfgang Reis is a Software Specialist from the AIX Customer Support
Center in Germany. He has two years of experience supporting the IBM
Internet products. He holds a degree in Physics received from the University
of Bonn in Germany. His areas of expertise include the products Lotus Notes
and Domino.

Johan Westman is an RS/6000 Technical Specialist working for IBM in
Sweden. He has worked three years with RS/6000s, focusing on Network
Computing. He holds a Master of Science in Engineering Physics degree
from Uppsala University in Sweden. His main area of expertise is Network
Computing solutions on IBM Midrange Server platforms.

Thanks to the following people for their invaluable contributions to this
project:

Ellen Stokes
Lead Directory Architect, IETF participant, IBM Austin

Mike Schlosser
Senior Software Engineer, LDAP Design & Architecture, IETF participant,
IBM Austin

Members of the LDAP planning and development team at IBM Austin:
Jamil Bissar
Mike Dugan
Mike Garrison
James Manon
Mark McConaughy

Special thanks go to the editors for their help in finalizing the text and
publishing the book:

Marcus Brewer
Tara Campbell
John Weiss

Comments Welcome

Your comments are important to us!
xii Understanding LDAP

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 177
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xiii

xiv Understanding LDAP

Chapter 1. LDAP: The New Common Directory

People and businesses are increasingly relying on networked computer
systems to support distributed applications. These distributed applications
might interact with computers on the same local area network (LAN), within a
corporate intranet, or anywhere on the worldwide Internet. To improve
functionality, ease of use and to enable cost-effective administration of
distributed applications information about the services, resources, users, and
other objects accessible from the applications needs to be organized in a
clear and consistent manner. Much of this information can be shared among
many applications, but it must also be protected to prevent unauthorized
modification or the disclosure of private information.

Information describing the various users, applications, files, printers, and
other resources accessible from a network is often collected into a special
database, sometimes called a directory. As the number of different networks
and applications has grown, the number of specialized directories of
information has also grown, resulting in islands of information that cannot be
shared and are difficult to maintain. If all of this information could be
maintained and accessed in a consistent and controlled manner, it would
provide a focal point for integrating a distributed environment into a
consistent and seamless system.

The Lightweight Directory Access Protocol (LDAP) is an open industry
standard that has evolved to meet these needs. LDAP defines a standard
method for accessing and updating information in a directory. LDAP is
gaining wide acceptance as the directory access method of the Internet and
is therefore also becoming strategic within corporate intranets. It is being
supported by a growing number of software vendors and is being
incorporated into a growing number of applications.

Understanding LDAP explains the ideas behind LDAP and is intended to give
the reader a detailed understanding of the architecture, use, and benefits of
LDAP. Product-specific programming, configuration, and administration
information is not presented; instead, the underlying concepts are discussed.

Chapter 1 provides background information about what a directory service is
and the benefits it can provide. The architecture of LDAP is discussed in
detail in Chapter 2. Chapter 3 discusses issues related to the design and
maintenance of an LDAP directory. Building directory-enabled applications is
discussed in Chapter 4, which presents the LDAP programming model and
code examples. Finally, the future of LDAP is discussed in Chapter 5. Various
reference material is collected in the appendices.
© Copyright IBM Corp. 1998 1

1.1 What is a Directory?

A directory is a listing of information about objects arranged in some order
that gives details about each object. Common examples are a city telephone
directory and a library card catalog. For a telephone directory, the objects
listed are people; the names are arranged alphabetically, and the details
given about each person are address and telephone number. Books in a
library card catalog are ordered by author or by title, and information such as
the ISBN number of the book and other publication information is given.

In computer terms, a directory is a specialized database, also called a data
repository, that stores typed and ordered information about objects. A
particular directory might list information about printers (the objects)
consisting of typed information such as location (a formatted character
string), speed in pages per minute (numeric), print streams supported (for
example PostScript or ASCII), and so on.

Directories allow users or applications to find resources that have the
characteristics needed for a particular task. For example, a directory of users
can be used to look up a person’s e-mail address or fax number. A directory
could be searched to find a nearby PostScript color printer. Or a directory of
application servers could be searched to find a server that can access
customer billing information.

The terms white pages and yellow pages are sometimes used to describe
how a directory is used. If the name of an object (person, printer) is known, its
characteristics (phone number, pages per minute) can be retrieved. This is
similar to looking up a name in the white pages of a telephone directory. If the
name of a particular individual object is not known, the directory can be
searched for a list of objects that meet a certain requirement. This is like
looking up a listing of hairdressers in the yellow pages of a telephone
directory. However, directories stored on a computer are much more flexible
than the yellow pages of a telephone directory because they can usually be
searched by specific criteria, not just by a predefined set of categories.

1.1.1 Differences Between Directories and Databases
A directory is often described as a database, but it is a specialized database
that has characteristics that set it apart from general purpose relational
databases. One special characteristic of directories is that they are accessed
(read or searched) much more often than they are updated (written).
Hundreds of people might look up an individual’s phone number, or
thousands of print clients might look up the characteristics of a particular
printer. But the phone number or printer characteristics rarely change.
2 Understanding LDAP

Because directories must be able to support high volumes of read requests,
they are typically optimized for read access. Write access might be limited to
system administrators or to the owner of each piece of information. A general
purpose database, on the other, hand needs to support applications such as
airline reservation and banking with high update volumes.

Because directories are meant to store relatively static information and are
optimized for that purpose, they are not appropriate for storing information
that changes rapidly. For example, the number of jobs currently in a print
queue probably should not be stored in the directory entry for a printer
because that information would have to be updated frequently to be accurate.
Instead, the directory entry for the printer could contain the network address
of a print server. The print server could be queried to learn the current queue
length if desired. The information in the directory (the print server address) is
static, whereas the number of jobs in the print queue is dynamic.

Another important difference between directories and general purpose
databases is that directories may not support transactions (some vendor
implementations, however, do). Transactions are all-or-nothing operations
that must be completed in total or not at all. For example, when transferring
money from one bank account to another, the money must be debited from
one account and credited to the other account in a single transaction. If only
half of this transaction completes or someone accesses the accounts while
the money is in transit, the accounts will not balance. General-purpose
databases usually support such transactions, which complicates their
implementation.

Because directories deal mostly with read requests, the complexities of
transactions can be avoided. If two people exchange offices, both of their
directory entries need to be updated with new phone numbers, office
locations, and so on. If one directory entry is updated, and then other
directory entry is updated there is a brief period during which the directory will
show that both people have the same phone number. Because updates are
relatively rare, such anomalies are considered acceptable.

The type of information stored in a directory usually does not require strict
consistency. It might be acceptable if information such as a telephone
number is temporarily out of date. Because directories are not transactional,
it is not a good idea to use them to store information sensitive to
inconsistencies, like bank account balances.

Because general-purpose databases must support arbitrary applications such
as banking and inventory control, they allow arbitrary collections of data to be
stored. Directories may be limited in the type of data they allow to be stored
LDAP: The New Common Directory 3

(although the architecture does not impose such a limitation). For example, a
directory specialized for customer contact information might be limited to
storing only personal information such as names, addresses, and phone
numbers. If a directory is extensible, it can be configured to store a variety of
types of information, making it more useful to a variety of programs.

Another important difference between a directory and a general-purpose
database is in the way information can be accessed. Most databases support
a standardized, very powerful access method called Structured Query
Language (SQL). SQL allows complex update and query functions at the cost
of program size and application complexity. LDAP directories, on the other
hand, use a simplified and optimized access protocol that can be used in slim
and relatively simple applications.

Because directories are not intended to provide as many functions as
general-purpose databases, they can be optimized to economically provide
more applications with rapid access to directory data in large distributed
environments. Because the intended use of directories is restricted to a
read-mostly, nontransactional environment, both the directory client and
directory server can be simplified and optimized.

1.1.2 Directory Clients and Servers
Directories are usually accessed using the client/server model of
communication. An application that wants to read or write information in a
directory does not access the directory directly. Instead, it calls a function or
application programming interface (API) that causes a message to be sent to
another process. This second process accesses the information in the
directory on behalf of the requesting application. The results of the read or
write are then returned to the requesting application (see Figure 1).

Many of the differences just mentioned may lead to the suspicion that a
directory is no more than a limited-function database. This is in deed partly
true, since one of the important design goals of a directory service is that it
can be accessed and used from relatively small and simple applications. In
fact, certain vendor products, such as IBM’s eNetwork LDAP Directory, use
a relational database under the cover to implement the functions. Also,
proposals are being discussed in the standards bodies to add some
functions to future versions of LDAP that currently are specific to
databases, such as support for transactional updates.

What About the Future?
4 Understanding LDAP

Figure 1. Directory Client/Server Interaction

The request is performed by the directory client, and the process that looks
up information in the directory is called the directory server. In general,
servers provide a specific service to clients. Sometimes a server might
become the client of other servers in order to gather the information
necessary to process a request.

A directory service is only one type of service that might be available in a
client/server environment. Other common examples of services are file
services, mail services, print services, Web page services, and so on. The
client and server processes might or might not be on the same machine. A
server is capable of serving many clients. Some servers can process client
requests in parallel. Other servers queue incoming client requests for serial
processing if they are currently busy processing another client’s request.

An API defines the programming interface a particular programming language
uses to access a service. The format and contents of the messages
exchanged between client and server must adhere to an agreed upon
protocol. LDAP defines a message protocol used by directory clients and
directory servers. There is also an associated LDAP API for the C language
and ways to access LDAP from withing a Java application (see Chapter 4,
“Building LDAP-Enabled Applications” on page 85, for more details on these
APIs). The client is not dependent upon a particular implementation of the
server, and the server can implement the directory however it chooses.

Application Client Directory Server

Request Message

Reply Message

Application

TCP/IP

Directory Client

Request Reply

TCP/IP

Receive Message
Access Directory
Return Reply

Directory

API
LDAP: The New Common Directory 5

1.1.3 Distributed Directories
The terms local, global, centralized, and distributed are often used to
describe a directory or directory service. These terms mean different things to
different people in different contexts. In this section, these terms are
explained as they apply to directories in different contexts.

In general, local means something is close by, and global means that
something is spread across the universe of interest. The universe of interest
might be a company, a country, or the Earth. Local and global are two ends of
a continuum. That is, something may be more or less global or local than
something else. Centralized means that something is in one place, and
distributed means that something is in more than one place. Like local and
global, something can be distributed to a greater or lesser extent.

The information stored in a directory can be local or global in scope. For
example, a directory that stores local information might consist of the names,
e-mail addresses, public encryption keys, and so on of members of a
department or workgroup. A directory that stores global information might
store information for an entire company. Here, the universe of interest is the
company.

The clients that access information in the directory can be local or global.
Local clients might all be located in the same building or on the same LAN.
Global clients might be distributed across the continent or planet.

The directory itself can be centralized or distributed. If a directory is
centralized, there is one directory server that provides access to the directory.
If the directory is distributed, there is more that one server that provides
access to the directory. When people refer to a distributed directory, they are
usually referring to distributed directory servers.

When a directory is distributed, the information stored in the directory can be
partitioned or replicated. When information is partitioned, each directory
server stores a unique and non-overlapping subset of the information. That is,
each directory entry is stored by one and only one server. When information
is replicated, the same directory entry is stored by more than one server. In a
distributed directory, some information may be partitioned, and some
information may be replicated.

The three “dimensions” of a directory — scope of information, location of
clients, and distribution of servers — are independent of each other. For
example, clients scattered across the globe could access a directory
containing only information about a single department, and that directory
could be replicated at many directory servers. Or clients in a single location
6 Understanding LDAP

could access a directory containing information about everybody in the world
that is stored by a single directory server.

The scope of information to be stored in a directory is often given as an
application requirement. The distribution of directory servers and the way in
which data is partitioned or replicated can often be controlled to effect the
performance and availability of the directory. For example, a distributed and
replicated directory might perform better because a read request can be
serviced by a nearby server. A centralized directory may be less available
because it is a single point of failure. However, a distributed directory might
be more difficult to maintain because multiple sites, possibly under the control
of multiple administrators, must be kept up-to-date and in running order.

The design and maintenance of a directory service can be complex, and
many trade-offs are involved. This topic is discussed in more detail in Chapter
3, “Designing and Maintaining an LDAP Directory” on page 57.

1.1.4 Directory Security
The security of information stored in a directory is a major consideration.
Some directories are meant to be accessed publicly on the Internet, but any
user should not necessarily be able to perform any operation. A company’s
directory servicing its intranet can be stored behind a firewall to keep the
general public from accessing it, but more security control is needed within
the intranet itself.

For example, anybody should be able to look up an employee’s e-mail
address, but only the employee or a system administrator should be able to
change it. Members of the personnel department might have permission to
look up an employee’s home telephone number, but their co-workers might
not. Perhaps information needs to be encrypted before being transmitted over
the network. A security policy defines who has what type of access to what
information. The security policy is defined by the organization that maintains
the directory.

A directory should support the basic capabilities needed to implement a
security policy. The directory might not directly provide the underlying
security capabilities, but it might be integrated with a trusted network security
service that provides the basic security services. First, a method is needed to
authenticate users. Authentication verifies that users are who they say they
are. A user name and password is a basic authentication scheme. Once
users are authenticated, it must be determined if they have the authorization
or permission to perform the requested operation on the specific object.
LDAP: The New Common Directory 7

Authorization is often based on access control lists (ACLs). An ACL is a list of
authorizations that may be attached to objects and attributes in the directory.
An ACL lists what type of access each user is allowed. In order to make ACLs
shorter and more manageable, users with the same access rights are often
put into security groups. Table 1 shows an example ACL for an employee’s
directory entry.

Table 1. Example ACL for an Employee’s Directory Entry

Security is discussed in more detail in 2.3, “Security” on page 43.

1.2 The Directory as Infrastructure

A directory that is accessible by all applications is a vital part of the
infrastructure supporting a distributed system. A directory service provides a
single logical view of the users, resources, and other objects that make up a
distributed system. This allows users and applications to access network
resources transparently. That is, the system is perceived as an integrated
whole, not a collection of independent parts. Objects can be accessed by
name or function without knowing low-level identifiers such as host
addresses, file server names, and e-mail addresses.

1.2.1 Directory-Enabled Applications
A directory-enabled application is an application that uses a directory service
to improve its functionality, ease of use, and administration. Today many
applications make use of information that could be stored in a directory. For
example, consider a group calendar application that is used to schedule
meetings of company personnel in different conference rooms.

In the worst case, the calendar application does not use a directory service at
all. If this were the case, a user trying to schedule a meeting would have to
remember the room number of every conference room that might be
appropriate for the meeting. Is the room big enough, does it have the
necessary audio and video equipment, and so on? The user would also have
to remember the names and e-mail addresses of every attendee that needs

User or Group Access Rights

owner read, modify (but not delete)

administrators all

personnel read all fields

all others read restricted
8 Understanding LDAP

to receive a meeting notice. Such an application would obviously be difficult
to use.

If conference room information (size, location, special equipment, and so on)
and personnel information (name, e-mail address, phone number, and so on)
could be accessed from a directory service, the application would be much
easier to use. Also, the functionality of the application could be improved. For
example, a list of all available conference rooms meeting the size and
equipment requirements could be presented to the user.

But the developers of directory-enabled applications are faced with a
problem. What if they cannot assume that a directory service will exist in all
environments? If there is a directory service it might be specific to a certain
network operating system (NOS), making the application non-portable. Can
the existing directory service be extended to store the type of information
needed by the application? Because of these concerns, application
developers often took the approach of developing their own
application-specific directory.

1.2.2 The Benefits of a Common Directory
An application-specific directory stores only the information needed by a
particular application and is not accessible by other applications. Because a
full-function directory service is complex to build, application-specific
directories are typically very limited. They probably store only a specific type
of information, probably do not have general search capabilities, probably do
not support replication and partitioning, and probably do not have a full set of
administration tools. An application-specific directory could be as simple as a
set of editable text files, or it could be stored and accessed in an
undocumented, proprietary manner.

In such an environment, each application creates and manages its own
application-specific directory. This quickly becomes an administrative
nightmare. The same e-mail address stored by the calendar application might
also be stored by a mail application and by an application that notifies system
operators of equipment problems. Keeping multiple copies of information
up-to-date and synchronized is difficult, especially when different user
interfaces and even different system administrators are involved.

What is needed is a common, application-independent directory. If application
developers could be assured of the existence of a directory service, then
application-specific directories would not be necessary. However, a common
directory must address the problems mentioned above. It must be based on
an open standard that is supported by many vendors on many platforms. It
LDAP: The New Common Directory 9

must be accessible through a standard API. It must be extensible so that it
can hold the types of data needed by arbitrary applications. And it must
provide full functionality without requiring excessive resources on smaller
systems. Since more users and applications will access and depend on the
common directory, it must also be robust, secure and scalable.

When such a directory infrastructure is in place, application developers can
devote their time to developing applications instead of application-specific
directories. In the same way that developers rely on the communications
infrastructure of TCP/IP, remote procedure call (RPC), and object request
brokers (ORBs) to free them from low-level communication issues, they will
be able to rely on powerful, full-function directory services. LDAP is the
protocol to be used to access this common directory infrastructure. Like
HTTP (hypertext transfer protocol) and FTP (file transfer protocol), LDAP will
become an indispensable part of the Internet’s protocol suite.

When applications access a standard common directory that is designed in a
proper way, rather than using application-specific directories, redundant and
costly administration can be eliminated, and security risks are more
controllable. The calendar, mail, and operator notification applications can all
access the same directory to retrieve an email address. New uses for
directory information will be realized, and a synergy will develop as more
applications take advantage of the common directory.

1.3 LDAP History and Standards

In the 1970s, the integration of communications and computing technologies
led to the development of new communication technologies. Many of the
proprietary systems that were developed were incompatible with other
systems. It became apparent that standards were needed to allow equipment
and systems from different vendors to interoperate. Two independent major
standardizations efforts developed to define such standards.

1.3.1 OSI and the Internet
One standards drive was lead by the CCITT (Comite Consultatif International
Telephonique et Telegraphique, or Consultative Committee on International
Telephony and Telegraphy), and the ISO (International Standards
Organization). The CCITT has since become the ITU-T (International
Telecommunications Union - Telecommunication Standardization Sector).
This effort resulted in the OSI (Open Systems Interconnect) Reference Model
(ISO 7498), which defined a seven-layer model of data communication with
10 Understanding LDAP

physical transport at the lower layer and application protocols at the upper
layers.

The other standards drive grew up around the Internet and developed from
research sponsored by DARPA (the Defense Advanced Research Projects
Agency) in the United States. The Internet Architecture Board (IAB) and its
subsidiary, the Internet Engineering Task Force (IETF), develop standards for
the Internet in the form of documents called RFC’s (Request for Comments),
which after being approved, implemented, and used for a period of time,
eventually become standards (STDs). Before a proposal becomes an RFC, it
is called an Internet Draft.

The two standards processes approach standardization from two different
perspectives. The OSI approach started from a clean slate and defined
standards using a formal committee process without requiring
implementations. The Internet uses a less formal engineering approach,
where anybody can propose and comment on RFCs, and implementations
are required to verify feasibility.

The OSI protocols developed slowly, and because running the full protocol
stack, is resource intensive, they have not been widely deployed, especially
in the desktop and small computer market. In the meantime, TCP/IP and the
Internet were developing rapidly and being put into use. Also, some network
vendors developed proprietary network protocols and products.

1.3.2 X.500: The Directory Service Standard
However, the OSI protocols did address issues important in large distributed
systems that were developing in an ad hoc manner in the desktop and
Internet marketplace. One such important area was directory services. The
CCITT created the X.500 standard in 1988, which became ISO 9594, Data
Communications Network Directory, Recommendations X.500-X.521 in 1990,
though it is still commonly referred to as X.500.

X.500 organizes directory entries in a hierarchal name space capable of
supporting large amounts of information. It also defines powerful search
capabilities to make retrieving information easier. Because of its functionality
and scalability, X.500 is often used together with add-on modules for
interoperation between incompatible directory services.

X.500 specifies that communication between the directory client and the
directory server uses the directory access protocol (DAP). However, as an
application layer protocol, the DAP requires the entire OSI protocol stack to
operate. Supporting the OSI protocol stack requires more resources than are
LDAP: The New Common Directory 11

available in many small environments. Therefore, an interface to an X.500
directory server using a less resource-intensive or lightweight protocol was
desired.

1.3.3 LDAP: Lightweight Access to X.500
LDAP was developed as a lightweight alternative to DAP. LDAP requires the
lighter weight and more popular TCP/IP protocol stack rather than the OSI
protocol stack. LDAP also simplifies some X.500 operations and omits some
esoteric features.

Two precursors to LDAP appeared as RFCs issued by the IETF, Directory
Assistance Service (RFC 1202) and DIXIE Protocol Specification (RFC
1249). These were both informational RFCs which were not proposed as
standards. The directory assistance service (DAS) defined a method by
which a directory client could communicate to a proxy on a OSI-capable host
which issued X.500 requests on the client’s behalf. DIXIE is similar to DAS,
but provides a more direct translation of the DAP.

The first version of LDAP was defined in X.500 Lightweight Access Protocol
(RFC 1487), which was replaced by Lightweight Directory Access Protocol
(RFC 1777). LDAP further refines the ideas and protocols of DAS and DIXIE.
It is more implementation neutral and reduces the complexity of clients to
encourage the deployment of directory-enabled applications. Much of the
work on DIXIE and LDAP was carried out at the University of Michigan, which
provides reference implementations of LDAP and maintains LDAP-related
Web pages and mailing lists (see A.2, “The University of Michigan (UMICH)”
on page 140).

RFC 1777 defines the LDAP protocol itself. RFC 1777, along with

 • The String Representation of Standard Attribute Syntaxes (RFC 1778)

 • A String Representation of Distinguished Names (RFC 1779)

 • An LDAP URL Format (RFC 1959)

 • A String Representation of LDAP Search Filters (RFC 1960)

define LDAP Version 2. See Chapter 2, “LDAP Concepts and Architecture” on
page 19, for information about these topics.

LDAP Version 2 has reached the status of draft standard in the IETF
standardization process, one step from being a standard. Although changes
could be made to a draft standard, substantial and widespread testing of the
draft standard is desired. Many vendors have implemented products that
support LDAP Version 2 (see Appendix B, “LDAP Products and Services” on
12 Understanding LDAP

page 143). Some vendors are also implementing products that also support
all or parts of LDAP Version 3.

LDAP Version 3 is defined by Lightweight Directory Access Protocol (v3)
(RFC 2251). Related RFCs that are new or updated for LDAP Version 3 are:

 • Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions
(RFC 2252)

 • Lightweight Directory Access Protocol (v3): UTF-8 String Representation
of Distinguished Names (RFC 2253)

 • The String Representation of LDAP Search Filters (RFC 2254)

 • The LDAP URL Format (RFC 2255)

 • A Summary of the X.500(96) User Schema for use with LDAPv3 (RFC
2256)

RFC 2251 is a proposed standard, one step below a draft standard. Minor
revisions of a proposed standard are likely, but testing by several groups is
desired. LDAP V3 extends LDAP V2 in the following areas:

Referrals A server that does not store the requested data can
refer the client to another server.

Security Extensible authentication using Simple Authentication
and Security Layer (SASL) mechainism.

Internationalization UTF-8 support for international characters.

Extensibility New object types and operations can be dynamically
defined and schema published in a standard manner.

Again, see Chapter 2, “LDAP Concepts and Architecture” on page 19, for
information about these topics. In this book, the term LDAP generally refers
to LDAP Version 3. Differences between LDAP Version 2 and LDAP Version 3
are noted when necessary.

LDAP defines the communication protocol between the directory client and
server, but does not define a programming interface for the client. The LDAP
Application Program Interface (RFC 1823) defines a C language API to
access a directory using LDAP Version 2. This is an informational RFC, which
means it is not an official standard. However, it has become a de facto
standard. A standardized protocol and the availability of a common API on
different platforms are the major reasons for the wide acceptance of LDAP. At
the time of writing this book, RFC 1823 is in the process of being updated to
support LDAP Version 3, but a new RFC number has not yet been assigned
LDAP: The New Common Directory 13

to the existing draft. See Chapter 4, “Building LDAP-Enabled Applications” on
page 85 for information on using the LDAP API.

1.4 LDAP: Protocol or Directory?

LDAP defines a communication protocol. That is, it defines the transport and
format of messages used by a client to access data in an X.500-like directory.
LDAP does not define the directory service itself. Yet people often talk about
LDAP directories. Others say LDAP is only a protocol, that there is no such
thing as an LDAP directory. What is an LDAP directory?

An application client program initiates an LDAP message by calling an LDAP
API. But an X.500 directory server does not understand LDAP messages. In
fact, the LDAP client and X.500 server even use different communication
protocols (TCP/IP vs. OSI). The LDAP client actually communicates with a
gateway process (also called a proxy or front end) that forwards requests to
the X.500 directory server (see Figure 2). This gateway is known as an LDAP
server. It services requests from the LDAP client. It does this by becoming a
client of the X.500 server. The LDAP server must communicate using both
TCP/IP and OSI.

Figure 2. LDAP Server Acting as a Gateway to an X.500 Server

As the use of LDAP grew and its benefits became apparent, people who did
not have X.500 servers or the environments to support them wanted to build
directories that could be accessed by LDAP clients. So why not have the
LDAP server store and access the directory itself instead of only acting as a
gateway to X.500 servers (see Figure 3)? This eliminates any need for the
OSI protocol stack. Of course this makes the LDAP server much more
complicated since it must store and retrieve directory entries. These LDAP

LDAP
Client

LDAP
Server

X.500
Server

TCP/IP OSI

Directory
14 Understanding LDAP

servers are often called stand-alone LDAP servers because they do not
depend on an X.500 directory server. Since LDAP does not support all X.500
capabilities, a stand-alone LDAP server only needs to support the capabilities
required by LDAP.

Figure 3. Stand-Alone LDAP Server

RFC 1777 (LDAP Version 2) discusses providing access to the X.500
directory. RFC 2251 (LDAP Version 3) discusses providing access to
directories supporting the X.500 model. This change in language reflects the
idea that an LDAP server can implement the directory itself or can be a
gateway to an X.500 directory.

From the client’s point of view, any server that implements the LDAP protocol
is an LDAP directory server, whether the server actually implements the
directory or is a gateway to an X.500 server. The directory that is accessed
can be called an LDAP directory, whether the directory is implemented by a
stand-alone LDAP server or by an X.500 server.

1.5 The LDAP Road Map

LDAP has evolved to meet the need of providing access to a common
directory infrastructure. LDAP is an open industry standard that is supported
by many system vendors on a variety of platforms. It is being incorporated
into software products (see Appendix B, “LDAP Products and Services” on
page 143) and is quickly becoming the directory access protocol of choice.
LDAP allows products from different vendors on different platforms to
interoperate and provide a global directory infrastructure, much like HTTP
enabled the deployment of the World Wide Web.

Directory

LDAP
Client

LDAP
Server

TCP/IP
LDAP: The New Common Directory 15

Current LDAP products support at least LDAP Version 2. Many products
already support parts or all of LDAP Version 3. Further enhancements
beyond Version 3 are being discussed by the IETF (see Chapter 5, “The
Future of LDAP” on page 131).

Application developers can take advantage of LDAP to develop
next-generation directory-enabled applications. While X.500 has traditionally
been deployed only in large organizations that can commit the resources
necessary to support it, LDAP is also appropriate for small organizations. For
example, a small company might want to exchange documents with its
customers and suppliers using Electronic Data Interchange (EDI). EDI
requires both parties to agree on the types of documents to be exchanged,
communication requirements, and so on. Companies could publish their EDI
characteristics in publicly accessible LDAP directories to facilitate EDI.

A common directory infrastructure encourages new uses. The Directory
Enabled Networks (DEN) Initiative is a proposal to allow information about
network configuration, protocol information, router characteristics, and so on
to be stored in an LDAP directory. The availability of this information in a
common format from many equipment vendors will allow the intelligent
management and provisioning of network resources. These examples show
the diverse uses of directory-enabled applications supported by a common
directory infrastructure accessed with LDAP.

1.6 The Quick Start: A Public LDAP Example

Studying Internet Drafts, RFCs, and related publications about LDAP,
including this book, may lead to the assumption that LDAP is still under
construction, and it might be too early for a practical implementation. This is
actually true, as far as proposed extensions and future enhancements are
concerned; nevertheless, base sets for LDAP Version 2 and 3 are defined
and ready to be used. Due to the nature of the process in which IETF
standards emerge (as outlined in 1.3.1, “OSI and the Internet” on page 10),
there will always be multiple parties working on different or even the same
subjects.

LDAP is currently being used in many small- and large-scale
implementations. If you have never encountered an actual LDAP
implementation, take a look at the following example of a publicly accessible
LDAP service.

Although LDAP directories can be used to store various kinds of information,
the most obvious use is to implement a white pages directory of people to
16 Understanding LDAP

make their names, addresses, phone numbers, and so on available to
anybody for searching and reading. In fact, there are several LDAP white
pages available on the Internet. Four11 (www.four11.com), a directory service
provided by Yahoo!, for example, offers an LDAP access to its extensive
people directory.

Modern Web browsers, such as Netscape’s Communicator or Microsoft’s
Internet Explorer, on the other hand, are LDAP-enabled. This means that
such a browser can look up entries in an LDAP directory. In the following
example, we use Netscape Communicator to show how that fits together with
public LDAP services. When you install Communicator, a series of public
LDAP services are already configured as selectable directories for searching.
Without any further configuration, you may use these directories right away
by selecting Search Directory from the Edit pull-down in the Navigator
window. Figure 4 shows the window that comes up. Notice the drop-down list
for Internet directories, where the Four11 Directory is being selected for the
subsequent search. Some other selections can be made in this window, such
as whether you want to search for a name, an e-mail address or to add
additional search criteria.

Figure 4. Search an Internet Directory

Once all fields are selected or filled as required, a click on the Search button
sends the request to the selected service and returns the results in a short
while.
LDAP: The New Common Directory 17

Figure 5 shows the search results for people associated with the organization
IBM and the city of Austin. Note that only the first 100 records are returned,
which is a configurable option in your browser.

Figure 5. Results Searching an Internet Directory

What happens behind the scene is that the browser sends an LDAP search
request to the selected service and retrieves the search results. As can be
seen in this example, LDAP is already widely used and offered through the
public Internet. Additional LDAP servers, for example in your organization,
can be added to the browser’s configuration.

If you try to reproduce the example above and get an error saying that the
browser cannot connect to the LDAP server, then your system is most
likely connected to a private intranet, and the firewall between this intranet
and the Internet does not allow LDAP traffic to pass through. Try to run this
example from a system that is directly connected to the Internet.

LDAP uses another connection port than, for example, the popular
Hypertext Transfer Protocol (HTTP). While firewalls usually allow the
passage of specific traffic, such as HTTP on port 80, there is a good
chance that the LDAP port 389 is blocked by default in your installation.

No Connection to the LDAP Server?
18 Understanding LDAP

Chapter 2. LDAP Concepts and Architecture

LDAP is based on the client/server model of distributed computing (see 1.1.2,
“Directory Clients and Servers” on page 4). LDAP has evolved as a
lightweight protocol for accessing information in X.500 directory services. It
has since become more independent of X.500, and servers that specifically
support the LDAP protocol rather than the X.500 Directory Access Protocol
(DAP) are now common. The success of LDAP has been largely due to the
following characteristics that make it simpler to implement and use, compared
to X.500 and DAP:

 • LDAP runs over TCP/IP rather than the OSI protocol stack. TCP/IP is less
resource-intensive and is much more widely available, especially on
desktop systems.

 • The functional model of LDAP is simpler. It omits duplicate, rarely-used
and esoteric features. This makes LDAP easier to understand and to
implement.

 • LDAP uses strings to represent data rather than complicated structured
syntaxes such as ASN.1 (Abstract Syntax Notation One).

This chapter explains the basic architecture of LDAP. It discusses the
information, naming, functional, and security models that form the basis of
the LDAP architecture. Various terms and concepts defined by or needed to
understand the LDAP architecture are introduced along the way. After a
general overview of the architecture, each of the models that form the
backbone of the LDAP architecture is discussed in detail.

2.1 Overview of LDAP Architecture

LDAP defines the content of messages exchanged between an LDAP client
and an LDAP server. The messages specify the operations requested by the
client (search, modify, delete, and so on), the responses from the server, and
the format of data carried in the messages. LDAP messages are carried over
TCP/IP, a connection-oriented protocol; so there are also operations to
establish and disconnect a session between the client and server.

However, for the designer of an LDAP directory, it is not so much the
structure of the messages being sent and received over the wire that is of
interest. What is important is the logical model that is defined by these
messages and data types, how the directory is organized, what operations
are possible, how information is protected, and so forth.
© Copyright IBM Corp. 1998 19

The general interaction between an LDAP client and an LDAP server takes
the following form:

 • The client establishes a session with an LDAP server. This is known as
binding to the server. The client specifies the host name or IP address and
TCP/IP port number where the LDAP server is listening. The client can
provide a user name and a password to properly authenticate with the
server. Or the client can establish an anonymous session with default
access rights. The client and server can also establish a session that uses
stronger security methods such as encryption of data.

 • The client then performs operations on directory data. LDAP offers both
read and update capabilities. This allows directory information to be
managed as well as queried. LDAP also supports searching the directory
for data meeting arbitrary user-specified criteria. Searching is a very
common operation in LDAP. A user can specify what part of the directory
to search and what information to return. A search filter that uses Boolean
conditions specifies what directory data matches the search.

 • When the client is finished making requests, it closes the session with the
server. This is also known as unbinding.

Although it is not defined by the LDAP protocol and architecture itself, there is
a well-known LDAP API (application program interface) that allows
applications to easily interact with LDAP servers. The API can be considered
an extension to the LDAP architecture. Although the C language LDAP API is
only an informational RFC and the most recent update to it is an Internet
Draft, it has achieved de facto standard status because it is supported by all
major LDAP vendors. The philosophy of the LDAP API is to keep simple
things simple. This means that adding directory support to existing
applications can be done with low overhead. As we will see in Chapter 4,
“Building LDAP-Enabled Applications” on page 85, this interface is
reasonably easy to use and implement in applications.

Because LDAP was originally intended as a lightweight alternative to DAP for
accessing X.500 directories, it follows an X.500 model (see 1.3.2, “X.500:
The Directory Service Standard” on page 11). The directory stores and
organizes data structures known as entries.

A directory entry usually describes an object such as a person, a printer, a
server, and so on. Each entry has a name called a distinguished name (DN)
that uniquely identifies it. The DN consists of a sequence of parts called
relative distinguished names (RDNs), much like a file name consists of a path
of directory names in many operating systems such as UNIX and Windows.
The entries can be arranged into a hierarchical tree-like structure based on
20 Understanding LDAP

their distinguished names. This tree of directory entries is called the Directory
Information Tree (DIT).

Each entry contains one or more attributes that describe the entry. Each
attribute has a type and a value. For example, the directory entry for a person
might have an attribute called telephonNnumber. The syntax of the
telephoneNumber attribute would specify that a telephone number must be a
string of numbers that can contain spaces and hyphens. The value of the
attribute would be the person’s telephone number, such as 512-555-1212.

A directory entry describes some object. An object class is a general
description, sometimes called a template, of an object as opposed to the
description of a particular object. For instance, the object class person has a
surname attribute, whereas the object describing John Smith has a surname
attribute with the value Smith. The object classes that a directory server can
store and the attributes they contain are described by schema. Schema
define what object classes are allowed where in the directory, what attributes
they must contain, what attributes are optional, and the syntax of each
attribute. For example, a schema could define a person object class. The
person schema might require that a person have a surname attribute that is a
character string, specify that a person entry can optionally have a
telephoneNumber attribute that is a string of numbers with spaces and hyphens,
and so on.

LDAP defines operations for accessing and modifying directory entries such
as:

 • Searching for entries meeting user-specified criteria

 • Adding an entry

 • Deleting an entry

 • Modifying an entry

 • Modifying the distinguished name or relative distinguished name of an
entry (move)

 • Comparing an entry

LDAP is documented in several IETF RFCs. As discussed in 1.3.3, “LDAP:
Lightweight Access to X.500” on page 12, the current version of LDAP is
Version 3. That section also lists the RFCs associated with each version of
LDAP.

The LDAP Version 3 RFCs are again listed below along with a short
description to provide an overview of the documents defining the LDAP
architecture.
LDAP Concepts and Architecture 21

1. RFC 2251 Lightweight Directory Access Protocol (v3)

Describes the LDAP protocol designed to provide lightweight access to
directories supporting the X.500 model. The lightweight protocol is meant
to be implementable in resource-constrained environments such as
browsers and small desktop systems. This RFC is the core of the LDAP
family of RFCs. It describes how entries are named with distinguished
names, defines the format of messages exchanged between client and
server, enumerates the operations that can be performed by the client,
and specifies that data is represented using UTF-8 character encoding.

The RFC specifies that the schema describing directory entries must
themselves be readable so that a client can determine what type of
objects a directory server stores. It defines how the client can be referred
to another LDAP server if a server does not contain the requested
information. It describes how individual operations can be extended using
controls and how additional operations can be defined using extensions. It
also discusses how clients can authenticate to servers and optionally use
Simple Authentication and Security Layer (SASL) to allow additional
authentication mechanisms.

2. RFC 2252 Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions

LDAP uses octet strings to represent the values of attributes for
transmission in the LDAP protocol. This RFC defines how values such as
integers, time stamps, mail addresses, and so on are represented. For
example, the integer 123 is represented by the string "123". These
definitions are called attribute syntaxes. This RFC describes how an
attribute with a syntax such as “telephone number” is encoded. It also
defines matching rules to determine if values meet search criteria. An
example is caseIgnoreString, which is used to compare character strings
when case is not important.

These attribute types and syntaxes are used to build schema that describe
objects classes. A schema lists what attributes a directory entry must or
may have. Every directory entry has an objectclass attribute that lists the
(one or more) schema that describe the entry. For example, a directory
entry could be described by the object classes residentialPerson and
organizationalPerson. If an objectclass attribute includes the value
extensibleObject, it can contain any attribute.

3. RFC 2253 Lightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names

Distinguished names (DNs) are the unique identifiers, sometimes called
primary keys, of directory entries. X.500 uses ASN.1 to encode
22 Understanding LDAP

distinguished names. LDAP encodes distinguished names as strings. This
RFC defines how distinguished names are represented as strings. A string
representation is easy to encode and decode and is also human readable.
A DN is composed of a sequence of relative distinguished names (RDNs)
separated by commas. The sequence of RDNs making up a DN names the
ancestors of a directory entry up to the root of the DIT. Each RDN is
composed of an attribute value from the directory entry. For example, the
DN cn=John Smith,ou=Austin,o=IBM,c=US represents a directory entry for a
person with the common name (cn) John Smith under the organizational unit
(ou) Austin in the organization (o) IBM in the country (c) US.

4. RFC 2254 The String Representation of LDAP Search Filters

LDAP search filters provide a powerful mechanism to search a directory
for entries that match specific criteria. The LDAP protocol defines the
network representation of a search filter. This document defines how to
represent a search filter as a human-readable string. Such a
representation can be used by applications or in program source code to
specify search criteria. Attribute values are compared using relational
operators such as equal, greater than, or “sounds like” for approximate or
phonetic matching. Boolean operators can be used to build more complex
search filters. For example, the search filter (| (sn=Smith) (cn=Jo*))
searches for entries that either have a surname attribute of Smith or that
have a common name attribute that begins with Jo.

5. RFC 2255 The LDAP URL Format

Uniform Resource Locators (URLs) are used to identify Web pages, files,
and other resources on the Internet. An LDAP URL specifies an LDAP
search to be performed at a particular LDAP server. An LDAP URL
represents in a compact and standard way the information returned as the
result of the search. Section 4.4, “LDAP URLs” on page 120, explains
LDAP URLs in detail.

6. RFC 2256 A Summary of the X.500(96) User Schema for use with
LDAPv3

Many schema and attributes commonly accessed by directory clients are
already defined by X.500. This RFC provides an overview of those
attribute types and object classes that LDAP servers should recognize.
For instance, attributes such as cn (common name), description, and
postalAddress are defined. Object classes such as country,
organizationalUnit, groupOfNames, and applicationEntity are also defined.

The RFCs listed above build up the core LDAP Version 3 specification. In
addition to these RFCs, the IETF lists a number of so-called proposed
extensions to LDAP Version 3 that vendors may implement as well. However,
LDAP Concepts and Architecture 23

these proposed extensions only have the status of Internet Drafts and may
therefore still change. The following list summarizes some of these proposed
extensions:

 • Mandatory-to-Implement Authentication

An attempt to have at least one standard, secure authentication method
available in all servers and clients (not only LDAP), rather than individual
methods for each protocol above TCP/IP.

 • Extensions for Dynamic Directory Services

This is a protocol extension that allows clients to interact more reliably
with servers while directory contents are being changed.

 • Use of Language Codes in LDAP

Describes the addition of natural language codes to attributes stored in an
LDAP directory.

 • LDAPv3 Extension for Transport Layer Security

Defines the integration of the Transport Layer Security (TLS) mechanism
into LDAP.

 • LDAP Control Extension for Simple Paged Results Manipulation

Describes a control extension for paging of search results. This is of
special value for simple, limited-function clients so they can request that
search results are returned in smaller portions (pages) at a time.

 • Referrals and Knowledge References in LDAP Directories

Defines how referrals and reference information can be stored as
attributes and how they may be used.

 • LDAP Control Extension for Server Side Sorting of Search Results

Allows sorting of search results on the server rather than on the client.
This may be desirable to build simpler, limited function clients.

 • The LDAP Application Program Interface

Defines the C language application program interface (API) to LDAP. Most
vendors already incorporate this extension, or at least a subset of it. See
Chapter 4, “Building LDAP-Enabled Applications” on page 85, for more
information on the C language API.

2.2 The LDAP Models

LDAP can be better understood by considering the four models upon which it
is based:
24 Understanding LDAP

Information Describes the structure of information stored in an LDAP
directory.

Naming Describes how information in an LDAP directory is organized
and identified.

Functional Describes what operations can be performed on the
information stored in an LDAP directory.

Security Describes how the information in an LDAP directory can be
protected from unauthorized access.

The following sections discuss the four LDAP models.

2.2.1 The Information Model
The basic unit of information stored in the directory is called an entry. Entries
represent objects of interest in the real world such as people, servers,
organizations, and so on. Entries are composed of a collection of attributes
that contain information about the object. Every attribute has a type and one
or more values. The type of the attribute is associated with a syntax. The
syntax specifies what kind of values can be stored. For example, an entry
might have a facsimilieTelephoneNumber attribute. The syntax associated with
this type of attribute would specify that the values are telephone numbers
represented as printable strings optionally followed by keywords describing
paper size and resolution characteristics. It is possible that the directory entry
for an organization would contain multiple values in this attribute—that is that
an organization or person represented by the entity would have multiple fax
numbers. The relationship between a directory entry and its attributes and
their values is shown in Figure 6.

Figure 6. Entries, Attributes and Values

Entry
Attribute

TypeAttribute

Attribute

Attribute

Attribute
Value

Value

Value
LDAP Concepts and Architecture 25

In addition to defining what data can be stored as the value of an attribute, an
attribute syntax also defines how those values behave during searches and
other directory operations. The attribute telephoneNumber, for example, has a
syntax that specifies:

 • Lexicographic ordering.

 • Case, spaces and dashes are ignored during the comparisons.

 • Values must be character strings.

For example, using the correct definitions, the telephone numbers
“512-838-6008”, “512838-6008”, and “5128386008” are considered the same.
A few of the syntaxes that have been defined for LDAP are listed in the
following table.

Table 2. Some of the LDAP Attribute Syntaxes

Table 3 lists some common attributes. Some attributes have alias names that
can be used wherever the full attribute name is used. For example, cn can be
used when referring to the attribute commonName.

Table 3. Common LDAP Attributes

Syntax Description

bin Binary information.

ces Case exact string, also known as a "directory string", case is
significant during comparisons.

cis Case ignore string. Case is not significant durring comparisons.

tel Telephone number. The numbers are treated as text, but all
blanks and dashes are ignored.

dn Distinguished name.

Generalized Time Year, month, day, and time represented as a printable string.

Postal Address Postal address with lines separated by "$" characters.

Attribute, Alias Syntax Description Example

commonName, cn cis Common name of an
entry

John Smith

surname, sn cis Surname (last name) of a
person

Smith

telephoneNumber tel Telephone number 512-838-6008
26 Understanding LDAP

Constraints can be associated with attribute types to limit the number of
values that can be stored in the attribute or to limit the total size of a value.
For example, an attribute that contains a photo could be limited to a size of
10 KB to prevent the use of unreasonable amounts of storage space. Or an
attribute used to store a social security number could be limited to holding a
single value.

Schemas define the type of objects that can be stored in the directory.
Schemas also list the attributes of each object type and whether these
attributes are required or optional. For example, in the person schema, the
attribute surname (sn) is required, but the attribute description is optional.
Schema-checking ensures that all required attributes for an entry are present
before an entry is stored. Schema-checking also ensures that attributes not in
the schema are not stored in the entry. Optional attributes can be filled in at
any time. Schema also define the inheritance and subclassing of objects and
where in the DIT structure (hierarchy) objects may appear.

Table 4 lists a few of the common schema (object classes and their required
attributes). In many cases, an entry can consist of more than one object
class:

Table 4. Object Classes and Required Attributes

organizationalUnitName,
ou

cis Name of an
organizational unit

itso

owner dn Distinguished name of
the person that owns the
entry

cn=John Smith,
o=IBM, c=US

organization, o cis Name of an organization IBM

jpegPhoto bin Photographic image in
JPEG format

Photograph of
John Smith

Object Class Description Required Attributes

InetOrgPerson Defines entries for a person commonName (cn)
surname (sn)
objectClass

organizationalUnit Defines entries for organizational
units

ou
objectClass

organization Defines entries for organizations o
objectClass

Attribute, Alias Syntax Description Example
LDAP Concepts and Architecture 27

Though each server can define its own schema, for interoperability it is
expected that many common schema will be standardized (refer to RFC
2252, Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions, and RFC 2256, A Summary of the X.500(96) User Schema for
use with LDAPv3).

There are times when new schema will be needed at a particular server or
within an organization. In LDAP Version 3, a server is required to return
information about itself, including the schema that it uses. A program can
therefore query a server to determine the contents of the schema. This server
information is stored at the special zero-length DN (see 2.2.2, “The Naming
Model” on page 28, for more details).

Objects can be derived from other objects. This is known as subclassing. For
example, suppose an object called person was defined that included a
surname and so on. An object class organizationalPerson could be defined
as a subclass of the person object class. The organizationPerson object class
would have the same attributes as the person object class and could add
other attributes such as title and officenumber. The person object class
would be called the superior of the organizationPerson object class. One
special object class, called top, has no superiors. The top object class
includes the mandatory objectClass attribute. Attributes in top appear in all
directory entries as specified (required or optional).

Each directory entry has a special attribute called objectClass. The value of
the objectClass attribute is a list of two or more schema names. These
schema define what type of object(s) the entry represents. One of the values
must be either top or alias. Alias is used if the entry is an alias for another
entry (see 2.2.2, “The Naming Model” on page 28), otherwise top is used.
The objectClass attribute determines what attributes the entry must and may
have.

The special object class extensibleObject allows any attribute to be stored in
the entry. This can be more convenient than defining a new object class to
add a special attribute to a few entries, but also opens up that object to be
able to contain anything (which might not be a good thing in a structured
system).

2.2.2 The Naming Model
The LDAP naming model defines how entries are identified and organized.
Entries are organized in a tree-like structure called the Directory Information
Tree (DIT). Entries are arranged within the DIT based on their distinguished
name (DN). A DN is a unique name that unambiguously identifies a single
28 Understanding LDAP

entry. DNs are made up of a sequence of relative distinguished names
(RDNs). Each RDN in a DN corresponds to a branch in the DIT leading from
the root of the DIT to the directory entry.

Each RDN is derived from the attributes of the directory entry. In the simple
and common case, an RDN has the form <attribute name> = <value> (see
Figure 8 on page 31 for the complete syntax of DNs and RDNs). A DN is
composed of a sequence of RDNs separated by commas.

An example of a DIT is shown in Figure 7. The example is very simple, but
can be used to illustrate some basic concepts. Each box represents a
directory entry. The root directory entry is conceptual, but does not actually
exist. Attributes are listed inside each entry. The list of attributes shown is not
complete. For example, the entry for the country DE (c=DE) could have an
attribute called description with the value Germany.

Figure 7. Example Directory Information Tree (DIT)

The organization of the entries in the DIT are restricted by their
corresponding object class definitions. It is usual to follow either a
geographical or an organizational scheme. For example, entries that

c=US c=DE

o=IBM

cn: John Smith
mail: jsmith@mail.com

o=transarc

mail: info@transarc.com
fax: 512-838-5187

Directory Root

o=IBM

cn: Mike Young
mail: my@transarc.com

ou=LDAP Team

cn=John
(alias)

o=MyOrg
LDAP Concepts and Architecture 29

represent countries would be at the top of the DIT. Below the countries would
be national organizations, states, and provinces, and so on. Below this level,
entries might represent people within those organizations or further
subdivisions of the organization. The lowest layers of the DIT entries could
represent any object, such as people, printers, application servers, and so
on. The depth or breadth of the DIT is not restricted and can be designed to
suit application requirements. See Chapter 3, “Designing and Maintaining an
LDAP Directory” on page 57, for information on designing a DIT.

Entries are named according to their position in the DIT. The directory entry in
the lower-right corner of Figure 7 has the DN cn=John Smith,o=IBM,c=DE. Note
that DNs read from leaf to root as opposed to file system names which
usually read from root to leaf. The DN is made up of a sequence of RDNs.
Each RDN is constructed from an attribute (or attributes) of the entry it
names. For example, the DN cn=John Smith,o=IBM,c=DE is constructed by
adding the RDN cn=John Smith to the DN of the ancestor entry o=IBM,c=DE.
Note that cn=John Smith is an attribute in the entry cn=John Smith,o=IBM,c=DE.
The DN of an entry is specified when it is created. It would have been legal,
though not intuitive, to have created the entry with the DN
mail=jsmith@mail.com,o=IBM,c=DE.

The DIT is described as being tree-like implying it is not a tree. This is
because of aliases. Aliases allow the tree structure to be circumvented. This
can be useful if an entry belongs to more than one organization or if a
commonly used DN is too complex. Another common use of aliases is when
entries are moved within the DIT and you want access to continue to work as
before. In Figure 7, cn=John,ou=LDAP Team,o=IBM,c=US is an alias for
cn=John Smith,o=IBM,c=DE. Aliases do not have to point to leaf entries in the
DIT. For example, o=Redbook,c=US could be an alias for ou=ITSO,o=IBM,c=US.

2.2.2.1 Distinguished Name Syntax
DNs are used as primary keys to entries in the directory. LDAP defines a
user-oriented string representation of DNs. The syntax of DNs, which consist
of a sequence of RDNs, was described informally above. Figure 8 on page 31
shows the formal grammar of DNs.

Note that RDNs can be more complicated than in the examples shown above.
An RDN can be composed of multiple attributes joined by “+” as in the DN
cn=John Smith+l=Stuttgart,o=IBM,c=DE.

If attribute values contain special characters or leading or trailing spaces,
those characters must be escaped by preceding them with a backslash
character. The following DN contains a comma character
o=Transarc\, Inc.,c=US.
30 Understanding LDAP

DNs in LDAP Version 3 are more restrictive than in LDAP V2. For example, in
LDAP V2, semicolons could also be used to separate RDNs. LDAP V3 must
accept the older syntax, but must not generate DNs that do not conform to the
newer syntax. The exact grammar for a distinguished name syntax is shown
in Figure 8.

Figure 8. Distinguished Name Grammar

The attribute types used in the RDN can be represented by a dotted decimal
string encoding of its object identifier. For example, cn=John could also be
written as 2.5.4.2=John. However, frequently used attribute names have a
string representation that is obviously easier to understand. Table 5 lists
some of the common attribute types and their string representation. Please

distinguishedName = [name] ; may be empty string

name = name-component *("," name-component)

name-component = attributeTypeAndValue *("+" attributeTypeAndValue)

attributeTypeAndValue = attributeType "=" attributeValue

attributeType = (ALPHA 1*keychar) / oid
keychar = ALPHA / DIGIT / "-"

oid = 1*DIGIT *("." 1*DIGIT)

attributeValue = string

string = *(stringchar / pair)
 / "#" hexstring
 / QUOTATION *(quotechar / pair) QUOTATION ; only from v2

quotechar = <any character except "\" or QUOTATION >

special = "," / "=" / "+" / "<" / ">" / "#" / ";"

pair = "\" (special / "\" / QUOTATION / hexpair)
stringchar = <any character except one of special, "\" or QUOTATION >

hexstring = 1*hexpair
hexpair = hexchar hexchar

hexchar = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 / "a" / "b" / "c" / "d" / "e" / "f"

ALPHA = <any ASCII alphabetic character> ; (decimal 65-90 and 97-122)
DIGIT = <any ASCII decimal digit> ; (decimal 48-57)
QUOTATION = <the ASCII double quotation mark character ’"’ decimal 34>
LDAP Concepts and Architecture 31

notice that because attribute names are case insensitive, you might see
different uppercase/lowercase notations in the literature.

Table 5. Attribute Type String Representations

2.2.2.2 Suffixes and Referrals
An individual LDAP server might not store the entire DIT. A server might store
the entries for a particular department and not the entries for the ancestors of
the department. For example, a server might store the entries for the ITSO
department at IBM. The highest node in the DIT stored by the server would
be ou=ITSO,o=IBM,c=US. The server would not store entries for c=US or for
o=IBM,c=US. The highest entry stored by a server is called a suffix. Each entry
stored by the server ends with this suffix (remember that in the DN syntax,
the higher-level entries are at the end).

A server can support multiple suffixes. For example, in addition to storing
information about the ITSO department, the same server could store
information about the sales department at Transarc. The server would then
have the suffixes ou=ITSO,o=IBM,c=US and ou=sales,o=Transarc,c=US.

Since a server might not store the entire DIT, servers need to be linked
together in some way in order to form a distributed directory that contains the
entire DIT. This is accomplished with referrals. Continuing the example,
another server might store the entry o=IBM,c=US but not information about the
ITSO department. If somebody searched this directory server for information
about the ITSO department, no information would be found. However, the
server can store a referral to the LDAP server that does contain the
information. This referral acts like a pointer that can be followed to where the
desired information is stored. Such an example is shown in Figure 9, where

Attribute Type String

CommonName CN

LocalityName L

StateOrProvinceName ST

OrganizationName O

OrganizationalUnitName OU

CountryName C

StreetAddress STREET

domainComponent DC

userid UID
32 Understanding LDAP

the referral arrow shows the logical connection of a referral and does not
reflect the technical implementaion (see text that follows).

A referral is an entry of objectClass referral. It has an attribute, ref, whose
value is the LDAP URL of the referred entry on another LDAP server. See
4.4, “LDAP URLs” on page 120, for information about LDAP URLs.

Figure 9. Example DIT Showing Suffixes and Referrals

When a client sends a request to an LDAP server, the response to the client
may be a referral. The client can then choose to follow the referral by
querying the other LDAP server contained in the referral returned by the first
LDAP server. Referrals are not followed (resolved) by servers. This can
improve server performance by off-loading the work of contacting other
servers to the client.

Figure 10 illustrates a client following a referral. An LDAP client requests
information from LDAP Server 1 (1). This request is answered with a referral
to LDAP Server 2 (2). The LDAP client then contacts LDAP Server 2 (3).
LDAP Server 2 provides the requested data to the client (4).

o=IBM,c=US

ou=ITSO

ou=ITSOtest,...ou=ITSO,o=IBM,c=US

Server 1

Server 2Suffix

Suffix Suffix

Referra
l

cn=John Smith

cn=Paul Miller

cn=Mike Cook
LDAP Concepts and Architecture 33

Figure 10. Referral Followed by Client

Figure 11 illustrates chaining. An LDAP client requests information from
LDAP Server 1 (1). LDAP Server 1 finds a referral to Server 2 and forwards
the request (2). Server 2 provides the requested data to LDAP Server 1 (3).
LDAP Server 1 then returns the result to the client (4). Note that this
explanation and Figure 11 are for illustration purposes only since chaining is
not included in either the LDAP Version 2 or Version 3 specifications.

Figure 11. Server Chaining

The LDAP API allows the programmer to specify whether returned referrals
should be followed automatically or returned to the program. If referrals are
followed automatically, the LDAP client library (not the server nor the
application program) follows the referral. This requires no extra coding and is
transparent to the programmer. To prevent lengthy searches or referrals that

LDAP
Server 2

LDAP
Server 1

LDAP
Client

1

4

2

3

2
4

3

1

Server 2

LDAP
Server 1

LDAP
Client
34 Understanding LDAP

(mistakenly) form a loop, the programmer can limit the number of referrals
followed for a request.

If the referral is returned to the program, code must be supplied to recognize
that a referral has been returned. The referral can be examined and a
decision made whether to follow it or not. This is more complicated, but gives
the programmer greater choice of which referrals to follow.

Referrals allow a DIT to be partitioned and distributed across multiple
servers. Portions of the DIT can also be replicated. This can improve
performance and availability. See Chapter 3, “Designing and Maintaining an
LDAP Directory” on page 57, for information on designing a distributed
directory.

LDAP Version 2 did not formally define referrals, but Version 3 does include
them. Neither Version 2 nor Version 3 define chaining, but it is not prohibited
if vendors chose to implement it. Vendors, for example, may chose to
implement an X.500-type chaining mechanism or functionality provided by
distributed databases to achieve this.

2.2.2.3 Server Information
An LDAP Version 3 server must provide information about itself. The special
entry called the root DSE with a zero-length (empty) DN contains attributes
that describe the server. These attributes can be retrieved to discover basic
information about the server and the DIT that it stores. Server-specific
information available includes:

 • The suffixes, also called naming contexts, the server stores

 • The DN of a special entry that contains a list of all the objectClass and
attribute schema known to the server

 • The version(s) of LDAP supported,

 • A list of supported extended operations and controls (see 2.2.3.7,
“Controls and Extended Operations” on page 41)

 • A list of supported SASL security mechanisms

 • A list of alternate LDAP servers

As LDAP is extended, additional information about the server will be stored in
the root DSE.

2.2.3 The Functional Model
LDAP defines operations for accessing and modifying directory entries. This
section discusses LDAP operations in a programming language-independent
LDAP Concepts and Architecture 35

manner. See Chapter 4, “Building LDAP-Enabled Applications” on page 85,
for information on writing programs that invoke these operations.

LDAP operations can be divided into the following three categories:

Query Includes the search and compare operations used to
retrieve information from a directory

Update Includes the add, delete, modify, and modify RDN
operations used to update stored information in a directory

Authentication Includes the bind, unbind, and abandon operations used to
connect and disconnect to and from an LDAP server,
establish access rights and protect information

The most common operation is search. The search operation is very flexible
and has some of the most complex options.

2.2.3.1 Search
The search operation allows a client to request that an LDAP server search
through some portion of the DIT for information meeting user-specified
criteria in order to read and list the result(s). There are no separate
operations for read and list; they are incorporated in the search function. The
search can be very general or very specific. The search operation allows one
to specify the starting point within the DIT, how deep within the DIT to search,
what attributes an entry must have to be considered a match, and what
attributes to return for matched entries.

Some example searches expressed informally in English are:

 • Find the postal address for cn=John Smith,o=IBM,c=DE.

 • Find all the entries that are children of the entry ou=ITSO,o=IBM,c=US.

 • Find the e-mail address and phone number of anyone in IBM whose last
name contains the characters “miller” and who also has a fax number.

To perform a search, the following parameters must be specified (refer to
Figure 12 on page 38):

 • Base

A DN that defines the starting point, called the base object, of the search.
The base object is a node within the DIT.

 • Scope

Specifies how deep within the DIT to search from the base object. There
are three choices: baseObject, singleLevel, and wholeSubtree. If baseObject
is specified, only the base object is examined. If singleLevel is specified,
36 Understanding LDAP

only the immediate children of the base object are examined; the base
object itself is not examined. If wholeSubtree is specified, the base object
and all of its descendants are examined.

 • Search Filter

Specifies the criteria an entry must match to be returned from a search.
The search filter is a Boolean combination of attribute value assertions. An
attribute value assertion tests the value of an attribute for equality, less
than or equal, and so on. For example, a search filter might specify entries
with a common name containing “wolf” or belonging to the organization
ITSO. Search filters are discussed more fully in 2.2.3.3, “Search Filter
Syntax” on page 39.

 • Attributes to Return

Specifies which attributes to retrieve from entries that match the search
criteria. Since an entry may have many attributes, this allows the user to
only see the attributes they are interested in. Normally, the user is
interested in the value of the attributes. However, it is possible to return
only the attribute types and not their values. This could be useful if a large
value like a JPEG photograph was not needed for every entry returned
from the search, but some of the photographs would be retrieved later as
needed.

 • Alias Dereferencing

Specifies if aliases are dereferenced—that is, if the alias entry itself or the
entry it points to is used. Aliases can be dereferenced or not when locating
the base object and/or when searching under the base object. If aliases
are dereferenced, then they are alternate names for objects of interest in
the directory. Not dereferencing aliases allows the alias entries
themselves to be examined.

 • Limits

Searches can be very general, examining large subtrees and causing
many entries to be returned. The user can specify time and size limits to
prevent wayward searching from consuming too many resources. The size
limit restricts the number of entries returned from the search. The time
limit limits the total time of the search. Servers are free to impose stricter
limits than requested by the client.
LDAP Concepts and Architecture 37

Figure 12. Search Parameters

2.2.3.2 Referrals and Continuation References
If the server does not contain the base object, it will return a referral to a
server that does, if possible. Once the base object is found singleLevel and
wholeSubtree searches may encounter other referrals. These referrals are
returned in the search result along with other matching entries. These
referrals are called continuation references because they indicate where a
search could be continued.

For example, when searching a subtree for anybody named Smith, a
continuation reference to another server might be returned, possibly along

Scope of Search
LDAP_SCOPE_SUBTREE

c=US c=DE

o=Transarc

mail: info@transarc.com
fax: 512-838-5187

Directory Root

cn=Larry Brown

cn: Mike Cook
mail: mc@transarc.com

cn=Charlie Brown

cn: Paul Miller
mail: pm@transarc.com

c=SE

Base Object
dn=“o=Transarc,c=US”

Search Filter
(cn=Larry Brown)

Information Returned
All Attributes
38 Understanding LDAP

with several other matching entries. It is not guaranteed that an entry for
somebody named Smith actually exists at that server, only that the
continuation reference points to a subtree that could contain such an entry. It
is up to the client to follow continuation references if desired.

Since only LDAP Version 3 specifies referrals, continuation references are
not supported in earlier versions.

2.2.3.3 Search Filter Syntax
The search filter defines criteria that an entry must match to be returned from
a search. The basic component of a search filter is an attribute value
assertion of the form:

attribute operator value

For example, to search for a person named John Smith the search filter
would be cn=John Smith. In this case, cn is the attribute; = is the operator, and
John Smith is the value. This search filter matches entries with the common
name John Smith.

Table 6 lists the operators for search filters.

Table 6. Search Filter Operators

The “*” character matches any substring and can be used with the = operator.
For example, cn=J*Smi* would match John Smith and Jan Smitty.

Search filters can be combined with Boolean operators to form more complex
search filters. The syntax for combining search filters is:

Operator Description Example

= Returns entries whose attribute is
equal to the value.

cn=John Smith finds the entry
with common name John Smith

>= Returns entries whose attribute is
greater than or equal to the value.

sn>=smith finds all entries from
smith to z*

<= Returns entries whose attribute is
less than or equal to the value.

sn<=smith finds all entries from
a* to smith

=* Returns entries that have a value
set for that attribute.

sn=* finds all entries that have the
sn attribute

~= Returns entries whose attribute
value approximately matches the
specified value. Typically, this is an
algorithm that matches words that
sound alike.

sn~= smit might find the entry
“sn=smith”
LDAP Concepts and Architecture 39

("&" or "|" (filter1) (filter2) (filter3) ...)
("!" (filter))

The Boolean operators are listed in Table 7.

Table 7. Boolean Operators

For example, (|(sn=Smith)(sn=Miller)) matches entries with the surname
Smith or the surname Miller. The Boolean operators can also be nested as in
(| (sn=Smith) (&(ou=Austin)(sn=Miller))), which matches any entry with the
surname Smith or with the surname Miller that also has the organizational
unit attribute Austin.

2.2.3.4 Compare
The compare operation compares an entry for an attribute value. If the entry
has that value, compare returns TRUE. Otherwise, compare returns FALSE.
Although compare is simpler than a search, it is almost the same as a base
scope search with a search filter of attribute=value. The difference is that if
the entry does not have the attribute at all (the attribute is not present), the
search will return not found. This is indistinguishable from the case where the
entry itself does not exist. On the other hand, compare will return FALSE.
This indicates that the entry does exist, but does not have an attribute
matching the value specified.

2.2.3.5 Update Operations
Update operations modify the contents of the directory. Table 8 summarizes
the update operations.

Table 8. Update Operations

Boolean Operator Description

& Returns entries matching all specified filter criteria.

| Returns entries matching one or more of the filter criteria.

! Returns entries for which the filter is not true. This operator can
only be applied to a single filter. (!(filter)) is valid, but
(!(filter1)(filter2)) is not.

Operation Description

add Inserts new entries into the directory.

delete Deletes existing entries from the directory. Only leaf nodes can be
deleted. Aliases are not resolved when deleting.
40 Understanding LDAP

2.2.3.6 Authentication Operations
Authentication operations are used to establish and end a session between
an LDAP client and an LDAP server. The session may be secured at various
levels ranging from an insecure anonymous session, an authenticated
session in which the client identifies itself by providing a password, to a
secure, encrypted session using SASL mechanisms. SASL was added in
LDAP Version 3 to overcome the weak authentication in LDAP Version 2
(some vendors, however, have added stronger authentication methods, such
as Kerberos, to LDAP Version 2). Table 9 summarizes the authentication
operations. The security aspects are discussed further in 2.2.4, “The Security
Model” on page 42 and in 2.3, “Security” on page 43.

Table 9. Authentication Operations

2.2.3.7 Controls and Extended Operations
Controls and extended operations allow the LDAP protocol to be extended
without changing the protocol itself. Controls modify the behavior of an
operation, and extended operations add new operations to the LDAP
protocol. The list of controls and extensions supported by an LDAP server
can be obtained by examining the empty DN at that server (see 2.2.2.3,
“Server Information” on page 35).

Controls can be defined to extend any operation. Controls are added to the
end of the operation’s protocol message. They are supplied as parameters to
functions in the API. In the future, standard controls might be defined in
LDAP-related RFCs.

modify Changes the attributes and values contained within an existing entry.
Allows new attributes to be added and existing attributes to be deleted
or modified.

modify DN Change the least significant (left most) component of a DN or moves a
subtree of entries to a new location in the DIT. Entries cannot be moved
across server boundaries.

Operation Description

Bind Initiates an LDAP session between a client and a server. Allows the
client to prove its identity by authenticating itself to the server.

Unbind Terminates a client/server session.

Abandon Allows a client to request that the server abandon an outstanding
operation.

Operation Description
LDAP Concepts and Architecture 41

A control has a dotted decimal string object ID used to identify the control, an
arbitrary control value that holds parameters for the control, and a criticality
level. If the criticality level is TRUE, the server must honor the control or if the
server does not support the control, reject the entire operation. If the criticality
level is FALSE, a server that does not support the control must perform the
operation as if there was no control specified.

For example, a control might extend the delete operation by causing an audit
record of the deletion to be logged to a file specified by the control value
information.

An extended operation allows an entirely new operation to be defined. The
extended operation protocol message consists of a dotted decimal string
object ID used to identify the extended operation and an arbitrary string of
operation-specific data.

2.2.4 The Security Model
As previously described, the security model is based on the bind operation.
There are several different bind operations possible, and thus the security
mechanism applied is different as well. One possibility is when a client
requesting access supplies a DN identifying itself along with a simple
clear-text password. If no DN and password is declared, an anonymous
session is assumed by the LDAP server. The use of clear text passwords is
strongly discouraged when the underlying transport service cannot guarantee
confidentiality and may therefore result in disclosure of the password to
unauthorized parties.

Additionally, a Kerberos bind is possible in LDAP Version 2, but this has
become deprecated in LDAP Version 3. Instead, LDAP V3 comes along with
a bind command supporting the Simple Authentication and Security Layer
(SASL) mechanism. This is a general authentication framework, where
several different authentication methods are available for authenticating the
client to the server; one of them is Kerberos. We discuss authentication in
more detail in the following section 2.3, “Security” on page 43.

Furthermore, extended protocol operations are available in LDAP V3. An
extension related to security is the “Extension for Transport Layer Security
(TLS) for LDAPv3” which, at the time this book was written, is an Internet
Draft (see A.4, “Other Sources” on page 140 for an URL). It defines
operations that use TLS as a means to encrypt an LDAP session and protect
it against spoofing. TLS is defined in “The TLS Protocol” Version 1.0, which is
also still an Internet Draft. It is based on the Secure Socket Layer (SSL)
Protocol 3.0, devised by Netscape Communications Corporation which it
42 Understanding LDAP

eventually will supersede. TLS has a mechanism which enables it to
communicate to an SSL server so that it is backwards compatible. The basic
principles of SSL and TLS are the same and are further detailed in the
following section 2.3, “Security” on page 43.

Some vendors, like Netscape and IBM, have already extended the LDAP
protocol and added some SSL specific commands so that an encrypted
TCP/IP connection is possible, thus providing a means for eliminating the
need of sending a DN and a password unprotected over the network

Once a client is identified, access control information can be consulted to
determine whether or not the client has sufficient access permissions to do
what it is requesting.

2.3 Security

Security is of great importance in the networked world of computers, and this
is true for LDAP as well. When sending data over insecure networks,
internally or externally, sensitive information may need to be protected during
transportation. There is also a need to know who is requesting the
information and who is sending it. This is especially important when it comes
to the update operations on a directory. The term security, as used in the
context of this book, generally covers the following four aspects:

Authentication Assurance that the opposite party (machine or person)
really is who he/she/it claims to be.

Integrity Assurance that the information that arrives is really the
same as what was sent.

Confidentiality Protection of information disclosure by means of data
encryption to those who are not intended to receive it.

Authorization Assurance that a party is really allowed to do what
he/she/it is requesting to do. This is usually checked after
user authentication. In LDAP Version 3, this is currently
not part of the protocol specification and is therefore
implementation- (or vendor-) specific. This is basically
achieved by assigning access controls, like read, write, or
delete, to user IDs or common names. There is an Internet
Draft that proposes access control for LDAP.

The following sections focus on the first three aspects (since authorization is
not contained in the LDAP Version 3 standard): authentication, integrity and
confidentiality. There are several methods that can be used for this purpose;
the most important ones are discussed here. These are:
LDAP Concepts and Architecture 43

 • No authentication

 • Basic authentication

 • Simple Authentication and Security Layer (SASL)

Because no other data encryption method was available in LDAP Version 2,
some vendors, for example Netscape and IBM, added their own SSL calls to
the LDAP API. A potential drawback of such an approach is that the API calls
might not be compatible among different vendor implementations. Therefore,
in LDAP Version 3, a proposal is made (Extension for Transport Layer
Security) to include SSL or, more accurately, its successor, TLS, through
extended protocol operations. This should make the vendor-dependent
functions redundant in the near future.

2.3.1 No Authentication
This is the simpliest way, one that obviously does not need to be explained in
much detail. This method should only be used when data security is not an
issue and when no special access control permissions are involved. This
could be the case, for example, when your directory is an address book
browsable by anybody. No authentication is assumed when you leave the
password and DN field empty in the bind API call (see also Chapter 4,
“Building LDAP-Enabled Applications” on page 85). The LDAP server then
automatically assumes an anonymous user session and grants access with
the appropriate access controls defined for this kind of access (not to be
confused with the SASL anonymous user as discussed in 2.3.3, “Simple
Authentication and Security Layer (SASL)” on page 45).

2.3.2 Basic Authentication
The security mechanism in LDAP is negotiated when the connection between
the client and the server is established. This is the approach specified in the
LDAP application program interface (API). Beside the option of using no
authentication at all, the most simple security mechanism in LDAP is called
basic authentication, which is also used in several other Web-related
protocols, such as in HTTP.

When using basic authentication with LDAP, the client identifies itself to the
server by means of a DN and a password which are sent in the clear over the
network (some implementation may use Base64 encoding instead). The
server considers the client authenticated if the DN and password sent by the
client matches the password for that DN stored in the directory. Base64
encoding is defined in the Multipurpose Internet Mail Extensions (MIME)
44 Understanding LDAP

standard (RFC 1521). It is a relatively simple encryption, and therefore it is
not hard to break once one has captured the data on the network.

2.3.3 Simple Authentication and Security Layer (SASL)
SASL is a framework for adding additional authentication mechanisms to
connection-oriented protocols. It has been added to LDAP Version 3 to
overcome the authentication shortcomings of Version 2. SASL was originally
devised to add stronger authentication to the IMAP protocol. SASL has since
evolved into a more general system for mediating between protocols and
authentication systems. It is a proposed Internet standard defined in RFC
2222.

In SASL, connection protocols, like LDAP, IMAP, and so on, are represented
by profiles; each profile is considered a protocol extension that allows the
protocol and SASL to work together. A complete list of SASL profiles can be
obtained from the Information Sciences Institute (ISI). See A.4, “Other
Sources” on page 140, for URL references. Among these are IMAP4, SMTP,
POP3, and LDAP. Each protocol that intends to use SASL needs to be
extended with a command to identify an authentication mechanism and to
carry out an authentication exchange. Optionally, a security layer can be
negotiated to encrypt the data after authentication and so ensure
confidentiality. LDAP Version 3 includes such a command (ldap_sasl_bind()).

The SASL bind operation is explained in more detail with an example in 4.2.8,
“Authentication Methods” on page 108. The key parameters that influence the
security method used are:

dn This is the distinguished name of the entry you want to bind as.
This can be thought of as the user ID in a normal user ID and
password authentication.

mechanism This is the name of the security method that should be used.
Valid security mechanisms are currently Kerberos Version 4,
S/Key, GSSAPI, CRAM-MD5 and EXTERNAL. There is also an
ANONYMOUS mechanism available which enables an
authentication as user “anonymous”. In LDAP, the most
common mechanism used is SSL (or its successor, TLS), which
is provided as an EXTERNAL mechanism.

credentials This contains the arbitrary data that identifies the DN. The
format and content of the parameter depends on the mechanism
chosen. If it is, for example, the ANONYMOUS mechanism, it
can be an arbitrary string or an e-mail address that identifies the
user.
LDAP Concepts and Architecture 45

Through the SASL bind API function call, LDAP client applications call the
SASL protocol driver on the server, which in turn connects the authentication
system named in the SASL mechanism to retrieve the required authentication
information for the user. SASL can be seen as intermediator between the
authentication system and a protocol like LDAP. Figure 13 illustrates this
relationship.

Figure 13. SASL Mechanism

Of course, the server must support this SASL mechanism as well, otherwise
the authentication process will not be able to succeed. To retrieve a list of
SASL mechanisms supported by an LDAP server (Version 3 only), point your
Web browser to the following URL:

ldap://<ldap server>/?supportedsaslmechanisms

This is actually an LDAP URL, very similar to those used for HTTP
(http://<host>/...) or other Internet protocols. You can get more information
about LDAP URLs in 4.4, “LDAP URLs” on page 120.

As we have seen, the basic idea behind SASL is that it provides a high level
framework that lets the involved parties decide on the particular security
mechanism to use. The SASL security mechanism negotiation between client
and server is done in the clear. Once the client and the server have agreed on
a common mechanism, the connection is secure against modifying the
authentication identities. An attacker could now try to eavesdrop the
mechanism negotiation and cause a party to use the least secure
mechanism. In order to prevent this from happening, clients and servers

SASL Mechanism Call
e.g. LDAP Client

SASL Driver
on LDAP Server

Authentication Systems
(e.g. Kerberos)
46 Understanding LDAP

should be configured to use a minimum security mechanism, provided they
support such a configuration option.

As stated earlier, SSL and its successor, TLS, are the mechanisms commonly
used in SASL for LDAP. Following is a brief description of SSL and TLS.

2.3.3.1 SSL and TLS
The Secure Socket Layer (SSL) protocol was devised to provide both
authentication and data security. It encapsulates the TCP/IP socket so that
basically every TCP/IP application can use it to secure its communication.
See Figure 14.

Figure 14. SSL/TLS in Relationship with Other Protocols

SSL was developed by Netscape and the current version is 3.0. Transport
Layer Security (TLS) is an evolving open standard, currently in the state of an
Internet Draft, being worked on at the IETF. It is based on SSL 3.0 with only a
few minor differences, and it provides backwards compatibility with SSL 3.0.
It is assumed that TLS will replace SSL. The following discussion is equally
valid for both SSL and TLS.

SSL/TLS supports server authentication (client authenticates server), client
authentication (server authenticates client), or mutual authentication. In
addition, it provides for privacy by encrypting data sent over the network.

SSL/TLS uses a public key method to secure the communication and to
authenticate the counterparts of the session. This is achieved with a
public/private key pair. They operate as reverse functions to each other,
which means data encrypted with the private key can be decrypted with the
public key and vice versa. The assumption for the following considerations is

Application Protocols

Network Protocols

Application(s)

(WWW, POP, SMTP, E-Mail)

HTTP LDAPSMTP

Security Layer (SSL/TLS)

TCP/IP Layer
LDAP Concepts and Architecture 47

that the server has its key pair already generated. This is usually done when
setting up the LDAP server.

The simplified interchange between a client and a server negotiating an
SSL/TLS connection is explained in the following segment and illustrated in
Figure 15.

Figure 15. SSL/TLS Handshake

1. As a first step, the client asks the server for an SSL/TLS session. The
client also includes the SSL/TLS options it supports in the request.

2. The server sends back its SSL/TLS options and a certificate which
includes, among other things, the server’s public key, the identity for
whom the certificate was issued (as a distinguished name), the certifier’s
name and the validity time. A certificate can be thought of the electronic
equivalent of a passport. It has to be issued by a general, trusted
Certificate Authority (CA) which vouches that the public key really belongs
to the entity mentioned in the certificate. The certificate is signed by the
certifier which can be verified with the certifier’s freely available public key

3. The client then requests the server to prove its identity. This is to make
sure that the certificate was not sent by someone else who intercepted it
on a former occasion.

4. The server sends back a message including a message digest (similar to
a check sum) which is encrypted with its private key. A message digest
that is computed from the message content using a hash function has two

Request, SSL/TLS Options

Prove It

Message, Digest

Symmetric Key (encrypted)

Random Message (encrypted)

Certificate, SSL/TLS Options

T
im

e

S
 e

 r
 v

 e
 r

C
 l

i e
 n

 t
48 Understanding LDAP

features. It is extremely difficult to reverse, and it is nearly impossible to
find a message that would produce the same digest. The client can
decrypt the digest with the server’s public key and then compare it with the
digest it computes from the message. If both are equal, the server’s
identity is proved, and the authentication process is finished.

5. Next, server and client have to agree upon a secret (symmetric) key used
for data encryption. Data encryption is done with a symmetric key
algorithm because it is more efficient than the computing-intensive public
key method. The client therefore generates a symmetric key, encrypts it
with the server’s public key, and sends it to the server. Only the server
with its private key can decrypt the secret key.

6. The server decrypts the secret key and sends back a test message
encrypted with the secret key to prove that the key has safely arrived.
They can now start communicating using the symmetric key to encrypt the
data.

As outlined above, SSL/TLS is used to authenticate a server to a client using
its certificate and its private key and to negotiate a secret key later on used
for data encryption. An example on how SSL can be used in a client
application can be found in 4.2.8, “Authentication Methods” on page 108.

2.3.3.2 Other SASL Authentication Mechanisms
Although the SASL concepts supports multiple mechanisms, a particular
vendor product may not support them all. It is very likely that vendor products
only support a few mechanisms, such as SSL or TLS as just discussed
above. Another common authentication method widely used is Kerberos. It
has its roots in universities, where it proved to be scalable up to many
thousands of clients. Kerberos is a third-party authentication method that
uses a separate server providing security functions for the authentication
process between involved parties. It uses the widely accepted Data
Encryption Standard (DES) for message encryption.

2.4 Manageability

The LDAP specifications contained in the pertinent RFCs (as listed and
briefly explained in 2.1, “Overview of LDAP Architecture” on page 19) include
functions for directory data management. These include functions to create
and modify the directory information tree (DIT) and to add, modify, and delete
data stored in the directory.
LDAP Concepts and Architecture 49

Vendor products, however, most likely include additional tools that allow you
to configure and manage an LDAP server environment. These may be
command line based or graphical applications that include functions like:

 • Server setup (initial creation)

 • Configuring a directory information tree

 • Contents management

 • Security setup

 • Replication and referrals management

 • Access control management

 • Logging and log file management

 • Resource management and performance analysis tools

In B.3, “Tivoli User Administration: LDAP Endpoint” on page 147 we describe
a product-independent management tool that provides the administration
functions for users in an LDAP directory service.

Despite of the lack of comprehensive management tools in the standards,
there are some basic but powerful mechanisms in LDAP that are important to
know, as described in the following sections.

2.4.1 LDAP Command Line Tools
Most LDAP Software Development Kits (SDKs) provide a set of easy-to-use
client command line applications that can do the basic LDAP protocol
operations like search the directory, or add, modify, delete, or rename entries.
These tools are also capable of reading their data from LDIF files (see
following section) so that they can be used to manage bulk directory data.
They can conveniently be used within other command language programs,
such as UNIX shell scripts or Perl, to perform daily operations tailored to
individual requirements. Because they are often used in development
environments, they are described in more details in 4.3, “LDAP Command
Line Tools” on page 115.

2.4.2 LDAP Data Interchange Format (LDIF)
When an LDAP directory is loaded for the first time or when many entries
have to be changed at once, it is not very convenient to change every single
entry on a one-by-one basis. For this purpose, LDAP supports the LDAP Data
Interchange Format (LDIF) that can be seen as a convenient, yet necessary,
data management mechanism. It enables easy manipulation of mass
amounts of data. LDIF is currently defined in an Internet Draft.
50 Understanding LDAP

LDIF is typically used to import and export directory information between
LDAP-based directory servers, for example when an LDAP server has to be
moved to other hardware or to describe a set of changes that are to be
applied to a directory.

Additionally, by using a well-defined interchange format, development of data
import tools from legacy systems is facilitated. Simple tools can be
developed, for example using the UNIX shell script language, to convert a
database of personnel information into an LDIF file, which can then in turn be
imported into the LDAP directory, regardless of the internal database
representation the target directory server uses.

2.4.2.1 The LDIF File Format
The LDIF format is used to convey directory information or a description of a
set of changes made to directory entries. An LDIF file consists of a series of
records separated by line separators. A record consists of a sequence of
lines describing a directory entry or a sequence of lines describing a set of
changes to a single directory entry. An LDIF file specifies a set of directory
entries or a set of changes to be applied to directory entries, but not both at
the same time.

The basic form of a directory entry represented in LDIF is:

[<id>]
dn: <distinguished name>
objectClass: <object class>
objectClass: <object class>
...
<attribute type>[;language tag]:<attribute value>
<attribute type>[;language tag]:<attribute value>
...

Only the DN and at least one object class definition are required. In addition,
any attributes required by the object classes for the entry must also be
defined in the entry. All other attributes and object classes are optional. You
can specify object classes and attributes in any order. The space character
after the colon is optional.
LDAP Concepts and Architecture 51

Table 10 describes the LDIF fields shown in the previous definition of a
directory entry in an LDIF file.

Table 10. Description of LDIF Fields

More details about distinguished names and attributes can be found in 2.2.1,
“The Information Model” on page 25, and in 2.2.2, “The Naming Model” on
page 28.

2.4.2.2 Data Encoding
Binary data, such as a JPEG image, can be represented in LDIF by using
Base64 encoding. Base64 encoded data is identified by using the
double-colon (::) symbol, as in the following example:

jpegPhoto:: <encoded data>

In addition to binary data, other values that must be Base64 encoded include:

 • Any value that begins with a semi-colon (;) or a space

 • Any value that contains non-ASCII data

Character encoding in LDIF should be in compliance with the UTF-8
standard.

2.4.2.3 Creating Directory Entries Using LDIF
There are many types of entries that can be stored in a directory. This section
will show three of the most common types of entries used in a directory:
organization, organizational unit, and organizational person entries.

Field Definition

[<id>] An optional positive decimal number representing
the entry ID. The database creation tools generate
this ID.

dn: <distinguished name> Specifies the distinguished name for the entry.

objectClass: <object class> Specifies an object class to use with this entry. The
object class identifies the types of attributes, or
schema, allowed and required for the entry.

<attribute type> Specifies a descriptive attribute type to use with the
entry.

language tag Specifies the language of the text in the attribute
value.

<attribute value> Specifies the attribute value to be used with the
attribute type.
52 Understanding LDAP

The object classes defined for an entry are what indicates whether the entry
represents an organization, an organizational unit, an organizational person,
or something else entirely different from these types of entries.

Specifying Organization Entries
Most directories have at least one organization entry. Typically, this is the
first, or root, or topmost entry in the directory. The organization entry often
corresponds to the suffix set for the directory. That is, if the directory is
defined to use a suffix of o=ibm.com, then the organization will probably have
an entry in the directory named o=ibm.com. For more information on
choosing suffixes, see 3.1.1, “Defining the Data Model” on page 58.

The LDIF entry that is specified to define an organization entry should appear
as follows:

dn: <distinguished name>
objectClass: top
objectClass: organization
o: <organization name>
<list of optional attributes>
...

Table 11 describes the fields:

Table 11. LDIF Fields for Specifying Organization Entries

The following is a sample organization entry in LDIF format:

dn: o=ibm.com
objectclass: top
objectclass: organization

Field Definition

dn: <distinguished name> Specifies the DN for the entry. A DN is
required.

objectClass: top Specifies the top object class. This object class
specification is optional. Some older LDAP
clients require the existence of object class top
during search operations.

objectClass: organization Specifies the organization object class. This
line defines the entry as an organization.

o: <organization name> Attribute that specifies the organization's
name.

<list of attributes> Specifies the list of optional attributes for the
entry.
LDAP Concepts and Architecture 53

o: ibm.com
telephonenumber: 838-6004

Specifying Organizational Unit Entries
There may be more than one organizational unit, or branch point, within a
directory tree. For information on how to design a directory tree, see 3.1,
“Directory Design Guidelines” on page 57.

The LDIF that you specify to define an organizational unit entry should
appear as follows:

dn: <distinguished name>
objectClass: top
objectClass: organizationalUnit
ou: <organizational unit name>
<list of optional attributes>
...

Table 12 lists and explains the fields:

Table 12. LDIF Fields for Specifying an Organizational Unit

The following is an example organizational unit entry in LDIF format:

dn: ou=people, o=ibm.com
objectclass: top
objectclass: organizationalUnit
ou: people

Specifying Organizational Person Entries
A common type of entry that will be included in directories will describe a
person within the organization. The majority of the entries in the directory will
represent organizational people.

The LDIF used to define an organizational person should appear as follows:

dn: <distinguished name>
objectClass: top
objectClass: person
objectClass: organizationalPerson
cn: <common name>

Field Definition

objectClass: organizationalUnit Specifies the organizationalUnit object
class. This line defines the entry as an
organizational unit.

ou: <organizational unit name> Attribute that specifies the
organizational unit's name.
54 Understanding LDAP

sn: <surname>
<list of optional attributes>
...

Table 13 explains the fields:

Table 13. LDIF Fields for Specifying an Organizational Unit

The following is an example organizational person entry in LDIF format:

dn: cn=John Smith, ou=people, o=ibm.com
objectclass: top
objectclass: organizationalPerson
cn: John Smith
sn: Smith
givenname: John
uid: jsmith
ou: Marketing
ou: people
telephonenumber: 838-6004

2.4.2.4 LDIF File Example
Below is a simple LDIF file which contains an organizational unit people
beneath the organization ibm.com. The entry of John Smith is the only data
entry for people. Further on, there is an organizational unit called marketing.
Note that John Smith is a member of the marketing department due to the
attribute value pair ou: marketing.

dn: o=ibm.com
objectclass: top

Field Definition

objectClass: person Specifies the person object class.
This object class specification should
be included because many LDAP
clients will require the existence of
object class person during search
operations for a person or an
organizational person.

objectClass: organizationalPerson Specifies the organizationalPerson
object class. This object class
specification should be included
because some LDAP clients require
the existence of object class
organizationalPerson during search
operations for an organizational
person.
LDAP Concepts and Architecture 55

objectclass: organization
o: ibm.com

dn: ou=People, o=ibm.com
objectclass: organizationalUnit
ou: people

dn: ou=marketing, o=ibm.com
objectclass: organisationalunit
ou: marketing

dn: cn=John Smith, ou=people, o=ibm.com
objectclass: top
objectclass: organizationalPerson
cn: John Smith
sn: Smith
givenname: John
uid: jsmith
ou: marketing
ou: people
telephonenumber: 838-6004

2.5 Platform Support

The architecture of LDAP does not depend on any operating system or
hardware platform. LDAP was designed to run on multiple platforms, even
with limited resources. The prerequisite is an operable TCP/IP
communication stack.

LDAP client toolkits and server implementations are available for all major
operating system platforms, and client functionality is contained in some
applications already. Recent versions of Web browsers on various platforms,
such as Netscape’s Communicator or Microsoft’s Internet Explorer, are
already capable of searching LDAP directories, as shown in 1.6, “The Quick
Start: A Public LDAP Example” on page 16.

Appendix B, “LDAP Products and Services” on page 143, gives you an
overview of some products available on the market that are either LDAP
servers, client packages or other products incorporating LDAP services.
56 Understanding LDAP

Chapter 3. Designing and Maintaining an LDAP Directory

The two first chapters introduced LDAP, its basic concepts and principles.
Although LDAP strictly refers to a protocol, we used this term in a broader
context when describing LDAP servers or when outlining the contents of an
LDAP directory. Introducing LDAP in an organization involves more than just
adding another protocol. It requires thorough planning on how the directory
contents should be designed and how it should be deployed in the physical
infrastructure.

While discussing low-level details of designing a directory implementation,
such as detailed performance tuning aspects or product selection criteria
which are beyond the scope of this book, this chapter gives you an
introductory understanding of what has to be considered when LDAP is to be
introduced in an organization.

The first sections in this chapter describe some guidelines on how the design
and implementation of the directory tree structure should be done. Then,
implementing such a directory in a physical infrastructure having scalability,
availability and manageability in mind is described, followed by some security
and maintenance aspects of an LDAP directory deployment.

The last part of this chapter describes two hypothetical examples of LDAP
implementations in a small and a large organization.

3.1 Directory Design Guidelines

Creating a design that has the flexibility to accommodate changes within the
organization is probably the single most important task in implementing a

The discussions that follow in this chapter often refer to typical White
Pages directory implementations and the examples present common
people directories. This approach was chosen for the sake of simplicity.

Please bear in mind, LDAP is not only suitable for people directories. An
LDAP directory can hold almost any kind of information and can therefore
be used for a much broader range of applications. The DEN initiative (see
5.4, “The Directory-Enabled Networks Initiative” on page 138) is just one
example where an LDAP directory is being used for storing network
configuration and topology data.

What is a Typical Directory?
© Copyright IBM Corp. 1998 57

directory service. This will help save time and money as the directory service
grows. When designing the directory service, the project can be divided into
several smaller projects: surveying the directory service contents, creating
access control strategies, replication and partitioning strategies, and network
planning (physical planning):

 • Planning the directory content includes deciding on what data to store in
the directory and how it will be arranged in the tree structure. When
deciding on what to put into the directory, all the owners of data relevant to
the contents of the directory tree in the organization should be identified. It
is very probable that the information you will be choosing to put in the
LDAP directory already resides on some other system in your
organization. For example, the personnel department most likely already
has databases with personnel information. Also be sure to make adequate
use of processes already in place to administer that data even in the
planned directory service.

 • Data management and access control are both important when
maintaining a directory service. Plans must be made to identify resources
for keeping the data up to date and identifying resources with the authority
to decide on access control policies regarding the data residing in the
directory tree.

 • In sizing the directory service, consideration must be taken to which
clients will be accessing what data, from where, and how often. If there
are client applications which use the directory extensively, consideration
must be taken to ensure that the network availability and bandwidth are
sufficient between the application servers and the directory servers. If
there are network bottlenecks, they must be identified because there may
be needs to replicate data into remote LANs.

3.1.1 Defining the Data Model
There are many steps involved in designing a directory tree, such as deciding
on the kind of data that the entries will contain, what schema to use and
finally how the entries are going to be arranged in the tree structure. During
design, several different aspects must be taken into account:

 • What type of application/applications will use the directory?

 • Will the LDAP service be participating with an X.500 directory service?

 • How will the organizations infrastructure be mapped into the directory?

 • What are the requirements for manageability and scalability?
58 Understanding LDAP

3.1.1.1 Directory Data
Planning the directory’s data is the most important aspect of the directory
planning activities, and it is probably the most time-consuming aspect as well.

A considerable amount of the time spent planning the directory data will most
likely be spent surveying the organization to locate all the data stores where
directory information is managed. As this survey is performed, expect to find
that some kinds of data are not well managed; some processes may be
inefficient, inadequate, or nonexistent altogether; and some kinds of data
may not be available at all. All of these issues should be addressed before
finishing a data-planning phase.

We start by looking at the requirements on the data to be used in the directory
service. Some types of data are better suited for a directory service than
others. Ideal candidates in a directory service have some of the following
characteristics:

As already discussed in Chapter 1, a directory service is not a file system, a
file server, an FTP server, a Web server, or a relational database. Therefore,
large, unstructured objects of data should not be put in the directory. For that
kind of data, a server more appropriate for the task should be used. However,
it is appropriate to store pointers to these kinds of applications within the
directory service through the use of FTP, HTTP, or other types of accesses.

The data should typically be read much more often than it is written. This is
because directory services usually are tuned for read operations; write
operations are more expensive in terms of resource utilization than reads,
and they may impact the directory server’s performance in typical directory
server implementations.

Another “rule of thumb” is that the data should typically be accessed from
more than just one system or client. For example, an employee’s preference
settings for a specific application may not be meaningful to put in the
directory if that application is only run on the employee’s single workstation. If
the user wants to run this application on different systems, such as a mail
client application, then the application would certainly benefit from a central
directory for storing user preferences. This would allow the employee to use
the same setup on multiple systems or even platforms within the
organization.

Having in mind the types of data suitable and unsuitable for use in a directory,
it is now possible to survey what the directory service data will be. In doing
this, it may be helpful to do the following:
Designing and Maintaining an LDAP Directory 59

 • Determine what directory-enabled applications to deploy and what their
data needs are.

 • Survey the organization and identify where the data comes from (such as
Windows NT or Novell NetWare directories, Human Resources databases,
e-mail systems, and so forth.).

 • Determine who needs access to the data, particularly the organization’s
mission-critical applications. Find out if those applications can directly
access and/or update the directory.

 • For each piece of data, determine the location where it will be mastered,
who owns the data—that is, who is responsible for ensuring that the data
is up-to-date.

 • For each piece of data, determine the name of the attribute(s) that you will
use to represent the data in the directory and the object class(es) (the type
of entry) that the data will be stored on.

 • If data is going to be imported from other sources, develop a strategy for
both bulk imports and incremental updates. Try to limit the number of
applications that can change the data. Doing this will help ensure the data
integrity while reducing the organization’s administration.

 • Identify duplications and data that is not actually used or required.
Harmonize the data by eliminating such duplications and discard
unnecessary data.

Having decided on the type of data to use in the directory service, what the
directory will be used for and how the data will be updated, it is possible to
start structuring the data. Structuring data is done by designing a schema,
choosing a directory suffix, branching the directory tree and finally creating a
naming style for the directory entries. We explain these activities in the
sections that follow.

3.1.1.2 Directory Schema
A schema is the collection of attribute type definitions and object class
definitions. A server uses these to determine how to match a filter or attribute
against the attributes of a specific entry and whether to permit given
attribute(s) to be added. See also 2.2.1, “The Information Model” on page 25,
for more details.

When deciding on the design of the schema, there are a few things to
consider. The LDAP specifications include a standard schema for a typical
white pages directory (RFC 2256, A Summary of the X.500(96) User Schema
for use with LDAPv3). Vendors ship schemas with their LDAP server products
that may include some extensions to support special features they feel are
60 Understanding LDAP

common and useful to their client applications. Work at the IETF is in
progress to create standard schemas for a broad range of applications.

Regardless of the type of information contained in the directory server, the
standard schema, some of which is based on the X.500 standard, should not
be modified. If this standard schema proves to be too limiting for the intended
use, it can be extended to support the unique requirements. Standard
schema elements, however, should not be deleted. Doing so can lead to
interoperability problems between different directory services and LDAP
clients.

It is important to use a consistent schema within the directory server because
LDAP-enabled application clients locate entries in the directory by searching
for object classes or attributes and their associated values. If the schemes
are inconsistent, then it becomes virtually impossible to locate information in
the directory tree efficiently. An example of an inconsistent schema is a
situation where an attribute is used to store a specific kind of information, and
then later a different attribute is used to store the exact same kind of data, for
example when both attributes, telephoneNumber and phone contained the same
data.

Most LDAP-enabled application clients are designed to work with a specific,
well-defined schema. Shrink-wrapped standard applications most likely only
work with a standard schema. This is an important reason why LDAP-based
directory services should support at least the standard LDAP schema. Then,
the schema may be extended as the site discovers site-specific needs that
are not met by the standard schema.

3.1.1.3 Choosing a Suffix
When deciding on suffixes, where a suffix is the root DN of a directory tree as
described in 2.2.2.2, “Suffixes and Referrals” on page 32, it is basically a

The previous section points out that the use of a standard schema is
beneficial and that specific changes can be done as long as they are
additions.

You may, however, create your own, private schema. But when doing so,
you must take into consideration that compatibility to any other LDAP
service may be lost and that your application clients have to be aware of
that private schema.

Private Schema?
Designing and Maintaining an LDAP Directory 61

good idea to use the same naming structure for LDAP as it is used for X.500.
Using the X.500 methodology would lead to choosing a suffixes like:

o=ibm,c=us or ou=austin,o=ibm

This method will set the root of the directory tree to a specific organization in
a specific country or to a specific organization and organizational unit.
However, it is not necessary to do this, unless there are plans to participate in
an X.500 directory service, since LDAP does not require any specific format
for the DN naming convention. In LDAP, the directory suffix can be chosen
freely to reflect the organizations distinct name. Another method that you can
use, if the X.500 does not seem appropriate, is to use the DNS naming model
when choosing the directory suffix. This would result in a suffix using the
domainComponent attribute, for example: dc=xyz.se, dc=abc.us, or dc=abc.com.

The design of the directory schema and definition of the suffix makes it
possible to start populating the tree. But, before doing so, the naming
structure must be put in place. We have divided the discussion on naming
structure creation into the two sections that follow: (1) Branching of the
directory tree and (2) naming style for the entries.

3.1.1.4 Branching the Directory Tree
Choosing to branch a directory tree based on the organizational structure,
such as departments (see Figure 16), can lead to a large administrative
overhead if the organization is very dynamic and changes often. On the other
hand, branching the tree based on geography may restrict the ability to reflect
information about the organizational structure. A branching methodology that
is flexible, and which still reflects enough information about the organization,
must be created.

Figure 16. DNS-Type Naming Model for the Directory Tree

root

dc=xyz.com dc=abc.com

ou=marketing ou=services ou=marketing ou=services

l=se l=de
62 Understanding LDAP

Because the structure of organizations often changes considerably over time,
the aim should be to branch the tree in such a way as to minimize the number
of necessary changes to the directory tree once the organization has
changed. Note that renaming a department entry, for example, has the effect
of requiring a change of the DNs of all entries below its branch point. This has
an undesirable impact on the service for several reasons. Alias entries and
certain attributes or ordinary entries, such as seeAlso and secretary, use DNs
to maintain links with other entries. These references are one-way only, and
LDAP currently offers no support to automatically update all references to an
entry once its DN changes. The impact of renaming branches is illustrated in
the following example.

When adding employees to their respective departments, it would be possible
to create distinguished names (DN) like cn=John Smith, ou=Marketing, l=se,
dc=xyz.com. If John Smith should at a later time move to another department,
his DN will have to change. This results in changing all entries regarding
access rights and more. If John Smith’s DN had been set to cn=John Smith,
ou=employees, l=se, dc=xyz.com, then this would not be a problem, as
depicted in see Figure 17. An attribute describing which department he
belongs to (ou=marketing) could be added to his entry to include this
information.

Figure 17. Modified Tree Representation of an Organization

Other criteria that may or should be considered when branching the directory
tree include:

 • Physical separation and/or separate management responsibilities

If your organization has separate units that are either physically separated
or have their own management authorities, you might have a “natural”
requirement to split and separate parts of the DIT.

ou=employees

ou=Marketing ou=Development

cn=John Arnold

l=se,dc=xyz.com

ou=partners

cn=John Smith cn=Qwerty cn=Pwerty
Designing and Maintaining an LDAP Directory 63

 • Human or machine clients

A general “rule of thumb” says that the DIT should be reasonably shallow
unless there are strong reasons to design deep branching levels down the
directory tree. If the directory information is primarily searched and read
by human users—that is, if users manually type in search criteria—the DIT
should provide the information in an intuitive manner so that finding
information is not limited to system specialists. If, on the other hand, the
information is primarily retrieved from programs, other rules more suitable
for that application can be followed.

 • Performance and system characteristics

Although it should not be the primary design goal to analyze and meet the
strengths and circumvent weaknesses of a specific server (as they may
change with new software releases or other vendor products), it is good
practice to have some characteristics of the implementation in mind when
branching a DIT.

3.1.1.5 Naming Style
The first goal of naming is to provide unique identifiers for entries. Once this
is achieved, the next major goal in naming entries should be to make
querying of the directory tree intuitive. Support for a naming structure which
enables the use of user friendly naming is desirable (see the discussion on
multicomponent RDNs below). Other considerations, such as accurately
reflecting the organizational structure of an organization, should be
disregarded if it has a negative effect of creating complex DNs, thus making
normal querying nonintuitive. If we take a look at the X.500 view on naming,
we see that the X.501 standard specifies that “RDNs are intended to be
long-lived so that the users of the Directory can store the distinguished
names of objects...”, and “It is preferable that distinguished names of objects
which humans have to deal with be user-friendly.” (excerpt from The Directory
– Overview of Concepts, Models and Services, CCITT 1988, cited in RFC
1617).

Multicomponent relative distinguished names can be created by using more
than one component selected from the set of the attributes of the entry to be
named. This is useful when there are, for example, two persons named John
Smith in one department. The use of multicomponent relative distinguished
names allows one to avoid artificial naming values such as cn=John Smith 1 or
cn=John Smith 2. Attributes which could be used as the additional naming
attribute include: Title, room number, telephone number, and user ID,
resulting in a RDN like title=Dr, cn=John Smith, creating a more user friendly
naming model.
64 Understanding LDAP

A consistent approach to naming people is especially important when the
directory stores information about people. Client applications will also be
better able to assist users if entries have names conforming to a common
format, or at least to a very limited set of formats. It is practical if the RDN
follows such a format.

In general, the standard attribute types should be used as documented in the
standards whenever possible. It is important to decide, within the
organization, which attributes to use for what purpose and not to deviate from
that structure, as mentioned earlier in 3.1.1.1, “Directory Data” on page 59.

It is also important that the choice of a naming strategy not be made on the
basis of the possibilities of the currently available client applications. For
example, it is questionable to use commonName of the form “surname firstname”
merely because a client application presents results in a more satisfactory
order by so doing. Use the best structure for people’s names, and adapt or
design the client applications accordingly.

We have discussed some aspects of directory design. After all, it needs to be
pointed out that there is no single correct way to design a directory. To be
able to build a more objective picture of the naming methodology, we
recommend that several sources of information are compared. Often,
vendors will have their own implementation guides that reflect different
angles of views for this aspect. See also A.4, “Other Sources” on page 140,
for information on literature in this area.

3.1.2 Security Policy
Having designed the directory tree, we now need to decide on a security
policy. A security policy should be strong enough to prevent sensitive
information from being modified or retrieved by unauthorized users while
simple enough that administration is kept simple so authorized parties can
easily access it. Ease of administration is very important when it comes to
designing a security policy. A too complex security policy can lead to
mistakes that either prevent people from accessing information that they
should have access to, or allow people to modify or retrieve directory
information that they should not have access to.

The security policy that needs to be designed for the directory service is a
reflection of the:

 • Kind of information that will be stored in the directory

 • Ways in which clients will be accessing the directory

 • Ways which will be used to update and manage the directory
Designing and Maintaining an LDAP Directory 65

 • Acceptable administration effort for security

To reach these goals, two basic areas must be considered and the following
question must be answered: What level of security is needed when clients
identify themselves to the directory server, and what methodology will be
used when authorizing access to the different kinds of information in the
directory?

3.1.2.1 Authentication
Conceptually, directory authentication can be thought of as logging in to the
directory. LDAP terminology, however, usually refers to this operation as
binding to the directory.

Generally, bind operations consist of providing the equivalent of a user ID and
a password. However, in the case of an LDAP directory, the user ID is
actually a distinguished name (or a distinguished name derived from a user
ID). The distinguished name used to access the directory is referred to as the
bind DN.

So, what level of authentication should be considered? There are, generally
speaking, three different approaches:

No Authentication This is the simplest approach, which might be
perfectly suitable for most directories when all
users are equally granted read (or even write)
access to all data. There is no need for user
authentication when this is the case.

Basic Authentication This lets the client bind by entering a DN and a
password. Using basic authentication will not
ensure integrity and confidentiality of the login
data since it is being sent over the network in a
readable form (see also 2.3.2, “Basic
Authentication” on page 44).

Secure Authentication SASL (Simple Authentication and Security Layer)
is an extensible authentication framework. It was
added to LDAP Version 3, and it supports
Kerberos and other security methods, like S/Key.
SASL provides the possibility to securely
authenticate LDAP clients and LDAP directory
servers. There is a so called EXTERNAL
mechanism in SASL that allows the use of
authentication identity information from security
layers external to the SASL layer. One possibility
66 Understanding LDAP

is to use the authentication information from SSL.
SSL is generally used to secure the connection
between a client and a server through the
exchange of certificates. The client certificate can
get used through SASL as authentication identity.
SASL is already used within several Internet
protocols including IMAP4 and POP3 (mail server
protocols) and is described in more details in
2.3.3, “Simple Authentication and Security Layer
(SASL)” on page 45.

It is possible that there is a need for both basic and secure authentication.
The choice will be dependent on the security policies in the organization’s
networks and what type of access rights the different types clients will have
when communicating with the server. For example, when setting up
server-to-server communication, it may be valuable to use strong, secure
authentication since server-to-server communication will often rely on
unrestricted access to each other’s tree structures, including individual
entries access settings. On the other hand, for client-to-server
communication, where clients only have read access to names, phone
numbers, and mail addresses, there is most likely no need for anything but
basic authentication.

When using secure authentication, it is possible to choose from different
methods depending on the vendors’ implementations, for example Kerberos
or SSL. If Kerberos is not already deployed in the organization’s intranet, then
it will probably be sensible to use SSL, since support for SSL is included in
most popular LDAP clients. When using SSL, it is possible for the server to
authenticate to the client by using its server certificate. A server certificate
can be thought of as a secure, digital signature that unequivocally identifies a
server. It has been generated and registered with a trusted certifying
authority, also known as a Certificate Authority (CA), such as the United
States Postal Service CA or the IBM World Registry CA. Also, when using
server certificates, an encrypted communication can be established between
the client and server, enabling a secure basic authentication of the client to
the server. Please refer to 2.3.3.1, “SSL and TLS” on page 47, for more
information on certificates and SSL.

Using SSL server certificates will be particularly interesting when setting up
LDAP services on insecure networks, such as the Internet/extranet. This will
enable the clients to verify the identity of the server and to encrypt
communication of the basic authentication from the clients to the server on
the insecure networks.
Designing and Maintaining an LDAP Directory 67

When using basic authentication, administration of passwords on the
directory server will be necessary and may impose some administration
overhead. If SSL client certificates are used, then an appropriate
infrastructure will be needed to support the certificate generation and
administration. This is usually done by separate certificate servers. Client
certificate deployment is beyond the scope of this book, but it ought to be
mentioned that LDAP supports storing client public keys and certificates in
the entries.

3.1.2.2 Authorization
The data in the directory tree will have to be protected in different ways.
Certain information must be searchable for everybody, some must be
readable, and most of it will be write protected. In LDAP Version 3, there are
no defined attributes to handle this. As a result, vendors support their own
implementations of authorization. This is done by different implementations of
access control lists (ACLs).

ACLs are used to define access rules to the different entries in the directory
tree. As an example of an ACL implementation, Figure 18 shows the IBM
eNetwork LDAP directory server’s implementation of ACL attribute entries.
The pertinent control attributes used here are: aclsource, aclpropagate, and
aclentry, where the latter, for example, is the attribute that specifies who has
access to the entry and what level of access he or she has. In the example
shown in Figure 18, cn=John Arnold,ou=Austin,o=xyz,c=us has read, write,
search and compare (rwsc) rights for normal, sensitive and critical data (the
entry is highlighted and spilled into three lines in the example below).

Figure 18. Sample ACL Attribute Entry

dn: ou=Austin, o=xyz, c=US
objectclass: top
objectclass: organizationalUnit
ou: Austin
description: Austin Office
entryowner: access-id:cn=admin,o=xyz,c=US
inheritoncreate: TRUE
ownerpropagate: TRUE
aclpropagate: TRUE
ownersource: default
aclsource: OU=AUSTIN,O=xyz,C=US
aclentry: access-id:CN=John
Arnold,OU=Austin,O=xyz,C=us:object:a:normal:rwsc:
sensitive:rwsc:critical:rwsc
aclentry: group:CN=ANYBODY:normal:rsc
68 Understanding LDAP

When setting up access control lists, it is important to do it with the goal to
minimize the administration later on. It is good to try and delegate the access
control hierarchically.

An example of this could be the following: An individual, say John Arnold,
needs to protect sensitive information. Two groups have been created for this
purpose, owned by John Arnold (see Table 14). Entries can be added and
deleted by John Arnold to his “own” groups without intervention of the
directory service administrators.

Table 14. ACL Structure for Web Content Administration Using Two Groups

According to Table 14, John Arnold has added user1 to the editor group and
user2 and the group called marketing to the readers group, thus enabling user1
to edit the contents, and enabling user2 and the people in the marketing group
to read the contents.

3.1.3 Physical Design
Physical design involves building a network and server infrastructures to
support availability, scalability and manageability. Methods to do this in LDAP
are partitioning and replication (replication is actually not standardized in
LDAP Version 3, but most vendors do have an implementation). In this
section, we concentrate on deployment issues regarding when partitioning
and/or replication is appropriate when trying to reach the goals of availability,
scalability and manageability, and what the trade-offs are.

3.1.3.1 Availability
Availability for a directory service may not be an issue in cases where the
directory is not business-critical. However, if the use of the service becomes
mission-critical, the need to design a highly available system is required.
Designing a highly available system involves more than what is supported in
LDAP. The components from LDAP that are needed are partitioning and
replication. Since high availability involves eliminating single points of failure
or reducing their impact, it is necessary to have redundant hardware,
software and networks to spread the risk.

A simple approach to create a highly available directory service is to create a
master and a slave directory server, each one on its own physical machine.

Group Name Owner Group Members

cn=editor cn=John Arnold cn=user1

cn=readers cn=John Arnold cn=user2
ou=marketing
Designing and Maintaining an LDAP Directory 69

By replicating the data, we have eliminated the single point of failure for both
hardware and software failures. This solution with a master and one or more
slave servers normally provides for high availability for read functions to the
LDAP servers. Write requests can only be directed to the master server. If
high availability is required for write access, additional effort is necessary.
Neither read-only nor read/write replication is supported natively by the LDAP
standards, but vendors may have implemented their own mechanisms.
Replication solutions can also be constructed using the export/import
facilities of LDAP servers or with additional, custom-designed software tools.

A mechanism must be added to handle client redirection if one server fails.
This can be done manually or semi-automatically by a DNS switchover, or
automatically with a load-balancing technique by using a router designed for
this, as shown in Figure 19. Such a router forwards client requests to one of
the servers based on configurable criteria. It is important that the router
supports stateful protocols; that is, subsequent requests from the same client
need to be forwarded to the same server. There are several products on the
market from different vendors to do this, such as IBM’s eNetwork Dispatcher
(see www.ics.raleigh.ibm.com/netdispatch/) or Cisco Systems’ Local Director
(www.cisco.com).

Figure 19. Setup of a Load Balancing, Replicated LDAP Cluster

There is also the issue of network bandwidth and its reliability to take into
consideration. In some cases, it may be necessary to distribute a replica into
another LAN with slow network connections to the master, as shown in Figure
20. This can also be done with any means of replicating an LDAP server
(remember that replication is not included in the LDAP standards, thus you
have to use vendor product support or your own methods). The primary

Master

Server
Directory Directory

Network
Dispatcher

ldap.xyz.com

Client
LDAP
Client

Network
Client Requests

Server Replies

Replica

Server

Web
Server

Mail
Server
70 Understanding LDAP

server for a particular client may be the directory server on the client’s own
LAN, and the secondary will then be the central master server, accessed over
the WAN.

Figure 20. Example of an Organization’s Network

If the method of spreading the risk is used to create high availability, it is
possible to partition the directory tree and to distribute it to different locations,
LANs, or departments, as shown as an example in Figure 21. As a
side-effect, depending on how the directory tree is branched and distributed
to these servers, each location, department or LAN administrator could then
easily manage their own part of the directory tree on a local machine, if this is
a requirement. If a single server failed in such a configuration, then only a
portion of the whole directory would be affected.

Replicated DS

Replicated DS

Master Directory Server

Head
Quarters

Large
Branch
Office

Small

Office
Branch

Small

Office
Branch

slow network
fast network

Replicated DS
Designing and Maintaining an LDAP Directory 71

Figure 21. Handling Referrals in a Partitioned Namespace

A combination of the two methods explained above could be used to create a
dynamic, distributed, highly available directory service.

3.1.3.2 Scalability
As more and more applications use and rely on a directory service, the need
to scale the directory for high load tolerance increases. Scaling up directory
servers is done much the same way, either by increasing availability or by
upgrading hardware performance. As is the case when increasing availability,
we have to rely on functions outside the LDAP standard as well as LDAP
replication and partitioning. The round-robin DNS or the load-balancing router
are good tools to scale an LDAP server site, as explained in the previous
section 3.1.3.1, “Availability” on page 69.

Scalability may be affected by network performance, therefore requiring local
directory servers in LANs.

3.1.3.3 Manageability
Management of an LDAP service, as far as contents management for the
directory contents is concerned, has been elaborated in 2.4, “Manageability”
on page 49. A product that supports LDAP contents management will also be
discussed in B.3, “Tivoli User Administration: LDAP Endpoint” on page 147.
This section concentrates on manageability issues specific to the design
phase of an LDAP service.

dc=xyz.com

ou=marketing ou=services

ou=se ou=de

dc=xyz.com

ou=marketing ou=services

ou=se ou=de

Referral for xyz in Germany
DN: ou=de,dc=xyz.com

Referral for xyz in Sweden
DN: ou=se,dc=xyz.com

Sweden

Germany
72 Understanding LDAP

Manageability aspects involve almost all parts of a directory design. Here is
where trade-offs may have to be made regarding scalability, availability,
flexibility, and manageability. The level of scalability and availability are both
related to cost in hardware and software and, as a drag-along, cost of overall
systems management.

One important question to ask in a directory design about manageability is
whether and how all information providers are able to furnish reliable, correct
and consistent directory data to the LDAP service. If this cannot be assured,
there will be a chance for errors and inconsistencies in the LDAP directory
data. If such problems are considered critical for the clients using the LDAP
service, tools must be provided that can detect and maybe even correct these
errors.

To create a high availability environment, it is necessary to replicate and/or
partition the directory, as discussed in the previous sections. Although not
directly related to LDAP, it should be mentioned that adequate systems
management tools and skills must be available to run such a fairly complex
environment. In addition, one of the manageability concerns regarding
replication might be the need to ensure an ample level of consistency. A
master LDAP server might have been updated with new information while a
replica server still runs with the old, outdated information. The required level
of consistency is largely dependent on the needs of the client applications
using the service. If there is a requirement for currency and consistency
among replicated servers, additional means must be provided to ensure this.

Replication will also affect backup and disaster/recovery procedures.
Processes will be needed to handle recovery of master servers and how
synchronization of slaves will be handled. Since replication is outside the
current standard for LDAP, it is necessary to study the vendors’
implementation in order to find adequate solutions.

Partitioning the directory enables local servers to own their own data,
depending on schema and branching design. This increases flexibility when
maintaining data, but increases the complexity of referral handling. A clear
method of linking the name space together will have to be formulated to
ensure consistent referrals in the directory service name space such that the
logical name space is still a whole. Also, each local server may have to be
administered and maintained locally, requiring staff with operating system
and LDAP knowledge.
Designing and Maintaining an LDAP Directory 73

3.2 Migration Planning

Having done all the planning and design work to introduce LDAP as a new
directory service, one more important task has to follow. Remember that the
job of designing an LDAP directory very likely started with an analysis of
currently available data and the various locations and services where
directory data might be stored and serviced from. For example, there might
be several LAN-based directories installed and operational already in your
organization, such as IBM Warp Server domains, Microsoft Windows NT/95
domains, Novell NetWare domains, or other databases with directory-type
information.

In most cases, introducing LDAP will not be an introduction of a new service
from scratch, but some kind of a migration from existing services to LDAP.
Once your organization has decided to move to an open, vendor-independent
directory service, which describes LDAP perfectly, you have to carefully
analyze if and how current directories can participate in, benefit from, or even
be migrated to an LDAP directory infrastructure.

Bear in mind that such a migration is not just a software or application
replacement; it is also a chance and the right time to redesign and harmonize
the data in your directories (Figure 22).

Figure 22. Migration and Data Consolidation

A

B

Cl.

Cl.Cl.Cl.

Cl. Cl.

A B

LDAP Directory

LDAP Directory

A B

Migration Only

Migration &Consolidation

= Common Data
74 Understanding LDAP

Because migrating current directory services to LDAP may not be a trivial or
risk-free undertaking, your decision might be to run and maintain proprietary
directory services in parallel with LDAP for some period of time (while this is
certainly not textbook advice, it may be considered for practical reasons).
This might also be necessary when you need to keep some of the proprietary
services running for some time that cannot be supported with LDAP. Another
common reason for running LDAP and other directory services in parallel
might be a shortage in skills or staff personnel.

Figure 23 graphically shows a possible migration scenario as it might be
planned over time. This low-risk approach, however, involves some additional
maintenance effort since there are parallel directories to maintain for a certain
amount of time. The basic idea behind the scenario depicted in Figure 23 is:

1. Start building up an LDAP directory service infrastructure that is properly
designed to accommodate the needs.

2. Populate the LDAP directory with the data for the first service to be
migrated. Keep the LDAP directory data in sync with the original data.

3. Migrate the clients to the new LDAP service.

4. After successful migration, the original service can be sunset.

Figure 23. Migration from Existing Directory Services to LDAP

While this approach sounds reasonably simple in theory, there might be some
complications in the real world. A major obstruction might be proprietary
add-on services in the current vendor-specific directories that are beyond the
capabilities of LDAP. (For this reason, you might consider it an important
pre-planning step to not use proprietary functions whatsoever in
vendor-specific directory services to ensure a smooth migration to open
standards.) If planning for a migration, it should also be considered that,
according to their public program announcements, vendor-specific directory

Current Service A

Current Service B

Current Service C

New LDAP Service

Phase-Out

Phase-Out

Phase-Out
Designing and Maintaining an LDAP Directory 75

services, such as Novell’s NDS or Microsoft’s Active Directory, support an
LDAP interface. Using this interface, LDAP clients can access data in these
directories.

Running parallel directory services also means that the LDAP directory must
be kept in sync with the current directories (depending on your requirements
for data currency and consistency). This can be achieved in different ways.
Depending on the decision on when the primary data administration is going
to be moved to LDAP, data may still be administered in the “old” directory
while clients already use the new LDAP service. In this case, the LDIF file
format (see 2.4.2, “LDAP Data Interchange Format (LDIF)” on page 50),
along with the supporting import/export facilities, might be an easy method for
keeping directories synchronized.

The migration approach just described involves little risks because there
always is a backout method in case a migration step fails. Clients may be
migrated within a time period, which is especially useful in large installations.
New services may experience a delay when problems are encountered after
their introduction. Migration of a complete service at one time imposes a
much higher risk because both servers and clients (including applications)
have to ready immediately. The only (usual) backout solution is to go back
and (re)install the old environment. The decision on which scenario to follow
largely depends on the size of the installation, the risk that can be taken, and
the possibilities to run directory services in parallel.

3.3 Example Scenarios

Earlier in this chapter, we discussed design, deployment, security, and
maintenance of a directory service. In this section, we summarize in two
examples the specific considerations that need to be taken when an LDAP
implementation is being designed. The first example looks at a hypothetical,
small organization, like a small company or a department within a larger
organization. The second example scenario describes an implementation in a
large organization.

3.3.1 Small Organization
The scenario in this example assumes an organization of a few hundred
employees that has no plans of future integration with X.500. The
organization can be a small company or an isolated department within an
enterprise. The LDAP directory service to be implemented, as described in
the following subsections, can be described as a minimum implementation
without any sophisticated exploitation.
76 Understanding LDAP

3.3.1.1 Directory Data
The directory service will initially be used by a white pages application, a Web
server and a mailserver application. The data to be put in the database will be
taken from the personnel database and combined with records from an IT
database that contains e-mail addresses. The intention is to add and remove
employee entries automatically to or from the LDAP directory after the
database in the personnel department has been changed. This will be done
with a C program using the LDAP-API to interact with the LDAP directory.
Since data consistency is not crucial, this program will be run as a batch job
only once per day, presumably at night. As an option, the C program could be
smart enough to detect changes in the personnel database and propagate
those changes to the LDAP directory. Alternatively, the program could just
extract all employee information from the personnel database and re-create
all entries in the LDAP directory. The latter, simpler approach has the
advantage of ensuring consistency within the LDAP directory (with a
maximum of one day delay), but has the disadvantage of a short service
interruption when the whole directory is purged and reloaded.

3.3.1.2 Directory Schema
The object classes to be used for the employee entries include:

top
person
organizationalPerson
inetOrgPerson
mailRecipient

These will cover the needs for white pages and e-mail application.

3.3.1.3 Directory Suffix, Branching and Naming
The directory suffix for the company is set to its internet domain, dc=xyz.com
since there will be no integration with X.500.

The organization consists of three departments: Marketing, Services, and
Accounting.

The employee and group entries will be placed directly under the root entry,
dc=xyz.com. This creates a flexible, flat organization, which works fine for an
organization with only a relatively small number of entries, say a few hundred.

The RDN of the employees will be the commonName attribute, and for those with
the same commonName an organizationalUnit attribute will be added to the RDN.
For example, John Smith in Marketing will have the entry:

dn: ou=Marketing cn=John Smith, dc=xyz.com
Designing and Maintaining an LDAP Directory 77

objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
givenname: John
uid: jsmith
ou: Marketing
employeenumber: 091377
telephonenumber: 838-6004

and the other person named John Smith in Accounting:

dn: ou=Accounting cn=John Smith, dc=xyz.com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
givenname: John
uid: josmith
ou: Accounting
employeenumber: 235532
telephonenumber: 838-5501

An excerpt of the directory tree containing four sample entries can be seen in
Figure 24.
78 Understanding LDAP

Figure 24. Example Directory Tree with Attributes for a Small Organization

3.3.1.4 Security
There is no need for anything but basic authentication since the company
runs an isolated intranet behind a firewall that is considered secure. The only
requirement is that the users’ entries contain the attributes uid and
userPassword for the LDAP server to verify the users’ identities. Access control
is set up such that all users can read, but only administrators can write to the
directory.

3.3.1.5 Physical Design
In this small organization, there is no need for multiple, redundant directory
servers because the directory service is not considered mission-critical for
the following two reasons:

 • The data in the LDAP server can be re-created in case it is lost.

 • A service interruption of a few hours after a hardware or software failure is
considered acceptable.

Therefore, a single machine will be used as the LDAP server, which may
even be used for other purposes, such as mail server. However, a
backup/restore procedure needs to be put in place that allows the

dc=xyz.com
objectclass: top
objectclass: domain

objectclass: top
objectclass: person
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
ou: Marketing

ou=Marketing, cn=John Smith

objectclass: top
objectclass: groupOfUniqueMembers
cn: WWW Admin
UniqueMember: ou=Marketing,

cn=WWW Admin

objectclass: top
objectclass: groupOfUniqueMembers
cn: Mail Admin
UniqueMember: cn=Postmaster,

o=xyz.com

cn=Mail Admin

objectclass: top
objectclass: person
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
ou: Marketing

ou=Accounting, cn=John Smith

cn=John Smith, o=xyz.com
Designing and Maintaining an LDAP Directory 79

administrator to restore (reinstall) the machine in an acceptable amount of
time.

3.3.1.6 Maintenance
Maintenance in the described installation must at least cover basic systems
management and monitoring. This includes monitoring (and alerting in case
of a problem) of system resources and processes to ensure a reliable
operation of the LDAP service. If the simple approach was chosen to purge
and reload the LDAP directory on a regular basis, then chances are
inherently small that an inconsistency would exist in the directory unless the
purge/reload process failed (which, of course, should be carefully monitored)
or the source database was inconsistent. If only updates are carried on to the
LDAP server and/or local changes are done in the directory, there might be a
need for a tool that checks validity and consistency of the directory. Local
changes might be necessary to resolve password problems or if a scheduled
update is too late for some reason.

3.3.2 Large Organization
This second example assumes an organization with thousands of employees
and plans for later integrating with X.500. The organization is a multinational
enterprise called ABC.

3.3.2.1 Directory Data
ABC is a company consisting of numerous departments, many being the size
of a small organization like the one described in the last example (see 3.3.1,
“Small Organization” on page 76). The LDAP service will be used for white
pages and for an e-mail application. There will also be a Web service using
custom client profiles to create personal Web pages. LDAP will also contain
client certificates to enable secure mail and SSL authentication towards the
intranet servers.

The Human Resources (HR) department will be in charge of updating the
directory regarding employee information, except for e-mail addresses,
certificates and client passwords, which will be handled by the IT security
department. They will all create and furnish LDIF files for the bulk imports into
the directory when the service is initiated. After that, they will be using a
customized C program to keep the LDAP directory in sync with their
department’s databases. Alternatively, update LDIF files could be created
that are then subsequently imported into the LDAP directory, either on a
scheduled basis or on request (for example, whenever such an LDIF has
been created as a result of a change).
80 Understanding LDAP

The requirements on scalability and manageability are high; 7x24 is required
for availability.

3.3.2.2 Directory Schema
It has been decided that the standard X.500 schema be used for compatibility
reasons since there may be requirements on participating in a public X.500
service. The object classes from which the employee entries are created will
contain:

top
person
organizationalPerson
inetOrgPerson
mailRecipient

The object class certificationAuthority will be added to the organization’s
Certifying Authority entry.

3.3.2.3 Directory Suffix, Branching and Naming
There will be several suffixes needed. One is required for the central office
server (ldap.abc.us), located in New York, being set to o=abc, c=us. This will
be the organization’s root LDAP server, which refers to all underlying servers.
Figure 25 shows the setup for the two regional offices in Sweden and
Germany. These regional offices will have different suffixes: ou=Stockholm,
o=abc, c=se and ou=Mainz, o=abc, c=de. The LDAP server in Stockholm,
Sweden, has an additional suffix for performance reasons because it
communicates very often (assumption) with the New York office and therefore
has their directory tree replicated to Stockholm and placed under the suffix
ou=New York, o=abc, c=us.
Designing and Maintaining an LDAP Directory 81

Figure 25. Partitioned Namespace Setup for the ABC Organization

The employees’ entries are placed directly under their countries office DN,
creating DNs like cn=Erik Eriksson, ou=Stockholm, o=abc, c=se. In cases
where duplicate names are encountered the attribute mail is added to the
RDN.

You might have noticed the notation ldap://<server> in Figure 25. These are
LDAP URLs (uniform resource locators), very similar to the well known HTML
URLs (http://<server>/...). More information about LDAP URLs can be
found in 4.4, “LDAP URLs” on page 120.

3.3.2.4 Security
Security on the world wide network of the organization is not considered
completely safe due to its overall size (increased risk of inside hackers) and
the fact that parts of it are not under the organization’s control. It is difficult to
control who is connected to the network. Therefore, SSL will be used to
secure communication between the directory servers themselves and
between the application servers and directory servers (but not between
clients and the directory servers). To enable SSL there needs to be a
userCertificate attribute in the servers’ DN entries. The clients will use basic
authentication with no encryption of the network messages, thus only

Server Suffix:
o=abc, c=us

Referrals:
dn: ou=Stockholm, o=abc, c=se
ref: ldap://ldap.sthlm.abc.se
dn: ou=Mainz, o=abc, c=de
ref: ldap://ldap.mainz.abc.de

Server Suffix:
ou=Stockholm, o=abc, c=se

Default Referral:
ref: ldap://ldap.abc.us

ldap.abc.us

ldap.sthlm.abc.se

Server Suffix:
ou=Mainz, o=abc, c=de

Default Referral:
ref: ldap://ldap.abc.us

ldap.mainz.abc.de

Additional Suffix:
ou=New York, o=abc, c=us

Server Suffix:
ou=New York, o=abc, c=us

Default Referral:
ref: ldap://ldap.abc.us

ldap.ny.abc.us

Replication

dn: ou=New York, o=abc, c=us
ref: ldap://ldap.ny.abc.us
82 Understanding LDAP

requiring the uid and userPassword attributes to be included in the employees’
entries.

3.3.2.5 Physical Design
The offices in Stockholm and New York have a need for performance and
high availability. Ample performance is needed because of the load from all
the local clients and the e-mail and Web applications using the directory
server. The high availability is necessary due to the critical nature of mail and
the content on the Web where they keep their document system. Future
applications may rely even more on the directory service. The directory
service is therefore run on duplicated servers. A load-balancing router (for
example the IBM eNetwork Dispatcher) shall be used to route directory
requests to the least loaded machine, or if a machine is down, then all
requests will exclusively routed to the other server.

Because of the organization’s slow network connection between the offices in
Europe and the US, the New York directory tree is replicated to the Stockholm
directory server (see Figure 25).

The office in Mainz, Germany, is relatively small, and thus, they feel it is not
necessary to have replicated servers because a failure does not create a
critical business situation. Since the load will be small, one machine can
serve as directory server without introducing any performance bottlenecks.

There is a separate server in place for the root directory of the organization
only. It could be placed in the same physical machine(s) as the New York
office directory service. Having a separate server (or actually two for
redundancy) allows for rapid growth and also separates the relatively static
root directory service from the more dynamic subtree service. The root
server(s) can handle all requests at the corporate top level (ldap.abc.us) and
will then refer these requests to the appropriate server(s). For example,
requests for an entry in the Stockholm directory tree, made to the New York
server (ldap.ny.abc.us), will refer to the root server (ldap.abc.us), which in
turn will refer to the Stockholm server (ldap.sthlm.abc.se).

Figure 26 depicts the organization’s global configuration as far as LDAP
directory service is concerned. Please also refer to Figure 25 to better
understand the proposed layout.
Designing and Maintaining an LDAP Directory 83

Figure 26. A Load Balanced, Replicated, and Partitioned Directory Service

3.3.2.6 Maintenance
As with all production systems, basic systems monitoring, including alerting in
case of problems, is necessary for all involved systems to ensure a reliable

Master

Server
Directory

Replica
Directory
Server

Network
Dispatcher

ldap.sthlm.abc.se
Sweden

Mail
Server

ldap.abc.us
New York

Web
Server

Mail
Server

ldap.ny.abc.us

Certificate
Server

Mainz

Web
Server

Mail
Server

Server
Directory

ldap.mainz.abc.de

Head
Quarters

LDAP
Client

LDAP
Client

LDAP
Client

Master

Server
Directory

Replica
Directory
Server

Network
Dispatcher

Master

Server
Directory

Replica
Directory
Server

Network
Dispatcher
84 Understanding LDAP

operation. This includes surveillance of system resource utilizations,
processes, and console messages.

There are automated procedures and processes involved that need to be
monitored and, depending on the organization’s operations guidelines, tested
on a regular bases. They are:

 • Propagation of changes of the data to the LDAP directory

 • Master/replica replication

 • Operation of the network dispatcher (load balancing and failure handling)

 • Replication of the New York directory to the server in Sweden

 • Basic system backup and restore

Having paired servers allows an administrator to schedule maintenance on
single machines without interruption of the service. This might be necessary
for the installation of software updates or hardware upgrades

There is very little maintenance overhead specific to LDAP, other than to
ensure a reliable environment as stated above. Security-related issues, such
as password updates or certificate management, might require some
attention. Only when the LDAP data is manipulated directly on the LDAP
server(s), thus introducing a new level of possible errors, some tools for
checking consistency and validity of the data may be desirable.
Designing and Maintaining an LDAP Directory 85

Chapter 4. Building LDAP-Enabled Applications

The amount of directory-type information is growing very rapidly. This
information is often distributed in proprietary databases implemented on
different hardware and software platforms. LDAP is an ideal tool to manage
this data because it is a powerful but easy-to-handle protocol which can be
run by an LDAP-enabled client, for example a Web browser, on various
platforms. It therefore offers an easy way to access this data.

The term LDAP client is used here in a very general way. In fact, it could be
any type of application, for example a word processor that uses LDAP to
check the receiver address of a letter.

This chapter introduces the LDAP Application Programming Interface (API)
for the C language and Java to enable clients or more general applications to
access information stored in LDAP enabled directories. It is based mainly on
the appropriate RFCs or Internet Drafts, depending on which API, C language
or Java, we refer to.

As far as the C language API is concerned, RFC 1823, The LDAP Application
Program Interface, specifies the LDAP Version 2 protocol. There is a newer
version under way, currently an Internet Draft, specifying LDAP Version 3,
which will eventually make RFC 1823 obsolete. The latest version of this draft
can be found on the Web site of the Internet Engineering Task Force (IETF),
see A.4, “Other Sources” on page 140 for a URL.

There is no RFC available for the Java Naming and Directory Interface
(JNDI). JNDI was developed by Sun Microsystems and is supported by many
vendors, including Hewlett-Packard, Novell and IBM. Detailed documentation
and specifications can be found at java.sun.com/products/jndi/index.html.

This chapter is intended to help you get started with LDAP programming.
Although the API is not a very complex one—it consists of about 50 distinct
function calls. We focus only on the major functions, which are discussed by
means of some simple examples. This should help you understand how the
API works.

We focus first on the C language API. After concluding the discussion of the
API itself, we describe five simple LDAP command line applications that can
be used to manage a directory on a basic scale. Next, we turn our attention to
LDAP URLs that are defined in RFC 2255, The LDAP URL Format. The
chapter concludes with a discussion of the Java Naming and Directory
Interface (JNDI) to LDAP.
© Copyright IBM Corp. 1998 85

4.1 LDAP Software Development Kits (SDKs)

An LDAP Software Development Kit is a set of libraries and header files. It is
available for a wide variety of operating systems, including several UNIX
platforms and Microsoft Windows. The SDKs most often also include the
command line tools described in 4.3, “LDAP Command Line Tools” on page
115.

There are a number of vendors that offer LDAP directory servers, and thus
also SDKs to enable communication between applications and servers.
Among them are, for example, Netscape and IBM. One SDK that is freely
available on the Internet is from the University of Michigan. Information about
where to find different SDKs can be found in Appendix A, “Other LDAP
References” on page 139.

4.2 The C Language API to LDAP

The following section describes the API library for C language applications.
We use an example-driven approach to discuss the basic functions used for
establishing connections, doing searches and parsing the results. You will
often find the LDAP server saturn mentioned in these examples. This is the
name of the LDAP server that was used to run the examples, running the IBM
eNetwork LDAP Directory Server for AIX.

4.2.1 Getting Started
Basic conversation between an LDAP client and an LDAP server is
essentially accomplished in four steps:

 • The first step is to initialize an LDAP session. This is done with the
ldap_open() function call, which returns a handle to an LDAP session,
allowing multiple sessions to be open at once.

 • The next step is the authentication to the server. ldap_simple_bind_s() and
related functions are responsible for that. They support various

The program samples provided in this chapter can be downloaded from the
IBM Redbook Web site at http://www.redbooks.ibm.com. On that page, click
on Additional Materials and then scroll down or search for the directory
index with the form number of this book, SG244986, to access the
packaged files.

Access to the Program Samples
86 Understanding LDAP

authentication methods, from simple authentication to the more
sophisticated method Simple Authentication and Security Layer (SASL),
available in LDAP Version 3.

 • Once the connection is successfully established, you can perform your
LDAP operation(s), such as searching the directory for information and
retrieving the results.

 • Finally, the connection has to be closed with the ldap_unbind() function
call.

Here is a first, simple example that shows these basic steps:

/* example #1
* file: just_bind.c
*/

#include <stdio.h>
#include <ldap.h>

main()
{
 LDAP *ld;
 char *User = NULL;
 char *Passwd = NULL;

/* open a connection */
if ((ld = ldap_open("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL) {
 fprintf(stderr, "ldap_open call failed !");
 exit(1);
}

/* authenticate as nobody */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
}

/*
* do something, for example
* ask the server for information
........... */

/* close and free connection resources */
ldap_unbind(ld);
exit(0);
}

Building LDAP-Enabled Applications 87

The ldap_open() function takes as arguments the name of the LDAP server
and the port where it is listening. The symbolic constant, LDAP_PORT, is set in
the ldap.h file to 389. This is the default, non-secure port for LDAP. In case of
success, ldap_open() returns a pointer to a data structure (a session handle)
which contains information about the current session. It must be passed on to
subsequent calls that refer to this session. In case of failure, ldap_open()
returns NULL.

A look at the access log file of the LDAP server reveals that we have
successfully connected (Netscape’s Directory Server was used in this
example):

Notice that no user is listed in the dn field of the log file, which indicates that
the client is authenticated as user anonymous. This is done by passing NULL
values as user ID and password to the server within the ldap_simple_bind_s()
instruction (see program example above). In case of success,
ldap_simple_bind_s() returns LDAP_SUCCESS, an error code is returned
otherwise. For more information about error handling, see 4.2.7, “Error
Handling” on page 104.

Instead of using ldap_open(), we could have used ldap_init() as well. It takes
the same arguments, and it returns the same type of session handle. The
difference between these two methods is that ldap_init() does not actually
open a connection to the LDAP server. Therefore, you are able to change
session settings as defined in the ID structure before the first connection
occurs. When using ldap_init(), the first function that actually requires a
connection will establish it automatically. In our example above, that would
have been the ldap_simple_bind_s() function.

Listed below are some of the session settings you can influence. You can find
the complete list of possible options either in the API RFC or in the header file
of your SDK:

LDAP_OPT_SIZELIMIT The maximum number of entries returned in a
search; a value of LDAP_NO_LIMIT means no limit.

...
[26/Mar/1998:14:22:42 -0600] conn=172 fd=35 slot=35 connection from 9.3.1.126
[26/Mar/1998:14:22:42 -0600] conn=172 op=0 BIND dn="" method=128 version=2
[26/Mar/1998:14:22:42 -0600] conn=172 op=0 RESULT err=0 tag=97 nentries=0
[26/Mar/1998:14:22:42 -0600] conn=172 op=1 UNBIND
[26/Mar/1998:14:22:42 -0600] conn=172 op=1 fd=35 closed
88 Understanding LDAP

LDAP_OPT_TIMELIMIT The maximum number of seconds spent on a
search; a value of LDAP_NO_LIMIT means no limit.

LDAP_OPT_DEREF The way to handle aliases. It can have one of the
following values: LDAP_DEREF_NEVER,
LDAP_DEREF_SEARCHING, LDAP_DEREF_FINDING, or
LDAP_DEREF_ALWAYS. The LDAP_DEREF_SEARCHING means
aliases should be dereferenced during the search
but not when locating the base object of the search.
The LDAP_DEREF_FINDING value means aliases should
be dereferenced when locating the base object but
not during the search.

LDAP_OPT_REFERRALS Controls whether the LDAP library automatically
follows referrals (LDAP_OPT_ON) or not (LDAP_OPT_OFF).

LDAP_OPT_HOST_NAME The host name of the default LDAP server.
LDAP_OPT_ERROR_NUMBER The number of the most recent LDAP error that

occurred for this session.
LDAP_OPT_ERROR_STRING The message returned with the most recent LDAP

error that occurred for this session.

The way to set the session preferences depends on the SDK you are using.
In IBM’s or Netscape’s SDKs, the connection handle is an opaque data
structure that can only be accessed with the functions

int ldap_get_option(
LDAP *ld,
int option,
void *outvalue);

and

int ldap_set_option(
LDAP *ld,
int option,
void *invalue);

Both functions return either LDAP_SUCCESS (integer value of zero) or an
nonzero value, and the specified error code is set within the LDAP session
handle. The option parameter specifies which session option is to be get or
set. The invalue or outvalue parameters contain the new value for the option
or the retrieved option value. This is a void pointer because the appropriate
type depends on the option chosen. A short example follows for both of these
functions.

To check whether or not the client automatically follows referrals returned
from the LDAP server (default is yes), the code in the following example
(example 2) could be used:
Building LDAP-Enabled Applications 89

/* example #2
* file: get_option.c
*/

#include <stdio.h>
#include <ldap.h>

main()
{
 LDAP *ld;
 int optdata;
 int res;

/*open a connection */
if ((ld = ldap_init("saturn.itso.austin.ibm.com", LDAP_PORT))
 == NULL)
 exit(1);

if (ldap_get_option(ld, LDAP_OPT_REFERRALS, &optdata) != LDAP_SUCCESS){
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
 }
else {
 switch(optdata){
 case LDAP_OPT_ON:
 printf("Follow Referrals is activated\n");break;
 case LDAP_OPT_OFF:
 printf("Don’t Follow Referrals\n");break;
 }
}
exit(0);
}

The appropriate option to check is, as listed above, LDAP_OPT_REFERRALS. The
result is captured in the integer variable, optdata, which is checked
subsequently to find out which option is set.

To set the maximum number of seconds spend on each search, the
LDAP_OPT_TIMELIMIT option has to be passed to the ldap_set_option() function:

/* Set number of seconds to spend on a search */
max_sec = 60;
if (ldap_set_option(ld, LDAP_OPT_TIMELIMIT,
 (void *)&max_sec) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_set_option");
 exit(1);
}

90 Understanding LDAP

4.2.2 Synchronous and Asynchronous Use of the API
You may have noticed the “_s” at the end of the bind command in example 1
above. This indicates that this command operates in synchronous mode with
the LDAP server. We could have used ldap_simple_bind() (without a trailing
_s) instead; then the communication would have been asynchronous. But
what is the difference between the two modes?

The LDAP protocol allows you to handle multiple sessions at the same time.
This means that several queries can be on their way to the server, and the
order in which they are processed is up to the server. The LDAP protocol
itself is therefore an asynchronous protocol.

In synchronous mode, the client sends a request to the server, and the
function call only returns when it gets the reply from the server. It is blocked in
between, which in fact means that no other operations can be processed.
There is no message ID related to the request. The synchronous function
returns either success or an appropriate error code.

When the client sends or receives requests in asynchronous mode, every
message is tagged with a message ID that is unique for a given session. The
client needs to use the function ldap_result() to check the status of the
request and get the results. The advantage of this approach is that the time
gap between sending a request and actually getting the result from the server
can be used by the client to do other work.

Figure 27 illustrates the differences between synchronous and asynchronous
requests, and code samples are provided for each mode.

Figure 27. Synchronous Versus Asynchronous Calls

Ti
m

e

Client Server Client Server

Synchronous Operation Asynchronous Operation

step n

step n+1

wait
process
request

step n

step n+m

do other work
process
request

ldap_result()
Building LDAP-Enabled Applications 91

Only functions that actually send data over the network are involved when
comparing synchronous versus asynchronous functions. Each of these
network-related functions therefore exists in either mode, an appended “_s”
indicating the synchronous mode.

The synchronous approach is certainly not as powerful as the asynchronous
mode. This means that complex operations with a large number of requests
simply take more time. On the other hand, synchronous mode is much
simpler to use. The method you chose therefore depends on what you intend
to do.

4.2.3 A Synchronous Search Example
So far, our sample application above has only established a connection to an
LDAP server, but hasn’t actually performed any operations. Now, we go a bit
more into details and provide a client that connects to the server and
performs a search operation.

/* example #3
* file: search_and_count.c
*/

#include <stdio.h>
#include <ldap.h>

#define SEARCHBASE "o=IBM,c=US"

main()
{
 LDAP *ld;
 LDAPMessage *res;
 int numfound;
 char *User = NULL;
 char *Passwd = NULL;
 char line[BUFSIZ], search[] = "cn=";

/* Ask for the Name to search for */
printf("Type in a name to search for on LDAP server saturn:\n");
fgets(line, sizeof(line), stdin);
strcat(search, line);
search[strlen(search) - 1] = ’\0’;

/* open a connection */
if ((ld = ldap_open("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL)
 exit(1);

/* authenticate as nobody */
92 Understanding LDAP

if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
}

/* search the database */
if (ldap_search_s(ld, SEARCHBASE, LDAP_SCOPE_SUBTREE, search, NULL,
 0, &res) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_search_s");
 exit(1);
}

/* did we get anything ? */
if ((numfound = ldap_count_entries(ld, res)) == -1) {
 ldap_perror(ld, "ldap_count_entries");
 exit(1);
}

/* free memory allocated for search results */
ldap_msgfree(res);

/* close and free connection resources */
ldap_unbind(ld);

/* print the results */
printf("Found %d entries of name %s\n\n", numfound, line);
exit(0);

}

After asking for a name to search for from the command line, the program
connects to saturn, the LDAP server, and searches for that name. The
number of hits is then printed to the screen. Keep in mind that you are only
able to find an entry if the access control of that entry is set appropriately.
Otherwise, the entry may be there, but you are not allowed to search it.

There are three search functions: ldap_search_s(), ldap_search_st() and
ldap_search() (two additional functions are mentioned in the API draft for
LDAP Version 3, which support controls). The first two functions are used in
synchronous mode; the last one provides an asynchronous search function.
In addition to the function of ldap_search(), ldap_search_st() lets you specify
a time-out value for each search operation.

In the example above, ldap_search_s() was used. Its syntax is:

int ldap_search_s(
LDAP *ld,
Building LDAP-Enabled Applications 93

char *base,
int scope,
char *filter,
char **attrs,
int attrsonly

);

The meaning of the parameters is as follows:

ld The session handle obtained by ldap_init().

base A DN which defines the starting point in the LDAP directory tree.

scope This defines the way how a search in a tree is done. You can
choose one of the three possibilities: LDAP_SCOPE_BASE,
LDAP_SCOPE_ONELEVEL, LDAP_SCOPE_SUBTREE. See
explanation that follows below.

filter A character string as described in RFC 2254, The String
Representation of LDAP Search Filters, representing the search
filter, as explained in 2.2.3.1, “Search” on page 36.

attrs A NULL-terminated array of strings indicating which attributes to
return for each matching entry. Passing NULL for this parameter
causes all available attributes to be retrieved.

attrsonly A Boolean value that should be zero if both attribute types and
values are to be returned, nonzero if only types are wanted. The
latter option is useful if, you for example, you want to check to see
if only a certain attribute is available.

To search an LDAP directory, a starting point in the tree structure of your
directory hierarchy has to be defined. In our example, this is done by setting
the base parameter for ldap_search_s() to “o=IBM,c=US” .

Next, an appropriate scope needs to be chosen. There are three choices for
selecting a search scope (see also Figure 28):

 • A particular entry (LDAP_SCOPE_BASE) can be searched for.

 • The search can be extended to one level below the base, not including the
base (LDAP_SCOPE_ONELEVEL).

 • The whole subtree under the starting point can be searched
(LDAP_SCOPE_SUBTREE).

In the example above, we set scope to subtree (LDAP_SCOPE_SUBTREE)
to look for entries containing the common name (cn) typed in by the user on
the command line. The common name is appended to the attribute cn which is
stored altogether in the variable search. This defines the simple search filter
94 Understanding LDAP

used in the example above. Because the attrs parameter is set to NULL and
attrsonly is set to zero, all attributes with there values are retrieved.

Figure 28. Different Search Scopes

The result of the directory search is returned by ldap_search_s() to a structure
of type LDAPMessage pointed to by the res pointer. When no longer needed, the
memory allocated in res should be freed using ldap_msgfree() function (see
sample code above). The function ldap_count_entries() is then used to count
the number of entries found in the directory matching the search filter. Its
syntax is:

int ldap_count_entries(LDAP *ld, LDAPMessage *result);

where ld is the connection handle and result is a pointer returned to the
LDAPMessage structure filled by ldap_search_s() or ldap_result(). In case of an
error, ldap_count_entries() returns -1, otherwise the number of entries found.

The function ldap_msgfree(LDAPMessage *result) should be used to free the
memory space occupied by the search results. When successful, the result
type freed is returned. This would be LDAP_RES_SEARCH_ENTRY in our case.

Rochester

Cambridge

Austin

cn=John Smith other entries
cn=..

o=IBM, c=US

scope = LDAP_SCOPE_BASE

scope = LDAP_SCOPE_ONELEVEL

scope = LDAP_SCOPE_SUBTREE

SEARCHBASE = "o=IBM,c=US"
Building LDAP-Enabled Applications 95

4.2.4 More about Search Filters
We used the filter “cn=common name” to look up directory entries. But the filter
parameter of the search functions is much more flexible. Its syntax is defined
in RFC 2254, The String Representation of LDAP Search Filters.

The basic syntax of the search filter is as follows:

(attribute operator value)

So, when we use the filter cn=John Smith , cn is the attribute, the equal sign is
the operator, and John Smith is the value. There are several more operators
available, for example comparison operators like smaller than (<=) or greater
than (>=). Furthermore, you can combine several filters using Boolean
operators and thus search, for example, for more than one attribute. For a
more detailed discussion about search filters and their capabilities, see
2.2.3.3, “Search Filter Syntax” on page 39.

4.2.5 Parsing Search Results
The outcome of a search request is usually a chain of entries, as shown in
Figure 29. The last example program only counted the number of entries. But
that is usually not what we want; we are interested in the information itself.
Therefore we need to parse the information returned by the server. This is an
iterative process which starts at the very outside of the data container (an
entry) and digs itself deeper in the data structure until it eventually gets to the
single attribute/value pairs. The functions we need are:

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *result);
LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *preventry);

where:

ld is the connection handle

result is a pointer to the data structure obtained by ldap_search_s(),
ldap_search_st(), or ldap_result()

preventry is a pointer to an entry returned by a previous
ldap_first_entry() or ldap_next_entry()

return value if successful, returns a pointer to the first (ldap_first_entry())
or to the next entry (ldap_next_entry()), or NULL in case of no
more entries or an error
96 Understanding LDAP

Figure 29. Result of a Search Request

But to actually retrieve the contents of an entry, we need to go further on. As
outlined in 2.2.2, “The Naming Model” on page 28, an entry of an LDAP
directory consists of attribute/value pairs as defined in the object classes. The
following functions retrieve the name of single attributes:

char *ldap_first_attribute(LDAP *ld, LDAPMessage *entry, BerElement **ber);
char *ldap_next_attribute(LDAP *ld, LDAPMessage *entry, BerElement *ber);

ld is the connection handle

entry is a pointer to an structure returned by ldap_first_entry()
or ldap_next_entry()

ber is a pointer to a data structure which is used to keep track
of the current attribute. BerElement refers to data encoded
using the Basic Encoding Rules. This pointer needs to be
passed to subsequent calls of ldap_next_attribute().

Now that we have the attribute names, we are ready for the last step. We can
retrieve the attribute values. The function used depends on the attribute
types. If they consist of string data, the function

char **ldap_get_values(LDAP *ld, LDAPMessage *entry, const char *attr);

can be used. If the attribute contains binary data, such as images in JPEG
format, we have to use

struct berval **ldap_get_values_len(
 LDAP *ld, LDAPMessage *entry, const char *attr);

The parameters ID and entry are the same as in ldap_first_attribute() and
ldap_next_attribute(). The parameter attr is a character string returned by

Sue Kramer

Janet Panoe

John Smith

uid = jsmith

cn = John Smith

mail = jsmith@ibm.se

sn = Smith

Entry List
Attribute Value(s)

Single Entry

...

...

... ... = ...
Building LDAP-Enabled Applications 97

ldap_first_attribute() and ldap_next_attribute(). Example 4 shows a
function called check_result_and_print() using the functions described above
to parse search results:

/* example #4
* file f_check_result_and_print.c
*/

#include <stdio.h>
#include <ldap.h>

void check_result_and_print(LDAP *ld, LDAPMessage *res){

LDAPMessage *entry;
BerElement *ptr;
int numfound, i;
char *dn, *attr, **vals;

/* did we get anything? */
if ((numfound = ldap_count_entries(ld, res)) == -1) {
 ldap_perror(ld, "ldap_count_entries");
 exit(1);
}

/* parse the results */
if (numfound > 0) {

 /* for each entry print out dn plus attributes */
 for (entry = ldap_first_entry(ld,res); entry != NULL;
 entry = ldap_next_entry(ld,entry)) {

 /* check for distinguished name */
 if((dn = ldap_get_dn(ld,entry)) != NULL){
 printf("\n\ndn: %s\n", dn);
 ldap_memfree(dn);
 }

 /* get the attributes */
 for (attr = ldap_first_attribute(ld, entry, &ptr);
 attr != NULL;
 attr = ldap_next_attribute(ld, entry, ptr)) {
 printf("%s: ", attr);

 /* print each value */
 vals = ldap_get_values(ld, entry, attr);
 for (i = 0; vals[i] != NULL; i++) {
 printf("%s, ", vals[i]);
98 Understanding LDAP

 }
 /* print the end of line for each attr. */
 printf("\n");
 ldap_value_free(vals);
 }
 printf("\n");
 }
} else {
 /* print that we didn’t get anything */
 printf("Nothing found!\n");
}

/* free the search results */
ldap_msgfree(res);
}

This function takes as input the connection handle ld and a pointer to a
structure res as returned by the ldap_search_s() function. First, it checks
using the ldap_count_entries() function what ldap_search_s() has returned.
Next, if the number of entries is greater than zero, it starts parsing the results.

The attribute/value pairs are printed out in LDIF format as described in 2.4.2,
“LDAP Data Interchange Format (LDIF)” on page 50. To be LDIF compliant
the first line of every entry has to be the distinguished name (DN). The
ldap_get_dn() function looks it up for us. Its syntax is:

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);

The parameters ld and entry are the same as in the ldap_next_entry()
function. After retrieving the DN, we use the function ldap_memfree() to free
the memory occupied by ldap_get_dn(). You may also notice the function
ldap_value_free(). This is used to free memory blocked by the array which
contains the attribute values. Its return value is void.

4.2.6 An Asynchronous Example
So far, we have only dealt with synchronous functions. We now change our
search example in order to make it communicate asynchronously with the
LDAP server. As mentioned in 4.2.2, “Synchronous and Asynchronous Use of
the API” on page 91, the function ldap_search() is used for that purpose. It
only initiates the search and therefore does not directly return the results.
Instead, it returns a message ID which identifies the search being processed
by the server and serves as a parameter for the ldap_result() function, which
can subsequently be used to check the search results.

int ldap_search(LDAP *ld, const char *base,
 int scope, const char* filter,
Building LDAP-Enabled Applications 99

 char **attrs, int attrsonly);

Note that the pointer to the result structure is missing as a parameter here as
compared to the example shown in 4.2.3, “A Synchronous Search Example”
on page 92. The other parameters behave like the ones already mentioned as
we described ldap_search_s(). Here is the example code:

/* example #5
* file search_and_parse_async0.c
*/

#include <stdio.h>
#include <string.h>
#include <ldap.h>

#define SEARCHBASE "o=ibm,c=US"

/* prototype */
void check_result_and_print(LDAP *ld, LDAPMessage *res);

main()
{
 LDAP *ld;
 LDAPMessage *res;
 char *User = NULL;
 char *Passwd = NULL;
 char line[BUFSIZ], *filter, temp[BUFSIZ];
 int msgid, rc,i;
 struct timeval tv = {0, 0};
strcpy(temp, "cn=");

/* ask for the Name to search for */
printf("\nType in a name to search for on LDAP server saturn:\n");
fgets(line, 20, stdin);
strcat(temp, line);
temp[strlen(temp) - 1] = ’\0’;
filter = temp;

/* open a connection */
if ((ld = ldap_open("saturn.itso.austin.ibm.com", LDAP_PORT))
 == NULL)
 exit(1);

/* authenticate as nobody */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
100 Understanding LDAP

}

/* search asynchronously */
if ((msgid = ldap_search(ld, SEARCHBASE, LDAP_SCOPE_SUBTREE,
 filter, NULL, 0)) == -1){
 ldap_perror(ld, "ldap_search_s");
 exit(1);
}

/* Initialize the value returned by ldap_result() */
rc = 0;
i = 0;
while(rc == 0) {

 /* ... do other work */
 printf("Loopcount %i\n",i++);
 /* while waiting ... */
 /* check the status of the search operation */
 rc = ldap_result(ld, msgid, 1, &tv, &res);

 switch(rc) {
 case 0:
 /* do nothing, search is still in progress */
 break;
 case -1:
 /* some error occurred */
 ldap_perror(ld, "ldap_result");
 exit(1);
 break;

 case LDAP_RES_SEARCH_RESULT:
 /* result is complete, print it */
 check_result_and_print(ld, res);
 break;
 }
}

/* close and free connection resources */
ldap_unbind(ld);

exit(0);

}

Checking of the search results is done in the while() loop using the
ldap_result() function. This function can be generally used to retrieve results
of asynchronous search functions. The return value can have one of three
Building LDAP-Enabled Applications 101

general values. If it is -1, then some sort of error has occurred. A value of
zero indicates a time-out, and a value greater than zero indicates a
successful returning of a result. The various possible positive return values
are declared in the ldap.h file. Only three of these return values are relevant
to the search function. The reminder of possible return values belongs to
several other asynchronous functions used, for example to add, modify,
compare, or delete LDAP tree values. The (positive) return values associated
with ldap_search() are:

LDAP_RES_SEARCH_ENTRY A single entry matching a previously initiated
search result.

LDAP_RES_SEARCH_RESULT Either a result indicating the final outcome of a
previously initiated search operation or an entire
chain of entries matching a the search operation
along with the final outcome.

LDAP_RES_SEARCH_REFERENCE When the search result is a reference, this was
added in LDAP Version 3.

For reasons of completeness, here are the other result values. Apart from the
last one, the names should be self-explanatory:

 • LDAP_RES_BIND

 • LDAP_RES_MODIFY

 • LDAP_RES_ADD

 • LDAP_RES_DELETE

 • LDAP_RES_MODDN

 • LDAP_RES_COMPARE

 • LDAP_RES_EXTENDED (new in LDAP Version 3, this is the return of a protocol
extensibility operation)

The syntax of ldap_result() is:

int ldap_result(LDAP *ld, int msgid, int all,
 struct timeval *timeout, LDAPMessage **result);

where:

ld The connection handle.
msgid This is the return value of a previously issued asynchronous

function, in our case ldap_search(). If you specify the constant
LDAP_RES_ANY (-1) then the result of any operation is requested.

all Boolean parameter that is only used in search operations. If it is set
to zero (false), only one message at a time is retrieved; if it is set to
non-zero (true), all results should be received before returning them
in a search chain.
102 Understanding LDAP

timeout A structure which specifies how long to wait for results to be
returned. It takes the parameter tv_sec and tv_usec, which specify
seconds and micro seconds of the time interval. A NULL value
causes ldap_result() not to return until results are available. A zero
value (numeric “0”, not to confuse with NULL) specifies a polling
behavior. This means if values are available, ldap_result() retrieves
them immediately; if not, it will not wait.

res A pointer to the result obtained by asynchronous operations. This
memory area should be freed with ldap_msgfree() when it is no
longer needed.

Through the setting of the parameter “all” to true in example 5, we specified
that we want all results retrieved at once. The time-out period of zero
seconds (see the tv structure in the sample code) causes a polling behavior.
Therefore, every call of ldap_result() checks whether the search operation
has already finished. If not, it returns (with value zero in that case) and other
work can be done within the while loop. In our case, it simply prints out the
number of loops already processed. If ldap_result() returns
LDAP_RES_SEARCH_RESULT, that indicates that the final outcome of the search
operation, and the chain of results is available. The result processing is then
done by the formerly introduced function (see example 4)
check_result_and_print().

As mentioned at the beginning of this section, this is the big advantage of the
asynchronous method. Once the asynchronous command is transferred to
the server, the client is free to do other things. It uses the msgid and
ldap_result() to check the outcome of the operation whenever appropriate.

We specified in the above example, by setting the parameter “all” to true, that
all results should get returned at once. This may be inconvenient, especially
when a large number of entries may be expected. In setting the parameter all
to false, we can cause ldap_result() to deliver single search entries and not
the whole result chain. This frees the client from waiting until the complete
result chain is available. Every time a new result entry is available,
ldap_return() delivers LDAP_RES_SEARCH_ENTRY as return value instead for of
LDAP_RES_SEARCH_RESULT. However, the latter value indicates the end of the
result list and delivers the final outcome. The following lines change the result
processing behavior as just described; the rest of the code is the same as in
example 5:

/* Initialize the values */
rc = 0;
i = 0;

/* while the search is still in progress, do this */
Building LDAP-Enabled Applications 103

while(rc != LDAP_RES_SEARCH_RESULT) {

 /* ... do other work */
 printf("Loopcount %i\n",i++);
 /* while waiting ... */
 /* check the status of the search operation */
 rc = ldap_result(ld, msgid, 0, &tv, &res);

 switch(rc) {
 case -1:
 /* some error occurred */
 ldap_perror(ld, "ldap_result");
 exit(1);
 break;
 case LDAP_RES_SEARCH_ENTRY:
 check_result_and_print(ld, res);
 break;
 case 0:
 /* no result yet */
 break;
 }
}

4.2.7 Error Handling
If an LDAP function fails, information about what went wrong can be found in
the connection handle. Most of the error codes, which go into three separate
fields of the connection handle, are directly returned from the server, but the
fields can get set from client library functions as well. The fields are:

ld_matched In the event of an LDAP_NO_SUCH_OBJECT error, this parameter
contains the part of the DN that could be matched with a DN
found on the server.

ld_error This parameter contains the error message sent in the result
by the server.

ld_errno The LDAP error code like LDAP_SUCCESS, LDAP_NO_SUCH_OBJECT,
LDAP_STRONG_AUTH_REQUIRED, and so forth. indicating the
outcome of the operation.

How the error processing works depends on what LDAP function you use.
Most functions (all synchronous functions) directly return numerical error
codes. They can get mapped by the function ldap_err2string() to character
strings which in turn can get printed to standard error output or to whatever is
convenient for you.
104 Understanding LDAP

When, for example, searching the directory server using the synchronous
function ldap_search_s(), the error checking can be done like this:

/* search the database */
if ((rc = ldap_search_s(ld, SEARCHBASE, LDAP_SCOPE_SUBTREE, search, NULL,
 0, &res)) != LDAP_SUCCESS){
 fprintf(stderr, "ldap_search_s: %s\n", ldap_err2string(rc));
 exit(1);
}

In case of success, ldap_search_s() returns LDAP_SUCCESS (which is equivalent
to zero) or the appropriate numerical error code. If we set the SEARCHBASE
parameter to a nonexistent value, for example o=icm,c=us instead of
o=ibm,c=us, then the error message of the previous example would be as
follows (the particular return code equals to 32, LDAP_NO_SUCH_OBJECT):

ldap_search_s: No such object

This indicates that the entry we were looking for does not exist, either due to
an incorrect DN or for other reasons. For your reference, C.2, “LDAP API
Error Codes” on page 158, lists all error codes that are used in the LDAP API
calls.

A common way to monitor the return code of an LDAP function for errors is
also to use the function void ldap_perror(LDAP *ld, char *msg). In fact, as you
might have noticed, that is what we did in our examples so far. This function
was defined in the LDAP Version 2 API. It internally converts the error
contained in the ld_errno field of the session handle to an error string and
prints it together with the msg string to standard error (stderr). In the LDAP
Version 3 API draft, the use of this function is deprecated. Therefore, using
the ldap_err2string() function should be the preferred way in LDAP Version
3.

When checking for an error of an asynchronous function, ldap_parse_result()
has to be used. This is because the function that checks the outcome of the
operation, ldap_result(), returns the type of the result (for example
LDAP_RES_ADD, LDAP_RES_SEARCH_ENTRY, and so on) instead of the LDAP error
code.

The routine ldap_parse_result() checks messages of type
LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE returned from the LDAP
server when looking for a result message to parse. It returns the constant
LDAP_SUCCESS if the result was successfully parsed and no error was found;
otherwise it returns another error code. This function then also sets the
appropriate fields in the connection handle. The syntax of
ldap_parse_result() is as follows:
Building LDAP-Enabled Applications 105

int ldap_parse_result(LDAP *ld,
 LDAPMessage *res,
 int *errcodep,
 char **matcheddnp,
 char **errmsgp,
 char ***referralsp,
 LDAPControl ***serverctrlsp,
 int freeit);

The parameters are:

ld, res The connection file handle and the pointer to the message
structure which contains the result of an LDAP operation, as
returned by ldap_result().

errcodep An integer pointer that will be filled with the error code of the
LDAP operation. That is the way the server tells the client
about the outcome of its operation. NULL may be passed to
ignore this field.

matcheddnp In case of an LDAP_NO_SUCH_OBJECT error, this parameter will be
filled with the part of the distinguished name that could be
matched. NULL may be passed to ignore this field. The
memory area occupied by this parameter should be freed
using the ldap_memfree() command.

errmsgp This result parameter will be filled in with the contents of the
error message contained in the returned message. NULL may
be passed to ignore this field. The memory area occupied by
this parameter should be freed using the ldap_memfree()
command.

referralsp This parameter will be filled in with the contents of the
referrals field contained in the returned message, indicating
zero or more alternate LDAP servers where the information
should be retrieved. The referrals array should be freed by
calling ldap_value_free(). NULL may be passed to ignore this
field.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage structure. The
occupied memory area should be freed using
ldap_controls_free().

freeit This determines whether or not the LDAPMessage structure is
cleared after extracting the necessary information. Pass a
nonzero value to free it.

Note that ldap_parse_result() places the error code in the errcodep
parameter. Thus, check this parameter to trace errors of previous LDAP
operations.
106 Understanding LDAP

If we apply this to our last example, the asynchronous search example, we
could do the following the check for errors after the ldap_search() has been
invoked (the complete code sample can be found in the file
search_and_parse_async_errv3.c):

/* while the search is still in progress, do this */
while(rc != LDAP_RES_SEARCH_RESULT) {

 /* ... do other work */
 printf("Loopcount %i\n",i++);
 /* while waiting ... */
 /* check the status of the search operation */
 rc = ldap_result(ld, msgid, 0, &tv, &res);
 switch(rc) {
 case -1:
 /* some error occurred */
 fprintf(stderr, "ldap_search_s: %s\n", ldap_err2string(rc));
 exit(1);
 break;
 case LDAP_RES_SEARCH_ENTRY:
 check_result_and_print(ld, res);
 break;

 /* this is the end of the search, test for errors */
 case LDAP_RES_SEARCH_RESULT:
 ldap_parse_result(ld,res,&err,&errdn,&errmsg,NULL,NULL,1);
 if (err != LDAP_SUCCESS) {
 fprintf(stderr,
 "Search Error: %s, %s, Matched DN:%s\n",
 errmsg, ldap_err2string(err), errdn);
 ldap_memfree(errdn);
 ldap_memfree(errmsg);
 }
 break;
 case 0:
 /* no result yet */
 break;
 }
}

As we pointed out earlier, when the all parameter in ldap_result() is set to
zero (false), single search results get retrieved at a time. The final outcome is
stored in the message structure when LDAP_RES_SEARCH_RESULT is returned. The
function mentioned above, ldap_parse_result(), is then used to check the
final outcome of the search. The error code is stored in the integer value err.
A return value not equal to zero (LDAP_SUCCESS) indicates a search error. In
Building LDAP-Enabled Applications 107

that case, ldap_err2string() is used to transform the error number to the
related error string. This is, together with errmsg and matcheddn , then printed
out to the standard error output. ldap_memfree() eventually frees no longer
needed memory areas.

If we searched for an entry with the same wrong searchbase as in an earlier
example above (o=icm,c=us), we would get the error message:

Search Error: , No such object, Matched DN:c=us

This corresponds to an LDAP_NO_SUCH_OBJECT error. The errmsg field is not set,
but the matched DN field shows us the portion of the name which could
successfully be matched.

Two more functions for error checking are mentioned in the LDAP Version 3
API specification. They are called ldap_parse_sasl_bind() and
ldap_parse_extended_result(). The first one is to check for errors resulting
from a SASL bind operation; the latter one can be used to check the outcome
of extended operations that provide a mechanism in LDAP Version 3 to
extend the protocol. For more information about them, we refer you to the
LDAP Version 3 API draft itself.

4.2.8 Authentication Methods
Authentication can be understood as identifying the client to the server. This
needs to be done before any operation can be performed with the server.
There are several authentication mechanism supported in LDAP. We start
with Basic Authentication which is, as already discussed in section 2.3.2,
“Basic Authentication” on page 44, not actually very secure.

A common way to gain a higher level of security, especially when exchanging
information over the Internet, is to use SSL to encrypt the session. As pointed
out in 2.3, “Security” on page 43, some vendors of LDAP directory products
have extended the API to allow SSL sessions between LDAP servers and
clients.

LDAP Version 3 also introduced the SASL authentication framework. We will
discuss the bind function call and its parameters to initiate an SASL session.
For further reading, please browse the literature listed in A.4, “Other Sources”
on page 140.

For general information about the different security techniques and the
definitions and terms used below, we refer you to Section 2.3, “Security” on
page 43.
108 Understanding LDAP

If you not only want to read and search a directory but also want to modify the
entries in it, the anonymous user authentication used so far to search the
directory will certainly not work. You need to authenticate as a user with
special access permissions, for example as an authorized directory
administrator. Then you are allowed to do modifications (provided the
authorization schema is set up correctly). The easiest way to do that is to use
basic authentication. This is done by specifying a DN and a password in the
ldap_simple_bind() function and sending it over to the LDAP server, as in the
following example:

/* example #6
* file: basic_auth.c
*/

#include <stdio.h>
#include <ldap.h>

main()
{
 LDAP *ld;
 char *User = "cn=Directory Manager";
 char *Passwd = "1234qwer";

/* open a connection */
if ((ld = ldap_open("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL)
 exit(1);

/* authenticate as nobody */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
}

/*
* do something, for example
* ask the server for information
................. */

printf("Authenticated as %s\n", User);

/* close and free connection resources */
ldap_unbind(ld);
exit(0);
}

Building LDAP-Enabled Applications 109

This is the LDAP server’s access log file entry after the program above has
been run (Netscape’s Directory Server):

Compared to the log in example #1 (shown on page 88), the DN field in the
log file is now set to cn=Directory Manager. This solution grants the client the
appropriate access permissions. However, as stated before, it is not very
secure because the password is sent over the network using a relatively
weak encryption technique. A common way to circumvent this security
exposure is to use SSL to encrypt your session.

Example #7 shows how to connect to an IBM eNetwork LDAP server using
the SSL instructions from IBM’s SDK. Prior to using SSL, a public/private key
pair and a certificate for your server are needed. For this purpose, IBM ships
with its server the mkkf utility to manage keyfiles and certificates.

The following example uses Server Authentication only, although the IBM
product supports Client Authentication as well. When using server
authentication, the server proves its identity to the client through a certificate
issued by a Certificate Authority, but no client certificate is needed in this
case. The client needs to add the server’s certificate to his own keyring file
and mark it as trusted. We refer you to the IBM eNetwork LDAP Directory
Server Administration Guide for detailed information on how to set up server
security. The creation of keyring files for both client and server is described
there as well.

/* example #7
* file: ssl_auth_dss.c
*/

#include <stdio.h>
#include <ldap.h>

main()
{
 LDAP *ld;

...
[26/Mar/1998:14:12:10 -0600] conn=169 fd=32 slot=32 connection from 9.3.1.126
[26/Mar/1998:14:12:10 -0600] conn=169 op=0 BIND dn="cn=Directory Manager" method=128
version=2
[26/Mar/1998:14:12:10 -0600] conn=169 op=0 RESULT err=0 tag=97 nentries=0
[26/Mar/1998:14:12:10 -0600] conn=169 op=1 UNBIND
[26/Mar/1998:14:12:10 -0600] conn=169 op=1 fd=32 closed
110 Understanding LDAP

 char *User = "cn=admin,o=ibm,c=us";
 char *Passwd = "Admin";
 char *keyring = "/home/root/keys/venus-keyfile.kyr";
 char *keyring_pw = NULL, *name = NULL;
 int rc;

/* open a connection */
if ((ld = ldap_open("saturn.itso.austin.ibm.com", LDAPS_PORT)) == NULL){
 perror("ldap_open error");
 exit(1);
}else{
 printf("ldap_open done, %i\n", LDAPS_PORT);
}

rc = ldap_ssl_start(ld, keyring, keyring_pw, name);
if (rc < 0) {
 printf("rc ldap_ssl_start %d\n", rc);
 exit(1);
}else{
 printf("Success: ldap_ssl_start\n");
}

/* authenticate as admin */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
}

/*
* do something, for example
* ask the server for information
................. */

printf("Authenticated as %s\n", User);

/* close and free connection resources */
ldap_unbind(ld);
exit(0);
}

The first difference to example #6 is that the ldap_open() statement initializes
a connection on port LDAPS_PORT instead of LDAP_PORT. This constant,
LDAPS_PORT, is set in the ldap.h file to 636, which is the default SSL port for
LDAP. The actual SSL connection is established using the ldap_ssl_start()
function. This command does the SSL negotiation which ends in the
Building LDAP-Enabled Applications 111

exchange of secret keys to secure the data connection. It takes as input
parameters:

ld The connection handle returned by ldap_open().

keyring This specifies the name of the keyring file. It usually contains
the certificates of the trusted (by the client) Certificate
Authorities. It can also contain a public key and the associated
certificate. This is only needed when client authentication is
required.

keyring_pw The password which protects the keyring file. It is set when
the keyring file is created with the mkkf tool. A NULL
password, as in our example, is accepted.

name When creating your private key/certificate pair with mkkf, a
label is assigned. This is the name of this label. In our
example, we also passed a NULL value here because no
client key is involved.

ldap_ssl_start() returns an integer less than zero when an error has
occurred. If it returns zero, the SSL session is established and data
subsequently transferred over the network is encrypted. Therefore it is now
safe to send user ID and password with the ldap_simple_bind_s() command.
We run the IBM eNetwork LDAP server in debug mode to monitor the
connection. The following output shows the details of this connection:

Notice the SSL request before the actual bind occurs.

A very general authentication command available with LDAP Version 3, which
offers access to different authentication methods, is the ldap_sasl_bind_s()
function (or its asynchronous version ldap_sasl_bind()). Its syntax is:

int ldap_sasl_bind_s(LDAP *ld,
 char *dn,

...
New connection identified as SSL connection.
Connection received from 9.3.1.126 on socket 10.
do_bind
Bind operation requested by: cn=admin,o=ibm,c=us.
=> dn_normalize "cn=admin,o=ibm,c=us"
<= dn_normalize "cn=admin,o=ibm,c=us"
do_bind:conn 14 version 2 dn (cn=admin,o=ibm,c=us) method 128
entering rdbm_back_bind...
send_ldap_result 0::
do_unbind conn=14 op=1 fd=12
112 Understanding LDAP

 char *mechanism,
 struct berval *cred,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct berval **servercredp);

In principle, the SASL functions can be understood as a general
authentication framework for the LDAP client. They take as arguments -
among others - the DN (the name of the entry to bind as), the mechanism
(authentication method) and the credentials used to authenticate. The format
of the credentials passed to the SASL command depends on the mechanism
used. If the special constant, LDAP_SASL_SIMPLE, is passed, then basic
authentication is requested. This is equivalent to using ldap_simple_bind() (or
ldap_simple_bind_s()). Other methods, such as Kerberos or S/Key, can be
used as well.

SSL, or more general its successor TLS (Transport Layer Security), can get
integrated within the SASL Framework through its EXTERNAL mechanism.
When this method is chosen and the cred field is empty, the server
determines the client’s identity through external information. This could be an
SSL client certificate issued for the distinguished name used in the
ldap_sasl_bind() function to bind to the LDAP server. If the cred field is not
empty, the LDAP server has to verify that the client’s authenticated TLS
credentials allow use of the credentials passed to ldap_sasl_bind().

4.2.9 Multithreaded Applications
Until now, we have only dealt with the single-threaded model of the LDAP
API. This was the only model available for LDAP applications using the LDAP
Version 2 API. Sometimes you may be in the need for better performance, for
example when you try to update a huge amount of directory entries or when
your application uses multiple threads anyway. For this purpose, several
vendors started to implement there own multithreaded libraries for LDAP. In
an effort to overcome such vendor-dependent approaches, the LDAP Version
3 C-language specification has been extended with a common set of
multithreaded function calls.

As an example, let’s assume that a large number of directory entries have to
be modified for some reason. This can, of course, be done by sequentially
stepping through the list of entries that have to be modified and doing the
changes one after the other. The list will have to be composed first, for
example by performing an adequate search.
Building LDAP-Enabled Applications 113

Figure 30. Multiple Parallel Threads

One way to accomplish the modifications is to divide the list of entries into, for
example, 10 equal sized blocks. Then you could open multiple connections to
your server (issuing ldap_open() multiple times), each one running in its own
thread, using the multithreading facilities of the operating system. Every
thread would obtain its own connection handle for its connection. Every
connection handle contains information about the connection itself, fields for
error handling, and so on. This results in a multithreaded, multiconnection
application, as depicted in Figure 30.

The single connection approach would be to use only one connection but
several threads operating on it. Because one connection means only one
connection handle, the LDAP Version 3 C API supports functions to isolate
information that is vital for each thread, protecting it from getting tampered
with by functions from another thread. This is, for example, done by creating
thread-specific fields in the connection handle for error handling. Here, the
error code of the last instruction issued within the attached thread is stored.
Only functions within the same thread can access and evaluate it.

This brief discussion about multithreaded application programming in LDAP
Version 3 concludes the introduction to building LDAP-enabled applications.
There is, of course, a lot more to it, but it would be beyond the scope of this
book to elaborate more on the complete LDAP API and LDAP programming
techniques. We refer to A.4, “Other Sources” on page 140, for more

ldap_open(ld, host)
ldap_search()

ldap_unbind()

modify modify

10 x ldap_open(ld, host)

MulticonnectionSingle Connection

ldap_open(ld, host)
ldap_search()
ldap_unbind()

10 x ldap_unbind()

Multithreaded Multithreaded

1-100 101-200
modify modify
1-100 101-200
114 Understanding LDAP

references to the subject if you are interested. Also, you should bear in mind
that, at the time this book was written, the LDAP Version 3 C language
interface was only described in an Internet Draft. Changes are still possible,
although not very likely.

For the sake of completeness and for your reference, C.1, “C Language API
Calls” on page 153, provides a categorized list of all LDAP C language API
calls, with a short description of each.

4.3 LDAP Command Line Tools

Most SDKs come with a set of simple command line applications, either in
source code or as ready-to-use executable programs. These tools were built
using the LDAP API functions and thus can serve as sample applications.
They enable you to do basic operations, such as searching the directory and
adding, modifying, or deleting entries within the LDAP server. Each basic
operation is accomplished with a single program:

 • ldapsearch

 • ldapadd

 • ldapmodify

 • ldapdelete

 • ldapmodrdn

These are their names in a UNIX environment. If you work with a
DOS/Windows operating system, the names of the tools end in “.EXE” and
may follow an 8.3 file-naming convention. Each utility corresponds to an
LDAP protocol operation; only the compare tool is missing. By combining
these tools, using for example a scripting language like Perl, you can easily
build up more complex applications. In addition, they are easily deployable in
Web-based CGI programs.

This section describes the utilities provided with the IBM SDK. With very few
exceptions, such as SSL, tools provided by other vendors should work
similarly. As this book provides only an overview, we do not discuss all the
options of the tools here, just the most common ones. For a detailed
description, we refer you to the individual SDK’s documentation.

In the following examples, the backslash character (“\”) at the end of a line
represents a line continuation character because it is common in the UNIX
command shell environment.
Building LDAP-Enabled Applications 115

4.3.1 The Search Tool: ldapsearch
ldapsearch is a command line interface to the ldap_search() API function and
thus allows you to search the directory of an LDAP server. Among other
things, you can specify options like searchbase, scope (subtree is default),
filter and the attributes of the entry you would like to retrieve. The result is
printed to standard output. Assume we want to search on an LDAP server,
saturn, for entries of John Smith, but we are only interested in the attributes
cn and telephonenumber. The following command would deliver the desired
results:

ldapsearch -h saturn -b "ou=austin,o=ibm,c=us" -s sub cn="john smith" \
cn telephonenumber

This might be the answer we get:

cn=John Smith, ou=Austin, o=IBM, c=US
cn=John Smith
telephonenumber=1-512-838-6004

The general syntax of ldapsearch is:

ldapsearch [-options] filter [attributes]

In the example above, the following options were used:

-h ldaphost This is the hostname of the LDAP server.
-b basesearch Specifies the starting point for the search, in our case

"ou=austin,o=ibm,c=us".
-s scope Specifies the scope of the search: one of base (base object

search), one (one level search) or sub (sub tree search)
which is the default setting.

For the search filter, the example uses cn="John Smith". This is a simple filter
example; more sophisticated combinations of filter strings, for example the
combination of different filters using a Boolean operator, are possible, too.
See also 2.2.3.1, “Search” on page 36, for more details about search filters.

When no attributes are listed on the right-hand side of the instruction, all
available attributes will get retrieved. Otherwise, when several attributes are
explicitly stated, only these are returned.

Other useful flags and parameters for the ldapsearch tool are:

-v Verbose mode. This might help to detect some problem
because many diagnostic messages are written to standard
output.
116 Understanding LDAP

-A Retrieves only the attributes, not the values. This can be used
when you just want to check whether or not an attribute is
present.

-L Presents the output in LDIF format.
-R Specifies that referrals are not automatically followed.
-t Write retrieved values to a set of temporary files. This is

especially important when retrieving binary data such as JPEG
picture images.

-p ldapport Specify an alternative port when your server does not listen on
the default port.

-l timelimit Wait not more than timelimit seconds for the search to complete.
-z sizelimit Do not retrieve more than sizelimit entries.

When you want to retrieve binary data, printing them to standard output is
probably a bad idea. The ldapsearch utility therefore supports the -t option,
which allows you to write data into a file. Assume we issue the command:

ldapsearch -t -h saturn -b "o=ibm,c=us" "uid=jsmith" jpegPhoto

The ldapsearch will then print the file name where the value of the attribute
jpegPhoto has been written to:

cn=John Smith, ou=Austin, o=IBM, c=US
jpegPhoto=/tmp/ldap-search-jpegPhoto-a19924

4.3.2 The ldapmodify and ldapadd Utilities
These tools present interfaces to the API function calls ldap_modify() and
ldap_add(). Because the functionality of the ldap_add() API call is included in
ldap_modify(), the same is valid for the command line utilities. They differ
therefore only in one respect; this is the -a (for add) option, which is by
default set when you invoke ldapadd. The default for ldapmodify is to modify
existing entries.

The general syntax of the ldapadd and ldapmodify tools is:

ldap{add|modify} [-options] [-f filename]

Information about what should be added to or changed in the directory can be
retrieved from a file in LDIF format using the -f parameter. The LDIF file
format is described in 2.4.2, “LDAP Data Interchange Format (LDIF)” on page
50. If no file is specified, ldapadd and ldapmodify expect attribute/value pairs
entered from the command line, Ctrl-C exits the input mode. The most
common options are:

-a Add new entries. This flag is set by default when invoking
ldapadd.
Building LDAP-Enabled Applications 117

-b Assume that the values beginning with a “/” are the pathnames
to binary values.

-r Replace existing values by default.
-n Show what would be done, but does not actually modify entries.
-v Verbose mode, write diagnostic messages to standard out.
-R Specifies that referrals are not be automatically followed.
-D binddn Use binddn to bind to the LDAP server.
-w passwd Use passwd for Basic Authentication.
-h ldaphost Name of the LDAP server that hosts your directory information.
-p ldapport Port where the LDAP server is listening if it is not the default

port 389.

To change, for example John Smith’s phone number, you could create an
LDIF file named mod.ldif containing the information:

dn: cn=John Smith, ou=austin,o=ibm,c=us
telephonenumber: 1-812-838-6004

and then issue the command:

ldapmodify -R -D "cn=admin,o=ibm,c=us" -w Admin -h saturn -r -f mod.ldif

This will change John Smith’s entry as desired. We authenticated to the
LDAP server as cn=admin.

4.3.3 The ldapdelete Tool
The ldapdelete tool provides an interface to the ldap_delete() API call.
Entries with the dn specified are deleted. Its general syntax is:

ldapdelete [-options] dn dn

If no dn is provided, a list of DNs is read form the standard input. Some of the
possible options are:

-n Just list what would happen without actually doing it.
-v Verbose mode for debugging information.
-R Do not follow referrals.
-D binddn Bind to the directory server as binddn.
-w passwd Use passwd to go with binddn during bind operation.
-h ldaphost LDAP server is running on ldaphost.
-p ldapport LDAP server is listening on ldapport.

The command

ldapdelete -h saturn -D "Directory Manager" -w passwd "cn=John Smith,\
ou=austin,o=ibm,c=us"
118 Understanding LDAP

would delete John Smith’s entry in the directory.

4.3.4 The ldapmodrdn Tool
This tool modifies the Relative Distinguished Name (RDN) of entries. It
corresponds to the ldap_mordn2() function and gets its input information either
from the standard input from a file through the use of the -f option or from
command line parameters.

ldapmodrdn [-options] -f file | olddn newdn

Possible options are:

-r Removes old RDN entry; default is to keep the old one.
-n,-v,-R,-D,-w,-h,-p Same meaning as options from ldapdelete.

For example, to modify the name of the entry “Old One” to “New One” , the
following lines could be put in an LDIF file called mod.ldif:

cn=Old One,o=Austin,ou=IBM,c=US
cn=New One

To issue the change, this command must be run:

ldapmodrdn -r -D "Directory Manager" -w passwd -f mod.ldif

This will modify the RDN accordingly from cn=Old One,o=Austin,ou=IBM,c=US to
cn=New One,o=Austin,ou=IBM,c=US and will also remove the old entry dn=Old

One,o=Austin,ou=IBM,c=US.

4.3.5 Security Considerations
In the examples above, a distinguished name (DN) and a password were sent
over the network to the LDAP server to authenticate the client (or the user, if
you will). As mentioned before, this does not provide a high level of security
because the information is not really encrypted when sent over the wire and
thus could get eavesdropped. Therefore the command line tools mentioned in
the previous sections support an SSL mode, which assumes, of course, that
the server has its SSL port enabled and SSL is properly enabled and
configured.

The options which influence the SSL behavior of the command line tools
included in IBM’s SDK are:

-Z Enables secure SSL connection to the LDAP server. This is
only supported by SSL versions of the tools. If Z is not set, the
options below are ignored.
Building LDAP-Enabled Applications 119

-K keyfile Specifies the name and location of the keyring file. The name
must be full qualified if it is not in the actual directory. The
keyring file must at least contain the certificate of the LDAP
server. This enables the server to prove its identity to the
client through server authentication. If the certificate is
self-signed, it must be marked as trustworthy in the client’s
keyring file. Key and certificate management can be done
using the mkkf tool, which comes within the SDK from IBM.

-P keyfilepw The keyring password required to access the information
stored in the keyring file.

-N label This is only required when using client authentication in
addition to server authentication. The label is associated with
a client certificate stored in your keyring file and therefore tells
the client which certificate it should use to authenticate to the
LDAP server. This is only needed when there is more than
one Certificate/private key pair or if you do not want to use the
default certificate/private key pair.

4.4 LDAP URLs

Uniform Resource Locators (URLs) provide a standard way to refer to
resources on the Internet or within an intranet. The most common example is
a Web page such as http://www.ibm.com/Products/index.html. In this case,
http refers to the hypertext transfer protocol (HTTP) used by Web browsers,
www.ibm.com is the host to contact, and Products/index.html is the name of a
file on that host. Using this URL, a Web browser can retrieve and display the
page. URLs are also defined for other protocols such as the File Transfer
Protocol (FTP). For example, the URL ftp://ds.internic.net/rfc/rfc2255.txt
can be used to retrieve the file /rfc/rfc2255.txt from the host
ds.internic.net.

Since LDAP has become an important protocol on the Internet, a URL format
for LDAP resources has also been defined. The LDAP URL Format (RFC
2255) describes the format of the LDAP URL. LDAP URLs begin with ldap://
or ldaps:// if the LDAP server communicates using SSL. LDAP URLs can
simply name an LDAP server, or can specify a complex directory search. As

Since different vendors might support SSL in different ways, please refer to
your SDK’s documentation to verify if and how your command line tools
can be used in conjunction with the SSL security mechanism.

A Word About Compatibility
120 Understanding LDAP

we discuss in 4.4.1, “Uses of LDAP URLs” on page 122, LDAP URLs can be
used for a number of purposes such as referrals to other LDAP servers or
construction of an e-mail distribution list.

The syntax of an LDAP URL is:

ldap[s]://[<host>[:<port>]] [/ [<dn> [? [<attributes>] [? [<scope>] \
[? [<filter>] [? <extensions>]]]]]]

where:

ldap[s] ldap specifies a connection using the LDAP protocol, and ldaps
specifies an SSL LDAP connection.

host The name or IP address of the LDAP server host. Host and port
can be omitted when used with the LDAP URL APIs described in
4.4.2, “LDAP URL APIs” on page 123.

port Port number of the LDAP server. The port number defaults to the
standard port numbers 389 for LDAP and 636 for LDAPS.

dn The distinguished name used as the base of the search.

attributes A comma-separated list of the attributes to return from the search.
If none are specified, all attributes are returned.

scope The scope of the search, one of base, one, or sub. The default is
base.

filter The search filter to apply. If the search filter is omitted,
objectClass=*, which returns all entries, is used.

extensions Allows extensions to the LDAP URL to be defined.

Some examples will help make the format of LDAP URLs clear.

ldap://saturn.itso.austin.ibm.com/

Refers to the LDAP server on the host saturn.itso.austin.ibm.com, using the
default port 389.

ldap://saturn.itso.austin.ibm.com:389/o=Transarc,c=US

Retrieves all the attributes for the DN o=Transarc,c=US from the LDAP server
on host saturn.itso.austin.ibm.com. Note that the port 389 is explicitly
specified here as an example. Since 389 is the default port, it would not have
been necessary to specify it in the URL.

ldap://saturn.itso.austin.ibm.com/cn=John%20Smith,ou=Austin,o=IBM,c=US

Retrieves all the attributes for the DN cn=John Smith,ou=Austin,o=IBM,c=US.
Note that some characters are considered unsafe in URLs because they can
Building LDAP-Enabled Applications 121

be removed or treated as delimiters by some programs. Unsafe characters
such as space, comma, brackets, and so forth. should be represented by
their hexadecimal value preceded by the percent sign. In this example, %20
is a space. More information about unsafe characters and URLs in general
can be found in Uniform Resource Locators (URL) (RFC 1738).

ldap://saturn.itso.austin.ibm.com/o=Transarc,c=US??sub?cn=*smith*

This URL retrieves all attributes of any entry in the subtree starting at
o=Transarc,c=US with a common name attribute that contains the character
string smith.

ldap://saturn.itso.austin.ibm.com/o=Transarc,c=US?cn,mail,phoneNumber?\
sub?cn=*brown*

This is similar to the above example, but it only returns the attributes common
name, e-mail address, and phone number.

ldap://saturn.itso.austin.ibm.com/o=Transarc,c=US?objectClass?one??\
bindname=cn=John%20Smith%2ou=Austin%2o=Transarc%2c=US

This example retrieves the objectClass attribute for all objects one level below
o=Transarc,c=US. It also illustrates the use of the LDAP URL extension field.
The only standard extension defined to date is the DN used to bind to the
LDAP server. In this case, the DN cn=John Smith,ou=Austin,o=Transarc,c=US is
used. The keyword bindname can be preceded by ! if the server must support
the extension. Otherwise, the server is free to ignore the extension.
Extensions are a recent addition to the LDAP URL and might not be
supported by some products.

4.4.1 Uses of LDAP URLs
LDAP URLs are very flexible. They can specify anything from an LDAP server
to a single attribute of a single directory entry and therefore offer much of the
functionality otherwise provided by the API functions. One common use of
LDAP URLs is in referrals. As outlined in 2.2.3.2, “Referrals and Continuation
References” on page 38, when an LDAP server does not store some part of
the directory name space, it can refer to another LDAP server that does. For
example, if a server does not store information for the subtree
o=Transarc,c=US, it can define a directory entry of object class referral for the
DN o=Transarc,c=US. This object would have a ref attribute that contains a
URL for an LDAP server that stores information about Transarc. For example,
ref=ldap://gulftower.transarc.com/o=Transarc,c=US.

LDAP servers can also have a default reference that is used to point to a
superior (higher in the name tree) server for any names that cannot be
122 Understanding LDAP

resolved. For example, ldap://whitepages.ibm.com could be the default
referral for all LDAP servers in IBM if it was at the root of the IBM directory
tree.

LDAP URLs can also be used by applications. For example, an e-mail or
address book client could store a distribution list as an LDAP URL. The URL
ldap://austin.ibm.com/ou=Austin,o=IBM,c=US?mail?sub?deptartment=itso
retrieves a list of e-mail addresses of people in the ITSO department at IBM
in Austin. An LDAP-enabled mail client could even store this URL in the
LDAP directory. As people enter and leave the ITSO department, the list is
automatically kept up to date because it is created dynamically as the result
of an LDAP search on the department attribute. It is not a separate list that has
to be updated each time a person enters or leaves the department.

Many Web browsers also support browsing resources specified as LDAP
URLs. A sophisticated user could enter a complex LDAP URL search, and the
results would be displayed by the browser. Entering LDAP URLs directly
might not be for everybody, but it can be useful for experimentation and
debugging or for arbitrary ad hoc queries. This is similar to entering
interactive SQL commands rather than using a database forms application.

Methods are also being discussed within the IETF for storing LDAP URLs in
the Domain Name System (DNS). DNS is used to resolve host names to IP
addresses and to locate servers, such as mail servers, for a domain. A user
who wants to search IBM’s publicly accessible LDAP directory would look up
the domain ibm.com in the DNS. The DNS entry for ibm.com would contain
one or more LDAP server host names. These hosts could then be contacted
to execute an LDAP search.

4.4.2 LDAP URL APIs
As discussed above, many applications will need to be aware of LDAP URLs.
In some cases, an LDAP server can return a referral back to a client rather
than an actual search or read result. Referrals are in the form of an LDAP
URL. Or an application such as an e-mail client or address book may manage
data in the form of an LDAP URL and hide this representation from the user.

Although they are not included in the IETF RFCs and draft documents, most
LDAP SDKs include a set of functions for handling LDAP URLs. The functions
listed in Table 15 allow a program to test if a string is an LDAP URL, break the
Building LDAP-Enabled Applications 123

LDAP URL into its component parts, and use the LDAP URL to perform a
search.

Table 15. LDAP URL APIs

The LDAP URL APIs allow the LDAP URL to be preceded by URL: and/or
enclosed in angle brackets as in

<URL:ldap://saturn.itso.austin.ibm.com:389/o=Transarc,c=US>.

LDAP URL searches are associated with an existing LDAP session handle. If
the host is not specified in the LDAP URL, the host associated with the
existing session handle is assumed. Otherwise a connection is automatically
made to the specified host. The search is also affected by session
parameters including size and time limits and how aliases and references are
handled.

4.5 The Java Naming and Directory Interface (JNDI)

Java is an object-oriented language that is especially suited to the Internet
and Web browsers. It allows small applications called applets to be
downloaded into a browser over a network and executed in a secure manner,
or they execute on the application server itself (then also called servlets).
With the proliferation of the World Wide Web, Java has become an important
and widespread language. Because LDAP is also becoming an important
Internet protocol, it is natural that a Java interface to LDAP would emerge.

An application developer has two choices for accessing LDAP from a Java
application. The Java LDAP API, sometimes called JDAP, is an LDAP class
library defined in the IETF draft The Java LDAP Application Program
Interface. For example, Netscape has implemented a Java API Software

Function Description

ldap_is_ldap_url() Determines if a string is an LDAP URL.

ldap_url_parse() Breaks an LDAP URL into its component pieces.

ldap_free urldesc() Frees memory allocated by ldap_url_parse().

ldap_url_search() Performs an asynchronous search as specified by the LDAP
URL.

ldap_url_search_s() Performs a synchronous search as specified by the LDAP
URL.

ldap_url_search_st() Performs a synchronous search with a timeout as specified
by the LDAP URL.
124 Understanding LDAP

Development Kit (SDK) based on this draft. Sun Microsystems has developed
the Java Naming and Directory Interface (JNDI) as part of its Java Enterprise
API set, which also includes Enterprise Java Beans (EJB) and Java Database
Connectivity (JDBC). JNDI is being supported by many vendors including
IBM, Hewlett-Packard and Novell.

Both the Java API and JNDI support only a synchronous programming
interface. However, a multithreaded Java application can continue processing
while one thread blocks on a synchronous LDAP call. The Java API closely
follows the LDAP C API while JNDI provides a generalized naming and
directory interface. JNDI can access other directory services besides LDAP
such as the Network Information System (NIS), Novell Directory Services
(NDS), and the Internet Domain Name System (DNS). Because of the wide
acceptance of Sun’s Java Enterprise API JNDI, is discussed as the Java
interface to LDAP.

A naming service organizes and names objects. It provides an association
known as a binding between a name and an object. The binding between a
name and an object should not be confused with the connection between a
client and a server, which is sometimes also called a binding. For example, a
file system names and organizes files. The files are the objects that are
bound to the names. Given a file name, the file itself can be retrieved.

A directory service can be considered to be a specific type of naming service
in which objects bound to names are directory entries. Directory entries are
made up of attributes that store values describing the entity represented by
the directory entry. The types of directory entries and attributes that can be
stored are described by schema.

As discussed above, JNDI provides a generalized naming and directory
service interface. For example, JNDI could be used to retrieve files from a file
system. In this case, a file system acting as a naming service could return the
file that is bound to a particular file name. JNDI could also be used to access
an LDAP directory, performing searches and retrieving attributes.

JNDI provides an API that applications use to access a naming and directory
service. The naming and directory service could be provided by any of a
variety of servers, such as LDAP, NDS, or a file system. JNDI provides a
Service Provider Interface (SPI) that enables access to the particular
underlying directory service. The SPI is written by the vendor of the
underlying naming and directory service and is supplied as a Java class
library. This allows arbitrary services providers to be plugged into the JNDI
Framework (see Figure 31).
Building LDAP-Enabled Applications 125

Figure 31. JNDI API and SPI Interfaces

JNDI provides classes that implement a naming interface for applications,
such as the file system example, that only look up names and access objects
bound to names. JNDI also provides a directory interface that extends the
naming interface. The directory interface adds functionality to access
attributes and schema.

In JNDI terminology, a name is made up of individual components called
atomic names that correspond to RDNs in LDAP. A sequence of atomic
names is a compound name. An LDAP DN is a compound name. Since the
underlying naming and directory services can have different name syntaxes,
the SPI provides an implementation of a NameParser that can break a name
into its component parts. For example, LDAP RDNs are separated by
commas; DNS names are separated by periods, and so on. Composite
names are compound names that span different name spaces. For example,
an LDAP URL can contain both a DNS and an LDAP name, as, for instance,
in ldap://ldap.mycompany.com/cn=John%20Smith,o=IBM,c=US.

Names are interpreted within a context. A context can be thought of as a
particular node in the Directory Information Tree (DIT). If the current context
is o=IBM,c=US, then the atomic name ou=Austin refers to the child node in the
DIT with the DN ou=Austin,o=IBM,c=US. The node ou=Austin,o=IBM,c=US is also
called a subcontext of o=IBM,c=US. A name space is traversed from context to
subcontext like a file system is traversed from directory to the directory
subtree.

The DirContext interface extends the Context interface by adding operations
specific to a directory service such as accessing attributes and searching. An

Java Application

JNDI API

JNDI SPI

NDS LDAP ...
File

System
126 Understanding LDAP

application must establish an initial directory context as a starting point from
which to do searches or traverse the DIT. The initial directory context is
usually the name of an LDAP server.

JNDI provides all of the operations of LDAP Version 3 except for extended
operations and controls. Searches use a search filter as defined in The String
Representation of LDAP Search Filters (RFC 2254). A SearchControls object
passed to the search method can be set to control search characteristics
such as the scope of the search, the number of entries returned, the time
limit, and so on. Also, the entire schema name space can be browsed, and
object and attribute schema definitions can be retrieved.

When a directory context is established, it is passed an environment that
contains preferences and controls how the directory service is accessed. The
environment specifies the SPI to use, security level for binding to the server,
and so on. The environment is a Hashtable or Properties list of (key, value)
pairs. The environment settings could be coded in the application, retrieved
from the System properties, or retrieved from a file. Table 16 lists some of the
important environment properties. Different SPIs may support other
environment properties and interpret or support values differently.

Table 16. JNDI Directory Context Environment Properties

4.5.1 JNDI Example Program
The following Java program uses JNDI to perform a search and print the
attribute values of the directory entries found. It is a simple program that
illustrates the basic ideas of:

 • Setting up an environment and establishing an initial directory context.

Environment Property Use

java.naming.factory.initial Specifies the SPI

java.naming.provider.url LDAP URL that specifies the LDAP server

java.naming.ldap.version Specifies if server supports LDAP Version 2 or
3

java.naming.referral Specifies if referrals should be followed,
ignored, or throw an exception

java.naming.security.authentication Authentication method used to bind to LDAP
server: none, simple, strong

java.naming.security.principal Identity of user to authenticate

java.naming.security.credentials Password or other security credential
Building LDAP-Enabled Applications 127

 • Setting up a search filter and search controls.

 • Stepping through the returned entries and printing the values of the
attributes.

/*
 * Example JNDI program that performs an LDAP search
 * and parses and prints the results.
 *
 * file: Search.java
 */

import javax.naming.*;
import javax.naming.directory.*;
import java.util.Properties;
import java.util.Enumeration;

class Search {

public static void main(String[] args) {

 try {
 /* Create an environment for the initial directory context.
 The properties specify the LDAP provider, the LDAP server,
 the LDAP version, and no security (anonymous bind). */

 Properties env = new Properties();
 env.put("java.naming.factory.initial", "com.ibm.jndi.LDAPCtxFactory");
 env.put("java.naming.factory.url.pkgs", "com.ibm.jndi");
 env.put("java.naming.provider.url",
 "ldap://saturn.itso.austin.ibm.com");

 /* Create the initial directory context. */
 DirContext ctx = new InitialDirContext(env);

 /* Set up and perform the search. Find all people in IBM in the
 United States whose common name starts with Sue or Johan. */
 String base = "o=IBM,c=US";
 String filter = "(|(cn=Sue*)(cn=Johan*))";
 SearchControls constraints = new SearchControls();
 constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);
 NamingEnumeration results = ctx.search(base,filter,constraints);
 /* Print the search results. */
 if (!results.hasMore()) {
 System.out.println("Nothing found.");
 } else {
 /* For each entry found. */
 while (results.hasMore()) {
128 Understanding LDAP

 SearchResult sr = (SearchResult) results.next();
 System.out.println(sr.getName());
 Attributes attrs = sr.getAttributes();
 if (attrs == null) {
 System.out.println("No attributes");
 } else {
 /* For each attribute of the entry. */
 for (NamingEnumeration ae = attrs.getAll(); ae.hasMore();) {
 Attribute attr = (Attribute) ae.next();
 String id = attr.getID();
 /* For each value of the attribute. */
 for (Enumeration vals = attr.getAll(); vals.hasMoreElements();
 System.out.println(" "+id + ": " + vals.nextElement()));
 }
 }
 }
 }
 } catch (NamingException e) {
 /* Handle any name/directory exceptions. */
 System.err.println("Search failed: " + e.getMessage());
 } catch (Exception e) {
 /* Handle any other types of exceptions. */
 System.err.println("Non-naming error: " + e.getMessage());
 }
}
}

The output of the program executed against a sample directory follows.

cn=John Smith, ou=Austin, o=IBM, c=US
sn: Smith
title: ISO Deputy, Qual. Tech
postalcode: 1515
objectclass: organizationalPerson
objectclass: person
objectclass: top
facsimiletelephonenumber: 1-812-855-5923
telephonenumber: 1-512-838-6004
internationalisdnnumber: 755-5923
cn: John Smith

cn=Sue Kramer, ou=Austin, o=IBM, c=US
sn: Kramer
title: ISO Deputy, Qual. Tech
postalcode: 1515
objectclass: organizationalPerson
objectclass: top
facsimiletelephonenumber: 1-812-855-5923
Building LDAP-Enabled Applications 129

internationalisdnnumber: 755-5923
telephonenumber: 1-812-855-5923
cn: Sue Kramer
130 Understanding LDAP

Chapter 5. The Future of LDAP

With LDAP Version 3, a solid foundation for a directory service infrastructure
for the Internet was built. As we have seen in previous chapters, most vendor
implementations are based on this version or have most features of Version 3
incorporated. But there is still room for enhancements, for example in areas
of API support for other program languages, like Java. To define these
standards, members of the Internet Engineering Task Force (IETF) work on
and submit draft proposals that eventually might become Request for
Comments (RFCs). The RFCs describe the idea and the implementation of
the major design and technologies for the new functions and features. We
describe some important proposed enhancements in the next section.

Although there is not a specific section in this book devoted to it, it should be
mentioned that the vendor products will of course be further developed and
enhanced, namely in areas such as improved functionality, manageability,
and performance. For example, client-side caching could be implemented to
improve performance remarkably, especially on multiuser client systems with
heavy directory access. Graphical management tools can be added, or
existing GUIs may be improved that allow easy configuration and contents
management.

As LDAP matures to a de facto standard, it will eventually replace proprietary
directory services in vendor products and other standardized middleware
solutions, such as the Distributed Computing Environment (DCE). DCE
makes heavy use of a directory service and currently uses its own, specific
implementation, called Cell Directory Service (CDS). Section 5.2, “Distributed
Computing Environment (DCE) and LDAP” on page 133, gives you an
introduction on how LDAP will be integrated with DCE. Some other
middleware products and their potential use of LDAP are covered in 5.3,
“Other Middleware Software” on page 137.

5.1 The IETF LDAP Road Map

The IETF works on several enhancements to LDAP. An LDAP Extension
Working Group has been formed within the IETF to define and standardize
extensions to LDAP and its use on the Internet. The current state of these
enhancements and the working group’s plans can be found on the IETF Web
site at www.ietf.org or in other references listed in Appendix A, “Other LDAP
References” on page 139.

Currently, the LDAP Extension Working Group focuses on the following items:
© Copyright IBM Corp. 1998 131

 • Authentication

 • Access control

 • Server-side sorting of search results and paged retrieval of search results

 • Language tags

 • Dynamic directories

 • Referral and knowledge reference maintenance

 • LDAP server discovery

 • LDAP APIs

 • Connectionless LDAP (CLDAP), LDAP over UDP

 • Signed directory information

Some of the items above have already been mentioned in 2.1, “Overview of
LDAP Architecture” on page 19, as so-called extensions to LDAP Version 3.
Since they are extensions, they are not currently included as a standard part
of Version 3, but may become part of a future version. Others only exist in
early draft versions, and it might be premature to discuss them. The following
sections briefly describe some of these topics that appear to be more
advanced in the proposal status.

5.1.1 Access Control Requirements for LDAP
There is an Internet Draft titled Access Control Requirements for LDAP. This
document describes the fundamental requirements for an access control list
(ACL) model for the LDAP directory service.

One major requirement for directories, and for information in general, is the
ability to securely access, replicate and distribute directory information.
Because of the acceptance of LDAP directory services as an access protocol
for directory information, there is the need to provide an access control model
definition for LDAP directory content among servers within and outside the
enterprise. The current version (Version 3) of LDAP does not define an
access control model.

The requirements for LDAP access control requirements are divided into
multiple areas. These areas cover general security considerations for
extensibility, ACL administration and object reuse protection. They also cover
semantics and policies, define the way objects can be accessed, how specific
policies work and default policies for newly created objects. The last area
defines requirements for manageability and usability, such as management of
access to resources in an entire subtree.
132 Understanding LDAP

5.1.2 Scrolling View Browsing of Search Results
With this initiative, the IETF describes a virtual list view control extension for
LDAP search operation. It incorporates a “virtual list box” feature that
provides support of common scrolling, similar to the window scrolling in many
applications. A virtual list can be thought of a graphical user interface that
provides a means of better viewing of lists with a large number of entries
within a limited size window. This allows lightweight clients to handle large
amounts of list data easier because they are handled on the server side.

It allows a client to specify that the server return, for a given LDAP search,
only a contiguous subset of the search result. This subset is specified in
terms of indices into the ordered list, or in terms of a greater than or equal
comparison value.

5.1.3 LDAP Clients Finding LDAP Servers
This initiative discusses the methods available for LDAP clients to discover
the existence and locations of LDAP servers. Most of this work is based on
previous and ongoing IETF work.

Because LDAP allows to be used to build islands of servers that are not tied
together in a single Directory Information Tree (DIT), it might be desirable to
have a way how clients can discover LDAP servers.

5.2 Distributed Computing Environment (DCE) and LDAP

DCE is a vendor-neutral, industry-standard distributed computing middleware
infrastructure sponsored by the Open Software Foundation (OSF). Although
OSF merged with X/Open in 1996 to form The Open Group, DCE is still
commonly referred to as OSF DCE. Since this merger, The Open Group has
continued to improve and enhance DCE, as evidenced by recent product
announcements from various DCE vendors. DCE provides a comprehensive
set of tools and services that support reliable, scalable distributed
applications in a heterogeneous environment.

DCE provides the following components:

 • Threads support for multiple threads of control within a single process,
even on operating systems that do not support threads natively.

 • Remote Procedure Call (RPC) supports a procedural style programming
interface between clients and servers. DCE RPC supports data encryption
and is platform-independent by providing data type conversions.
The Future of LDAP 133

 • Security provides authentication, authorization, encryption, and auditing to
protect access to data and resources.

 • Directory Service provides a central repository for information about
resources in the distributed system.

 • Distributed Time Service (DTS) keeps the system clocks of distributed
computers synchronized.

 • Distributed File Service (DFS) provides location transparent access to
files stored throughout the network.

It is beyond the scope of this book to explain the details of DCE. More details
can be found at www.opengroup.org, or in related Web sites and documentation
(see Appendix A, “Other LDAP References” on page 139).

LDAP is being integrated into DCE to take advantage of the common Internet
directory infrastructure. This will enable increased sharing of information
between DCE and nonDCE environments. Customers will have more choice
as to what directory service and administration tools are used to store and
manage their DCE directory data.

The DCE Directory Service consists of the Cell Directory Service (CDS), the
Global Directory Service (GDS), and the Global Directory Agent (GDA). CDS
is a distributed, replicated directory service that stores information about
resources in a DCE cell. A DCE cell is a group of machines and resources
that are managed as a unit. DCE cells can be as small as a few machines
and users or as big as many thousands of machines and tens of thousands of
users.

GDS is an X.500-compatible directory that can be used to store information
about nonDCE resources. However, many implementations of DCE do not
include GDS because it is not widely used.

If applications never access resources outside of their DCE cell, only CDS is
required. However, if an application needs to communicate with resources in
other DCE cells, the GDA is required. The GDA accesses a global (that is,
nonCDS) directory where the names of DCE cells can be registered. This
global directory can be either a Domain Name System (DNS) directory or an
X.500 directory. The GDA retrieves the address of a CDS server in the
remote cell. The remote CDS can then be contacted to find DCE resources in
that cell. Using the GDA enables an organization to link multiple DCE cells
together using either a private directory on an intranet or a public directory on
the Internet.
134 Understanding LDAP

5.2.1 LDAP Interface for the GDA
One way LDAP is being integrated into DCE is to allow DCE cells to be
registered in LDAP directories (see Figure 32). The name of a remote DCE
cell and information about the CDS servers in that cell is registered in an
LDAP directory server. The GDA in a cell that wants to connect to the remote
cell is configured to enable access to the LDAP directory.

Figure 32. LDAP Interface for the GDA

DCE only supports X.500 and DNS name syntax for cell names. LDAP and
X.500 names both follow the same hierarchal naming model, but their syntax
is slightly different. X.500 names are written in reverse order and use a slash
(/) rather than a comma (,) to separated relative distinguished names. When
the GDA is configured to use LDAP, it converts cell names in X.500 format to
LDAP format and looks them up in the LDAP directory. If the LDAP directory
does not contain the directory entry for the remote cell, the GDA then tries an
X.500 server if one is configured.

5.2.2 LDAP Interface for the CDS
DCE provides two programming interfaces to the Directory Service: Name
Service Interface (NSI) and the X/Open Directory Service (XDS). XDS is an
X.500 compatible interface used to access information in the GDS, and it can
also be used to access information in the CDS. However, the use of NSI is
much more common in DCE applications.

The NSI API provides functionality that is specifically tailored for use with
DCE client and server programs that use RPC. NSI allows servers to register
their address and the type of RPC interface they support. This
address/interface information is called an RPC binding and is needed by

Global Directory Agent

DNS X.500
Interface Interface

DNS
Server

X.500
Server

LDAP
Interface

LDAP
Server
The Future of LDAP 135

clients that want to contact the server. NSI allows clients to search the CDS
for RPC binding information.

NSI was designed to be independent of the directory where the RPC bindings
are stored. However, the only supported directory to date has been CDS. NSI
will be extended to also support adding and retrieving RPC bindings from an
LDAP directory. This will allow servers to advertise their RPC binding
information in either CDS or an LDAP directory. Application programs could
use either the NSI or the LDAP API when an LDAP directory is used (see
Figure 33). An LDAP schema to represent RPC binding information is in the
draft stage of development within the IETF.

Figure 33. LDAP Interface for NSI

5.2.3 Future LDAP Integration
The LDAP integration projects discussed in 5.2.1, “LDAP Interface for the
GDA” on page 135, and 5.2.2, “LDAP Interface for the CDS” on page 135,
have been completed by The Open Group and can be expected to appear in
vendor DCE offerings. The integration projects discussed below are more
speculative, but they are being discussed by The Open Group.

5.2.3.1 Native LDAP Server
CDS was designed as the directory infrastructure for DCE because no other
suitable directory was commonly in use in the late 1980s when DCE was
being introduced. As LDAP takes on the role of a standard directory
infrastructure and DCE components integrate more with LDAP, replacing
CDS with LDAP becomes a possibility.

Application

NSI
LDAP API

CDS
Server

LDAP
Server
136 Understanding LDAP

LDAP is currently not as mature as CDS in the areas of replication and
access control. As LDAP matures, vendors might begin offering the option of
either using CDS or an LDAP service of the customer’s choice. Eventually,
CDS might not be offered at all.

For easier migration from CDS to LDAP, and for other reasons that might
require a parallel operation of CDS and LDAP directories, tools or automated
processes may be provided in vendor products that keep these directories in
sync.

5.2.3.2 LDAP Interface to Security Registry Data
Information about users, accounts, security policies, and so on is not stored
in the CDS, but is stored in a repository controlled by the DCE Security
Service. This repository is called the security registry. Although the registry is
controlled by the Security Service, it is treated as a part of the CDS name
space and accessed with the same administration tools used to access other
information in the CDS. As CDS becomes more integrated with or eventually
replaced by LDAP, the information in the security registry should also be
accessible using LDAP.

Two approaches to providing an LDAP interface to the security registry are
being considered. One is to provide an LDAP gateway to the registry or to
modify the security server to accept LDAP requests. A second, probably
simpler, approach is to eliminate the registry and store the registry
information directly in the LDAP-based directory service. As LDAP matures in
the areas of access control and security, this second approach becomes
more attractive.

5.3 Other Middleware Software

As we will see in Appendix B, “LDAP Products and Services” on page 143,
most vendors of any kind of directory server or directory-enabled client
products have (or will shortly) implemented some kind of LDAP support,
either as an interface to access their directory information or as a client to
access external LDAP directories.

Besides directory server and directory-enabled client products, there is an
important family of application-enabling products, also called middleware
software. The Distributed Computing Environment (DCE), as mentioned in
the last sections, is only one of these enablers. Others might be databases,
network operating systems (in a broader context), and distributed object
brokers. They all share a common problem: They all need to have some sort
of directory to store location and service information. Since they are
The Future of LDAP 137

distributed services, a repository must be in place that can be searched for,
such as the name and location of a remote service.

This is exactly where LDAP comes into play as a standardized method as
opposed to proprietary directories.

Although not formally announced or committed in any form at the time this
book was written, there is certainly some good speculation around that such
middleware products may exploit LDAP in future releases.

5.4 The Directory-Enabled Networks Initiative

In September 1997, Cisco Systems Inc. and Microsoft Corp. announced the
so-called Directory-Enabled Networks Initiative (DEN) as a result of a
collaborative work. Many companies, such as IBM, either support this
initiative or even actively participate in ad hoc working groups (ADWGs). DEN
represents an information model specification for an integrated directory that
stores information about people, network devices and applications. The DEN
schema defines the object classes and their related attributes for those
objects. In such, DEN is a key piece to building intelligent networks, where
products from multiple vendors can store and retrieve topology and
configuration related data. Since DEN is a relatively new specification,
products supporting it cannot be expected until about one to two years after
its first draft was published late in 1997.

Of special interest is that the DEN specification defines LDAP Version 3 as
the core protocol for accessing DEN information, which makes information
available to LDAP-enabled clients and/or network devices.

More information about the DEN initiative can be found on the founders’ Web
sites or at www.universe.digex.net/~murchiso/den/.
138 Understanding LDAP

Appendix A. Other LDAP References

As mentioned throughout the book, this appendix lists references to other
sources of information about LDAP. Where suitable, some background
information is provided as well.

Please note that, due to the dynamic character of the Internet, some URLs to
particular Web sites may already have become invalid by the time you read
this book.

A.1 The Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is an open international
community to design and discuss future Internet technologies. The people
belonging to this group are network designers, operators, and researchers
from commercial and non-commercial organizations. The task is to design
open standards for common use in the Internet. The group is open to any
interested individual.

The actual work of the IETF is done in workgroups, which are organized by
topics into several areas, for example routing, transport, security, and so on.
The workgroups are grouped into areas and managed by area directors.
These area directors are members of the Internet Engineering Steering
Group (IESG). Providing architectural oversight is the Internet Architecture
Board (IAB). Both the IESG and IAB are chartered by the Internet Society
(ISOC) for these purposes. The general area director also serves as the chair
of IETF and IESG and is an ex-official member of the IAB.

The central coordinator is the Internet Assigned Numbers Authority (IANA),
which coordinates the unique assignment of parameter values for Internet
protocols. The IANA is chartered by the ISOC to act as the clearinghouse to
assign and coordinate the use of numerous Internet protocol parameters.

New technologies are invented and discussed in so-called IETF drafts (or
Internet Drafts). These drafts and the basic design ideas are posted to the
mailing list and are discussed until general consensus is reached to stop
work on the draft or progress it to RFC by requesting approval of the area
director and the IESG. At approval, an RFC number is assigned. The RFC is
the base description for new versions and enhancements.

The IETF Web site can be reached at:

http://www.ietf.org/
© Copyright IBM Corp. 1998 139

On this Web site, there are links to IETF Workgroups, Internet Drafts, mailing
lists, and so on.

A.2 The University of Michigan (UMICH)

The University of Michigan was and still is an important contributor in the
development of LDAP and can be considered a reliable, neutral source for
extensive information and program source code for LDAP servers and clients.

The UMICH’s home page is at:

http://www.umich.edu/

The UMICH’s LDAP page can be accessed at:

http://www.umich.edu/~dirsvcs/ldap/

This latter page contains, among others, links to online LDAP documentation
from the UMICH and others and downloadable software, most of which as
source code.

A.3 Software Development Kits

Below, you find some URLs where you can download SDKs offered by
different vendors for a wide variety of platforms. You might find some useful
information, such as documentation and FAQ (Frequently Asked Questions)
lists and links to other interesting LDAP-related places there as well.

The University of Michigan’s LDAP server code, a C language SDK, and
other links to documentation and LDAP mailing lists can be found at the
following link:

http://www.umich.edu/~dirsvcs/ldap/

IBM’s C and Java SDKs can be found at:

http://www.networking.ibm.com/ldap/ldaphome.html

Netscape offers a C and a Java SDKs at:

http://developer.netscape.com/software/sdks/index.html

A.4 Other Sources

Below is a list of Web links sorted upon common criteria.
140 Understanding LDAP

A.4.1 Vendors Mentioned in this Book

The following links point you the home pages of the vendors that have been
mentioned throughout the book.

IBM – http://www.ibm.com/

Tivoli – http://www.tivoli.com/

Lotus – http://www.lotus/com/

Netscape – http://www.netscape.com/

Critical Angle – http://www.critical-angle.com/

Novell – http://www.novell.com/

Microsoft – http://www.microsoft.com/

A.4.2 LDAP, General

For general information about LDAP, please refer to the Web sites of the IETF
and the University of Michigan as listed earlier in this appendix. If you search
the Web for ’LDAP’, there will be thousands of hits. Following are just a few
links to related Web sites that you might find interesting.

An LDAP Roadmap & FAQs:

http://www.kingsmountain.com/ldapRoadmap.shtml
http://www.critical-angle.com/ldapworld/ldapfaq.html

IBM LDAP client Web page:

http://www.networking.ibm.com/ldap/ldaphome.html

IBM eNetwork Security and Directory library:

http://www.software.ibm.com/ts/dsseries/library/

Critical Angle Inc. (Innosoft International Inc.) hosts a series of interesting
information and links at:

http://www.critical-angle.com/ldapworld/index.html

A System Administrator’s view of LDAP:

http://people.netscape.com/bjm/whyLDAP.html

A collection of information related to DEN (Directory-Enabled Networks):

http://www.universe.digex.net/~murchiso/den/
Other LDAP References 141

Directory Deployment and Installation (Netscape):

http://home.netscape.com/eng/server/directory/3.0/deploy/contents.html

A.4.3 Request for Comments (RFCs)

A good source for accessing RFCs with search capabilities is provided by the
Information Sciences Institute (ISI) at:

http://www.isi.edu/rfc-editor/rfc.html

This ISI Web site includes a number of links to other RFC sources. If, for
some reason, you cannot access the link above, try one of the following:

http://www.pasteur.fr/other/computer/RFC/
http://www.garlic.com/~lynn/rfcietf.html
http://www.nexor.com/public/rfc/index/rfc.html
http://www.csl.sony.co.jp/rfc/

A.4.4 Security

The SSL Protocol Version 3.0:

http://home.netscape.com/eng/ssl3/ssl-toc.html

Simple Authentication and Security Layer (SASL), RFC 2222:

ftp://ftp.isi.edu/in-notes/rfc2222.txt

SASL Mechanisms:

ftp://ftp.isi.edu/in-notes/iana/assignments/sasl-mechanisms

SASL Service Names:

ftp://ftp.isi.edu/in-notes/iana/assignments/gssapi-service-names

The TLS Protocol, Version 1.0 (Internet Draft):

http://www.ietf.org/internet-drafts/draft-ietf-tls-protocol-05.txt
142 Understanding LDAP

Appendix B. LDAP Products and Services

Many LDAP-compatible products are already available on the market. They
either exploit LDAP directly or enable other applications to use LDAP. More
will become available as LDAP evolves. This appendix presents a brief
overview of some products from IBM and other vendors that are worth
mentioning. The list of products surveyed here is not intended to be
exhaustive, but covers some widespread and influential products. At the time
of writing, there were well over 50 products available on the market that are
either LDAP servers, LDAP-to-X.500 gateways or other applications that
exploit LDAP in some way. We cannot list and explain them all because such
a list would become outdated in a short while.

In addition to private LDAP directories maintained on various private
intranets, publicly accessible LDAP directories are also available. Some of
the major publicly accessible LDAP directories are also surveyed. Like the
product survey, the public directory survey cannot be complete and may not
be up to date by the time you read this. You should always refer to the
respective vendor or browse their Web sites to have the most current
information on products and features.

B.1 IBM Product Offerings

IBM strongly supports the LDAP standard and actively contributes to the work
being done in the related IETF working groups. As a result, IBM offers a
series of products and will introduce more that support the LDAP standard.
The following is a description of these offerings; for more details, please
study the official product announcement documentation.

B.1.1 IBM eNetwork LDAP Directory

IBM eNetwork LDAP Directory is based on IETF LDAP Version 2 (RFC 1777)
plus some extensions for LDAP Version 3. The implementations on AIX and
OS/390 utilize IBM’s DB2 relational database as the directory data storage
facility. A DB2 single-user component is included with the eNetwork LDAP
Directory on AIX. IBM eNetwork LDAP Directory standards are based on:

 • RFC 1777 – Lightweight Directory Access Protocol
 • RFC 1778 – String Representation of Standard Attribute Syntaxes
 • RFC 1779 – String Representation of Distinguished Names
 • RFC 1823 – LDAP Application Program Interface
 • RFC 1960 – A String Representation of LDAP Search Filters
© Copyright IBM Corp. 1998 143

IBM eNetwork LDAP Directory provides Secure Sockets Layer (SSL) Version
3 support, both for the directory server and client. SSL provides encryption of
data and authentication using X.509v3 pubic-key certificates. The directory
may be configured to run with or without SSL support. IBM eNetwork LDAP
Directory also supports LDAP referrals, allowing directory operations to be
redirected to another LDAP directory server. Replication of the LDAP
directory is supported, which allows for additional copies of the directory to be
available for directory read operations, thus increasing performance and
reliability of access to the directory information.

IBM eNetwork LDAP Directory ships with AIX and is included in the Security
Server for OS/390. IBM plans to make eNetwork LDAP Directory available on
OS/400, Windows NT, and Solaris later in 1998. At the same time, work is on
the way to support the full LDAP Version 3 level.

B.1.2 IBM eNetwork X.500 Directory for AIX

IBM eNetwork X.500 Directory for AIX, Version 1.0, (X.500 Directory) is an
advanced electronic directory product that provides a robust,
high-performance and a highly scalable implementation. Secure Socket
Layer (SSL) technology, used with Lightweight Directory Access Protocol
(LDAP) and Hypertext Transfer Protocol (HTTP), is incorporated into the
directory server. The main components are:

 • X.500 Directory Server: Optimized for demanding, high-end applications
requiring a very large capacity X.500 or LDAP directory service and very
high search rates in hierarchically structured data.

 • Desktop Directory User Agents (DUAs) for Windows and Macintosh:
Stand-alone DUAs that provide a fully graphical interface for accessing
the directory.

 • Web-based DUA and Web Administrative Facilities: Provide directory
access and directory administration over the World Wide Web.

 • LDAP Application Development Package (ADP): Provides elements
required and supports the AIX, Windows NT, Windows 95, Solaris, and
HP-UX platforms. Also included is support for the Java Naming and
Directory Interface (JNDI), which provides for the development of Java
applications that need to access an LDAP directory server.

Because of U.S. export regulations, multiple versions are available that
support different levels of encryption for U.S. domestic and international use.
144 Understanding LDAP

B.1.3 IBM eNetwork LDAP Client Pack for Multiplatforms

The IBM eNetwork LDAP Client Pack for Multiplatforms provides elements
required to develop LDAP client applications that access LDAP directory
servers (LDAP Version 2 and 3) and supports the IBM AIX, Windows NT and
95, Solaris, and HP-UX platforms. It also includes support for the Java
Naming and Directory Interface (JNDI), which provides for the development
of Java applications that need to access and LDAP directory service.

The predecessor, the IBM LDAP Client Pack for Multiplatforms, has been
announced and has been available from IBM since mid-1997. It was updated
with new technology in early 1998 to include support for LDAP Version 3 and
Java. The LDAP Client Pack consists of an LDAP shared library, C header
files, sample programs, and online documentation in HTML. The LDAP API,
based on RFC 1823 and extensions in the University of Michigan LDAP 3.3
distribution, provides:

 • Typical directory functions such as read, write and search

 • Client authentication to the directory service using either no authentication
or simple (password) authentication

 • Powerful, yet relatively simple to use set of interface commands

 • Synchronous or asynchronous interface access

 • Client/Server model using TCP/IP connections from client to server

The IBM LDAP Client Pack supports the following standards:

 • RFC 1777 – Lightweight Directory Access Protocol
 • RFC 1778 – String Representation of Standard Attribute Syntaxes
 • RFC 1779 – String Representation of Distinguished Names (DNs)
 • RFC 1823 – LDAP Application Program Interface
 • RFC 2251 – Lightweight Directory Access Protocol
 • RFC 2252 – LDAP V3 Attribute Syntax Definitions
 • RFC 2253 – UTF-8 String Representation of DNs
 • RFC 2254 – The String Representation of LDAP Search Filters
 • RFC 2255 – The LDAP URL Format

Different versions of the LDAP Client Pack are available. They differ in the
encryption module (40-, 56-, or 128-bit SSL), which is subject to United
States export regulations.

IBM eNetwork LDAP Client Pack for Multiplatforms is included in IBM
eNetwork X.500 Directory for AIX (see B.1.2, “IBM eNetwork X.500 Directory
for AIX” on page 144) and will be included in an upcoming Bonus Pack for
LDAP Products and Services 145

AIX. It is also available separately as a Program Request for Price Quotation
(PRPQ), which means it is available only by direct request.

B.2 Lotus Domino

Lotus Development Corp. concentrates on platform-independent desktop and
groupware solutions. Lotus Domino, the latest groupware server product,
incorporates not only a framework for individual application development but
also includes all standard functions for a collaborative working environment in
small and large organizations, such as e-mail, shared distributed databases,
and easy desktop integration. Lotus Domino Server and the Lotus Notes
clients are available for all major platforms.

As a key function for most of its underlying services, Domino includes an
extensive address book (the Domino Directory Notes Address Book, NAB)
that stores people information and system-related data. Multiple Domino
servers work together and share their address book information, allowing an
organization to easily scale up.

Beginning with its Release 4.6, Lotus Domino also incorporates an LDAP
service that allows LDAP clients to access the information stored in the
address book. With Domino R4.6 support for LDAP, other LDAP-compliant
applications, whether inside or outside the enterprise, can locate resources in
a Domino directory. Non-Notes clients that are LDAP-compliant can interact
with the Domino Directory Notes Address Book (NAB). A Domino server can
also act as a gateway to other LDAP servers, for example a public Four11
service.

Domino R4.6 supports LDAP Version 2 and attributes defined by the
Lightweight Internet Person Schema (LIPS), a related standard. While full
search capability is provided, update operations are not supported. Native
LDAP support enables users of POP3, IMAP or other Internet mail clients that
support LDAP to perform name lookups in the Domino directory when
addressing e-mails. Domino Server administrators can set up their Domino
Servers to perform LDAP lookups into LDAP-compliant public directories on
the Internet. The LDAP service in Domino 4.6 also supports SSL, storage of
X.509v3 certificates, and referrals.

Starting with Domino 5.0, the full LDAP Version 3 standard will be supported.
Add and modify operations to the NAB will be supported as well.
146 Understanding LDAP

B.3 Tivoli User Administration: LDAP Endpoint

Tivoli Management Architecture is a highly sophisticated, universal systems
management framework available for all major platforms, including Windows
NT/95 and many UNIX brands.

Tivoli User Administration is a management application that runs on top of the
Tivoli framework. Briefly speaking, it consists of an extensive database and a
number of endpoint adapters. The core database, together with a graphical
management user interface, allows to manage user accounts independent of
any underlying system. The database supports a large number of attributes
suitable for almost any kind of target environment. The adapters then
interface this database with any underlying operating system or application.
For example, a UNIX adapter propagates (distributes) the relevant attributes
from the user administration database to the relevant database (files) on the
destination UNIX system(s). The reverse process, called population, is
supported, too. Population collects the actual user configuration data from a
destination environment and stores it in the database for subsequent
management. Figure 34 depicts this relationship.

Figure 34. Tivoli Database Versus the Real Configuration

Tivoli
User

LDAP
Directory

NIS
Users

UNIX
Users

Distribute

Populate

Tivoli User Administration Object Configuration

Other
User
Repositories

Add User:

Graphical User
Interface

Name
UID
Group Database
LDAP Products and Services 147

Through the addition of an LDAP adapter (also called an Endpoint in Tivoli
terminology), Tivoli User Administration is enriched in its functionality to
manage LDAP directory data (while other system-related management and
monitoring can be done using other Tivoli systems management and
monitoring functionality). This adapter runs on any managed node which may
or may not be the on same system as the Tivoli Administration Server, also
called the TMR Server (Tivoli Management Region) Server. Since LDAP is a
system-independent standard, the actual LDAP service can be run on any
platform. This approach centers the Tivoli User Administration database and
all other user data repositories, including the LDAP directory, are kept in sync
with the master Tivoli database. An administrator only uses one common user
interface and one single tool to manage user accounts, no matter whether the
actual users exist on a UNIX system, in an NIS domain, in LDAP, or in any
other of the many supported endpoints.

It should be mentioned that the Tivoli User Administration also supports a
command line interface for all operations. This allows automation of
administration tasks from within command language programs.

At the time this book was written, the LDAP Endpoint was still under
development and final testing. The product was supposed to be available
shortly thereafter.

B.4 Other LDAP Server Products

There are over 30 native LDAP server or LDAP-to-X.500 gateway products
available on the market (spring 1998). We briefly describe three products that
are well known in the following sections. For the latest information, or if you
need more details, we refer you directly to the vendors; their URLs are
provided below for your convenience.

B.4.1 Netscape Directory Server

Netscape’s Directory Server, as part of their Suite Spot product suite,
combines the directory services for the various Internet services. Directory
Server is a native LDAP implementation that supports LDAP Version 2 and
Version 3 operations. Some of the features are:

 • Supports referrals

 • Uses either a native database or an external RDBMS

 • Includes a tool that synchronizes Windows NT domain-based directories,
(NT 3.51 and 4.0) including user, group and password information

 • Supports flexible replication
148 Understanding LDAP

 • Stores ACLs with each entry for access security

Directory Server is available for all major UNIX platforms and Windows NT. It
comes with an SKD that allows a programmer to build directory-enabled
applications.

For more information, please browse the relevant pages at www.netscape.com.

B.4.2 Novell LDAP Services for NDS

Novell Directory Services (NDS) is the directory service that comes with
Novell’s NetWare network operating system (NOS). It has long been on the
market and provides advanced directory services, some of which are not
available in current LDAP services. With the addition of LDAP Services for
NDS (which is otherwise a proprietary directory), Novell opened NDS in a
way such that LDAP clients can access information stored in NDS. This was
done in response to the fact that LDAP is emerging to a de facto standard for
directory access.

For more information, Novell’s Web site is www.novell.com.

B.4.3 Microsoft Active Directory

Active Directory is Microsoft’s proprietary implementation of a directory
service that runs on Windows NT Server 5.0 (and may be supported on other
products from Microsoft as well). It replaces the NT domain database of
earlier NT versions and overcomes some of its limitations. The domain
concept with a single domain database was introduced over 10 years ago and
has limitations in large installations because of scalability and manageability
shortcomings. Active Directory, however, is not an all-new technology and still
carries the concept of domains with it. It introduces, for example, a new data
storage engine that allows extensible objects and promises better scalability,
but it can only be replicated as a whole. This means that an Active Directory
directory cannot be partitioned into smaller pieces for easy replication or
management.

While Active Directory may have some attractive functions specific to those
bound to the NT domain concept, it lacks some others. Active Directory is
supported on the Windows NT platform only and because of its proprietary
nature, it cannot easily be substituted with other products.

Active Directory is not an LDAP directory, nor is LDAP meant to be the
primary access protocol or API. It is mentioned here because, obviously due
to the importance of LDAP in an open computing environment, an LDAP
interface was added to it, allowing clients using LDAP operations to access
LDAP Products and Services 149

data stored in the directory. Additionally, an Active Directory server can
access other servers that are using LDAP.

Microsoft’s Web site has more information at www.microsoft.com.

B.5 LDAP Enabled Clients and Applications

It is beyond the scope of this book to compile a complete list of vendor
applications that exploit LDAP directory services. Instead, we refer you back
to 1.6, “The Quick Start: A Public LDAP Example” on page 16, where a
simple example shows how an LDAP directory can be used. As mentioned
there, Web browsers are perfect examples of applications that benefit most
from an LDAP service. Since most Web browsers also include a mail client,
users can look up e-mail addresses of the recipients directly through the mail
client search tool, no matter whether the directory is the local, personal
directory or a remote LDAP directory.

Another area that is likely to embrace an LDAP directory service is
networking equipment. Network administrators and routers can store and
retrieve network-related information from a single point, allowing a network
administrator to manage a network much more efficiently as compared to
when he or she has to maintain many different configuration databases in
individual devices. This is the basic idea behind the Directory-Enabled
Networks initiative (DEN) described in 5.4, “The Directory-Enabled Networks
Initiative” on page 138.

B.6 LDAP Development Kits and Tools

Most vendors that offer LDAP products also offer SDKs, either together with
the products or as separate kits, for directory-enabled application
development. For URL addresses to the SDK downloads, we refer you to A.3,
“Software Development Kits” on page 140.

A good source for a vendor-neutral kit is the University of Michigan (UMICH).
As a major contributor to the LDAP standard and development, UMICH has
development kits for LDAP servers and clients available on their Web site,
along with valuable documentation.

Besides UMICH’s software development kit, there are SDKs available from
IBM, Netscape, and others.
150 Understanding LDAP

B.7 Public LDAP Services

As we have seen in the introductory example in 1.6, “The Quick Start: A
Public LDAP Example” on page 16, there are already a number of public
providers that offer LDAP directory services on the Internet. Below is a short
list, conducted from research on the Internet, of such public LDAP directory
service providers. Please bear in mind that the list cannot be complete and
might even contain outdated references at the time you read this book. The
selections provided do not imply any recommendation or rating. Given is the
host name of the server machine that provides this service; they all listen on
the default LDAP port 389. For additional information, such as corporate
profiles and additional services, please refer to their home pages (URL
provided in parenthesis):

Four11 – ldap.four11.com (www.four11.com)

InfoSpace – ldap.infospace.com (www.infospace.com)

WhoWhere – ldap.whowhere.com (www.whowhere.com)

Bigfoot – ldap.bigfoot.com (www.bigfoot.com)

Switchboard – ldap.switchboard.com (www.switchboard.com)

Delivery of Advanced Network Technology to Europe (DANTE) is a service
that connects universities and research laboratories in Europe. They offer a
Web-to-X.500 gateway to selected X.500 Directories in the research and
university community at:

www.dante.net:8888/M

DANTE also has an extensive list of other general directory and LDAP
directory services available at:

www.dante.net/np/pdi.html
LDAP Products and Services 151

As a reminder (we mentioned this in chapter 1), your browser might not be
able to connect to any of the services listed above if your browser is
connected to a private network, connected to the Internet through a
firewall. This is because most firewalls and administrators are not aware of
LDAP traffic on port 389, which is therefore blocked out. If this is the case,
you should talk to your firewall administrator.

Alternatively, your company might already have internal LDAP servers that
you were not aware of. Ask your system administrator while arguing with
him or her about the LDAP port on the firewall!

Reminder: LDAP Uses Port 389!
152 Understanding LDAP

Appendix C. LDAP C Language API Functions and Error Codes

As a complement to Chapter 4, “Building LDAP-Enabled Applications” on
page 85, this appendix lists all LDAP API function calls and error codes for
LDAP Version 3. A short description is provided with the function calls.

C.1 C Language API Calls

Some of the functions listed in the following tables may have been mentioned
earlier in Chapter 4, “Building LDAP-Enabled Applications” on page 85. As
mentioned in that chapter, a trailing “_s” in the function’s name indicates that
the function operates in synchronous mode.

C.1.1 Functions to Establish and Terminate a Connection

The functions listed here in Table 17 are used to initialize a connection and
authenticate a client to an LDAP server. They are usually invoked at the very
beginning of the conversation with the LDAP server, with one exception: The
ldap_unbind() is used to close the connection to the LDAP server.

Table 17. Functions that Initialize and Terminate a Connection

Function Description

ldap_init(), ldap_open() Initialize a session with an LDAP server.

ldap_simple_bind(), ldap_simple_bind_s() Initiate a simple bind to an LDAP server.

ldap_sasl_bind(), ldap_sasl_bind_s() Authenticate the client to an LDAP server
using the Simple Authentication Security
Layer.

ldap_set_rebind_proc() Reauthenticate, for example when
another server through a referral result
message is involved.

The information given in this appendix is based on an Internet Draft and is
provided for your convenience only to complement the programming
samples explained in Chapter 4, “Building LDAP-Enabled Applications” on
page 85. For the most accurate and current information, you should always
consult the latest documentation provided in the Internet Draft or RFC, or
refer to the documentation that came with your product(s).

Note
© Copyright IBM Corp. 1998 153

C.1.2 Session-Handling Functions

These functions (Table 18) are closely related to the previously mentioned
functions. They are used to influence the session handle options once a
connection is initialized.

Table 18. Session-Handling Functions

C.1.3 Interacting with the Server

The functions listed here in Table 19 send and receive data through the
network to/from an LDAP server.

Table 19. Functions that Send or Receive Data

ldap_unbind() Close an LDAP session, dispose the
session handle.

Function Description

ldap_set_option() Set the value of a specified option.

ldap_get_option() Get the value of a specified option.

Function Description

ldap_search(), ldap_search_s() Initiates a synchronous or asynchronous
search of an LDAP directory.

ldap_search_ext(),
ldap_search_ext_s()

Like ldap_search() but server and client
controls can get specified.

ldap_search_st() Like ldap_search_s(), but a time value
for the API to wait until the results are
received can get specified.

ldap_compare(), ldap_compare_s() Compares a given attribute value against
the actual one stored within the LDAP
server.

ldap_compare_ext(),
ldap_compare_ext_s()

Like ldap_compare but the comparison of
binary values is possible. LDAP V3 server
and client controls are supported.

ldap_modify(), ldap_modify_s() Adds, deletes or replaces values of an
attribute.

ldap_modify_ext(),
ldap_modify_ext_s()

Like ldap_modify() but LDAP V3 server
and client controls are supported.

Function Description
154 Understanding LDAP

C.1.4 Error Handling

The functions for error handling, those used to retrieve the errors of previous
LDAP function calls, are listed in Table 20.

Table 20. Functions for Error Handling

ldap_modrdn2(), ldap_modrdn2_s() Changes the name (RDN) of an entry.

ldap_rename(), ldap_rename_s() Modifies the distinguished name of an
entry.

ldap_add(), ldap_add_s() Add an entry to an LDAP directory.

ldap_add_ext(), ldap_add_ext_s() Like ldap_add(), LDAP V3 client and
server controls are supported.

ldap_delete(), ldap_delete_s() Deletion of leaf entries

ldap_delete_ext(),
ldap_delete_ext_s()

Like ldap_delete(), LDAP V3 client and
server controls are supported.

ldap_extended_operation(),
ldap_extended_operation_s()

Sending of extended LDAP operations,
used as general protocol extensibility
mechanism.

ldap_abandon(), ldap_abandon_ext() Abandon operation in progress. LDAP V3
client and server control supported by
ldap_abandon_ext().

ldap_result() Obtaining the result of a previously issued
asynchronous operation.

Function Description

ldap_parse_result() Returns error code of previous API
function call.

ldap_parse_sasl_bind() Returns error code of a SASL bind call.

ldap_parse_extended_result() Returns error code of previous extended
operation.

ldap_result2error() Converts numeric error code in error
string.

Function Description
LDAP C Language API Functions and Error Codes 155

C.1.5 Analyzing Results

The following functions (Table 21) are used to step through the results
obtained by synchronous or asynchronous search functions.

Table 21. Parsing the Results

Function Description

ldap_count_messages() Counts number of messages in the LDAP
message structure.

ldap_first_message() Returns first message in a chain of results
obtained by ldap_result().

ldap_next_message() Returns entry in a chain of results
obtained by ldap_result().

ldap_first_entry() Returns first entry in a chain of search
results.

ldap_next_entry() Returns next entry in a chain of search
results.

ldap_count_entries() Counts the number of entries returned by
a search operation.

ldap_first_reference(),
ldap_next_reference()

Retrieving and stepping through a list of
continuation references obtained by a
search result.

ldap_parse_reference() Extracts referrals and controls from a
search result.

ldap_first_attribute(),
ldap_next_attribute()

Stepping through a list of attributes
returned with an entry.

ldap_get_values() Get values of a given nonbinary attribute.

ldap_get_values_len() Get values of a given attribute.

ldap_count_values(),
ldap_count_values_len()

Count returned values of a attribute.

ldap_get_dn() Retrieve the name of an entry.

ldap_explode_dn(),
ldap_explode_rdn()

Breaks up a DN or RDN in its components.

ldap_dn2ufn() Converts DN to a user-friendly format
using RFC 1781, Using the OSI Directory
to Achieve User Friendly Naming.

ldap_get_entry_controls() Extracts LDAP controls from an entry.
156 Understanding LDAP

C.1.6 Freeing Memory

The functions listed in Table 22 are used to free memory occupied by search
results, attribute values, and so on.

Table 22. Memory-Freeing Functions

C.1.7 Other Functions

The functions listed here in Table 23 carry out various other operations that
are not covered by any other cathegory above.

Table 23. Other Functions

Function Description

ldap_ber_free() Frees a buffer used by
ldap_first_attribute() and
ldap_next_attribute() to keep track of
the current position in an entry.

ldap_msgfree() Frees results of previous call to
ldap_result or an synchronous search
routine.

ldap_memfree() Frees memory occupied by LDAP library
functions such as
ldap_next_attributes() or
ldap_get_dn().

ldap_value_free() Frees memory occupied by values
returned through ldap_get_values() or
ldap_get_values_len().

Function Description

ldap_msgtype() Returns the type of an LDAP message.

ldap_msgid() Returns the ID of an LDAP message
passed as a parameter to an
asynchronous call.

ldap_version() Retrieves basic information about the API
implementation, such as SDK version or
protocol version.

ldap_control_free(),
ldap_controls_free()

Disposes a single client control or an array
of client controls allocated by LDAP API
calls.
LDAP C Language API Functions and Error Codes 157

C.2 LDAP API Error Codes

Listed below are the error codes as returned by many of the LDAP C API
functions. Some of them indicate local errors; some are set in the session
handle structure by the LDAP server. All error codes correspond to positive
integer (hexadecimal values are given in parentheses after the constant)
defined in the header file of your SDK.

LDAP_SUCCESS (0x00)
LDAP_OPERATIONS_ERROR (0x01)
LDAP_PROTOCOL_ERROR (0x02)
LDAP_TIMELIMIT_EXCEEDED (0x03)
LDAP_SIZELIMIT_EXCEEDED (0x04)
LDAP_COMPARE_FALSE (0x05)
LDAP_COMPARE_TRUE (0x06)
LDAP_STRONG_AUTH_NOT_SUPPORTED (0x07)
LDAP_STRONG_AUTH_REQUIRED (0x08)
LDAP_REFERRAL (0x0a) -- new in LDAPv3
LDAP_ADMINLIMIT_EXCEEDED (0x0b) -- new in LDAPv3
LDAP_UNAVAILABLE_CRITICAL_EXTENSION (0x0c) -- new in LDAPv3
LDAP_CONFIDENTIALITY_REQUIRED (0x0d) -- new in LDAPv3
LDAP_SASL_BIND_IN_PROGRESS (0x0e) -- new in LDAPv3
LDAP_NO_SUCH_ATTRIBUTE (0x10)
LDAP_UNDEFINED_TYPE (0x11)
LDAP_INAPPROPRIATE_MATCHING (0x12)
LDAP_CONSTRAINT_VIOLATION (0x13)
LDAP_TYPE_OR_VALUE_EXISTS (0x14)
LDAP_INVALID_SYNTAX (0x15)
LDAP_NO_SUCH_OBJECT (0x20)
LDAP_ALIAS_PROBLEM (0x21)
LDAP_INVALID_DN_SYNTAX (0x22)
LDAP_IS_LEAF (0x23) -- not used in LDAPv3
LDAP_ALIAS_DEREF_PROBLEM (0x24)
LDAP_INAPPROPRIATE_AUTH (0x30)
LDAP_INVALID_CREDENTIALS (0x31)
LDAP_INSUFFICIENT_ACCESS (0x32)
LDAP_BUSY (0x33)
LDAP_UNAVAILABLE (0x34)
LDAP_UNWILLING_TO_PERFORM (0x35)
DAP_LOOP_DETECT (0x36)
LDAP_NAMING_VIOLATION (0x40)
LDAP_OBJECT_CLASS_VIOLATION (0x41)
LDAP_NOT_ALLOWED_ON_NONLEAF (0x42)
LDAP_NOT_ALLOWED_ON_RDN (0x43)
LDAP_ALREADY_EXISTS (0x44)
LDAP_NO_OBJECT_CLASS_MODS (0x45)
LDAP_RESULTS_TOO_LARGE (0x46) -- reserved for CLDAP
158 Understanding LDAP

LDAP_AFFECTS_MULTIPLE_DSAS (0x47) -- new in LDAPv3
LDAP_OTHER (0x50)
LDAP_SERVER_DOWN (0x51)
LDAP_LOCAL_ERROR (0x52)
LDAP_ENCODING_ERROR (0x53)
LDAP_DECODING_ERROR (0x54)
LDAP_TIMEOUT (0x55)
LDAP_AUTH_UNKNOWN (0x56)
LDAP_FILTER_ERROR (0x57)
LDAP_USER_CANCELLED (0x58)
LDAP_PARAM_ERROR (0x59)
LDAP_NO_MEMORY (0x5a)
LDAP_CONNECT_ERROR (0x5b)
LDAP_NOT_SUPPORTED (0x5c)
LDAP_CONTROL_NOT_FOUND (0x5d)
LDAP_NO_RESULTS_RETURNED (0x5e)
LDAP_MORE_RESULTS_TO_RETURN (0x5f)
LDAP_CLIENT_LOOP (0x60)
LDAP_REFERRAL_LIMIT_EXCEEDED (0x61)
LDAP C Language API Functions and Error Codes 159

160 Understanding LDAP

Appendix D. Special Notices

This publication is intended to help network and infrastructure professionals
understand the concepts and basics of LDAP. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by any product from either IBM nor any other vendor. See
the PUBLICATIONS section of the IBM Programming Announcements of
related products for more information about what publications are considered
to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
© Copyright IBM Corp. 1998 161

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

AIX eNetwork
IBM RS/6000
OS/390 OS/400
OS/2 DB2
162 Understanding LDAP

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more general discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 165.

 • IBM DSS and DCE Cross-Platform Guide, SG24-2543

 • Understanding OSF DCE 1.1 for AIX and OS/2, SG24-4616

 • Security on the Web Using DCE Technology, SG24-4949

 • Save Surfing: How to Build a Secure WWW Connection, SG24-4564

 • AIX Version 4.3 Differences Guide, SG24-2014

 • Load-Balancing Internet Servers, SG24-4993

 • Building the Infrastructure for the Internet, SG24-4824

 • The Internet & the World Wide Web: A Time-Saving Guide for New Users,
SG24-2499

E.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177

Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022

Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039

Tivoli Redbooks Collection SBOF-6898 SK2T-8044

AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040

RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 163

E.3 Other Publications

These publications are also relevant as further information sources:

 • LDAP: Programming Directory-Enabled Applications with Lightweight
Directory Access Protocol, ISBN 1-57870-000-0

 • X.500 Directory Services; Technology and Deployment, ISBN
1-85032-879-X

 • LDAP Version 3: The Maturing of the Internet Directory Standard, The
Burton Group, 1998 (may not be available for free)

 • The Advent of Directory-Enabled Computing v2, The Burton Group, 1995
(may not be available for free)

 • Directory-Enabled Networks Initiative, The Burton Group, 1997 (may not
be available for free)

Please also check Appendix A, “Other LDAP References” on page 139 for
more references.
164 Understanding LDAP

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 165

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
166 Understanding LDAP

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 167

168 Understanding LDAP

List of Abbreviations

ACL Access Control List

API Application
Programming Interface

ASN Abstract Syntax
Notation

CA Certificate Authority

CCITT Comite Consultatif
International
Telephonique et
Telegraphique

CDS Cell Directory Service
(DCE)

CRAM-MD5 Challenge-Response
Authentication
Mechanism - Message
Digest 5

DAP Directory Access
Protocol (X.500)

DARPA Defense Advanced
Research Projects
Agency

DAS Directory Assistance
Service

DCE Distributed Computing
Environment

DEN Directory Enabled
Networks

DES Data Encryption
Standard

DIT Directory Information
Tree

DN Distinguished Name

DNS Domain Name System

DSA Directory Services
Agent

DSS Directory & Security
Services
© Copyright IBM Corp. 1998
DTS Distributed Time
Service

EDI Electronic Data
Interchange

EJB Enterprise Java Beans

FTP File Transfer Protocol

GDA Global Directory Agent

GDS Global Directory
Service

GSO Global Sign-On

GSSAPI Generic Security
Service API

HTTP Hypertext Transport
Protocol

IAB Internet Architecuture
Board

IANA Internet Assigned
Numbers Authority

IBM International Business
Machines Corporation

IETF Internet Engineering
Task Force

IESG Internet Engineering
Steering Group

ISI Information Sciences
Institute

ISO International Standards
Organization

ISOC Internet Society

ITSO International Technical
Support Organization

ITU-T International
Telecommunications
Union -
Telecommunications

JDAP Java Directory Access
Protocol (context: Java
 169

LDAP Application
Programming Interface)

JDBC Java Database
Connectivity

JNDI Java Naming and
Directory Interface
(Sun)

LAN Local Area Network

LDAP Lightweight Directory
Access Protocol

LDIF LDAP Data Interchange
Format

MIME Multipurpose Internet
Mail Extensions

NDS Novell Directory
Services

NOS Network Operating
System

NSI Name Service Interface
(DCE)

OSF Open Software
Foundation

OSI Open Systems
Interconnection

RDN Relative Distinguished
Name

RFC Request for Comment

RPC Remote Procedure Call

SASL Simple Authentication
and Security Layer

SDK Software Development
Kit

SPI Service Provider
Interface

SQL Structured Query
Language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

TLS Transport Layer
Security

TME Tivoli Management
Environment

UMICH University of Michigan

URL Uniform Resource
Locator

WAN Wide Area Network
170 Understanding LDAP

Index

A
abbreviations 169
access control 132
Access Control List, see ACL
ACL 8, 68, 132
acronyms 169
Active Directory (Microsoft) 75, 149
API 4, 13, 20, 24, 44, 85, 132
Application Programming Interface, see API
ASN.1 19
asynchronous mode (API calls) 91
authentication 7, 43, 66, 68, 132
authentication methods 108
authentication operations 41
authorization 7, 43
availability 7, 69

B
Base64 encoding 44, 52
basic authentication 44, 66, 108
bibliography 163
Bigfoot 151
binding 20
branching the directory tree 62

C
C language API 20, 86
caching 131
Cell Directory Service (CDS) 131, 134
certificate 110
Certificate Authority (CA) 48, 67, 110
client/server model 4
client-side caching 131
Comite Consultatif Internationale de Telegraphique
(CCITT) 10
command line tools 50

ldapadd 117
ldapdelete 118
ldapmodify 117
ldapmodrdn 119
ldapsearch 116
security considerations 119

Communicator (Netscape) 17, 56
compare operations 40
confidentiality 43
© Copyright IBM Corp. 1998
Connectionless LDAP (CLDAP) 132
continuation reference 38
control operations 41
CRAM-MD5 45
criticality level 42

D
DANTE 151
Data Encryption Standard (DES) 49
data model 58
database 2
DB2 143
DCE

and LDAP 133
future LDAP integration 131, 136
security service 134, 137

Defense Advanced Research Projects Agency
(DARPA) 11
design 57

availability 69
data model 58
manageability 72
scalability 72
security 65

directory
and databases 2
and transactions 3
application-specific vs. common 9
as infrastructure 8
benefits of a common directory 9
directory-enabled applications 8
distributed 6
dynamic directory 24
entry 25
partitioned and replicated 6
searching 36
security 7
servers and clients 4
telephone 2

Directory Access Protocol (DAP) 11, 19
Directory Assistance Service (DAS) 12
directory design guidelines 57
Directory Information Tree (DIT) 21, 28, 49, 126,
133
directory schema 60
Directory Server (Netscape) 148
directory service 134
171

Directory-Enabled Networks (DEN) 16, 138
distinguished name (DN) 20, 22, 30, 99
Distributed File Service (DFS) 134
Distributed Time Service (DTS) 134
DIXIE 12
DNS 70, 123, 125, 134
Domain Name System, see DNS
Domino (Lotus) 146
dynamic directory 24, 132

E
Electronic Data Interchange (EDI) 16
eNetwork

LDAP Client 145
LDAP Directory 143
X.500 Directory 144

eNetwork Dispatcher (IBM) 70, 82
eNetwork LDAP Directory (IBM) 86
Engineering Steering Group (IESG) 139
Enterprise Java Beans (EJB) 125
entry 25
error codes 158
extended operations 41
extensibleObject 28
extensions to LDAP Version 3 23, 132

F
File Transfer Protocol (FTP) 120
firewall 7, 18
Four11 17, 151
FTP 10
functional model 35

G
Global Directory Agent (GDA) 134
Global Directory Service (GDS) 134
GSSAPI 45

H
hashtable (JNDI) 127
high availability 69, 80, 82
HP-UX (HP) 145
HTTP 10, 15, 18, 44, 120

I
IETF 11, 85, 123, 124, 131, 139
IMAP4 45, 67

information model 25
Information Sciences Institute (ISI) 45, 142
InfoSpace 151
integrity 43
internationalization 13
Internet Architecture Board (IAB) 139
Internet Assigned Numbers Authority (IANA) 139
Internet Draft (IETF Draft) 11, 20, 115, 139
Internet Engineering Task Force, see IEFT
Internet Explorer (Microsoft) 17, 56
Internet Society (ISOC) 139
ISO 7498 10
ISO 9594 11

J
Java 85, 124, 131
Java API Software Development Kit (SDK) 124
Java Database Connectivity (JDBC) 125
Java LDAP API (JDAP) 124
Java Naming and Directory Interface, see JNDI
JNDI 85, 124, 145

example program 127

K
Kerberos 41, 42, 45, 49, 66, 113
keyfile 110
keyring file 110, 120

L
LAN 1
language codes 24
language tags 132
LDAP

architecture 19
connectionless 132
data model 58
directory design guidelines 57
functional model 35
future 131
history 10
information model 25
interface for the GDA 135
interface to DCE security registry 137
introduction 1
models 24
naming model 28
proposed extensions 23
172 Understanding LDAP

protocol or directory? 14
roadmap 15
security model 42
server discovery 132, 133
standards 10
Version 2 12, 15, 16, 42, 44, 85, 105, 113
Version 3 13, 15, 16, 21, 28, 31, 42, 85, 93,
102, 105, 108, 113, 127, 153

LDAP Data Interchange Format, see LDIF
ldap_add() 117
ldap_controls_free() 106
ldap_count_entries() 95, 99
ldap_delete() 118
ldap_err2string() 104, 105, 108
ldap_first_attribute() 97
ldap_first_entry() 96
ldap_get_dn() 99
ldap_init() 88
ldap_memfree() 99, 106, 108
ldap_modify() 117
ldap_mordn2() 119
ldap_msgfree() 95
ldap_next_attribute() 97
ldap_next_entry() 96, 97, 99
ldap_open() 86, 88, 111, 114
ldap_parse_extended_result() 108
ldap_parse_result() 105, 106, 107
ldap_parse_sasl_bind() 108
ldap_perror() 105
ldap_result() 91, 99, 102, 103, 107
ldap_sasl_bind() 45
ldap_sasl_bind_s() 112
ldap_search() 93, 102, 116
ldap_search_s() 93, 95, 99, 100
ldap_search_st() 93
ldap_simple_bind() 91, 109
ldap_simple_bind_s() 86, 88, 112
ldap_ssl_start() 111
ldap_unbind() 87
ldap_value_free() 99, 106
ldapadd 115, 117
ldapdelete 115, 118
ldapmodify 115, 117
ldapmodrdn 115, 119
ldapsearch 115, 116
LDIF 50, 75
listing 36
Local Director (Cisco) 70
Lotus 141

Lotus Domino 146

M
manageability 49, 72
middleware software 137
migration planning 73
MIME 44
mkkf utility 110, 112, 120
models

functional 35
information 25
naming 28
security 42

multicomponent RDN 64
multithreaded model 113

N
Name Service Interface (NSI) 135
naming model 28
NDS (Novell) 75, 125, 149
NetWare domains (Novell) 73
network bandwidth 70
Network Information System (NIS) 125
network operating system (NOS) 9, 149
Notes (Lotus) 146

O
object class 21
object request broker (ORB) 10
objectClass 28
Open Software Foundation (OSF) 133
Open Systems Interconnect (OSI) 10, 14
OS/390 144
OS/400 144
OSI protocol stack 19

P
paged results 24
parsing search results 96
partitioning 6, 69
performance 7
Perl 115
POP3 45, 67
PostScript 2
proposed extensions 23
 173

R
reading 36
referrals 13, 24, 32, 38, 122, 132
relative distinguished name (RDN) 20, 23, 64, 119
Remote Procedure Call, see RPC
replication 6, 69
Request for Comments, see RFC
RFC 11, 12, 131, 142

1202 12
1249 12
1487 12
1521 45
1617 64
1738 122
1777 12, 15
1778 12
1779 12
1823 13, 85, 145
1959 12
1960 12
2222 45
2251 13, 15, 22
2252 13, 22, 28
2253 13, 22
2254 13, 23, 94, 96, 127
2255 13, 23, 85, 120
2256 13, 23, 28

root DSE 35
RPC 10, 133

S
S/Key 45, 66, 113
SASL 22, 42, 44, 45, 66, 87, 108, 142
scalability 72
schema 21, 27, 60, 61

subclassing 28
SDK 50, 86, 140, 150
search filter 20, 23, 39, 96, 116
searching 36
security 7, 13, 43, 65, 132

authentication 7, 41, 66, 68
authorization 7
Base64 encoding 44
basic authentication 44, 108
Certificate Authority (CA) 48
SASL 44
TLS 24, 42

security model 42

server discovery 132, 133
server side sorting 132
Service Provider Interface (SPI) 125
signed directory information 132
single threaded model 113
SMTP 45
Software Development Kit, see SDK
Solaris (Sun) 144, 145
sorting of search results 132
SSL 42, 47, 66, 108, 119, 142, 144, 146
standard schema 61
Structured Query Language (SQL) 4
subclassing 28
suffix 32, 61
Switchboard 151
synchronous mode (API calls) 91

T
TCP/IP 10, 12, 14, 19
telephone directory 2
The Open Group 133
third-party authentication 49
threads 113
threads in DCE 133
Tivoli 141, 147
Tivoli Management Region (TMR) 148
transaction 3
Transport Layer Security (TLS) 24, 42, 113, 142

U
uid attribute 78, 82
unbinding 20
Uniform Resource Locator (URL) 23, 120
University of Michigan 12, 86, 140, 150
update operations 40
URL API 123
userCertificate attribute 81
userPassword attribute 78, 82
UTF-8 22, 52

W
Warp Server domains (IBM) 73
white pages 2, 76
WhoWhere 151
Windows NT (Microsoft) 144, 145
Windows NT/95 domains (Microsoft) 73, 149
World Wide Web 15
174 Understanding LDAP

X
X.500 11, 19, 23, 61, 134, 144
X.521 11
X/Open 133
X/Open Directory Service (XDS) 135

Y
Yahoo! 17
yellow pages 2
 175

176 Understanding LDAP

© Copyright IBM Corp. 1998 177

ITSO Redbook Evaluation

Understanding LDAP
SG24-4986-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Independent Software Vendor _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Understanding LDAP SG24-4986-00

P
ri

n
te

d
 in

 t
he

 U
.S

.A
.

SG
24

-4
98

6-
00

	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. LDAP: The New Common Directory
	1.1 What is a Directory?
	1.1.1 Differences Between Directories and Databases
	1.1.2 Directory Clients and Servers
	1.1.3 Distributed Directories
	1.1.4 Directory Security

	1.2 The Directory as Infrastructure
	1.2.1 Directory-Enabled Applications
	1.2.2 The Benefits of a Common Directory

	1.3 LDAP History and Standards
	1.3.1 OSI and the Internet
	1.3.2 X.500: The Directory Service Standard
	1.3.3 LDAP: Lightweight Access to X.500

	1.4 LDAP: Protocol or Directory?
	1.5 The LDAP Road Map
	1.6 The Quick Start: A Public LDAP Example

	Chapter 2. LDAP Concepts and Architecture
	2.1 Overview of LDAP Architecture
	2.2 The LDAP Models
	2.2.1 The Information Model
	2.2.2 The Naming Model
	2.2.3 The Functional Model
	2.2.4 The Security Model

	2.3 Security
	2.3.1 No Authentication
	2.3.2 Basic Authentication
	2.3.3 Simple Authentication and Security Layer (SASL)

	2.4 Manageability
	2.4.1 LDAP Command Line Tools
	2.4.2 LDAP Data Interchange Format (LDIF)

	2.5 Platform Support

	Chapter 3. Designing and Maintaining an LDAP Directory
	3.1 Directory Design Guidelines
	3.1.1 Defining the Data Model
	3.1.2 Security Policy
	3.1.3 Physical Design

	3.2 Migration Planning
	3.3 Example Scenarios
	3.3.1 Small Organization
	3.3.2 Large Organization

	Chapter 4. Building LDAP-Enabled Applications
	4.1 LDAP Software Development Kits (SDKs)
	4.2 The C Language API to LDAP
	4.2.1 Getting Started
	4.2.2 Synchronous and Asynchronous Use of the API
	4.2.3 A Synchronous Search Example
	4.2.4 More about Search Filters
	4.2.5 Parsing Search Results
	4.2.6 An Asynchronous Example
	4.2.7 Error Handling
	4.2.8 Authentication Methods
	4.2.9 Multithreaded Applications

	4.3 LDAP Command Line Tools
	4.3.1 The Search Tool: ldapsearch
	4.3.2 The ldapmodify and ldapadd Utilities
	4.3.3 The ldapdelete Tool
	4.3.4 The ldapmodrdn Tool
	4.3.5 Security Considerations

	4.4 LDAP URLs
	4.4.1 Uses of LDAP URLs
	4.4.2 LDAP URL APIs

	4.5 The Java Naming and Directory Interface (JNDI)
	4.5.1 JNDI Example Program

	Chapter 5. The Future of LDAP
	5.1 The IETF LDAP Road Map
	5.1.1 Access Control Requirements for LDAP
	5.1.2 Scrolling View Browsing of Search Results
	5.1.3 LDAP Clients Finding LDAP Servers

	5.2 Distributed Computing Environment (DCE) and LDAP
	5.2.1 LDAP Interface for the GDA
	5.2.2 LDAP Interface for the CDS
	5.2.3 Future LDAP Integration

	5.3 Other Middleware Software
	5.4 The Directory-Enabled Networks Initiative

	Appendix A. Other LDAP References
	A.1 The Internet Engineering Task Force (IETF)
	A.2 The University of Michigan (UMICH)
	A.3 Software Development Kits
	A.4 Other Sources
	A.4.1 Vendors Mentioned in this Book
	A.4.2 LDAP, General
	A.4.3 Request for Comments (RFCs)
	A.4.4 Security

	Appendix B. LDAP Products and Services
	B.1 IBM Product Offerings
	B.1.1 IBM eNetwork LDAP Directory
	B.1.2 IBM eNetwork X.500 Directory for AIX
	B.1.3 IBM eNetwork LDAP Client Pack for Multiplatforms

	B.2 Lotus Domino
	B.3 Tivoli User Administration: LDAP Endpoint
	B.4 Other LDAP Server Products
	B.4.1 Netscape Directory Server
	B.4.2 Novell LDAP Services for NDS
	B.4.3 Microsoft Active Directory

	B.5 LDAP Enabled Clients and Applications
	B.6 LDAP Development Kits and Tools
	B.7 Public LDAP Services

	Appendix C. LDAP C Language API Functions and Error Codes
	C.1 C Language API Calls
	C.1.1 Functions to Establish and Terminate a Connection
	C.1.2 Session-Handling Functions
	C.1.3 Interacting with the Server
	C.1.4 Error Handling
	C.1.5 Analyzing Results
	C.1.6 Freeing Memory
	C.1.7 Other Functions

	C.2 LDAP API Error Codes

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

