
SG24-4936-00

Migrating from Systems Monitor for AIX to
TME 10 Distributed Monitoring

July 1997

This soft copy for use by IBM employees only.

International Technical Support Organization

Migrating from Systems Monitor for AIX to
TME 10 Distributed Monitoring

July 1997

SG24-4936-00

IBML

This soft copy for use by IBM employees only.

This soft copy for use by IBM employees only.

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 143.

First Edition (July 1997)

Take Note!

Before using this information and the product it supports, be sure to read the general information under
Appendix C, “Special Notices” on page 143.

This edition applies to TME 10 Distributed Monitoring Version 3.0.2 and 3.5 and to Systems Monitor for AIX
Version 2.1.2.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O.Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This soft copy for use by IBM employees only.

Contents

Figures . vii

Preface . xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii

Chapter 1. TME 10 Distributed Monitoring Overview 1
1.1 Distributed Monitoring History . 1

1.1.1 Distributed Monitoring Now . 2
1.1.2 Into the Future . 2

Chapter 2. Systems Monitor in Detail . 5
2.1 SNMP . 5
2.2 Systems Management with NetView for AIX and Systems Monitor 6

2.2.1 TME 10 NetView . 7
2.2.2 System Information Agent (SIA) . 7
2.2.3 Mid Level Manager (MLM) . 9
2.2.4 System Level Monitor (SLM) . 9
2.2.5 Systems Monitor’s Use of SNMP . 9

2.3 Using TME 10 NetView and Systems Monitor Tools 10

Chapter 3. TME 10 Distributed Monitoring in Detail 15
3.1 Introduction to the Tivoli Management Environment 15

3.1.1 Tivoli Management Regions . 16
3.1.2 Administrators and Policy Regions . 17
3.1.3 Management by Subscription . 18

3.2 Inside TME 10 Distributed Monitoring . 19
3.3 Under the Covers of TME 10 Distributed Monitoring 20

3.3.1 Creating a Monitor . 20
3.3.2 Displaying Events . 22

Chapter 4. Migration Methodology and Tools 25
4.1 Pre-Migration Planning . 25
4.2 The Overall Migration Picture . 26
4.3 Analyzing the Migration . 27
4.4 Systems Monitor and Sentry Can Co-exist! 31
4.5 Practical Migration Techniques . 31

4.5.1 Migration of a Small Configuration . 31
4.5.2 Migration of a Larger Configuration . 33

4.6 Semi-Automated Profile Migration . 35
4.6.1 The Sample Migration Script . 35
4.6.2 migrate_sysmon_config . 36
4.6.3 After Running the Migration Script . 41

Chapter 5. TME 10 Distributed Monitoring Examples 43
5.1 File System Monitoring Example . 44

5.1.1 Migration from Systems Monitor . 44
5.1.2 Different Ways to Display Monitor Events from TME 10 Distributed

Monitoring . 49
5.1.3 Sending Events to TME 10 Enterprise Console 49
5.1.4 Sending Events to TME 10 NetView . 61

 Copyright IBM Corp. 1997 iii

This soft copy for use by IBM employees only.

5.2 Print Subsystem Monitoring . 66
5.2.1 Monitoring with and/or Migration to Sentry 66
5.2.2 Automating Daemon Recovery . 67
5.2.3 Using TME 10 Tasks with TME 10 Distributed Monitoring 70
5.2.4 Comparing the Different Approaches 75

5.3 Monitoring CPU Utilization . 76
5.3.1 How the CPU Monitor Examples Work 77
5.3.2 Monitoring CPU with TME 10 Distributed Monitoring Using Shell

Scripts . 78
5.3.3 Monitoring UNIX CPU Utilization Using MCSL 81
5.3.4 The New Monitoring Collection in Action 87
5.3.5 Installing the UnixCPU Collection on Another TMR Server 91

5.4 File Monitoring Examples . 93
5.4.1 Monitoring ADSM Log Files . 93
5.4.2 Dynamically Named Log Files . 99

5.5 Migrating the Re-Arm Function . 102
5.5.1 An Approximate Equivalent of Re-Arm Using Sentry 103
5.5.2 A Closer Approximation to Re-Arm Using Sentry 104

5.6 Advanced Process Monitoring . 107
5.6.1 Monitoring Multiple Processes . 107
5.6.2 Monitoring Process Groups . 109

5.7 Hardware Alerting from AIX Error Report 112
5.7.1 Creating the Sentry Asynchronous Monitor Script 112
5.7.2 Installing the Error Notification Method 113

5.8 Generic File System Monitoring . 115
5.8.1 Monitoring with Systems Monitor . 115
5.8.2 Monitoring with and/or Migration to Sentry 115

5.9 SNMP Proxy Forwarding . 118
5.9.1 Monitoring with Systems Monitor . 119
5.9.2 SNMP Monitoring with and/or Migration to Sentry 119

5.10 Migrating Data Collection . 124
5.10.1 Installing the Data Collection Function 125
5.10.2 Collecting Monitor Data . 125
5.10.3 Extracting Logged Data from the Command Line 127

Chapter 6. Installation Notes and Trouble Shooting 131
6.1 Installation Notes . 131

6.1.1 Installation of the TME 10 Framework 131
6.1.2 Notes on Backup and Restore . 132
6.1.3 TME 10 NetView Installation . 132
6.1.4 Systems Monitor Setup . 132

6.2 Problems and Resolutions . 132
6.2.1 TME Installation Revision Levels . 132
6.2.2 Sentry Engine Not Running . 133
6.2.3 Sentry Monitors Not Working . 133
6.2.4 Other Problems . 134

Appendix A. Mapping SIA MIB Objects to Sentry Monitoring Collections . . 137

Appendix B. How to Get the Samples in This Book 141

Appendix C. Special Notices . 143

Appendix D. Related Publications . 145
D.1 International Technical Support Organization Publications 145

iv Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

D.2 Redbooks on CD-ROMs . 145
D.3 Other Publications . 145

How To Get ITSO Redbooks . 147
How IBM Employees Can Get ITSO Redbooks 147
How Customers Can Get ITSO Redbooks . 148
IBM Redbook Order Form . 149

Index . 151

ITSO Redbook Evaluation . 153

Contents v

This soft copy for use by IBM employees only.

vi Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figures

 1. Systems Monitor and Sentry Components and Functions 2
 2. Connections between Systems Monitor Components 6
 3. The NetView MIB Browser . 10
 4. The NetView Control Desk . 11
 5. A Typical TME 10 NetView Map . 12
 6. An APM File Monitor Definition . 13
 7. TME 10 Systems Monitor Configuration Application 14
 8. TME Architecture . 15
 9. TMR Components . 17
10. Hierarchy of Profile Managers . 18
11. Creating a Monitor . 20
12. Executing a Monitor Action . 21
13. An Event Pop-Up Message . 22
14. Sentry Notices . 23
15. Events Sent to the T/EC . 23
16. Events Arriving at TME 10 NetView . 24
17. Pieces of the Migration Puzzle . 26
18. An Example of the Systems Monitor Configuration Application Main

Panel . 32
19. Input for the Migration Script . 37
20. Log File from migrate_sysmon_config . 38
21. Sentry Profile Generated by migrate_sysmon_config Script 39
22. An Example of a Migrated File Monitor Table 39
23. An Example of a Migrated Command Script 40
24. Using the MIB Browser to Check MIB Extension Descriptions 41
25. Defining a File System Monitor Using MLM 45
26. Defining Threshold Actions for MLM . 46
27. Steps to Create a Sentry Profile . 47
28. Migration of an MLM Configuration Entry with migrate_sysmon_config . 48
29. Monitor Created by migrate_sysmon_config 48
30. Create Sentry_Administrator . 50
31. TME Desktop Window . 51
32. Create Rule Base . 51
33. Copy Default Rule Base to NetView Rule Base 52
34. Copy Rule Base . 52
35. Importing the Sentry Event Classes . 53
36. Import the Sentry Class Definition Files . 54
37. Compile the Rule Base . 54
38. Load the Rule Base . 55
39. Loading the Rule Base . 55
40. Adding Source . 56
41. Adding an Event Group . 57
42. Add Sentry Event Group . 57
43. Setting Event Group FIlters . 58
44. Assigning Event Group to Console . 59
45. Assigning Event Group to Sentry_Admin Console 59
46. TME 10 Distributed Monitoring Events Reaching the T/EC 60
47. Event Slots of a Received Event . 61
48. An Example of Sending an Alert to NetView Using the event Command 62
49. NetView_event_proxy Script . 63
50. NetView Event Generated from a Sentry Monitor 64

 Copyright IBM Corp. 1997 vii

This soft copy for use by IBM employees only.

51. SNMP_trap_proxy script . 65
52. Example of Using an SNMP Proxy . 66
53. Print Queue Monitoring and Restart Script 67
54. Run Program startsrc . 68
55. Running a TME Task from a Sentry Monitor Using wruntask 69
56. Selecting a Task to Execute . 69
57. Adding a Monitor to Watch the lpd Daemon 71
58. Defining User and Group ID for a Monitor 71
59. Setting IDs . 72
60. Creating a Task . 72
61. Editing a Task . 73
62. tll File with Changes . 74
63. Extract of wlsmon Output . 76
64. Operation of the CPU Monitors . 77
65. Output from vmstat Command . 78
66. cpuload.sh Script . 79
67. Running cpuload.sh From a Numeric Script 80
68. cpustat.sh Script . 81
69. cpu.msg File . 84
70. Monitor Definiton File, cpu.csl (Part 1 of 2) 85
71. Monitor Definiton File, cpu.csl (Part 2 of 2)) 86
72. TME 10 Distributed Monitoring Profile . 87
73. Adding a New Monitor . 88
74. About This Monitor . 88
75. Options for the Monitor . 89
76. Trigger Options of the Monitor . 89
77. Assign an Indicator Collection to the Profile 90
78. Operation of the Indicator Icon . 90
79. Selecting the Graphical Monitoring Task 92
80. Graphical View of Historical UNIX CPU Data 93
81. adsm_script Monitoring Script for Systems Monitor 95
82. Systems Monitor Configuration for ADSM File Monitoring 96
83. SNMP Trap Generated by ADSM File Monitoring 97
84. Migrated File Monitor . 98
85. Pop-up Notification of ADSM Error Message 99
86. Monitoring Dynamically Named Log Files with Systems Monitor 100
87. First Monitor Extracts Daily Log File . 101
88. Second Monitor Analyzes Log File for Error Messages 101
89. Threshold and Re-Arm Function . 102
90. Creating a Re-Arm-Like Capability with Response Levels 104
91. An Example of Providing Re-Arm within a Sentry Monitor 105
92. Defining Monitors to Use the sentry_rearm Script 106
93. Shell Script to Check Multiple Processes 108
94. Configuration File for check_processes 108
95. Example of Monitoring Process Groups, Database Processes 110
96. process.msg File . 110
97. process.csl File . 111
98. Definition of the Asynchronous Monitor Using Channel errpt 113
99. New Method for AIX Error Notification 113
100. Sentry Alert Caused by Alertable AIX Error Report Entry 114
101. sentry_filecheck Script (Part 1 of 2) . 116
102. sentry_filecheck Script (Part 2 of 2) . 117
103. Using the All Filesystems Monitor . 118
104. Alert from All Filesystems Monitor . 118
105. SNMP Monitor Using Symbolic Names 119

viii Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

106. User-Specified SNMP Monitor . 120
107. Creating a Sentry Proxy Endpoint . 121
108. Setting the Environment for Sentry Proxy Endpoint 122
109. Sentry Profile for Proxy Monitoring . 123
110. Sentry Proxy Endpoint WIndow . 124
111. Indicator Collection Messages . 124
112. Defining an Always Response . 125
113. Defining the Logging Task . 126
114. Examples of the wgdread Command . 128
115. convert_times Perl Script . 128
116. Extracting Historical Data with Date and Time Conversion 129
117. sentry_cleanup Script . 135

Figures ix

This soft copy for use by IBM employees only.

x Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Preface

This redbook describes the evolution of TME 10 Distributed Monitoring
(previously known as Tivoli/Sentry), the Tivoli Management Environment
application for monitoring the behavior of remote systems.

The redbook shows how to migrate from the previous SystemView monitoring
application, Systems Monitor for AIX, and explains the different capabilities of
the old and new approaches. It will help you position TME 10 Distributed
Monitoring and TME 10 as a solution for enterprise systems management.

Numerous practical examples are used to illustrate the migration process and to
show the capabilities of the latest version of TME 10 Distributed Monitoring.

All scenarios in this redbook are documented in a way that service providers
can use the examples as a base for client implementations.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the Systems Management and Networking ITSO Center, Raleigh.

Rob Macgregor is a technical specialist at the Systems Management and
Networking ITSO Center, Raleigh. He writes extensively and teaches IBM
classes worldwide on systems management and network security. Before
joining the ITSO three years ago, Rob worked in the UK technical support center,
dealing with network and systems management products.

Stefan Uelpenich is an Advisory ITSO Representative, working as a project
leader at the Systems Management and Networking ITSO Center, Raleigh. He
writes extensively and teaches IBM classes worldwide on all areas of systems
management. Before joining the ITSO, he worked in IBM Germany′s
Professional Services organization as an Advisory I/T Architect for Systems
Management, consulting major IBM customers.

Andreas Kuffer is a systems management specialist in IBM Germany. He has
three years of industry experience in the area of UNIX and networking. His
areas of expertise include UNIX system administration and open network
management.

Peter Glasmacher is a Consultant in IBM Germany. He has about 15 years of
experience in networking, focusing on systems management for the last seven
years. He has worked at IBM for 24 years. His areas of expertise include
network design/implementation, security consulting and design/implementation
in the Systems Management arena.

Graeme Naysmith is an Advisory I/T Specialist working in Warwick, England. He
joined IBM in 1985 and has four years AIX/UNIX monitoring and automation
experience. His areas of expertise include network and systems management.
Graeme is currently involved in the migration of SystemView applications to the
TME 10 product set.

Thanks to the following people for their invaluable contributions to this project:

 Copyright IBM Corp. 1997 xi

This soft copy for use by IBM employees only.

David Boone, Linda Robinson, Shawn Walsh, Gail Wojton and Paul Braun
Systems Management and Networking ITSO Center, Raleigh

Greg Kattawar, Astrid Burnette, Sean Starke and Carol Corley
Tivoli Systems, Austin

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 153 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

xii Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Chapter 1. TME 10 Distributed Monitoring Overview

In this chapter we discuss the products that make up TME 10 Distributed
Monitoring as they appeared before the Tivoli merger, now (July 1997), and
forward into the future. We will limit the discussion to distributed management
in open, heterogenous environments. The Netview/390 product is not discussed
in this redbook.

1.1 Distributed Monitoring History
Before the Tivoli merger, IBM provided distributed monitoring capabilities with
its SystemView product. For heterogenous environments, NetView for AIX and
IBM Systems Monitor provided the tools and applications for distributed
management based on the Simple Network Management Protocol (SNMP).
SNMP is an IP based protocol and, although some SystemView applications
implemented SNMP on other transports, Systems Monitor was limited to TCP/IP
networks only. Systems Monitor was in three parts:

 1. The System Information Agent (SIA), which provided system instrumentation
and file monitoring functions.

 2. The Mid-Level Manager (MLM), which provided SNMP polling, thresholding,
automation and event filtering.

 3. The System-Level Manager (SLM), which provided the MLM function locally
on a system with the SIA also installed.

Meanwhile, Tivoli systems had developed the Tivoli Management Environment
(TME), an implementation of the Common Object Request Broker Architecture
(CORBA) optimized for systems management tasks. Built on the TME base
platform are a number of applications for distributed system deployment,
administration and monitoring. The primary monitoring application was called
Tivoli/Sentry. Sentry used the framework to distribute system threshold
definitions to monitoring code located on the target systems. The framework
also provides facilities for alerting administrators about the status of monitors
and executing automation tasks.

Apart from the different mechanisms used by the two products for control and
alerting, there are also significant philosophical differences. Systems Monitor
SIA is embedded into the system, directly accessing performance and status
information and exposing it in the form of an SNMP MIB. Sentry, on the other
hand, is designed to tread softly on its host system. It gets the information for its
monitors from commands and interfaces provided by the system and
applications, instead of going under the covers to get the data. This approach
may be less efficient than the embedded method, but it is much less prone to
failure due to system changes.

Figure 1 on page 2 shows the relationships between the different components of
Systems Monitor and Sentry and the functions that each performs.

 Copyright IBM Corp. 1997 1

This soft copy for use by IBM employees only.

Figure 1. Systems Monitor and Sentry Components and Functions

1.1.1 Distributed Monitoring Now
Following the merger of Tivoli into IBM, in March 1996, the TME 10 family of
products was born. This is based on the pre-existing TME architecture, with
selected SystemView products imported into it. The TME 10 roadmap sets a
number of ambitious objectives, staged over a two-year timescale. The initial
phase integrated the marketing of the two systems management product lines,
by aligning terms and conditions and axing products that are no longer strategic.
The second phase seeks to integrate the remaining products using the TME
framework as a base.

Under the first phase of the roadmap, TME 10 Distributed Monitoring is a
bundling of Tivoli/Sentry with Systems Monitor for AIX.

1.1.2 Into the Future
Tivoli Systems’ objective is to deliver consistent, feature-rich, multi-platform
solutions based on the Tivoli framework. After technical assessment of the two
distributed monitoring product lines, Tivoli has decided on the following strategy
for the second phase:

 1. TME 10 Distributed Monitoring is simplif ied to contain only the Tivoli/Sentry
function. This is the prime application for monitoring of distributed systems.

2 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

 2. Systems Monitor Mid-Level Manager (MLM) is retained and becomes a
component of TME 10 NetView for AIX. MLM is designed to perform polling
and network discovery on behalf of NetView. This decision affirms its role as
the key to improving the scalability of NetView.

 3. Systems Monitor System Level Manager (SLM) and System Information
Agent (SIA) are withdrawn. SIA will be available for download from the
World Wide Web for several months to assist migration.

The objective of this book is to describe how to migrate from Systems Monitor to
TME 10 Distributed Monitoring. We describe a methodology for planning and
implementing the migration process and show examples of using TME 10
Distributed Monitoring in various configurations. But first we describe how the
two products work.

Chapter 1. TME 10 Distributed Monitoring Overview 3

This soft copy for use by IBM employees only.

4 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Chapter 2. Systems Monitor in Detail

In this chapter we describe the detailed operations of Systems Monitor. If you
are familiar with the product you may wish to skip this section. If, however, you
do not understand the detailed operation of it we recommend studying this
section, because otherwise the migration details in Chapter 4, “Migration
Methodology and Tools” on page 25 will not make sense.

2.1 SNMP
We already mentioned in 1.1, “Distributed Monitoring History” on page 1, that
Systems Monitor uses SNMP as its management protocol. The SNMP protocol
defines a manager/agent relationship and a group of commands to retrieve
information from agents running on managed nodes.

SNMP-based systems management uses a client/server approach.

• The manager (client)

A manager acts as a client application that controls its management domain,
usually nodes within a TCP/IP-based network, and performs monitoring
tasks.Typical SNMP managers are TME 10 NetView and TME 10 NetView Mid
Level Manager (formerly IBM Systems Monitor MLM). Managers control the
network by polling remote nodes for system information and status. In
addition a manager is capable of receiving asynchronous events called
traps. Based on the polled or received information, the manager application
executes defined actions such as operator notification or restart actions.

• The agent (server)

An agent provides information to the Manager. It is responsible for
recording and maintaining system data that can be retrieved by the manager
using the polling mechanism described above. In addition, the agent may
warn of critical conditions by sending traps to the manager application.

Although it is common to refer to the whole management process as SNMP, in
fact SNMP refers only to the protocol used to communicate between agent and
manager. SNMP stands for Simple Network Management Protocol. SNMP
defines the relation between agent and manager and provides the commands to
get information from the agent and set certain data.

SNMP polling requests reference an abstract database, called the Management
Information Base, or MIB. The MIB defines a hierarchy of managed objects.
When the SNMP manager polls for (using an SNMP GET request) the value of a
MIB object, the SNMP agent is responsible for returning the value of it as a
response. In fact, the value that is returned is of an instance of the object. An
object can have multiple instances, thereby allowing tabular information to be
maintained. Updates are handled in the same fashion; the manager specifies
the new value of a MIB instance in an SNMP SET request and the agent is
responsible for updating the managed system.

Originally, SNMP was introduced to perform network management. Thus, the
basic MIB provided with most SNMP agents concentrates on network-related
information and the data that is useful for systems management purposes is very
limited. Fortunately, the MIB structure permits you to extend its scope without

 Copyright IBM Corp. 1997 5

This soft copy for use by IBM employees only.

limit, so it is possible to create an SNMP agent that will handle any type of
information you choose. Sometimes this is achieved by rewriting the agent
code, but normally an SNMP agent implements a subagent interface. This is an
API that allows extension code to be plugged into the base agent to provide
extended MIB support. There are several different subagent interface flavors.
The most common are the Distributed Programming Interface (DPI) and the
SNMP Multiplexor (SMUX).

2.2 Systems Management with NetView for AIX and Systems Monitor
To allow systems management based on SNMP, various elements are involved.
Figure 2 shows the flow between the different parts of a distributed management
environment using IBM Systems Monitor MLM and SIA and TME 10 NetView.

Figure 2. Connections between Systems Monitor Components

The elements of a Systems Monitor distributed monitoring environment are:

• NetView for AIX

• Systems Monitor MLM

• Systems Monitor SIA

• Systems Monitor SLM

• Systems Monitor Configuration Application (smconfig)

6 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

2.2.1 TME 10 NetView
NetView for AIX (now called TME 10 NetView) is the SNMP Manager and focal
point for distributed networks. It provides a graphical end user interface.
NetView is capable of discovering new nodes in a network and produces
graphical representations of the network, called maps. You can perform limited
systems management tasks with NetView for AIX. NetView for AIX also provides
the base function for the Systems Monitor graphical user interface, smconfig,
which allows you to configure MLM, SLM and SIA agents from a central point.

2.2.2 System Information Agent (SIA)
The System Information Agent (SIA) is an SNMP SMUX Subagent. The SIA
extends the standard MIB database by adding large numbers of system-related
variables. These variables are dependent on the system where the SIA
executes. System Information Agents are available for the following platforms:

• AIX
• OS/2
• SunOS
• SUN-Solaris
• HP-UX
• NCR UNIX

The SIA MIB differs in the quantity of information it can provide depending on the
platform it is running on. In addition, SIA can send traps to any SNMP manager
or to the Systems Monitor SLM or MLM. Note that the SIA does not, itself, have
any management capability, in the sense of querying the MIB for thresholding
and data collection. Systems Monitor provides the SLM and MLM to perform
these functions in a distributed way.

2.2.2.1 SIA MIB Field Meanings
The SIA has a large extended MIB. For effective system management, we have
to select the most useful objects from it. The following table describes the
different groups within the SIA MIB and summarizes their functions. The
command column shows the command that could be issued locally to find the
information provided by the MIB variable.

Chapter 2. Systems Monitor in Detail 7

This soft copy for use by IBM employees only.

Table 1. SIA MIB Tables

8 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

2.2.2.2 SIA File Monitor and Command Tables
Two other important functions of SIA are the File Monitor table and the
Command table. The File Monitor table allows you to monitor the characteristics
of a file for changes and also to monitor the data in a file searching for specific
strings. The Command table allows you to extend the data provided by the SIA
by executing any line command. The output from the command is returned as
the response to an SNMP get request.

2.2.3 Mid Level Manager (MLM)
The TME 10 NetView Mid Level Manager (formerly IBM System Monitor Mid
Level Manager) is a distributed Network Manager. It collects information and
receives traps from any other SNMP agent (not only SIAs). It provides
thresholding and filtering functions so that you can use MLM to poll for problems
and then send them as SNMP traps to a central SNMP manager, or take
automated action. Other significant capabilities of the MLM are its polling and
discovery features. The MLM can poll a group of nodes for status purposes and
discover new nodes in its subnet. This reduces the load on TME 10 NetView and
allows a true distributed management of SNMP nodes.

Although Figure 2 on page 6 shows the monitored node as a Systems Monitor
SIA agent, in fact any node with a standard or extended SNMP agent can be
monitored using MLM.

2.2.4 System Level Monitor (SLM)
The System Level Monitor (SLM) runs on a node where the SIA is installed and
offers thresholding, analysis and filtering of information for that local node.
Functionally, the SLM is identical to the MLM, except for the following
restrictions:

 1. Node discovery is not supported.

 2. Status monitoring of remote nodes is not supported.

 3. Thresholding is only performed on the local node.

 4. Trap reception from another node is not possible.

2.2.5 Systems Monitor’s Use of SNMP
As you can see, all components of Systems Monitor use SNMP to exchange
information:

• Both NetView and MLM use SNMP get requests to poll MIB variables from
their managed agents.

• NetView and the GUI component of Systems Monitor, smconfig, use SNMP
set requests to configure and control the MLM and SLM. SNMP set requests
are also used to configure the Command table and File Monitor table of the
SIA.

SNMP agents, which are required on both manager and agent nodes, use traps
to send unsolicited information to their assigned manager. In case of an MLM
being the manager, these traps can be forwarded to an upper-level manager
such as NetView or used to trigger systems management actions on behalf of
the MLM. This allows, in addition to the MLMs polling capabilities, some offload
of management tasks to a local network segment, reducing the required
bandwidth.

Chapter 2. Systems Monitor in Detail 9

This soft copy for use by IBM employees only.

Systems Monitor applications offer various ways to access, display and process
the collected data. We will discuss the different ways to work in an SNMP-based
distributed environment.

2.3 Using TME 10 NetView and Systems Monitor Tools
There are a number of tools for monitoring and controlling a Systems Monitor
configuration:

MIB Browser A MIB Browser lets you browse and set MIB variables on
a target node. You can enter the address of a node you
want to examine directly into the browser dialog or you
may select a node in one of NetView’s graphical network
representations (maps). TME 10 NetView comes with an
integrated MIB Browser, giving you a dialog like the one in
Figure 3, which can be used in conjunction with several
other features of TME 10 NetView.

Figure 3. The NetView MIB Browser

Control Desktop The control desktop is the final sink for traps forwarded to
TME 10 NetView. By default, all traps received by TME 10
NetView that are not directly intercepted by other TME 10
NetView applications will be directed to the control
desktop. The control desktop offers various filter
capabilities. In addition you may launch more than one

10 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

desktop and direct filtered trap information to those
desktops.

Figure 4. The NetView Control Desk

NetView Maps The main TME 10 NetView tool you will use is its various
graphical representations of the network. NetView
displays the entire network it discovers in a group of
maps. These maps show the status of the nodes in your
network and are updated dynamically. TME 10 NetView
inserts newly discovered nodes into the correct maps.
TME 10 NetView then display the node symbol in different
colors according to the actual status of the node, as
determined by regular polling.

Chapter 2. Systems Monitor in Detail 11

This soft copy for use by IBM employees only.

Figure 5. A Typical TME 10 NetView Map

APM APM, short for Agent Policy Manager, is another useful
application of TME 10 NetView. You can customize TME 10
NetView to automatically detect MLMs in your network and
distribute managment duties automatically to those MLMs.
If you decide to do so, NetView will offload discovery and
status polling to discovered MLM nodes. You can offload
status polling, discovery or both. TME 10 NetView then
receives every change in the subnet controlled by an MLM
via traps. In a distributed environment, where MLMs
control subnets, APM helps you to distribute monitors
across the network. APM provides you with dialogs to
define SIA file monitors and MLM/SLM threshold
definitions for groups of nodes. These groups are actually
dynamic node collections. You define the collections by
specifying the characteristics that nodes in the group
share. APM will apply the monitors you define to the
current group of nodes in the collection and will update all
of them whenever you change the monitor definitions. It
will also apply the current monitor set to any nodes that
are dynamically added to the node collection. Figure 6 on
page 13 shows a typical APM configuration screen,
defining a file monitor on a collection of SIA nodes.

12 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 6. An APM File Monitor Definit ion

smconfig The configuration details as well as the thresholds and
monitors you define are held in a configuration file on the
target node where Systems Monitor components reside.
APM provides one way to update the configuration from a
central point. Systems Monitor also provides a graphical
user interface, the Systems Monitor Configuration
Application (see Figure 7 on page 14).

.

Chapter 2. Systems Monitor in Detail 13

This soft copy for use by IBM employees only.

Figure 7. TME 10 Systems Monitor Configuration Application

This GUI is the easiest way to update the configuration of individual Systems
Monitor agent nodes. The configuration information itself is organized into MIB
tables and the GUI provides separate dialogs for each of the tables.

This has been a very brief introduction to the functions and components of
Systems Monitor. For more details about the product and examples of its use,
refer to IBM Systems Monitor Anatomy of a Smart Agent, SG24-4398.

14 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Chapter 3. TME 10 Distributed Monitoring in Detail

In this chapter we describe the detailed operations of TME 10 Distributed
Monitoring (previously called Tivoli/Sentry). If you are familiar with the product
you may wish to skip this section. If, however, you do not understand the
detailed operation of it we recommend studying this section, because otherwise
the migration details in Chapter 4, “Migration Methodology and Tools” on
page 25 will not make sense.

TME 10 Distributed Monitoring provides monitoring functions for a range of UNIX
platforms plus Windows NT. In the latest release (TME 10 Distributed Monitoring
3.5) it also supports Novell NetWare R3 and R4 servers. Sentry is based on the
Tivoli Management Environment and it uses TME functions for many operations,
such as deploying monitors to distributed systems, defining monitoring policies
and sending events.

To have a good understanding of any TME application, you need to understand
the function provided by the TME platform. We briefly introduce the platform
here, but for a fuller treatment you may want to refer to TME 10 Cookbook for
AIX, SG24-4867 or Understanding Tivoli′s TME 3.0 and TME 10, SG24-4948.

3.1 Introduction to the Tivoli Management Environment
The Tivoli Management Environment (TME) contains a distributed object-oriented
infrastructure, a set of tightly integrated systems management applications, and
a set of interfaces. The interfaces include a GUI for simple control, an extensive
command line interface that makes it easy to perform batch operations and
automation, and a set of APIs to allow other applications to be integrated into
the framework.

Figure 8 shows a schematic view of TME.

Figure 8. TME Architecture

The Tivoli Management Framework, also referred to as the platform is
fundamental to everything that a TME application does. It is a distributed object

 Copyright IBM Corp. 1997 15

This soft copy for use by IBM employees only.

request broker (ORB) implementation, based on the Common Object Request
Broker (CORBA) standard. An object request broker is a function that allows
object-oriented programming techniques to be applied in a distributed
environment. The benefit of an object-oriented approach for heterogeneous
systems management is that the real world configuration can be masked. An
application just needs to know the interface definition of an object (the data it
exposes and the methods it provides). The problems of implementing the
method on NT or Solaris or AIX or whatever are encapsulated within the object
itself.

In addition to the base ORB functions, the TME framework provides a number of
other services, for example:

• Administration functions

• Security (authentication and access control)

• Transaction control

• Packaging and distribution functions

It is these capabilities that make TME a specialized systems management
environment. As we go on to describe the operation of Sentry you will see how
the platform functions simplify the creation of an application.

3.1.1 Tivoli Management Regions
We have said that TME provides a distributed framework for systems
management applications, but how does that look in practice? Systems within
the framework are placed within Tivoli Management Regions (TMRs). A TMR is
comprised of one server system and a number of clients, or managed nodes.
Each system runs an object request broker (the oserv daemon), and an
application on one system within the TMR can invoke a function on any other
system by using the ORB services.

For many operations, all the systems in the TMR are peers. Why, then, is one
designated as the TMR server? The answer is that certain key functions require
a single point of reference, which the server provides. The main functions
provided by the server are object location services and security controls. Some
applications also use the server as a default location if they have data or code
that does not need to be present in all managed nodes.

Practical considerations limit the number of managed nodes within a TMR to
about 200. To manage a larger population of nodes, TMRs have to be
interconnected. The TMR server is responsible for communicating with the
server in an adjacent TMR.

The TME platform is a sizeable piece of code, which may not be desirable or
possible to run on every system you want to manage. To deal with this case,
you can use PC managed nodes. A PC managed node is a small piece of code
that runs on NetWare, OS/2, and all types of Windows systems. It implements a
simple endpoint function for the most commonly required TME applications,
software distribution and in certain cases user administration.

Although the PC managed node meets the basic requirements for desktop
systems, it is not very flexible and it introduces some problems of security and
maintainability. The answer, which will appear throughout the Tivoli product
range during 1997, is the Lightweight Client Framework (LCF). This provides

16 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

support for many of the Tivoli APIs, but does so with a minimal disk footprint and
without any installation or pre-definition required. Figure 9 on page 17 shows
how TMRs are put together.

Figure 9. TMR Components

3.1.2 Administrators and Policy Regions
If you want to use any of the Tivoli applications you need an administrator ID.
This ID is not a regular system ID, although TME uses a standard system user ID
and password to provide authentication. In other words, you prove your
credentials by providing your system ID and password. TME then maps that ID
onto an administrator ID. What this means is that you may have root access to
one of the systems in the TMR, but that does not necessarily give you any TME
authorization. Conversely, you can perform tasks that would normally need root
access using a regular personal user ID, if your TME access permits it.

Access controls in TME are very granular. Every object (whether a real
resource, such as a managed node, or a logical entity, such as a file package or
a system monitor) is created within a Policy Region. Each administrator holds
specific authorization roles within the policy region. So, for example, an
administrator may have authority to update Sentry monitors on one group of
systems, but not on another.

Chapter 3. TME 10 Distributed Monitoring in Detail 17

This soft copy for use by IBM employees only.

Authorization roles are also applied at the TMR level. If you have a particular
role in the TMR, it overrides your authorization at the policy region level.

3.1.3 Management by Subscription
With Systems Monitor it is possible to modify the monitors for an individual
system, so that all systems can be different. It is also possible to use APM to
set a monitoring policy and apply it to a group of nodes (see 2.3, “Using TME 10
NetView and Systems Monitor Tools” on page 10). By contrast, in TME, all
applications are configured based on policy.

The way this works is a concept called management by subscription. All
application functions are configured using profiles in the oserv database. The
contents of a profile depend on the application that created it. For example, a
TME 10 Distributed Monitoring profile would contain system monitoring details,
whereas a TME 10 Software Distribution profile would contain file package
descriptions. Profiles are contained in objects called profile managers. Nodes
can be subscribed to these profile managers and, when a profile is distributed, it
is applied to all of the subscribed nodes.

You can also create hierarchies of profile managers, by subscribing one profile
manager to another. This provides a very flexible way to have centralized
management for some elements of a system and distributed management for
others. Figure 10 shows an example of an organization that has a number of
workstations. There are some Sentry monitors that are applied to all of the
workstations. However, some parts of the organization have specific monitoring
requirements. The Finance department, for example, uses an RDBMS, so they
want monitors to check that it is running correctly. Over in the Research
department they run memory intensive analyses, so they need to keep an eye on
swapping activity. The hierarchy in the diagram allows this environment to be
created with minimum effort, each monitor and each node subscription being
defined only once.

Figure 10. Hierarchy of Profi le Managers

18 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

3.2 Inside TME 10 Distributed Monitoring
TME 10 Distributed Monitoring gives you the capability to create monitors for
many different aspects of a TME managed node. It is installed like any other
TME application, by selecting Desktop , Install and then Product from the TME
desktop or using the winstall command. This installs a number of components.
The main ones are:

• The Sentry engine. This is the process that actually performs the monitoring.
All monitors are executed locally on the managed node (except for the
special case of proxy monitors). The Sentry engine is a timer-driven
program that runs as a background task (as a daemon in the case of UNIX,
as a service on NT). Every minute it wakes up and processes any monitors
that are queued for execution at that time.

• Endpoint classes. These are object classes and methods that are installed
and run on the managed node and are responsible for updating the Sentry
engine whenever monitor changes are distributed.

• Kennel classes. These are object classes and methods that are installed on
the server. They perform the defined actions when a Sentry monitor hits a
threshold.

Each monitor is in the form of a command or program that returns a result. The
monitor result is tested against a number of threshold levels, any of which can
have actions associated with it. There are three error threshold levels, named
warning, severe, and critical in order of increasing scariness. There is one other
level defined: normal triggers an action when the result does not indicate a
problem. Finally, there is a threshold level named always that is triggered
regardless of the test result. It would be possible for a single monitor to include
definitions for all of these threshold levels, but normally only one or two of them
are appropriate. In these cases the other levels can be left undefined.

When a monitor triggers a threshold there are a number of actions available:

• An administrator can be notified, via a TME notice or pop-up message.

• An indicator can be set on the TME desktop.

• An event can be sent to the TME 10 Enterprise Console.

• Automated action can be taken, such as a program or a TME task.

3.2.1.1 Monitoring Collections
Sentry can monitor UNIX, NT and NetWare systems. Although the Tivoli
Management Environment provides a consistent way to invoke monitoring,
regardless of the system platform, the monitors themselves differ from one
platform to another. Sentry reflects these variations by placing monitors into
groups called Monitoring Collections. Each collection contains a group of related
monitor definitions. You have to install the collections you need, dependent on
the types of systems you want to manage and the applications they are running.

The monitoring collections are defined in the oserv database on the server only.
When a monitor is distributed the code appropriate to the particular platform is
sent to the managed node for processing.

Chapter 3. TME 10 Distributed Monitoring in Detail 19

This soft copy for use by IBM employees only.

3.3 Under the Covers of TME 10 Distributed Monitoring
Let us now look in some more detail at the way that Sentry operates. We will
divide the operation into two steps:

 1. Creating a monitor

 2. Executing a monitor

3.3.1 Creating a Monitor
Figure 11 shows how a monitor is instantiated on a managed node.

Figure 11. Creating a Monitor

 1. The administrator creates a monitor profile using the GUI or the waddmon
CLI command. The profile can contain multiple monitor definitions. Each
monitor is actually an instance of an object class, stored in the server oserv
database.

 2. The administrator distributes the profile, either directly or by scheduling it as
a background task. The TME platform provides facilities for creating and
distributing Change Control Management System (CCMS) profiles, which are
effectively a package of code and data containing the instructions for the new
monitor. Because this process is using a standard platform function, it can
benefit from features such as mdist (multiplexed distribution), which will
reduce network load and minimize repeated transmissions.

20 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

 3. The distribution process kicks off the monitor installation by invoking a
Sentry endpoint method on the target managed node.

 4. The endpoint method updates the Sentry engine with the new monitor profile.

3.3.1.1 Executing a Monitor
Sentry monitors start to operate as soon as they are installed in the Sentry
engine. The minimum polling interval is one minute, so the Sentry engine wakes
up at one minute intervals and looks to see what monitors are waiting in that
particular time slot. It is possible to overload the Sentry engine, by giving it
more monitors than can be executed within a one-minute window. If this
happens, it is possible that it will never catch up. The moral of this is: make
sure that the monitors will run in a reasonable timescale, and do not set
unrealistically short polling intervals.

We discuss how to detect and deal with this problem in Chapter 6, “Installation
Notes and Trouble Shooting” on page 131.

When the monitor detects a result that triggers one of the defined response
levels, it will cause an action to be taken. Some of these actions, such as local
logging or local command execution, can be executed directly on the managed
node. However, most actions involve invoking a method on another node in the
TMR. This is where the kennel classes come into play.

Figure 12 shows what happens.

Figure 12. Executing a Monitor Action

Chapter 3. TME 10 Distributed Monitoring in Detail 21

This soft copy for use by IBM employees only.

 1. The Sentry engine invokes a method call on the TMR server. Calls to a
remote ORB contain an object reference and a method invocation. In this
case the object is the monitor instance and the method is whatever action is
defined in the monitor. The monitors are instantiated on the TMR server, so
that is where the invocation is made.

 2. The action method invokes the desired action(s), such as updating an
indicator icon, running a task, sending e-mail, etc. These actions are,
themselves, method invocations that can be invoked on whichever TME node
is appropriate.

3.3.2 Displaying Events
There are several ways of displaying events using TME 10 Distributed
Monitoring. Within each monitor you can define that events are sent to any
combination of the following:

• The TME desktop

• A TME Notice group

• The Tivoli Enterprise Console (T/EC)

• A logfile

• Via a mail message

Events may be sent to any predefined adminstrator.

Because you can also execute TME tasks or programs as a result of a monitor
being triggered, you can also send events to other event handlers. In this book
we will show how to do this to send events to TME 10 NetView, for example.

3.3.2.1 Generating Pop-Up Messages
A pop-up message can be defined to appear on any TME administrator’s
desktop, as shown in Figure 13.

Figure 13. An Event Pop-Up Message

3.3.2.2 Notice Groups
Notice groups are a TME facility for storing, organizing and presenting event
information. Sentry has the capability to send alerts to specific notice groups:
These are:

• Sentry

• Sentry-log

• Sentry-urgent

22 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

• SentryStatus

When you define a TME administrator, you can specify which notice groups they
will be subscribed to. An event sent to a notice group can be read when
convenient and will not produce a pop-up, although the Notices icon changes to
show that unread notices have arrived (see Figure 14).

Figure 14. Sentry Notices

3.3.2.3 The TME 10 Enterprise Console (T/EC)
The pop-up and notices facilities are a standard part of the TME platform. T/EC,
on the other hand, is an additional TME application specifically designed for
handling event data. T/EC uses an RDBMS to organize events and it is built
around a powerful rules engine that allows events to be correlated regardless of
generation time and source. These rules provide filtering of potentially high
numbers of events (see Figure 15).

Figure 15. Events Sent to the T/EC

Chapter 3. TME 10 Distributed Monitoring in Detail 23

This soft copy for use by IBM employees only.

3.3.2.4 TME 10 NetView
TME 10 NetView provides an event handling process, which displays SNMP traps
received from the network and internally generated NetView events. If you are
migrating from a Systems Monitor environment, you already use TME 10 NetView
for centralized event display. If you want to keep using NetView in this way,
Sentry provides two techniques for passing events into NetView:

 1. You can use a TME task to run the NetView event command directly on the
system where NetView is running.

 2. You can use an automatic command to send an SNMP trap to NetView.

We will show examples of how to do both of these in Chapter 5, “TME 10
Distributed Monitoring Examples” on page 43.

NetView runs on AIX, Sun Solaris and NT platforms. With all versions you can
view events as they arrive in a window on the NetView system. With the UNIX
version you can also use a Java-enabled Web browser to access NetView (V5
only). See Figure 16.

Figure 16. Events Arr iv ing at TME 10 NetView

24 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Chapter 4. Migration Methodology and Tools

Now that we have an understanding of the differences between the old and new
distributed monitoring environments, we are ready to think about a migration
project. In this chapter we work through the steps involved in the migration and
introduce some tools to help.

4.1 Pre-Migration Planning
Before you can go into the details of migrating your Systems Monitor
environment, you need to plan the installation of the infrastructure needed by
TME 10 Distributed Monitoring. Essentially, this means that the TME platform
needs to be installed and configured. This involves planning the layout of your
TMRs and positioning the TMR server(s). This need not be complex, but it is
worth doing carefully, because any poor decision taken at this stage can cause
extra work later.

The following list contains a number of points that you should consider:

• Number and placement of TMRs

The general rule is that the fewer TMRs you have, the better. There is a
limit of about 200 to the number of managed nodes that can be placed in any
TMR. If all of the nodes are equally well connected to each other, you
should aim to make the TMRs maximum sized - 200 nodes per server. If
there are some slow speed links in the network, you should arrange
connected TMRs on each end of the link. This is because the TMR servers
implement the mdist (multiplexed distribution) repeater function over
TMR-TMR links. In other words, any monitor profile that you are distributing
to systems on the far side of the link will only be sent once to the TMR
server and will then fan out.

The introduction of LCF changes the arithmetic. You can have many more
(thousands) of LCF endpoints connected to one TMR. Furthermore, each
endpoint gateway acts as an mdist repeater, so slow speed links are more
easily catered for. LCF support will be available in TME 10 Distributed
Monitoring for most operating systems by the end of 1997.

• Selection of TMR servers

Each TMR needs a single TMR server. In normal operation, the TMR server
function is not a major consumer of system resource, but it must be
available 100% of the time. You can certainly share the server platform with
some other application if the opportunity is there. Once again, LCF changes
the equation. More systems within a TMR translates to more work for the
server to do, such as processing monitor actions and automation.

• Configuring Administrators

Systems Monitor does not have a well-defined administrative structure. Any
NetView user who has the ability to execute SNMP get and set requests can
be an administrator. When you migrate to TME 10 Distributed Monitoring
you could retain this simple structure, by defining a single administrator ID
and giving the password to anyone that needs administrative access.
However, a better approach is to exploit the administrative control that TME
offers by defining different user IDs for everyone who needs one. You can

 Copyright IBM Corp. 1997 25

This soft copy for use by IBM employees only.

then use different policy regions to control who can do what to which part of
the distributed system population.

• Event Handling

You need to decide what your policy is for presenting event information to
administrators. You may decide not to use a single mechanism. For
example, it may make sense for some administrators to receive events from
specific types of monitors via e-mail or pager, in addition to sending them to
a consolidated event display.

4.2 The Overall Migration Picture
One thing that quickly emerges from a study of the migration options is that it is
not a simple environment. The existing Systems Monitor environment will
consist of a number of target nodes, on which the monitored resources reside.
These systems could be a number of different types of operating systems, or
they could be network devices such as routers and hubs. Monitoring of the
resources may be done locally (using Systems Monitor SLM), or at a mid-level
manager (Systems Monitor MLM) or centrally (NetView for AIX).

The target environment will include TME 10 Distributed Monitoring installed on
some of the monitored nodes. However, it will also include resources that
cannot be migrated directly (SNMP nodes, for example) and resources monitored
by proxy. The mid-level component could therefore consist of TME 10 Distributed
Monitoring, or Systems Monitor MLM, or both. Finally there are a number of
different options for displaying and handling event information, as we discussed
in 3.3.2, “Displaying Events” on page 22.

Figure 17 shows the post-migration possibilities and breaks down the managed
domain into five different categories.

Figure 17. Pieces of the Migration Puzzle

26 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

The managed resource categories are as follows:

 1. Resources that map directly. This means cases where there is a TME 10
Distributed Monitoring monitor that performs exactly the same function as
the Systems Monitor monitor that it replaces. Migration of this category can
be a semi-automatic function. We provide examples of migration scripts to
do this.

 2. Resources that do not map directly. This means that, although it is
supported on the managed node, there is no TME 10 Distributed Monitoring
monitor that does exactly what the old monitor did. In other words, a new
monitor type has to be created, using shell scripts or programs, or
alternatively a decision has to be made whether to continue monitoring in
the same way.

 3. TME resources not directly manageable. These are the cases where either
the TME platform or Sentry has not been ported to the particular system
type. It is possible to use proxy techniques to monitor these resources using
TME 10 Distributed Monitoring.

 4. Resources that are only manageable using SNMP. Obvious examples here
are networking hardware, which support SNMP but do not have an operating
system on which TME could be implemented. Another possible example is
OS/2, which has an SIA available, but does not (at the time of writing) have
Sentry support.

 5. New types of resources. TME 10 Distributed Monitoring supports some
operating systems that could previously only be effectively monitored by
incorporating third-party products or SNMP MIBs, such as Windows NT and
Novell NetWare.

Understanding how your current monitoring environment is divided among these
categories is the key to the migration decisions you have to make, so we now
describe a series of steps that will help you categorize your migration problem.

4.3 Analyzing the Migration
Before you start, we recommend that you collect together the configuration files
of all of the Systems Monitor agents in your environment (or gather
representative samples, if many of them are similar). Systems Monitor keeps its
configuration files under directory /var/adm/smv2. Alternatively, you can display
the configuration through the Systems Monitor configuration interface (smconfig),
but that may not be very efficient if you have a large number of systems with a
lot of variation between them.

This checklist will help you to gain an understanding of what your migration
project will involve. After you have worked through the list, you can concentrate
on the details of the more difficult migration challenges.

 1. Analyze your existing Systems Monitor profiles

The first step is to analyze the current Systems Monitor configurations on
each machine with the SIA, SLM or MLM installed. If you have been very
well organized in the past, it is possible that many of the configurations
share common monitors. If so, your migration task is much easier and the
Sentry monitors can perhaps be placed in a single profile.

If the monitors vary due to platform or application release, they will need to
be placed in separate profiles and profile managers.

Chapter 4. Migration Methodology and Tools 27

This soft copy for use by IBM employees only.

We recommend mapping out where each set of monitors fits into your
framework.

 2. Do you have any SIA file monitors?

The file monitoring capabilities of SIA map to equivalent Sentry functions as
shown in the following table; in other words they mostly fall into migration
category 1 as shown in Figure 17 on page 26. Check the configurations of
all of your SIA nodes for this type of file monitor. In general, you can
migrate them using the techniques described in 4.5, “Practical Migration
Techniques” on page 31.

The table shows the SIA file monitor option and the equivalent TME 10
Distributed Monitoring monitor. Generally speaking, the SIA version has
fewer trigger options, and the comments describe which Sentry options to
use to most closely replicate the SIA function.

28 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Table 2. SIA File Monitor Mapping

Chapter 4. Migration Methodology and Tools 29

This soft copy for use by IBM employees only.

 3. Do you have special case SIA file monitors?

There are some SIA file monitoring options that are not available in TME 10
Distributed Monitoring. In particular:

• Execution of a command before the test is performed. We show an
example in 5.4.2, “Dynamically Named Log Files” on page 99 of a way to
handle this limitation.

• Monitoring for file ownership changes. The SIA statusChange monitor
checks for file ownership as well as permissions, but the matching
Sentry monitor only checks for file permissions. We provide a sample
monitor that provides the file ownership test capability. The file
ownership sample is part of the package of sample code from the
project; see Appendix B, “How to Get the Samples in This Book” on
page 141. We describe how to create a monitoring collection in
“Monitoring CPU Utilization” on page 105.

• SIA provides some combination monitors that check for specific strings
and changes to data or status. You are unlikely to meet one of these in
a real configuration, but if you do you may have to replace it with
multiple Sentry monitors.

 4. Do you have monitors of non-migrateable SIA resources?

Check the configurations of any MLMs and SLMs and also check the NetView
for AIX data collection and thresholding facility for any references to SIA MIB
variables. Check them against the list of SIA MIB variables shown in
Appendix A, “Mapping SIA MIB Objects to Sentry Monitoring Collections” on
page 137 . Build two lists:

a. A list of monitors that do not map to a Sentry monitor. These are
category 2 monitors, according to our designation.

b. A list of the remaining category 1 monitors that can be migrated.

We provide a shell script, chk_mig_cat, to help you do this. It will process
MLM and SLM configuration files and report the migration category of any
SIA monitors it finds. See Appendix B, “How to Get the Samples in This
Book” on page 141 for details of how to get the shell script.

The monitors in the latter list can be migrated using the techniques
described in 4.5, “Practical Migration Techniques” on page 31.

 5. If you have category 2 monitors, decide what you wil l do with them.

Your only options for monitors that are not migrateable are:

a. Re-create them using Sentry String script or Numeric script monitors.

b. Remove them.

 c. Retain SIA on the particular systems where they are required until a
better solution is available.

We show a number of examples of script monitors in this book, which may
help you estimate how much work is involved in the first option.

 6. Decide whether to monitor SNMP resources using MLM or Sentry.

If you ran the chk_mig_cat script it will have reported any non-SIA MLM
monitors that you may be using. According to our designation, these are
category 4 monitors. You can either choose to continue to monitor them with
MLM, or to monitor them using the UserSNMP or rfc1213 monitoring
collections of TME 10 Distributed Monitoring.

30 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

The main advantage of staying with MLM is that it is less work for you. MLM
also has the capability to monitor all instances of a given MIB object using a
wildcard definition. This can sometimes be a useful feature. On the other
hand, using TME 10 Distributed Monitoring has the advantage of consistency
with the rest of your monitoring process.

4.4 Systems Monitor and Sentry Can Co-exist!
Don’t forget that, during the migration, Systems Monitor and Sentry can co-exist
on the same machine. You may wish to have both types of monitoring running
in parallel in order to ensure that no functionality is lost.

4.5 Practical Migration Techniques
For monitors that fall into the first category, that is, where there is a mapping
between the old and new product function, there are two approaches you can
take:

• GUI-to-GUI migration. This means opening the user interfaces of Systems
Monitor and TME 10 Distributed Monitoring and creating migrated profiles
manually. This is effective for a small configuration, but it would be
laborious for anything bigger.

• Semi-automatic migration script. Sentry monitors can be created using the
waddmon command, so it is possible to build a monitoring profile from a
shell script. We provide a sample script, described in 4.6, “Semi-Automated
Profile Migration” on page 35 which will input SIA or MLM configuration files
and generate a stream of waddmon commands.

Whichever approach you take, there is no simple one-to-one mapping between
functions. You will have to adjust your Sentry profiles and monitoring scripts to
take account of the variations. The comments in Table 6 on page 137 will help
you decide what adjustments are needed.

4.5.1 Migration of a Small Configuration
If you have a small number of SIA, SLM and MLM agents, then a GUI-to-GUI
migration is the simplest solution. Figure 18 on page 32 shows the Systems
Monitor configuration application main menu. This lists the MIB tables that can
be configured on the System Monitor agents.

For migration purposes, the three tables you are interested in are:

 1. Command table (SIA only). This allows arbitrary commands and shell scripts
to be executed as a result of querying MIB objects.

 2. File Monitor table (SIA only). This allows file status and contents to be
monitored.

 3. Threshold table (MLM and SLM). This polls MIB values, checks the
response against a threshold and invokes an action if one is specified.

Chapter 4. Migration Methodology and Tools 31

This soft copy for use by IBM employees only.

Figure 18. An Example of the Systems Monitor Configuration Application Main Panel

When converting Systems Monitor configurations to Sentry monitors, there are
some concepts that are similar but with different names, for example:

• Command table entries define system commands to be executed. Very often
they are invoked by a threshold table entry, for regular monitoring purposes.
The equivalents of this combination in Sentry are the string script and
numeric script monitors.

• The ″trigger when″ option in a Sentry monitor is similar to the Threshold
table ″arm condition″.

• The Sentry monitoring schedule replaces the values stored in the Threshold
table ″poll time″ variable.

Other concepts are not directly replicated by Sentry:

• There is no direct equivalent of the Threshold table re-arm capability, which
allows an alert to be triggered only once. However, many of the Sentry
monitor types have a ″changes from″ test condition, which does a similar
thing in some cases.

32 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

• The Systems Monitor Command table can be used for one-time queries as
well as for regular monitoring (when combined with Threshold table entries).
The TME equivalent to this is provided by Task Libraries.

• There is no equivalent of the Command table shared memory monitoring
function. The easiest way to replace this function may be to use an
asynchronous string monitor.

• The Threshold table allows you to collect data in a log file for statistical
analysis. The same thing is possible with TME 10 Distributed Monitoring, but
it is not a standard feature of the product until Version 3.5 (available later in
1997).

With these variations in mind you should be able to display the configuration of
your Systems Monitor tables and re-create the equivalent function using the TME
GUI. In all except the smallest configurations, you will find it useful to analyze
your Systems Monitor configuration using the guidelines in 4.3, “Analyzing the
Migration” on page 27 before actually entering anything new.

4.5.2 Migration of a Larger Configuration
If you have numerous SIA, SLM and MLM agents in your current environment,
then the most productive migration method may be to use the command line
interface (CLI) commands. For example:

waddmon Unix_Sentry zombies -t ″60 minutes″ -c critical -R ″>″ 30
-p Root_ssd-region Sentry

This waddmon command will add a Unix_sentry monitor called zombies. The
zombies monitor checks for lingering terminated processes. The -t flag is the
equivalent of the Systems Monitor poll time. The -c flag defines the alert level.
The defined levels are:

• Critical
• Severe
• Warning

The -R flag in this example will trigger if more than 30 terminated processes
exist. The -p flag defines pop-ups to the Administrator. Sentry in this example is
the profile name.

4.5.2.1 Migration Based on Systems Monitor Configuration Files
You could view the Systems Monitor GUI screens and then create waddmon
commands that replace them. However, we would prefer to work directly from
the Systems Monitor configuration files and automate the conversion where
possible.

Systems Monitor stores its configurations in flat files. Each entry in the file is
identified by a tag, for example, smSiaFIleMonitorstate. It is possible to extract
certain fields from the entries and plug them directly into the waddmon
command. So for example:

smSiaFIleMonitorstate = disabled

translates to:

waddmon +d

Table 3 on page 34 and Table 4 on page 34 show the equivalent waddmon
parameters for SIA File Monitor table and MLM Threshold table entries.

Chapter 4. Migration Methodology and Tools 33

This soft copy for use by IBM employees only.

The following example shows the configuration file for a threshold monitor table
entry that checks whether a daemon, trapgend, is alive. The daemon will be
restarted if found to be down.

smMlmThresholdName[Monitor_trapgend] = ″Monitor_trapgend″
smMlmThresholdState = disabled
smMlmThresholdDescription = ″Monitor the trapgend daemon and restart if it dies.″
smMlmThresholdLocalRemoteMIBVariable = ″ .1 .3 .6 .1 .4 .1 .2 .6 .12.2 .7 .2 .1 .2 .trapgend.*″
smMlmThresholdCondition = ″doesNotExist″
smMlmThresholdPollTime = ″5m″
smMlmThresholdTrapDescription = ″trapgend died - auto restarting″
smMlmThresholdArmEnterprise = ″ .1 .3 .6 .1 .4 .1 .2 .3 .1 .2 .1 .1 .2 .1″
smMlmThresholdSpecificTrap = 14
smMlmThresholdCommandToExecute = ″ /usr/OV/bin/trapgend″
smMlmThresholdReArmCondition = ″exists″
smMlmThresholdReArmTrapDescription = ″trapgend was restarted″
smMlmThresholdReArmEnterprise = ″.1.3.6.1.4.1.2.3.1.2.1.1.2.1″ \
smMlmThresholdReArmSpecificTrap = 14
smMlmThresholdLastResponseTime = ″Thu Jan 01 00:00:00 GMT 1970″

A waddmon command to perform the same monitoring and restart function
would be as follows:

waddmon Unix_sentry daemon -a trapgend -t ″5 Minutes″
-c critical -R ″->″ ″down″ \
-c normal -R ″->″ ″up″ \
-p Root_ssd-region \
-e /usr/OV/bin/trapgend \
Sentry

There are a number of things to notice about this mapping:

Table 3. SIA Command Table to waddmon Mapping

Table 4. MLM Threshold Table to waddmon Migrat ion

34 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

 1. The poll ing time in this case was already in minutes, which TME 10
Distributed Monitoring can use. If it had been expressed in seconds we
would have had to round it to the nearest minute in the waddmon command.

 2. The re-arm condition in the Systems Monitor example means that the
threshold will be triggered the first time that the probe detects that trapgend
is down, but not if it is still down on subsequent polls. We achieve the same
thing with Sentry by using the ″Changes To″ comparator (″- > ″).

 3. The Systems Monitor version wil l send a second, re-arm, event when the
daemon has been restarted. In this case we do the same thing with
waddmon by adding a normal response level definition that is triggered
when the status changes to ″up″, but as we discuss in 5.5, “Migrating the
Re-Arm Function” on page 102, this is not an ideal approach.

For the full definition of waddmon see the Tivoli/Sentry User’s Guide.

4.6 Semi-Automated Profile Migration
As a logical extension of the command line migration examples above, we
created a script that takes existing Systems Monitor configuration files as input
and generates waddmon commands from them.

4.6.1 The Sample Migration Script
We provide a script that reads Systems Monitor configurations and executes
waddmon commands to create equivalent Sentry profiles. The script is called
migrate_sysmon_config.

To obtain the script, see Appendix B, “How to Get the Samples in This Book” on
page 141.

 Disclaimer

The script is intended only as a starting point. It will take an existing set of
Systems Monitor configurations and generate a set of TME 10 Distributed
Monitoring profiles from them. This is a useful shortcut, but the profiles wil l
need further modification to make them do the job you want them to do.

4.6.1.1 Preparing to Run the Migration Scripts
The first step is to collect all the variations of the SIA and MLM configurations
from your various managed nodes and copy them into a single directory. It is
not a good idea to work with the files in the normal Systems Monitor
configuration directories (/var/adm/smv2/xxx/config) since this can affect the
operation of a running agent.

When you have the files in one place you can create consolidated configuration
files. For example, to create a configuration containing all of the SIA entries,
enter:

grep -h smSia * > migrate.config

Chapter 4. Migration Methodology and Tools 35

This soft copy for use by IBM employees only.

4.6.2 migrate_sysmon_config
The migrate_sysmon_config script performs three actions:

 1. It takes the SIA command table entries and creates individual custom scripts.
These are direct translations from the SIA configuration file using the
smSIACommandDescription and smSIACommandGetStringAndParameters
definitions.

In some cases the scripts may invoke other scripts. Keep in mind that
Command table entries run executables that are installed on the agent node.
Sentry provides the string and numeric script monitors, which do the same
thing, but specifically for shell scripts. The equivalent of the SIA Command
table entry created by migrate_sysmon_config is therefore a wrapper script
that Sentry can deploy to invoke the real executable on the target system.
This is not the way that you would design a monitor from scratch.

The scripts will all be named Migrated_{smSiaCommandName}. For
example:

smSiaCommandName[COMMAND]

will be migrated to:

/usr/local/bin/Migrated_COMMAND

 2. The script also processes the SIA File Monitor table and attempts to create
equivalent monitors, based on the mappings shown in Table 2 on page 29.
In particular it maps the following File Monitor table keywords:

• exist/doesNotExist

• dataChange

• statusChange (but it uses an arbitrary permissions string)

• string

It creates equivalent Sentry monitors for these conditions (see Table 2 on
page 29 for a detailed description of the file monitor options).

 3. The script processes the MLM/SLM Threshold table. The Threshold table
monitors MIB objects, so the script looks for monitors of SIA MIB variables
and creates an equivalent Sentry monitor where one exists. The SIA tables
that are handled by the script are the following:

• Network errors

• File systems

• Logged-in users

• Paging Space

• CPU (using the sample monitor described in 5.3, “Monitoring CPU
Utilization” on page 76)

• Command table entries (by invoking the shell scripts generated from the
SIA configurations)

The script has a routine to handle MIB extensions in either dotted decimal
format or combined dotted and character text, for example:

.1.3.6.1.4.1.2.6.12.2.5.2.1.4./var

or the equivalent dotted decimal version:

.1.3.6.1.4.1.2.6.12.2.5.2.1.4.47.118.97.114

36 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

are both acceptable entries for monitoring the /var filesystem.

migrate_sysmon_config Operations: This script assumes that the Tivoli
Management Environment is running on the machine, and that the user ID it is
running under has enough authority to run waddmon in the selected policy
region. The script also assumes that a Sentry profile already exists.

The script will request the following information:

• The Systems Monitor configuration file to migrate.

• The Sentry profile to which the monitors should be added.

• The directory in which custom monitoring scripts will be placed on the
monitored system.

All the new monitor definitions are added in a disabled state. Poll times, which
Systems Monitor allows to be specified in seconds, are rounded to the nearest
minute. This script will not make any changes to the original configuration files.

Figure 19 shows a typical invocation of migrate_sysmon_config, and Figure 20
on page 38 shows the log file output from it.

rs600026:/tmp/migtest > migrate_sysmon_config
You are Tivoli administrator Root_ssd-region
total 176
drwxr-xr-x 2 rob assignee 2048 Jun 05 08:34 .
drwxrwxrwt 12 root system 3584 Jun 05 08:34 ..
-rwx------ 1 root system 25735 Jun 01 14:20 itso.config.test
-rw-r--r-- 1 root system 19384 Jun 01 07:09 kuffi
-rwxr-xr-x 1 root system 21434 Jun 01 08:20 m_s_c
-rw-r--r-- 1 rob assignee 4449 Jun 05 08:30 mlm_plus_sia

Please input the Sysmon config name from the list above ==>mlm_plus_sia
Please input Sentry profile name in which to place migrated monitors
Note: this profile must already exist ==>migrate_test
Path to monitoring scripts on monitored system [/usr/local/bin] ==>
/tmp/migtest/mlm_plus_sia
Creating shell script for IOSTAT command table entry
Creating shell script for KERN1 command table entry
Creating countstr monitor for ′ ERROR′ /var/adm/smv2/log/midmand.log
Creating file checksum monitor for /etc/passwd
Monitor_Process --- Process table monitor. Creating a daemon status Sentry monitor
Monitor_var --- Creating a disk percent used monitor
lonestar_disk_space_monitor --- Creating a disk percent used monitor
baspac1_cpu_busy_monitor --- CPU utilization monitor. Using redbook monitoring collection

Migration Completed - see /tmp/migtest/migrate_sysmon.log for details

Figure 19. Input for the Migration Script

Chapter 4. Migration Methodology and Tools 37

This soft copy for use by IBM employees only.

################### Thu Jun 5 08:34:34 EDT 1997 ##########################
Creating script file: /tmp/migtest/Migrated_IOSTAT
Command: system.″ iostat -t
==
Creating script file: /tmp/migtest/Migrated_KERN1
Command: smSiaCommandDescription = ″Kernel memory get of pages \
paged in″ KERNEL_MEMORY: vmminfo 16 4
==
SYSMON SCHEDULE====15m
SENTRY SCHEDULE====15
Creating countstr monitor for ′ ERROR′ /var/adm/smv2/log/midmand.log
==
SYSMON SCHEDULE====30s
SENTRY SCHEDULE====1
Creating file checksum monitor for /etc/passwd
==
SYSMON SCHEDULE====30s
SENTRY SCHEDULE====1
Threshold monitor for MIB: .1.3.6.1.4.1.2.6.12.2.7.2.1.2.trapgend.*
Monitor_Process --- Process table monitor. Creating a daemon status Sentry monitor
doesNotExist maps to
Daemon: trapgend
==
SYSMON SCHEDULE====5m
SENTRY SCHEDULE====5
Threshold monitor for MIB: .1.3.6.1.4.1.2.6.12.2.5.2.1.4.47.118.097.114
Monitor_var --- Creating a disk percent used monitor
Trigger value: 95
Condition: >
Filesystem: /var
==
SYSMON SCHEDULE====5m
SENTRY SCHEDULE====5
Threshold monitor for MIB: .1.3.6.1.4.1.2.6.12.2.5.2.1.4.*
lonestar_disk_space_monitor --- Creating a disk percent used monitor
Trigger value: 95
Condition: >
Redbook sample monitor for all filesystem util% added
==

Figure 20. Log File from migrate_sysmon_config

Figure 21 on page 39 shows an example of a TME 10 Distributed Monitoring
profile created by migrate_sysmon_config.

38 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 21. Sentry Profile Generated by migrate_sysmon_config Script

Figure 22 shows a migrated file monitor configuration and Figure 23 on page 40
shows a monitor that invokes a migrated Command table entry.

Figure 22. An Example of a Migrated File Monitor Table

Chapter 4. Migration Methodology and Tools 39

This soft copy for use by IBM employees only.

Figure 23. An Example of a Migrated Command Script

In the logfile you will see information about which configuration entries are
migrated and which are not. If you want to know more about the MIB extensions
mentioned in the logfile, use the TME 10 NetView MIB Browser application. For
example, the object .1.3.6.1.4.1.2.6.12.2.4.3.* is the percent of kill threshold to free
space variable from the SIA MIB. This monitor is not directly available in Sentry,
so it cannot be migrated. Figure 24 on page 41 shows the MIB Browser display
for this.

40 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 24. Using the MIB Browser to Check MIB Extension Descriptions

4.6.3 After Running the Migration Script
Once you have run the script against your SIA, MLM and SLM configuration files
you need to check all of the monitors in the profile. Make sure that everything
you expected has been migrated. Some monitors may need to be added
manually.

There may also be monitors that you did not want to generate. Delete anything
that should not be there. A certain amount of tidying is required. For instance,
you may wish to rename the migrated scripts to more meaningful names. Don’t
forget to change the monitor entry to correspond with each script name.

Chapter 4. Migration Methodology and Tools 41

This soft copy for use by IBM employees only.

42 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Chapter 5. TME 10 Distributed Monitoring Examples

In this chapter we show a number of examples of different techniques using TME
10 Distributed Monitoring. Most of these examples are directly related to the
question of migration from Systems Monitor, but some of them simply show
solutions to monitoring problems that the authors have encountered in their
practical experience.

The examples in this chapter are as follows:

• 5.1, “File System Monitoring Example” on page 44 is a simple example to
show a migrateable monitor (category 1). We then go on to show the
different ways that the events generated by the monitor can be displayed,
using the TME desktop, T/EC and TME 10 NetView.

• 5.2, “Print Subsystem Monitoring” on page 66 shows some examples of
techniques to monitor the print subsystem (lpd daemon) including automatic
restart actions. In this part we also use TME 10 tasks and the TME 10 Task
Library Language.

• 5.3, “Monitoring CPU Utilization” on page 76 shows an example of a locally
written monitoring collection for checking CPU utilization. This is an
example of a category 2 monitor, or one that does not migrate directly from
Systems Monitor to TME 10 Distributed Monitoring. In this part we also use
the MCSL language to create a monitoring collection and a monitor.

• 5.4, “File Monitoring Examples” on page 93 shows examples of some more
complex file monitoring requirements, including handling files with variable
filenames.

• 5.5, “Migrating the Re-Arm Function” on page 102 shows a possible
approach to re-creating the re-arm capability of Systems Monitor MLM,
which is not normally supported by TME 10 Distributed Monitoring.

• 5.6, “Advanced Process Monitoring” on page 107 shows a locally created
monitoring collection that allows you to keep track of multiple, related
processes on a system. In this part we use the MCSL language again to
create a monitor.

• 5.8, “Generic File System Monitoring” on page 115 shows how to monitor
multiple file systems on an AIX system.

• 5.9, “SNMP Proxy Forwarding” on page 118 describes the proxy monitoring
capability of TME 10 Distributed Monitoring and shows how to apply it to an
SNMP-managed system.

• 5.7, “Hardware Alerting from AIX Error Report” on page 112 shows how to
use a TME 10 Distributed Monitoring asynchronous monitor to handle events
written to the AIX error logging facility.

• 5.10, “Migrating Data Collection” on page 124 discusses how to use TME 10
Distributed Monitoring 3.5 to collect historical data and shows ways to
extract the data for processing.

 Copyright IBM Corp. 1997 43

This soft copy for use by IBM employees only.

5.1 File System Monitoring Example
Both, Systems Monitor and TME 10 Distributed Monitoring provide monitors for
checking the free space within a UNIX file system. If you refer to the table in

Appendix A, “Mapping SIA MIB Objects to Sentry Monitoring Collections” on
page 137 you will see that these monitors fall into category 1. That is, there is a
direct mapping between the Systems Monitor and Sentry functions.

We use this monitor as a simple example of how to create a TME 10 Distributed
Monitoring definition with equivalent function. Then we will explore the different
facilities for reporting events that the TME 10 environment offers, namely:

• TME desktop displays

• Routing events to the TME 10 Enterprise Console

• Routing events to TME 10 NetView

5.1.1 Migration from Systems Monitor
As we described in 4.5, “Practical Migration Techniques” on page 31, we could
use a semi-automated approach to migrate this monitor. The
migrate_mlm_config shell script will create an equivalent Sentry definition given
an MLM configuration file. Alternatively, you can perform a manual migration by
looking at the Systems Monitor GUI and creating an equivalent using the Sentry
GUI. We will show the former approach.

5.1.1.1 Defining the Monitor in Systems Monitor MLM
The monitor we define will check the size of the /var file system. If it exceeds
90% utilized we will generate a threshold event. We define the MLM monitor
using the Systems Monitor graphical configuration interface (smconfig) to define
the entry. Note that in this case the MLM threshold table is monitoring a MIB
value provided by the SIA.

To start the Systems Monitor configuration interface enter smconfig on an AIX
command line or select it from the TME 10 NetView tools menu. When it has
initialized, select MLM Threshold and Collection Table , then click on Add/Copy in
the resulting panel. Figure 35 on page 75 shows how to fill in the monitor details
for our file system monitoring example. You can see that we have defined that a
threshold should be triggered (or, in Systems Monitor terms, armed) whenever
the /var filesystem is more than 90% utilized. We have asked for the utilization
to be checked every five minutes (defined in the Poll Time field).

44 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 25. Defining a File System Monitor Using MLM

Having set up the threshold definition itself, the next step is to define what
should happen when it is exceeded. We do this by clicking on Arm Actions .
Systems Monitor provides two possibilities: you can cause an SNMP trap to be
sent to the managing system and/or you can cause a command to be executed.
Note that any automated command will be executed on the MLM system, not on
the system that is being monitored. Figure 26 on page 46 shows the action
definition screen.

Chapter 5. TME 10 Distributed Monitoring Examples 45

This soft copy for use by IBM employees only.

Figure 26. Defining Threshold Actions for MLM

In this case we have specified that a trap should be sent, under the Systems
Monitor enterprise ID (the default) and with specific trap ID 99. Notice that we
have used an MLM-provided environment variable,
$SM6K_THRESHOLD_VAR_VALUE, in the trap description. This will be replaced
by the value that caused the threshold to be triggered, that is to say the actual
utilization of the file system. We have not asked for a command to be executed
in this case.

5.1.1.2 Defining the Monitor in TME 10 Distributed Monitoring
Sentry monitors are defined as profiles within a profile manager, which is
created in the context of a policy region. We assume that you are familiar with
creating policy regions, profile managers and profiles. Refer to Chapter 3, “TME
10 Distributed Monitoring in Detail” on page 15 for an explanation of these
terms. To create the monitor itself, double click the profile manager icon and
select Create , followed by Profile from the menu bar. Select SentryProfile from
the list and give the profile a suitable name. Figure 27 on page 47 shows the
steps involved in creating a new profile, starting at the TME desktop. Once you
have created a profile it can contain any number of monitors. You should group
monitors together in a logical way, for example, by collecting all monitors
relating to a specific type of resource or application.

46 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 27. Steps to Create a Sentry Profi le

To create our disk space monitor we would normally click on Add Monitor and
then specify a monitoring collection of Universal and a monitor type of Disk
space used %. However, we chose to convert the Systems Monitor example
directly to a Sentry monitor, using the migrate_sysmon_config script described in
4.6, “Semi-Automated Profile Migration” on page 35.

5.1.1.3 Using the migrate_sysmon_config Script
To perform the migration, we first copied the MLM configuration file from its
default location in directory /var/adm/smv2/mlm/config into a working directory,
trimmed it so that it only included the monitor we just created, and then invoked
the command. The command dialog is shown in Figure 28 on page 48 and the
resulting monitor definition is shown in Figure 29 on page 48.

Chapter 5. TME 10 Distributed Monitoring Examples 47

This soft copy for use by IBM employees only.

rs600026:/tmp/migtest > /:/project/sentry/samples/migration_scripts/migrate_sysmon_config
You are Tivoli administrator Root_ssd-region
total 128
drwxr-xr-x 2 rob assignee 2048 Jun 05 09:33 .
drwxrwxrwt 12 root system 3584 Jun 05 09:33 ..
-rwx------ 1 root system 862 Jun 05 09:31 itso.config.test
-rw-r--r-- 1 root system 19384 Jun 01 07:09 kuffi
-rwxr-xr-x 1 root system 21434 Jun 01 08:20 m_s_c
-rw-r--r-- 1 rob assignee 4449 Jun 05 08:30 mlm_plus_sia

Please input the Sysmon config name from the list above ==>itso.config.test
Please input Sentry profile name in which to place migrated monitors
Note: this profile must already exist ==>migrate_test
Path to monitoring scripts on monitored system [/usr/local/bin] ==>
/tmp/migtest/itso.config.test
Monitor_var --- Creating a disk percent used monitor

Migration Completed - see /tmp/migtest/migrate_sysmon.log for details
rs600026:/tmp/migtest > cat migrate_sysmon.log
################### Thu Jun 5 09:33:25 EDT 1997 ############################
SYSMON SCHEDULE====5m
SENTRY SCHEDULE====5
Threshold monitor for MIB: .1.3.6.1.4.1.2.6.12.2.5.2.1.4./var
Monitor_var --- Creating a disk percent used monitor
Trigger value: 90
Condition: >
Filesystem: /var
==

Figure 28. Migration of an MLM Configuration Entry with migrate_sysmon_config

Figure 29. Monitor Created by migrate_sysmon_config

Note that there are a larger number of actions available for the Sentry monitor
compared to the MLM example. The migration script simply defines a pop-up
action, so you may need to modify this monitor before enabling it and
distributing it to the monitored nodes.

48 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.1.1.4 Distributing the Two Monitors
We have now created two monitors, one using MLM, the other using Sentry.
They perform an identical function, that is to say, they both monitor file systems
utilization at five-minute intervals and raise an alarm if it exceeds 90%.
Although they do the same thing, there are a number of important differences
between them:

 1. The MLM monitor executes on a separate system from the machine being
monitored, using SNMP to poll across the network. Sentry monitoring takes
place locally on the target machine.

 2. The MLM monitor can act on either a single system or on a group of systems
(by replacing the system name with an alias). When the monitor definition is
saved, it will take effect immediately. With Sentry, by contrast, the target
systems must first be subscribed to the monitoring profile and the profile
must be distributed before it becomes active.

 3. The alarms from MLM appear as events on the SNMP manager display (for
example, the TME 10 NetView control desk). Sentry has a number of
different ways to generate event messages, in addition to the pop-up option
that we have shown.

We will now explore some of the other options for displaying events generated
by a Sentry monitor.

5.1.2 Different Ways to Display Monitor Events from TME 10 Distributed
Monitoring

In addition to creating a pop-up message, you can highlight a Sentry threshold
event on the TME desktop by generating a notice or updating an indicator icon.
We do not go into the details of these methods here; refer to the TME 10
Distributed Monitoring documentation for details about them. In this section we
show two more complex examples of event message generation:

• Sending Sentry events to TME 10 Enterprise Console

• Using automation to send Sentry events to TME 10 NetView

5.1.3 Sending Events to TME 10 Enterprise Console
In many cases where you have established TME 10 as the solution for enterprise
systems management, you will have a T/EC server installed. The T/EC server
acts as the central point where events are correlated and automated actions are
initiated, so you will want to send at least some of the TME 10 Distributed
Monitoring threshold events to T/EC.

However, before you can use T/EC in combination with TME 10 Distributed
Monitoring, there are certain tasks you have to perform to configure T/EC for that
purpose. These tasks may vary, depending on your specific environment, but
the following list is a summary of the complete procedure:

 1. Define a TME administrator that uses a T/EC event console

 2. Create or modify a T/EC rule base

 3. Import the TME 10 Distributed Monitoring event definitions into the rule base

 4. Add a new event source for TME 10 Distributed Monitoring

 5. Add a new event group

 6. Create an event console

Chapter 5. TME 10 Distributed Monitoring Examples 49

This soft copy for use by IBM employees only.

 7. Assign event groups to an event console

We will go through each of these steps in turn.

5.1.3.1 Adding a TME Administrator
You can either use an existing TME administrator that uses the new T/EC event
console or create a new one. In our example we create a new TME
administrator called Sentry_Administrator.

Open the TME 10 desktop and double-click on the Administrators icon. The
screen shown in Figure 30 will appear.

Figure 30. Create Sentry_Administrator

Select Create from the menu bar and then Administrator... from the pull-down
menu. In the window that will appear, enter Sentry_Administrator as the Icon
label.

Select appropriate Logins and Notice Group Subscriptions for the new
administrator. The TMR Roles and Resource Roles can be used to control the
new administrator’s access to T/EC. When finished, select the Create & Close
button.

5.1.3.2 Creating a T/EC Rule Base
A T/EC rule base holds two types of information:

• Event classes describe the format of events that are sent to T/EC. Each
event adapter provides class definitions describing the events it wants to
send to T/EC. These definitions are usually supplied in a .baroc file with the
event adapter.

• Event rules describe how to handle certain events or combinations of events.
Usually, these rules are associated with automated actions to be performed
when events arrive. While each event adapter has to supply an event class
definition for the events it wants to send it does not necessarily have to also
supply standard event rules.

After the installation of T/EC there is a standard rule base called Default. You
can extend this rule base with new events and rules. However, it is always wise
to create a new rule base.

Since there can be only one active rule base per event server, you usually
create a new rule base, copy an existing one over it and then add the event

50 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

classes and rules to the new rule base. Using that procedure, you can combine
event classes and rules from different sources.

To create a new rule base double-click on the EventServer icon on the TME
desktop or use the right mouse button and select Rule Bases... from the pop-up
menu as shown in Figure 31.

Figure 31. TME Desktop Window

The Event Server Rule Bases window will appear. Select Create from the menu
bar and then Rule Base... from the pull-down menu. The following window will
appear:

Figure 32. Create Rule Base

Chapter 5. TME 10 Distributed Monitoring Examples 51

This soft copy for use by IBM employees only.

Enter a Name for the new rule base and a Directory Path where to store it. The
directory that you specify here will be updated with a number of subdirectories
containing the event classes and rules for the new rule base.

Select the Create & Close button to create the new rule base. This will return
you to the Event Server Rule Bases window where you will find an icon that has
been added to represent the new rule base as shown in Figure 33.

Figure 33. Copy Default Rule Base to NetView Rule Base

The rule base that we have just created is empty. The first thing to do is to copy
the contents of the Default rule base to the new rule base. To do this, select the
rule base you want to copy (in our case the Default rule base), hold down the
right mouse button and select Copy... from the pop-up menu. The window
shown in Figure 34 will appear.

Figure 34. Copy Rule Base

Select NetView (the name of the new rule base) in the Destination rule base list
and check the Copy rules and Copy classes check boxes. Then click on Copy &
Close to copy the Default rule base onto the new rule base.

52 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.1.3.3 Importing the TME 10 Distributed Monitoring Event
Definitions
TME 10 Distributed Monitoring can generate events and send them to the T/EC,
so it contains an event adapter. Unlike most other adapters, which are separate
programs, the TME 10 Distributed Monitoring event adapter is integrated in the
Sentry application.

When TME 10 Distributed Monitoring is installed, .baroc files that define its event
classes and rules are placed in the directory
/usr/local/Tivoli/bin/generic/SentryMonitors.

To have TME 10 Distributed Monitoring send events to T/EC, it is necessary to
import the following class definition files into the rule base:

• Sentry.baroc

• tivoli.baroc

• universal.baroc

Select the newly created rule base by holding down the right mouse button and
select Import... from the pop-up menu as shown in Figure 35.

Figure 35. Importing the Sentry Event Classes

The Import Into Rule Base window will appear as shown in Figure 36 on
page 54. Notice that this dialog has two parts to it, one for importing classes
into the rule base and the other for importing rules. Be careful that you do not
select the wrong section. If you import a BAROC class as a rule the rule base
will not subsequently compile successfully.

Chapter 5. TME 10 Distributed Monitoring Examples 53

This soft copy for use by IBM employees only.

Figure 36. Import the Sentry Class Definit ion Files

Select the Import Class Definitions button and specify the directory where the
TME 10 Distributed Monitoring .baroc files are located in the Directory Path field.
By default this is the directory /usr/local/Tivoli/bin/generic/SentryMonitors.

Select the files mentioned before and then click on Import & Close . This will
return you to the Event Server Rule Bases window.

Figure 37. Compile the Rule Base

54 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

When you add definitions to a rule base, you should always compile the rule
base. You do this by selecting the rule base icon with the right mouse button
pressed and then selecting Compile... from the pop-up menu.

We now have created a new rule base, extended it with the definitions for TME
10 Distributed Monitoring and compiled it. However, normally the rule base is
not active yet. There can only be one rule base active at one time. To activate
the new rule base, select it with the right mouse button and then select Load...
from the pop-up menu as shown in Figure 38.

Figure 38. Load the Rule Base

When you load the rule base you will be prompted whether to load it
immediately or to wait until the event server is restarted:

Figure 39. Loading the Rule Base

In this case we click on Load and activate the rule base and then select Load &
Close . However, when you add new classes, the new rule base will not be
active until the T/EC event server is restarted (unlike new rules, which take effect
immediately). Do this using the wstopesvr and wstartesvr commands or the
context menu on the Event Server icon.

5.1.3.4 Adding a New Event Source for TME 10 Distributed
Monitoring
We have now customized the input to the T/EC server so that it will recognize
Sentry events correctly. Next we have to configure the output from the server,
so that the events will appear on event consoles. We do this by adding a new
event source for TME 10 Distributed Monitoring that we can then assign to event
consoles.

Chapter 5. TME 10 Distributed Monitoring Examples 55

This soft copy for use by IBM employees only.

To add a new event source go to the TME desktop, click on the Event Server icon
with the right mouse button and select Sources from the pop-up menu. The T/EC
Source List window will appear, as shown in Figure 40 on page 56.

Figure 40. Adding Source

Enter Sentry Source into the Source Label field and enter SENTRY as the Source
Name. This source field value has to match the source slot in the BAROC class
definition of the event type. Then click on Add Source followed by Save & Close .

5.1.3.5 Adding a New Event Group
You may not want every administrator to see all of the Sentry events. For
example you may want to subdivide them by different monitored system type or
severity. T/EC provides you with event groups as a means to group events from
certain sources according to predefined filter criteria.

We add a new event group for events coming from the TME 10 Distributed
Monitoring application. Select the EventServer icon with the right mouse button
and then select Event Groups... from the pop-up menu as shown in Figure 41 on
page 57.

56 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 41. Adding an Event Group

The Event Group Management window will appear. This allows you to define a
number of different groups. Select Event Group from the menu bar and then
New... from the pull-down menu.

The New Event Group window will appear, as shown in Figure 42.

Figure 42. Add Sentry Event Group

Enter a name for the new event group in the Enter New Event Group Name field
and then click on Create . The screen shown in Figure 43 on page 58 will
appear.

Chapter 5. TME 10 Distributed Monitoring Examples 57

This soft copy for use by IBM employees only.

Figure 43. Setting Event Group FIlters

Enter SENTRY in the entry field next to the Source button and leave all other
fields blank. Then click on Add Filter . This simple filter definition will accept all
events that come from the SENTRY source. Click on Set & Close .

5.1.3.6 Creating an Event Console
If you already have an event console for the administrator that is to monitor TME
10 Distributed Monitoring events, then you can skip this step.

We create an event console for monitoring TME 10 Distributed Monitoring events.
To do so, open the TME desktop of the administrator for whom the new event
console shall be created. In our case this is Sentry_Administrator. If you have
sufficient authority, you can get to the desktop for a specific administrator by
double-clicking the Administrators icon in the TME desktop and then
double-clicking the icon for the administrator.

In the desktop window for the administrator, select Create from the menu bar
and then Event Console... from the pull-down menu. Select a host where the
event console shall be executed, and then click on Create (the event console will
normally run on the T/EC server machine, but if you install the T/EC code on
another managed node it can run there instead).

This will create a new event console, represented by an event console icon on
the administrator’s desktop.

5.1.3.7 Assigning Event Groups to the Event Console
In order to have events from Sentry arrive at our event console, we need to
assign the event group that we have created in 5.1.3.5, “Adding a New Event
Group” on page 56. Select the event console icon with the right mouse button
and then select Assign Event Groups from the pop-up menu (see Figure 44 on
page 59).

58 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 44. Assigning Event Group to Console

The Assign Event Groups window will appear, as shown in Figure 45.

Figure 45. Assigning Event Group to Sentry_Admin Console

Select the Sentry_Events group that we previously created and then click on the
right arrow button to move it to the Assigned Event Groups window. Then select
it again and select the roles that the administrator has for event display and
manipulation. If you want the administrator to be able to close events you must
assign the senior role. When finished, click on Set & Close .

Chapter 5. TME 10 Distributed Monitoring Examples 59

This soft copy for use by IBM employees only.

5.1.3.8 Receiving T/EC Events from Sentry
Finally, your event console is ready to receive events from Sentry. Start the TME
desktop using the TME administrator created in 5.1.3.1, “Adding a TME
Administrator” on page 50 and then double-click on the event console icon.

Make sure that the file system monitors are active. When the file system
monitors are triggered, you will see events from Sentry arriving at your event
console as shown in Figure 46.

Figure 46. TME 10 Distributed Monitor ing Events Reaching the T/EC

To see the details (slots) for a specific event, select the event with the left mouse
button and then press the View Message... button. This will display the event
slots for the event, as shown in Figure 47 on page 61.

What you will normally want to do now is, for example, add an automated action
for specific events or correlate events from TME 10 Distributed Monitoring with
events from other sources.

We will not show how to do this here. However, you can refer to the redbooks
TME 10 Cookbook for AIX, SG24-4867 or The TME 10 Deployment Cookbook:
Courier and Friends, SG24-4976 to get examples of how to do that.

60 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 47. Event Slots of a Received Event

5.1.4 Sending Events to TME 10 NetView
If you are migrating from a Systems Monitor environment you will most likely
have TME 10 NetView as your SNMP management system. One of the key
features of NetView is its event display and automation facilities. In many
environments TME 10 NetView is used as the focal point for receiving events.

In TME 10 NetView, all events are stored as SNMP traps. Some of the events
are generated internally by NetView and some are real SNMP traps, created by
an SNMP agent somewhere in the network and directed to NetView. When they
arrive, the (NetView) event console displays the messages. Systems Monitor
MLM, SLM and SIA all use traps to indicate problem or resolution events.

You may want to retain NetView as the focal point for your event management,
even after replacing SIA and SLM with TME 10 Distributed Monitoring. Even if
you intend to ultimately use the TME 10 Enterprise Console (T/EC) for this role,
there may be a transition period in which you want to display Sentry events on a
NetView console.

In this section we will show two techniques that allow you to do this.

Chapter 5. TME 10 Distributed Monitoring Examples 61

This soft copy for use by IBM employees only.

5.1.4.1 Sending Alerts Using the NetView Event Command
The easiest way to simulate an event in TME 10 NetView (either the arrival of a
trap or an internal event) is to use the event command. If NetView is on a
machine that has the TME framework installed (either the TMR server or a
managed node), events can be sent from TME 10 Distributed Monitoring to
NetView using the Run Program option as a monitor response to execute the
/usr/OV/bin/event command on the NetView system.

Figure 48 shows an example of a monitor definition that invokes a shell script on
the system where NetView is running. The script, in turn, executes the event
command.

Figure 48. An Example of Sending an Alert to NetView Using the event Command

This example uses two Sentry Environment variables:

• $HOSTNAME - Contains the name of the local managed node

• $EFFECTIVE_VALUE - Contains the output from the monitor. In this case it is
the percentage utilization of the file system.

Note also that the percent sign (%) is a special shell character, so it has to be
escaped to cause it to be passed in the argument to the shell script correctly.

The script that we invoke here, NetView_event_proxy, is part of the package of
samples for this book. Appendix B, “How to Get the Samples in This Book” on
page 141 tells you how you can obtain it. The script is listed in Figure 49 on
page 63. Note that even though the /usr/OV/bin/event command is run on the
NetView host, the script substitutes the real monitored host name, extracted from
the $HOSTNAME environment variable.

62 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

#!/bin/ksh
#!/bin/ksh
##
FILE: NetView_event_proxy
#
This script is an example from IBM redbook SG24-4936. It is made freely
available on the understanding that it is unsupported sample code only.
#
DESCRIPTION:
This script can be run from a Sentry monitor to send an alert to
TME 10 NetView.
#
ARGUMENTS:
(1) The hostname on which the monitor ran
(2) The text message returned by the monitor
#
RETURNED VALUES:
This script returns zero if successful, one otherwise.
#
AUTHORS: Graeme Naysmith IBM UK
Rob Macgregor ITSO Raleigh
###

if [[$# < 2]]
then
print ″Please supply a hostname and message″
exit 1

fi

The event command will generate a NetView Application Event
with the specified hostname and text inserted.
#
/usr/OV/bin/event -s A -h $1 -e AA_EV -d ″$2″

Figure 49. NetView_event_proxy Script

The result of the file system monitor invoking this script is the NetView event
shown in Figure 50 on page 64.

Chapter 5. TME 10 Distributed Monitoring Examples 63

This soft copy for use by IBM employees only.

Figure 50. NetView Event Generated from a Sentry Monitor

5.1.4.2 Sending Alerts to NetView Using SNMP Traps
The example we have just described takes advantage of the TME platform
capabilities for reliable, secure remote command execution. However, if the
NetView machine is not on a TME node we have to use some other technique to
get the alert to it. The easiest way is to send them in the format that NetView
understands: SNMP traps.

NetView provides a command, snmptrap, which will generate and send a trap.
However, it needs to be executed on the system where the Sentry monitor is
running, not the NetView machine. It is not straightforward to copy the snmptrap
executable to another system. Fortunately, Systems Monitor SIA gives us an
alternative version of snmptrap, so if you are migrating from Systems Monitor
you have the function you need available. It is located in
/usr/ lpp/smsia/original/snmptrap.

To invoke the command we need to create a TME 10 Distributed Monitoring
monitor that invokes it. The command is rather complex, so the easiest thing is
to place it in a shell script, such as the one shown in Figure 51 on page 65.

64 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

#!/bin/ksh
##
FILE: SNMP_trap_proxy
#
This script is an example from IBM redbook SG24-4936. It is made freely
available on the understanding that it is unsupported sample code only.
#
DESCRIPTION:
This script can be run from a Sentry monitor to send an alert to
TME 10 NetView in the form of an SNMP trap.
#
ARGUMENTS:
(1) The hostname on which the monitor ran
(2) The alert priority (numeric, 1-7. Translated to generic trap ID)
(3) The text message returned by the monitor
#
RETURNED VALUES:
This script returns zero if successful, one otherwise.
#
AUTHORS: Graeme Naysmith IBM UK
###

EVENT_DEST=″rs600026″

if [[-r /usr/local/lib/automation_flag]]
then
cat /usr/local/lib/automation_flag | read flag

if [[$flag = ″automation_off″]]
then
exit

fi
fi

if [[-r /usr/lpp/smslm/original/snmptrap]]
then
/usr/lpp/smslm/original/snmptrap $EVENT_DEST public 1.3.6.1.4.1.2.3.1.2.1.1.2.

1 $1 6 $2 0 1.2.3.6 octetstring ″$3″
elif [[-r /usr/lpp/smsia/original/snmptrap]]
then
/usr/lpp/smsia/original/snmptrap $EVENT_DEST public 1.3.6.1.4.1.2.3.1.2.1.1.2.1
$1 6 $2 0 1.2.3.6 octetstring ″$3″
elif [[-r /usr/lpp/sm6000/original/snmptrap]]
then
/usr/lpp/sm6000/original/snmptrap $EVENT_DEST public 1.3.6.1.4.1.2.3.1.2.1.1.2

.1 $1 6 $2 0 1.2.3.6 octetstring ″$3″
else
#print ″Systems Monitor snmptrap not found″ > /tmp/sendtrap | tee `mail -s ″se

ndtrap failure″ netview@prnv << /tmp/sendtrap`
print ″Systems Monitor snmptrap not found″

fi

Figure 51. SNMP_trap_proxy script

To invoke the script from a TME 10 Distributed Monitoring monitor, specify the
pathname under which the script is stored in the Run program option, exactly as
we did before, but this time specify that the command is to run on the monitored
host (in fact, you could specify that it runs on any TME host that has the
snmptrap executable installed). Figure 52 on page 66 shows an example of this,
in which we assume that the script to send the SNMP trap is stored in
/usr/local/bin.

Chapter 5. TME 10 Distributed Monitoring Examples 65

This soft copy for use by IBM employees only.

Figure 52. Example of Using an SNMP Proxy

After activating the monitor, SNMP events will be sent to TME 10 NetView. They
will appear exactly the same as the traps generated locally on the NetView
machine, as shown in Figure 50 on page 64.

5.2 Print Subsystem Monitoring
The redbook IBM Systems Monitor for AIX, Anatomy of a Smart Agent,
SG24-4398, shows a series of examples using Systems Monitor for print
subsystem (lpd) management. We do not re-create the entire example here
using TME 10 Distributed Monitoring, but we do show some useful techniques.

There are two main areas to be addressed in print management:

• Checking that the queues are available and not too large

• Checking that the lpd daemon is running

5.2.1 Monitoring with and/or Migration to Sentry
When monitoring print queues from Systems Monitor, it was necessary to add a
command to perform the checking process. TME 10 Distributed Monitoring
makes life much easier by providing a number of monitors (in the Unix_Sentry
monitoring collection), as follows:

printstat Status of print queue (up or down)

printjobs Number of jobs in print queue

printjobsize Total size of all queued print jobs

All of these monitors require a single argument, namely, the name of the print
queue to be checked. This means that a separate monitor needs to be added for
each queue via the GUI or CLI. As an alternative to this we created a custom
monitor, which checks all the queues, and restarts any which are found to be
down.

66 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 53 on page 67 shows this generic queue monitor script. It produces a
simple response of 0 or 1, depending on whether all print queues are functioning
or not.

#!/bin/ksh
##
FILE: Print_queue_restart
#
This script is an example from IBM redbook SG24-4936. It is made freely
available on the understanding that it is unsupported sample code only.
#
DESCRIPTION:
This script was designed to be run by Tivoli Sentry Version 3.0
to provide generic print queue monitoring.
run from a universal numeric monitor with trigger set ″Greater than 0″
#
Only tested on AIX 4.2
#
ARGUMENTS:
none
#
RETURNED VALUES:
Returns 0 if all print queues are operational, 1 otherwise
#
AUTHOR: Graeme Naysmith IBM UK
###

system=`uname`

case $system in

AIX)

lpstat -a | awk ′ BEGIN{getline}
{ if($3==″DOWN″)
{system(″qadm -U″ $1)}
}′

lpstat -a | grep DOWN > /dev/null

if [[$? -ne 0]]
then
print ″0″

else
print ″1″

fi

;;

 *)
print ″# $0 Operating system not recognised″

;;

esac

Figure 53. Print Queue Monitor ing and Restart Script

5.2.2 Automating Daemon Recovery
When you are thinking of monitoring a machine, often one of the first
requirements is to monitor the status of processes. Both Systems Monitor and
Sentry provide facilities for monitoring the state of a daemon. Although this
seems like a simple thing to do, it can become complex, for example, if you need
to monitor multiple related daemons, or perform some kind of automated restart.
Usually there are several ways to do this.

Chapter 5. TME 10 Distributed Monitoring Examples 67

This soft copy for use by IBM employees only.

In this section we use the print server daemon, lpd, as an example. We monitor
its status, in case it dies, and show the different approaches to restarting it
automatically. The restart options are as follows:

 1. In the Sentry monitor, run a command such as startsrc -s lpd as an
automated action, as shown in the following figure. The command startsrc is
the AIX subsystem resource controller command to start a subsystem. Other
operating systems would use different commands to perform the same
function.

Figure 54. Run Program startsrc

 2. In the Sentry monitor, run a TME 10 task by invoking it as a program using a
command line like:

wruntask -h rs600026 -t Startsrc -l Printers -a ″-s″ -a lpd

This is very similar to running a simple command as shown in Figure 54.
However, you can utilize the advantages of a TME 10 task over a standard
script or command. One advantage is that the command to be executed
does not have to be installed on the system. The TME task function will
retrieve it and install it temporarily. Another advantage is that tasks can be
made system independent, so you can use the same definition for any type
of UNIX.

Normally you would not run a task in this way, because there is a facility to
run a task directly, instead of invoking it using the wruntask command.
Figure 55 on page 69 illustrates this.

68 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 55. Running a TME Task from a Sentry Monitor Using wruntask

 3. In the Sentry monitor, run a task with the necessary flags instead of running
a program. To do this you click on Tasks (see Figure 55) and enter the task
details, as shown in Figure 56.

Figure 56. Selecting a Task to Execute

Chapter 5. TME 10 Distributed Monitoring Examples 69

This soft copy for use by IBM employees only.

Both examples 1 and 2 invoke the same task, Startsrc, from the Printers task
library. Where did this task come from? In fact, we created it ourselves using
the GUI to create the initial definition and then modified it using the Task Library
Language (TLL). We show you how we created the task library and task and
how we extended its functionality in the next section.

More information about tasks and task libraries can be found in:

• TME 10 Task Library Language Developer’s Guide, SC31-8436

• TME 10 Framework User’s Guide, GC31-8433

You can also find another example of using TLL in TME 10 Cookbook for AIX,
SG24-4867.

5.2.3 Using TME 10 Tasks with TME 10 Distributed Monitoring
Before creating it, let us review exactly what a task library is.

5.2.3.1 What Is a Task Library?
In TME 10, a task library is a collection of tasks. Each task represents a program
that can be executed on a TME Managed Node. A task has several advantages
compared to a normal program execution:

• A task must be associated with a TME Resource Role; therefore you have
control over security.

• A task can be run under an arbitrary user ID on the system on which it is
executed by temporarily assigning special privileges just for that task (for
example, the help desk should be able to run a system backup and needs
system privileges just for that task).

• The organization into task libraries and tasks establishes a common way to
store automated routines. So, you don’t have to worry about updating and
distributing your automated action programs.

• The Task Library Language can be used to furnish a task with a simple user
interface which the administrator can use to supply input parameters to the
task without having to remember a complex syntax.

5.2.3.2 Prerequisites
We add a TME 10 Distributed Monitoring monitor that checks for daemon status,
as shown in Figure 57 on page 71. Click on Add Empty when you have entered
the details.

70 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 57. Adding a Monitor to Watch the lpd Daemon

In the details screen, select the response level that you want to be triggered
when the lpd daemon fails and set it to trigger when the daemon becomes
unavailable. Fill in the rest of the details as shown in Figure 55 on page 69.
Click on Set Monitoring Schedule and define a fairly frequent interval, 3 minutes
for example. Finally, save the new monitor by clicking on Change and Close to
return to the Sentry Profile Properties screen. Next you need to worry about the
user and group ID the monitor will execute under. Any ID can check for the
daemon status, but it needs system privileges to be able to restart it. Click on
the monitor and then select Edit followed by Set User and Group ID from the
menu bar (see Figure 58).

Figure 58. Defining User and Group ID for a Monitor

By default, monitors and the automated actions they invoke are run as user
nobody and group nobody. However, this is not enough to restart the lpd
daemon. You have to be at least a member of the system group.

Chapter 5. TME 10 Distributed Monitoring Examples 71

This soft copy for use by IBM employees only.

We created an AIX user ID called xxx, which has the system group in its group
set. We can then set the user ID and group ID for the TME 10 Distributed
Monitoring monitor as shown in Figure 59 on page 72.

Figure 59. Setting IDs

5.2.3.3 Setting Up a Basic Task
To deal with tasks, you first have to create a task library. You can do this by
selecting Create from the menu bar in the Policy Region window and then
selecting TaskLibrary... from the pull-down menu. Make sure that TaskLibrary is
a managed resource of the policy region where you want to create the new task
library.

In our example, we have created a task library called Printers. Within the task
library you can then create a task, by selecting the task library icon with the
right mouse button as shown in Figure 60.

Figure 60. Creating a Task

The screen shown in Figure 61 on page 73 will appear. Enter the task details as
indicated.

72 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 61. Editing a Task

 Note

Notice that you cannot specify any arguments to pass to the command in this
dialog.

Click on Set & Close and then Create & Close to finish creating the new task.
This will add a new icon for the task in your task library.

Once you have finished these steps, you can test your task by double clicking it
and selecting a host (Available Task Endpoint) to run it on. During testing you
may want to select Display on Desktop and Save to File to watch the task output.
Since our example deals with the startsrc command, execution of the task will
not be successful. The startsrc command requires some flags, which our simple
task definition does not allow us to provide. We will add these flags in the next
section.

5.2.3.4 Extending the Basic Task
Once you have created the Printers task library and the Startsrc task you are
ready to extend its functionality by passing it the two arguments it needs.

From a command line, enter:

wtll -F /tmp/Printers.tar -l Printers

This will extract the task library definition into a tar archive in a file called
/tmp/Printers.tar. Enter the following commands to unpack the archive:

Chapter 5. TME 10 Distributed Monitoring Examples 73

This soft copy for use by IBM employees only.

cd /tmp
tar -xvf /tmp/Printers.tar

You will get two files, named 0.aix4-r1 and tll. We are interested in the tll file.
Figure 62 shows the file, with our additions highlighted.

Figure 62. tll File with Changes

While looking at this Task Library Language definition, we recommend that you
refer back to Figure 56 on page 69 to see the effect of the definitions we have
added.

 Note

We also could have written the source code shown above entirely from
scratch. However, creating it using the graphical user interface and then
exporting it to the Task Library Language definition saves some work.

After making the changes to the tll file, we can compile it by typing:

wtll -r -P /usr/ccs/lib/cpp -p ssd-region /tmp/tll

74 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

 Note

This command uses the C preprocessor, cpp. Problems will arise if you do
not have a working version of this. You may need to have a license key
installed. In fact, we found some problems using the version of cpp that is
shipped with C Set++ and we used a copy from an AIX V3R2 system
instead.

Once the task library has compiled successfully, you can use the new task.
Define a monitor as usual and click on Tasks . You will see a screen like the one
shown in Figure 56 on page 69. In the left field the available task libraries are
displayed, if you double click on Printers the available tasks appear in the right
field. Make sure that you have selected the field Show by Identifier to see the
names of the tasks. Otherwise you will only see the name ″Upgraded Task″. If
you double click on the task that you want to run, a new window pops up and in
our example asks you for the arguments minus_s and process that we have
defined in the tll file.

5.2.4 Comparing the Different Approaches
All of our monitors look for the status of the lpd daemon and try to restart it if it
is down. Look at Figure 63 on page 76 which is an extract of a wlsmon
command. The important differing lines are highlighted:

monitor 0 run program(/usr/sbin/startsrc -s lpd)

monitor 1 run program(wruntask -h $HOSTNAME -t Startsrc -l Printers -a ″-s″
-a lpd)

monitor 2 tasks:Printers:Startsrc(-s, lpd)

The first example (monitor 0) implements a very simple solution for restarting
the lpd daemon. It just runs the program /usr/sbin/startsrc with some flags. The
disadvantage here is that there is no easy way to run different programs on
different platforms. The advantage is that you don’t have to deal with the task
library and task definition.

The implementation in monitor 1 is a mixture between running a program and
working with tasks. It is easy to run different programs on different platforms. A
disadvantage is the rather cryptic command line. A person who is new to UNIX
could get confused with, for example, the -a syntax for the parameters.

The last implementation, monitor 2, is the ″cleanest″ way to restart lpd. The task
corresponding to the type of system where the monitor is run is selected
automatically and you get a window prompting you to enter the necessary
parameters. On the other hand, you have to learn how to create and change
tasks using the Task Library Language.

Chapter 5. TME 10 Distributed Monitoring Examples 75

This soft copy for use by IBM employees only.

0 Monitor: Daemon status(lpd)
Timing:Every 5 minutes
disabled
Responses:
[critical]
when probe result == down
popup(Root_ssd-region),notify(Sentry),run program(/usr/sbin/startsrc -s lpd)

[severe]
[warning]
[normal]
[always]

1 Monitor: Daemon status(lpd)
Timing:Every minute
Responses:
[critical]
when probe result -> down
popup(Root_ssd-region),notify(Sentry-log), \
run program(wruntask -h $HOSTNAME -t Startsrc -l Printers -a ″-s″ -a lpd)

[severe]
[warning]
[normal]
[always]

2 Monitor: Daemon status(lpd)
Timing:Every 30 minutes
Responses:
[critical]
when probe result -> down
tasks:

Printers:Startsrc(-s, lpd)

[severe]
[warning]
[normal]
[always]

Figure 63. Extract of wlsmon Output

5.3 Monitoring CPU Utilization
One of the monitoring tools delivered by Systems Monitor SIA is a MIB table of
CPU utilization. You can, for example, retrieve the MIB variable
.1.3.6.1.4.1.2.6.12.2.9.1.3.1.6 and get the average percentage of time that the CPU
was in idle mode over the interval. CPU utilization is a notoriously difficult thing
to measure in a meaningful way. For example, it is normal for the CPU to hit
100% utilization for short periods of time, so you want to be able to monitor over
a long enough period to be sure that the utilization is really consistently high.

There is also some debate about how useful it is to set thresholds on CPU
usage. Most operating systems are designed to balance load so that a process
that is using a lot of system resource does not impact the performance of other
processes. This means that it is quite possible for a system to always be 100%
utilized, yet the users will not feel any ill effects. On the other hand, if the
utilization suddenly leaps to a high value it may be an indication of a looping
application, or some other bug that needs investigation.

Unfortunately, there are no standard CPU monitors delivered in TME 10
Distributed Monitoring for the UNIX platforms. We will show a technique for
implementing such a monitor. We apply this in two ways:

 1. Using two shell scripts invoked by the Numeric Script monitor (from the
Universal monitoring collection)

76 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

 2. Implementation of a new monitoring collection using the Monitoring
Collection Specification Language (MCSL)

As with all the examples in this book, these examples are available in the
sample package (see Appendix B, “How to Get the Samples in This Book” on
page 141).

5.3.1 How the CPU Monitor Examples Work
We want the monitors to have the following attributes:

• They should avoid reporting single instantaneous readings because the
erratic nature of CPU utilization means such figures may be abnormally high
or low.

• They should permit monitoring over multiple sampling intervals, so that
utilization trends can be determined (for example, you may not mind if a
server is heavily loaded for a 5-minute period, but you are concerned if it
stays that way for an hour).

• They should allow us to break the system utilization into its components, that
is: user, system, idle and wait.

The solution uses the vmstat command to extract utilization information. It
comprises two related Sentry monitors. The first of these invokes vmstat and
returns a ″current″ utilization. In addition to returning the value it stores it in a
log file. The second monitor runs less frequently. It analyses the data in the log
file and returns a mean value, calculated over a given number of monitoring
intervals. Figure 64 illustrates this.

Figure 64. Operation of the CPU Monitors

Chapter 5. TME 10 Distributed Monitoring Examples 77

This soft copy for use by IBM employees only.

To understand what the current utilization monitor is doing, let’s have a look at
the output of vmstat. The command takes two arguments, which specify the
interval between probes in seconds and the number of times to repeat the
probe. So if you enter vmstat 2 4 you will get four sets of utilization figures with
two seconds between each. The output of the command is shown in Figure 65.

rs600026:/ > vmstat 2 4
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 22984 9690 0 0 0 0 1 0 131 621 69 2 3 93 2
0 0 22984 9689 0 0 0 0 0 0 165 173 89 0 2 98 0
0 0 22984 9688 0 0 0 0 0 0 171 343 98 2 2 94 1
0 0 22984 9688 0 0 0 0 0 0 120 84 46 0 0 99 0

Figure 65. Output from vmstat Command

In simple terms the work the CPU is doing can be divided into three parts: Do
nothing (id), work for the system (sy) or work for the user (us). If you add these
three values, the sum is always about 100% (sometimes not exactly 100%
because of rounding). The vmstat command returns the percentage value of the
three components and is a good indicator of how busy the CPU is at a given
time.

The first output line after the header of the vmstat command is always the
average value since the last system boot. Since we are interested in the current
load of the CPU, we can simply ignore the first output line.

In the example shown, the CPU is not at all busy. At the first time stamp, it
doesn’t do anything for the user, works 2% for the system and is 98% idle. At
the second time stamp it does 2% user, 2% system and is 94% idle. At the last
time stamp it is idle at 99%. So we can say, over the last three time stamps the
CPU was working (0+2+0) / 3 = 0.66% for the user, (2+2+0) / 3 = 1.33% for
the system and was idle (98+94+99) / 3 = 97% of the time.

This is the mathematical operation that will be done by our new current
utilizaion monitor. The basic idea is to have a short look (a few seconds) at the
CPU, compute its average load, report it and also write the result to a file.

For the longer-term figures we will run a second monitor at a less frequent
interval. So, for example, if we repeat the current utilization monitor every two
minutes, the average utilization monitor may run every fifteen minutes. It
performs much the same function as the other monitor, except that it works with
figures from the log file instead of vmstat.

5.3.2 Monitoring CPU with TME 10 Distributed Monitoring Using Shell Scripts
We wrote two little shell scripts to implement the current and average CPU
monitoring functions discussed above. The scripts are called cpuload.sh and
cpustat.sh, respectively. They are listed in Figure 66 on page 79 and Figure 68
on page 81.

78 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 66. cpuload.sh Script

The cpuload.sh script expects one parameter that determines which CPU load to
monitor: user mode, system mode, idle time or a combination of system and
user mode (which is the total percentage of time the CPU is busy).

Chapter 5. TME 10 Distributed Monitoring Examples 79

This soft copy for use by IBM employees only.

To launch the script from within a Sentry monitor, we use the Numeric script
monitor from the Universal Monitoring Collection as shown in Figure 67 on
page 80.

Figure 67. Running cpuload.sh From a Numeric Script

If you want to monitor current utilization using this script you can set up the
response levels and actions as for any Sentry monitor. Alternatively if you just
want to set up cpuload.sh to feed the longer-term monitoring offered by
cpustat.sh you only need to set the monitoring interval and allow the response
levels to all default to ″never″.

The cpustat.sh script uses the file created by cpuload.sh. It reads the CPU load
data collected by cpuload.sh and builds the average over a certain number of
probe intervals. The number of probes is determined by the second argument
passed to the script. The cpustat.sh script is listed in Figure 68 on page 81.

80 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

#!/bin/ksh
##
FILE: cpustat.sh
#
This script is an example from IBM redbook SG24-4936. It is made freely
available on the understanding that it is unsupported sample code only.
#
DESCRIPTION:
This script can be run using the numeric script monitor to read
CPU load information from a file, previously written by cpuload.sh.
It returns the mean load value over the most recent N samples
#
ARGUMENTS:
(1) The element of CPU load to measure
-user Percent CPU utilization for user processing
-system Percent CPU utilization for system processing
-idle Percent CPU idle
-system_user Percent CPU utilization for system and user (%busy)
(2) The number of intervals to calculate the average over
#
RETURNED VALUES:
This script returns the average utilization as an integer percentage
#
AUTHORS: Andreas Kuffer IBM Germany
Rob Macgregor ITSO-Raleigh
##
utiltype=$1
count=$2
infile=″ /tmp/bc.wrap$utiltype″

Calculate the average of the last $count entries
bc << EOF
ibase = 10
obase = 10
scale = 0
n=$count
s = 0`tail -$count $infile | awk ′{ printf ″ + %s″ , $1 }′ `
s / n
quit
EOF

Figure 68. cpustat.sh Script

The cpustat.sh script is invoked in a monitor in exactly the same way as
cpuload.sh (see Figure 67 on page 80) except that it has a second argument, the
number of intervals over which to summarize the results.

The relationship between the two scripts means that you can have multiple
cpustat.sh monitors running at once, working with data collected by one
cpuload.sh monitor. For example:

• Run cpuload.sh -system_user at 2-minute intervals to record CPU busy data.

• Run cpustat.sh -system_user 5 at 15-minute intervals to report the 10-minute
average CPU utilization.

• Run cpustat.sh -system_user 30 at one hour intervals to report hourly
averages.

5.3.3 Monitoring UNIX CPU Utilization Using MCSL
The two scripts described above meet our requirements for UNIX CPU
monitoring, but it would be better if they were implemented as part of a normal
monitoring collection, rather than having to distribute scripts and employ the
numeric script monitor to drive them. In this section we show how to turn the
scripts into a new monitoring collection, using the Monitoring Capability

Chapter 5. TME 10 Distributed Monitoring Examples 81

This soft copy for use by IBM employees only.

Specification Language (MCSL) to create the definition. MCSL is comparable to
the TME 10 Task Library Language described in 5.2.3.1, “What Is a Task
Library?” on page 70.

While this approach requires more effort, it has many advantages over using
generic script monitors. For example:

• The scripts do not have to be distributed separately from the monitor
definition.

• An administrator does not need to know the arcane command line syntax.

• A single monitor can be made to support multiple system types.

• The monitor is portable and can easily be installed on another TME system.

5.3.3.1 Before You Start
To create and compile the MCSL definitions you need the following environment
in place:

• Tivoli Management Platform, Version 2.0.2 or later

• Tivoli/Sentry 2.0.2 or later

• A C-language preprocessor

On AIX, make sure you have a valid license key or copy the cpp command
from an AIX 3.2.5 system, which will work without a license key.

• Access to at least the following files:

Sentry2_0.dsl
operators.csl
choicelists.csl
formats.csl

These are include files that define messages and data structures. They are
included with the TME 10 Integration Toolkit, which is available to Tivoli
partner vendors. We only had the Integration Toolkit on the NT platform, so
we copied the files from C:plusplusincludegenerictivoli to our working
directory on AIX. We had to remove the first three or four comment lines of
the include files because the AIX C pre-processor did not know how to deal
with them.

5.3.3.2 Overview of Creating a Monitoring Collection
There are four steps to creating a monitoring collection with MCSL.

 1. Create the message catalog.

MCSL refers to messages using a label, instead of having them coded
directly into the monitor definition. This allows you to translate an
application into different languages and locales without changing the base
function.

 2. Create the monitor definition file.

This is the heart of the process. This file defines the name of the monitoring
collection and the monitors in it. It specifies the arguments that have to be
passed to the monitor scripts, including the syntax of each argument. GUI
elements, such as selection lists and data entry fields, are also defined.
Finally, the file defines the monitor scripts themselves, either directly within
the file or by reference to a separate shell script.

 3. Compile the monitor definition file.

82 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

This step uses the mcsl command, which invokes the C pre-processor to
parse the monitor definition and message catalog and then generates a
collection definition file from them.

 4. Install the new monitoring collection.

This step again uses the mcsl command to install the collection into the
running TME nodes.

We will now show how we performed each of these steps to create the UNIX
CPU monitoring collection example.

5.3.3.3 Creating the Message Catalog
The message catalog is defined in a .msg file (cpu.msg, in our example). Each
entry in the file contains two lines:

$ key=keyname
n message_body

The keyname field is a unique key that is used to access the message from the
monitor definition. The n field is a unique message number and the
message_body field contains the text that is to be displayed. You need to have
an entry for each text item that will appear on the user interface, such as
collection and monitor descriptions, field descriptions for command arguments,
selection list entries and help text.

Figure 69 on page 84 shows the cpu.msg file that we created for our example:

Chapter 5. TME 10 Distributed Monitoring Examples 83

This soft copy for use by IBM employees only.

$ key=Busy_Descr
1 Percent used
$ key=Busy_Help
2 This Monitor returns the current CPU resource utilization as a percentage. It
has three options which divide utilization into user, system or idle components,
plus a fourth option which combines system and user components (effectively - CPU busy).
$ key=Busy_val_Descr
3 Percent
$ key=Resources
4 Resource
$ key=cpuload_val_Descr
5 CPU Status
$ key=cpuload_Descr
6 Current CPU utilization
$ key=cpu_choice_idle
7 CPU Idle
$ key=cpu_choice_user
8 CPU User
$ key=cpu_choice_system
9 CPU System
$ key=cpu_choice_system_user
10 CPU System plus User
$ key=ButtonLabelChoice
11 Choices
$ key=cpu_list
12 Options
$ key=generic_help
13 The CPU collection shows statistics for the CPU usr-, system- or idle-percentage
$ key=cpustat_Descr
14 CPU utilization over time
$ key=cpustat_val_Descr
15 Percent
$ key=cpustat_Busy_Help
16 This Monitor uses the output of the Current CPU utilization \
monitor and builds the average over an adjustable number of timeframes
$ key=cpustat_argument
17 Number of Timeframes
$ key=cpustat_list
18 Options

Figure 69. cpu.msg File

After you have created the cpu.msg file, you have to translate the file into a
format that can be included in the monitor definition. You use the gencmsg
command to do that:

gencmsg cpu.msg

Three files will be created: cpu.c, cpu.h and cpu.dsl. The cpu.dsl file will be
included in the cpu.csl file as shown in the next step.

5.3.3.4 Creating the Monitor Definition File
The monitor definition is in a file of type .csl (we called ours cpu.csl). Figure 70
on page 85 and Figure 71 on page 86 show the contents of cpu.csl, with notes
about each section.

84 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 70. Monitor Definiton File, cpu.csl (Part 1 of 2)

Note that every time we refer to a message created in the cpu.msg message
catalog file, we use the keyname preceded by the filename of the catalog and an
underscore, that is, ″cpu_″ (for example, cpu_ButtonLabel_Choice in the
selection list definition).

The keyword Numeric on the monitor definition specifies that this monitor is
going to have a numeric return value. Alternatively we could have specified
String or Async. The text Group on the same entry is a keyword and finally
numeric is a reference to a definition in the operators.csl include file. This
controls which trigger options you have for the monitor (see Figure 76 on
page 89). There are two alternatives to numeric, either string or available.
Specify string for triggers such as ″Equal to″, ″Matches″ and ″Changes to″.
Specify available for triggers such as ″Is up/available″ and ″Becomes available″.

The cpuload monitor has three different implementations defined, for AIX, HPUX
and for Sun. Each of them invokes a slightly different version of the cpuload.sh
shell script that we described above (see 5.3.2, “Monitoring CPU with TME 10
Distributed Monitoring Using Shell Scripts” on page 78). The differences are

Chapter 5. TME 10 Distributed Monitoring Examples 85

This soft copy for use by IBM employees only.

caused because the three different flavors of UNIX display the vmstat results in
slightly different ways. If you want to put the complete definition into one file, it
is possible to imbed the script lines in the .csl file, instead of using the Import
keyword. If you do this, each line of the script must be prefixed with a period
(″.″).

Now we can complete the monitoring collection definition by adding the second
monitor, called cpustat, which takes the output file produced by the first monitor
and builds an average over a variable number of time frames (see Figure 71).

Figure 71. Monitor Definiton File, cpu.csl (Part 2 of 2))

5.3.3.5 Compiling the Monitoring Collection
Now we are ready to compile our cpu.csl file. Use the following command to do
this:

mcsl -P /usr/lib/ccs/cpp -x cpu.col cpu.csl -lang-c++ -nostdinc -undef

Where:

-P specifies the path to the C pre-processor to be used

-x specifies the output file and the source .csl file

The result of this is a binary file, cpu.col, which contains the complete monitor
definition, including the implementation scripts for the supported platforms.

5.3.3.6 Loading the Monitoring Collection
Once you have your cpu.col file, you are ready to load the collection. Use the
following command to load it into TME 10 Distributed Monitoring:

mcsl -i -R cpu.col

You may get some error messages, similar to the following when you execute
this command:

WTR05128:A communications failure occurred: destination dispatcher unavailable
Please refer to the TME 10 Framework Planning and Installation Guide, \
″TME Maintenance and Troubleshooting″ for details on diagnosing \
communication errors or contact your Tivoli support provider.

This is not necessarily a serious problem. The command attempts to update all
of the managed nodes in the TMR. If there are nodes that are currently down

86 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

you will see the above message. However, the monitoring collection will have
been installed on all of the active systems.

To see the new collection and its monitors in the graphical user interface, you
have to recycle the object dispatchers using the following command:

odadmin reexec all

5.3.4 The New Monitoring Collection in Action
Now we can invoke our new monitors. We open a TME 10 Distributed Monitoring
profile, as shown in Figure 72.

Figure 72. TME 10 Distributed Monitor ing Profi le

Next click on Add Monitor . You will be presented with the monitoring collection
selection screen (see Figure 73 on page 88). In the left table the new UnixCPU
collection will appear. When you select it our two monitors, Current CPU
utilization and CPU utilization over time will be listed in the right-hand table.

Chapter 5. TME 10 Distributed Monitoring Examples 87

This soft copy for use by IBM employees only.

Figure 73. Adding a New Monitor

If you now select Current CPU Utilization from the Monitoring Sources window
and then click on About This Monitor... the display shown in Figure 74 will
appear. Notice that this is the content of the Busy_Help message catalog entry
that we defined in the cpu.msg file (see Figure 69 on page 84). It appears here
because we specified:

HelpMessage = (cpu_Busy_Help)

in the definition of the monitor (Figure 70 on page 85).

Figure 74. About This Monitor

Click on Dismiss to close the window and return to the monitoring collection
window. Now click on Choices beside the Options field to get the list of CPU
utilization elements that you can monitor (see Figure 75 on page 89).

88 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 75. Options for the Monitor

Selecting a value from the list and then pressing the Set & Close button will
close the window and put a value in the text box for the Options field, for
example, selecting CPU System plus User will put -system_user in the text box.

After adding the monitor by clicking on Add Empty... , you are presented with the
normal screen for editing the monitor details, as shown in Figure 76.

Figure 76. Trigger Options of the Monitor

Click on Change & Close when you have finished. We specified that the monitor
should update an indicator icon, so we have to create an indicator collection and
then associate the monitor with it (see Figure 77 on page 90), before saving and
distributing the monitor profile.

Chapter 5. TME 10 Distributed Monitoring Examples 89

This soft copy for use by IBM employees only.

Figure 77. Assign an Indicator Collection to the Profi le

The result of all of this is that when the combined user and system utilization of
one of the monitored nodes exceeds 10%, an icon in the indicator collection will
show a warning, as shown in Figure 78.

Figure 78. Operation of the Indicator Icon

 Remember

All of the examples in this book are available as a package. See
Appendix B, “How to Get the Samples in This Book” on page 141 for details.
The CPU utilization monitoring collection described here is merged into a
combined collection, called Redbook_samples in the code package.

90 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.3.5 Installing the UnixCPU Collection on Another TMR Server
Once you have successfully compiled and tested the CPU collection, you can
install it on another TMR server. We developed the examples on a system
running Tivoli/Sentry 3.0.2 and installed the created cpu.col file on a machine
running TME 10 Distributed Monitoring 3.5 by invoking the following command on
the target system (after transferring the file cpu.col to the target system):

mcsl -Ri cpu.col

Recycle oserv on the target systems to see the changes.

The reason why we installed our CPU collection on a TME 10 Distributed
Monitoring 3.5 system was that we wanted to combine our CPU monitor output
with the new Sentry Graphable Log TME 10 Distributed Monitoring task. This
task saves the results of a monitor in a file and provides a Web-based
application to produce a graphical view of the results. For viewing the results,
you can use a Web browser, such as Netscape Navigator.

5.3.5.1 Setting Up the Monitors
We created four monitors to collect the CPU utilization data that we want:

The first two monitors check CPU utilization at 2-minute intervals and write the
results to local log files. The third and fourth monitors summarize the collected
data over a 10-minute period (five 2-minute intervals) and pass the results on to
the graphing facility. Figure 79 on page 92 shows how to assign the graphing
task to the monitor.

We then distributed the profile containing the four monitor definitions. The
Create graphable log task writes log files to the following directory on the
monitored system:

$DBDIR/.sntglog/<system name>/UnixCPU/

Table 5. Setup for Graphical CPU Monitor ing

Chapter 5. TME 10 Distributed Monitoring Examples 91

This soft copy for use by IBM employees only.

Figure 79. Selecting the Graphical Monitor ing Task

5.3.5.2 Displaying the Logged Data Graphically
The graphical monitoring facility provides a Web-based application for displaying
collected results. It includes a specialized Web server, some CGI programs and
a set of Java applets. The applets allow you to select the source data and
display it on a dynamically updated graph in any Java-enabled browser. If you
want to know more about the way that this application works, refer to A First
Look at TME 10 Distributed Monitoring 3.5, SG24-2112.

For our example we selected to display the system and user components of CPU
utilization on one target node as a surface chart. The result is shown in
Figure 80 on page 93. Note that this display also shows one of the features of
the graphical display; when you stop the mouse pointer over a data point, the
value of it pops up in a little box.

92 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 80. Graphical View of Historical UNIX CPU Data

5.4 File Monitoring Examples
Under Systems Monitor, file monitoring was rather unusual. For most
polling-based functions, the work was performed by the MLM or SLM
components, with the SIA as a passive SNMP data source. For file monitoring,
however, the SIA performs the polling for status and contents locally. As we
showed in 4.3, “Analyzing the Migration” on page 27, the file monitors can be
directly migrated, with some caveats. TME also provides us with an alternative
method for monitoring file data, using the T/EC log file adapter. We will not
consider that option in this book, although in some cases it may be a good
alternative to using Sentry monitors.

In this section we will show two examples of file monitoring:

• Monitoring ADSM log files

• Dynamically named log files

5.4.1 Monitoring ADSM Log Files
Many customers use ADSTAR Distributed Storage Manager (ADSM) on various
platforms to fit their backup and restore needs. Tivoli offers a TME 10/Plus
Module for controlling and monitoring ADSM using TME. In this example,
however, we will use TME 10 Distributed Monitoring to directly monitor the
ADSM log files.

On AIX machines, there are three log files that we are interested in:

• dsmsched.log (sched.log)

• dsmerror.log

• the console error log

Looking at the output of the log files, they all have a similar structure.

Chapter 5. TME 10 Distributed Monitoring Examples 93

This soft copy for use by IBM employees only.

The following is an example of the dsmerror.log file:

11/06/1996 13:50:18 sessOpen: Error 137 from signon authentication.
11/06/1996 13:50:18 ANS4028E Session rejected: Authentication failure

Typical entries from the dsmsched.log look like the following:

11/06/1996 07:50:16 Querying server for next scheduled event.
11/06/1996 07:50:16 Next operation scheduled:
11/06/1996 07:50:16 --
11/06/1996 07:50:16 Schedule Name: DAILYINCRNT
11/06/1996 07:50:16 Action: Incremental
11/06/1996 07:50:16 Objects:
11/06/1996 07:50:16 Options:
11/06/1996 07:50:16 Server Window Start: 19:00:00 on 11/06/1996
11/06/1996 07:50:16 --
11/06/1996 07:50:16 Schedule will be refreshed in 6 hours.
11/06/1996 13:50:18 ANS4028E Session rejected: Authentication failure
11/06/1996 13:50:18 Scheduler has been stopped.

Finally, the console error log file contains entries like the following:

11/06/1996 13:55:40 ANR0400I Session 2270 started for node SORL0008 (WinNT) ref
11/06/1996 13:55:40 ANR0424W Session 2270 for node SORL0008 (WinNT) ref \
invalid password submitted.
11/06/1996 13:55:40 ANR0403I Session 2270 ended for node SORL0008 (WinNT) ref

ADSM operates on many different operating systems. The messages that it
places in the log files are generally the same, regardless of the platform.
However, there are some system-specific messages; for example, the following
log file excerpt is from ADSM for MVS, showing system messages interpolated
with related ADSM messages:

ANR0352I Transaction recovery complete.
ANR2100I Activity log process has started.
IEF237I 0728 ALLOCATED TO SYS00009
ANR2102I Activity log pruning started: removing entries prior to 02/23/1997
00:00:00.
IEF237I 0728 ALLOCATED TO SYS00010
ANR2103I Activity log pruning completed: 8 records removed.
IEF237I 0728 ALLOCATED TO SYS00011
ANR1305I Disk volume ADSM.STORAGE.POOL001 varied online.
ANR5030E Dynamic allocation of data set ADSM.STORAGE.POOL007 failed, \
return code 4, error code 1156, info code 0.
ANR1305I Disk volume ADSM.STORAGE.POOL003 varied online.
ANR1311E Vary-on failed for disk volume ADSM.STORAGE.POOL007 - unable \
to accessdisk device.
IEF237I 0728 ALLOCATED TO SYS00016
ANR1305I Disk volume ADSM.STORAGE.POOL004 varied online.
ANR0811I Inventory client file expiration started as process 1.
ANR2803I License manager started.

By looking at these examples, it should be clear that there is always at least one
line (sometimes two or more) with an error code (for example, ANR5030E,
ANR1311E) and a brief description message.

Messages in ADSM always start with ANR, followed by a message number and
the message class. The message number has four digits, and the message
class can be, for example, ″I″ for information messages or ″E″ for errors.

94 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.4.1.1 Monitoring with Systems Monitor
It is quite easy to tell Systems Monitor to look at the output file for all errors. We
can create a file monitor and look for the following regular expression to find all
error messages in the log file:

ANR[0-9] [0-9] [0-9] [0-9]E

If a relevant error message is found, we can use the snmptrap command to send
an SNMP trap to NetView passing the complete error message line. This can be
achieved by using the $SM6K_FILE_MONITOR_COMPLETE_LINE_STRING_FOUND
variable in Systems Monitor when calling the snmptrap command.

However, since there are some errors that occur very often and are not
interesting at all, we decided to add some more functionality to the basic
monitor. We created an exception list that contains only the error messages that
are relevant to us. The monitor can then use this exception list and only send a
trap if the error that was found in the message log is in the exception list.
Figure 81 shows the monitoring script.

#!/bin/ksh
#
If we get here, Filemonitoring has found a ′ ANR????E′ -string in the
logfile.
go through the exception list, whether this string should be sent or not.

complete=$*
exceptions=′ . / exceptions′
netviewmachine=′ rs600026.itso.ral.ibm.com′

for exception in `cat $exceptions`
do
result=`echo $complete |grep $exception`
[″$result″]
if [$? -eq 0]
then
no need to go on further
exit 0;

fi
done
/usr/lpp/smsia/original/snmptrap $netviewmachine public \
″.1.3.6.1.4.1.2.6.12″ `hostname` 6 41 0 ″.1.3.6.1.4.1.2.6.12″ \
OctetStringASCII ″$complete″ ;
/usr/local/Tivoli/bin/aix4-r1/bin/wsndnotif ″TME Diagnostics″ Error <<EOF
ADSM-script found Error Entry on host `hostname`
$complete
EOF
exit 1;

Figure 81. adsm_script Monitor ing Script for Systems Monitor

The exception list is a plain text file and contains entries like the following:

ANR1234E
ANR8888E
ANR5435E

Chapter 5. TME 10 Distributed Monitoring Examples 95

This soft copy for use by IBM employees only.

The following figure shows how we set up the monitoring for the dsmcon.log file
in Systems Monitor.

Figure 82. Systems Monitor Configuration for ADSM File Monitor ing

In our example we defined an enterprise-specific trap ID 41 for our monitor to
create. The event that is displayed in the TME 10 NetView Control Desk window
when the monitor triggers is shown in Figure 83 on page 97.

96 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 83. SNMP Trap Generated by ADSM File Monitor ing

5.4.1.2 Migrating the ADSM Monitor to Sentry
We chose to use the migrate_sysmon_config shell script from the sample
package for this book to convert the SIA file monitor into a Sentry profile (see
“Semi-Automated Profile Migration” on page 46 for a discussion about this). To
do this, we copied the SIA configuration file from its default location in directory
/var/adm/smv2/sia/config into a working directory and then invoked the
command. The command dialog follows:

rs600026:/tmp/migtest > migrate_sysmon_config
You are Tivoli administrator Root_ssd-region
total 136
drwxr-xr-x 2 rob assignee 2048 Jun 05 10:51 .
drwxrwxrwt 12 root system 3584 Jun 05 10:52 ..
-rwx------ 1 root system 862 Jun 05 09:31 itso.config.test
-rw-r--r-- 1 root system 19384 Jun 01 07:09 kuffi
-rwxr-xr-x 1 root system 21434 Jun 01 08:20 m_s_c
-rw-r--r-- 1 rob assignee 4449 Jun 05 08:30 mlm_plus_sia
-rw-r--r-- 1 root system 586 Jun 05 10:51 sia_filemon

Please input the Sysmon config name from the list above ==>sia_filemon
Please input Sentry profile name in which to place migrated monitors
Note: this profile must already exist ==>adsmtest
Path to monitoring scripts on monitored system [/usr/local/bin] ==>
/tmp/migtest/sia_filemon
Creating countstr monitor for ′ ANR[0-9][0-9][0-9][0-9]E′ /usr/local/log/dsmcon.log

Migration Completed - see /tmp/migtest/migrate_sysmon.log for details
rs600026:/tmp/migtest > cat migrate_sysmon.log
################### Thu Jun 5 10:53:03 EDT 1997 ############################
SYSMON SCHEDULE====30m
SENTRY SCHEDULE====30
Creating countstr monitor for ′ ANR[0-9][0-9][0-9][0-9]E′ /usr/local/log/dsmcon.log
==

The TME 10 Distributed Monitoring definition created by this command is shown
in Figure 84 on page 98. Note that the equivalent test to the SIA string monitor
is an Occurrences in file monitor, with a criterion of ″Changes by 1″. There are a
number of other points to note here:

• The new monitor is created in a disabled state. You should check that it has
been migrated successfully before enabling it.

Chapter 5. TME 10 Distributed Monitoring Examples 97

This soft copy for use by IBM employees only.

• The migration script, by default, defines a pop-up message as the monitor
action. You will probably want to change this, depending on your local
policy.

• The command to execute from SIA has been migrated as a Run program
action. This will often be acceptable, but this case is an example where the
program uses Systems Monitor environment variables. The command line
would therefore need to be modified to work correctly with Sentry. In this
case the variable contains the line from the log file that caused the monitor
to be triggered. Unfortunately there is no exactly equivalent Sentry
environment variable.

The lesson from this is that the sample migration scripts are a useful way to
create a set of Sentry monitors that reflect your Systems Monitor environment.
However, the monitors it creates are only a foundation, which you will have to
build upon to create the final solution.

Figure 84. Migrated File Monitor

The pop-up generated by the migrated monitor is shown in Figure 85 on
page 99.

98 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Figure 85. Pop-up Notification of ADSM Error Message

5.4.2 Dynamically Named Log Files
Some applications create log files with the date added at the end of the log file
name, for example, by appending the output of the AIX date command to the end
of the filename. One example of this is SysBack/6000. We show how monitoring
of these log files can be handled.

SysBack/6000 is a backup and restore application that can be configured to
create a log file containing details of all the files that were backed up and the
errors encountered, if any. For example, a customer runs a daily backup of
critical file systems and on Saturday does a full backup of the entire volume
group. The log f i les are written to /usr/local/ log/sysback.log.‘date +%d%m%y‘.

After a few days there would be a number of files, with names like
sysback.log.010397, sysback.log.020397, sysback.log.030397 and so on.

Every day, after the backup has completed we want to monitor the actual log file
to determine if anything unusual has happened.

5.4.2.1 Monitoring with Systems Monitor
The problem is that the Systems Monitor file monitor table needs a fixed file
name to look for. In order to face this problem we can look for the newest file
that matches the naming conventions for the log file. If this file is newer than the
file with the fixed name (sysback.log in our case) that we want to monitor, it is
copied to sysback.log and Systems Monitor will then look at this file.

The following code fragment can be used to achieve this:

dest=’/usr/local/log/sysback.log’
file=`ls -tr /usr/local/log/sysback.log.* | tail -1`
if [$file -nt $dest]; then cp $file $dest; fi

What we want, therefore, is a way to be sure that the above script has been
executed before testing the log file contents. SIA provides us with the command
to execute before monitor option which does exactly what we want. Figure 86 on
page 100 shows an example of this, in which we are looking for the words
ERROR or WARNING in the latest log file. Notice that we have specified that the
monitor is only activated once per day, so that we do not process any log events
a second time.

Chapter 5. TME 10 Distributed Monitoring Examples 99

This soft copy for use by IBM employees only.

Figure 86. Monitoring Dynamically Named Log Files with Systems Monitor

5.4.2.2 Monitoring with and/or Migration to Sentry
TME 10 Distributed Monitoring (Sentry) does not have a standard option that
allows a command to be run before the monitor. This is why we cannot employ
an automatic migration of the above example.

A solution to the problem is to use two monitors:

• A numeric script monitor from the universal collection, which does the
sorting and copying to a file with fixed filename

• An occurrences in file monitor from the Unix_Sentry collection, which checks
for the file pattern matches

The script for the first monitor is exactly like the three lines of code shown in the
previous section. The second monitor would normally be a simple one, but in
this case the pattern that we want to watch for (ERROR | WARNING) is an
extended regular expression. The Sentry monitors use grep-style limited regular
expressions, so the SIA monitor cannot be directly migrated. To resolve this

100 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

problem, we created a new monitoring collection, containing a file monitor that
uses egrep for pattern matching. The collection is available in the code package
for this redbook. Figure 87 on page 101 and Figure 88 on page 101 show the
two monitor definitions. You can see that we have set them to trigger at a
specific time each day, one 5 minutes after the other.

Figure 87. First Monitor Extracts Daily Log File

Figure 88. Second Monitor Analyzes Log File for Error Messages

Chapter 5. TME 10 Distributed Monitoring Examples 101

This soft copy for use by IBM employees only.

5.5 Migrating the Re-Arm Function
One of the features of Systems Monitor that TME 10 Distributed Monitoring does
not provide is the use of threshold and re-arm values to control automated
actions and alerts. Figure 89 illustrates this principle.

Figure 89. Threshold and Re-Arm Function

With a simple threshold mechanism, the monitor will be triggered at every
polling interval for which the value exceeds the threshold. With a re-arm
mechanism you can set a re-arm line, below the threshold level. Once the
threshold value is exceeded by the value of x, an event is sent. In following
probes no further events are sent even if the threshold is still exceeded until the
value of x drops below the re-arm line. Then the monitor is ″re-armed″ and the
next time x exceeds the threshold another alert is sent. This has the dual
benefit of reducing the number of alerts and also providing a resolution event, to
indicate that the problem episode has come to an end.

If the threshold and re-arm levels are the same, one event is sent when x
exceeds the threshold and then monitoring is disabled. Once x drops below the
threshold again, the monitor is ″re-armed″. The re-arm capability can also be
applied to non-numerical monitors. For example, if you are monitoring the
status of daemon processes, you can set a threshold to generate an alert when
a process fails and set it to re-arm when the process has restarted.

102 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.5.1 An Approximate Equivalent of Re-Arm Using Sentry
As we have shown, the re-arm capability can be a very useful feature of Systems
Monitor. How should we provide an equivalent function in TME 10 Distributed
Monitoring? The obvious answer is that the ″normal″ response is similar to the
resolved response that re-arm gives you. The problem with this is that it is
always triggered whenever any of the exception responses (critical, severe,
warning) are not triggered. This means that you will be sending monitor events
at every polling interval, which is a good way to use a lot of system resource
and bandwidth.

The best solution is to exploit the flexibility of Sentry monitors by, for example:

 1. Using the additional relative test conditions that they offer (such as increases
beyond, decreases below, becomes active etc.)

 2. Using their capability to add response levels with the waddlevel command

As an example of this, we will create a monitor that generates an alarm when
the utilization of a given file system exceeds 90% and then generates a
resolution event when it falls below 80%.

5.5.1.1 Adding the Resolved Response Level
Sentry monitors normally have three exception levels, critical, severe and
warning. Any monitor that does not trigger any of these is considered to be at
the normal response level. We want to add a further level, resolved, which will
be logically below the warning level but above the normal level.

The waddlevel command allows us to do this. To add our resolved level to a
monitoring profile called rearm_test, we entered the following command:

waddlevel resolved 10 rearm_test

The numerical value, 10, in this command is the precedence of the new level.
This is an arbitrary value that falls between warning, with a precedence of 100,
and normal (0). What this means is that if both the warning and the resolved
thresholds are triggered, it is the warning action that will be invoked.

5.5.1.2 Defining the Monitor
Now we can use the new response level to implement our file system monitor.
Figure 90 on page 104 shows how to do this. Notice that we have used the
increases beyond and decreases below comparators to trigger the two response
levels. Both response levels are defined to update a monitoring collection icon,
but only the Warning event will actually change the icon. This is because the
icon needs to have all of its possible states predefined, with a bitmap and dialog
associated with each state. The wputicon command can be used to add a new
state, but we did not try it for this project.

Chapter 5. TME 10 Distributed Monitoring Examples 103

This soft copy for use by IBM employees only.

Figure 90. Creating a Re-Arm-Like Capability with Response Levels

5.5.2 A Closer Approximation to Re-Arm Using Sentry
Adding a resolved response level, as described above, gives very similar results
to the Systems Monitor re-arm function. It differs in one way: if the monitor
value exceeds the alarm level and then drops, but not below the resolved level, it
will generate another alarm event when it next exceeds the level. By contrast,
re-arm causes a new alarm to be triggered only when the monitor has first
dropped below the resolved level.

In most cases, this slightly different behavior is not a problem and we
recommend using this approach. However, if you want to replicate the re-arm
function more precisely, the script shown in Figure 91 on page 105 will allow
you to do so.

104 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

#!/bin/ksh
##
FILE: sentry_rearm
#
This script is an example from IBM redbook SG24-4936. It is made freely
available on the understanding that it is unsupported sample code only.
#
DESCRIPTION:
This script replicates the re-arm capability of Sysmon threshold table and
file monitor table entries in Sentry.
The script should be run as an action from a sentry monitor. It alters the
response level of critical, severe or warning temporarily, until a ″resolved″
response resets it to the normal value.
#
ARGUMENTS:
When invoked from critical, severe or warning, 2 arguments required.
When invoked from resolved, 3 arguments required
(1) The new comparator for the response level (ie: ″->>″ for increases beyond)
(2) The new threshold level to be compared against
(3) The response level to set (only needed for ″resolved″ action)
#
For example:
#
On the critical response level, execute:
/usr/local/bin/sentry_rearm ″->>″ 80 to set the new ″increases beyond″
value to 80
On the resolved response level, execute:
/usr/local/bin/sentry_rearm ″->>″ 90 critical to reset the threshold to 90
#
RESTRICTIONS:
This script uses the ″execute program″ option for the monitor response levels,
so you cannot have another program executed.
It also needs appropriate TME administrator authority to run.
#
AUTHORS: Graeme Naysmith IBM UK
Rob Macgregor ITSO-Raleigh
###

Note: uses environment vars supplied by Sentry: $NAME, $HOSTNAME and
$MONITOR and $RESPONSELEVEL. Would use $INTERNAL_ID, but could not make
it work in this version of Sentry, so extract it using wlsmon instead.

Get the internal monitor ID
wlsmon $NAME″@″$HOSTNAME | grep ″$MONITOR($PROBE_ARG″ | awk ′ {print $1 }′ | read INTERNAL_I
D

Check if a rearm or an arm
if [[$RESPONSE_LEVEL != ″resolved″]]
then
wsetmon -c $RESPONSE_LEVEL -R ″$1″ ″$2″ $INTERNAL_ID $NAME″@″$HOSTNAME >&1

else
wsetmon -c $3 -R ″$1″ ″$2″ $INTERNAL_ID $NAME″@″$HOSTNAME

fi

wdistrib -l over_all @SentryProfile:$NAME″@″$HOSTNAME @ManagedNode:$HOSTNAME

exit

Figure 91. An Example of Providing Re-Arm within a Sentry Monitor

The first thing the script does is to determine the internal ID of the monitor and
store it in the $INTERNAL_ID variable since this is needed with the wsetmon
command. The wsetmon command is then used to update the monitor, but note
that it only updates the copy on the monitored system. This means that the
threshold value will be reset only on the system that has the problem, not on the
base Sentry profile. Finally the script updates the sentry_engine on the
monitored system using the wdistrib command.

To use the script, you must run it as an action from the monitor response level.
Figure 92 on page 106 shows how to invoke sentry_rearm for the same test that

Chapter 5. TME 10 Distributed Monitoring Examples 105

This soft copy for use by IBM employees only.

we used before (a file system percentage full monitor for /var). In addition to
adding the command invocation to the response levels, you must also check that
the monitor is running with a user ID that has the necessary access to the
monitor profiles. See 5.2.2, “Automating Daemon Recovery” on page 67 for a
description of how to do this.

Figure 92. Defining Monitors to Use the sentry_rearm Script

The monitor behavior that results from this definition is as follows:

 1. The utilization goes above 90% for the first time. This causes an alert to pop
up and invokes sentry_rearm with arguments ″- > > ″ 80 (increases beyond
80).

 2. The util ization drops below 90%, but not below the re-arm level of 80%.

 3. The util ization increases again above 90%. Nothing happens, because the
threshold condition (increases beyond 80) has not been met.

 4. The utilization falls below 80%. The resolved response condition is
decreases below 80, so a resolved message pops up and sentry_rearm is
invoked with arguments ″- > > ″ 90 warning. This sets the warning response
level back to increases beyond 90 again, thereby restarting the cycle.

106 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.6 Advanced Process Monitoring
In this section we show some examples for advanced process monitoring,
namely:

• Monitoring multiple processes

• Monitoring process groups

The first example is a script that can be used with both Systems Monitor and
TME 10 Distributed Monitoring, the second example will be implemented in a
monitoring collection using TME 10 Distributed Monitoring’s MCSL language.

5.6.1 Monitoring Multiple Processes
The applications running on a UNIX server can be very complex, involving a
number of related processes. Often we would like to monitor a number of
processes as a group, as opposed to monitoring single processes.

We created a shell script that will look for a list of processes being up or down.
The first time a process is found to be down, an event is sent to a management
platform (this is TME 10 NetView in our example but could be T/EC also). We do
not alert multiple times but send a message if the process is up again.

The script is shown in the following figure:

Chapter 5. TME 10 Distributed Monitoring Examples 107

This soft copy for use by IBM employees only.

#!/bin/ksh
export TRAP=/usr/local/bin/sendtrap
host_name=`hostname`
pscheckdata=/usr/local/log/pscheck.dat
logstart=/usr/local/log/process_check.log
Check that the processes listed in pscheck.dat are running.
make a list of all processes
pstext=$(ps -e | awk ′{ print $4}′ | sort | uniq)
check all lines in pscheck.dat exlcuding lines starting with a hash
cat $pscheckdata | while read i
do
echo $i | grep -v ″¬#″ > /dev/null 2>$1
if [[$? -eq 0]]
then

echo $i | cut -d: -f1 | read process
echo $i | cut -d: -f2 | read alert
echo $i | cut -d: -f3 | read alert_text

echo $pstext | grep $process > /dev/null 2>&1
if [[$? -eq 0]]

then
if test -f ″ /usr/local/log/pscheck.$process″

then
print `date` ″$process is now running″ >> $logstart

 $TRAP 7 ″$process is now running″
rm -f /usr/local/log/pscheck.$process

fi
else

make a note that this process is dead so we remember not to
alert multiple times
if test -f ″ /usr/local/log/pscheck.$process″

then
print `date` ″$process is still not running, no alert sent″ >> $logstart
continue

else
print `date` ″$process is not running - alert sent″ >> $logstart
$TRAP $alert ″$alert_text″
touch /usr/local/log/pscheck.$process

fi
fi

fi
done

Figure 93. Shell Script to Check Mult iple Processes

In order to keep the script flexible the processes that are to be monitored are
specified in a configuration file called /usr/local/log/pscheck.dat. An example of
such a configuration file is shown below.

Check for inactive processes
Format is
process name:Alert Number:Alert Text
#
Process checking for
#
syslogd:2:syslogd is down
sendmail:2:sendmail is down

Figure 94. Configuration File for check_processes

The script reads the configuration file and then checks for the existence of each
of the processes specified in the configuration file. The first time the script finds
that the process is either running or not, it sends an SNMP trap to TME 10
NetView. For this the script assumes that the appropriate form of the snmptrap

108 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

command is stored in the /usr/local/bin/sendtrap shell script. This script will
send the trap to the appropriate NetView machine, community, etc.

Once a trap has been sent, a lock file is created. The next time the same state
is found again and the lock file exists, no further trap is sent until the state
changes again and the lock file is erased.

5.6.2 Monitoring Process Groups
A system administrator often has requirements for process monitoring that are
not covered by standard monitors. We show you a new monitor that is able to
do some advanced process monitoring and two examples of how parameters
can be set.

Think of an Oracle RDBM system. Usually, there must be at least five database
processes running, ora_reco_, ora_smon_, ora_lgwr_ and ora_dbwr_. For this
example it is sufficient to know that these processes must be running and if at
least one is missing, a note to the database administrator will be sent.

The following command will check the number of Oracle processes:

ps -ef | grep -y ″ora_[reco|dbwr|lgwr|smon|pmon]_″ | wc -l

If the result of the above command is 5, everything seems to be OK. Since the
standard Universal monitor for Application Status delivered with TME 10
Distributed Monitoring does not deal with wildcards, pipes or other special
characters we have to write a new monitor with such capabilities.

The second example deals with looking for processes with flags. Sometimes it
is not enough to know that a process with a given name is running. There may
be multiple copies of that executable running, with different flags or command
line arguments. ADSM is an example of this. You want to make sure that your
scheduled ADSM process is up and running. The process line we are looking for
is:

dsmc sched -pass=

Once again the standard monitors provided by Systems Monitor and Sentry do
not handle this.

Our idea is therefore to create a monitor with two parameters. The monitor will
execute a command of the form:

ps $Argument1 | grep $Argument2 | grep -v grep | wc -l

The variable Argument1 holds the parameters passed to the ps command itself,
while the variable Argument2 contains the search string for the ps output.

In the example where we want to monitor Oracle, Argument1 is -ef and
Argument2 is:

-y ″ora_[reco|dbwr|lgwr|smon|pmon]_″

Look at Figure 95 on page 110 to see how this is specified in the monitor we will
create in this example.

Chapter 5. TME 10 Distributed Monitoring Examples 109

This soft copy for use by IBM employees only.

Figure 95. Example of Monitor ing Process Groups, Database Processes

In the example, monitoring ADSM, Argument1 is again -ef. Argument2 is:

″dsmc sched -pass=″″

We will create the new monitor using MCSL as we did before for the CPU
monitoring example (see 5.3.3, “Monitoring UNIX CPU Utilization Using MCSL”
on page 81). We will not explain the MCSL syntax in detail here.

$ key=generic_help
1 This collection deals with extended process monitoring
$ key=Descr_imbedded
2 Advanced monitoring
$ key=val_Descr
3 Process Status
$ key=Help
4 This Monitor checks the availability of a process, optionally \
with additional flags. It returns the number of running processes which fit the arguments
$ key=ps_flags
5 Flags for ps
$ key=grep_list
6 Flags + Arguments for grep

The message file for the new monitor is shown below:

Figure 96. process.msg File

To compile the message file, type:

gencmsg process.msg

110 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

+1
+2 #include ″Sentry2_0.dsl″
+3 #include ″process.dsl″
+4
 +5 Collection ″Process″ {
 +6 CodeID = ″$Id:process.csl,v 1.0$″ ;
 +7 Version = ″1.0″;
 +8 Require = ″>2.0.2″;
 +9 HelpMessage = (process_generic_help);
+10 EventBaseClass = ″Sample_Sentry_Monitors″ ;
+11 NoticeGroup = ″Sentry″ ;
+12 NoticeGroup = ″Sentry-log″ ;
+13 NoticeGroup = ″Sentry-urgent″ ;
+14
+15 #include ″operators.csl″
+16 #include ″choicelists.csl″
+17 #include ″formats.csl″
+18
+19 Monitor imbedded Numeric Group numeric {
+20 Description = (process_Descr_imbedded);
+21
+22 ValueDescription = (process_val_Descr);
+23 HelpMessage = (process_Help);
+24 Argument (process_ps_flags)
+25 DefaultValue ″-ef″ ;
+26 Argument (process_grep_list);
+27
+28 Implementation (aix3-r2, aix4-r1)
+29 Shell(″ /bin/sh″, ″-c″ , Command, ″process″)
+30 .a=$1
+31 .b=$2
+32 .echo ps $a \| grep $b \| grep -v grep \| wc -l > /usr/local/log/grep.in
+33 . (. /usr/local/log/grep.in)
+34 ;
+35 };
+36 }
+37

The source code file for the monitor looks as follows:

Figure 97. process.csl File

The monitor uses two arguments, ps_flags which specifies the flags to be used
with the ps command and grep_list that specifies what to search for in the ps
output. The implementation of the monitor returns an integer value that contains
the number of processes found matching the criteria.

To compile the monitor on AIX, use the following command:

mcsl -P /usr/ccs/lib/cpp -x process.col process.csl -lang-c++ -nostdinc -undef

After stopping and starting oserv, the new monitor will be available.

 Remember

This monitor example is also in the sample code package for this book. You
will find it as one of the options in the Redbook_samples monitoring
collection.

See Appendix B, “How to Get the Samples in This Book” on page 141.

Chapter 5. TME 10 Distributed Monitoring Examples 111

This soft copy for use by IBM employees only.

5.7 Hardware Alerting from AIX Error Report
The AIX operating system has a mighty error logging facility. As a system
administrator you should periodically look at the error report to find out if your
system has any problems. Ideally you want to be informed automatically and
immediately if some really serious conditions, such as hardware problems,
occur.

The error reporting mechanism allows for asynchronous alerting. Instead of
having a monitor that checks your error report automatically at a scheduled time
you can add a new error notification method to the AIX Object Database
Manager (ODM) which will be invoked by the error daemon in the event of
serious errors and send a notification to a management platform. The following
implementation is valid for both Systems Monitor and TME 10 Distributed
Monitoring but goes into more detail for TME 10 Distributed Monitoring to show
the capabilities of an asynchronous monitor.

In our example we will look for all errors that have the alertable flag set to true.
If you are not familiar with the error reporting and/or ODM manipulations you
should be especially careful when making modifications and always refer to
InfoExplorer, the manual, or the man pages first.

First, you may want to have a look at your existing error log notification
methods. Type the following commands:

odmget errnotify > /tmp/errnotify_original
vi /tmp/errnotify_original

Look at the /tmp/errnotify_original file. Every method filters for one or more of
the fields in the error templates, such as en_symptom, en_alertflg or en_label. If
the error event fits the requirements, the program specified under an en_method
will be run. We will create our own method, triggered by any events having the
en_alertflg flag set.

5.7.1 Creating the Sentry Asynchronous Monitor Script
Our error notification method will in fact be a simple shell script,
/usr/local/bin/errpt/errpt_notif ication. The error notification interface passes the
ID of the actual error report entry to the method.

The /usr/local/bin/errpt/errpt_notification script contains only a few lines:

. /etc/Tivoli/setup_env.sh
/usr/local/Tivoli/bin/aix4-r1/bin/wasync -c errpt -s 0 -i ″`/usr/bin/errpt -al $1`″

The script sets up the Tivoli environment in the first line and then calls an
asynchronous monitor, by means of the wasync command. The arguments for
the wasync command are:

-c errpt Name of the Sentry channel

-s 0 No trigger data for the monitor

-i ‘/usr/bin/errpt -al $1‘ The details of the error report entry are passed
to the monitor

Next we need to create a Sentry asynchronous string monitor to catch this
wasync request. Figure 98 on page 113 shows how to do this from the GUI.

112 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Inside the monitor we define that at the always response level a pop-up window
will open.

Figure 98. Definition of the Asynchronous Monitor Using Channel errpt

5.7.2 Installing the Error Notification Method
The notification method is defined as a sequence of attributes listed in an input
file, as shown in Figure 99

errnotify:
en_pid = 0
en_name = ″all_alertable″
en_persistenceflg = 1
en_label = ″″
en_crcid = 0
en_class = ″″
en_type = ″″
en_alertflg = ″TRUE″
en_resource = ″″
en_rtype = ″″
en_rclass = ″″
en_symptom = ″″
en_method = ″ /usr/local/errpt/errpt_notification $1″

Figure 99. New Method for AIX Error Notification

To add this error notification method to the ODM, enter:

odmadd <method_definition_file>

Chapter 5. TME 10 Distributed Monitoring Examples 113

This soft copy for use by IBM employees only.

If you subsequently want to delete the method, enter:

odmdelete -o errnotify -q en_name=’all_alertable’

Of course, you could put in any other command as an en_method. For example,
you could send the error message as an SNMP trap to a mid-level manager or to
TME 10 NetView itself. Also, you can send an event to T/EC using, for example,
the wpostemsg command.

For testing you can create an alertable error manually. To do this you must first
temporarily change the error template of the OPMSG (operator message) error
type to be an alertable message. The following sequence of commands will do
this (¬ D stands for Ctrl+D):

errupdate
=AA8AB241:
Alert = True
¬D
¬D

In the above example, AA8AB241 is the ID of OPMSG.

Now you can create an alertable error by typing:

errlogger ″Test for Channel errpt and the Error Notification Method″

You should receive a TME 10 Distributed Monitoring alert as shown in
Figure 100.

Figure 100. Sentry Alert Caused by Alertable AIX Error Report Entry

114 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

After you have verified that the error notification works you should reset the
template of the operator message back to non-alertable:

errupdate
=AA8AB241:
Alert = False
¬D
¬D

5.8 Generic File System Monitoring
Generic file system monitoring, as opposed to hard-coding each file system can
reduce the maintenance overhead in a large environment. If a new critical file
system is added by a user, the administrator normally has to add a monitor and
re-distribute the profile every time.

A more efficient method is to monitor all file systems and use an exception list
for file systems such as /cdrom or /usr/sys/inst.images that do not need to be
monitored.

5.8.1 Monitoring with Systems Monitor
Systems Monitor MLM lends itself to this kind of monitoring by allowing for a
wildcard definition in the MIB extension. For example, you can create an MLM
threshold monitor to poll for the utilization of all file systems by specifying the
MIB object for utilization in the SIA file system table and appending an asterisk
(*) to signify ″all instances″. The MIB definition is therefore:

.1.3.6.1.4.1.2.6.12.2.5.2.1.4.*.

To perform the exception list processing you need to execute a shell script as
the action for this threshold. This script needs to convert the file system name
from a dotted-decimal form into plain text. There is an example showing how to
do this in IBM Systems Monitor Anatomy of a Smart Agent, SG24-4398.

An alert can then be sent to NetView containing the file system name and the
percentage full value.

5.8.2 Monitoring with and/or Migration to Sentry
To achieve the same effect using TME 10 Distributed Monitoring, a custom
monitor is necessary. The custom monitor calls a shell script that executes
platform specific probes to check the status of file systems. The sample script
presented here has been tested on AIX, DGUX and HP-UX and SunOS.

Figure 101 on page 116 shows the source code of the script. It responds with a
message, containing the names and details of all file systems that exceed the
utilization threshold value. If all of the file systems are within specification, it
simply responds with the text ″OK″. You therefore should use this script with a
String script monitor and a response threshold of ″not equal to OK″.

Chapter 5. TME 10 Distributed Monitoring Examples 115

This soft copy for use by IBM employees only.

#!/bin/ksh
##
FILE: sentry_filecheck
#
This script is an example from IBM redbook SG24-4936. It is made freely
available on the understanding that it is unsupported sample code only
#
DESCRIPTION:
This script can be run using the string script monitor. It checks
the utilization of all filesystems on the monitored system against
a predefined percentage value and reports any that have exceeded
it. It can optionally use a control file to exclude specific filesystems
from being monitored.
#
ARGUMENTS:
(1) The utilization threshold limit
(2) (optional) the name of the exclude file
(3) (optional) an additilnal list of filesystems to exclude
#
RETURNED VALUES:
A string containing the names and utilization of any file systems
that exceed the limit. If there are no exceptions, the script returns a
null string
#
AUTHORS: Graeme Naysmith IBM UK
Rob Macgregor ITSO Raleigh
###
#
set filesystem threshold and exception file
#
fileused=$1
exception_file=″ /usr/local/lib/sentry.exception.config″
Exception file contains a list of blank-separated filesystem names:
for example: /usr /usr/local/Tivoli

if (($# > 1))
then
 exception_file=$2
fi

if [[-r $exception_file]]
then
cat $exception_file | read except_list

fi

if (($# > 2))
then
 except_list=″$except_list $3″
fi

except=″egrep -v ″
for fs in $except_list
do
except=″$except$fs\$|″

done
except=″$except″″nothing″

curdate=`date`
system=`uname`
case $system in

AIX)

df | $except | awk -v maxsize=$fileused \
′ BEGIN{header=″OK″; report=″″}
{if (substr($4,1,length($4)-1)>maxsize || substr($6,1,length($6)-1)>maxsize)
{

Figure 101. sentry_filecheck Script (Part 1 of 2)

116 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

header=″Exception report″
report=report″: ″$7″ is ″$4″ full″

}
}
END{print(header report)}′ 2> /tmp/fserr

;;

 DGUX)

df -k | $except | awk -v maxsize=$fileused -v date=″$curdate ″ \
′ BEGIN{header=″OK″; report=″″}
{if (substr($5,1,length($5)-1)>maxsize || substr($6,1,length($6)-1)>maxsize)
{
header=″Exception report″
report=report″: ″$6″ is ″$5″ full″

}
}
END{print(header report)}
′ }

;;

 HP-UX)

bdf | $except | awk -v maxsize=$fileused -v date=″$curdate ″ \
′ BEGIN{header=″OK″; report=″″}
{if (substr($5,1,length($5)-1)>maxsize || substr($6,1,length($6)-1)>maxsize)
{
header=″Exception report″
report=report″ : ″$6″ is ″$5″ full″

}
}
END{print(header report)}
′ }
;;

 SunOS)

df -k | $except | /usr/xpg4/bin/awk -v maxsize=$fileused -v date=″$curdate ″ \
′ BEGIN{header=″OK″; report=″″}
{if (substr($5,1,length($5)-1)>maxsize || substr($6,1,length($6)-1)>maxsize)
{
header=″Exception report″
report=report″: ″$6″ is ″$5″ full″

}
}
END{print(header report)}
′ }

;;

*)
print ″# $0 Operating system not recognised″

;;

esac

Figure 102. sentry_filecheck Script (Part 2 of 2)

As we discussed in 5.3.3, “Monitoring UNIX CPU Utilization Using MCSL” on
page 81, it is better to place new monitors of this type into a new monitoring
collection, instead of requiring the administrator to invoke the shell script from a
custom monitor. We added the file system monitoring script to our sample
monitoring collection. Figure 103 on page 118 shows how to invoke the monitor,
and the resulting event message.

Chapter 5. TME 10 Distributed Monitoring Examples 117

This soft copy for use by IBM employees only.

Figure 103. Using the Al l Filesystems Monitor

Figure 104. Alert f rom Al l Filesystems Monitor

5.9 SNMP Proxy Forwarding
The TME 10 Distributed Monitoring proxy function allows monitoring of entities
that are not directly supported by TME 10 Distributed Monitoring, such as
devices or network components not capable of running the TME 10 Distributed
Monitoring engine.

The proxy feature is accomplished by running a monitor on a managed node that
analyzes the availability of a host, checks log files for messages, checks SNMP
values or runs scripts with values set by the proxy’s environment variables. The
message returned by the managed node running the monitor will be sent on
behalf of the endpoint defined in the TME 10 Distributed Monitoring proxy.

118 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

5.9.1 Monitoring with Systems Monitor
Describing all the SNMP monitoring features of Systems Monitor is beyond the
scope of this book. Please refer to IBM Systems Monitor Anatomy of a Smart
Agent, SG24-4398 for a detailed description of these features.

5.9.2 SNMP Monitoring with and/or Migration to Sentry
TME 10 Distributed Monitoring allows you to use SNMP monitoring collections.
The following types of MIBs can be monitored:

• Compaq Insight Manager

• MIB-II (RFC 1213)

• User-specified

User-specified means that you can get and compute any simple variable your
agent supports. Sentry uses its own SNMP commands, such as wsnmpget to
contact the agent. Since right now there is no command like wsnmpnext or
wsnmpwalk available, you cannot get SNMP variables of the type table.

Compaq Insight Manager and MIB-II means nothing more than that the two
collections have monitors that use a symbolic name for specific MIB variables
from particular SNMP MIBs. Figure 105 shows how an rfc1213 monitor looks
using the symbolic name and Figure 106 on page 120 shows how the same can
be done with a user-specified monitor.

Figure 105. SNMP Monitor Using Symbolic Names

Chapter 5. TME 10 Distributed Monitoring Examples 119

This soft copy for use by IBM employees only.

Figure 106. User-Specified SNMP Monitor

5.9.2.1 SNMP Monitor Example with Proxies and Indicator
Collections
TME 10 Distributed Monitoring does not have as many features for monitoring
SNMP devices or variables as Systems Monitor, but you still can use it for
effective SNMP management. We will use the example of monitoring a
user-specified MIB variable, 1.3.6.1.2.1.5.3 (icmp.icmpInDestUnreachs = the
number of ICMP Destination Unreachable messages received) at an OS/2
machine.

The MIB variable we are looking at is a good point to look at, for example, if a
machine has a corrupted routing table or an application tries to reach a host
outside the network. In either case you want to be warned about that fact.
Perhaps you would log on to that machine, have a look at the netstat -rn output
and then figure out a possible reason for the problem.

Every time the client cannot reach a destination for any reason the counter of the
MIB variable 1.3.6.1.2.1.5.3 will be increased by one. You can enforce an entry
by pinging the non-existing host 1.1.1.1 and since this host is not reachable
within your network, an icmp.icmpInDestUnreachs message will be sent
increasing the counter by one.

To see this you can type on the system where the proxy resides:

wsnmpget -h domingo -t 5 -c public 1.3.6.1.2.1.5.3.0

In the above line domingo is the hostname of the SNMP client, 5 is the time-out
value, public is the SNMP community and 1.3.6.1.2.1.5.3.0 is the SNMP object.

120 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Now try to ping the bogus machine:

ping 1.1.1.1

Wait a few seconds and then query the variable again by repeating the
wsnmpget command.

5.9.2.2 Setting Up a Sentry Proxy Endpoint
Every client you want to run your monitors on has to be defined in the Tivoli
database. To achieve this we have to create a proxy endpoint. We can do this
by selecting Create from the menu bar in the Policy Region window and then
selecting Sentry Proxy... from the pull-down menu. The window shown in
Figure 107 will appear.

Figure 107. Creating a Sentry Proxy Endpoint

We enter a name for the new Sentry proxy endpoint and then select the Create &
Close button.

This creates an icon in the policy region representing the new proxy endpoint.
Double-clicking on that icon will open the Proxy Endpoint window. In this
window we select Configure from the menu bar and then Set Environment...
from the pull-down menu. The display shown in Figure 108 on page 122 will
appear:

Chapter 5. TME 10 Distributed Monitoring Examples 121

This soft copy for use by IBM employees only.

Figure 108. Setting the Environment for Sentry Proxy Endpoint

We enter ENDPOINT in the Name field and domingo in the Value field and then
press the Add/Set button to set the ENDPOINT variable. After that we enter
ENDPOINT_CLASS in the Name field and SentryProxy in the Value field and
press the Add/Set button again.

ENDPOINT contains the hostname of the system to be monitored and
ENDPOINT_CLASS is the Tivoli class name of the endpoint object.

We would need to repeat this step for each client we want to include. Of course,
in a larger environment you would use the command line interface.

To create the proxy endpoint you can type:

wcrtprx region proxy endpoint_name

In our example:

wcrtprx ssd-region WTR05128 domingo_proxied

To set the environment variables you can type:

wcrtprxenv domingo_proxied ’ENDPOINT_CLASS=SentryProxy’ ’ENDPOINT=domingo’

5.9.2.3 Creating an Indicator Collection
Creating an indicator collection is a very easy step. In the Policy Region window
select Create from the menu bar and then IndicatorCollection... from the
pull-down menu. Give the indicator collection a name (we use
SNMP_proxied_Dest_unreachable) and select Create & Close . This will create
an icon in your policy region representing the new indicator collection.

5.9.2.4 Creating a User-Specified SNMP Monitor
We already showed in 5.9.2, “SNMP Monitoring with and/or Migration to Sentry”
on page 119 how to set up a user-specific SNMP monitor. Just update the MIB
variable to 1.3.6.1.2.1.5.3.0.

Do not forget to tell the profile manager, in which the profile resides, that it has
some new subscribers. In fact, all the proxy endpoints created before should
subscribe to the same profile manager. Look at Figure 109 on page 123 to see
how we set up the triggering. Every time the value of the SNMP variable

122 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

increases by 3 or more, the indicator collection will be notified. This is specified
by checking Change Icon .

Figure 109. Sentry Profi le for Proxy Monitor ing

Finally, we have to tell the monitor with which indicator collection it is connected.
In the Profile Properties window of the Sentry profile select Monitoring from the
menu bar and then Select Indicator Collection... from the pull-down menu. Then
select the indicator collection you have created before from the list and press
the Select & Close button.

Now distribute the profile again and double-click at the proxy endpoint. You
should get a window as shown below:

Chapter 5. TME 10 Distributed Monitoring Examples 123

This soft copy for use by IBM employees only.

Figure 110. Sentry Proxy Endpoint WIndow

Once your monitor is running you can look at the indicator (Figure 111) to see if
something is wrong with this particular SNMP variable on your proxy clients.

Figure 111. Indicator Collection Messages

5.10 Migrating Data Collection
The MLM and SLM threshold table has a data collection function as well as the
threshold monitoring capability that we have been examining so far. Prior to
TME 10 Distributed Monitoring 3.5, there was no equivalent function as standard
in Sentry, although it is possible to quite simply create a monitor that writes data
to a log file.

TME 10 Distributed Monitoring 3.5 introduces a graphical reporting capability that
we briefly described in 5.3.5, “Installing the UnixCPU Collection on Another TMR
Server” on page 91. This function is made up of a data capture capability that
logs the result of normal monitors to a file and a Web-based monitoring
application that displays numerical data in a graphical form, updated
dynamically. Concurrently, a new component of TME 10 Reporter is being
developed that will read the TME 10 Distributed Monitoring log files and
summarize the figures in its database.

124 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

The graphical data collection facility is more fullly described in A First Look at
TME 10 Distributed Monitoring 3.5, SG24-2112.

5.10.1 Installing the Data Collection Function
The data collection and graphing function is delivered as an additional TME
component on the TME 10 Distributed Monitoring CD. The product title is
Tivoli/Spider HTTP Daemon/1.0. Install it as you would any other TME
application. It has to be installed on all managed nodes for which you want to
collect graphical data.

When you have installed the feature, a new process will be automatically started
on each system. This is called Spider and it is a special-purpose Web server.
Do not be concerned if you already have a Web server running on a managed
node. Spider does not listen on the default HTTP port (tcp/80), but on a
dynamically assigned TCP port instead, so it will not conflict with existing
applications.

Once you have installed the graphical monitoring component, the next step is to
define some Sentry monitors to collect data, so that you can display it in
graphical form.

5.10.2 Collecting Monitor Data
Starting the data collection facility is a very simple process. You create a new
Sentry monitor within a profile in the normal way. In the monitor definition
panel, select a response level of always and click on Tasks in the action section.
Figure 112 shows an example of doing this for a monitor that records the free
space in a UNIX file system.

Figure 112. Defining an Always Response

In the Tasks dialog, select Sentry Graphable Logs as the task library and select
task Create Graphable Log (see Figure 113 on page 126).

Chapter 5. TME 10 Distributed Monitoring Examples 125

This soft copy for use by IBM employees only.

Figure 113. Defining the Logging Task

When you define the Create graphable log task you will be prompted to specify
how many lines of data it should keep. The default is 1000. In most cases this
will be plenty big enough. For example, if you are collecting at 10-minute
intervals, and intend to archive the logged data daily, you only need 144 data
values.

The data files are stored in a directory on the managed node where the Sentry
engine is running, under the Tivoli database directory:

$DBDIR/.sntglog/<Systemname>/<Profilename>/<Monitor_type><ObjID>

Where:

• $DBDIR is the Tivoli database directory on the managed node.

• <Systemname> is the name of the system where the data was collected
(usually the system where sentry_engine is running, but it could be another
system in the case of a proxy monitor, for example).

• <Profilename> is the name of the TME 10 Distributed Monitoring profile
containing the monitor, Unix_Disk in our example above.

126 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

• <Monitor_type> is a string identifying the type of monitor. It contains the
name of the monitoring collection concatenated with the internal name of the
monitor itself. In the example above it is Unix_Sentry-diskavail.

• <ObjID> is an identif ier containing an oserv object ID number.

Within the directory are two files, info which contains details of the monitor, and
log that contains the data itself.

5.10.3 Extracting Logged Data from the Command Line
We described how the data collection task writes its log files in 5.10.2,
“Collecting Monitor Data” on page 125. If you only want to show this data in a
graphical form, the Web-based mechanism is very effective. However, you may
want to extract the collected data and use it as input for some other processing,
or load it into a database or a spreadsheet.

Data is logged as a single stream of bytes, containing the timestamp, value, and
monitor status concatenated together. This is not particularly easy to parse into
useful records. Fortunately there is a program, wgdread, which will format the
records for you. It is not documented, but you can get a good understanding of
how it works by looking at CGI scripts in the graphical monitoring applications
that use it.

The syntax is as follows:

wgdread [-r]|[-y]|[-u]|[-s [-b <min>] [-e <max>] [-c <count>] logdir

-r returns the range of x-values (times) of the records in the log file

-y returns the range of y-values of the records in the log file

-u returns the units in which the y-values are measured

-s prints out the logged values for the range of times bounded by
<min> and <max> to a max imum o f <coun t> l i nes

logdir This is the directory containing the info and log files for the monitor

As an example, Figure 114 on page 128 shows the use of wgdread to display
part of a log file containing the status of a daemon. Note that this is created by
a string monitor, so it would not be accessible using the graphing facility.

Chapter 5. TME 10 Distributed Monitoring Examples 127

This soft copy for use by IBM employees only.

>pwd
/var/spool/Tivoli/venus.db/.sntglog/venus/Unix_Disk
>
>ls
Unix_Sentry-daemon_7e1080755863.2.7 Unix_Sentry-diskavail_6e1080755863.2.7
>
>wgdread -r Unix_Sentry-daemon_7e1080755863.2.7
″Unix_Sentry-daemon_7e1080755863.2.7″ 861252060 861311220 normal \
warning severe critical
>
>wgdread -s -b 861296700 -c 10 Unix_Sentry-daemon_7e1080755863.2.7
861296701 down normal
861296820 down normal
861296940 down normal
861297060 down normal
861297180 down normal
861297301 up normal
861297420 up normal
861297540 up normal
861297660 up normal
861297780 up normal
>

Figure 114. Examples of the wgdread Command

The timestamps in these records are not very recognizable. This is because
they are in fact specified as epoch times, that is, they are a hexadecimal
representation of the number of seconds since the beginning of 1970. The
easiest way to convert these into something more meaningful is to use a perl
program. Perl provides a number of built-in functions for manipulating time
fields. Figure 115 shows a simple perl program that can be used as a filter for
the output of wgdread and Figure 116 on page 129 shows an example of using it
on the same data as in the previous example.

#!/usr/local/bin/perl

$line = <STDIN> ;

while ($line != ″″) {
@inparts = split(/ /, $line) ;
@tlist = localtime($inparts[0]) ;
print ($tlist[5],″ / ″ ,$tlist[4],″ / ″ ,$tlist[3],″ ″ ,$tlist[2],

″ : ″ ,$tlist[1],″ : ″ ,$tlist[0],″ ″ ,$inparts[1],″ ″ ,$inparts[2],″\n″) ;
$line = <STDIN>
}

Figure 115. convert_times Perl Script

128 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

>wgdread -s -b 861296700 -c 10 Unix_Sentry-daemon_7e1080755863.2.7
| convert_times
97/3/17 13:5:1 down normal
97/3/17 13:7:0 down normal
97/3/17 13:9:0 down normal
97/3/17 13:11:0 down normal
97/3/17 13:13:0 down normal
97/3/17 13:15:1 up normal
97/3/17 13:17:0 up normal
97/3/17 13:19:0 up normal
97/3/17 13:21:0 up normal
97/3/17 13:23:0 up normal

Figure 116. Extracting Historical Data with Date and Time Conversion

Chapter 5. TME 10 Distributed Monitoring Examples 129

This soft copy for use by IBM employees only.

130 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Chapter 6. Installation Notes and Trouble Shooting

During the project we set up a number of different TME configurations spanning
several different operating systems and network environments. We will not
describe the installation and customization process in any detail here, but we
will briefly discuss some of the problems we encountered, and their resolutions.

6.1 Installation Notes
We used the following monitoring products for our testing:

• Systems Monitor SIA 2.3.1.0

• Systems Monitor MLM 2.3.1.0

• Systems Monitor CFG 2.3.1.0

• Tivoli/Sentry 3.0.2

• Tivoli/Sentry 3.5

Also, since TME 10 Distributed Monitoring is a TME 10 Framework application we
had to install the TME 10 Framework and organize the machines in our setup
into Tivoli Management Regions (TMRs). We used the following levels of
Framework and support code:

• TME 10 Framework 3.1 Revision C with patch 0002 installed

• TME 10 ADE 3

Because Systems Monitor is primarily an AIX application, most of our test
machines were RS/6000s, running AIX 4.1.4, 4.1.5 and 4.2. We also had an
HP9000 running HP-UX 9.0.5 and a Sun Sparc 20 running Solaris 2.5, plus a
number of Windows NT and OS/2 systems.

6.1.1 Installation of the TME 10 Framework
For a detailed description of how to install and configure the TME 10 Framework
refer to the redbook TME 10 Cookbook for AIX, SG24-4867. On each system we
performed a number of additional setup steps:

• Added .profile for the root user ID, invoking the Tivoli environment setup
script, as follows:

. /etc/Tivoli/setup_env.sh

• Added /usr/local/bin to the default path in /etc/environment.

• Created file system /var/spool/Tivoli with 80 MB on the TMR server, 20 MB
on other managed nodes.

• Created file system /usr/local/Tivoli with approximately 100 MB (250 MB on
the T/EC server).

 Copyright IBM Corp. 1997 131

This soft copy for use by IBM employees only.

6.1.2 Notes on Backup and Restore
We set up a daily scheduled TME backup for each of our TMRs. It is important to
check that the backups do not fill the /var/spool/Tivoli ($DBDIR) file system;
otherwise, you may find yourself with a number of useless backup files. The
backup process uses a lot of space in the file system while it is processing and
then frees it later. This means that a backup or restore may fail, even though
the file system has apparently not run out of space. The symptom of this is a
sequence of messages like the following:

-> no format string
-> Date, Time, (18): ’iom_open’ failed with code ’67’:
-> *no format string*

We used the backup on a number of occasions to re-create a configuration for
testing purposes. In order to perform backup and restore operations your
administrator ID needs to have the appropriate authorization. To do this, open
the Administrators window from the TME desktop, click on the administrator icon
with the right mouse button and select TMR roles . Then select restore and
backup from the list.

It’s always a good idea to check the database integrity before making a backup.
The command is: wchkdb -ux.

6.1.3 TME 10 NetView Installation
We created a /usr/OV file system of about 200 MB, NetView Base took about 160
MB of this space. We were using a beta version of TME 10 NetView V5, which
may have been larger than a final version of the code would be.

6.1.4 Systems Monitor Setup
We had some problems with the ″command to run before monitor″ function not
working correctly on Systems Monitor SIA. The solution to this was to install
PTF U446881. We also installed PTF U444055 on the MLM and U444057 on the
configuration EUI components.

Because Systems Monitor uses SNMP for remote agent configuration, you have
to define an SNMP community name with write authority. This involves adding
an extra community definition in /etc/snmpd.conf on the managed node, and
defining the same community name in the TME 10 NetView SNMP configuration
dialog.

6.2 Problems and Resolutions
In this section we describe some problems that we encountered during the
project and the circumvention or fix that we used to resolve them.

6.2.1 TME Installation Revision Levels
Sometimes when installing a Sentry product for the first time on a managed
node, the install was rejected at the point at which it verifies prerequisites. The
message it gives is not too helpful:

The revision level of the installation and media do not match
″Sentry 3.0.1>3.0″

132 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

What this means is that you have installed a product on the TMR server and then
applied patches to bring it to a higher level (in this case, 3.0.1). Now you are
installing the base on a managed node in the TMR, but Sentry requires that the
server’s and client’s code levels match and therefore kills the request. This
problem is not limited to Sentry, and there are a number of different ways to get
a similar problem, depending on the order in which you install the distributed
systems.

The fix is to fool the install process into thinking that the levels match. First
enter the following on the server:

idlcall `wlookup -r ProductInfo Sentry2.0.2` _get_revision

In the case of the error message shown above, the response from this should be
″3.0″. Next update the apparent revision level:

idlcall `wlookup -r ProductInfo Sentry2.0.2` _set_revision ’″3.0″’

You should check that this worked using the same display command as before:

idlcall `wlookup -r ProductInfo Sentry2.0.2` _get_revision

Now you should be able to continue with the installation.

6.2.2 Sentry Engine Not Running
Once or twice we found that monitors were not working because the Sentry
engine had stopped running on the system (either due to a failure or because we
had manually stopped it). This presents a dilemma, because although there is a
command to stop the engine, the wstopeng command, there is no equivalent
wstarteng command. Normally the engine is started automatically when the
object dispatcher, oserv, starts.

The solution to this is simply to query the engine status:

wlseng <hostname>

The engine should now restart.

6.2.3 Sentry Monitors Not Working
There are many reasons why Sentry monitors may not work as you expect them
to, but the following sequence of checks should help you track down the
problem.

6.2.3.1 Check Monitor Installation
First, make sure that the monitor has been installed properly on the managed
node and is scheduled to run. The command to do this is:

wlseng -l <hostname>

This shows you the monitors that the engine knows about, when they are next
expected to run, and what the last response was. If you do not see your monitor
here, check that it is not disabled (the command does not list disabled monitors,
unless you add the -d flag).

Chapter 6. Installation Notes and Trouble Shooting 133

This soft copy for use by IBM employees only.

6.2.3.2 Check Response Is What You Expect
If the monitor is listed, the next thing to do is to set it to log to a file, so that you
can check the response. It may be that the monitor is working but the situation
in which it would trigger a response is not occurring. The way to do this is to set
the ″Always″ response level on the monitor to log to a file.

6.2.3.3 Check Permissions
On a number of occasions we experienced problems with monitors because they
needed authorization to resources. This could be either a UNIX permissions
problem or a problem of not having the necessary TME administrator authority.
It can arise both in the monitor itself and also in automated actions on a
response level.

The Sentry engine runs monitors under user ID nobody in group nobody by
default. You can check whether your monitor will operate in this regime by
switching to user ID nobody and manually running it (use the command su -
nobody to switch IDs). You can set the ID under which the monitor runs by
opening the user profile window and selecting Edit followed by Set User & Group
ID from the menu bar (see Figure 58 on page 71). You can check this setting
with the command:

wdumpstr <SentryProfile>

If your monitor needs to issue Tivoli commands (such as the example in 5.5.2, “A
Closer Approximation to Re-Arm Using Sentry” on page 104) it will require a
TME administrator ID. This means that the user ID under which the monitor runs
must map to an administrator ID with sufficient authority to do the job.

6.2.3.4 Custom Script Monitors Not Working
The following checklist may help if you have created a custom script that does
not seem to work properly:

• Does the script print its result to stdout?

• Does it exit with return code zero (″exit 0″ in Korn shell script)?

• Does it set the execution environment? A monitor script must set the shell to
execute under in its first line (that is, ″#!/bin/sh″, or equivalent).

• Is the shell script executable by the user ID that the monitor is running under
(default: nobody)?

One debug technique that we used was to modify the script to execute the env
command to a log file, to see if it had the environment it needed.

6.2.4 Other Problems
Problems beyond the errors described above are usually either related to load
(trying to make the Sentry engine do too much) or are caused by code bugs. In
the latter case, you should report them to Tivoli, but the techniques described
below may get you working again while waiting for a permanent fix.

On the question of load, you should keep in mind two things:

 1. TME 10 Distributed Monitoring performs most of its work on the monitored
system. Be careful not to introduce monitors or actions that invoke TME
services on every monitor cycle; otherwise, you will add a lot of traffic to the
network and the server. Any Tivoli CLI command requires at least two calls
to the server to authenticate and check authorization.

134 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

 2. Sentry engine works on one-minute boundaries for its monitoring processes.
Within each one-minute slot, it checks for monitors that are scheduled to run
and then runs them sequentially. This means that if you have a monitor that
takes an exceptionally long time to complete, or too many monitors
scheduled in the same time slot, you can overload the engine. Try to avoid
setting monitor intervals too short and beware of commands that can take a
long time to run.

We will now look at two specific problem symptoms and how to circumvent them.

6.2.4.1 Sentry Engine Internally Blocked
If you suspect that Sentry is not working and run the wlsmon command, you may
see a message that the engine is internally blocked. This usually means that it
has become overloaded and cannot process monitors or commands within the
current time slot. You should wait a short time and retry the command, but if the
problem that caused it to get blocked persists, the message will recur. The
long-term solution is to reduce the load on the engine by cutting back the
number and frequency of monitors and by identifying and fixing any monitors
that may be taking a long time to run. However, to get the Sentry engine
running again in the short term, you need to clear its queue of monitors to run
and re-initialize it. The script shown in Figure 117 will clean up the engine.
Redistribute monitors after running it.

#!/bin/sh
###
#
#
script to clear ″sentry engine internally blocked″ problem
#
#
using commands supplied by Sean Starke at Tivoli
#
###

if [$# -ne 1]
then
print ″Please input hostname″
exit

fi

. /etc/Tivoli/setup_env.sh

wlseng
print ″Clearing Sentry engine″

oid=`wlookup -r ManagedNode -n $1 SentryEngine`
print $oid

idlattr -t -s ″$oid″ sentry_engine_state imp_SentryEngine::EngineState ′{0 0 0 ″″}′

#$BINDIR/TME/SENTRY/wclreng $1
/usr/local/Tivoli/bin/aix4-r1/bin/wclreng $1

wlseng

exit 0

Figure 117. sentry_cleanup Script

Chapter 6. Installation Notes and Trouble Shooting 135

This soft copy for use by IBM employees only.

6.2.4.2 General Failure Message
Some Sentry problems are related to more serious oserv failures. In these
cases, the wclreng command may help to reset the monitoring processes. After
running it, resynchronize with the server by redistributing the Sentry profiles with
the exact copy option.

136 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Appendix A. Mapping SIA MIB Objects to Sentry Monitoring
Collections

Systems Monitor SIA provides a great deal of information about the system it is
running on. By comparison, TME 10 Distributed Monitoring has a much smaller
number of available monitors. Fortunately, a simple comparison of the number
of monitors is not the whole story. Many of the SIA system metrics are of limited
value, so you are unlikely to find them used in your configuration. On the other
hand, although there are far fewer Sentry monitors, they tend to be of more
practical use.

The SIA monitors are divided into a series of MIB tables. The tables and the
objects in them are identified by a name and by a MIB object ID (OID). The
equivalent Sentry monitor is listed beside it, plus some comments if there are
detail differences between the way the two values are calculated. If a Systems
Monitor MIB variable is not listed, there is no equivalent Sentry Monitor.

All of the monitors listed are from the Unix_Sentry monitoring collection,
although several of them are also found in the Universal monitoring collection.

Table 6 (Page 1 of 3). List of Unix_Sentry Monitors

SIA MIB Identifier Sentry
Monitor

Comments

smSiaSystemDeviceEthernetMaxColl ision
.1.3.6.1.4.1.2.6.12.2.3.3.2.1.36

Network
collisions

Not an exact match, because the SIA MIB
object is part of of a table, with one row per
Ethernet interface, whereas the the Sentry
monitor is a sum taken over all interfaces.
For a system with one Ethernet interface
they should be equivalent.

smSiaSystemDeviceTokenRingRxErrCnt
.1.3.6.1.4.1.2.6.12.2.3.2.2.1.15
OR
smSiaSystemDeviceEthernetRxErrCnt
.1.3.6.1.4.1.2.6.12.2.3.3.2.1.15

Input packet
errors

The SIA MIB objects are part of a table, with
one row per network interface. The Sentry
monitor is a sum taken over all interfaces
(of any type). On a system with one active
network interface they should be equivalent.

smSiaSystemDeviceTokenRingTxErrCnt
.1.3.6.1.4.1.2.6.12.2.3.2.2.1.14
OR
smSiaSystemDeviceEthernetTxErrCnt
.1.3.6.1.4.2.6.12.2.3.3.2.1.14

Output
packet
errors

As above

smSiaSystemDeviceTokenRingPktTxCnt
.1.3.6.1.4.1.2.6.12.2.3.2.2.31

Output
packets

The SIA MIB object is part of a table, so the
same comments as above apply.

smSiaSystemFreePagingSpace
.1.3.6.1.4.1.2.6.12.2.4.1

Avai lable
swap space

Identical

smSiaSystemPagingSpaceUsed Available
swap space

In fact this is not an equivalent monitor, but
it is often used to track paging space
util ization. It is part of a table, with one
entry per paging space, so it may not be a
good value to threshold on (one paging
space could be much fuller then another).
Consider using the available swap space
monitor as a replacement.

 Copyright IBM Corp. 1997 137

This soft copy for use by IBM employees only.

Table 6 (Page 2 of 3). List of Unix_Sentry Monitors

SIA MIB Identifier Sentry
Monitor

Comments

smSiaSystemPagingStatisticsPagesPagedOut
.1.3.6.1.4.1.2.6.12.2.4.5.1.7

Page-outs The SIA MIB object is part of a table. It has
a sampling interval controlled by the setting
of another MIB object,
smSiaSystemPagingStatisticsPollingInterval.
By contrast, the Sentry monitor has a fixed
sampling interval of 5 seconds.
If you set the SIA sampling interval to 5
seconds, the two monitors should return
equivalent results, except that the SIA
version is in number of pages and the
Sentry version is in kilobytes.

smSiaSystemFilesystemFree
.1.3.6.1.4.1.2.6.12.2.5.2.1.3

Space free SIA table has one row per file system, using
the file system name as an index. Sentry
monitor requires the file system name as an
argument.

smSiaSystemFileSystemPercentUsed
.1.3.6.1.4.1.2.6.12.2.5.2.1.4

Percent
space used

As above

smSiaSystemFileSystemInodesUsed
.1.3.6.1.4.1.2.6.12.2.5.2.1.5

Inodes used As above

smSiaSystemFileSystemInodesPercentUsed
.1.3.6.1.4.1.2.6.12.2.5.2.1.6

Percent
inodes used

As above

smSiaSystemProcessorPID
.1.3.6.1.4.1.2.6.12.2.7.2.1.2

Daemon
status

This is not really a direct match, but it can
be used for similar purposes.
smSiaSystemProcess is a multi-line table
with one row per active process. It contains
information about the process, including
details like the process ID (PID) as in this
case. This is often used with an exists test
to see if a given daemon is running. The
Sentry daemon status monitor does a
similar job.

smSiaSystemProcessState
.1.3.6.1.4.1.2.6.12.2.7.2.1.11

Lingering
terminated
processes

The process state field is part of a table with
one row per process. It returns an
enumerated value that indicates the state of
the process. A value of 5 indicates a
zombie process, that is, one that has
terminated but has not yet been
acknowledged by its parent. The Sentry
monitor returns a count of all such
processes on the system.

smSiaSystemUsersLoggedin
.1.3.6.1.4.1.2.6.12.2.8.1

Users
logged in

Identical

smSiaCommandDisplayStringResult
.1.3.6.1.4.1.2.6.12.4.1.1.13

String script The SIA command table can execute any
command, whereas the Sentry monitor
always requires a script to execute.
However, the same function is obtainable by
wrapping the command within a script.
You will also have to check the SIA
command for use of Systems Monitor
provided environment variables.

138 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Table 6 (Page 3 of 3). List of Unix_Sentry Monitors

SIA MIB Identifier Sentry
Monitor

Comments

smSiaCommandIntegerResult
.1.3.6.1.4.1.2.6.12.4.1.1.14
OR
smSiaCommandCounterResult
.1.3.6.1.4.1.2.6.12.4.1.1.15
OR
smSiaCommandGaugeResult
.1.3.6.1.4.1.2.6.12.4.1.1.16

Numeric
script

As above

Appendix A. Mapping SIA MIB Objects to Sentry Monitoring Collections 139

This soft copy for use by IBM employees only.

140 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Appendix B. How to Get the Samples in This Book

You can download the code for all of the examples in this book from the Web.
Go to http://www.redbooks.ibm.com and click on the Downloads link. You will
find the code package identified by the publication number, SG24-4936.

The package is a tar archive. Download it into a temporary directory on AIX and
unpack it with the following command:

tar -xvf ./sg244936.tar

This will create three subdirectories:

• migration_scripts contains the chk_mig_cat and migrate_sysmon_config tools
to help you migrate Systems Monitor configurations to TME10 Distributed
Monitoring.

• monitor_collection contains the redbook samples monitoring collection,
which incorporates all of the custom monitors that we used in our examples,
such as the UNIX CPU monitor, all file system monitors and several others.

• miscellany contains all of the other scripts that do not fall into the other
categories.

 Copyright IBM Corp. 1997 141

This soft copy for use by IBM employees only.

142 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Appendix C. Special Notices

This publication is intended to help systems specialists, planners and
administrators to migrate from Systems Monitor for AIX to TME 10 Distributed
Monitoring. The information in this publication is not intended as the
specification of any programming interfaces that are provided by any Tivoli
products. See the Programming Announcement for TME 10 Distributed
Monitoring for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

 Copyright IBM Corp. 1997 143

This soft copy for use by IBM employees only.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and
other countries.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names may be trademarks or
service marks of others.

ADSTAR AIX
IBM InfoExplorer
NetView OS/2
RS/6000 SystemView

DCE The Open Software Foundation
Domino, Lotus Notes, Lotus, LotusScript,
Notes, Replication, NotesView

Lotus Development Corporation

Netscape, Netscape Navigator Netscape Communications Corporation
OpenView Hewlett-Packard Company
Tivoli, Tivoli Management Environment,
TME 10

Tivoli Systems Inc., an IBM Company

IPX Novell, Incorporated
Intel Intel Corporation

144 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 147.

• Systems Monitor for AIX: Anatomy of a Smart Agent, SG24-4398

• TME 10 Cookbook for AIX, SG24-4867

• The TME 10 Deployment Cookbook: Courier and Friends, SG24-4976

• A First Look at TME 10 Distributed Monitoring 3.5, SG24-2112

D.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

D.3 Other Publications
These publications are also relevant as further information sources:

• Tivoli/Sentry Documentation Kit, SK2T-6052

 Copyright IBM Corp. 1997 145

This soft copy for use by IBM employees only.

146 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet — type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1997 147

This soft copy for use by IBM employees only.

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services — send note to softwareshop@vnet.ibm.com

• On the World Wide Web

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

148 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 149

This soft copy for use by IBM employees only.

150 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

Index

Special Characters
/cdrom 115
/etc/Tivoli/setup_env.sh 131
/usr/ local/Tivoli /bin/generic/SentryMonitors 53
/usr/ lpp/smsia/original/snmptrap 64
/usr/OV file system 132
/usr/OV/bin/event command 62
/usr/sys/inst. images 115
/var f i lesystem 37, 44
/var/adm/smv2 27
/var/adm/smv2/mlm/conf ig 47
/var/adm/smv2/sia/config 97
/var/adm/smv2/xxx/config 35
.baroc file 50
″Changes To″ comparator 35
″tr igger when″ option 32
$EFFECTIVE_VALUE 62
$HOSTNAME 62
$INTERNAL_ID 105

Numerics
0.aix4-r1 74

A
access control 16
action 21, 22
actions 80
actual status 11
administrative control 25
administrator 20
administrator ID 17, 25
ADSM 93, 109
ADSM for MVS 94
ADSTAR Distributed Storage Manager (ADSM) 93
advanced process monitoring 107
agent 5, 119
agent node 36
Agent Policy Manager 12
AIX 7, 24, 85, 115, 131
AIX commands

err logger 114
errpt 112
odmadd 114
odmdelete 114
odmget 112

AIX error logging facility 43
AIX Object Database Manager (ODM) 112
AIX subsystem resource controller 68
alarm 49
alert level 33

crit ical 33
severe 33

alert level (continued)
warning 33

alertable error 114
alertable flag 112
alerts 102
alias 49
all instances 115
analysis 9
ANR1311E 94
ANR5030E 94
API 6, 15
APM 12
application 124
arguments 78, 82
arm condition 32
asynchronous alerting 112
asynchronous events 5
asynchronous monitor 43, 112
asynchronous string monitor 33, 112
authentication 16
authorization roles 17
automated actions 49, 71, 102
automated command 45
automatic restart actions 43
average 80
average value 78

B
background task 19
batch operation 15
bibliography 145

C
C-language preprocessor 82
central SNMP manager 9
centralized management 18
CGI programs 92
Change Control Management System (CCMS) 20
checklist 27
choicelists.csl 82
client application 5
Cluslusincludexe3 enerictivoli 82
collecting monitor data 125
collection function 124
combined dotted and character text 36
command execution 30
command line interface 15
Command table 9, 31
Command table entries 36
Common Object Request Broker (CORBA) 16
Compaq Insight Manager 119
compile the message file 110

 Copyright IBM Corp. 1997 151

This soft copy for use by IBM employees only.

compile the monitor 111
complex fi le monitoring 43
configuration fi les 27, 33
console error log 93
Control Desktop 10
CORBA 1
CPU 36
CPU usage 76
CPU utilization 43, 76
CPU utilization data 91
cpu.c 84
cpu.col 86
cpu.dsl 84
cpu.h 84
cpuload.sh 78
cpustat.sh 78
creating a monitor 20
credentials 17
criteria 111
critical conditions 5
current uti l izaion monitor 78
custom scripts 36

D
daemon 19, 34
daemon status 70
data collection 30
data entry fields 82
data structure 82
database 127
database processes 109
dataChange 36
date command 99
default HTTP port 125
DGUX 115
disabled state 37, 97
discovered nodes 11
discovery 9, 12
disk footprint 17
distr ibuted management 18
Distributed Programming Interface (DPI) 6
distribution functions 16
dotted decimal format 36
download 3
dsmsched.log 93
dynamically assigned TCP port 125
dynamically named log fi les 99

E
egrep 101
en_method 114
ENDPOINT 122
Endpoint Classes 19
endpoint function 16
endpoint gateway 25
ENDPOINT_CLASS 122

enterprise-specific trap ID 96
environment variables 46, 62
epoch 128
error code 94
error daemon 112
error logging facil ity 112
error notif ication method 112
error reporting mechanism 112
event

adapter 50
classes 50
command 62
console 58
group 56
handlers 22
handling 26
rules 50
server 50
source 55

exception levels 103
exception list 95
exception responses 103

crit ical 103
severe 103
warning 103

executing a monitor 21
exist/doesNotExist 36
extended MIB 7
extended MIB support 6
extended regular expression 100

F
File Monitor table 9, 31
fi le monitoring 28, 93
fi le monitors 12
file ownership 30
file ownership changes 30
file permissions 30
file system monitor 63, 103
file system monitoring 44
file system util ization 49
file systems 36
filter capabilit ies 10
fi l ter criteria 56
fi l tering 9
flags 73, 109
flat files 33
formats.csl 82

G
generic fi le system monitoring 115
granular 17
graphical monitoring component 125
graphical reporting capabil ity 124
graphical view 91
group 49

152 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

group ID 71
GUI-to-GUI migrat ion 31

H
HelpMessage 88
heterogeneous systems management 16
hexadecimal 128
hierarchies 18
historical data 43
HP-UX 7, 85, 115
HP-UX 9.0.5 131
HP9000 131
hubs 26

I
IBM Systems Monitor 1
id 78
idle time 79
importing classes 53
importing rules 53
indicator 19
indicator collection 89, 122
indicator icon 49, 89
InfoExplorer 112
infrastructure 25
input parameters 70
instance 5, 20
instances 31
internal ID 105
interval 78

J
Java applets 92
Java-enabled browser 24, 92

K
kennel classes 19, 21
keyname 85

L
layout (of TMRs) 25
LCF 25
Lightweight Client Framework (LCF) 16
load of the CPU 78
local command execution 21
local logging 21
local network segment 9
lock file 109
logfile 22, 40
Logged-in users 36
Logins 50
lpd 66
lpd daemon 43, 66

M
mail message 22
managed node 16, 21, 27, 62, 86, 118
managed resource 72
management by subscription 18
management domain 5
Management Information Base 5
management protocol 5
manager 5
manager/agent relationship 5
maps 7, 11
mathematical operation 78
MCSL 110
mcsl command 83
MCSL language 43
mdist (multiplexed distribution) 20, 25
message catalog 82
message file 110
messages 82
method invocation 22
methods 16, 19
MIB 5

browser 10, 40
definit ion 115
extensions 36, 40, 115
object ID 137
objects 31, 36, 115
tables 14, 31, 76, 137
value 44
variables 9, 10, 36, 76, 120

MIB-II 119
Mid-Level Manager (MLM) 1, 3
migrate_mlm_config shell script 44
migrate_sysmon_config 35, 97
migrate_sysmon_config script 47
migrateable monitor 43
migration categories 27
migration options 26
migration project 25
migration scripts 27
monitor action 98
monitor definition fi le 82
monitor definit ions 19
monitor details 44
monitor profi le 20
monitor result 19
monitored resources 26
monitoring collection 19, 43, 81, 117
monitoring collection icon 103
Monitoring Collection Specification Language

(MCSL) 77
monitoring policies 15
MTE 10 Distributed Monitoring commands

wgdread 127

Index 153

This soft copy for use by IBM employees only.

N
NCR UNIX 7
Netscape Navigator 91
netstat 120
NetView 95
NetView event command 24
NetView for AIX 1, 7
NetView Maps 11
NetView user 25
Netview/390 1
NetWare 15, 16, 19, 27
network devices 26
Network errors 36
network management 5
new response level 103
nobody (user) 71
node characteristics 12
nodes 12
non-migrateable SIA resources 30
non-numerical monitors 102
normal response level 35
notice 49
Notice Group Subscription 50
Notice groups 22

Sentry 22
Sentry-log 22
Sentry-urgent 22
SentryStatus 23

notif ication 112
numeric return value 85
numeric script 30, 32
Numeric Script monitor 76, 80, 100

O
object 5, 16, 17
object classes 19, 20
object location services 16
object reference 22
object request broker (ORB) 15
object-oriented 15
occurrences in fi le monitor 100
offload 12
operators.csl 82
Oracle 109
ORB services 16
OS/2 7, 16, 27, 131
oserv 91, 111
oserv daemon 16
oserv database 18, 19, 20
overload the Sentry engine 21

P
Paging Space 36
parameter 79
parameters 109

passive SNMP data source 93
password 17, 25
PC managed nodes 16
peers 16
percent sign 62
perl 128
permissions 30, 134
ping 121
pipes 109
plan the installation 25
platform 15
platform functions 16
policy 18
policy region 17, 26, 46, 72
poll 49
poll t ime 32, 37
poll ing 5, 9, 11
poll ing interval 102
poll ing time 35
polling-based functions 93
pop-up action 48
pop-up message 19, 22, 98
portable 82
post-migration possibil it ies 26
print queues 66
print subsystem 43, 66
printjobs 66
printjobsize 66
printstat 66
probe intervals 80
probes 78, 102
profi le 27, 122
profi le manager 18, 27, 46, 122
profi les 18, 46
programs 27
proxy 26
proxy monitoring 43
proxy monitors 19

Q
queues 66

R
RDBM system 109
RDBMS 18, 23
re-arm 102
re-arm capabil i ty 32, 43
re-arm condition 35
re-arm function 102
re-arm line 102
reduce network load 20
regular expression 95
related daemons 67
related processes 107
relative test conditions 103

becomes active 103
decreases below 103

154 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

relative test conditions (continued)
increases beyond 103

remote command execution 64
repeater function 25
required bandwidth 9
resource roles 50
response levels 21, 80, 134
result 19
RFC 1213 30, 119
routers 26
routing events 44
RS/6000 131
rule base 50
rules engine 23

S
sampling intervals 77
sched.log 93
scheduling 20
script monitors 30
searching for specific strings 9
security 16
security controls 16
selection lists 82
semi-automatic migration 27, 31
senior role 59
Sentry

.baroc 53
endpoint method 21
engine 19, 21
environment variable 98
Graphable Log 91
monitors 18
profi le 37
proxy endpoint 121

Sentry profi le 37
Sentry_Administrator 50
sentry_engine 105
sentry_rearm 105
Sentry2_0.dsl 82
service 19
shared memory monitoring 33
shell scripts 27, 62
SIA file monitors 28
SIA MIB variables 30
Simple Network Management Protocol (SNMP) 1, 5
single point of reference 16
slots 60
slow speed links 25
smconfig 9, 13, 27
SMUX Subagent 7
SNMP 5, 9, 27, 49

agent 9
client 120
community 120
devices 120
GET request 5
management 61, 120

SNMP (continued)
Manager 5, 7
MIB 1, 27
Mult iplexor (SMUX) 6
object 120
SET request 5
trap 24, 45, 64, 95, 108, 114
values 118

SNMP get request 9
snmptrap 64, 95, 108
Solaris 2.5 131
special-purpose Web server 125
specific trap ID 46
Spider 125
spreadsheet 127
startsrc 68
statistical analysis 33
status polling 12
statusChange 36
String script 30, 32
String script monitor 115
subagent interface 6
subnets 12
subscribers 122
Sun 85
Sun Solaris 24
Sun Sparc 20 131
SUN-Solaris 7
SunOS 7, 115
swapping activity 18
sy 78
symbolic name 119
SysBack/6000 99
system data 5
system group 71
system ID 17
system independent 68
System Information Agent (SIA) 1
System Level Monitor (SLM) 9
system mode 79
system privi leges 70
System-Level Manager (SLM) 1
systems management 5
Systems Monitor 5
Systems Monitor CFG 2.3.1.0 131
Systems Monitor Configuration Application

(smconfig) 6
Systems Monitor configuration fi le 37
Systems Monitor enterprise ID 46
Systems Monitor environment variables 98
Systems Monitor MLM 2.3.1.0 131
Systems Monitor SIA 2.3.1.0 131
SystemView 1

T
T/EC 107
T/EC commands

wstartesv 55

Index 155

This soft copy for use by IBM employees only.

T/EC commands (continued)
wstopesvr 55

T/EC events 60
T/EC log file adapter 93
T/EC server 49
tabular information 5
tag 33
tar archive 73
target nodes 26
task l ibrary 33, 70
Task Library Language (TLL) 70
TCP/IP networks 1
TCP/IP-based network 5
threshold 12, 19, 102, 115
threshold event 44
threshold levels 19, 102

always 19
crit ical 19
normal 19
severe 19
warning 19

threshold monitor 115
threshold monitor table 34
threshold table 31, 36, 44, 124
thresholding 9, 30
thresholds 76
time slot 21
Tivoli Enterprise Console (T/EC) 22
Tivoli Management Environment 15
Tivoli Management Environment (TME) 1
Tivoli Management Platform 82
Tivoli Management Regions (TMRs) 16
Tivoli/Sentry 15
Tivoli/Sentry 3.0.2 91, 131
Tivoli/Sentry 3.5 131
Tivoli/Spider HTTP Daemon/1.0 125
tivoli.baroc 53
tll file 74
TME 10 ADE 3 131
TME 10 commands

idlcall 133
odadmin 87
waddmon 20, 31, 33
wdistr ib 105
winstall 19
wlsmon 75
wputicon 103
wruntask 68
wtl l 73

TME 10 Distributed Monitoring 2, 15, 91
TME 10 Distributed Monitoring commands

waddlevel 103
wasyn 112
wcrtprx 122
wdumpstr 134
wlseng 133
wlseng -l 133
wsetmon 105

TME 10 Distributed Monitoring commands (continued)
wsnmpget 119, 120

TME 10 Distributed Monitoring proxy function 118
TME 10 Enterprise Console (T/EC) 23, 49
TME 10 Framework 3.1 131
TME 10 Integration Toolkit 82
TME 10 NetView 7, 107
TME 10 NetView Control Desk 96
TME 10 NetView for AIX 3
TME 10 Reporter 124
TME 10 roadmap 2
TME 10 Task Library Language 43
TME 10 tasks 43, 68
TME Administrator 50
TME desktop 22, 46
TME framework 62
TME notice 19
TME Notice group 22
TME platform 16
TME Resource Role 70
TME task 19, 24
TME10 Enterprise Console 19
TME10 NetView 5, 24, 61, 132
TME10 NetView Mid Level Manager 5, 9
TMR 86
TMR Roles 50
TMR server 16, 25, 62
TMR-TMR links 25
transaction control 16
transition period 61
Trap reception 9
trapgend 34
traps 7, 10, 12, 61
trigger options 28

U
unique key 83
unique message number 83
universal collection 100
Universal monitoring collection 76
universal.baroc 53
UNIX 15, 19, 86
UNIX file system 44
Unix_Sentry collection 100
unsolicited information 9
us 78
user ID 70, 106
user mode 79
user nobody 71
User-specified 119
user-specified MIB variable 120
UserSNMP 30
util ization trends 77

V
variable f i lenames 43

156 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

vmstat 77, 86

W
warning 90
Web server 92
Web-based application 91
Web-based monitor ing 124
wildcard definit ion 31, 115
wildcards 109
Windows 16
Windows NT 15, 19, 24, 27, 131
World Wide Web 3
wrapper script 36

Index 157

This soft copy for use by IBM employees only.

158 Migrating from Systems Monitor to TME 10 Distributed Monitoring

This soft copy for use by IBM employees only.

ITSO Redbook Evaluation

Migrating from Systems Monitor for AIX to TME 10 Distributed Monitoring
SG24-4936-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 159

IBML

This soft copy for use by IBM employees only.

Printed in U.S.A.

SG24-4936-00

