
SG24-4896-00

Internet Application Development
with MQSeries and Java

February 1997

SG24-4896-00

International Technical Support Organization

Internet Application Development
with MQSeries and Java

February 1997

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix D, “Special Notices” on page 151.

First Edition (February 1997)

This edition applies to:

• IBM OS/2 Warp Version 4.0

• IBM Internet Server for OS/2 Version 4.2 beta

• IBM MQseries for OS/2 Version 2.01

• IBM MQSeries Client for Java SDK, program number 5639-C34

• Netscape Navigator Version 2.02 for

• Microsoft Windows NT Version 4.0 Workstation

• Microsoft Internet Explorer Version 3.0

• Microsoft Windows 95

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . vii

Tables . ix

Preface . xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii i

Chapter 1. MQSeries Client for Java Positioning 1

Chapter 2. Introduction . 3
2.1 About the Objectives . 3
2.2 About the Demonstration Program . 5

Chapter 3. Installation . 9
3.1 IBM Internet Connection Secure Server 10

3.1.1 How to Get the ICSS . 10
3.1.2 How to Install the ICSS on OS/2 11

3.2 Netscape Navigator for OS/2 . 17
3.2.1 How to Get the Browser . 18
3.2.2 How to Install the Browser . 18
3.2.3 How to Set Up the Browser for Java 19

3.3 MQSeries Client for Java . 19
3.3.1 How to Get the MQSeries Client for Java 20
3.3.2 Installing the Documentation . 21
3.3.3 Installing the MQSeries Client for Java 22
3.3.4 Running the Installation Verification Applet 24

3.4 Apache Internet Server for AIX . 24
3.4.1 How to Get Apache . 24
3.4.2 Notes Regarding Apache . 24

Chapter 4. HTML Overview . 27
4.1 How to Build an HTML File . 28
4.2 How to Build a Link . 36
4.3 How to Load an Applet . 39

Chapter 5. Java Overview . 41
5.1 Some Basics about Java . 41

5.1.1 Java Is Platform-Independent . 41
5.1.2 Java Is Distributed . 42
5.1.3 Java Is Secure . 43

 Copyright IBM Corp. 1997 iii

5.1.4 Java Is Robust . 43
5.1.5 Java Is Object-Oriented . 44

5.2 Applications and Applets . 45
5.3 A First Try with Java . 45

5.3.1 The Hello World Application . 46
5.3.2 The Hello World Applet . 47

Chapter 6. MQSeries Overview . 53
6.1 What Is Messaging and Queuing? . 54

6.1.1 Messages . 54
6.1.2 Queue Manager . 55
6.1.3 Queue Manager Objects . 56

6.2 Manipulating MQM Objects . 57
6.3 Message Queues . 59

6.3.1 Local Queue . 59
6.3.2 Remote Queue . 59
6.3.3 Transmission Queue . 60
6.3.4 Dynamic Queue . 60
6.3.5 Model Queue . 60
6.3.6 Alias Queue . 60
6.3.7 Initiation Queue . 60
6.3.8 Reply-To Queue . 61
6.3.9 Dead-Letter Queue . 61

6.4 Clients and Servers . 61
6.4.1 How to Define a Client/Server Connection 62
6.4.2 How to Start a Client/Server Connection 64
6.4.3 How to Test a Client/Server Connection 64
6.4.4 How to Test a Client/Server Connection with MQSeries for Java 66
6.4.5 How to Trigger Applications . 68

6.5 Message Queuing Interface (MQI) . 70

Chapter 7. MQSeries Client for Java . 73
7.1 Who Should Read This . 73
7.2 Overview of MQSeries Client for Java 73
7.3 Running the Installation Verification Program 77

7.3.1 Running from a Local Disk Installation 78
7.3.2 Running from a Web Server Installation 79

7.4 Using the Verification Applet to Test Your Customer′s Access 81
7.5 Running Your Own Applets . 81

Chapter 8. MQSeries Client for Java Programmer ′s Guide 83
8.1 Who Should Read This . 83
8.2 MQSeries Client for Java Support . 83

8.2.1 Java Developer′s Kit (JDK) . 83

iv Internet Application Development with MQSeries and Java

8.2.2 Java Client Class Library . 84
8.2.3 Writing Programs for the MQSeries Client for Java 84
8.2.4 Sample Code Fragment . 85

8.3 Why Should I Use the Java Interface? 89
8.4 The MQSeries Java Programming Interface 90

8.4.1 Handling Errors . 91
8.4.2 Operations on Queue Managers 91
8.4.3 Accessing Queues and Processes 93
8.4.4 Handling Messages . 94
8.4.5 Inquire and Set . 95
8.4.6 Multithreaded Programs . 96
8.4.7 Writing User Exits . 97

8.5 Compiling MQSeries Java Programs 99
8.6 Tracing MQSeries Java Programs . 100
8.7 Class Hierarchy . 101

Chapter 9. The Sample Application . 105
9.1 Overview . 105

9.1.1 Functions of the Application . 105
9.1.2 Software Used to Develop the Applet 106
9.1.3 A View of the Internet . 107
9.1.4 The Value of This Application . 107

9.2 Program Logic and Message Flow 108
9.3 Design Issues . 112

9.3.1 Message Flow Diagram . 112
9.3.2 MQSeries Objects . 112
9.3.3 Programs . 113
9.3.4 Message Structure . 114
9.3.5 Inventory Files . 114

9.4 Set Up the Demonstration . 115

Appendix A. Client Program . 117
A.1 OrderlistApplet.html . 117
A.2 OrderListView.java . 117
A.3 FBPUTQ1.java . 128
A.4 FBGETQ2.java . 130
A.5 GTCGET.java . 132

Appendix B. Server Program . 135
B.1 Business Logic BL1.C . 135
B.2 Make File . 147
B.3 Definition File . 147

Appendix C. Diskette Contents . 149

Contents v

Appendix D. Special Notices . 151

Appendix E. Related Publications . 153
E.1 International Technical Support Organization Publications 153
E.2 Redbooks on CD-ROMs . 153
E.3 Other Publications . 153

How to Get ITSO Redbooks . 155
How IBM Employees Can Get ITSO Redbooks 155
How Customers Can Get ITSO Redbooks 156
IBM Redbook Order Form . 157

Glossary . 159

List of Abbreviations . 163

Index . 165

ITSO Redbook Evaluation . 167

vi Internet Application Development with MQSeries and Java

Figures

 1. Computer Network Envisioned for This Project 4
 2. Demo Web Page Shown by Netscape Navigator (Java-Enabled) . . 6
 3. Demo Web Page Shown by IBM WebExplorer (Not Java-Enabled) . 7
 4. Order Entry Applet from the Demo Application 8
 5. Internet Connection Server Installation 12
 6. Internet Connection Server Installation - Configuration 14
 7. Internet Connection Server - Icon View 16
 8. Example of a Server Front Page . 17
 9. Netscape Navigator Install Window 18
10. Netscape Navigator Icon View . 19
11. MQSeries Client for Java Documentation (index.html) 21
12. HTML Example - Part 1: An HTML Page 28
13. HTML File - Part 1 . 29
14. HTML Example - Part 2: Headings . 30
15. HTML File - Part 2 . 31
16. HTML Example - Part 3: Emphasizing 32
17. HTML File - Part 3 . 33
18. HTML Example - Part 4: Lists . 34
19. HTML File - Part 4 . 35
20. HTML Example - Part 5: Links . 36
21. HTML File - Part 5 . 37
22. HTML Example - Part 6: More Links 38
23. HTML Example - Part 6 . 38
24. HTML Displays an Applet . 39
25. HTML Example - Display an Applet 39
26. Difference between C And Java Compiler 42
27. A Simple Java Application . 46
28. A Simple Java Applet . 47
29. HTML File that Calls an Applet . 49
30. MQSeries at Runtime . 53
31. Message Queuing: Principle . 54
32. RUNMQSC - Interactive . 58
33. RUNMQSC - Using Command File . 58
34. RUNMQSC - Input File . 58
35. RUNMQSC - Output File . 59
36. MQSeries Channels . 62
37. Client/Server Connection . 63
38. Definitions for Server Connection . 63
39. Testing Client/Server Connection . 65
40. Verify Installation Applet . 65
40. Listener Window (RUNMQLSR) . 65

 Copyright IBM Corp. 1997 vii

41. Verify Installation Program (IVP) . 66
42. Verify Installation Results . 67
43. Fragments of an MQSeries Program 71
44. Possible Solutions . 75
45. Another View . 76
46. MQSeries Client for Java Sample Applet - Part 1 86
47. MQSeries Client for Java Sample Applet - Part 2 87
48. MQSeries Client for Java Sample Applet - Part 3 88
49. A View of the Internet . 107
50. Program Logic and Message Flow 109
51. Applet View . 111
52. Message Flow Diagram . 112
53. MQSeries Objects . 113

viii Internet Application Development with MQSeries and Java

Tables

 1. MQ Queue Manager Location . 77
 2. Queues for Demo Application . 112
 3. Files for Demo Application . 113
 4. Message Structure . 114
 5. Inventory File Structure . 115
 6. Files on Diskette . 149

 Copyright IBM Corp. 1997 ix

x Internet Application Development with MQSeries and Java

Preface

This redbook helps you integrate IBM′s award-winning middleware
MQSeries and the Internet. It gives you a broad understanding of what has
to be done to connect Internet/intranet users to legacy systems in your
enterprise. You may gain significant advantages by using the MQSeries
Client for Java when you introduce intranet-based client/server solutions, or
when you want to provide Internet access to some of your enterprise
applications.

The Internet technology provides low-cost easy access to global
communications, while MQSeries connectivity provides high integrity with
assured delivery and time independence.

Today, Java is on everyone′s mind. Java is considered to be the premier
programming language for Internet applications. The MQSeries Client for
Java is written in this object-oriented language. With this software, the user
of an Internet terminal can become a true participant in transactions, rather
than just a giver and receiver of information.

This redbook introduces you to Java, the HyperText Markup Language
(HTML), MQSeries, Web browsers, and Web servers. Programmers with no
knowledge of MQSeries or the Internet can use this redbook and the
accompanying diskette to get started with this new technology. This
publication also helps you to install and configure the various software
products you need for application development.

This redbook provides an example of a demonstration application and
shows what an Internet order entry system looks like. A Java applet that
runs in the client machine uses MQSeries Client for Java to retrieve product
lists from a server. With a graphical user interface, the user selects items
from these lists and places them into order form. When completed, the
applet uses MQSeries again to forward the order to a server for processing.
The server program updates inventory files and responds, asynchronously,
with a message to the end user indicating if the order can be filled or not.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the Systems Management and Networking ITSO Center, Raleigh.

Frank Brasch is a Systems Engineer/Consultant in Munich, Germany. There
he is responsible for object-oriented technology, application development

 Copyright IBM Corp. 1997 xi

and design of client/server applications with MQSeries on workstation
platforms.

Frank has been with IBM for 26 years. Before joining the OSC three years
ago, he worked for about five years in the Education and Research
Marketing department in Munich as a systems engineer for high-end
graphics applications on RS/6000. Prior to that he helped to design,
develope and implement the Directory Assistance System for the German
Telekom.

Frank is a co-writer of the redbook SOMobjects: Management Utilities for
Distributed SOM, GG24-4479.

George T. Carey is an I/T Specialist currently with the OSC/NCC based in
Atlanta, GA, USA. He has 24 years experience in the I/S world of which the
last seven have been with IBM USA serving in various area-wide technical
marketing support roles. He has performed a full gamut of roles for the I/S
professional in both commercial and scientific projects.

A quick sampling includes being a principal and Director of Software
Development in a commercial software systems house, a scientific
programmer/analyst with CSC and NASA, consultant, project leader of ″OEC
MegaDemo″ to IBM US Vice President et al, winner of IBM Director′s award,
and progenitor of the IBM National Support offering known as the AIX
Support-Line.

He is co-author of the redbook MQSeries Three Tier, Examples for Windows
Clients and AIX Servers, SG24-4664-00.

George holds a B.A. in Mathematics with graduate work in Linear
Programming and Computer Science.

Adrian Colyer majored in Computer Science at the University of
Southampton, and graduated in 1992 with a first class honors degree. He
joined IBM later that year, working on distributed object applications using
C++, SOM and DSOM. In particular, he worked on the CICS Systems
Manager for AIX product providing a distributed systems management
capability for CICS/6000. In 1996 Adrian joined the MQSeries development
group where he designed and developed the MQSeries Client for Java. He
currently works in the MQSeries Internet team developing new applications
for MQSeries and the internet.

Jin JaeWook is an I/T specialist in Korea and has been with IBM for 11
years. Jin acquired software development experience in the Korean
Software Development Institute. He developed an Information Retrieval

xii Internet Application Development with MQSeries and Java

System for HanGeul on MVS/CICS, announced this product in the Korean
market, and supported IBM marketers.

Jin developed OV/CICS (OfficeVision) and BAS/400 (Decision Support
System) as a worldwide product. He also participated in the biggest SI
project in IBM Korea, for the Korean Mobile Telecommunication Company.
After that, as a follow-on project, he applied MQSeries to the system in
several areas.

Dieter Wackerow is an Advisory ITSO Specialist for MQSeries in the
Systems Management and Networking ITSO Center, Raleigh, and was the
leader of this project. His areas of expertise include application design and
development for various industries, performance evaluations, capacity
planning, and modelling of computer systems and networks. He also wrote
a simulator for banking hardware and software. He taught classes and has
written on performance issues, application development for the banking
industry, and about MQSeries.

Thanks to the following people for their invaluable contributions to this
project:

Linda Robinson
Systems Management and Networking ITSO Center, Raleigh

Wendy Ling
IBM Hursley, England

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on
page 167 to the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Home Pages
at the following URLs:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com/redbooks

• Send us a note at the following address:

redbook@vnet.ibm.com

Preface xiii

xiv Internet Application Development with MQSeries and Java

Chapter 1. MQSeries Client for Java Positioning

MQSeries provides an excellent infrastructure for access to enterprise
applications and for development of complex Web applications. A service
request from a Web browser can be queued and processed when possible,
thus allowing a timely response to be sent to the end user regardless of
system loading. By placing this queue close to the user in network terms
then the timeliness of the response is not impacted by network loading. In
addition the transactional nature of MQSeries messaging means that a
simple request from the browser can be expanded safely into a sequence of
individual backend processes in a transactional manner.

If your enterprise fits any of the following scenarios, you can gain significant
advantages by using MQSeries Client for Java:

• A medium or large enterprise that is introducing intranet-based
client/server solutions. Here Internet technology provides low-cost easy
access to global communications, while MQ connectivity provides high
integrity with assured delivery and time independence.

• A medium or large enterprise with a need for reliable
business-to-business communications with partner enterprises. Here
again, the Internet provides low-cost easy access to global
communications, while MQ connectivity provides high integrity with
assured delivery and time independence.

• A medium or large enterprise that wishes to provide access from the
public Internet to some of their enterprise applications. Here the
Internet provides global reach at a low cost, while MQ connectivity
provides high integrity through the queuing paradigm. In addition to low
cost, the business can achieve improved customer satisfaction through
24 hour a day availability, fast response, and improved accuracy.

• An Internet Service provider, or other Value Added Network provider,
such as EDI brokers. These companies can exploit the low cost and
easy communications provided by the Internet and add the value of high
integrity provided by MQ connectivity. An Internet Service provider who
exploits MQ can immediately acknowledge receipt of input data from a
Web browser, guarantee delivery, and provide an easy way for the user
of the Web browser to monitor the status of the message.

For more information about the MQSeries Client for Java product refer to
Chapter 7, “MQSeries Client for Java” on page 73.

 Copyright IBM Corp. 1997 1

2 Internet Application Development with MQSeries and Java

Chapter 2. Introduction

This publication provides information resulting from the development of an
application that exploits Internet servers and browsers, IBM′s award-winning
middleware MQSeries, the HyperText Markup Language (HTML), and the
product that today is in everyone′s mind, Java.

The project to write this redbook included various platforms and a variety of
software and programming languages. Its purpose was to develop an
example application that uses MQSeries over the Internet. This redbook
documents the efforts in this project. It helps application designers and
developers to get started writing programs with Java and MQSeries.

The project lasted six weeks. The programs written for this project have
been tested and perform all functions required for the demonstration to
work. However, the code is not intended to be state of the art. None of the
authors had prior programming experience with Java.

Note: The programs developed during this project are included on a
diskette supplied with this book.

2.1 About the Objectives

We based our example on a real client/server application that is used to sell
cellular phones and pagers from various producers to businesses and
individuals. Our application demonstrates how to buy (or sell) fruit,
vegetables and other products via the Internet.

Our objective was to use messaging and queueing in a Java applet. To be
more specific, we had MQSeries clients communicate with an MQSeries
server program using the MQSeries Server Connection facility. An
MQSeries server and Web server run in the same machine. The supporting
software is MQSeries Client for Java.

Since the order-entry application is for demonstration purposes only we did
not implement functions such as address verification, credit check, back
order processing, and other programs that may be required to run in
servers or hosts to make the application complete. However, we
implemented a full-function order mechanism comprising an HTML home
page, a Java applet that displays a graphical user interface (GUI), a server
program written in C and a set of inventory files.

 Copyright IBM Corp. 1997 3

Figure 1. Computer Network Envisioned for This Project

Figure 1 shows the three tier computer network envisioned for this
application. All clients run the same Java applet. The two Web servers are
also MQSeries servers supporting either client. One can imagine the
servers to be two different stores to shop in. For this demonstration, we
ignored the third tier. However, the server program can easily be expanded
to request services or data from any or all backend systems.

4 Internet Application Development with MQSeries and Java

The Java applet has access to three product lists that could be databases in
different hosts or servers. For this demonstration, the server program
maintains three flat files. Each file contains a list of products with price and
quantity available for sale. The inventory is updated each time an order is
processed.

The operator requests one product list at a time. It will be displayed in the
GUI (applet). From each list he or she can order one or more items by
selecting a product and typing a quantity. All selected items are
automatically placed in an order list. We limited it to hold a maximum of ten
entries. After the order list is completed its content is moved into a
message and sent to the server for processing. The operator can then
obtain status information about his or her order, indicating if it can be
fulfilled or not.

The next section describes the demonstration program and how to run it
from wherever you are. The following chapters describe what software you
need to develop your own applications, how to obtain, install and use it.
This redbook should provide all necessary information and guidance for
developing Java applets for the Internet.

Where to find the demo

The demonstration program is currently available on these servers:

• http://w3.itso.ral.ibm.com/mq (AIX)

• http://mercury.itso.ral.ibm.com (AIX)

• http://mqjava.itso.ral.ibm.com (OS/2)

2.2 About the Demonstration Program

You must have a Java-enabled Web browser such as the Netscape
Navigator to execute the MQSeries client for Java demonstration. In the
Web page shown in Figure 2 on page 6 you see three applets. Each applet
displays a clock, one for each of the time zones the authors of this
publication live.

If you have a browser that is not Java-enabled such as IBM′s WebExplorer,
you will see the Web page shown in Figure 3 on page 7. Instead of the
three applets showing the clocks some text is displayed that tells you where
to get a Java-enabled browser.

Chapter 2. Introduction 5

Figure 2. Demo Web Page Shown by Netscape Navigator (Java-Enabled)

The HTML file contains hyperlinks to Web pages featuring:

• The IBM Internet Connection Family

• The MQSeries Client for Java Software Developer ′s Kit (SDK)

• This and other redbooks

• The demonstration described in this book

6 Internet Application Development with MQSeries and Java

Figure 3. Demo Web Page Shown by IBM WebExplorer (Not Java-Enabled)

The above Web page contains a hyperlink to the Web page where you can
download the Netscape Navigator for OS/2 Warp:

http://www.internet.ibm.com/browsers/netscape/warp

Figure 4 on page 8 shows the entry form written as a Java applet.

Chapter 2. Introduction 7

Figure 4. Order Entry Applet from the Demo Application

Some of the readers already know HTML; some may have written Java
programs; others have used MQSeries before; and some may not know
either. Therefore, this publication contains brief introductions to HTML, Java
and MQSeries.

In the following chapters you can read about:

• Software and installation

• The basics of HTML

• The basics of Java

• An introduction to MQSeries

• The MQSeries client for Java SDK

• The sample application

8 Internet Application Development with MQSeries and Java

Chapter 3. Installation

Figure 1 on page 4 gives you a good overall view of the hardware
considered for this MQSeries/Java project. We installed the following
software:

 1. OS/2 Server (PS/2 Model 95)

• OS/2 Warp Server Version 3.0

• TCP/IP Version 3.0 (included)

• MQSeries for OS/2 Version 2.0.1

 2. OS/2 Workstation

• OS/2 Warp Version 4.0 (Merlin)
formatted for the High Performance File System (HPFS)
including:

− TCP/IP Version 3.0

− Java for OS/2

• Internet Connection Secure Server for OS/2

• MQSeries for OS/2 Version 2.0.1 (client)

 3. WinNT Workstation

• WinNT Version 4.0 Workstation
including:

− TCP/IP

− Java Compiler

− Java SDK 1.02

• Internet Explorer Version 3.0

• Different tools for building HTML pages and Java development

 4. AIX Server and workstation

• AIX Version 4.1

• Apache Internet Server Version 1.1.1

• MQSeries for AIX

In the following sections we describe the installation of some of the Internet
software we used.

 Copyright IBM Corp. 1997 9

3.1 IBM Internet Connection Secure Server

This chapter describes how to obtain, install and administer the IBM Internet
Connection Secure Server (ICSS). This code has to be installed on the OS/2
and AIX servers in our configuration.

3.1.1 How to Get the ICSS
Using a Web browser of your choice, look at the Internet Connection Family
Web page at:

http://www.ics.raleigh.ibm.com

As of the writing of this book, Version 4.2 Web Server betas were available.
Selecting this product brings you to the page:

http://www.ics.raleigh.ibm.com/ics/icfbetas.htm

From here select Internet Connection Secure Servers (Version 4.2) . This
brings you to a page that lists the servers for various products. For our
configuration, we download:

• Internet Connection Secure Server for OS/2 (Version 4.2 beta)

• Internet Connection Secure Server for AIX (Version 4.2 beta)

Follow the instructions and you will receive the files:

• os42b1.zip, about 3.2 MB, for OS/2

• aix42b1.tar.Z, about 3.5 MB, for AIX

If you use the FAT file system give it the file extension trz.

Note: The ICSS Beta-Version 4.2 cannot only handle CGI, but also Java
within the HTML pages.

Use ftp to transfer the compressed file to the AIX system. A sample
scenario is shown below. The commands are shown in bold.

d:\>ftp mercury
IBM TCP/IP for OS/2 - FTP Client ver 15:51:28 on Nov 19 1994
Connected to mercury.itso.ral.ibm.com.
220 mercury FTP server (Version 4.1 Sun Jul 28 12:35:09 CDT 1996) ready.
Name (mercury): root
331 Password required for root.
Password:
230 User root logged in.
ftp> cd usr/lpp/internet
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> put aix42b1.trz aix42b1.tar.Z

10 Internet Application Development with MQSeries and Java

200 PORT command successful.
150 Opening data connection for aix42b1.tar.Z.
226 Transfer complete.
local: aix42b1.trz remote: aix42b1.tar.Z
3512578 bytes sent in 10.09 seconds (339 Kbytes/s)
ftp>quit

3.1.2 How to Install the ICSS on OS/2
This section describes how you install and administer the ICSS for OS/2.
For other operating systems, you have to follow the specific instructions for
that operating system. Follow these steps after you downloaded the ICSS:

Step 1. Unzip the file:

To unzip use PKUNZIP or a similar program with the -d option.
The -d option will create directories stored in the zip file. Let us
assume that the file is in the root directory of the C drive. Execute
the following commands:

E:\>md webserv
E:\>cd webserv
E:\WEBSERV>pkunzip -d c:\os42b1.zip

Notes:

a. The Web server must be installed in an HPFS partition.

b. Read the file README.1ST in the installation directory.

Step 2. Start the installation:

a. To invoke the installation program, type:

E:\WEBSERV>install

b. In the installation window, click on Continue .

 c. In the subsequent Install window, click on OK to have the
installation program update the CONFIG.SYS file.

Step 3. Select the components you want to install:

In the Install - directories window, shown in Figure 5 on page 12,
you can:

• Select the components you want to install.

• Overwrite the default directories for the components.

Chapter 3. Installation 11

Figure 5. Internet Connection Server Installation

The directories you see in the bottom half of the window define
where you want to install the Internet Connection Server
components and where you want to store the resources you will be
making available through the Internet Connection Server.

You can change these paths by clicking Disk space and selecting
the drive where you want the directories installed.

Note: The gateway code is installed in the same directory as the
client for OS/2.

 Attention

Use the scroll bar to see the complete list of directories. The
directories must be in a partition formatted for the High
Performance File System (HPFS).

12 Internet Application Development with MQSeries and Java

A brief description of the contents of the directories follows:

Executables directory
The Internet Connection Server executable program files and
other related files are installed in this directory.

DLL directory
The Internet Connection Server DLL files are installed in this
directory.

Documentation directory
This directory contains the online documentation for the
product.

CGI Bin scripts directory
Into this directory, put your script programs that use the
Common Gateway Interface (CGI). Also, the Internet
Connection Server htimage program is installed in this
directory.

HTML directory
This directory is for your HTML documents. The Internet
Connection Server sample HTML pages and the Internet
Connection Server Front Page are installed in this directory.

Remote admin directory
This directory contains files used by the Internet Connection
Server Configuration and Administration Forms.

Icons and graphics directory
The default directory list icons are installed here. You may
also choose to put your own icon and graphics files on this
directory.

Logs directory
This directory is for log files written by the Internet
Connection Server.

Labels directory
Here you can find the label text, if your are writing diskettes
and want to have the correct labels.

Step 4. Click on Install... in the Installation window shown in Figure 5 on
page 12 to continue. You will be presented the window in
Figure 6 on page 14.

Step 5. Configure the Internet Connection Secure Server:

In the Internet Connection Secure Server Install Configuration
window, you may change the default values for:

Chapter 3. Installation 13

Figure 6. Internet Connection Server Installation - Configuration

Host name
The default value is the host name defined in your
CONFIG.SYS file. If you want to use an alias, change this
field to a fully qualified host name that is defined in your
domain name server.

HTTP/S-HTTP port
The default value of 80 is the well-known port number for
Hypertext Transfer Protocol (HTTP) and Secure Hypertext
Transfer Protocol (S-HTTP). Other port numbers less than
1024 are reserved for other TCP/IP applications. Port
numbers 8080 and 8008 are commonly used for testing
servers.

SSL Port
The port you want your server to listen to for requests for
documents protected by the Secure Sockets Layer (SSL)
protocol. The default is 443.

14 Internet Application Development with MQSeries and Java

Key ring file
The name of the file where you want to store public/private
key pairs that the server can use for secure communications.
The default value is WWW\BIN\keyfile.kyr.

Administrator ID
The ID of your server administrator. Anyone attempting to
use the Internet Connection Server Configuration and
Administration Forms will be prompted to enter this ID. The
default is webadmin.

Password
The password you want to use to protect access to the
Configuration and Administration Forms. Anyone attempting
to use the Internet Connection Server Configuration and
Administration forms will be prompted to enter this
password. The default is webibm.

Auto Start Server at Bootup
If you want the Internet Connection Server to start
automatically when you start your host machine, mark this
check box. The server will then be added to your OS/2
Startup folder.

Step 6. View the target directory assignments:

The target directories cannot be changed. You may want to make
a note of the information in this window because it shows where
the server will look for certain files when it is running.

Configuration file
This is the file that contains the Internet Connection Server
configuration settings. The file is named httpd.cnf and is put
in the path specified on the SET ETC statement in your
CONFIG.SYS file.

CGI scripts
This is the same directory you specified for your CGI script
programs on the Install - directories window.

HTML documents
This is the same directory you specified for your HTML
documents on the Install - directories window.

Config password file
This is the server password file that will contain the values
you entered above in the Administrator ID and Password
fields. The file is named ADMIN.PWD and is put in the path
specified on the SET ETC statement in your CONFIG.SYS file.

Chapter 3. Installation 15

Step 7. Complete the installation:

a. From the ICSS Install Configuration window, click on OK . A
window will inform you how the installation progresses.

b. From the Internet Connection Server Installation window, click
on Exit to complete installation.

If the installation procedure updated your CONFIG.SYS file, you will
be prompted to reboot your system before starting the server.

If you checked Auto Start Server at Bootup, the server will be
placed in your OS/2 Startup folder and will start automatically each
time you start or reboot your system.

Step 8. Connect to your server:

Use your favorite browser to connect to your server′s Front Page
by typing the URL http://your.server.name, where
your.server.name is the fully qualified name of your host. In our
project we used:

http://mqjava/itso.ral.ibm.com

The front page contains links that let you:

• Access the configuration and administration forms.

• Create sample home pages.

• Access this Web site (Internet Connection Family).

• Read online Internet Connection Server documentation.

Figure 7. Internet Connection Server - Icon View

16 Internet Application Development with MQSeries and Java

Figure 8. Example of a Server Front Page

3.2 Netscape Navigator for OS/2

If you use Java, you need a Java-enabled browser. For our project, we used
the Netscape Navigator for OS/2 Version 2.02, first the Beta versions and
then the GA (general availability) version.

You can download this native OS/2 version of the Netscape Navigator client
software at no additional charge to OS/2 Warp users. With the Netscape
Navigator for OS/2 you receive Netscape′s HTML-enabled mail and news
applications as well as support for plug-in extensions and frames. You will
also be able to take advantage of JavaScript, incorporated with Netscape

Chapter 3. Installation 17

Navigator, which extends HTML capabilities and allows you to open and
view live Java applets and applications.

3.2.1 How to Get the Browser
Download the Netscape Navigator for OS/2 Warp from:

http://www.internet.ibm.com/browsers/netscape/warp

You receive a file of about 4.5 MB: nsos2202.exe.

Note: You need OS/2 Warp Version 4 for Java programs and applets.

3.2.2 How to Install the Browser
Create a directory and place the files into it using the following commands:

c:\>md netscape
c:\>cd netscape
c:\netscape>c:\nsos202
c:\netscape>install

Note: Read the read.me file in the netscape directory.

Click on OK in the Install window. The CONFIG.SYS will automatically be
updated.

Figure 9. Netscape Navigator Install Window

18 Internet Application Development with MQSeries and Java

Click on Install if you accept the drive and directory. A window keeps you
informed about the progress of the installation.

When the installation is completed click on Exit . The installation creates the
following folder on your desktop:

Figure 10. Netscape Navigator Icon View

3.2.3 How to Set Up the Browser for Java
Bring up the Netscape Navigator, select Network Preferences from the
Options menu and skip to the third notebook page, Proxies. There, select
Manual Proxy Configuration and then click on View .

This brings up a window in which you type in your SOCKS host. Every
region has its own socks server. We use socks.raleigh.ibm.com. Click on
OK to return to the browser′s window.

Since we want to use Java we have to ensure that Java is enabled. Select
Security Preferences from the Options menu. In the subsequent window
remove the check mark from Disable Java then close the window.

You have to include the name of the directory that contains your Java
applets in the CLASSPATH statement or applets will not run. Modify the
CLASSPATH statement in the CONFIG.SYS like this:

SET CLASSPATH=C:\NETSCAPE\njclass.zip;C:\JAVAOS2\lib\jempcl10.zip;c:\myjava;.\.;

3.3 MQSeries Client for Java

The MQSeries Client for Java is available as SupportPac MA83 from IBM
Hursley. The product enables Web browsers and Java applets to issue calls
and queries to MQSeries giving access to mainframe and legacy
applications over the Internet without the need for any other MQSeries code
on the client machine.

Chapter 3. Installation 19

This section describes how to obtain and install the MQSeries Client for
Java. For this project we used the software from the Beta Test Program.

3.3.1 How to Get the MQSeries Client for Java
You can obtain a copy of the MQSeries for Client SupportPac MA83 from the
Web page of IBM Hursley:

http://www.hursley.ibm.com/mqseries/txppacs/ma83.html

To find out about other SupportPacs link to:

http://www.hursley.ibm.com/mqseries/txppacs/txpsumm.html

If you work for IBM, you may obtain the product by entering the following
command on the command line of your VM system:

TOOLS SENDTO WINVMB TOOLS TXPPACS GET MA83 PACKAGE

If you agree with the IBM International Program License Agreement, you will
receive the file MA83.ZIP (about 500 K in size).

The code is provided in InfoZip compressed format. To unzip these files you
need a program that understands long file names and can recreate
subdirectories. InfoZip does this. You can download it in the form of a
self-extracting executable from the same Web page as the product. The file
name for OS/2 is UNZ520X2.EXE. File names for other platforms may vary.

Note: This is a self-extracting EXE. Execute UNZ520X2 (if you downloaded
the OS/2 version). This will create the file UNZIP.EXE (and several other
files). Use UNZIP.EXE to unzip MA83.ZIP.

unzip MA83

This creates the following files:

mqc4j.zip The executables for the client

mqc4jdoc.zip The documentation in HTML format

ipla IBM International Program License Agreement

li License Agreement in different languages

readme.txt Notes for the installation

Relnotes.txt Release notes for the SDK version of the product (2.0)

Use the UNZIP.EXE again to unzip the documentation and the executables
for the client.

20 Internet Application Development with MQSeries and Java

Figure 11. MQSeries Client for Java Documentation (index.html)

3.3.2 Installing the Documentation
Unzip the documentation file (mqc4jdoc.zip) into a directory that is
accessible to your Web browser and is on a drive that is capable of
supporting long file names. You can use any unzip utility that can handle

Chapter 3. Installation 21

long file names and recreate subdirectories. Examples are WinZip and
Info-Zip′s UnZip. (You cannot use PKUNZIP.)

Note: The MQSeries Client for Java Programmers Guide contains links to
the Java SDK documentation. For these links to be enabled, the MQSeries
Client for Java documentation should be installed in the same directory as
the Java SDK documentation.

Open the index.html file in your Web browser and click on the Getting
started with MQSeries Java link to reach the installation instructions. You
find the index.html file in the subdirectory \doc of the directory where you
installed the documentation. Figure 11 on page 21 shows the page
index.html.

3.3.3 Installing the MQSeries Client for Java
MQSeries Client for Java can be installed either on your local hard disk or
on a Web server. Installation on a Web server has the advantage of
allowing you to download and run MQSeries client applications on machines
that do not have the MQSeries Client for Java installed locally.

The MQSeries Client for Java can be run in three different modes:

• From within any Java-enabled browser

• Using an applet viewer

• As a stand-alone Java program

When running from within a browser, the location of the queue managers
that can be accessed may be constrained by the security restrictions of the
browser being used.

If you use an applet viewer or write stand-alone programs, you must have
the Java Developer′s Kit (JDK) installed on the client machine.

The installation depends on the mode you want to use it in.

3.3.3.1 Using a Web Browser
If you intend to run the client from within a Web browser, you must either:

• Unzip the file on your Web server machine into a directory that is
accessible from your Web browser.

• Unzip the file into a directory on your local machine.

When the mqc4j.zip file is unzipped, some files are placed into the current
directory and some files into a subdirectory called com\ibm\mq.

22 Internet Application Development with MQSeries and Java

• The files in the root directory are for the installation verification applet
described in the next section.

• The files in the MQ subdirectory constitute the MQSeries Client for Java.

3.3.3.2 Applet Class Directory
When accessing the client from a Web browser, the applet is run from within
an HTML file. This file contains an applet tag that specifies the class to be
loaded and run. If this applet class is stored in a directory X on the Web
server machine, the Java client files must be stored in a directory
x\com\ibm\mq on the same machine.

3.3.3.3 Using the Applet Viewer
If you intend to run the client from an applet viewer, you must have the Java
run-time environment installed on your machine.

Unzip the file mqc4j.zip to either:

• Your Web server machine into a directory that is accessible from your
Web browser.

• Into a directory on your local machine.

If you have installed the client on your local machine, you must ensure that
the directory in which you unzipped mqc4j.zip is in your CLASSPATH
environment variable.

3.3.3.4 Setting the CLASSPATH Variable
The Java run-time environment uses a variable called CLASSPATH to locate
the files in the Java client. If this variable is already set on your machine,
you have two choices:

 1. Unzip the mqc4j.zip file into a directory that is in your CLASSPATH.

 2. Add the directory in which you unzipped the file to the end of your
CLASSPATH statement.

Examples:

• On AIX use the command:

export CLASSPATH=$CLASSPATH:newdir

• On DOS, OS/2, or Windows use the command:

set CLASSPATH=%CLASSPATH%;newdir

Where newdir is the directory in which you have installed the Java client
files.

Chapter 3. Installation 23

If the CLASSPATH variable is not set, make it point to the directory in which
you unzipped mqc4j.zip and also to the directory that contains
lib\classes.zip from your JDK installation.

3.3.4 Running the Installation Verification Applet
A simple installation verification program is provided as part of the
MQSeries client for Java in a file called mqjavac.htm.

The program connects to a given queue manager, executes all the MQ calls,
and produces simple diagnostic messages in the event of any failures.

You find a detailed description in section 7.3, “Running the Installation
Verification Program” on page 77 and an example in section 6.4.4, “How to
Test a Client/Server Connection with MQSeries for Java” on page 66.

3.4 Apache Internet Server for AIX

On the RS/6000, we used the Apache Server Version 1.1.1. This server
provides a reliable service on our AIX machine.

3.4.1 How to Get Apache
You find this product and can download it from the Web page:

http://www.apache.org

3.4.2 Notes Regarding Apache
 1. Run the configuration script located at /apache_1.11.1/src. The name of

it is configure.

Before you run the shell script, look in Configuration.tmpl for the line
CC=cc and any other lines related to the UNIX you are using, in our
case AIX/6000. There may be some differences regarding the C
compiler.

Look closely at the last line of the shell script:

cat Makefile.tmpl >> Makefile

Therefore, also look at the Makefile.tmpl to ensure that all settings for
the AIX/6000 compiler are there.

 2. Compile the Apache.

Before compiling look into Makefile.tmpl, located under
/apache_1.1.1/src. Make sure the Configure shell did everything
correctly according to the changes made in the Configuration.tmpl file.
You are now ready to compile. You may see some warnings that you

24 Internet Application Development with MQSeries and Java

can ignore. They are due to extent modules that may not have been
downloaded or used.

 3. Once compiled, the httpd is ready to run. Before running the daemon,
remember to look into the directory /apache_1.1.1/conf and make the
required changes to the httpd.conf, srm.conf, and any other related
configuration file you may be using. The changes you have to make are
related to the path where the files reside.

 4. Ensure that the /etc/services file has the proper settings for port 80.
This is the Internet services port that is most widely used.

www 80/tcp # World Wide Web HTTP
www 80/udp # World Wide Web HTTP

Remember to run the inetd daemon by executing:

inetimp
refresh -sinetd

 5. Now you are ready to start the httpd daemon. You can do this either
manually or automatically.

• Manually:

/usr/local/etc/apache/src/httpd -f /usr/local/etc/apache/conf/http.conf

• Automatically:

Create a file with the name rc.http in /etc with the following lines:

#! /bin/ksh
/usr/local/etc/apache/src/httpd -f /usr/local/etc/apache/conf/http.conf

Once the shell is created, declare it as executable with:

chmod +x rc.http

Now the inittab file in /etc has to be modified. After the rcnfs
daemon line, add the following one:

rchttp:2:wait:/etc/rc.http > /dev/console/2>�1� # Start Apache HTTP daemon

Once this is done, refresh init by issuing an init q command.

Chapter 3. Installation 25

26 Internet Application Development with MQSeries and Java

Chapter 4. HTML Overview

This chapter introduces you to the HyperText Markup Language (HTML).
For those of you who work with script, the General Markup Language (GML),
BookMaster or Book Manager will find many similarities. Most tags are
identical, only the delimiters changed to left and right arrows. Here are
some examples:

Tag HTML Script/GML
---------- ----- ----------
Paragraph <P> :p.
Line break
 .br;
Begin ordered list :ol.
End ordered list :eol.

On the following pages, we explain the basics of HTML and the HTML files
for the demonstration program developed in this project:

• An HTML file that explains the important tags.

After you review this section you should have a good understanding of
HTML and be able to write your own WWW application.

Note: There are many books available that cover HTML in depth.

• The home page created for this project. From this page you can link to:

− An applet provided with MQSeries for Java, MQTest.class, that tests
the client/server connection.

− The application developed in this project, an applet that
demonstrates how an order entry system for the Internet can be
written.

This application has been developed on a Windows NT system. You
can find a description in Chapter 9, “The Sample Application” on
page 105.

Note: As a browser we used the Netscape Navigator Version 2.02.

What this chapter is not

This chapter does not cover all of the capabilities of HTML. It provides
an overview and discusses some important features of this language and
enables you to understand how a WWW page is written.

 Copyright IBM Corp. 1997 27

4.1 How to Build an HTML File

Figure 12. HTML Example - Part 1: An HTML Page

Each HTML f i le starts with <HTML> and ends with </HTML>.

An HTML file is divided into two parts, header and body. Usually, the
header contains the title of the file. In the body you describe what appears
in the browser. This is a skeleton of an HTML file:

<HTML>
<HEAD>
<TITLE>My HTML File</TITLE>
</HEAD>
<BODY>
...
</BODY>
</HTML>

�1� This indicates the beginning of the HTML file.

28 Internet Application Development with MQSeries and Java

�1� <HTML>
�2� <HEAD>
�3� <TITLE>My HTML File</TITLE>

</HEAD>
<BODY>

�4� <H1>A First Try With HTML</H1>
�5� <p>

Here the Page begins.
The line above is a level 1 heading.
There are other headers with different sizes.
This text is a paragraph.
<p>This is another paragraph.
Next you see the MQSeries banner. It is a GIF file. There is a special
tag that displays images like that in an HTML file.
<p>

�6�
�7� This is a GIF file.

<p>
This banner could be replaced with your own image.

�8� <HR>

Figure 13. HTML File - Part 1

�2� The header is between the <HEAD> and </HEAD> tags.

�3� The title appears in the header line of the browser′s window as shown
in Figure 12 on page 28.

Note: The header can contain other tags to describe the document itself.

�4� The first line in the body of the HTML file is a heading. There are
headings of different levels. This is a level 1 heading.

�5� This tag indicates the begin of a paragraph. All following text belongs to
that paragraph. You may end the paragraph with the </P> tag or simply
start the next paragraph with another <P> tag.

�6� This tag displays the image file MQJCBAN.GIF. The SRC attribute
specifies the name of the image file to be displayed.

Note: The image file resides in the same directory as the HTML file.

�7� Since the image is not followed by a <p> tag this text appears to the
right of the image.

�8� The <HR> tag draws a horizontal rule.

Chapter 4. HTML Overview 29

Figure 14. HTML Example - Part 2: Headings

There are six levels of headings in HTML. A level 1 heading is shown in
Figure 12 on page 28. The window above shows the other five.

�9� This is a level 2 heading.

Note that for the paragraph following the header the tag and the text are on
separate lines.

�10� This is a level 3 heading.

For this paragraph, the <p> tag and text are on the same line.

30 Internet Application Development with MQSeries and Java

<p>Below are a few more headings and paragraphs:
�9� <H2>It′ s a Winner</H2>

<P>
MQSeries is IBM′ s award-winning middleware for commercial messaging

�10� <H3>Platforms</H3>
<p>MQSeries runs on a variety of platforms.

�11� <H4>Independence</H4>
MQSeries products enable programs to communicate with each other
across a network of unlike components, such as processors, operating
systems and communication protocols.

�12� <H5>Internet Common Gateway Interface</H5>
<p>Did you try the IBM MQSeries Internet Gateway SupportPac?

�13�
It provides a bridge between the synchronous World Wide
Web and asynchronous MQSeries applications.

�14� <H6>MQSeries for Java</H6>
<p>This brand-new product is the topic of this book.

�15� <HR>
�16� <! --->

Figure 15. HTML File - Part 2

�11� This is a level 4 heading.

This paragraph has no <p> tag. HTML assumes that text following a
heading end tag, here </H4>, constitutes a paragraph.

�12� This is a level 5 heading.

�13� The
 tag causes a l ine break. Two consecutive tags are
equ iva len t to <p>.

�14� This is a level 6 heading.

�15� This tag causes the horizontal rule.

�16� This is a comment. You may write any text between <! and >.

Note: How the headers actually look depends on the browser you are
using. Figure 14 on page 30 shows how they appear in the Netscape
Navigator.

Chapter 4. HTML Overview 31

Figure 16. HTML Example - Part 3: Emphasizing

�17� Note that the first word in the paragraph is in italics (<i>).

�18� Emphasized words (<EMP>) are usually in italics.

�19� Usually, the <KBD> tag is used to indicates text to by typed.

�20� Stronger emphasized words () are usually displayed in
b o l d (< B >) .

�21� The <CODE> tag is used to indicate code samples.

32 Internet Application Development with MQSeries and Java

<h2>What is Messaging and Queuing?</h2>
�17� <i>Messaging</i> means that programs communicate with each

other by sending data in messages and not by calling each other directly.

�18� Queuing means that programs communicate through queues.
Programs communicating through queues need not to be executed concurrently.
<p>

�19� <KBD>Note the italicized words in the paragraphs above
and the text style in this line.</KBD>
<p>

�20� With asynchronous messaging, the sending
program proceeds without waiting for a reply to its message.
In contrast, synchronous messaging waits for a reply
before it resumes processing.
<P>

�21� <CODE>Note the bold words in the above paragraph.</CODE>
<p>
<h3>MQSeries knows four types of messages:</h3>

�22� <DL>
<DT>Datagram
<DD>A message containing information for which no response is expected.
<DT>Request
<DD>A message for which a reply is requested.
<DT>Reply
<DD>A reply to a request message.
<DT>Report
<DD>A message that describes an event such as the occurrence of an error.
</DL>
<p>
To evaluate MQSeries read

�23� <CITE>IBM MQSeries: An Introduction to Messaging an Queuing</CITE>, GC33-0805.

Figure 17. HTML File - Part 3

�22� A definit ion l ist (<DL>) starts here. A DL contains terms (<DT>)
and definit ions (<DD>) that explain the term:

• <DL> indicates the beginning of the l ist.
• <DT> is for the term you want to define.
• <DD> is the definit ion of the term.
• </DL> indicates the end of the l ist.

�23� The <CITE> tag is used to highlight a quote or citation.

Chapter 4. HTML Overview 33

Figure 18. HTML Example - Part 4: Lists

In an HTML file you can build different kind of lists. Besides the definition
list seen on the previous page you may display ordered and unordered lists.

�24� An ordered l is t begins wi th and ends wi th .

�25� An unordered l is t begins wi th and ends with .

Between those tags are list items, each beginning with a tag. A list
item can consist of one or more lines or multiple paragraphs.

Lists can also be nested.

34 Internet Application Development with MQSeries and Java

<h2>Lists</h2>
<p>Ordered lists have numbers in front of each list item

�24�
Asynchronous messaging
Synchronous messaging

<p>The same items as an unordered list looks like this:

�25�
Asynchronous messaging
Synchronous messaging

<p>MQSeries provides a set of API calls:

�26�
The two most used API calls of MQSeries are:

�27�
MQPUT - to put a message on a queue
MQGET - to get a message from a queue

Other important API calls are:

�28�
To connect to and disconnect from a queue manager:

�29�
MQCONN
MQDISC

To open and close a queue:

�30�
MQOPEN
MQCLOSE

</eol>

Figure 19. HTML File - Part 4

�26� Inside this ordered list is:

Another ordered list (�27�).

An unordered list (�28�).

�28� This nested list contains two more lists (�29� and �30�).

Note: You can use tags outside a l ist. The browser starts a new line
and places a bullet in front of the text.

Chapter 4. HTML Overview 35

4.2 How to Build a Link

Figure 20. HTML Example - Part 5: Links

You can link from an HTML file to:

• Another HTML file
• A specific place inside another HTML file
• A specific place in the same HTML file

To jump to a specific place in an HTML file you have to define an anchor.
The anchor is like a label you jump to. It determines what line appears on
the top of the window when the browser executes a link to that anchor.

�31� We added the following anchor to the header for the definition list (�22�
on page 33):

<h3> ... </h3>

This tag defines an anchor with the name MsgTypes.

Note: The name is part of the <A> tag!

You link to this anchor with a tag like this:

 click here.

The words click here are usually displayed in a different color than the rest
of the text. The browser loads the file and searches for the anchor
MsgTypes.

36 Internet Application Development with MQSeries and Java

...
�31� <h3>MQSeries knows four types of messages: </h3>
...

<p>
�32� To go to the top of this document click here!

<p>
�33� To find out what the four message types of MQSeries are

 click here.
<p>

�34� To link to the file <KBD>OTHER.HTML</KBD>
click here.
<HR>
</BODY>
</HTML>

Figure 21. HTML File - Part 5

The next three statements show how to define links to a file and to an
anchor within a file.

�32� If you want to go to the top of the current HTML file you can either use
the scroll bar or define a link and click on it.

The link click here! consists of two parts:

 1. Inside the < A > tag is the name of the file you want to link to. In this
case it is the current HTML file.

 2. The text click here! between < A > and < / A > is displayed underlined
and blue. When you click on this text the browser will execute the link.

�33� The link click here. does not contain a file
name but the anchor name specified in �31�. The name is preceded by an #
sign. This tells the browser to display the same file starting with the line
that includes the anchor. That′s how you jump to a specific place within a
file.

�34� The link click here. points to a different
HTML file with the name OTHER.HTML. If you click on the text click here, the
browser will display the file shown on page 38.

�35� This link displays the file myhtml.html again (page 38).

�35� This link contains the a file name and an anchor (page 38). This is how
you jump to a specific place in another HTML file.

Chapter 4. HTML Overview 37

Figure 22. HTML Example - Part 6: More Links

<HTML>
<HEAD>
<TITLE>Another HTML File</TITLE>
</HEAD>
<BODY>
<H1>Hallo</H1>
<p>
You just linked to this page.
<p>
You have three choices to go back to the previous HTML file:

Click on the Back button in the browser.

�35� Click here to go to the top of the file.
�36� Click here to read the message types again.

</BODY>
</HTML>

Figure 23. HTML Example - Part 6

38 Internet Application Development with MQSeries and Java

4.3 How to Load an Applet

Figure 24. HTML Displays an Applet

<HTML>
<HEAD>
<TITLE> Call Applet </TITLE>
</HEAD>
<BODY>
This program calls now an applet.

This is its output:
<p>
<APPLET CODE=″Guys.class″ WIDTH=150 HEIGHT=100″>
Attention:

This browser does not know applets.
<p>
</APPLET>
That was it.
</BODY>
</HTML>

Figure 25. HTML Example - Display an Applet

Note: Only Java-enabled browsers can load applets.

Chapter 4. HTML Overview 39

Figure 24 shows a box with Hello Guys and Howdy in it. The box is
displayed by an applet with the name Guys.class. You include Java applets
in a Web page with the <APPLET> tag. The tag requires that you specify
some attributes:

• The attribute CODE specifies the name of the compiled Java code, here
Guys.class.

• WIDTH and HEIGHT of the applet in pixels.

The HTML in Figure 25 on page 39 contains some text between the
<APPLET> and < /APPLET> tags . This text is displayed, instead of the
applet, if the HTML file is loaded by a browser that is not Java-enabled.

Figure 2 on page 6 shows three clocks. The applet was written by Nizze
and downloaded from the Web site of the Computer Science Department of
the Linköping University, Sweden. To define and set the clock you have to
hand over to the applet parameters. This is done with the <PARAM> tag.
Here is an example:

<applet code=″Clock.class″ width=200 height=200>
<param name=num_lines value=3>
<param name=hour_len value=60>
<param name=minute_len value=75>
<param name=second_len value=95>
<param name=hour_col value=ff0000 >
<param name=minute_col value=00ff00>
<param name=second_col value=0000ff>
<param name=border_col value=00ffff>
<param name=background_col value=cccc22>
<param name=timezone value=1>
<p>
You do not see the clock because this browser is not Java-enabled!
</applet>

An introduction to Java can be found in Chapter 5, “Java Overview” on
page 41.

More about HTML

For detailed information about HTML refer to publications widely
available in bookstores.

40 Internet Application Development with MQSeries and Java

Chapter 5. Java Overview

This chapter is a brief introduction into Java and is intended for those
readers who have no experience with this enveloping programming
language.

5.1 Some Basics about Java

The following shows what Java is and why you should learn Java or use
Java with your browser:

• Java is a programming language, developed by Sun Microsystems.

• Java is an object-oriented programming language.

• Java was modeled after Smalltalk and C++.

• Java is easier than C++.

• Java is platform-independent.

• Java is operating system-independent.

• Java is an interpreter language.

• Java is a secure language.

• Java is distributed.

• Java is robust.

• Java is the ideal programming language for Internet applications.

5.1.1 Java Is Platform-Independent
You can write Java programs with an editor of your choice. The source
code is plain ASCII code. This source code you can transfer to any system
that can read ASCII code. Then you can compile this code using the Java
compiler for that system. The compiler generates Java byte code. The byte
code again can be transferred to any Java-enabled operating system to run
it, or if it is an applet, to run it within a Java-enabled browser.

Figure 26 on page 42 shows how Java and C programs are compiled and
distributed. It elucidates that the byte code generated by any Java compiler
will run on any machine that supports Java.

 Copyright IBM Corp. 1997 41

Figure 26. Difference between C And Java Compiler

5.1.2 Java Is Distributed
Java is inherently distributed. The Java class libraries contain a lot of
routines for coping with TCP/IP protocols such as FTP and HTTP. Java
programs can access URLs as easily as a file system.

42 Internet Application Development with MQSeries and Java

In our case, writing an applet using the MQSeries client for Java. The user
can download the Java byte code of our program from the Internet and run
it on his or her own system. That means that anyone with access to your
Web server can load and run your applet with no prior installation needed
on his or her machine. When an update to the program is required, you
simply update the applet on your Web server and the user automatically
receives the latest version the next time he or she accesses the applet.
This reduces cost for program service and updates significantly.

5.1.3 Java Is Secure
Java is intended to run in networked/distributed environments, and a lot of
emphasis has been placed on security. Java programs cannot overrun their
run-time stack, cannot corrupt memory outside of their process space, and
when downloaded via the Internet, cannot even read or write local files. So
Java is the ideal language for the upcoming network computer.

5.1.4 Java Is Robust
Java puts a lot of emphasis on early checking for possible problems,
dynamic (run-time) checking, and the elimination of situations that are error
prone. Java uses a concept of references that eliminates the possibility of
overwriting memory and corrupting data.

The following features are what make it robust:

• Java eliminates pointer manipulation, so that the memory usage is
encapsulated in classes specifically built for that purpose.

• Java maintains run-time integrity by ensuring that distribution and
dynamic linking have not introduced errors into the code (in addition to
type checking at compile time). The interpreter ensures that the byte
code has not tempered with and that transmission errors are not
modifying the code.

• Java eliminates the common problems of out-of-bounds array access
at tempts in C and C++. Java always catches accesses to invalid array
elements. Some are caught at compile time, others at runtime when
computing index values.

• Java supports multithreading by providing synchronization modifiers in
the language. At the object level, threaded applications can inherit
classes specifically created for that purpose. The priority of specific
threads can be set by applications to suit specific needs, allowing
unique modes of preemptive multitasking.

Chapter 5. Java Overview 43

5.1.5 Java Is Object-Oriented
Like Smalltalk and C++, Java is an object-oriented programming
language. However, i t is not hybrid l ike C++. Java uses the concepts of
classes and objects, instances, interfaces, methods, single inheritance,
encapsulation and polymorphism. There are many books about
object-oriented technology out in the world, so we are not going to explain
what object-oriented technology means.

With Java you already get a lot of classes for the main functions you need.
So it is easy to start writing your first application or applet. The following
packages are included in Java:

• Language Package (java.lang.class)

This package provides the elementary classes for strings, arrays and
elementary data types.

• Utility Package (java.util.class)

This package includes classes for the support of handling vectors,
stacks, hash tables, encoding and decoding.

• I/O Package (java.io.class)

With this package you get classes for standard input and output, as well
as file I/O.

• Applet Package (java.applet.class)

This package provides support to interact with the browser.

• Abstract Window Toolkit (AWT) Package (java.awt.class)

This package was used mainly by us to build the GUI (graphical user
interface). It provides support to control the visual aspects of your
application or applet. Objects such as buttons, scroll bars, text fields,
lists and fonts are available in this class.

• Network Package (java.net.class)

For communication with other applications, this package provides the
basic support to communicate with peer programs over the network, as
well as standard protocols as TCP, FTP and URL access.

Note: In our applet we use the MQSeries Client for Java classes
instead of this network package.

Remember these features, because in the next section we develop a small
application to become familiar with the real world of Java programming. We
start with an application that we know from other languages, the Hello World
application. We create and analyze the statements in the next section.

44 Internet Application Development with MQSeries and Java

5.2 Applications and Applets

You can create two types of programs with Java: an application and an
applet. The main difference between them is the way the program is run.

A Java application is a regular program like a C or C++ program with a
main statement. However, unlike C or C++, a Java application requires an
interpreter. OS/2 Warp Version 4.0 includes a Java interpreter called
JAVA.EXE (or JAVAPM.EXE for programs that use the AWT classes).

A Java applet is a more restricted program. Because an applet is intended
to be delivered over the Internet, it is small and does not have access to all
the functions available to regular programs. This restriction gives a Java
applet the security level required to avoid intentional data corruption and
malicious programming, such as viruses.

A Java applet is usually run by a Java-enabled browser, such as Netscape
Navigator Version 2.02 or Microsoft Internet Explorer Version 3.0.

OS/2 Warp Version 4.0 includes an applet viewer (APPLET.EXE) that allows
you to run a Java applet without a Java-enabled browser. This is very
helpful when you are testing an applet. You will see this later, when we
write an applet.

Once loaded, the program runs inside a Java virtual machine. The virtual
machine is a controlled environment where the Java byte code is
interpreted and translated into machine language.

5.3 A First Try with Java

In this section we create a small Java application and a small applet. For
both application and applet, we at first create a directory structure, that
holds our examples. After completing them your directory (folder) should
look like this.

Chapter 5. Java Overview 45

Let us create the application step by step.

First create a directory to store your HTML files and your Java applet and
application files.

[C:\myjava]md myjava
[C:\myjava]cd myjava

Ensure that the name of the directory is in the CLASSPATH environment
variable in the CONFIG.SYS:

SET CLASSPATH=C:\NETSCAPE\njclass.zip;C:\JAVAOS2\lib\jempcl10.zip;c:\myjava;.\.;

Now using your favorite editor, type the source code of your first Java
application.

5.3.1 The Hello World Application
The following code demonstrates a simple Java application. The file
extension of the source code is always .java, such as Hello.java.

class Hello {
public static void main (String args[]) {

System.out.println(″Hello World!″) ;
System.out.println(″Welcome to MQSeries client for Java.″)

}
}

Figure 27. A Simple Java Application

Now let us analyze the source code of Hello.java:

• The first statement, class Hello, declares a Java class called Hello. The
outer curly braces, { and }, define the scope of the code that belongs to
the Hello class.

• The second line defines a method. In this example, several Java
keywords are used to define it:

− public indicates that this method can be invoked from any other
class.

− static specifies that this method applies to the class globally,
instead of at the instance level.

− void indicates that this method does not return any value.

− main makes this program an application. It tells the Java interpreter
to call this method when the program is loaded.

− The next two lines print the text written between the double quotes.
Each line invokes the println method of the PrintStream class. The

46 Internet Application Development with MQSeries and Java

PrintStream class is instantiated as out of the class named System.
The System class is instantiated as System.

Note: All Java statements end with a semicolon.

Compile the application with the Java compiler:

[C:\myjava]javac Hello.java

The compiler creates the file Hello.class. To run the application invoke the
Java interpreter:

[C:\myjava]java Hello

Note: The interpreter does not need the extension class to find the
application. As result you will see the following lines in your window:

� �[C:\myjava]javac Hello.java

[C:\myjava]java Hello
Hello World!
Welcome to MQSeries client for Java.

[C:\myjava]� �

5.3.2 The Hello World Applet
An applet is always called from within an HTML file. Therefore, we have to
create two files:

 1. The Java program HelloWorld.java

 2. The HTML file HelloWorld.html

5.3.2.1 Writing a Java Applet
This is the applet HelloWorld.java:

import java.awt.Graphics;
public class HelloWorld extends java.applet.Applet {

public void init () {
resize (300,200);

}
public void paint (Graphics g) {

g.drawRect(0,0,size().width - 1, size().height - 1);
g.drawString(″Hello World!″, 25, 25);
g.drawString(″Welcome to MQSeries client for Java.″,25,50);

}
}

Figure 28. A Simple Java Applet

Chapter 5. Java Overview 47

Now let us analyze the source code of HelloWorld.java.

• import java.awt.Graphics;

The first line imports the java.awt package that contains the graphics
classes. You need them when you want to draw something on the
screen. Packages are the means by which several different Java
classes can be stored together. java.awt refers to the Abstract Window
Toolkit (awt) package.

• public class HelloWorld extends java.applet.Applet

The second line declares the public class HelloWorld as an applet. The
word main is absent from this statement. The parameter extends
indicates that the class inherits from the java.applet.Applet class. Java
allows single inheritance.

• public void init()

This is the initialization method. This is the first called method of an
instance of a class. Here you could initialize variables. Be aware that if
this class is inherited by another class, this method can be overridden in
that class and, therefore, is never called.

• resize(300, 200);

With this line you define the size of the applet in pixels.

Note: This value has no effect inside a browser, only in the applet
viewer.

• public void paint(Graphics g)

This second method is called by the AWT when the applet needs to be
drawn or redrawn. In our example, we write (draw) two character
strings and a box around them. To do that we use two drawing methods
of the graphics class.

• g.drawRect(0,0,size().width - 1, size().height - 1);

The first statement in the paint method draws a rectangle just inside the
applet. drawRect has four parameters, the coordinates for the top left
corner (0,0), and the width and height of the rectangle, all values in
pixels. Width and height depend on the size of the applet.

• g.drawString(″Hello World!″, 25, 25);
g.drawString(″Welcome to MQSeries client for Java.″,25,50);

The two drawString methods cause the text between the double quotes
to be displayed. The first parameter following the text is the left side of
the text, the second is the baseline for the string.

Note: g is an instance of the graphics class.

48 Internet Application Development with MQSeries and Java

5.3.2.2 Compiling an Applet
Compile the applet with the Java compiler:

[C:\myjava]javac HelloWorld.java

The compiler creates the file HelloWorld.class.

If compilation fails, make sure you typed in and named the program exactly
as shown above. One of the most common mistakes in the beginning is to
forget a semicolon on the end of a statement or mismatch within the pair of
{ } .

5.3.2.3 Writing an HTML File that Calls an Applet
Applets are always called from an HTML file. The following file,
HelloWorld.html, calls the HelloWorld applet.

<HTML>
<HEAD><TITLE>A Simple Program</TITLE>
</HEAD>
<BODY>
Here is the output of my program:
<APPLET CODE=″HelloWorld.class″ WIDTH=300 HEIGHT=200>
</APPLET>
</BODY>
</HTML>

Figure 29. HTML File that Calls an Applet

The file HelloWorld.html in Figure 29 calls the applet ″HelloWorld.class″ with
this statement:

<applet code=″HelloWorld.class″ width=150 height=50>

The keywords mean:

applet Is the tag that calls a Java applet.

code Defines the full name of the Java applet.

width Defines the width of the applet window.

height Defines the height of the applet window.

The other HTML keywords define the rest of the page. They are described
in more detail in Chapter 4, “HTML Overview” on page 27.

Chapter 5. Java Overview 49

5.3.2.4 Executing an Applet
You can run the applet two ways:

• From an applet viewer.

• From a Java-enabled browser.

In either case you load the HTML file first and let it display the applet. If you
use the applet viewer, you will see only the applet and not the other
contents of the HTML file. To view the applet with the applet viewer enter
on the command line:

[C:]applet \myjava\HelloWorld.html
-- or --
[C:\myjava]applet HelloWorld.java

Note: In some operating systems the name of the appletviewer EXE is
applet, in others appletviewer.

Once you have successfully completed all the above steps, you should see
the applet in your window:

 Important

Do not invoke the applet viewer from the HTML directory if you might
want to reload the applet. Because of the way the class loader works,
an applet can′ t be reloaded (for example, after you make changes to its
code) when you invoke the applet viewer from the directory that contains
the applet′s compiled code.

50 Internet Application Development with MQSeries and Java

To view the applet with a browser type the file name and its full path:

file:///c:/myjava/HelloWorld.html

The Netscape Navigator displays the applet as shown on page 51. Note that
the applet appears to the right of the text. To draw the applet below the text
insert a <p> tag before the <APPLET> tag in the HTML fi le in Figure 29
on page 49.

5.3.2.5 You Did It
This should only be the start to your next and more complex and powerful
applet.

In this redbook we don′ t describe the Java language in more detail, because
there are so many good books available.

If you are familiar with programming in C, you should have a look at the
book Java in a Nutshell by David Flanagan (ISBN 1-56592-183-6).

But if you are a beginner, you can try the book Teach Yourself Java in 21
Days by Laura Lemay and Charles L.Perkins (ISBN 1-57521-030-4).

Chapter 5. Java Overview 51

52 Internet Application Development with MQSeries and Java

Chapter 6. MQSeries Overview

MQSeries is IBM′s award-winning middleware for commercial messaging
and queuing. It runs on a variety of platforms. The MQSeries products
enable programs to communicate with each other across a network of
unlike components, such as processors, subsystems, operating systems and
communication protocols. MQSeries programs use a consistent application
program interface (API) across all platforms.

Figure 30. MQSeries at Runtime

Figure 30 shows the parts of an MQSeries application at runtime. Programs
use MQSeries API calls, that is the message queue interface (MQI), to
communicate with a queue manager (MQM), the run-time program of
MQSeries. For the queue manager to do its work, it refers to objects, such
as queues and channels. The queue manager itself is an object as well.

The following sections provide a brief overview of MQSeries.

 Copyright IBM Corp. 1997 53

6.1 What Is Messaging and Queuing?

Messaging means that programs communicate with each other by sending
data in messages and not by calling each other directly.

Queuing means that programs communicate through queues. Programs
communicating through queues need not be executed concurrently.

With asynchronous messaging, the sending program proceeds with its own
processing without waiting for a reply to its message. In contrast,
synchronous messaging waits for the reply before it resumes processing.

Figure 31. Message Queuing: Principle

MQSeries is used in a client/server or distributed environment. Programs
belonging to an application can run in one workstation or in different
machines on different platforms.

 Attention

Message queuing is a method of program-to-program communication.
Programs within an application communicate by writing and retrieving
application-specific data (messages) to/from queues, without having a
private, dedicated, logical connection to link them.

6.1.1 Messages
A message consists of two parts: data that is sent from one program to
another and a message descriptor. The message descriptor identifies the
message (message ID) and contains control information, also called
attributes, such as message type, expery time, correlation ID, priority, and
the name of the queue for the reply.

54 Internet Application Development with MQSeries and Java

MQSeries knows four types of messages:

Datagram A message containing information for which no response is
expected.

Request A message for which a reply is requested.

Reply A reply to a request message.

Report A message that describes an event such as the occurrence of an
error.

There are persistent and non-persistent messages. Persistent messages are
written to logs on a hard drive and survive system failures. Non-persistent
messages cannot be recovered after a system restart.

6.1.2 Queue Manager
The heart of MQSeries is its run-time program, the queue manager (MQM).
Its job is to manage queues of messages. Application programs invoke
functions of the queue manager by issuing API calls. For example, the
MQPUT API puts a message on a queue to be read by another program
using the MQGET API. This scenario is shown in Figure 31 on page 54.

A program may send messages to another program that runs in the same
machine as the queue manager, or to a program that runs in a remote
system, such as a server or a host. The remote system has its own queue
manager with its own queues.

Application programmers do not need to know where the program runs they
send messages to. They put their message on a queue and let the queue
manager worry about the destination machine and how to get it there.

For the queue manager to do its work, it refers to objects that are defined by
an administrator, usually when the queue manager is created or when a
new application is added. The objects are described in the next section.

The functions of a queue manager can be defined as follows:

• It manages queues of messages for application programs.

• It provides an application programming interface, the Message Queue
Interface (MQI).

Note: The Networking Blueprint identifies three communication styles:

− Common Programming Interface - Communications (CPI-C)

− Remote Procedure Call (RPC)

− Message Queue Interface (MQI)

Chapter 6. MQSeries Overview 55

• It uses networking facilities to transfer messages to another queue
manager when necessary.

• It provides additional functions that allow administrators to create and
delete queues, alter the properties of existing queues, and control the
operation of the queue manager. These functions are invoked through
the utility RUNMQSC, which stands for run MQSeries commands.

6.1.3 Queue Manager Objects
The queue manager itself is an object. Usually, an administrator creates it
with the command crtmqm, either from the command line or from an icon.
You can create several queue managers in one system. One of them
should be the default queue manager. The following command creates the
default queue manager JAVAMQM:

crtmqm /q JAVAMQM

The /q makes it the default MQM. The name is case-sensitive. To start the
default queue manager issue the command:

strmqm

Before the queue manager can do any messaging and queueing the
administrator has to define objects, such as queues. There are some
default definitions for objects every queue manager needs. They are
defined in a file provided with MQSeries. To define these default objects
use the utility RUNMQSC, also provided with the product. The command to
create these objects is:

runmqsc < c:\mqm\mqsc\amqscoma.tst > out.lst

The queue manager must be running to create the objects defined in the file
amqscoma.tst. Check the last lines of the output file, here out.lst, for any
errors.

The queue manager can own objects of the following types:

• Queues

• Process definitions

• Channels

The objects are common across different MQSeries platforms. There are
other objects that apply to MVS systems only, such as the buffer pool, PSID,
and the storage class.

6.1.3.1 Queues
Message queues are used to store messages sent by a programs. There
are local queues that are owned by the local queue manager, and remote

56 Internet Application Development with MQSeries and Java

queues that belong to a different queue manager. Queues are described in
more detail in 6.3, “Message Queues” on page 59.

6.1.3.2 Channels
A channel is a logical communication link. In MQSeries, there are two
different kinds of channels:

• Message channel

A message channel connects two queue managers via message channel
agents (MQA). Such a channel is unidirectional. It comprises two
message channel agents (MCA), a sender and a receiver, and a
communication protocol. An MCA is a program that transfers messages
from a transmission queue to a communication link or vice versa. For
bidirectional messaging you have to define two channels, a sender
channel and a receiver channel.

• MQI channel

A Message Queue Interface (MQI) channel connects an MQI client to a
queue manager in a server machine. MQI clients don′ t have a queue
manager of their own. An MQI channel is bidirectional.

Figure 36 on page 62 shows the use of both channel types. For more
detailed information refer to the Distributed Queuing Guide.

6.1.3.3 Process Definitions
A process definition object defines an application to a queue manager. For
example, it contains the name of the program to trigger when a message
arrives.

6.2 Manipulating MQM Objects

MQSeries provides the utility RUNMQSC to create and delete queue
manager objects and to manipulate them. The queue manager must be
running when you use the utility. RUNMQSC works in two ways:

• You can type the commands.

• You can create a file containing a list of commands and use this list as
input.

The commands in Figure 32 on page 58 start the default queue manager
and create a local queue for it.

Chapter 6. MQSeries Overview 57

� �[C:\]strmqm
MQSeries queue manager running.

[C:\]runmqsc
33H2205,5622-908 (C) Copyright IBM Corp. 1994,1995. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

define qlocal(′ QUEUE1′) replace descr (′ test queue′)
1 : define qlocal(′ QUEUE1′) replace descr (′ test queue′)

AMQ8006: MQSeries queue created.
Ctrl + C <--- ends RUNMQSC
1 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

[C:\]� �
Figure 32. RUNMQSC - Interactive

Another way to create MQSeries objects is by using an input file instead of
typing the commands.

� �[C:\]strmqm
MQSeries queue manager running.

[C:\]runmqsc < mycoma.tst > a.a

[C:\]� �
Figure 33. RUNMQSC - Using Command File

The input file contains the following lines. The + indicates that the
command continues on the next line.

**/
* File: MYCOMA.TST */
**/

DEFINE QLOCAL(′ QUEUE1′) REPLACE +
DESCR(′ Test Queue′)

Figure 34. RUNMQSC - Input File

The output can appear in the window or can be redirected to a file by
specifying a < followed by a file name. The output for the above file would
look like this:

58 Internet Application Development with MQSeries and Java

: 622-908 (C) Copyright IBM Corp. 1994,1995. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

: ***
: * File: MYCOMA.TST
: ***
:

1 : DEFINE QLOCAL(′ QUEUE1′) REPLACE +
: DESCR(′ Test Queue′)

AMQ8006: MQSeries queue created.
:

1 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Figure 35. RUNMQSC - Output File

6.3 Message Queues

Queues are defined as objects belonging to a queue manager. MQSeries
knows a number of different queue types, each with a specific purpose.

6.3.1 Local Queue
A queue is local if it is owned by the queue manager to which the
application program is connected. They are used to store messages for
programs that use the same queue manager. For example, each of
program A and program B has a queue for incoming messages and another
queue for outgoing messages. Since the queue manager serves both
programs, all four queues are local.

Note: Both programs do not have to run in the same workstation. Client
workstations usually use a queue manager in a server machine.

6.3.2 Remote Queue
A queue is remote if it is owned by a different queue manager. It is the
local definition of a remote queue.

Applications do not need to know the location of the remote queue.
Programs write messages to queues. The local queue manager is
responsible for forwarding the messages to the remote queue manager.

Note: A program cannot read messages from a remote queue.

Chapter 6. MQSeries Overview 59

6.3.3 Transmission Queue
A remote queue is associated with a transmission queue. Transmission
queues are used as an intermediate step when sending messages to
remote queues.

Typically, there is only one transmission queue for each remote queue
manager. All messages written to queues owned by a remote queue
manager are actually written to the transmission queue for this remote
queue manager. The messages will then be read from the transmission
queue and sent to the remote queue manager.

Transmission queues are transparent to the application. They are used
internally by the queue manager.

Note: When a program opens a remote queue, the attributes of the queue
are obtained from the transmission queue. Therefore, the results of a
program writing messages to a queue will be affected by the transmission
queue characteristics.

6.3.4 Dynamic Queue
Such a queue is defined on the fly when the application needs it. They may
be retained by the queue manager or automatically deleted when the
application program ends.

Dynamic queues are local queues. They are often used in conversational
applications, to store intermediate results. Dynamic queues can be:

• Temporary queues that do not survive queue manager restarts

• Permanent queues that do survive queue manager restarts

6.3.5 Model Queue
A model queue is not a real queue. It is a collection of attributes that can
be used when a dynamic queue is created.

6.3.6 Alias Queue
Alias queues are not real queues but definitions. They are used to assign
different names to the same physical queue. This allows multiple programs
to work with the same queue, accessing it under different names and with
different definitions.

6.3.7 Initiation Queue
An initiation queue is a local queue to which the queue manager writes a
trigger message when certain conditions are met on another local queue, for
example, when a message is put into an empty message queue. Trigger

60 Internet Application Development with MQSeries and Java

messages are read by the trigger monitor, an MQSeries application. The
trigger monitor then starts the application that will process the message.

Note: Applications do not need to be aware of initiation queues, but the
triggering mechanism implemented through them is a powerful tool to
design and write asynchronous applications.

6.3.8 Reply-To Queue
A request message must contain the name of the queue into that the
responding program must to put the reply message.

6.3.9 Dead-Letter Queue
A queue manager must be able to handle situations when it cannot deliver a
message. Here are some examples:

• The destination queue is full.

• The destination queue does not exist.

• Message puts have been inhibited on the destination queue.

• The sender is not authorized to use the destination queue.

• The message is too large.

• The message contains a duplicate message sequence number.

These messages are written by the queue manager to a dead-letter queue.
A dead-letter queue is defined when the queue manager is created. It will
be used as a repository for all messages that cannot be delivered.

6.4 Clients and Servers

Before you install MQSeries you have to decide if the workstation shall
become an MQ client or an MQ server. There are two kinds of clients:

• Slim client

• Fat client

Fat clients have a local queue manager; slim clients don ′ t.

When a slim client cannot connect to its server it cannot work, because
queue manager and queues for a slim client reside in the server. Usually,
an MQSeries client is a slim client. Several of these clients share MQSeries
objects, and the queue manager is one of them, in the server they are
attached to.

In some cases it may be advantageous to have queues in the end user′s
workstation, especially in a mobile environment. That allows you to run

Chapter 6. MQSeries Overview 61

your application when a connection between client and server does
(temporarily) not exist.

The difference between an end user′s workstation that is a client and one
that has a queue manager is the way messages are sent.

Figure 36. MQSeries Channels

Figure 36 shows the use of MQI and message channels.

• MQI channels connect clients to a queue manager in a server machine.

• A message channel connects a queue manager to another queue
manager in another system.

Note: MQI channels are faster than message channels.

The following sections describe what you have to do to define and test the
connection between an MQ client and an MQ server. A more detailed
description is in the publication MQSeries Clients.

 Note

Since the MQSeries client for Java runs in client machines, we need to
define MQI channels between clients and server. In this publication we
do not provide examples of setting up message channels.

6.4.1 How to Define a Client/Server Connection
The following describes MQM objects and other definitions needed for the
Java application developed throughout this publication.

To define the connection, you have to know the transmission protocol and
the addresses of the systems. We use TCP/IP; the addresses are:

• 9.24.104.206 for the server.

• 9.24.104.116 for the client.

62 Internet Application Development with MQSeries and Java

Figure 37. Client/Server Connection

On the server: Define the queues that the application needs and a channel
of the type server connection. The queue manager definitions are in the file
javacoma.tst, shown in Figure 38.

**/
* File: JAVACOMA.TST */
**/

DEFINE QLOCAL(′ JAVAQ1′) REPLACE +
DESCR(′ Queue for Java Application′)

DEFINE CHANNEL(′ JAVACH1′) CHLTYPE(SVRCONN) REPLACE +
TRPTYPE(TCP) MCAUSER(′ ′)

Figure 38. Definitions for Server Connection

We define a queue for the application to put messages in and an MQI
channel of the type server connection. Create the objects by issuing the
command:

runmqsc < javacoma.tst > a.a

Chapter 6. MQSeries Overview 63

On the client: Define an environment variable for the MQSeries client that
defines the connection on the client side. Set the variable with the following
command or place the command in the CONFIG.SYS.

set MQSERVER=JAVACH1/TCP/9.24.104.206(1414)

Notes:

 1. MQSERVER is the name of the environment variable.

 2. JAVACH1 is the name of the channel to be used for communication
between client and server. The channel must be defined in the server.

 3. TCP denotes that TCP/IP is to be used to connect to the machine with
the address following the parameter.

 4. (1414) is the default port number for MQSeries. You may omit this
parameter if the listener on the server side uses this default, too.

6.4.2 How to Start a Client/Server Connection
Before you can start the application in the client you have to start a program
that listens to the communication link between client and server. MQSeries
provides a program that does just that. You start it with the following
command:

start runmqlsr /t tcp /m JAVAMQM /p 1414

Notes:

 1. start creates a new window for the listener.

 2. runmqlsr is the name of the listener.

 3. /t tcp defines that there is a TCP/IP connection between client and
server.

 4. /m JAVAMQM specifies the name of the queue manager the client
connects to. If omitted, the default queue manager is used.

 5. /p 1414 defines the TCP/IP port number. 1414 is the default assigned to
MQSeries applications hence, you may omit this parameter.

The server is now ready to process MQI calls from the application running
in the client.

6.4.3 How to Test a Client/Server Connection
With the steps described above communication between client and server is
established. You can test the connection using programs provided with
MQSeries. They are in the directory:

c:\mqm\tools\c\samples\bin

64 Internet Application Development with MQSeries and Java

• AMQSPUTC puts messages on a queue.

• AMQSGETC gets messages from a queue.

On the client machine, type the commands shown in bold in Figure 39.

• After AMQSPUTC is started type a few messages and then press Enter
twice to end it.

• AMQSGETC times out after a few seconds.

[C:\mqm\tools\c\samples\bin]amqsputc JAVAQ1
Sample AMQSPUT0 start
target queue is JAVAQ1
111111
222222
333333

<--- 2 x Enter ends AMQSPUTC
Sample AMQSPUT0 end

[C:\mqm\tools\c\samples\bin]amqsgetc JAVAQ1
Sample AMQSGET0 start
message <111111>
message <222222>
message <333333>
no more messages <--- Wait for time out
Sample AMQSGET0 end

[C:\mqm\tools\c\samples\bin]

Figure 39. Testing Client/Server Connection

On the server machine, you see the following listener window after
completion of the two programs:

� �
RUNMQLSR.EXE

11/19/96 14:54:10 Channel program started
11/19/96 14:54:28 Channel program ended normally
11/19/96 14:55:20 Channel program started
11/19/96 14:55:49 Channel program ended normally� �

Figure 40. Listener Window (RUNMQLSR)

Chapter 6. MQSeries Overview 65

6.4.4 How to Test a Client/Server Connection with MQSeries for Java
MQSeries for Java provides a test program you may use to check if the
client/server connection works correctly. In a Java-enabled browser, we
used the Netscape Navigator:

• To connect to the AIX machine mercury:

http://mercury.itos.ral.ibm.com/mqjavac.html

• To connect to the OS/2 server mqjava:

http://mqjava.itos.ral.ibm.com/mqjavac

The HTML file displays the applet shown below:

Figure 41. Verify Installation Program (IVP)

To verify your MQSeries Client for Java installation, proceed as follows:

 1. In the Hostname entry field, enter the TCP/IP hostname of the machine
on which your MQSeries Queue Manager is running. If you downloaded

66 Internet Application Development with MQSeries and Java

this page from a Web server, you may find that the Hostname field has
already been filled in for you.

Note: When you download an applet from a Web server, you can only
communicate with an MQSeries Queue Manager running on the same
machine as the Web server.

 2. In the Port entry field, enter the port on which your MQSeries Queue
Manager listens for connection requests. (The MQSeries default is
1414.)

 3. In the queue manager entry field, enter the name of the queue manager
to which you wish to connect. If you leave this field blank, the client will
connect to the default queue manager of the target machine.

Figure 42. Verify Installation Results

Chapter 6. MQSeries Overview 67

 4. In the channel entry field, enter the name of the MQSeries channel that
the client should use when connecting. Remember that channel names
are case-sensitive.

 5. The program uses the SYSTEM.DEFAULT.LOCAL.QUEUE that is created
when you create the default objects for the queue manager using the file
amqscoma.tst.

 6. Click on the Test Connection button. A dialog box appears displaying
the the results of the test. If the test fails for any reason, please take
the corrective action suggested in the results window and try again.

 7. If the window shows the results as shown in Figure 42 on page 67, you
have successfully communicated with your queue manager using the
MQSeries Client for Java.

Refer now to the MQSeries Client for Java User′s Guide for details on
writing your own applications to access MQSeries Queue Managers via
the World Wide Web.

6.4.5 How to Trigger Applications
This section describes how to trigger an application program that runs in
the server machine. Since there are MQI channels of the type server
connection between clients and server, all clients use the queue manager in
the server machine. When a client puts a message on a queue it has to be
read and processed by some program. This program can be started when
the server starts or the queue manager starts it when it is needed, that is
using the MQSeries triggering mechanism.

Scenario:

 1. The client starts a program that puts a message on a queue.

For this function five MQSeries API calls are executed:

• MQCONN connects the queue manager in the server (JAVAMQM).

• MQOPEN opens the message queue (JAVAQ1).

• MQPUT puts the message on the queue.

• MQCLOSE closes the queue (JAVAQ1).

• MQDISC disconnects from the queue manager (JAVAMQM).

The MQSeries client code that runs in the client machine processes the
API calls and routes them to the machine defined in the environment
variable, such as:

set MQSERVER=JAVACH1/TCP/9.24.1104.206

 2. In the server machine, the following queue manager objects are needed:

68 Internet Application Development with MQSeries and Java

• A channel, JAVACH1, of the type server connection.

• A local queue, JAVAQ1, into which the clients put their messages.

• An initiation queue into which the queue manager puts a trigger
message, for example then when a message is put on JAVAQ1.
Here we use the default queue defined in AMQSCOMA.TST.

• A process definition, process.appl1, that contains the name of the
program to be started when the trigger event occurs.

• A queue, JAVAQ2, in which the program puts the reply message.

• Another queue, JAVAQ3, that will contain order completion status
messages.

DEFINE CHANNEL(′ JAVACH1′) CHLTYPE(SVRCONN) REPLACE +
TRPTYPE(TCP) MCAUSER(′ ′)

DEFINE QLOCAL(′ JAVAQ1′) REPLACE +
DESCR(′ Queue for Application′) +

TRIGTYPE(EVERY) +
TRIGGER INITQ (system.default.initiation.queue) +
PROCESS (process.appl1)

DEFINE PROCESS(process.appl1) REPLACE +
DESCR(′ Process for business logic′) +
APPLTYPE (OS2) +
APPLICID(′ c:\mqtest\bl1.exe′)

DEFINE QLOCAL(′ JAVAQ2′) REPLACE +
DESCR(′ Reply queue′)

DEFINE QLOCAL(′ JAVAQ3′) REPLACE +
DESCR(′ Order status queue′)

 3. In the server machine, two programs have to be started:

• The listener runmqlsr /t tcp.

• The trigger monitor runmqtrm.

• On AIX, process amqcrsta is started via inetd for the listener
process.

 4. The listener listens for messages on the channel and puts them on the
queue JAVAQ1.

 5. By default, the MQM puts a trigger message on the trigger queue each
time a message is put on JAVAQ1.

 6. When a message is placed on the trigger queue, the trigger monitor
starts the program defined in the process.

Chapter 6. MQSeries Overview 69

6.5 Message Queuing Interface (MQI)

A program talks directly to its local queue manager. It resides in the same
processor or domain (for clients) as the program itself. The program uses
the Message Queuing Interface (MQI). The MQI is a set of API calls that
request services from the queue manager.

There are eleven APIs. The most important ones are:

MQPUT Put a message on a queue.

MQGET Get a message from a queue.

The other calls are used less frequently:

MQCONN Establish connection with a queue manager.

MQOPEN Open or obtain access to a queue.

MQCLOSE Close a queue.

MQDISC Disconnect from the queue manager

MQPUT1 Open a queue, put a message on it and close the queue.

MQINQ Request information about one of the queue manager′s
objects.

MQSET Change the attributes of a queue.

MQCMIT A syncpoint has been reached. Messages put as part of a unit
of work are made available to other applications. Messages
retrieved as part of a unit of work are deleted.

MQBACK The queue manager has to back out all message puts and gets
that have occurred since the last syncpoint. Messages put as
part of a unit of work are deleted. Messages retrieved as part
of a unit of work are reinstated on the queue.

Example:

The code fragment in Figure 43 on page 71 shows the APIs to put a
message on a queue and get the reply from another queue.

70 Internet Application Development with MQSeries and Java

MQHCONN HCon; // Connection handle
MQHOBJ HObj1; // Object handle for queue 1
MQHOBJ HObj2; // Object handle for queue 2
MQLONG CompCode, Reason; // Return codes
MQLONG options;
...
MQOD od1 = {MQOD_DEFAULT}; // Object descriptor for queue 1
MQOD od2 = {MQOD_DEFAULT}; // Object descriptor for queue 2
MQMD md = {MQMD_DEFAULT}; // Message descriptor
MQPMO pmo = {MQPMO_DEFAULT}; // Put message options
MQGMO gmo = {MQPMO_DEFAULT}; // Get message options
...
// �1� Connect application to a queue manager.
strcpy (QMName,″MYQMGR″) ;
MQCONN (QMName, &HCon, &CompCode, &Reason);

// �2� Open a queue for output
strcpy (od1.ObjectName,″QUEUE1″) ;
MQOPEN (HCon,&od1, MQOO_OUTPUT, &Hobj1, &CompCode, &Reason);

// �3� Put a message on the queue
MQPUT (HCon, Hobj1, &md, &pmo, 100, &buffer, &CompCode, &Reason);

// �4� Close the output queue
MQCLOSE (HCon, &Hobj1, MQCO_NONE, &CompCode, &Reason);

// �5� Open input queue
options = MQOO_INPUT_AS_Q_DEF;
strcpy (od2.ObjectName, ″QUEUE2″) ;
MQOPEN (HCon, &od2, options, &Hobj2, &CompCode, &Reason);

// �6� Get message
gmo.Options = MQGMO_NO_WAIT;
buflen = sizeof(buffer - 1);
memcpy (md.MsgId, MQMI_NONE, sizeof(md.MsgId);
memset (md.CorrelId, 0x00, sizeof(MQBYTE24));
MQGET (HCon, Hobj2, &md, &gmo, buflen, buffer, 100, &CompCode, &Reason);

// �7� Close the input queue
options = 0;
MQCLOSE (HCon, &Hobj2,options, &CompCode, &Reason);

// �8� Disconnect from queue manager
MQDISC (HCon, &CompCode, &Reason);

Figure 43. Fragments of an MQSeries Program

Note: The fields CompCode and Reason will contain completion codes for
the APIs. You find them in the Application Programming Reference.

Chapter 6. MQSeries Overview 71

�1� This statement connects the application to the queue manager with the
name MYQMGR. If the parameter QMName does not contain a name,
then the default queue manager is used. HCon receives the handle to
the queue manager. This handle must be used in all subsequent APIs.

�2� To open a queue the queue name must be moved into the object
descriptor that will be used for that queue. This statement opens
QUEUE1 for output only (open option MQOO_OUTPUT). Returned are
the handle to the queue and values in the object descriptor. The handle
Hobj1 must be specified in the MQPUT.

�3� MQPUT places the message assembled in a buffer on a queue.
Parameters for MQPUT are:

• The handle of the queue manager (from MQCONN).
• The handle of the queue (from MQOPEN).
• The message descriptor.
• A structure containing options for the put (refer to the Application

Programming Reference).
• The message length.
• The buffer containing the data.

�4� This statement closes the output queue. Since the queue is predefined
no close processing takes place (MQOC_NONE).

�5� This statement opens QUEUE2 for input only using the queue-defined
defaults. You could also open a queue for browsing, meaning that the
message will not be removed.

�6� For the get the nowait option is used. The MQGET needs the length of
the buffer as input parameter. Since there is no message ID and
correlation ID specified, the first message from the queue is read.

�7� This statement closes the input queue.

�8� The application disconnects from the queue manager.

Communication between programs is time-independent. The sender can
continue processing without waiting for a reply. The receiving program
does not even have to run. MQSeries holds the messages until it is ready
to process them.

MQSeries applications are message-driven. The arrival of a message
triggers an event. Just like clicking on a push button in a GUI invokes some
procedure, a message starts a program that processes the message data.

72 Internet Application Development with MQSeries and Java

Chapter 7. MQSeries Client for Java

This chapter tells you about IBM MQSeries Client for Java. MQSeries Client
for Java provides a set of Java class libraries that permit Java applets on a
Web browser, or stand-alone Java applets, to access MQSeries applications.
It describes the capabilities of and the advantages MQSeries Client for Java
offers to you and your organization.

Documentation for the MQSeries Client for Java is available in in this book
and in HTML format. The HTML files accompany the Support Pack version
of the product. The identification number (PID) is 5639-C34.

This product has been tested on the following platforms:

• MVS
• AIX
• OS/2
• Windows NT

7.1 Who Should Read This

This chapter is for professionals in industry, finance, government, education,
or service organizations who want to explore the benefits that MQSeries
Client for Java can bring to their business.

For managers and planners it provides a product overview to help in
evaluating the advantages of MQSeries Client for Java and information on
how to obtain it. For administrators and support personnel the document
provides detailed information on the installation and everyday use of
MQSeries Client for Java including problem diagnosis.

Information about programming applications to use MQSeries Client for
Java can be found in Chapter 8, “MQSeries Client for Java Programmer ′s
Guide” on page 83.

7.2 Overview of MQSeries Client for Java

MQSeries Client for Java provides support to enable Java applets and
programs to use MQSeries applications. Some scenarios for its use are in
Chapter 1, “MQSeries Client for Java Positioning” on page 1.

MQSeries Client for Java is an MQSeries client written in the Java language
for communicating via TCP/IP. It enables Web browsers and Java applets to
issue calls and queries to MQSeries over the Internet. This gives clients

 Copyright IBM Corp. 1997 73

access to applications running on mainframes and a variety of servers. No
other MQSeries code is needed in the client machine.

Transaction Processing

With MQSeries Client for Java the user of an Internet terminal can
become a true participant in transactions, rather than just a giver and
receiver of information.

The MQSeries Client for Java enables application developers to exploit the
power of the Java programming language when writing applets and
applications. Applets and applications can run on any platform that
supports the Java run-time environment.

 Benefits

• MQSeries Client for Java reduces development time for
multiplatform MQSeries applications.

• Future enhancements to applets are automatically picked up by end
users as the applet code is downloaded.

The client can be installed either on your local hard disk or on a Web
server. Installation on a Web server has the advantage of allowing you to
download and run MQSeries Client applications on machines that do not
have the MQSeries Client for Java installed locally.

Wherever you choose to install the client, it can be run in three different
modes:

• From within any Java-enabled Web browser

When running in this mode, the locations of the MQ Queue Manager that
can be accessed may be constrained by the security restrictions of the
browser being used.

This mode permits Java applets on the browser to access MQSeries
queues on a server machine. The MQSeries client for Java code must
be installed on the MQSeries server. No MQSeries code has to be
installed on the client machines as the client code is automatically
downloaded when the applet is executed.

The MQSeries queue manager to which the client connects must be
accessible from within the Web browser, which usually means that it
must run on the same machine as the Web server.

74 Internet Application Development with MQSeries and Java

Figure 44. Possible Solutions

Chapter 7. MQSeries Client for Java 75

Figure 45. Another View

• Using an applet viewer

To use this method you must have the Java Developer′s Kit (JDK)
installed on the client machine.

For using an applet viewer to view a URL, the MQSeries Client for Java
is installed on the server. The queue manager restrictions are the same
as for the Java-enabled browser above.

For using the applet viewer to view a local file, the MQSeries Client for
Java code must be installed on the client machine, together with a
suitable Java or applet viewer program. In this case, the queue
manager to which the client connects can be installed on any machine
that is accessible via TCP/IP.

• As a stand-alone Java program

To use this method you must have the Java Developer′s Kit (JDK)
installed on the client machine.

76 Internet Application Development with MQSeries and Java

7.3 Running the Installation Verification Program

A simple installation verification applet is provided as part of the MQSeries
Client for Java in a file called mqjavac.HTML.

The applet connects to a given queue manager, exercises all the MQ calls,
and produces simple diagnostic messages in the event of any failures.

The applet can be run from any Java-enabled browser, or with an applet
viewer. The method of running the applet depends on where your MQSeries
Client for Java is installed, and the method you use to run it. Procedures
are described for running with Netscape Navigator, Microsoft Internet
Explorer, and an applet viewer in each of the installation environments.

The MQ Queue Manager locations that you can access are also dependent
on where your MQSeries Client for Java is installed, and the method you
use to run it. The following table summarizes the Queue Manager locations
that can be accessed from each environment:

Your queue manager will need to be configured to accept incoming
connection requests from the MQSeries clients. You need to:

• Define a server connection channel using the following procedure:

 1. Start your queue manager using the strmqm command.

 2. Type runmqsc to start the runmqsc program.

 3. Define a channel by typing the following command:

DEF CHL (′ JAVA.CHANNEL′) CHLTYPE(SVRCONN) +
 TRPTYPE(TCP) MCAUSER(′ ′) +
 DESCRIPTION(′ Sample channel for MQSeries Client for Java′)

• For OS/2 and NT operating systems:

Start a listener program with the following command:

runmqlsr -t tcp [-m QMNAME] -p 1414

Table 1. MQ Queue Manager Location

Browser
Installation Location

Local Disk Web Server

Netscape Navigator any Web server

Microsoft Internet Explorer localhost Web server

appletviewer any any

Chapter 7. MQSeries Client for Java 77

Note: If you are using the default queue manager, the -m flag is not
required.

• For UNIX operating systems:

Configure the inetd daemon, so that the inetd starts the MQ channels.
See MQSeries Clients, GC33-1632 for instructions on how to do this.

Choose the appropriate procedure from the options below. If the applet
does not complete successfully, follow the advice given in the diagnostic
messages and try to run the applet again.

7.3.1 Running from a Local Disk Installation
The following procedures assume that the MQSeries Client for Java is
installed in a directory called MQJavaClient on the C drive.

7.3.1.1 Running from Netscape Navigator
 1. Select File from the menu bar.

 2. Select Open File from the menu.

 3. Use the file dialog to select the file mqjavac.HTML in your installation
directory.

You can also load this file by specifying a URL in the Location field at the
top of the browser window, such as:

file:///C:/MQJavaClient/mqjavac.HTML

Note: The pathname begins with an extra /.

Using either of these methods, you should be able to connect to any queue
manager running on any host to which you have TCP/IP access.

7.3.1.2 Running from Microsoft Internet Explorer
 1. Select File from the menu bar.

 2. Select Open from the menu.

 3. Use the file dialog to select the file mqjavac.HTML in your installation
directory.

You can also load this file by typing in its pathname in the Address field at
the top of the browser window. For example:

C:\MQJavaClient\mqjavac.HTML

Because of security restrictions imposed by the Microsoft Internet Explorer
browser, you will only be able to connect to a queue manager running on

78 Internet Application Development with MQSeries and Java

your local machine, and you must specify the hostname as localhost in the
Hostname entry field of the mqjavac applet.

7.3.1.3 Running from Appletviewer
To use this method you must have the Java Developer′s Kit (JDK) installed
on your machine.

 1. Set your CLASSPATH environment variable to point to your installation
directory and the standard Java class files.

For example, if you have the JDK installed in C:\Java and the MQSeries
Client for Java installed in C:\MQJavaClient, then for DOS-based shells,
set your CLASSPATH as follows:

set CLASSPATH=C:\MQJavaClient;C:\Java\lib\classes.zip

 2. Change to your installation directory.

 3. Type appletviewer mqjavac.HTML.

Note: On some platforms, such as OS/2, the command is applet, and
not appletviewer.

Using this technique you should be able to connect to any queue manager
running on any host to which you have TCP/IP access.

Note that on some platforms you may need to select Properties from the
Applet menu at the top left of your screen, and then set Network Access to
Unrestricted.

7.3.1.4 Running the Text-Only Version
There is also a text-only version of the installation verification program. To
use this you must have the JDK installed on your machine.

 1. Set the CLASSPATH environment variable as described above under
7.3.1.3, “Running from Appletviewer.”

 2. Change to your installation directory.

 3. Type java MQIVP.

Using this technique you should be able to connect to any queue manager
running on any host to which you have TCP/IP access.

7.3.2 Running from a Web Server Installation
The following procedures assume that the MQSeries Client for Java is
installed in a directory called MQJavaClient on the web.server.hostname
Web server.

Chapter 7. MQSeries Client for Java 79

7.3.2.1 Running from Netscape Navigator
 1. Select File from the menu bar.

 2. Select Open Location from the menu.

 3. Enter the following URL in the dialog (or your installations equivalent):

http://web.server.hostname/MQJavaClient/mqjavac.HTML

You can also load this URL by entering it in the Location field at the top of
the browser window.

Because of security restrictions imposed by the Netscape browser, you will
only be able to connect to a queue manager running on the same host as
the Web server.

7.3.2.2 Running from Microsoft Internet Explorer
 1. Select File from the menu bar.

 2. Select Open from the menu.

 3. Enter the following URL in the dialog or your installations equivalent:

http://web.server.hostname/MQJavaClient/mqjavac.HTML

You can also load the URL by entering it in the Address field at the top of
the browser window.

Because of security restrictions imposed by the Microsoft Internet Explorer
browser, you will only be able to connect to a queue manager running on
the same host as the Web server.

7.3.2.3 Running from Appletviewer
To use this method you must have the Java Developer′s Kit (JDK) installed
on the client machine. You do not need to set up an explicit CLASSPATH
environment variable. Enter the command:

appletviewer http://web.server.host/MQJavaClient/mqjavac.HTML

On some platforms the command is applet, and not appletviewer.

Using this technique you should be able to connect to any queue manager
running on any host to which you have TCP/IP access.

Note: On some platforms, you may need to select Properties from the
Applet menu at the top left of your screen, and then set Network Access to
Unrestricted.

80 Internet Application Development with MQSeries and Java

7.4 Using the Verification Applet to Test Your Customer ′s Access

You may want to use the installation verification applet to allow your
customers to verify their access to your queue manager. A set of optional
parameters are included in the file mqjavac.HTML which allows you to
modify the applet to suit your requirements. Each parameter is defined in a
line of HTML, which looks like the following:

<!PARAM name=″xxx″ value=″yyy″>

To specify a parameter value simply remove the initial exclamation mark,
and edit the value as desired. The following parameters can be specified:

hostname Pre-fills the hostname edit box with the supplied value.

port Pre-fills the port number edit box with the supplied value.

channel Pre-fills the channel edit box with the supplied value.

queueManager Pre-fills the queue manager edit box with the supplied
value.

userID Uses the specified user ID when connecting to the queue
manager.

password Uses the specified password when connecting to the queue
manager.

trace Causes the client to write a trace log. Use this option only
at the direction of IBM service.

7.5 Running Your Own Applets

To run your own Java applets, load your file into a Web browser, or use the
appletviewer command as described above, substituting your application
name in place of mqjavac.HTML.

Chapter 7. MQSeries Client for Java 81

82 Internet Application Development with MQSeries and Java

Chapter 8. MQSeries Client for Java Programmer ′s Guide

The programmer ′s guide provides the information required by programmers
who want to write Java applications or applets that include calls to
MQSeries queues. MQSeries Client for Java provides a set of Java class
libraries that permit Java applets on a Web browser, or stand-alone Java
applets, to access MQSeries applications.

The guide includes details of the classes together with advice on how to
write MQSeries Java applications.

8.1 Who Should Read This

This chapter is designed for use by programmers who want to write Java
applications that use the MQSeries Client for Java.

General information about MQSeries Client for Java is not included in this
chapter. For an overview of the product and the advantages it offers to your
organization, together with details of how to run and maintain MQSeries
Client for Java applications, see Chapter 7, “MQSeries Client for Java” on
page 73 and Chapter 1, “MQSeries Client for Java Positioning” on page 1.

8.2 MQSeries Client for Java Support

MQSeries client for Java provides support to enable Java applets and
programs to use MQSeries applications.

The MQSeries Client for Java also enables application developers to exploit
the power of the Java programming language to create applets and
applications that can run on any platform that supports the Java run-time
environment. These factors combine to dramatically reduce the development
time for multiplatform MQSeries applications and future enhancements to
applets are automatically picked up by end users as the applet code is
downloaded.

8.2.1 Java Developer ′s Kit (JDK)
Before you can compile any applets that you write, you need to have access
to the Java Developers Kit (JDK) for your development platform. The JDK
contains all the standard Java classes, variables, constructors, and
interfaces on which the MQSeries Java classes depend, and the tools
required to compile and run the applets on each supported platform.

If you do not have the JDK that you need, obtain it from one of the following
Web sites:

 Copyright IBM Corp. 1997 83

• http://www.hursley.ibm.com/javainfo/hurindex.HTMLl for OS/2, AIX,
Windows 3.1, OS/400, OS/390

• http://java.sun.com/download.HTML for Solaris, Windows 95,
Windows/NT

8.2.2 Java Client Class Library
The MQSeries client for Java is a set of Java classes that enable Java
applets and applications to interact with MQSeries queues without the need
for any other MQSeries code on the client machine.

The Java client contains the following classes:

• MQChannelDefinition

• MQChannelExit

• MQEnvironment

• MQException

• MQGetMessageOptions

• MQManagedObject

• MQMessage

• MQPutMessageOptions

• MQProcess

• MQQueue

• MQQueueManager

The Java client contains the following Java interfaces:

• MQReceiveExit

• MQSecurityExit

• MQSendExit

• MQC

The classes and interfaces are shipped as a Java package called
com.ibm.mq.

See the class hierarchy on page 101.

8.2.3 Writing Programs for the MQSeries Client for Java
The MQSeries Client for Java is similar to the MQSeries C client but has the
following differences:

84 Internet Application Development with MQSeries and Java

• It only supports TCP/IP.

• It does not support connection tables.

• It does not read any environment variables at startup.

• Information that would be stored in a connection definition and in
environment variables, is stored in an instance of a class called
MQEnvironment.

• It does not write a trace log.

• Error and exception conditions are written to a log specified in the
MQEnvironment class. The default error destination is the Java console.

For general information on MQSeries clients see MQSeries Clients,
GC33-1632.

To access MQSeries queues using the Java client you need to write a Java
applet containing calls to put messages onto, and get messages from
MQSeries queues, as shown in the following code fragment.

8.2.4 Sample Code Fragment
The code fragment in Figure 46 on page 86 through Figure 48 on page 88
demonstrates a very simple applet that connects to a queue manager, puts
a message onto SYSTEM.DEFAULT.LOCAL.QUEUE and gets it again.

This sample runs as an applet using the appletviewer and HTML file using
the command:

appletviewer MQSample.HTML

Output is to the command line, not the applet viewer window.

Notes:

 1. If you receive MQ error 2 reason 2059 and you are sure your MQ and
TCP/IP setup is correct. You should click on the Applet selection in the
Applet viewer window, select properties, and change Network access to
unrestricted.

 2. It is assumed that MQ Server is listening on the default TCP/IP port of
1414.

Chapter 8. MQSeries Client for Java Programmer ′s Guide 85

import com.ibm.mq.*; // Include the MQ package

public class MQSample extends java.applet.Applet
{

// Define the name of your host to connect to
private String hostname = ″your_hostname″ ;

// Define name of channel for client to use
private String channel = ″server_channel″ ;

// Define name of queue manager object to connect to
private String qManager = ″your_Q_manager″ ;

// define a queue manager object
private MQQueueManager qMgr;

// ****************************
// * INITIALIZATION *
// ****************************

// When the class is called, this initialisation is done first.

public void init()
{

// Set up MQ environment
MQEnvironment.hostname = hostname; // Could have put the hostname and
MQEnvironment.channel = channel; // channel string directly here!

} // end of init

public void start()
{
try {

// ****************************
// * CONNECT *
// ****************************

// Create a connection to the queue manager
qMgr = new MQQueueManager(qManager);

// ****************************
// * OPEN *
// ****************************

// Set up the options on the queue we wish to open...

// Note: All MQ Options are prefixed witha

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF]
MQC.MQOO_OUTPUT ;

Figure 46. MQSeries Client for Java Sample Applet - Part 1

86 Internet Application Development with MQSeries and Java

// Note: MQOO_INQUIRE & MQOO_SET are alwa
by default.

// Now specify the queue that we wish to open,
// and the open options...

MQQueue system_default_local_queue =
qMgr.accessQueue(″SYSTEM.DEFAULT.LOCAL.QUEUE″ ,

openOptions,
null, // default queue manager
null, // no dynamic queue name
null); // no alternate user ID

// ****************************
// * MESSAGE *
// ****************************

// Define a simple MQ message,
// and write some text in UTF format..

MQMessage hello_world = new MQMessage();
hello_world.writeUTF(″Hello World!″) ;

// ****************************
// * PUT *
// ****************************

// Specify the message options...
// (accept the defaults, same as MQPMO_DEFAULT constant)

MQPutMessageOptions pmo = new MQPutMessageOptions();

// Put the message on the queue
system_default_local_queue.put(hello_world,pmo);

// ****************************
// * GET *
// ****************************

// Get the message back again...
// First define a MQ message buffer to receive the
// message into

MQMessage retrievedMessage = new MQMessage();
retrievedMessage.messageId = hello_world.messageId;

// Set the get message options..
// (accept the defaults, same as MQGMO_DEFAULT)

MQGetMessageOptions gmo = new MQGetMessageOptions();

// get the message off the queue...
system_default_local_queue.get(retrievedMessage, gmo);

Figure 47. MQSeries Client for Java Sample Applet - Part 2

Chapter 8. MQSeries Client for Java Programmer ′s Guide 87

// ****************************
// * DISPLAY *
// ****************************

// Prove we have the message by displaying the
// UTF message text.

String msgText = retrievedMessage.readUTF();
System.out.println(″The message is: ″ + msgText);

// ****************************
// * CLOSE *
// ****************************

// Close the queue
system_default_local_queue.close();

// ****************************
// * DISCONNECT *
// ****************************

// Disconnect from the queue manager
qMgr.disconnect();

}

// ****************************
// * ERROR HANDLING *
// ****************************

// If an error has occured in the above, try to identify what went wrong.

// Was it an MQ error?
catch (MQException ex)
{
System.out.println(″An MQ error occurred : Completion code ″ +

ex.completionCode +
″ Reason code ″ + ex.reasonCode);

}

// Was it a Java buffer space error?
catch (java.io.IOException ex)
{
System.out.println(″An error occurred while writing to the message buffer: ″ ex);
}

} // end of start

} // end of sample

Figure 48. MQSeries Client for Java Sample Applet - Part 3

88 Internet Application Development with MQSeries and Java

8.3 Why Should I Use the Java Interface?

This section is written for programmers who are familiar with the procedural
MQSeries application programming interface as described in the MQSeries
Application Programming Guide, and shows how to transfer this knowledge
to become productive with the MQSeries Java programming interface.

The Java White Paper lists several of the design goals and benefits of Java.
The MQSeries Java programming interface makes these benefits available
to you as a developer of MQSeries applications:

• The Java programming language is simple. There is no need for header
files, pointers, structures, unions, and operator overloading. Programs
written in Java are simpler to develop and easier to debug than their C
and C++ equiva lents .

• Java is object-oriented. The object-oriented features of Java are
comparable to those of C++, but there is no multiple inheritance .
Instead, Java uses the concept of an interface.

• Java is inherently distributed. The Java class libraries contain a library
of routines for coping with TCP/IP protocols such as HTTP and FTP.
Java programs can access URLs as easily as accessing a file system.

• Java is robust. Java puts a lot of emphasis on early checking for
possible problems, dynamic (run-time) checking, and the elimination of
situations that are error prone. Java uses a concept of references that
eliminates the possibility of overwriting memory and corrupting data.

• Java is secure. Java is intended to be run in networked/distributed
environments, and a lot of emphasis has been placed on security. Java
programs cannot overrun their run-time stack, cannot corrupt memory
outside of their process space, and when downloaded via the Internet
cannot even read or write local files.

• Java programs are portable. There are no implementation-dependent
aspects of the Java specification. The Java compiler generates an
architecture neutral object file format. The compiled code is executable
on many processors, so long as the Java run-time system is present.

When you write your application using the MQSeries Client for Java, users
can download the Java byte codes for your program (called applets) from
the Internet and run them on their own machines. This means that anyone
with access to your Web server can load and run your application with no
prior installation needed on their machine. When an update to the program
is required, you simply update the copy on the Web server and users
automatically receive the latest version the next time they access the applet.
This can significantly reduce the costs involved in installing and updating

Chapter 8. MQSeries Client for Java Programmer ′s Guide 89

traditional client applications where a large number of desktops are
involved.

If you place your applet on a Web server that is accessible outside of the
corporate firewall, then anyone on the Internet can download and use your
application. This means that you can get messages into your MQ system
from anywhere on the Internet. This opens the door to building a whole new
set of Internet accessible service, support and electronic commerce style
applications.

8.4 The MQSeries Java Programming Interface

The procedural MQSeries application programming interface is built around
11 verbs:

• MQBACK
• MQCLOSE
• MQCMIT
• MQCONN
• MQDISC
• MQGET
• MQINQ
• MQOPEN
• MQPUT
• MQPUT1
• MQSET

These verbs all take, as a parameter, a handle to the MQSeries object on
which they are to operate. Because Java is object-oriented, the Java
programming interface turns this around. Your program consists of a set of
MQSeries objects, which you act upon by calling methods on those objects,
as in the following example.

Using the procedural interface, you disconnect from a queue manager using
the call:

MQDISC(Hconn, CompCode, Reason)

where Hconn is a handle to the queue manager.

In the Java interface, the queue manager is represented by an object of
class MQQueueManager. You disconnect from it by calling the disconnect()
method on that class.

90 Internet Application Development with MQSeries and Java

// declare an object of type queue manager
MQQueueManager queueManager;
...
// do some stuff...
...
// disconnect from the queue manager
queueManager.disconnect();

In Java, a package is a mechanism for grouping sets of related classes
together. To include the MQSeries package in your program add the
following line at the top of your source file:

import com.ibm.mq.*;

As there are no header files, you will find the MQSeries constants in a class
called MQC. You refer to these constants in your program using the
notation MQC.constant_name. For example:

MQC.MQOO_OUTPUT

8.4.1 Handling Errors
Methods in the Java interface do not return a completion code and reason
code. Instead, they throw an exception whenever the completion code and
reason code resulting from an MQ call are not both zero. This simplifies the
program logic so that you do not have to explicitly check the return codes
after each call to MQ. You can decide at which point in your program you
want to deal with the possibility of failure by surrounding your code with try
and catch blocks, as in the following example:

try {
myQueue.put(messageA,putMessageOptionsA);
myQueue.put(messageB,putMessageOptionsB);

}
catch (MQException ex) {

// This block of code is only executed if one of the two put methods
// gave rise to a non-zero completion code or reason code.
System.out.println(″An error occurred during the put operation:″ +

″CC = ″ + ex.completionCode +
″RC = ″ + ex.reasonCode);

}

8.4.2 Operations on Queue Managers
Before connecting to a queue manager, you must take care to set up the
MQEnviroment.

The C-based MQ clients rely on environment variables to control the
behavior of the MQCONN call. Since Java applets have no access to

Chapter 8. MQSeries Client for Java Programmer ′s Guide 91

environment variables, the Java programming interface includes a class
MQEnvironment which allows you to specify the following details that are to
be used during the connection attempt.

• Channel name
• Hostname
• Port number
• User ID
• Password

To specify the channel name and hostname use the following code:

MQEnvironment.hostname = ″host.domain.com″ ;
MQEnvironment.channel = ″java.client.channel″ ;

This is equivalent to an MQSERVER environment variable setting of
″java.client.channel/TCP/host.domain.com″ .

Note: The Java client always communicates using TCP/IP, so the protocol
specifier is not needed.

By default, the Java client will attempt to connect to port 1414. To specify a
different port, use the code:

MQEnvironment.port = nnnn;

The user ID and password default to blanks. To specify a non-blank user ID
or password use the code:

MQEnvironment.userID = ″uid″ ; // equivalent to env var MQ_USER_ID
MQEnvironment.password = ″pwd″ ; // equivalent to env var MQ_PASSWORD

Once the MQEnvironment is correctly set up, you can connect to a queue
manager simply by creating a new instance of the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager(″qMgrName″) ;

To disconnect from a queue manager, simply call the disconnect() method
on the queue manager:

queueManager.disconnect();

Calling the disconnect method causes all open queues and processes that
you have accessed via that queue manager to be closed. It is good
programming practice however to close these resources yourself when you
have finished using them. You do this with the close() method.

The commit() and backout() methods on a queue manager replace the
MQCMIT and MQBACK calls of the procedural interface.

92 Internet Application Development with MQSeries and Java

8.4.3 Accessing Queues and Processes
Queues and process are accessed via the MQQueueManager class. The
MQOD (object descriptor structure) has been collapsed into the parameters
of these methods. For example, to open a queue on a queue manager
queueManager, use the following code:

MQQueue queue = queueManager.accessQueue(″qName″ ,
MQC.MQOO_OUTPUT,
″qMgrName″ ,
″dynamicQName″ ,
″altUserId″) ;

The options parameter is the same as the options parameter in the
MQOPEN call.

Note: MQOO_INQUIRE and MQOO_SET are always added to the options
specified so that the inquire and set operations are available on any queue.

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, you should close it using the
close() method, as in the following example:

queue.close();

New in this version of the MQSeries Client for Java is the ability to create a
queue using a new MQQueue constructor. The parameters are exactly the
same as for the accessQueue method, with the addition of a queue manager
parameter. For example:

MQQueue queue = new MQQueue(queueManager,
″qName″ ,
MQC.MQOO_OUTPUT,
″qMgrName″ ,
″dynamicQName″ ,
″altUserId″) ;

Constructing a queue object in this way enables you to write your own
subclasses of MQQueue.

To access a process use the accessProcess method in place of
accessQueue. This method does not have a dynamic queue name
parameter since this does not apply to processes.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object you should close it using
the close() method, as in the following example:

Chapter 8. MQSeries Client for Java Programmer ′s Guide 93

process.close();

New in this version of the MQSeries Client for Java is the ability to create a
process using a new MQProcess constructor. The parameters are exactly
the same as for the accessProcess method, with the addition of a queue
manager parameter. Constructing a process object in this way enables you
to write your own subclasses of MQProcess.

8.4.4 Handling Messages
You put messages onto queues using the put() method of the MQQueue
class and you get messages from queues using the get() method of the
MQQueue class. Unlike in the procedural interface, where MQPUT and
MQGET put and get arrays of bytes, the Java programming language puts
and gets instances of the MQMessage class. The MQMessage class
encapsulates the data buffer that contains the actual message data, together
with all the MQMD parameters that describe that message.

To build a new message, create a new instance of the MQMessage class
and use the writeXXX methods to put data into the message buffer.

When the new message instance is created, all of the MQMD parameters
are automatically set to their default values, as defined in the MQSeries
Application Programming Reference. The put method of MQQueue also
takes an instance of the MQPutMessageOptions class as a parameter. This
class represents the MQPMO structure.

The following example shows the creation of a message and putting it onto
a queue:

// Build a new message containing my age followed by name.

MQMessage myMessage = new MQMessage();
myMessage.writeInt(25);

String name = ″Adrian Colyer″ ;
myMessage.writeInt(name.length());
myMessage.writeBytes(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!
queue.put(myMessage,pmo);

The get() method of MQQueue returns a new instance of MQMessage, which
represents the message just taken from the queue. It also takes an

94 Internet Application Development with MQSeries and Java

instance of the MQGetMessageOptions class as a parameter. This class
represents the MQPMO structure.

There is no need to specify a maximum message size as the get() method
automatically adjusts the size of its internal buffer to fit the incoming
message. Use the readXXX methods of the MQMessage class to access the
data in the returned message.

The following example shows the getting of a message from a queue:

// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions(); // has default values
queue.get(theMessage,gmo);

// Extract the message data
int age = theMessage.readInt();
int strLen = theMessage.readInt();
byte[] strData = new byte[strLen];
theMessage.readFully(strData,0,strLen);
String name = new String(strData,0);

The number format used by the read and write methods can be altered by
setting the encoding data member.

The character set to use for reading and writing strings can be altered by
setting the characterSet data member.

See the documentation of the MQMessage class class for more details.

A note on reading and writing strings: Using the writeUTF method of
MQMessage automatically encodes the length of the string as well as the
unicode bytes it contains. When your message is to be read by another
Java program (using readUTF()), this is the simplest way to send string
information.

8.4.5 Inquire and Set
For many of the common attributes, the classes MQManagedObject,
MQQueue, MQProcess and MQQeueManager contain getXXX() and setXXX()
methods which allow you to easily get and set their attribute values.

For less common attributes, the MQQueueManager, MQQueue and
MQProcess classes all inherit from a class called MQManagedObject. This
class defines the inquire() and set() interfaces.

When you create a new queue manager object using the new operator it is
automatically opened for inquiry.

Chapter 8. MQSeries Client for Java Programmer ′s Guide 95

When you access a process object using the accessProcess() method, it is
automatically opened for inquiry.

When you access a queue object using the accessQueue() method, it is
automatically opened for both inquire and set operations. The inquire and
set methods take three parameters:

 1. selectors array

 2. intAttrs array

 3. charAttrs array

There is no need for the SelectorCount, IntAttrCount and CharAttr Length
parameters found in MQINQ, since the length of an array in Java is always
known.

The following example shows how to make an enquiry on a queue:

// inquire on a queue
final static int MQIA_DEF_PRIORITY = 6;
final static int MQCA_Q_DESC = 2013;
final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];
int[] intAttrs = new int[1];
byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH];

selectors[0] = MQIA_DEF_PRIORITY;
selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println(″Default Priority = ″ + intAttrs[0]);
System.out.println(″Description : ″ + new String(charAttrs,0));

8.4.6 Multithreaded Programs
Multithreaded programs are hard to avoid in Java. Consider a simple
program that connects to a queue manager and opens a queue at startup.
The program displays a single button on the screen and when the button is
selected, it fetches a message from the queue.

Because the Java run-time environment is inherently multithreaded, your
application initialization will take place in one thread, and the code that is
executed in response to the button selection, executes in a separate thread
(the user interface thread).

With the C-based MQSeries client this would cause a problem, since
handles cannot be shared across multiple threads. The MQSeries Client for

96 Internet Application Development with MQSeries and Java

Java relaxes this constraint, allowing a queue manager object (and its
associated queue and process objects) to be shared across multiple
threads.

The implementation of the Java client ensures that, for a given connection
(queue manager object instance), all access to the target MQSeries queue
manager is synchronized. This means that a thread wishing to issue a call
to a queue manager is blocked until all other calls in progress for that
connection have completed.

If you require simultaneous access to the same queue manager from within
your program, create a new queue manager object for each thread requiring
concurrent access. This is equivalent to issuing a separate MQCONN call
for each thread.

MQ calls inside an applet ′s stop() and destroy() methods: If you need to
make MQ calls inside the stop() or destroy() methods of an applet (for
example, to disconnect from a queue manager), then you need to declare
your stop and destroy methods as synchronized. For example:

public synchronized void stop() {
...
}

public synchronized void destroy() {
...
}

If you do not use the synchronized keyword, the Java virtual machine may
choose to suspend your thread when you issue an MQ call (since you will
be waiting on I/O). For the special cases of the stop() and destroy()
methods (where the applet is being quiesced / terminated) your thread may
never be resumed again. The synchronized keyword prevents this from
happening by ensuring that the Java virtual machine waits for your MQ call
to complete before it can complete its shutdown.

8.4.7 Writing User Exits
The MQSeries Client for Java allows you to provide your own send, receive,
and security exits.

To implement an exit, you must define a new Java class that implements the
appropriate interface. There are three exit interfaces defined in the MQ
package:

 1. MQSendExit

 2. MQReceiveExit

Chapter 8. MQSeries Client for Java Programmer ′s Guide 97

 3. MQSecurityExit

The following sample defines a class that implements all three:

class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

// This method comes from the send exit
public byte[] sendExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefParms,
byte agentBuffer[])

{
// fill in the body of the send exit here
}

// This method comes from the receive exit
public byte[] receiveExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefParms,
byte agentBuffer[])

{
// fill in the body of the receive exit here
}

// This method comes from the security exit
public byte[] securityExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefParms,
byte agentBuffer[])

{
// fill in the body of the security exit here
}

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object
instance. These objects represent the MQCXP and MQCD structures
defined in the procedural interface.

The agentBuffer parameter contains the data that is about to be sent (in the
case of the send exit), or has just been received (in the case of the receive
and security exits). There is no need for a length parameter, since the
expression agentBuffer.length tells you the length of the array.

• For the send and security exits, your exit code should return the byte
array that you wish to be sent to the server.

• For a receive exit, your code should return return the modified data that
you wish to be interpreted by the MQSeries Client for Java.

The simplest possible exit body is:

98 Internet Application Development with MQSeries and Java

{
return agentBuffer;

}

If your program is to run as a downloaded Java applet, you should be aware
that under the security restrictions placed upon it you will not be able to
read or write any local files. If your exit needs a configuration file, you can
place the file on the Web and use the java.net.URL class to download it and
examine its contents.

8.5 Compiling MQSeries Java Programs

If you installed the MQSeries Client for Java in a directory called
MQJavaClient, the installation process will have created a subdirectory
com\ibm\mq of MQJavaClient in which the package files are stored. When
you compile your program, your CLASSPATH environment variable must
contain a reference to the MQJavaClient directory (and not the com\ibm\mq
subdirectory).

To compile a class MyClass.java, you use the command:

javac MyClass.java

If you are writing an applet (subclass of java.applet.Applet), then you also
need to create an HTML file referencing your class before you can run it. A
sample HTML file might look as follows:

<html>
<body>
<applet code=″MyClass.class″ width=200 height=400>
</applet>
</body>
</html>

You can now run your program either by loading this HTML file into a
Java-enabled Web browser, or by using the appletviewer that comes with
the Java Development Kit (JDK). To use the applet viewer, enter the
command:

appletviewer myclass.HTML

If you are writing an application (a class that contains a main() method),
then you run your program using the Java interpreter instead. In this case,
use the command:

java MyClass

Note: The .class extension is omitted from the class name.

Chapter 8. MQSeries Client for Java Programmer ′s Guide 99

8.6 Tracing MQSeries Java Programs

The MQSeries client for Java includes a trace facility that can be used to
produce diagnostic messages if you suspect there might be a problem with
the client code. (You will normally only need to use this facility at the
request of IBM service.)

Tracing is controlled by the enableTracing and disableTracing methods of
the MQEnvironment class. For example:

MQEnvironment.enableTracing(2); // trace at level 2
these commands will be traced
MQEnvironment.disableTracing(); // turn tracing off again

The trace is written to the Java console (System.err).

If your program is an application, or you are running it from your local disk
using the appletviewer command, you also have the option of redirecting the
trace output to a file of your choice. The following code fragment shows an
example of how to make the redirection to a file called myapp.trc:

import java.io.*;

try {
 FileOutputStream traceFile = new FileOutputStream(″myapp.trc″) ;
 MQEnvironment.enableTracing(2,traceFile);
}
catch (IOException ex) {
// couldn′ t open the file, trace to System.err instead
MQEnvironment.enableTracing(2);

}

There are five different levels of tracing:

 1. Provides entry, exit and exception tracing.

 2. Provides as above plus parameter information.

 3. Provides as above plus transmitted and received MQ headers and data
blocks.

 4. Provides as above plus transmitted and received user message data.

 5. Provides as above plus tracing of methods in the Java Virtual Machine.

Tracing at level 5 will only trace methods in the Java Virtual Machine if you
run your application using java_g in place of java, or your applet using
appletviewer_g instead of appletviewer.

100 Internet Application Development with MQSeries and Java

8.7 Class Hierarchy
• class java.lang.Object

− class java.lang.Character

− class java.lang.Class

− interface java.lang.Coneable

− interface java.io.DataInput

− interface java.io.DataOutput

− class java.util.Date

− class java.util.Dictionary

- class java.util.Hashtable (implements java.lang.Cloneable)

• class java.util.Properties

− interface java.util.Enumeration

− class java.io.File

− class java.io.FileDescriptor

− interface java.io.FilenameFilter

− class java.io.InputStream

- class java.io.FileInputStream

- class java.io.FilterInputStream

• class java.io.BufferedInputStream

• class java.io.DataInputStream
(implements java.io.java.io.DataInput)

• class java.io.PushbackInputStream

− interface com.ibm.mq.MQC

− class com.ibm.mq.MQChannelDefinition

− class com.ibm.mq.MQChannelExit

− class com.ibm.mq.MQEnvironment

− class com.ibm.mq.MQGetMessageOptions

− class com.ibm.mq.MQMessage
(implements java.io.DataInput and java.io.DataOutput)

− class com.ibm.mq.MQManagedObject

- class com.ibm.mq.MQProcess

Chapter 8. MQSeries Client for Java Programmer ′s Guide 101

- class com.ibm.mq.MQQueue

- class com.ibm.mq.MQQueueManager

− class com.ibm.mq.MQPutMessageOptions

− interface com.ibm.mq.MQReceiveExit

− interface com.ibm.mq.MQSecurityExit

− interface com.ibm.mq.MQSendExit

− class java.lang.Math

− class java.lang.Number

- class java.lang.Double

- class java.lang.Float

- class java.lang.Integer

- class java.lang.Long

− class java.io.OutputStream

- class java.io.FileOutputStream

- class java.io.FilterOutputStream

• class java.io.BufferedOutputStream

• class java.io.DataOutputStream
(implements java.io.″java.io.DataOutput

• class java.io.PrintStream

− class java.util.Random

− interface java.lang.Runnable

− class java.lang.Runtime

− class java.lang.SecurityManager

− class java.lang.String

− class java.lang.StringBuffer

− class java.util.StringTokenizer (implements java.util.Enumeration)

− class java.lang.System

− class java.lang.Thread (implements java.lang.Runnable)

− class java.lang.ThreadGroup

− class java.lang.Throwable

- class java.lang.Error

102 Internet Application Development with MQSeries and Java

• class java.lang.LinkageError

− class java.lang.IncompatibleClassChangeError

- class java.lang.NoSuchMethodError

− class java.lang. UnsatisfiedLinkError

• class java.lang. ThreadDeath

• class java.lang. VirtualMachineError

− class java.lang. InternalError

- class java.lang.Exception

• class java.lang.ClassNotFoundException

• class java.lang.CloneNotSupportedException

• class java.io.IOException

− class java.io.EOFException

− class java.io.FileNotFoundException

− class java.io.InterruptedIOException

− class java.io.UTFDataFormatException

• class java.lang.IllegalAccessException

• class java.lang.InstantiationException

• class java.lang.InterruptedException

• class com.ibm.mq.MQException

• class java.lang.RuntimeException

− class java.lang.IllegalArgumentException

- class java.lang.IllegalThreadStateException

- class java.lang.NumberFormatException

− class java.lang.IndexOutOfBoundsException

- class java.lang.ArrayIndexOutOfBoundsException

- class java.lang.StringIndexOutOfBoundsException

− class java.util.NoSuchElementException

− class java.lang.NullPointerException

− class java.lang.SecurityException

− class java.util.Vector (includes java.lang.Clonable)

Chapter 8. MQSeries Client for Java Programmer ′s Guide 103

104 Internet Application Development with MQSeries and Java

Chapter 9. The Sample Application

This chapter describes the sample Internet application that has been
developed in this MQSeries/Java project. We selected this application to
demonstrate the functions you can implement using MQSeries, Java, OOP,
and the Internet. You may use this demonstration as a base for your
applications.

There are numerous opportunities for combining legacy systems with
MQSeries and Java. Many legacy applications on many platforms want to
be accessed by many users. Users of MQSeries Client for Java programs
could be any global citizens who have a Java-enabled Web browser. No
MQSeries software is necessary in their workstation. They downloads what
they needs from the server, just like HTML files.

9.1 Overview

This prototype sales order entry demonstration utilizes the MQSeries Client
for Java software. A Java-enabled Web browser is all you need to run it.
No other software is needed in you client workstation. In fact, you don′ t
need a PC. An NC or network computer is all that is needed. The frontend
GUI is all Java code that is talking to a backend C program. The C program
is automatically triggered to present the user′s information via MQSeries
messages. Simulate a grocery store on the Web by ordering fruit,
vegetables and other items.

The applications consists of:

• An order entry program (applet) written in Java that runs in the end
user ′s workstation.

• An HTML file that calls the applet.

• A server program that processes orders, written in C.

• A file for the setup of the MQSeries environment.

9.1.1 Functions of the Application
We selected a sales order entry application as our example. A server
program responds to the Internet user′s inquiries and processes his or her
orders. Just imagine what it could means for a business when world-wide
customers access the product catalog via the Internet and place orders that
can be processed by its legacy application interactively.

 Copyright IBM Corp. 1997 105

The user can perform the following functions:

 1. Inquire what products are available.

There are three product groups in our application: fruit, vegetables and
others. Each product group can be displayed (downloaded from the
server) by selecting the appropriate radio button in the applet.

 2. Select one or more products to order.

From the displayed products, users select one item at a time and type
the quantity they wants to order. The order is moved into a product
order list:

• A message is displayed when the quantity exceeds the stock.

• The user can clear the entire order list or delete specific items.

 3. Send the order for processing.

When the order list is complete the order will be sent to the host for
fulfillment processing and order status posting. The host checks the
user ′s credit rating and may reject the order.

 4. Inquire about the status of the order.

The host posts the order status by sending a message to the user.
There may be several status messages per order.

Note: All processes are asynchronous. To simplify the program replies are
retrieved by a user action such as clicking on a button instead of a
background thread checking for messages in the input queues.

9.1.2 Software Used to Develop the Applet
To write and test the sample application we used the following software:

• Web browser:

− Netscape 2.02 on OS/2 and AIX
− MS-Explorer on Win95 and WinNT

• Web server:

− IBM Internet Connection Secure Server on OS/2
− Apache on AIX
− MQSeries on OS/2 and AIX
− MQSeries Client for Java on OS/2 and AIX
− Java compiler: Sun′s JDK and Symantec′s VisualCafe

Note: If you run the application from an applet viewer, you must have the
Java Developer′s Kit (JDK) installed on the client machine.

106 Internet Application Development with MQSeries and Java

9.1.3 A View of the Internet
Figure 49 shows the MQSeries Client for Java workstations and the server.
In our project we had two servers, an OS/2 and an AIX machine. The
application running in the server is a C program that maintains the product
lists and processes the orders.

Figure 49. A View of the Internet

9.1.4 The Value of This Application
Even though it is not a real life application, our sales order entry
demonstration shows some very valuable points:

• The Internet order entry system is available to the whole world. Users
can do business directly with any customer who has a Java-enabled
Web browser.

• This application uses the inexpensive existing Internet network.

• Java applets do not require MQSeries programs in the end user′s
workstation. This feature enables the network computing.

Chapter 9. The Sample Application 107

• The order processing program in the server starts automatically.
MQSeries ′ triggering mechanism takes care of that. Inventory
maintenance and credit check is done by the triggered program. That
means, users can use their legacy systems with Java applets
interactively. It really generates synergy effect of their computer power.
Information that has been hidden in the users warehouses can be
delivered to anywhere in the world if only the owner wants to do it.

• Java is an object-oriented programming language. So Java applets can
be developed easily.

• Java is very good for creating fancy GUIs.

9.2 Program Logic and Message Flow

Figure 50 on page 109 shows the program logic of the application and the
queues it uses:

 1. The user starts the application from a Web page of a Java-enabled
browser.

The applet including the MQSeries Client for Java code is downloaded
into the user′s workstation.

Figure 51 on page 111 shows an applet after ten items have been
entered in the order list.

 2. At the beginning the user selects one of three product groups by clicking
on one of the three radio buttons in the GUI. The server maintains
inventory list for fruit, vegetables and others.

 3. When the user clicks on the Get Product List button the applet creates a
message that contains the ID of the product list.

 4. A TCP/IP connection between Web browser and Web server is
established. The MQSeries client software then makes a MQI channel
connection between MQSeries client and the queue manager in the
server.

 5. A message requesting one of the three product lists is put into Queue 1.

 6. Queue 1 is triggered. Every time a message is put into this queue a
trigger message is placed in a trigger queue that is monitored by
MQSeries ′ trigger monitor. This program then starts the backend C
program.

Note: The trigger monitor must be started in the server. If the server is
an OS/2 machine, then the listener has to be started too.

108 Internet Application Development with MQSeries and Java

Figure 50. Program Logic and Message Flow

Note: Since the users are MQSeries clients, all queues reside in the
server machine. Clients can only work when connection to the server
has been established.

Chapter 9. The Sample Application 109

 7. The backend program processes two message types; both are read from
Queue 1:

• Messages that request a product list.

One product list is read from disk and put into Queue 2.

• Messages that contain orders.

The appropriate product file on disk is updated and the order status
is put into Queue 3.

The server program reads the requested file and moves it into a
message that is put into Queue 2. The message contains for each
product name, the available quantity and price.

Note: For this demonstration each list is limited to ten items.

 8. After the applet sends the message it issues a get with the wait option.
This makes the request/reply synchronous. As soon as the server
application puts the message into Queue 2 the waiting applet will
remove it from the queue. Its contents is then displayed in the applet.

 9. The user selects items from the product list displayed and enters a
quantity. Clicking on the Add button adds the item to the order list. If
the requested quantity exceeds the stock, a message is displayed.

The user can remove an item from the order list by selecting it and
clicking on the Delete button. The Cancel button clears the entire list.

The list may contain products from all three lists.

Note: For this demonstration only ten items can be placed on the order
list.

Each order is given an order number that is maintained by the system,
in our case it is the applet.

10. After the order list is completed the user clicks on the Send Order
button. The program builds the message that can contain one to ten
items. Again, a connection to the server is established and the
message is put into Queue 1 for processing by the backend C program.
This message will trigger the application too. This time the client does
not execute a get following the put. Sending the order and receiving the
status is asynchronous.

11. The server program updates the product file on the hard disk. It sends
a status message indicating that the order will be fulfilled or that one or
more items have to be back ordered. These messages are put on
Queue 3.

110 Internet Application Development with MQSeries and Java

Figure 51. Applet View

12. As soon as the application puts the message on the queue the applet
can retrieve it.

13. Clicking on the Get Status List push button makes the applet read the
messages in Queue 3 and display them in a scrollable status list.

Note: All queues are local queues.

Chapter 9. The Sample Application 111

9.3 Design Issues

The following sections help you to understand the design of the application.

9.3.1 Message Flow Diagram
The message flow diagram below shows the message flow between applet
and server program and the three local queues.

Figure 52. Message Flow Diagram

9.3.2 MQSeries Objects

Table 2. Queues for Demo Application

Queue Name Triggered Trigger Depth Trigger Type

JAVAQ1 yes 1 every

JAVAQ2 no

JAVAQ3 no

112 Internet Application Development with MQSeries and Java

***/
* File: JAVACOMA.TST
***/

DEFINE CHANNEL(′ JavaCH1′) CHLTYPE(SVRCONN) REPLACE +
TRPTYPE(TCP) MCAUSER(′ ′)

DEFINE QLOCAL(′ JavaQ1′) REPLACE +
DESCR(′ Output queue for client′) +
TRIGTYPE(EVERY) +
INITQ (system.default.initiation.queue) +
PROCESS (PROCESS.APPL1)

DEFINE PROCESS(PROCESS.APPL1) REPLACE +
DESCR(′ Business logic in server′) +
APPLTYPE(OS2) +
APPLICID(′ d:\javatest\bl1.exe′)

DEFINE QLOCAL(′ JavaQ2′) REPLACE +
DESCR(′ Input queue for client′)

DEFINE QLOCAL(′ JavaQ3′) REPLACE +
DESCR(′ Input queue for client′)

Figure 53. MQSeries Objects

9.3.3 Programs
The following table shows the files that comprise the application.

Table 3. Files for Demo Application

Program Name Description

Orderl istApplet.html HTML file that loads the applet.

OrderListView.java The applet (GUI program) running in the client.

FBPutQ1.java Puts messages on queue 1 for the server program.

FBGetQ2.java Gets messages (product lists) from queue 2.

GTCGET.java Gets status messages from queue 3.

bl1.c The server program the applet communicates with.

bl1.mak The make file to compile bl1.c.

bl1.def The definition file for bl1.c.

javacoma.tst Queue manager objects for the application.

Chapter 9. The Sample Application 113

You find listings of these files in:

• Appendix A, “Client Program” on page 117

• Appendix B, “Server Program” on page 135

9.3.4 Message Structure
The message structure is the same for:

• Messages that request a product list.

• Messages that contain a product list.

• Messages that contain orders.

Notes:

 1. For messages that request a product list only field 1 is required. It must
contain either 1, 2 or 3.

 2. In this demo, all product lists have ten entries.

 3. Order messages have in field 1 an order number (100 or higher). This
number is automatically assigned by the applet.

 4. Fields 3 through 5 can occur up to ten times.

Table 4. Message Structure

Field
Number

Type Length Description

1 String 4 (a) Product group ID (1-3)
(b)Order Number (starting with 100)

2 String 2 Number of items (max. 10)

3 String 15 Product name

4 String 5 Quantity

5 String 5 Price

9.3.5 Inventory Files
All three inventory files are flat files and contain ten entries. When the
server program detects that they do not exist it will create them
automatically.

Note: Fields 3 through 5 occur ten times.

114 Internet Application Development with MQSeries and Java

Table 5. Inventory File Structure

Field
Number

Type Length Description

1 String 4 File ID (product group 1-3)

2 String 4 Number of items (always 10)

3 String 15 Product name

4 String 5 Quantity (initially 999)

5 String 5 Price

9.4 Set Up the Demonstration
• You need a Java-enabled browser such as:

− Sun′s HotJava

− Netscape Navigator

− Microsoft Explorer

• The Web server must be up and running:

− Start it from the Internet Connection Server icon.

− Start it from the command line by typing httpd.

− Start it automatically from the OS/2 startup folder.

− Restart it in the Internet Connection Server window.

− Restarted it from the Configuration and Administration forms.

Note: Refer to the IBM Internet Connection Server manual for more
details.

• The queue manager must be up and running:

STRMQM [queue_manager_name]

Note: Ensure that all MQ objects are created. Refer to the file
javacoma.tst in Figure 53 on page 113.

• Ensure that the MQI channel connection between the clients and the
queue manager in the server is running.

− For OS/2 clients, set the environment variable MQSERVER as
follows:

SET MQSERVER=javamqm/tcp/mqjava.itso.ral.ibm.com

Note: mqjava.itso.ral.ibm.com is the TCP/IP hostname of the OS/2
server.

Chapter 9. The Sample Application 115

− For UNIX clients, enter the following command:

EXPORT MQSERVER=javamqm/tcp/mercury.itso.ral.ibm.com

Note: mercury.itso.ral.ibm.com is the TCP/IP hostname of the AIX
server.

• On an OS/2 server, make sure that the listener is running:

start runmqlsr

• Ensure that the trigger monitor is started. On an OS/2 server, enter:

start runmqtrm

Note: There are slight differences in handling the trigger monitor for the
different platforms. Refer to chapter 14 of the MQSeries Application
Programming Guide.

116 Internet Application Development with MQSeries and Java

Appendix A. Client Program

A.1 OrderlistApplet.html
<applet code=OrderListView.class width=500 height=400>
</applet>

A.2 OrderListView.java
/* A basic extension of the java.applet.Applet class */

 import java.awt.*; // Include the AWT package
 import java.applet.*; // Include the applet package
 import java.lang.*; // Include the language package
 import java.io.*; // Include the i/o package
 import MQ.*; // Include the MQSeries package

 public class OrderListView extends Applet {

// Definitions for MQSeries

public String hostname = ″mqjava″ ;
public String channel = ″javach1″ ;
public String qManager = ″javamqm″ ;
public static String msgText;
public static MQQueueManager qMgr = null;
public static byte MsgId[];

// Definitions

public String getMsg; // define the message buffers

public static String pmsg, omsg, tempStr;

String fstring = (″000101fruits 0000000000″) ;
String vstring = (″000201vegetables 0000000000″) ;
String ostring = (″000301others 0000000000″) ;

StringBuffer orderMessage; // for constr.order msg
int lgStr = 0; // length of a string
public char oChar[] = new char[5];

int tempQuant, tempPrice; // temp.Values for calc.
int c; // counter, # of entries

 Copyright IBM Corp. 1997 117

double oPrice = 0.00, total = 0.00;
double plimit = 500.00; // price limit
int qlimit = 0; // quantity limit
int si = 1, j = 0;
int i1, i2, i3, i4;
int msgId, nrOfProd;
int orderNr = 100;

public String stock[];
public String price[];

// Method for radio button Fruits
// Get fruits from database

void FruitsRButton_Action (Event event) {
pmsg = fstring;

} // end of method

// Method for radio button Vegetables
// Get vegetables from database

void VegetablesRButton_Action(Event event) {
pmsg = vstring;

} // end of method

// Method for radio button Others
// Get other items from database

void OthersRButton_Action(Event event) {
pmsg = ostring;

} // end of method

// Method for push button Get Procuct List

void productButton_Clicked(Event event) {
msgArea.setText(″ ″) ;
productChoice.clear();

FBputQ1 fbput = new FBputQ1();
fbput.fb_mqput(pmsg);

FBgetQ2 fbget = new FBgetQ2();
fbget.fb_mqget();
getMsg = fbget.msgText;

msgId = Integer.parseInt(getMsg.substring(0,4));
nrOfProd = Integer.parseInt(getMsg.substring(4,6));

118 Internet Application Development with MQSeries and Java

i1 = 6;
i2 = 21;
i3 = 26;
i4 = 31;

stock = new String[nrOfProd]; // how many in stock
price = new String[nrOfProd]; // price of one w.dot

for (int i = 0; i < nrOfProd; i++)
{

productChoice.addItem(getMsg.substring(i1,i2));
stock[i] = getMsg.substring(i2,i3);
price[i] = getMsg.substring(i3,i4);
i1 = i1 + 25;
i2 = i2 + 25;
i3 = i3 + 25;
i4 = i4 + 25;

} //end of for loop
} // end of method

// Method for Add push button

void AddButton_Clicked(Event event) {
msgArea.setText(″ ″) ;
si = productChoice.getSelectedIndex();
if (si < 0) {

msgArea.setText
(″You didn′ t select a product″) ;
return;

}

tempQuant = Integer.parseInt(Quantity.getText());
if (tempQuant < 1) {

msgArea.setText
(″The quantity is not set″) ;
return;

}

qlimit = Integer.parseInt(stock•si‘);
if (tempQuant > qlimit) {

msgArea.setText
(″Quantity is higher than Stock: ″ + qlimit);
return;

}

tempPrice = Integer.parseInt(price•si‘);
oPrice = (tempQuant * (tempPrice * 0.01));
total += oPrice;

Appendix A. Client Program 119

if (total > plimit) {
msgArea.setText
(″You are over your creditlimit″) ;
total -= oPrice;
return;

}
c = productList.countItems()+1;
if (c > 10) {

msgArea.setText
(″For this Demo only 10 Products allowed″) ;
total -= oPrice;
return;

}

quantityList.addItem(Quantity.getText());
productList.addItem(productChoice.getSelectedItem());
Quantity.setText (″0″);

// Quantity.
priceList.addItem(String.valueOf(oPrice));
orderPriceList.addItem(price•si‘);
TotalCost.setText(String.valueOf(total));
Counter.setText(String.valueOf(c));
msgArea.setText
(″Product added to Orderlist″) ;

} // end of method

// Method for Delete push button

void DeleteButton_Clicked(Event event) {
msgArea.setText(″ ″) ;
si = (productList.getSelectedIndex());
if (si < 0) { // -1 = nothing selected

msgArea.setText
(″You didn′ t select a product in the orderlist to delete″) ;
return;

}

tempQuant = Integer.parseInt(quantityList.getItem(si));
tempPrice = Integer.parseInt(orderPriceList.getItem(si));
oPrice = (tempQuant * (tempPrice * 0.01));
productList.delItem(si);
quantityList.delItem(si);
priceList.delItem(si);
orderPriceList.delItem(si);
c = productList.countItems();
Counter.setText(String.valueOf(c));
total -= oPrice;

120 Internet Application Development with MQSeries and Java

TotalCost.setText(String.valueOf(total));
msgArea.setText
(″Product deleted from Orderlist″) ;

} // end of method

// Method for Cancel push button

void CancelButton_Clicked(Event event) {
msgArea.setText(″ ″) ;
if (c < 1) {

msgArea.setText(″There is nothing to cancel″) ;
return;

}

if (j == 0) {
msgArea.setText
(″To delete the hole list, klick the cancel button again″) ;
j = 1;
return;

}

j = 0;

quantityList.clear();
productList.clear();
priceList.clear();
orderPriceList.clear();
Counter.setText(″″) ;
TotalCost.setText(″0 $″) ;
total = 0;
c = 0;
msgArea.setText (″You can now start a new order″) ;

} // end of method

// Method for Send push button

void SendButton_Clicked(Event event) {
msgArea.setText(″ ″) ;
if (c < 1) {

msgArea.setText
(″There are no products in your orderlist″) ;
return;

}

for (int i = 0; i < 5; i++) {
oChar[i] = ′ 0 ′ ;

}

Appendix A. Client Program 121

orderMessage = new StringBuffer(6 + (c * 25));
orderMessage.append(oChar, 1, 1);
orderMessage.append(String.valueOf(orderNr));
tempStr = String.valueOf(c);
lgStr = tempStr.length();
orderMessage.append(oChar, 1, (2-lgStr));
orderMessage.append(String.valueOf(c));

for (int i = 0; i < c; i++)
{

orderMessage.append(productList.getItem(i));
lgStr = quantityList.getItem(i).length();
orderMessage.append(oChar, 1, (5-lgStr));
orderMessage.append(quantityList.getItem(i));
lgStr = orderPriceList.getItem(i).length();
orderMessage.append(oChar, 1, (5-lgStr));
orderMessage.append(orderPriceList.getItem(i));

} //end of for loop

omsg = orderMessage.toString();

// now create the mqput message

quantityList.clear();
productList.clear();
priceList.clear();
orderPriceList.clear();
Counter.setText(″″) ;
TotalCost.setText(″0 $″) ;
total = 0;

FBputQ1 fbput = new FBputQ1();
fbput.fb_mqput(omsg);

msgArea.setText
(″Your Order ″ + orderNr + ″ is forwarded to the HOST″) ;
orderNr += 1;
orderNumber.setText(String.valueOf(orderNr));

} // end of method

// Method for push button Get Status List

void statusButton_Clicked(Event event) {
msgArea.setText(″ ″) ;
GTCget gtcg = new GTCget();
gtcg.my_mqget();
statusList.addItem(gtcg.msgText);

122 Internet Application Development with MQSeries and Java

} // end method

// Initialization method

public void init() {

super.init();
QMenv_init();

pmsg = fstring; // because fruits are enabled by default

// setup the MQ environment
//{{INIT_CONTROLS
setLayout(null);
addNotify();
resize(440,414);
setFont(new Font(″TimesRoman″ , Font.BOLD, 14));
setForeground(new Color(16711680));
setBackground(new Color(12632256));
label1 = new java.awt.Label(″Product Order List″) ;
label1.reshape(210,8,224,30);
label1.setFont(new Font(″TimesRoman″ , Font.BOLD, 24));
label1.setForeground(new Color(0));
add(label1);
productList = new java.awt.List(0,false);
add(productList);
productList.reshape(210,38,126,180);
productList.setForeground(new Color(0));
Quantity = new java.awt.TextField(2);
Quantity.setText(″0″);
Quantity.reshape(161,30,35,33);
Quantity.setFont(new Font(″TimesRoman″ , Font.BOLD, 14));
Quantity.setForeground(new Color(0));
Quantity.setBackground(new Color(16777215));
add(Quantity);
label2 = new java.awt.Label(″Quantity″) ;
label2.reshape(140,68,70,22);
label2.setFont(new Font(″TimesRoman″ , Font.BOLD, 16));
label2.setForeground(new Color(0));
add(label2);
AddButton = new java.awt.Button(″Add″) ;
AddButton.reshape(7,113,56,26);
AddButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 14));
AddButton.setForeground(new Color(0));
add(AddButton);
DeleteButton = new java.awt.Button(″Delete″) ;
DeleteButton.reshape(70,113,56,26);
DeleteButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 14));

Appendix A. Client Program 123

DeleteButton.setForeground(new Color(0));
add(DeleteButton);
CancelButton = new java.awt.Button(″Cancel″) ;
CancelButton.reshape(133,113,60,26);
CancelButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 14));
CancelButton.setForeground(new Color(0));
add(CancelButton);
label3 = new java.awt.Label(″Product Choice″) ;
label3.reshape(20,150,150,25);
label3.setFont(new Font(″TimesRoman″ , Font.BOLD, 18));
label3.setForeground(new Color(0));
add(label3);
Group1 = new CheckboxGroup();
FruitsRButton = new java.awt.Checkbox(″Fruits″ , Group1, true);
FruitsRButton.reshape(35,180,105,20);
FruitsRButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 12));
FruitsRButton.setForeground(new Color(0));
FruitsRButton.setBackground(new Color(12632256));
add(FruitsRButton);
VegetablesRButton = new java.awt.Checkbox(″Vegetables″ , Group1, false)
VegetablesRButton.reshape(35,203,105,20);
VegetablesRButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 12));
VegetablesRButton.setForeground(new Color(0));
add(VegetablesRButton);
OthersRButton = new java.awt.Checkbox(″Others″ , Group1, false);
OthersRButton.reshape(35,225,105,20);
OthersRButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 12));
OthersRButton.setForeground(new Color(0));
add(OthersRButton);
OthersRButton = new java.awt.Checkbox(″Others″ , Group1, false);
OthersRButton.reshape(35,225,105,20);
OthersRButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 12));
OthersRButton.setForeground(new Color(0));
add(OthersRButton);
sendButton = new java.awt.Button(″Send Order″) ;
sendButton.reshape(157,263,125,25);
sendButton.setFont(new Font(″TimesRoman″ , Font.BOLD, 14));
sendButton.setForeground(new Color(0));
add(sendButton);
label4 = new java.awt.Label(″Total $″) ;
label4.reshape(294,225,71,22);
label4.setFont(new Font(″TimesRoman″ , Font.BOLD, 18));
label4.setForeground(new Color(0));
add(label4);
TotalCost = new java.awt.TextField();
TotalCost.setEditable(false);
TotalCost.reshape(364,218,70,31);
TotalCost.setFont(new Font(″TimesRoman″ , Font.BOLD, 16));

124 Internet Application Development with MQSeries and Java

add(TotalCost);
quantityList = new java.awt.List(0,false);
add(quantityList);
quantityList.reshape(336,38,42,180);
quantityList.setForeground(new Color(0));
priceList = new java.awt.List(0,false);
add(priceList);
priceList.reshape(378,38,56,180);
productChoice = new java.awt.List(0,false);
add(productChoice);

productChoice.reshape(8,8,115,97);
productChoice.setForeground(new Color(0));
productChoice.setBackground(new Color(16777215));
Counter = new java.awt.TextField();
Counter.reshape(210,218,28,30);
Counter.setForeground(new Color(0));
Counter.setBackground(new Color(8421504));
add(Counter);
label5 = new java.awt.Label(″Items″) ;
label5.reshape(240,230,50,15);
label5.setFont(new Font(″Dialog″ , Font.BOLD, 12));
label5.setForeground(new Color(0));
add(label5);
statusList = new java.awt.List(0,false);
add(statusList);
statusList.reshape(10,350,430,60);
statusList.setForeground(new Color(16711935));
label6 = new java.awt.Label(″Order Status List″) ;
label6.reshape(259,323,168,23);
label6.setFont(new Font(″Dialog″ , Font.BOLD, 18));
label6.setForeground(new Color(0));
add(label6);
productButton = new java.awt.Button(″Get Product List″) ;
productButton.reshape(14,263,125,25);
productButton.setForeground(new Color(0));
add(productButton);
label7 = new java.awt.Label(″Msg:″) ;
label7.reshape(14,293,49,23);
label7.setFont(new Font(″TimesRoman″ , Font.BOLD, 16));
label7.setForeground(new Color(0));
add(label7);
msgArea = new java.awt.Label(″″) ;
msgArea.reshape(63,293,371,23);
msgArea.setFont(new Font(″TimesRoman″ , Font.BOLD]Font.ITALIC, 16));
msgArea.setForeground(new Color(16711935));
msgArea.setBackground(new Color(16777215));
add(msgArea);

Appendix A. Client Program 125

statusButton = new java.awt.Button(″Get Status List″) ;
statusButton.reshape(300,263,125,25);
statusButton.setForeground(new Color(0));
add(statusButton);
label8 = new java.awt.Label(″act.Order Number″) ;
label8.reshape(70,330,160,20);
label8.setFont(new Font(″TimesRoman″ , Font.BOLD, 16));
label8.setForeground(new Color(0));
add(label8);
orderNumber = new java.awt.Label(″100″);
orderNumber.reshape(10,330,45,20);
orderNumber.setFont(new Font(″TimesRoman″ , Font.BOLD, 16));
orderNumber.setForeground(new Color(0));
add(orderNumber);
orderPriceList = new java.awt.List(0,false);
orderPriceList.hide();
orderPriceList.disable();
add(orderPriceList);
orderPriceList.reshape(161,210,7,8);
orderPriceList.setForeground(new Color(0));
//}}

} // end of init method

// Events

public boolean handleEvent(Event event) {
if (event.target == AddButton && event.id == Event.ACTION_EVENT) {

AddButton_Clicked(event);
}
if (event.target == sendButton && event.id == Event.ACTION_EVENT) {

SendButton_Clicked(event);
}
if (event.target == CancelButton && event.id == Event.ACTION_EVENT) {

CancelButton_Clicked(event);
}

if (event.target == DeleteButton && event.id == Event.ACTION_EVENT {
DeleteButton_Clicked(event);

}
if (event.target == VegetablesRButton && event.id == Event.ACTION_EVENT) {

VegetablesRButton_Action(event);
}
if (event.target == OthersRButton && event.id == Event.ACTION_EVENT) {

OthersRButton_Action(event);
}
if (event.target == FruitsRButton && event.id == Event.ACTION_EVENT) {

FruitsRButton_Action(event);
}
if (event.target == productButton && event.id == Event.ACTION_EVENT) {

126 Internet Application Development with MQSeries and Java

productButton_Clicked(event);
}
if (event.target == statusButton && event.id == Event.ACTION_EVENT) {

statusButton_Clicked(event);
}
return super.handleEvent(event);

}

// Controls

//{{DECLARE_CONTROLS
java.awt.Label label1;
java.awt.List productList;
java.awt.TextField Quantity;
java.awt.Label label2;
java.awt.Button AddButton;
java.awt.Button DeleteButton;
java.awt.Button CancelButton;
java.awt.Label label3;
java.awt.Checkbox FruitsRButton;
CheckboxGroup Group1;
java.awt.Checkbox VegetablesRButton;
java.awt.Checkbox OthersRButton;
java.awt.Button sendButton;
java.awt.Label label4;
java.awt.TextField TotalCost;
java.awt.List quantityList;
java.awt.List priceList;
java.awt.List productChoice;
java.awt.TextField Counter;
java.awt.Label label5;
java.awt.List statusList;
java.awt.Label label6;
java.awt.Button productButton;
java.awt.Label label7;
java.awt.Label msgArea;
java.awt.Button statusButton;
java.awt.Label label8;
java.awt.Label orderNumber;
java.awt.List orderPriceList;
//}}

// Part of init method for OrderListView

public void QMenv_init() {
MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;

} // end of method

Appendix A. Client Program 127

// Start method called when applet starts to execute
// A good time to open the Queue manager

public void start() {
try {

// Create a connection to the queue manager
qMgr = new MQQueueManager(qManager);

}

catch (MQException ex) {
showStatus(″Unable to connect to the Queue Manager.″) ;
mqclose();

}
} // end of method

// Stop method

public void stop() {
mqclose();

} // end of method

// mqclose method

public void mqclose() {
try {

if (qMgr != null)
qMgr.disconnect();

}
catch (MQException ex) {

showStatus(″Error on Disconnect″ + ex.reasonCode);
}

} // end of method
}

A.3 FBPUTQ1.java
// MQSeries Client for Java sample application

 import MQ.*; // Inlude the MQ package
 import java.io.*;

 public class FBputQ1 extends java.applet.Applet {

// Definitions

private String hostname = ″mqjava″ ; // name of host

128 Internet Application Development with MQSeries and Java

private String channel = ″javach1″ ; // name of channel
private String qManager = ″javamqm″ ; // name of queue manager

// private MQQueueManager qMgr; // queue manager object
private static MQQueue java_q1; // queue 1 for put
private static MQMessage putmsg; // the put message
private static MQPutMessageOptions pmo; // Put Message Options

String msgText;

// Init method

public FBputQ1() {
// Set up MQ environment
MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;

 } // end of init

// Method to put message on javaq1

public void fb_mqput(String msgText) {
try {

// open a queue for mqput output ...
int openOptions = MQC.MQOO_OUTPUT |

MQC.MQOO_INQUIRE |
MQC.MQOO_SET;

java_q1 = OrderListView.qMgr.accessQueue(″javaq1″ ,
openOptions,
null, // this queue manager
null, // no dynamic queue name
null); // no alternate user ID

putmsg = new MQMessage(); // get a new message
putmsg.writeString(msgText); // fill the buffer
pmo = new MQPutMessageOptions(); // accept the defaults
java_q1.put(putmsg, pmo); // put message on queue

// Save the messageId for mutiuser order reads
OrderListView.MsgId = putmsg.messageId;

java_q1.close(); // Close the queue

} // end of try *********

catch (MQException ex) {
if (ex.reasonCode == 2002) {

System.out.println(″allready connected″) ;

Appendix A. Client Program 129

}
else {

System.out.println(″An MQ error occurred : Completion code ″ +
ex.completionCode +
″ Reason code ″ + ex.reasonCode);

}
}

catch (java.io.IOException ex) {
System.out.println(″Error when writing to the messagebuffer: ″ + ″ +

ex);
}

} // end of method
 }

A.4 FBGETQ2.java
// MQSeries Client for Java sample application

 import MQ.*; // Inlude the MQ package
 import java.io.*;

 public class FBgetQ2 extends java.applet.Applet {

// Definitions

private String hostname = ″mqjava″ ; // name of host
private String channel = ″javach1″ ; // name of channel
private String qManager = ″javamqm″ ; // name of queue manager

// private MQQueueManager qMgr; // queue manager object
private static MQQueue java_q2; // queue 1 for get
private static MQMessage getmsg; // the get message
private static MQGetMessageOptions gmo; // Get Message Options

String msgText;

// Init method

public FBgetQ2() {
// Set up MQ environment
MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;

} // end of init FBgetQ2

// Method to get a message from javaq2

130 Internet Application Development with MQSeries and Java

public void fb_mqget() {
try {

// open a queue...
int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |

MQC.MQOO_INQUIRE |
MQC.MQOO_SET;

java_q2 = OrderListView.qMgr.accessQueue(″javaq2″ ,
openOptions,
null, // this q manager
null, // no dynamic q name
null); // no alternate user id

getmsg = new MQMessage(); // create a new message

// Set MsgId to put value to allow muti-user access
getmsg.messageId = OrderListView.MsgId;

//
gmo = new MQGetMessageOptions(); // accept option defaults
gmo.options = MQC.MQGMO_WAIT; // set wait option
gmo.waitInterval = 30000; // set wait to 30 sec
java_q2.get(getmsg,gmo,3000); // max message size = 3000
msgText = getmsg.readLine(); // get the message

java_q2.close(); // Close the queue

} // end of try

catch (MQException ex) {
if (ex.reasonCode == 2033 || ex.reasonCode == 2002) {

System.out.println (″No more messages, try later″) ;
}
else {

System.out.println (″An MQ error occurred : Completion code ″ +
ex.completionCode +
″ Reason code ″ + ex.reasonCode);

}
} // end of catch MQException

catch (java.io.IOException ex) {
System.out.println (″Error when writing to the message buffer: ″ +

ex);
} // end of catch

} // end of start of fb_mqget
 } // end of FBgetQ2

Appendix A. Client Program 131

A.5 GTCGET.java
// MQSeries Client for Java sample application

 import MQ.*; // Inlude the MQ package
 import java.io.*;

 public class GTCget extends java.applet.Applet {

// Definitions

private String hostname = ″mqjava″ ; // name of host
private String channel = ″javach1″ ; // name of channel
private String qManager = ″javamqm″ ; // name of queue manager

// private MQQueueManager qMgr; // queue manager object
String msgText;

// Init method

public GTCget() {
// Set up MQ environment
MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;

 } // end of init

// Method to get a message from javaq3

public void my_mqget() {
try {

// open a queue...
int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |

MQC.MQOO_OUTPUT |
MQC.MQOO_INQUIRE |
MQC.MQOO_SET;

MQQueue system_default_local_queue =
OrderListView.qMgr.accessQueue(″javaq3″ ,

openOptions,
null, // this q manager
null, // no dynamic q name
null); // no alternate user id

// get the message ...
MQMessage retrievedMessage = new MQMessage();

// Set MsgId to put value to allow muti-user access

132 Internet Application Development with MQSeries and Java

retrievedMessage.messageId = OrderListView.MsgId;
//

MQGetMessageOptions gmo = new MQGetMessageOptions();

system_default_local_queue.get(retrievedMessage,
gmo,
100); // max message size

// Display the message text
msgText = retrievedMessage.readLine();
System.out.println(″Order Status is ″ + msgText);

// Close the queue
system_default_local_queue.close();

} // end of try

catch (MQException ex) {
if (ex.reasonCode == 2033]] ex.reasonCode == 2002) {

System.out.println(″Last Order Status displayed″) ;
msgText = ″Last Order Status displayed″ ;

}
else
System.out.println (″An MQ error occurred: Completion code ″ +

ex.completionCode +
″ Reason code ″ + ex.reasonCode);

}

catch (java.io.IOException ex) {
System.out.println

(″Error occurred when writing to the message buffer: ″ +
ex);

}

} // end of start of my_mqget
 }

Appendix A. Client Program 133

134 Internet Application Development with MQSeries and Java

Appendix B. Server Program

This appendix contains the source for the business logic running in the
server and files to compile it:

• BL1.C is the source code, written in C.

• Bl1.MAK is the make fi le for the IBM VisualAge C++ compiler.

• BL1.DEF is the definition file.

B.1 Business Logic BL1.C
/**/
/* */
/* BL1: Business Logic for Java Demonstration */
/* */
/**/
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define INCL_DOSMISC
#define INCL_DOSPROCESS
/***/
/* Subroutines */
/***/
int CHECK_FILE (void);
int READ_FILE (int);
void UPDATE_FILE (void);
int OPEN_QUEUE (int);
/***/
/* Definitions for MQSeries */
/***/
#include <cmqc.h> // MQ header file
MQLONG CompCode; // Return codes
MQLONG Reason; // Return codes
MQHCONN Hcon; // Handle to queue manager
char inputq[] = ″javaq1″ ; // Input queue name
MQHOBJ Hinput; // handle
MQGMO MQgmo = {MQGMO_DEFAULT}; // get message options
MQOD odin = {MQOD_DEFAULT}; // object descriptor
char outputq1[] = ″javaq2″ ; // Output queue name
char outputq2[] = ″javaq3″ ; // Output queue name
MQHOBJ Houtput; // handle
MQPMO MQpmo = {MQPMO_DEFAULT}; // put message options
MQOD odout = {MQOD_DEFAULT}; // object descriptor

 Copyright IBM Corp. 1997 135

MQMD MQmd = {MQMD_DEFAULT}; // Message Descriptor
MQLONG O_options; // MQOPEN options
/***/
/* Inventory for demo program */
/***/
#define ITEMS 10 // Length of the following tables
struct items { char item[16]; // Product name

char price[6]; }; // Product price
// Table 1: Fruits

struct items Fruit[ITEMS] = { {″Apples ″,″00100″ }, /*
{″Bananas ″,″00050″ }, /* 2 */
{″Coconuts ″,″00200″ }, /* 3 */
{″Grapes ″,″00150″ }, /* 4 */
{″Lemons ″,″00020″ }, /* 5 */
{″Oranges ″,″00100″ }, /* 6 */
{″Peaches ″,″00200″ }, /* 7 */
{″Pears ″,″00200″ }, /* 8 */
{″Strawberries ″,″00360″ }, /* 9 */
{″Watermelon ″,″00040″ } }; /* 10 */

// Table 2: Vegetables
struct items Veggy[ITEMS] = { {″Broccoli ″,″00120″ }, /*

{″Carrots ″,″00080″ }, /* 2 */
{″Cucumbers ″,″00050″ }, /* 3 */
{″Lettuce ″,″00150″ }, /* 4 */
{″Red cabbage ″,″00100″ }, /* 5 */
{″Leeks ″,″00300″ }, /* 6 */
{″Potatoes ″,″00060″ }, /* 7 */
{″Okra ″,″00120″ }, /* 8 */
{″Green beans ″,″00120″ }, /* 9 */
{″Zuchini ″,″00090″ } }; /* 10 */

// Table 3: Other products
struct items Other[ITEMS] = { {″Coca Cola ″,″00100″ }, /*

{″Orange juice ″,″00200″ }, /* 2 */
{″Perrier water ″,″00300″ }, /* 3 */
{″Olive Oil ″,″01200″ }, /* 4 */
{″Venegar ″,″00400″ }, /* 5 */
{″Tofu ″,″00100″ }, /* 6 */
{″Bread ″,″00200″ }, /* 7 */
{″Butter ″,″00200″ }, /* 8 */
{″Milk ″,″00120″ }, /* 9 */
{″Kitchen knife ″,″01750″ } }; /* 10 */

136 Internet Application Development with MQSeries and Java

/***/
/* Definitions for inventory files */
/***/
char fnfruit[] = ″fruit.dat″ ; // File names
char fnveggy[] = ″veggies.dat″ ;
char fnother[] = ″other.dat″ ;
char fn[20]; // Current file name
FILE *fp;
char quantity[6] = ″00999″; // Default quantity
char file_id[4]; // File ID
char file_items[2]; // Number of products in file
char file_product[16]; // Product name
char file_quantity[6]; // Quantity on hand
char file_price[6]; // Price from product file

typedef struct _MSG1 // Structure for product files
{
 MQCHAR ID[4]; // ID (1, 2 or 3)
 MQCHAR count[2]; // Number of products
 MQCHAR message[500]; // Up to 20 product entries
} MSG1;
MSG1 msg1; // Buffer containing one file
int file_number; // File ID (1, 2 or 3);
/***/
/* Input / Output Buffers and Work Areas */
/***/
char szMsgId[25]; // Message ID (MQ)
char szCorrelId[20]; // Correlation ID (MQ)

MQBYTE buffer[1000]; // Message buffer
MQLONG buflen; // Buffer length
MQLONG messlen; // Message length (received)
int recordID; // ID in message from client
int count; // Number of items in msg from client
int offset; // Offset in message buffer

char order_name[16]; // Name of product from order ms
char order_quantity[6]; // Quantity ordered

char wkfld[11]; // Work fields
int i, ij, ik, il;
int records;
unsigned int length;
char *loc;
int nogo;

Appendix B. Server Program 137

/***/
/* */
/* P r o g r a m */
/* */
/***/
int main()
{

printf(″Program BL1 starting...\n″) ;
if (CHECK_FILE () == 1) exit (1); // Create inventory file if it

// does not exists.
/**/
/* Connect to queue manager */
/**/

MQCONN(″ ″, // default queue manager
&Hcon, // connection handle
&CompCode, // completion code
&Reason); // reason code

if (CompCode == MQCC_FAILED)
{
printf(″MQCONN ended with reason code %ld\n″ , Reason);
exit(Reason);

}

/**/
/* Open input queue for read */
/**/

strcpy(odin.ObjectName,inputq); // Name of input queue
O_options = MQOO_INPUT_AS_Q_DEF // (open queue for input

+ MQOO_FAIL_IF_QUIESCING;// but not if MQM stopping)

MQOPEN(Hcon, // Connection handle
&odin, // Object descriptor for queue
O_options, // Open options
&Hinput, // Handle to queue
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
printf(″MQOPEN ended with reason code %ld\n″ , Reason);

if (CompCode == MQCC_FAILED)
{
printf(″Error: unable to open queue %s for input\n″ ,inputq);
exit(Reason);

}

138 Internet Application Development with MQSeries and Java

/**/
/* Loop to read messages from input queue */
/**/

CompCode = MQCC_OK; // Loop control
while (CompCode != MQCC_FAILED)
{
buflen = sizeof(buffer) - 1; // Buffer size for GET
MQgmo.Options = MQGMO_WAIT; // Wait for next message
MQgmo.WaitInterval = 10000; // 10 second max. wait
memcpy(MQmd.MsgId, MQMI_NONE, sizeof(MQmd.MsgId));
memcpy(MQmd.CorrelId, MQCI_NONE, sizeof(MQmd.CorrelId));

MQGET (Hcon, // Connection handle
Hinput, // Object handle to queue
&MQmd, // Message descriptor
&MQgmo, // Get message options
buflen, // Buffer length
buffer, // Message buffer
&messlen, // Message length
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE) {
if (Reason == MQRC_NO_MSG_AVAILABLE)

printf(″No more messages\n″) ;
else {
printf(″MQGET ended with reason code %ld\n″ , Reason);
if (Reason == MQRC_TRUNCATED_MSG_FAILED)

CompCode = MQCC_FAILED;
}

}
/***/
/* Display each message received */
/***/
if (CompCode != MQCC_FAILED)
{
length = strlen (MQmd.MsgId); // Message ID
loc = strchr(MQmd.MsgId,′ ′) ;
if (loc != NULL) length = loc - MQmd.MsgId;
strncpy (szMsgId,MQmd.MsgId,length);
szMsgId[length] = ′ \0′ ;
length = strlen (MQmd.CorrelId); // Correlation ID
loc = strchr(MQmd.CorrelId,′ ′) ;
if (loc != NULL) length = loc - MQmd.CorrelId;
strncpy (szCorrelId,MQmd.CorrelId,length);
szCorrelId[length] = ′ \0′ ;
buffer[messlen] = ′ \0′ ; // Add terminator
printf (″Received MsgId=%s, CorrelId=%s, Length=%d\n″ ,

szMsgId, szCorrelId, messlen);
printf(″<%s>\n″ , buffer);

Appendix B. Server Program 139

/***/
/* Obtain message ID and number of products in message */
/***/
ik = 0;
for (ij = 0; ij < 4; ij++) { // Possible blanks

msg1.ID[ij] = buffer[ij]; // copy to outp
if (buffer[ij] != ′ ′) {

wkfld[ik] = buffer[ij];
ik++;

}
}
wkfld[ik] = ′ \0′ ;
recordID = atoi(wkfld); // Order number
wkfld[0] = buffer[4];
wkfld[1] = buffer[5];
wkfld[2] = ′ \0′ ;
count = atoi(wkfld); // Number of products
printf(″Received record ID %d, items=%d\n″ , recordID, count);

/***/
/* ID = 1 or 2 or 3: */
/* Read inventory from disk and send to client */
/***/
if (recordID == 1 || // get fruit

recordID == 2 || // get vegetable
recordID == 3) { // get others
if (READ_FILE (recordID) == 1) exit(1);
/***/
/* Send file as message to requestor */
/***/
if (OPEN_QUEUE(1) == 1) exit(1);
MQmd.Persistence = MQPER_NOT_PERSISTENT;
MQPUT (Hcon, Houtput, &MQmd, &MQpmo, // Output and input

256, &msg1, // use same MQmd
&CompCode, &Reason);

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

else printf(″File %s sent.\n″ , fn);
fclose(fp);
/**/
/* Close output queue */
/**/
MQCLOSE (Hcon, // Connection handle

&Houtput, // Object handle for queue
MQCO_NONE, // No close options
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}

140 Internet Application Development with MQSeries and Java

/***/
/* ID > 99: */
/* Process an order */
/***/
else
if (recordID > 99) { // Order messsage

printf (″Process order %d with %d items\n″ ,recordID, count);
nogo = 0;
UPDATE_FILE ();

if (OPEN_QUEUE(2) == 1) exit(1);

MQmd.Persistence = MQPER_NOT_PERSISTENT;
sprintf (buffer,″Order %d with %d items processed.″ ,recordID, count);
length = strlen(buffer);
MQPUT (Hcon, Houtput, &MQmd, &MQpmo,

length, buffer,
&CompCode, &Reason);

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

if (nogo != 0) {
sprintf(buffer,″ %d item(s) on back order (%s).″ ,

nogo, recordID);
length = strlen(buffer);
MQPUT (Hcon, Houtput, &MQmd, &MQpmo,

length, buffer,
&CompCode, &Reason);

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

}
/**/
/* Close output queue */
/**/
MQCLOSE (Hcon, // Connection handle

&Houtput, // Object handle for queue
MQCO_NONE, // No close options
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}
/***/
/* Wrong record ID */
/***/
else {

Appendix B. Server Program 141

if (OPEN_QUEUE(2) == 1) exit(1);
strcpy (buffer,″ Wrong message ID --- discarded.″) ;
length = strlen(buffer);
MQPUT (Hcon, Houtput, &MQmd, &MQpmo,

length, buffer,
&CompCode, &Reason);

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

MQCLOSE (Hcon, // Connection handle
&Houtput, // Object handle for queue
MQCO_NONE, // No close options
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}
/***/
} // end if (CompCode != MQCC_FAILED)

} // end while (CompCode != MQCC_FAILED)
 /**/
 /* Close input queue */
 /**/

MQCLOSE (Hcon, // Connection handle
&Hinput, // Object handle for queue
MQCO_NONE, // No close options
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
{

printf(″MQCLOSE ended with reason code %ld\n″ , Reason);
}

/**/
/* Disconnect from queue manager */
/**/

MQDISC (&Hcon, // Connection handle
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
{

printf(″MQDISC ended with reason code %ld\n″ , Reason);
}

/**/
/* Program ended successfully */
/**/

printf(″Program BL1 ended OK\n″) ;
return(0);

} // end MAIN
/**/

142 Internet Application Development with MQSeries and Java

/**/
/* S U B R O U T I N E S */
/**/
/* Check if file exists. If not, create it. */
/**/
int CHECK_FILE ()
 {

for (ij = 0; ij < 3; ij++) { // Check for up to three files

if (ij == 0) { strcpy (fn,fnfruit);
strncpy (file_id,″0001″,4);

}
if (ij == 1) { strcpy (fn,fnveggy);

strncpy (file_id,″0002″,4);
}

if (ij == 2) { strcpy (fn,fnother);
strncpy (file_id,″0003″,4);

}
strncpy (file_items,″10″,2); // Fixed 10 entries
if ((fp = fopen(fn,″r″)) == NULL) { // If file does not exist

if ((fp = fopen(fn,″w″)) == NULL) {
printf(″Cannot create file %s. Abort.\n″ , fn);
return (1);

}
il = fwrite (file_id, 4, 1, fp); // File ID
il = fwrite (file_items, 2, 1, fp); // Number or items

for (ik = 0; ik < ITEMS ; ik++) { // Get product from table
if (ij == 0) { strncpy (file_product,Fruit[ik].item,15);

strncpy (file_price,Fruit[ik].price,5);
}

if (ij == 1) { strncpy (file_product,Veggy[ik].item,15);
strncpy (file_price,Veggy[ik].price,5);

}
if (ij == 2) { strncpy (file_product,Other[ik].item,15);

strncpy (file_price,Other[ik].price,5);
}

il = fwrite (file_product,15,1,fp); // Product name
il = fwrite (quantity,5,1,fp); // Default quantity
il = fwrite (file_price,5,1,fp); // Price

}
printf(″File %s created\n″ , fn);

}
fclose (fp);

}
return (0);

 }

Appendix B. Server Program 143

/**/
/* Read one of three product files */
/**/
int READ_FILE (flda)

int flda;
 {

if (flda == 1) strcpy (fn,fnfruit);
if (flda == 2) strcpy (fn,fnveggy);
if (flda == 3) strcpy (fn,fnother);
if ((fp = fopen(fn,″r+″)) == NULL) { // Open for read/write

printf (″Problem opening file %s\n″ ,fn);
return (1);

}
ik = fread (msg1.ID, 4,1,fp); // File ID
ik = fread (msg1.count, 2,1,fp); // Number of items
if (msg1.count[0] != ′ ′) {

strncpy (wkfld,msg1.count,2);
wkfld[2] = ′ \0′ ;

}
else {

wkfld[0] = msg1.count[1];
wkfld[1] = ′ \0′ ;

}
records = atoi (wkfld);
ik = fread (msg1.message, 25, records, fp); // read all products
return (0);

 }
/**/
/* Open output queue */
/**/
int OPEN_QUEUE (flda)

int flda;
 {

if (flda == 1) strcpy(odout.ObjectName,outputq1);
else strcpy(odout.ObjectName,outputq2);
MQOPEN(Hcon, // Connection handle

&odout, // Object descriptor for queue
MQOO_OUTPUT, // Open options
&Houtput, // Handle to queue
&CompCode, &Reason); // Return codes

if (Reason != MQRC_NONE)
printf(″MQOPEN ended with reason code %ld\n″ , Reason);

if (CompCode == MQCC_FAILED) {
printf(″Error: unable to open queue %s for output\n″ ,odout.ObjectName);
return(1);

}
return(0);

144 Internet Application Development with MQSeries and Java

}
/**/
/* Update inventory in files */
/**/
void UPDATE_FILE ()
{
 int pass, i1, i2, i3, done, qf, qo;
 int foffset, filechange;

 done = 0; // Count items processed
 /**/
 /* For each pass read a file from disk and compare each item in the file */
 /* with all items in the order message. */
 /**/
 for (pass = 1; pass < 4; pass++) {

READ_FILE(pass); // Read one of 3 files
filechange=0; // Indicator for update
foffset = 0; // Offset for msg1.message
/**/
/* Obtain a product from the inventory file */
/**/
for (i1 = 0; i1 < records; i1++) { // Check each record in file

strncpy (file_product, msg1.message+foffset,15);
file_product[15] = ′ \0′ ;
strncpy (file_quantity, msg1.message+foffset+15, 5);
file_quantity[5] = ′ \0′ ;
printf(″Fil=%s&&& items=%s\n″ ,file_product, file_quantity);
/**/
/* Obtain a product from the order message */
/**/
offset = 6; // First item in msg buffer
for (i2 = 1; i2 <= count; i2++) { // Go through order message

strncpy (order_name, buffer+offset,15);
order_name[15] = ′ \0′ ;
strncpy (order_quantity, buffer+offset+15,5);
order_quantity[5] = ′ \0′ ;
/**/
/* Compare name from inventory file with name from order msg */
/**/
if (strncmp (file_product, order_name, 6) == 0) {

Appendix B. Server Program 145

/***/
/* Match: Update quantity in inventory buffer */
/***/
qf = atoi(file_quantity);
qo = atoi(order_quantity);
if (qf >= qo) {

qf = qf - qo;
// itoa (qf, wkfld, 10); does not work on AIX

sprintf(wkfld,″%d″ ,qf);
strcpy (file_quantity, ″00000″);
length = strlen(wkfld);
for (i3 = 0; i3 < length; i3++)

file_quantity[4-i3] = wkfld[length-1-i3];
strncpy (msg1.message+foffset+15, file_quantity, 5);
filechange=1;

}
else nogo++;
done++;
strcpy (buffer+offset,″*****″) ;
break;

} // end product matched
/***/
/* No match: Check next item in order message */
/***/

else offset = offset + 25; // Next item in msg buffer
} // end pass through msg
foffset = foffset + 25; // Next item in file

} // end search product file
/**/
/* Finished processing one of the inventory files. If an item has been*/
/* updated save file on disk. Return when all items in order message */
/* have been processed. */
/**/
if (filechange == 1) {

printf(″Update file %s\n″ ,fn);
rewind(fp);
il = fwrite (msg1.ID, 4, 1, fp); // File ID
il = fwrite (msg1.count, 2, 1, fp); // Number or items
il = fwrite (msg1.message, 25, records, fp);

}
fclose(fp);
if (done == count) return;

 } // end of a pass (file)
}
/**/

146 Internet Application Development with MQSeries and Java

B.2 Make File
#* Make file for a Business Logic

CC = icc
LINK = icc

CFLAGS = /Ge /Gd- /Se /Re /ss /Gm+ /Ti /Q
LFLAGS = /De /NOE /ALIGN:16 /EXEPACK /M /DEBUG /BASE:0x10000

OBJS = bl1.obj

LIBS = bmqapic2.lib os2386.lib mqm.lib

all: bl1.exe

bl1.exe: bl1.obj
$(LINK) /B″$(LFLAGS)″ $(CFLAGS) $(OBJS) $(LIBS) bl1.def

bl1.obj: bl1.c
$(CC) /c $(CFLAGS) $*.c

B.3 Definition File

NAME bl1 WINDOWCOMPAT
PROTMODE

Appendix B. Server Program 147

148 Internet Application Development with MQSeries and Java

Appendix C. Diskette Contents

The diskette contains the examples developed in this book. Table 6 lists
the directories and the file names.

Note: The diskette can store only file names in 8.3 format. Make sure that
you change the the file name when you copy the files onto your own system.

Table 6 (Page 1 of 2). Files on Diskette

Real file name File name on diskette Description

\demo Front page for demonstration program

mqwelcom.html same HTML page that links to the demonstration
program.

\java Client progams for Chapter 9, “The Sample Application” on page 105

FBgetQ2.class FBgetQ2.cla Class that gets messages containing order
lists from queue 2.

FBgetQ2.java FBgetQ2.jav

FBputQ1.class FBputQ1.cla Class that puts messages for the server
program on queue 1.

FBputQ1.java FBputQ1.jav

GTCget.class GTCget.cla Class that gets status messages from queue 3.

GTCget.java GTCget.jav

Orderl istApplet.html Order.htm HTML file that loads the applet.

OrderListView.class Order.cla The applet running in the client (order entry
GUI)

OrderListView.jav Order.jav

\C Server progam for Chapter 9, “The Sample Application” on page 105.

bl1.exe same The server program the applet communicates
with.

bl1.c same

bl1.def same Definition file for compile.

bl1.mak same Make file for compile.

\mqm MQSeries definitions for Chapter 9, “The Sample Application” on page 105

COMMANDS.IN same Some helpful RUNMQSC commands.

JAVACOMA.TST same Queue manager objects.

run.cmd same Command file to start the server application.

 Copyright IBM Corp. 1997 149

Table 6 (Page 2 of 2). Files on Diskette

Real file name File name on diskette Description

\myjava Java examples from Chapter 5, “Java Overview” on page 41.

Hello.class Hello.cla The ″Hello World″ application.

Hello.java Hello.jav

HelloWorld.class HelloW.cla The ″Hello World″ applet.

HelloWorld.java HelloW.jav

HelloWorld.html HelloW.htm The HTML file that loads the ″Hello World″
applet.

\html HTML examples from Chapter 4, “HTML Overview” on page 27

MQJCBAN.GIF same The MQSeries banner displayed in the Web
page.

myhtml.html myhtml.htm The HTML file described in the chapter.

OTHER.HTML OTHER.htm The HTML file used to demonstrate links to
another Web page.

150 Internet Application Development with MQSeries and Java

Appendix D. Special Notices

This publication is intended to help network adminstrators to install and
maintain Internet services, and application programmers to write programs
with Java and MQSeries. The information in this publication is not intended
as the specification of any programming interfaces that are provided by
Java and MQSeries. See the PUBLICATIONS section of the IBM
Programming Announcement for MQSeries and Java for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each

 Copyright IBM Corp. 1997 151

item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely
coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other trademarks are trademarks of their respective companies.

AIX Application System/400
AS/400 BookManager
BookMaster IBM
MQSeries Open Blueprint
Operating System/2 OS/2
RISC System/6000 RS/6000
SupportPac

SunOS, SPARCstation, Network File
System, NFS

Netscape, Netscape Navigator

Netscape Communications Corporation:

152 Internet Application Development with MQSeries and Java

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 155.

• Examples of Using MQSeries in WWW, SG24-4882

E.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

E.3 Other Publications

These publications are also relevant as further information sources:

• MQSeries Planning Guide, GC33-1349

• MQSeries Clients, GC33-1632

• MQSeries Command Reference, SC33-1369

• MQSeries Distributed Queuing Guide, SC33-1139

• MQSeries Application Programming Reference, SC33-1673

• MQSeries Application Programming Guide, SC33-0807

 Copyright IBM Corp. 1997 153

154 Internet Application Development with MQSeries and Java

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1997 155

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
(+45) 48 14 2207 (long distance charge)Outside North America

156 Internet Application Development with MQSeries and Java

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How to Get ITSO Redbooks 157

158 Internet Application Development with MQSeries and Java

Glossary

Application Programming Interface (API) . An
Application Programming Interface consists of
the functions and variables that programmers
are allowed to use in their applications.

applet . A Java program that runs within the
Web browser, providing executable content, but
having no access to the PC environment.
Applets can be embedded within existing HTML
documents and allows the user to interact with
them. Applet can also run without a browser,
you than have to use an applet viewer.

application . A Java program that runs outside a
Web browser, having access to the entire PC
environment. Applications commonly run from
within a shell environment, or from the
command line.

asynchronous messaging . A method of
communication between programs in which
programs place messages on message queues.
With asynchronous messaging, the sending
program proceeds with its own processing
without waiting for a reply to its message.

browser . A browser is a synonym of Web
browser or Client browser. It is a program with
a graphical interface. Commonly used browsers
are:

• IBM WebExplorer

• MS Internet Explorer

• Netscape Navigator

• Sun HotJava

class . A class is an encapsulated collection of
data, and methods to operat e on the data. A
class may be instantiated to produce an object
that is an instance of the class.

client . In MQSeries, a client is a run-time
component that provides access t o queuing
services on a server for local user applications.

Email . Electronic mail (also e-mail) is a text
message delivering method across the Internet

or the Intranet. Plain text (ASCII format) and
binary files can be send.

encapsulation . Encapsulation is an
object-oriented programming technique that
makes an object′s data private or protected and
allows programmers to access and manipulate
the data only through method calls.

Firewall . A security scheme to protect one or
more computer within the Internet from intrusion
by other external computer. A firewall is a
invisible boundary created by software.
Computer within a firewall can share resources
and have access to other computer, which
computer outside the firewall can′ t. External
requests can be examined and filtered before
they are allowed to go through the firewall and
than have also access to the resources within
the firewall.

host . A term referring to a computer (′of every
size′) that is connected to the Internet or the
Intranet.

HotJava . A Web browser developed by Sun
Microsystems, the first ′Java-enabled ′ Web
browser.

HTML . HTML (Hypertext Markup Language) is a
language used to define information that is to be
displayed on the World Wide Web.

instance . An instance is an object. When a
class is instantiated to produce an object, we
say that the object is an instance of the class.

Internet . The largest computer network of the
world. It is a network of networks (a network
can be a single computer) linked together to
form a collective entity. They all communicate
via the TCP/IP protocol. Other names are:
Superhighway, Datahighway, The Net or
CyberSpace.

interface . An interface is a special type of class
which contains only abstract methods and no
instance variables. An interfaces provides a

 Copyright IBM Corp. 1997 159

common set of methods that can be
implemented by subclasses of a number of
different classes.

Intranet . It follows the same rules as the
Internet, but is not an open network. It′s only
operates within an enterprise network protected
by a firewall against the Internet.

Java . An object-oriented, secure and portable
programming language, comparable wi th C++
without the complex parts of C++ l ike pointers
and memory management. Java is an
interpreter language thats needs a virtual java
engine to run. Many Web browser have a
built-in Java engine.

Java Developers Kit (JDK) . A package of
software distributed by Sun Microsystems for
Java developers. It includes the Java
interpreter, Java classes and Java developmetn
tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and
documentation generator.

message . In message queuing applications, a
communication sent between programs. There
are persistent and non-persistent messages.

message channel . In distributed message
queuing, a mechanism for moving messages
from one queue manager to another. A
message channel comprises two message
channel agents (a sender and a receiver) and a
communication link.

message channel agent . A program that
transmits messages from a transmission queue
to a communication link, or from a
communication link to a destination queue.

message channel interface . The MQSeries
interface to which application programs that
transmit messages between an MQSeries queue
manager and another messaging system must
conform. A part of the MQSeries Framework.

message queue . Synonym for queue.

message queue interface . The programming
interface provided by the MQSeries queue

managers. It allows application programs to
access message queuing services.

message queuing . A programming technique in
which each program within an application
communictes with the other programs by putting
messages on queues.

messaging . See synchronous messaging and
asynchronous messaging.

method . Method is the object-oriented
programming term for a function or procedure.

MQI . Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system. It transfers
only MQI calls and responses in a bidirectional
manner.

MQSC . MQSeries commands.

MQSeries . A family of IBM licensed programs
that provide message queuing services.

MQSeries client . Part of an MQSeries product
that can be installed on a system without
installing the full queue manager. The
MQSeries client accepts MQI calls from
applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Commands that
are used to manipulate MQSeries objects.

object . (1) In Java, an object is an instance of a
class. A class models a group of things; an
object models a particular member of that
group.
(2) in MQSeries, an object is a queue manager,
a queue, or a channel.

package . A package in Java is a way of giving
a piece of Java code access to a specific set of
classes. Java code that is part of a particular
package has access to all the classes in the
package and to all non-private A private field is
not visible outside its own class .

160 Internet Application Development with MQSeries and Java

protected . A protected field is only visible
within its own class, within subclasses, or within
packages of which the class is a part.

public . A public class or interface is visible
everywhere. A public method or variable is
visible everywhere that its class is visible.

queue . A queue is an MQSeries object.
Message queuing applications can put messages
on, and get messages from, a queue.

queue manager . A queue manager is a system
program the provides message queuing services
to applications.

server . (1)In MQSeries a server is a queue
manager that provides message queuing
services to client applications running on a
remote workstation.
(2) More generally a server is a program that
responds to requests for information in the
particular two-program information flow model
of client/server.
(3)The computer on which a server program
runs.

socket . A mechanism to allow processes to
communicate with one other over the Internet.
They are the core functionality behind the
TCP/IP protocol.

subclass . A subclass is a class that extends
another. The subclass inherits the protected
methods and variables of its superclass.

superclass . A superclass is a class that is
extended by some other class. The superclass′s
protected methods and variables are available
to the subclass.

Synchronous messaging . A method of
communication between programs in which
programs place messages on message queues.
With synchronous messaging, the sending
program waits for a reply to its message before
resuming its own processing.

Web . A short name for the World-Wide Web
(WWW). You can think about the web as a
spider web, which connects thousands of
computer together.

Web browser . A program that formats and
displays information that is distributed on the
World Wide Web.

Web server . A program that serves HTML
pages to the Web browser. See also Web
browser.

World Wide Web (Web) . The World Wide Web is
an Internet service, based on a common set of
protocols, which allows a particularly configured
server computer to distribute documents across
the Internet in a standard way.

Glossary 161

162 Internet Application Development with MQSeries and Java

List of Abbreviations

API Application
Programming Interface

CGI Common Gateway
Interface

DOS Disk Operating System

DNS Domain Name Server

FTP File Transfer Protocol

GIF Graphic Interchange
Format

HPFS High Performance File
System

HTML HyperText Mark-up
Language

HTTP HyperText Transfer
Protocol

ICCS IBM Internet Connection
Secure Server

ITSO International Technical
Support Organization

IVP Installation Verification
Program

JDK Java Development Kit

MCA message channel agent

MQ Message Queuing

MQI Message Queuing
Interface

MQM MQ queue manager

NNTP Network News Transfer
Protocol

PID program identif ication
number

PROFS Professional Office
System

SDK Software Development
Kit

SGML Standard Generalized
Mark-up Language

SMTP Simple Mail Transfer
Protocol

SLIP Serial Line Internet
Protocol

SSL Secure Socket Layer

TCP/IP Transmission Control
Protocol / Internet
Protocol

URL Uniform Resource
Locator

WWW World Wide Web

 Copyright IBM Corp. 1997 163

164 Internet Application Development with MQSeries and Java

Index

Special Characters
(HTML file) 37
< ! > 31
< A H R E F = . . . > 36
< A N A M E = . . . > 36
< A P P L E T > 39, 49
< B > b o l d 32
< B O D Y > 28
< B R > 31
< C I T E > 33
<CODE> code samples 32
< D L > < D T > < D D > < / D L > 33
<EMP> emphas ized 32
< H 1 > 29
< H 2 > 31
< H 3 > 31
< H 4 > 31
< H 5 > 31
< H 6 > 31
< H E A D > 28
< H R > 29, 31
< H T M L > 28
< i > i t a l i c s 32
< I M G > 29
<KBD> t yped t ex t 32
< L I > 35
< O L > 35
< P > 29
< P A R A M > 40
 s t rong 32
< T I T L E > 28
< U L > 35

A
abbreviations 163
accessing processes 93
accessing queues 93
accessProcess 93
accessQueue 93
acronyms 163

administrator ID 15
advantages 1
alias queue 60
amqcrsta 69
amqscoma.tst 56, 69
AMQSGETC 65
AMQSPUTC 65
anchor 36
Apache 9, 24
API 53
APIs 70
applet 39, 43

clock 40
view 50

applet class directory 23
applet vs application 45
appletviewer 79
application vs applet 45
assure delivery 1
asynchronous messaging 54
awt 48

B
benefits 74, 89
bibl iography 153
BookMaster 27
browsers 5

setup for Java 19
byte code 41, 45

C
catch block 91
CGI scripts 15
channel 57, 62, 68

message channel 57
MQI channel 57

class (Java) 46
class hierarchy 101
class library 42, 84
classes 44

 Copyright IBM Corp. 1997 165

CLASSPATH 19, 23, 46, 79
client 61
client connection
cl ient/server

connection 62
fat client 61
slim client 61
solutions 1
start connection 64
test connection 64
test connection (IVP) 66

clock 40
CODE (applet) 40
com\ibm\mq 22
compile 99
compiler

Java versus C 42
javac 47

CONFIG.SYS 11, 14, 15, 18, 19, 64
configuration

hardware for project 4
Internet Connection Server 14

configuration fi le 15
CPI-C 55
CRTMQM 56

D
datagram 55
dead-letter queue 61
define channel 63
define queue 58, 63
demo 3, 6, 8

overview 5
web pages 7
where to find it 5

destroy() 97
directories (Internet Server) 13
directory

com\ibm\mq 22
HTML documents 13, 15
MQSeries client for Java documentation 22

diskette contents 149
distributed application 42
documentation 73

MQSeries client for Java 21

draw rectangle 48
draw str ing 48
dynamic queue 60

E
environment variable

CLASSPATH 23
ETC 15
MQSERVER 64

error 2059 85
error handling 91
exits 97
extends 48

F
fat client 61

G
get() 94
global communication 1
glossary 159
GML 27
graphics 48
GUI 44

H
handling errors 91
handling messages 94
HEIGHT (applet) 40
Hello World applet 47
Hello World application 46
host name 14
hostname 66
HPFS 9, 11, 12
HTML 27, 39

anchor 36
citation 33
comment 31
definition list 33
directory 13
display GIF file 29
documents 15
file structure 28

166 Internet Application Development with MQSeries and Java

HTML (continued)
headings 30
horizontal l ine 29
link 36
lists 34
load an applet 39
nested lists 34
ordered list 34
styles 32
unordered list 34

HTML documents (directory) 15
HTTP/S-HTTP port 14
hyperl ink 6, 36

I
import 91
index.html 21, 22
inetd 69
InfoZip 20

UNZ520X2 20
unzip 20

infrastructure 1
initiation queue 61
inquire and set 95
installation 9

Apache server 24
Internet Connection Server 10
MQSeries client for Java 19

client code 22
documentation 21

Netscape Navigator 17
verif ication 24

installation verif ication program 77
Internet Connection Server

download 10
installation (OS/2) 11

interpreter 45
java 47

introduction
IVP 24, 77

parameters 81

J
Java

classes 44

Java (continued)
compiler 47
interpreter 45, 47
overview 41
packages 44
versus C 42
virtual machine 45
White Paper 89

Java Developer ′s Kit 83
Java interface 89
Java-enabled 5
java.applet.class 44
java.awt.class 44
JAVA.EXE 45
java.io.class 44
java.lang.class 44
java.net.class 44
java.util.class 44
JAVAPM.EXE 45
JDK 22, 83

L
l imitations 84
link 36
links to Java SDK 22
listener 64, 69, 77
local queue 59
low cost 1

M
MA83 20

files 20
MA83.ZIP 20
main 46
message 54

build one 94
descriptor 54
extract data 95
put into a queue 94
types 55

message channel 57, 62
message driven 72
message handling 94
message queuing 54

Index 167

messaging 54
messaging and queuing 54
middleware 53
model queue 60
MQBACK 70, 90
MQCLOSE 70, 90
MQCMIT 70, 90
MQCONN 70, 90
MQDISC 70, 90
MQEnvironment 92
MQException 91
MQGET 70, 90
MQI 53, 55
MQI calls 70

examples 70
MQI channel 57, 62
MQINQ 70, 90
MQIVP 79
mqjavac 77, 78
MQM 53, 55
MQManagedObject
MQMD 94
MQMessage 94
MQOPEN 70, 90
MQPUT 70, 90
MQPUT1 70, 90
MQQueue 93
MQReceiveExit 98
MQSecurityExit 98
MQSendExit 98
MQSeries 53

API 53
at run-time 53
channels 62
overview 53
principle 54
Web page 20

MQSeries client for Java 73
advantages 1
benefits 74
class library 84
client versus C 84
description 73
documentation 21, 73
how to get it 20
installation 19
installation verif ication program 77

MQSeries client for Java (continued)
l imitations 84
modes 22, 74

appletviewer 23, 76
stand-alone program 76
Web browser 22, 74

positioning 1
programmer ′s guide 83
solutions 75
support 83

MQSERVER 64
MQSET 70, 90
mult i threaded programs 96

N
Netscape Navigator 5, 7, 17

download 7, 18
for OS/2 17
icon view 19
install 18
install window 18
set-up for Java 19

network computer 43
network preferences 19
non-persistent message 55

O
object-oriented 44
objectives 3
overview

demo 5
HTML 27
Java 41
MQSeries 53
MQSeries client for Java 73

P
paint 48
password 15
persistent message 55
PID 73
pkunzip 11
platform independence 41

168 Internet Application Development with MQSeries and Java

port 64, 67
positioning 1
print ln 46
PrintStream 47
process definit ion 57
programmer ′s guide 83
programming interface 90
public 46
put() 94

Q
queue 56

alias 60
dead-letter 61
define 58
dynamic 60
init iation 61
local 59
model 60
remote 59
reply-to 61
transmission 60

queue manager 55, 59, 67
create 56
default objects 56
functions 55
manipulation 91
object manipulation 57
objects 56
start 56

queuing 54

R
readUTF 95
remote queue 59
reply message 55
reply-to queue 61
report message 55
request message 55
resize 48
robustness 43
RPC 55
RUNMQLSR 64
RUNMQSC 56, 57

S
sample application 105

applet (GUI) 111
design issues 112
message flow 108
overview 105
program logic 108

sample program
clock 40
Hello World applet 47
Hello World application 46
MQSample 85
MQSeries APIs 70

scenarios 1
security 43
security preferences 19
server 61

front page 17
server connection 63

how to test 64, 66
MQSeries for Java 66
triggering 68

set and inquire 95
SET ETC 15
slim client 61
socks server 19
SSL Port 14
static 46
stop() 97
STRMQM 56
SupportPac 20
SVRCONN 63
synchronous messaging 54
syncpoint 70

T
TCP/IP 42
test connection 68
time independent 72
trace 100
transaction processing 74
transmission queue 60
trigger message 69
trigger monitor 69

Index 169

tr iggering 68
try block 91

U
unit of work 70
UNZ520X2 20
unzip 20
URL

for Apache 24
for browsers 7, 18
for demo 5
for Internet Connection Family 10
for JDK 84
for MQSeries client for Java 20
for server 16

user exits 97
UTF 95

V
verify installation 24
view applet 50

W
web pages 6, 7, 8
WebExplorer 5
WIDTH (applet) 40
writeUTF 95

170 Internet Application Development with MQSeries and Java

ITSO Redbook Evaluation

Internet Application Development with MQSeries and Java
SG24-4896-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redeval@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 171

IBML

Printed in U.S.A.

SG24-4896-00

