
SG24-4814-00

DATABASE 2 Common Server Version 2.1.1
Performance and Tuning Guide

December 1996

International Technical Support Organization

DATABASE 2 Common Server Version 2.1.1
Performance and Tuning Guide

December 1996

SG24-4814-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 133.

First Edition (December 1996)

This edition applies to DATABASE 2 Version 2.1.1 Common Server for use with the AIX, NT and OS/2 Operating
Systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . vii

Tables . ix

Preface . xi
How This Redbook Is Organized . xi
The Team That Wrote This Redbook . xii
Comments Welcome . xii

Chapter 1. Performance and Tuning Overview 1
1.1 Overview . 1
1.2 Sizing a Database Server . 2

1.2.1 Considerations . 2

Chapter 2. Database Design . 5
2.1 Database Instances . 5
2.2 Tablespaces . 7

Chapter 3. DB2 Performance Considerations . 11
3.1 Tuning Database Global Memory . 12

3.1.1 Database Buffer Pool . 13
3.1.2 Database Heap . 24
3.1.3 Locks . 28
3.1.4 Utilities and Recovery . 31

3.2 Logging . 32
3.2.1 Sizing Log Buffers . 32
3.2.2 Grouping Commits . 33
3.2.3 Sizing Log Files . 33
3.2.4 Summary . 33

3.3 Heaps used by Agents . 34
3.3.1 Application Heap . 34
3.3.2 Sorts . 35
3.3.3 Monitoring Agents . 38
3.3.4 Client Applications . 39
3.3.5 Other Heaps . 40
3.3.6 Summary . 40

3.4 Heaps Used by Applications . 41
3.5 Binds and Tuning Parameters . 42

3.5.1 Isolation Level . 42
3.5.2 Blocking . 43
3.5.3 Optimization Class . 43
3.5.4 Rebinding Applications . 44

Chapter 4. Database Monitoring . 45
4.1 Overview . 45

4.1.1 Before You Start . 45
4.2 Snapshot Monitor . 47

4.2.1 Configuring the Snapshot Monitor . 47
4.2.2 Snapshot Monitor Commands . 51
4.2.3 Taking a Snapshot . 52
4.2.4 Interpreting Snapshot Output . 53

 Copyright IBM Corp. 1996 iii

4.3 Event Monitor . 63
4.3.1 Using Event Monitoring . 64
4.3.2 Analyze the Output of Event Monitor . 67

4.4 Performance Monitor . 71
4.4.1 What is Performance Monitor . 71
4.4.2 Using Performance Monitor . 72
4.4.3 Tuning with the Performance Monitor 75

Chapter 5. DB2 Tools and Utilities . 79
5.1 Explaining SQL Statements . 79

5.1.1 SQL Explain Tool . 80
5.1.2 Explaining Dynamic SQL . 87
5.1.3 Explain Tables . 87
5.1.4 Visual Explain . 91
5.1.5 Explain Table Formulator . 100

5.2 Benchmarking Tool . 104
5.3 Bind File Dump Tool . 106
5.4 Productivity Tool . 107
5.5 DB2 Governor Tool . 107

5.5.1 Configuration File . 108
5.5.2 Report File . 110

5.6 DB2 Simple Network Management Protocol Subagent 110

Chapter 6. Tasks and Methodology . 113
6.1 Defining the Yardstick . 113

6.1.1 Creating a Benchmark . 113
6.1.2 Environment . 114
6.1.3 Measuring and Monitoring . 115

6.2 Monitoring Performance . 115
6.3 Tuning for Performance . 116

6.3.1 I/O Operations . 117
6.3.2 Waits . 119
6.3.3 CPU Requirements . 120
6.3.4 Sorts and Joins . 120
6.3.5 Block I/O . 120

6.4 Solving Performance-Related Problems 121
6.4.1 Describing the Cause . 121
6.4.2 Database Configuration Problems . 121
6.4.3 Data Access Problems . 124
6.4.4 Application Problems . 124

Appendix A. DATABASE 2 Sizing Worksheets 127
A.1 DB2 for AIX . 127
A.2 DB2 for OS/2 . 128
A.3 DB2 for NT . 130

Appendix B. Special Notices . 133

Appendix C. Related Publications . 135
C.1 International Technical Support Organization Publications 135
C.2 Redbooks on CD-ROMs . 135
C.3 Other Publications . 135

Appendix D. How To Get ITSO Redbooks . 137
D.1 How IBM Employees Can Get ITSO Redbooks 137

iv DB2 Performance and Tuning

D.2 How Customers Can Get ITSO Redbooks 138
D.3 IBM Redbook Order Form . 139

List of Abbreviations . 141

Index . 143

Contents v

vi DB2 Performance and Tuning

Figures

 1. Database Director - Instance Configuration 6
 2. Multiple Instances . 7
 3. Database Tablespaces . 9
 4. Memory Allocation on Server Platform . 12
 5. Database Global Memory . 13
 6. Buffer Pool and Response Time . 19
 7. Response Time and Synchronous Buffer Pool Hit Ratio 20
 8. Response Time and Number of I/O Servers 21
 9. Efficiency of Prefetchers . 21
10. The Database Heap . 24
11. Response Time and Log Buffer Size . 25
12. Catalog Cache Hit Ratio/Catalog Cache Size 27
13. The Utility Heap . 31
14. Sort Heap and Sort Heap Threshold . 36
15. Sort Heap and Response Time . 37
16. Database Monitoring Procedures . 46
17. Getting Current Monitor Settings . 51
18. Database Director - Enabling Monitor Groups 52
19. Monitor APIs and CLP Commands . 53
20. Snapshot for Database Manager . 54
21. Snapshot for Database (Part 1 - Database, Sorts and Locks) 55
22. Snapshot for Database (Part 2 - Buffers and I/O) 56
23. Snapshot for Database (Part 3 - Statements, packages and catalogs) . 57
24. Snapshot for Applications (Part 1 - Application and locks) 58
25. Snapshot for Applications (Part 2 - Buffers and I/O) 59
26. Snapshot for Applications (Part 3 - UOW and statements) 60
27. Snapshot for Tables . 61
28. Snapshot for Tablespaces . 62
29. Snapshot for Locks (Part 1 - Locks) . 62
30. Snapshot for Locks (Part 2 - Application/Agent) 63
31. Create Event Monitor Command Syntax 66
32. Sample Event Monitor . 66
33. Display Event Monitor States . 67
34. Event Monitor Tool, db2eva - Monitored Periods 68
35. Event Monitor Tool, db2eva - Monitored Connections 68
36. Partial Output from db2evmon . 69
37. Event Monitor Tool, db2eva - Connection Data Elements View 70
38. Performance Monitor - Tablespace Monitoring 73
39. Performance Monitor - Tablespace Detail 74
40. Average I/O Time (ms) - Change Threshold 74
41. Performance Graph - User tablespace . 75
42. Performance Monitor - Database Details 77
43. Database Configuration Listing (fragment) 78
44. Creating Packages - PREP . 81
45. Adding or Replacing Packages - BIND and REBIND 82
46. Populating Explain Tables with Snapshots 91
47. Explained Statements History . 92
48. The Access Plan . 94
49. Access Plan Using the Slider . 95
50. Statistics of an Operand . 96
51. Details of an Operator . 98

 Copyright IBM Corp. 1996 vii

52. Optimizer - Optimized SQLStatement . 99
53. Optimizer - Database Configuration Parameters 100
54. Db2exfmt . 101
55. Db2look Utility . 107
56. Sample db2gov Configuration File . 109

viii DB2 Performance and Tuning

Tables

 1. Reorgs and Buffer Pool . 18
 2. Response Time and Catalog Cache . 27
 3. Differences between Snapshot Monitor and Event Monitor 71
 4. Options for db2batch . 105
 5. Data Elements and Configuration Problems 123
 6. Ratios and Configuration Problems . 123
 7. Sizing DB2 for AIX Single-User . 127
 8. Sizing DB2 for AIX Server . 127
 9. Sizing DATABASE 2 Client Application Enabler for AIX (Remote Client) 127
10. Sizing DATABASE 2 Software Developer’s Kit for AIX 128
11. Sizing DDCS for AIX Multi-User Gateway 128
12. Sizing DB2 for OS/2 Single-User . 128
13. Sizing DB2 for OS/2 Server . 129
14. Sizing DATABASE 2 Client Application Enabler for OS/2 (Remote

Client) . 129
15. Sizing DATABASE 2 Software Developer’s Kit for OS/2 129
16. Sizing DDCS for OS/2 Single-User Gateway 129
17. Sizing DDCS for OS/2 Multi-User Gateway 130
18. Sizing DB2 for Windows NT Single-User 130
19. Sizing DB2 for Windows NT Server . 130
20. Sizing DATABASE 2 Client Application Enabler for Windows NT 130
21. Sizing DATABASE 2 Software Developer’s Kit for Windows NT 131
22. DDCS For Windows NT Single-User . 131
23. DDCS For Windows NT Multi-User Gateway 131

 Copyright IBM Corp. 1996 ix

x DB2 Performance and Tuning

Preface

This redbook addresses configuration issues that may help you obtain the best
performance from your database server.

This redbook was written for technical professionals who are involved in the
administration or support of a DB2 Common Server installation.

There are a number of utilities that can be used in diagnosing the performance
and database activity. This book looks at each of these and outlines the different
methods that you can use to further tune your database environment.

Some knowledge of database environments, as well a basic understanding of the
activity that is being performed in the database environment, is assumed.

How This Redbook Is Organized
This redbook is organized as follows:

• Chapter 1, “Performance and Tuning Overview” on page 1

This provides and overview of the products, network configurations and
systems that are being used throughout this book.

• Chapter 2, “Database Design” on page 5

This chapter looks at the individual design of a database and what factors
need to be considered to get the best performance possible.

• Chapter 3, “DB2 Performance Considerations” on page 11

Tuning the database engine is a key way to obtain better performance. This
chapter discusses the different tuning parameters available and the effects
that they will have on the database environment.

• Chapter 4, “Database Monitoring” on page 45

If you are suffering from a performance problem, the first step in resolving it
is to find out exactly where it is occurring. By monitoring the different
activity in the database you may be able to pin-point the problem. This
chapter looks at the tools available to help you monitor database activity.

• Chapter 5, “DB2 Tools and Utilities” on page 79

There are a number of different tools that can be used when tuning your
database environment. This chapter discusses the different tools available
and how they can be used.

• Chapter 6, “Tasks and Methodology” on page 113

A sensible approach to diagnosing and correcting problems needs to be
adopted. Otherwise, you may spend valuable time looking at areas that will
have little impact on your situation. This chapter outlines different methods
that can be used to help find problems and resolve them in the shortest
possible time.

 Copyright IBM Corp. 1996 xi

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin Center.

Frank Rusconi, Project Leader
International Technical Support Organization, Austin Center

Miguel Robles, Author
IBM Spain

Meng Ping (Angela), Author
IBM China

Thanks to the following people for their invaluable contributions to this project:

Marcus Brewer, Editor
International Technical Support Organization, Austin Center

Rebeca Rodriguez, Editor
International Technical Support Organization, Austin Center

Bill Wilkins, DB2 Performance
IBM Toronto

Grant Hutchison, DB2 Client/Server Service
IBM Toronto

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

xii DB2 Performance and Tuning

Chapter 1. Performance and Tuning Overview

This chapter provides an overview of the tasks and concepts involved in tuning
your database environment to obtain optimal performance.

1.1 Overview
There are many different types of database environments in existence today.
These environments vary from stand-alone systems to environments with many
different database servers and clients running on multiple platforms. To perform
performance analysis and tuning in these types of environments can be a
difficult task and requires a good understanding of the environment as well as
the tools that you will use.

This book will provide you with some guidelines about the tasks that are
required for performance analysis and will discuss the methods that are
available to do the analysis and tuning.

There are many factors that affect the performance of your database
environment. These include:

• CPU

Too many users or running applications on a CPU may cause overall system
degradation.

• Memory

Every user and application will use some of your system’s physical memory.
If you have insufficient memory in your system then you may find that
application will fail, or your system will start to thrash.

• Disk

I/O performance can play an important part in a database system. Too much
activity on a single disk or I/O bus may cause performance degradation.

• Network

In today’s client/server environments, the network plays an important role. If
the network is too slow then this may appear to the client as a performance
problem at the server.

• Application

An application that makes poor use of programming techniques, such as the
use of compound SQL or stored procedures, may not be getting the best
performance out of the database environment.

• Locking

When the number of users increases, then the correct use of locking may
affect concurrency and may also be reflected in the performance.

• Database Schema

There are many methodologies that discuss the layout of data across
databases and tables. In general, poorly designed databases may have a
negative effect on the overall performance.

 Copyright IBM Corp. 1996 1

The first task you must perform when tuning your database environment is to
determine if there is a performance problem and if so, where it is.

If you are dealing with a new database environment then you must decide how
you are going to lay out your data across the system or systems. To determine
this, you need to look at factors such as the amount of data you are going to be
dealing with, the number of users accessing that data and the types of
applications or queries that the users are going to be running.

1.2, “Sizing a Database Server” provides you with an overall idea on how you
can start to determine the size of the database server, or servers, that you will
require.

1.2 Sizing a Database Server
When you are planning a new database server, you need to take into account
several factors. These include:

• The expected size of the database

• The maximum number of concurrent users

• The number of transactions per second or per day

• The types of transactions being executed

• Cost

Given the above factors you may decide that you need only one database server,
or that you are going to need multiple servers. You may even find that you need
a parallel server in your configuration.

Deciding on a database server or servers should also take into consideration the
database design. The database design may be suited more towards a single
parallel server, multiple serial servers or a combination of both serial and
parallel servers.

1.2.1 Considerations
An important consideration when planning for your hardware is to allow for
expansion. You should consider how large your database may grow in six to
twelve months time, and the number of users that will be accessing your data at
that time. If you don’t plan for this growth, then your system may reach physical
limitations that might require hardware changes that will disrupt your daily
operations.

CPU

There are many machines available that range in price and performance. For
your database environment you should choose a processor that will give you
enough computing power for your environment. This will depend on the type of
processing that you will be performing.

For example, an environment which processes large amounts of statistical
information stored in a database will not only require storage capacity, but may
also require considerable processing capacity.

It is also possible that the processor you choose is guided by other factors such
as I/O and storage scalability. When selecting the best processor for your

2 DB2 Performance and Tuning

environment, you should check the price/performance information available at
the time and make sure that you are allowing for scalability.

Disk

Purchasing enough disk for your environment is critical. Deciding on how much
disk you are going to require will depend upon more than how large your
database is.

The first use of disk is to contain the operating system. The size of the operating
system will depend on which one you choose and the number of products that
you install. The size of the operating system also depends on factors such as
how much paging space you require and how you intend to partition the disks.

The next user of disk is the database products and instances. Appendix A,
“DATABASE 2 Sizing Worksheets” on page 127 includes information about the
disk usage for the different database components in DB2 for Common Server
environments.

Finally, you should also consider how you are going to perform database
transaction logging and backups of your data. Many environments require
considerable disk space for transaction logs. The amount of disk space that you
will require for your database logs is dependent upon both the size of the
database and the types of transactions that are performed on it.

There is also the possibility that you will back up your database to disk, rather
than to a device such as a tape drive. If this is the case, then you will probably
want to make sure that you have enough capacity to perform a backup and that
the location of the backup disks are not the same as the database disks.

Memory

Appendix A, “DATABASE 2 Sizing Worksheets” on page 127 also includes
information about the amount of memory required by the different components in
DB2 for Common Server.

There will be certain memory requirements by each user that logs in to the
system and accesses the database. Each application connection will require
memory, and there are also per-database requirements.

Most systems allow for a virtual memory space, or paging space, to be used.
This means that if all the physical memory is in use, then some of it will be
paged to disk while another application makes use of the physical memory. If
the amount of physical memory is too small then you might find that the system
spends more time paging information in and out of physical memory than it
spends actually running the applications. This situation is called thrashing , and
it can be avoided by increasing the amount of physical memory or decreasing
the number of applications that are using up the system’s memory.

Database Environment

If you have multiple servers and clients, you will need to size each type of
configuration that you have.

You may decide that in your database environment you are going to need a
parallel server, or perhaps a cluster using High Availability Services (HACMP).

Chapter 1. Performance and Tuning Overview 3

For sizing of these environments, you should refer to the planning guides
supplied with the products you choose to use. Other useful references are listed
in Appendix C, “Related Publications” on page 135.

Software

As mentioned in the hardware considerations, you are going to need to consider
what applications and products you are going to use on your server.

There are multiple options that you may choose from. You may choose to use
products or software for different types of platforms, for example; AIX, OS/2, NT,
HP/UX or Solaris. There is also the choice of running the serial or parallel
version of DB2. Finally you may choose to use some of the DB2 extensions,
such as the Database Extenders.

All of these factors will have an impact on the types and configuration of the
machines or platforms you choose.

Software requirements are shipped with the products when purchased.
Appendix A, “DATABASE 2 Sizing Worksheets” on page 127 includes some
information about the amount of disk required by the components in DB2 for
Common Server environments.

4 DB2 Performance and Tuning

Chapter 2. Database Design

This chapter discusses the design of database environments and how
configuration of tablespaces, indexes and data types may also affect
performance. We discuss the different options available and how you may
configure your environment for the best overall performance.

2.1 Database Instances
A database instance is the environment that may contain multiple databases.
When you create a new database, it will be created under your current instance.
The current instance is defined by the environment variable, DB2INSTANCE. On
UNIX platforms this will map to a defined User ID, which is then referred to as
the Instance Owner.

DB2 for Common Server installs configuration information about each instance
under the instance owner’s home directory. Additional environment information
will be found in the following files:

• For Korn Shell or Bourne Shell

¬$DB2INSTANCE/sqllib/db2profile

• For C Shell

¬$DB2INSTANCE/sqllib/db2cshrc

The notation, ¬$DB2INSTANCE, indicates the instance owner’s home directory.
Each user that wishes to be able to access the databases contained within this
instance must have the environment variables set in his or her profile.

DB2 for Common Server allows multiple database instances to exist on a single
machine. Each DB2 instance will consist of the following:

• An Instance Owner (UNIX platforms)

• A System Administration Group

• A System Maintenance Group

• A System Control Group

• Databases

• Database Managaer Configuration File

There are a number of configuration parameters that can be configured at the
instance level. These parameters may be configured using the Command Line
Processor or the Database Director utility as shown in Figure 1 on page 6.
Tuning the parameters for one instance will not directly affect another instance
on the same machine. However, you may find that freeing up resources, such as
memory, in one instance may make the memory available to other instances.

 Copyright IBM Corp. 1996 5

Figure 1. Database Director - Instance Configuration

The configuration parameters at the instance level affect all the databases
contained within the instance.

Maintaining multiple instances has some overhead in terms of memory and the
number of processes running on the machine. However, you need to consider
that if you are connecting to a database in another instance, then your
connection is treated as a remote connection and will have the associated
overhead of network connections.

A possible reason for maintaining separate instances on a single machine could
be administrative requirements. It is possible that you wish someone other than
the instance owner to have system administration authority for a set of
databases. However, this same person should have no special authority over a
different set of databases. The only way to do this is to have multiple instances
and add the user to the system administration group for the appropriate
instance. While it is possible to have the same system administration group for
both instances, in this example we would have a different administration group
for the second instance.

Figure 2 on page 7 shows an example of multiple instances on a single
platform. In this example, the first instance (inst1) could be a production system
while the second instance (inst2) could be the development system. We can see
from the figure that both instances contain different copies of the databases
dbaseA and dbaseB. However, inst2 also contains an additional database,
dbaseE.

6 DB2 Performance and Tuning

We can also see that the example configuration parameters are set differently
for the instances. The production instance has a different administration group
from the development instance. Also, the authentication method used on the
production instance is SERVER, which is more secure than the CLIENT
authentication. Finally, the development instance has a higher diagnostic level
set and has turned on statement monitoring, which can help in the development
of new applications.

Figure 2. Multiple Instances

Information on tuning the instance level parameters is discussed in Chapter 3,
“DB2 Performance Considerations” on page 11.

2.2 Tablespaces
Once you have decided on whether you wish to break the databases into a
single or multiple instance, you will now need to determine how the tablespaces
will be laid out. This may depend on the size and type of data that will exist in
the database and will also depend on the disk or disks that are available.

One of the advantages in maintaining multiple tablespaces is that the data can
be logically divided up and then backed up, and recovered, as required at the
tablespace level. There is also the ability to use different types of tablespaces.
Some tablespaces may contain large objects such as image or audio data, while
other tablespaces may contain more traditional data such as tables containing
character or integer columns. There may be some tables that are infrequently
accessed and so may be placed on slower disks than data that is accessed more
frequently.

Chapter 2. Database Design 7

Each database on your system will consist of at least three tablespaces. These
are shown in Figure 3 on page 9 and include:

 1. System Catalog Tablespace

This system catalog tablespace is used for all the database system tables.
The default name of the system catalog tablespace is SYSCATSPACE, and it
is created when the database is created.

 2. Temporary Tablespace

Temporary tables are stored within the temporary tablespace. The default
temporary tablespace created when the database is created is called
TEMPSPACE1. You may add or delete temporary tablespaces, but at least
one must exist at all times.

 3. User Tablespace

The user tablespace contains all the user tables and information. Again, a
default user tablespace is created when the database is created and is
called, USERSPACE1. This tablespace may be dropped and additional user
tablespaces may be added to or deleted from the database.

In addition to these tablespaces, you are also able to create additional
tablespaces. The three types of tablespaces that you can create are:

 1. Regular Tablespace

A regular tablespace will contain most of your database tables and indexes.

 2. Long Tablespace

If your database contains large objects stored as LONG or LOB data, then
you may wish to store these columns in a special tablespace. This allows
you to configure the tablespaces to allocate space and retrieve information
in a more efficient manner for the types of data that they contain.

 3. Temporary Tablespace

Occasionally you may find that you require an additional temporary
tablespace. You need to specify that a tablespace is a temporary tablespace
when it is created.

8 DB2 Performance and Tuning

Figure 3. Database Tablespaces

DB2 for Common Server supports two different tablespace mechanisms. These
are:

• System Managed Tablespaces

• Database Managed Tablespaces

You will have different considerations depending upon the type of tablespace you
choose. It is possible to use a mixture of the different types of tablespaces.

Chapter 2. Database Design 9

10 DB2 Performance and Tuning

Chapter 3. DB2 Performance Considerations

The overall performance of a database depends upon the following:

• The physical design of the database

• The logical design of the database

• The performance of applications that access the database

• The configuration of the database and DB2 parameters

Throughout this chapter, the database configuration parameters that have an
impact on performance are reviewed. Parameters that affect system resources
and database operation can be defined at either of the following:

 1. Instance Level

When an instance is created, a DBM configuration file is also created.

 2. Database Level

A database configuration file is created when each database is created.

These parameters can be changed from the system default values to obtain
better performance or to increase the capacity of the database. Tools that can
be used to measure the performance of your database environment are
discussed throughout the following chapters.

Performance information is collected through ‘data elements’ that can be defined
as gauges, counters, water marks, timestamps or information text. For a
complete reference of these data elements, refer to DB2 Database System
Monitor Guide and Reference - for common servers (S20H-4871).

Configuring database parameters can improve performance by:

• Reducing I/O access through buffering and caching

• Sizing the buffer pools, heaps and stacks used by the database

• Using logging more efficiently

There are several memory areas allocated for each database contained within
the database manager instance. These memory areas include:

• Database Global Memory area

This area is used for all the applications that might connect to the database.

• Agent Private Memory area

This is used for each active or idle agent. A server agent is a process or
thread that carries out all the requests made by a client application.

Figure 4 on page 12 shows the memory areas allocated in the server for a given
database. The number of active agents will depend upon the number of
applications connected to the database. Each connected application is served by
its own agent process or thread. The number of idle agents will depend on
configuration parameters of the database.

 Copyright IBM Corp. 1996 11

Figure 4. Memory Allocation on Server Platform

Most of the heaps, stacks and memory areas are only allocated when required.
The only areas that remain allocated are the Buffer Pool and the Lock List.

Every instance may have several active databases. The maximum number of
active databases for a given instance is limited by the numdb database manager
configuration parameter. A single machine may also have multiple instances
running simultaneously. You should note that resources allocated to one
instance are not available to other instances. This is important, as allocating
excessive resources, such as memory, to one instance may affect the
performance of another instance on the same system.

3.1 Tuning Database Global Memory
Each database has its own Global Memory. This memory area contains the
following elements:

• The Buffer Pool

This memory area is used by the database for data caching. In this area,
data pages are read and modified. Adjusting the size of this area can
greatly effect performance.

• The Lock List

This memory area is used by the database to store all the locks held by all
the applications connected to the database.

• The Database Heap

12 DB2 Performance and Tuning

The Database Heap contains control block information for tables, indexes
and tablespaces. It includes the Catalog Cache and the Log Buffer.

• The Utility Heap

The Utility Heap is used by the LOAD, RESTORE and BACKUP utilities.

The Buffer Pool and the Lock List areas are allocated when the first application
connects to the database. The Database Heap and the Utility Heap grow as
required, and only the maximum values for these heaps are configured. This is
shown in Figure 5.

Figure 5. Database Global Memory

3.1.1 Database Buffer Pool
The database server reads and updates all data from the buffer pool. Avoiding
disk I/O is the main issue when trying to increase the performance of the server.
The size of the buffer pool is determined by the buffpage parameter. Proper
configuration of the buffer pool has a large impact on the database performance.

This buffer pool is allocated when the database is activated. Data is copied from
disk to the buffer pool as is required by applications. The “life cycle” of a page
in the buffer pool is dictated by the following processes:

• Pages are placed in the buffer pool by I/O servers

• Pages are removed from the buffer pool by page cleaners (I/O cleaners)

If the server needs to read a page of data, and that page is already in the buffer
pool, it will be able to access that page much faster than if the page was out on
disk. It is then desirable to ‘hit’ as many pages as possible in the buffer pool.
As data is frequently accessed through indexes, having a good index pool_hit

Chapter 3. DB2 Performance Considerations 13

ratio and a good overall buffer pool_hit ratio will increase the performance of the
database.

The following data elements can be measured by the DB2 performance tools to
evaluate how the buffer pool is being used:

• Buffer Pool Data Logical Reads

Total number of read data requests that went through the buffer pool.

• Buffer Pool Data Physical Reads

Number of read requests performed that required I/O to place data pages in
the buffer pool.

• Buffer Pool Index Logical Reads

Total number of read requests for index pages that went through the buffer
pool.

• Buffer Pool Index Physical Reads

Number of read requests for index pages that require I/O activity to place
index pages in the buffer pool.

An ‘index pool_hit’ ratio is calculated as the difference between the number of
the index logical reads and the number of index physical reads divided by the
total number of index reads requests. The following formula can be used to
calculate this ratio:

An overall ‘buffer pool hit’ ratio is calculated as the difference between the
number of the all (data + index) logical reads and the number of all (data +
index) physical reads divided by the total number of read requests.

Care should be taken when evaluating these ratios. The number of Physical
Reads includes the reads performed by prefetchers, so a low ‘buffer pool hit’
ratio may not indicate a performance problem. Prefetchers performing
asynchronous I/O must be considered. Prefetchers, and their impact in the
‘synchronous buffer pool’ hit ratio are discussed in 3.1.1.2, “Prefetchers” on
page 18.

The Index Pool Hit Ratio and the Buffer Pool Hit ratio are also influenced by data
reorganization. Data reorganization, and its influence on the buffer pool, is
discussed in 3.1.1.1, “Reorganizing Tables” on page 15.

The default size of the buffer pool is 1000 4KB pages for AIX servers and 250
4KB pages for OS/2 and NT servers.

14 DB2 Performance and Tuning

3.1.1.1 Reorganizing Tables
To keep the database tuned, the reorg utility is one of the tools most frequently
used. The reorg tool tries to store data rows in a clustering order. Rows are
ordered according to an index, the clustering index. Only one index can be the
clustering index. Reorganization of data or indexes may be necessary when:

• A table has been initially loaded with the load utility. Data loaded through
the load utility is stored in the same order of the input file.

• Frequent updates to tables may cause the table’s rows to be disordered very
quickly. New rows are not inserted in a physical sequence with old rows, so
more read operations, especially those involving a range of values, may be
necessary to retrieve data.

• An index is defined, but the access plan shows that the database manager is
not using it to access the data.

To execute the reorg utility you must have SYSADM, SYSMAINT, SYSCRTL or
DBADM authority, or CONTROL privilege on the table. The reorg utility uses
temporary tables while it reorganize the original table. Notice that reorg cannot
be used on views. The database administrator needs to supply the following
parameters to the reorg utility:

• Table name

Fully qualified table name of the table to be reorganized.
• Index name

Fully qualified index name to use when reorganizing the table.
• Tablespace name (optional)

Name of the tablespace where the database manager will store the
temporary table.

To decide when to reorganize a table or a set of tables, DB2 Common Server
provides the reorgchk utility. To use the reorgchk utility you need SYSADM or
DBADM authority, or CONTROL privilege on the table. reorgchk will base its
results on statistics to determine if a reorganization is required. Those statistics
can be the current statistics stored in the database system tables, or it can
execute runstats to update table statistics and then use those updated statistics
to decide on the need for a reorganization. The following is a sample of the
output from the reorgchk utility. Notice that the output is divided into table and
index statistics.

� �
$db2 reorgchk update statistics on table db2a.customer

Doing RUNSTATS....

Table statistics:

F1: 100*OVERFLOW/CARD < 5
F2: 100*TSIZE / ((FPAGES-1) * 4020) > 70
F3: 100*NPAGES/FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG
--
DB2A CUSTOMER 75000 0 3453 3453 13650000 0 98 100 ---
--� �

Chapter 3. DB2 Performance Considerations 15

The output of the reorgchk utility shows the following statistics for the table:

• CARD

The number of rows in the table.
• OV

The number of overflowed rows. An overflowed row is an updated row that
contains more bytes than the old row and does not fit in the original page.
This happens when a column is added to a table or there is a VARCHAR
field (and the updated row contains a longer value). In these cases, a
pointer is kept at the row original location, so more I/O operations are
required to retrieve the row.

• NP

The number of pages that contain data.
• FP

The total number of pages. Notice that a page can be empty after rows are
deleted. Empty pages are read for a table scan. In our example, NP=FP so
there are no empty pages.

• TSIZE

Table size in bytes.
• F1, F2, F3

Results of the three formulas. The meaning of each formula is as follows:
− F1: The percentage of overflowed rows should be less than 5 percent.
− F2: The size of the table should be more than 70 percent of the space

allocated for the table.
− F3: The percentage of empty pages should be less than 20 percent.

reorg will reclaim empty pages and improve performance avoiding empty
page reads during a table scan.

• REORG

Three symbols, hyphens or asterisks, that indicate if the result of each
formula is within the limits or not. A hyphen means that the result is within
the limit and an asterisk indicates that it is not. The results for the previous
example indicate that all formulae are within the limits. If the limits are
exceeded then executing reorg utility will compact the table, recovering
unused space and will reduce the number of I/Os required to retrieve data.

The second part of the output of the reorgchk utility is the index statistics. A
sample of this output is shown below:

� �
Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100*(KEYS*(ISIZE+10)+(CARD-KEYS)*4) / (NLEAF*4096) > 50
F6: 90*(4000/(ISIZE+10)**(NLEVELS-2))*4096/(KEYS*(ISIZE+10)+(CARD-KEYS)*4)<100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG
--
Table: DB2A.CUSTOMER
DB2A IDXACCT 75000 327 3 8 72441 4 98 62 *--
--� �

The statistics shown for every index are:

16 DB2 Performance and Tuning

• CARD

The number of rows in the table.
• LEAF

The number of index leaf pages. This predicts the number of index page
I/Os needed for an index scan.

• LVLS

The number of index levels. This predicts the number of I/O operations
required to access a specific index entry.

• ISIZE

Index size.
• KEYS

The number of unique index entries.
• F4, F5, F6

Results of the three formulas for indexes. The meaning of these three
formulas are:
− F4: The clustering ratio of an index should be greater than 80 percent. In

the previous example, it is only 4 percent. Notice that if there is more
than one index for the table, only one of the indexes may have a good
clustering ratio.

− F5: Space allocated for indexes should be more than 50 percent
occupied.

− F6: The number of index entries should be more than 90 percent of the
number of entries that NLEVELS-1 can handle.

• REORG

The three symbols, hyphens or asterisks, that indicate if the result of each
formula is within the limits or not. A hyphen means that the result is within
the limit. An asterisk means that it is not. In our previous example, F4 is out
of limits (F4=4 when the formula expects it to be greater than 80).

After executing reorg, reorgchk shows the following values for the index
statistics:

� �
Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100*(KEYS*(ISIZE+10)+(CARD-KEYS)*4) / (NLEAF*4096) > 50
F6: 90*(4000/(ISIZE+10)**(NLEVELS-2))*4096/ (KEYS*(ISIZE+10)+(CARD-KEYS)*4)<100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG
--
Table: DB2A.CUSTOMER
DB2A IDXACCT 75000 327 3 8 72441 100 98 62 ---
--� �

The reorg utility rearranges the table rows, so the statistics stored in the system
tables will no longer show the real data distribution. Because of this, after using
the reorg utility, runstats should be executed and applications affected should be
rebound using the bind or rebind commands.

Table 1 on page 18 shows the difference for a query executed before and after
reorganization. The query selected a set of rows through a predicate. The
predicate involved a clustered index. Values for the data elements and response

Chapter 3. DB2 Performance Considerations 17

time were obtained using the db2batch utility. The db2batch utility is discussed in
5.2, “Benchmarking Tool” on page 104. Values for Cluster Ratio were obtained
using the utility, reorgchk.

Table 1. Reorgs and Buffer Pool

Notice that the response time was reduced to a mere 12 percent of its value
before reorganizing the table. The Buffer Pool Hit Ratio increased from 4.01
percent to 93.38 percent. The number of buffer pool Data Logical Reads is
similar in both cases, but the number of costly buffer pool Physical Data Reads
was greatly decreased.

Notice that after reorganizing the table, the database manager was able to
retrieve the answer set with only twenty Data Physical Reads when before
reorganizing, over three hundred Data Physical Reads were required. This
clearly shows the benefits of clustering data.

The Index Pool Hit Ratio shown in Table 1 is misleading. Notice that number of
Index Physical Reads in both cases was the same, 6. But after reorg, only 11
Index Logical Reads were necessary, while before reorg, 377 were performed.
That’s why a higher Index Pool Hit Ratio is achieved before reorganizing the
table (6 physical reads of 377 logical reads versus 6 physical reads of 11 logical
reads).

Before Reorg After Reorg

Index Pool Hit Ratio 98.41% 45.45%

Buffer Pool Hit Ratio 4.01% 93.38%

Data Logical Reads 369 382

Data Physical Reads 354 20

Index Logical Reads 377 11

Index Physical Reads 6 6

Cluster Ratio 4 % 100%

Response Time (seconds) 5.63 0.62

3.1.1.2 Prefetchers
Prefetchers are I/O server processes (processes in AIX, threads in OS/2 and NT)
that ‘read-ahead’ data for the database manager. Their goal is to place pages in
the buffer pool before these pages are needed by the server. This is done in an
asynchronous mode, as opposed to the synchronous I/O performed when a page
is requested by an application. Asynchronous I/O can be overlapped with
regular CPU activity.

Prefetching is activated by the database manager, depending on the SQL
statement being executed. Sequential prefetching can be turned off using the
seqdetect configuration parameter. The following data elements provide
guidance about the effectiveness of prefetchers:

• Buffer Pool Asynchronous Data Reads

Number of pages read asynchronously into the buffer pool.

• Buffer Pool Asynchronous Read Requests

Number of asynchronous read requests.

18 DB2 Performance and Tuning

If prefetchers are working properly, the percentage of synchronous read
requests hitting pages in the buffer pool should be high. A synchronous buffer
pool_hit ratio is calculated as the difference between the total number (index +
data) of logical reads and the total number (index + data - async_data_reads) of
synchronous physical reads divided by the total number of read requests.

Figure 6 plots the response time for a given query versus the size of the buffer
pool. The response time improves when the size of the buffer pool is increased.
However, a point is eventually reached where increasing the size of the buffer
pool does not bring any performance benefit. Notice that the values shown here
are for illustrative purposes only. It is the task of the database administrator to
determine the point where an increase of the size of the buffer pool will not
improve the performance of the database.

Figure 6. Buffer Pool and Response Time

A more significant conclusion can be reached if the response time is plotted
versus the synchronous buffer pool hit ratio as shown in Figure 7 on page 20.
When the synchronous buffer pool hit ratio gets close to 100 percent, the
response time will not improve when more pages are added to the buffer pool.
This is because, as you get close to the 100 percent ratio, all the pages required
by the database have been previously placed in the buffer pool by the
prefetchers. Almost all the read requests are performed asynchronously, and
each read brings a number of pages into the buffer pool. The number of pages
read in is determined by the prefetch size set for tablespace.

Notice that in the left side of the graph plotted in Figure 7 on page 20, the ratio
decreases to 90 percent. This is caused by the fact that buffer pool did not have
as many free pages available as the number of pages set by the prefetch size.
No prefetching was then performed (no async reads at all). Even without
prefetching, a 90+ synchronous buffer pool hit ratio is achieved. This 90+
synchronous buffer pool ratio comes from the fact that a physical read operation
will place a 4KB page in the buffer pool, thus placing many rows in the buffer
pool. Subsequent read requests will find rows already in the buffer pool, without
requiring an additional I/O operation.

Chapter 3. DB2 Performance Considerations 19

Figure 7. Response Time and Synchronous Buffer Pool Hit Ratio

Care should be taken when trying to increase the synchronous buffer pool hit
ratio. If a big Prefetch Size is configured for tablespaces, this ratio will improve.
But there is a risk that the prefetchers may provoke unnecessary I/O by reading
too many pages, and thus, creating disk contention. Disk contention should be
monitored using standard operating system tools, such as iostat for AIX servers.
Steady values of synchronous I/O read time indicate no disk contention
generated by prefetchers. The following data elements help determine the
synchronous I/O read time:

• Buffer Pool Asynchronous Read Time

Elapsed time spent reading by prefetchers.

• Total Buffer Pool Physical Read Time

Elapsed time spent processing read requests that caused data or index
pages to be physically read from disk to the buffer pool.

The difference between these two values divided by the number of synchronous
read requests gives an estimate of the synchronous I/O read time.

3.1.1.3 Prefetchers and I/O servers
The number of processes, or threads, used to perform prefetching and other
asynchronous I/O tasks, is limited by the num_ioservers database configuration
parameter. By default, the number of I/O servers is set to three. The number of
prefetchers should be related to the number of I/O devices, namely disks, where
containers used by the database are stored.

Figure 8 on page 21 shows the response time of a query using different
numbers of I/O servers. The query selected data from a table which has a
tablespace spread across four containers. The table was large enough to have
extents in all four containers. Each container was placed on a different disk
drive and the table was the only table stored in the tablespace. A 2 percent gain
was obtained when the number of I/O servers was increased from one to two.

20 DB2 Performance and Tuning

Figure 8. Response Time and Number of I/O Servers

3.1.1.4 Prefetch Size and Physical Reads
The amount of data that is ‘read-ahead’ depends on the Prefetch Size
determined when the tablespace was created. The prefetch size for a
tablespace can also be modified later using the alter tablespace command.

The value of the Prefetch Size states the maximum amount of pages that can be
prefetched when retrieving data from the tablespace. Initially, the database
manager will start with only a portion of the prefetch size. It will then continue
to increase it until the buffer pool limit is hit (see maxchngpgs, discussed in 3.1.1.5,
“Page Cleaners” on page 22). Once the limit is hit, the database manager will
start to decrease the number of pages being prefetched.

Figure 9 shows the value of data elements captured through a snapshot. The
snapshot monitor is discussed in chapter 4.2, “Snapshot Monitor” on page 47.
The application monitored was a dynamic SQL statement retrieving 75000 rows.

Figure 9. Efficiency of Prefetchers

Notice the number of data pages read asynchronously. All asynchronous reads
are performed by prefetchers. Almost all pages are read asynchronously,
achieving a Buffer Pool Hit ratio close to 100%. Prefetchers are placing nearly
all the required pages in the buffer pool. The database engine will find them
there and will not need to perform additional I/O operations to retrieve data.

In the example, each prefetcher reads, on average, eight pages into the buffer
pool (even though the Prefetch Size was set to 32 pages). Since the prefetchers

Chapter 3. DB2 Performance Considerations 21

read asynchronously, the time spent in these 430 async reads is time that we
saved. If no prefetchers were used, the response time would probably go well
over 65 seconds, as every read operation would only read one page at a time
(and would not be asynchronous).

3.1.1.5 Page Cleaners
Page cleaners examine the buffer pool, and write pages asynchronously to disk.
The page cleaners have two goals:

• Assure that an agent will always find free pages in the buffer pool. If an
agent does not find free pages in the buffer pool, it will have to clean them
itself, and the application being served by this agent will have a poorer
response.

• Speed the recovery of a database if a system crash occurs. If more pages
are written to disk, the amount of log file to be processed to recover the
database will diminish.

Page cleaners are activated whenever any of these two events occur:

 1. The number of written pages in the buffer pool exceeds the maxchngpgs
database configuration parameter.

maxchngpgs specifies the percentage of changed pages at which the
asynchronous page cleaners will be activated. This database configuration
parameter is, by default, set to 60 percent. Only modified pages are written
to disk. Non-modified pages are replaced by new ones without any page
cleaner intervention.

 2. The size of the log that would need to be read to recover the database is
greater than logprimary * logfilsiz * softmax.

logprimary is the number of primary log files, logfilsiz is the size of the log
files and softmax is the percentage of the log file used before taking a soft
checkpoint. All logprimary, logfilsiz and softmax are database configuration
parameters.

When page cleaners are activated, they build a list of dirty pages. In this list,
pages are ordered by the time a page was first changed. Notice that these
pages may not neccesarily be the least recently used. Once they have written
all these pages back to disk, they will become inactive again.

The number of page cleaners activated is determined by the database
configuration parameter, num_iocleaners. By default, it is set to one. Changing
this value may have a big impact if the database is stored across several disks.
A good value for this parameter, in a transaction environment, is the number of
physical devices used by the database.

In a query-only database, I/O cleaners have little impact. The only time that they
will come into play is if a large temporary tables needs to be created.

These following two data elements help to tune the activity of page cleaners:

• Buffer Pool Threshold Cleaners Triggered

Indicates the number of times a page cleaner was invoked because the
buffer pool has reached the dirty page threshold set by maxchngpgs.

If cleaners are triggered often, then you might consider either increasing the
maxchngpgs or the buffer pool settings.

22 DB2 Performance and Tuning

• Buffer Pool Log Space Cleaners Triggered

Number of times a page cleaner was invoked because the size of the log
that would need to be read to recover the database is greater than
logprimary * logfilsiz * softmax. Logging is discussed in 3.2, “Logging” on
page 32.

If the number of cleaners triggered due to log space recovery is high, the
softmax parameter could be increased. Notice that this will impact the time
required to recover the database in case it crashes.

3.1.1.6 Summary
When tuning the buffer pool, the goal is to reduce the number of I/Os. To reduce
the number of I/O operations, the data pages must be placed in the buffer pool
before they are needed. Applications will wait on synchronous I/Os, so buffer
pool operations performed by I/O cleaners (writing pages from the buffer pool to
disk), should be performed asynchronously whenever possible. The
configuration parameters involved are:

• buffpage

Size of the buffer pool.

• Prefetch size of the tablespaces

Max number of pages that the I/O servers can prefetch. The prefetch size of
a tablespace is determined when the tablespace is created. It can be
modified through the alter tablespace command. Sequential prefetching can
be turned off using the seqdetect configuration parameter.

• num_iocleaners

Maximum number of I/O cleaners.

• maxchngpgs

Percentage of “dirty pages” that trigger the I/O cleaners.

To detect if the buffer pool is undersized, the best way is to check the number of
times the page cleaners were triggered. For query-only environments, no page
cleaners will be triggered as no pages are modified. Other clues to detect that
the configured buffer pool size is small are:

• I/O servers not prefetching as many pages as expected

• A low Buffer pool-sync hit ratio

• A low Index pool-sync hit ratio

A first approach when running the buffer pool size is to increase it until a good
index pool sync hit ratio is achieved (over 80 percent, for example). If more
memory is available, try to increase it until the buffer pool sync hit ratio goes
over 80 percent.

Notice that this ratio is affected by the following factors:

 1. Prefetchers

If no prefetching is performed and the data pages are not already in the
buffer pool, the buffer pool sync ratio and the response time will be severely
affected when scanning large amounts of data.

 2. The Prefetch Size of the tablespaces

Chapter 3. DB2 Performance Considerations 23

If the Prefetch Size of a table space is increased, be careful to avoid disk
contention. If I/O servers are prefetching too many pages, contention may
arise. This is detected though the use of operating system tools, and
confirmed when non-steady values of the synchronous I/O read time are
measured.

 3. Table structure

Table reorganization only applies if data is being accessed through an index.
Choose the most frequently used index and cluster the data according to this
index. Table reorgs are detected when the response time for queries
accessing a table is lower than expected, and can be confirmed when
reorgchk shows low cluster ratio for the index.

3.1.2 Database Heap
The Database Heap maintains control blocks for tables, views and tablespaces,
maintaining a descriptor for each page in the buffer pool. It also holds the Log
Buffer and the Catalog Cache. The Database Heap is allocated within the
Database Global Memory Area.

The Database Heap maximum size is determined by the database configuration
parameter, dbheap. This parameter should be set to a value so that the Log
Buffer, Catalog Cache and buffer pool page descriptors fit into the database
heap. The area required by descriptors is approximately 1/30 the size of the
buffer pool. The rest of the space is allocated when needed. The default
maximum size of the database heap is 1200 4KB pages for AIX servers, 600 4KB
pages for OS/2 and NT servers with remote clients and 300 4KB pages for OS/2
and NT servers with local clients only.

Increasing the dbheap parameter has an impact on availability, not performance.
If the heap is exhausted, connections will receive errors and may have to roll
back their transactions. If the ‘Maximum Database Heap Allocation’ data
element gets close to the value set by dbheap, the dbheap value should be
increased.

Figure 10. The Database Heap

Figure 10 shows that the Log Buffer and the Catalog Cache are allocated from
the Database Heap. Both Log Buffer and Catalog Cache use only the memory

24 DB2 Performance and Tuning

they need, and their maximum size is limited by the logbufsz and
catalogcache_sz configuration parameters.

3.1.2.1 Log Buffer Size
The size of the log buffer is limited by the logbufsz database configuration
parameter. By default, the maximum size is set to 8 4KB pages for all servers.
This memory is allocated as required and released when not in use. The
memory is allocated from the Database Heap.

The log buffer should have, at least, the space required by a transaction. If the
size of the buffer is big enough, there will be no need to perform an I/O
operation (write to the log file) until the transaction is committed. If the size of
the buffer is too small, it will write to the log file when the buffer fills up. If
commits are being grouped, the size of the log buffer should be multiplied by the
number of commits being grouped. Grouping commits will result in less I/O
activity.

To assist in the log space used by a specific transaction, the following data
element is provided:

• Unit of Work Log Space Used

Amount of log space used by the UOW being monitored.

Figure 11 shows the influence of the size of the log buffer in the response time
of an SQL update statement. The statement updated more than 6000 rows, and
required 2,163,779 bytes of log space. This log space was measured by the Unit
of Work Log Space Used data element. The number of log pages written was
161, which is above the maximum value of 128 pages(logbufsz maximum
configurable value). The response time decreased by almost 6 percent.

Figure 11. Response Time and Log Buffer Size

Logging is further discussed in 3.2, “Logging” on page 32.

3.1.2.2 Catalog Cache Size
The Catalog Cache keeps references to the catalog in a memory area. It is used
to avoid disk reads when binding SQL statements, static or dynamic.

This cache is only allocated when required. Its default maximum size is 64 4KB
pages for AIX servers, 32 4KB pages for OS/2 and NT servers with remote clients
and 16 pages for OS/2 servers with local clients. It is allocated within the

Chapter 3. DB2 Performance Considerations 25

database heap and its size is determined by the catalogcache_sz database
configuration parameter.

The purpose of this cache is to avoid disk reads when compiling SQL statements
or using dynamic SQL. It is not used in regular ‘transaction static SQL’
environments. It stores table descriptors for each table, view or alias
referenced. A table descriptor is inserted by a transaction so that following
transactions will find the table descriptor in the cache the next time the table is
referenced. Notice that a DDL statement against a table will cause the table
descriptor of this table to be flushed from the cache. The cache is deallocated
when all the applications disconnect from the database.

The following data elements monitor the use of the catalog cache:

• Catalog cache inserts

Number table descriptors inserted into the cache.

• Catalog cache lookups

Number of times statements are found in the catalog cache for a table
descriptor.

The ratio calculated dividing the number of ‘catalog_cache_inserts’ by the
number of ‘catalog_cache_lookups’ should not exceed 0.2. This will indicate that
only one out of five catalog cache lookups have required a catalog cache inserts.
Some inserts cannot be avoided, but the goal is to avoid an undersized cache
that inhibits cache hits or that is unable to provide space for complex SQL
statement compilations.

The following data elements indicate insufficient sizing of the catalog cache or
the database heap:

• Catalog cache overflows

Number of times a catalog cache insert failed caused by a catalog cache full
condition. If there are several overflows, the size of the catalog cache
should be increased.

• Catalog cache heap full

Number of times a catalog cache insert failed caused by a database heap
full condition. If the number is more than a few, the database heap should
be increased.

When sizing the catalog cache, the goal of the database administrator is to set
its size so all table and view descriptors could fit in the cache. This may not
always be possible due to memory restrictions. For our database, which stores
sixty-three tables, we tested with different sizes of the cache. We created a loop
of selects that referenced all the tables of the database, and executed this loop
several times from two different applications. The results are plotted in
Figure 12 on page 27. For our database, the optimal size of the catalog cache is
shown to be 32 4KB pages.

26 DB2 Performance and Tuning

Figure 12. Catalog Cache Hit Ratio/Catalog Cache Size

To test the effect of the catalog cache on the response time, we executed a
query against a table. Two sets of runs of this query were made. In one of the
sets, the descriptor of the referenced table was in the cache, and in the second
run, it was not. Results are shown in Table 2.

Table 2. Response Time and Catalog Cache

Referenced table not in
Catalog Cache

Referenced table in
Catalog Cache

Response Time (%) 100 97.21

Catalog cache lookups 1 1

Catalog cache inserts 1 0

Catalog cache size 4 Pages 64 Pages

3.1.2.3 Summary
The database heap, if properly sized, does not have as big an impact in the
performance of the database as the buffer pool has. But if not properly sized,
errors will appear and the performance of dynamic SQL statements will be
affected. It contains room for the log buffers and for the catalog cache.

The database configuration parameters involved when dealing with this heap
are:

dbheap Size of the database heap.

logbufsz Size of the log buffers.

mincommit Number of commits to group together. (Refer to 3.2.2,
“Grouping Commits” on page 33)

catalogcache_sz Size of the catalog cache.

To detect if the database heap is undersized, check the ‘Maximum Database
Heap Allocation’ water mark. If this gets close to the dbheap value, then the

Chapter 3. DB2 Performance Considerations 27

database heap should be increased. The parameter, logbufsz, is discussed
further in 3.2.1, “Sizing Log Buffers” on page 32 and mincommit in 3.2.2,
“Grouping Commits” on page 33.

Catalog cache problems are detected when:

• Catalog cache overflows appear

This points to an insufficient value for the catalogcache_sz.
• Catalog cache heap full conditions appear

This data element points to an undersized dbheap.

3.1.3 Locks
An application may have to wait if the data it needs to access is locked by
another application, or it will wait if it needs to obtain a lock and no locks are
available. The memory area reserved for locks is called the Lock List. The Lock
List is allocated within the Database Global Memory. Locks are used to
guarantee data integrity. Number of locks used will depend upon:

• The number of concurrent applications

• Isolation levels used by applications

• The number of rows affected in transactions

3.1.3.1 Available Locks
The number of locks available for a database is determined by the locklist
database configuration parameter. This parameter sets the amount of memory
assigned to lock lists. By default, it is set to 100 4KB pages for AIX servers, 50
4KB pages for OS/2 and NT servers with remote clients and 25 pages for OS/2
and NT servers with local clients. Each lock requires either:

• 64 bytes if the object being locked has no other locks on it

• 32 bytes if the object already has a lock held on it

Memory is allocated when the database is activated. The following data
elements can be monitored to help check that the lock list is correctly sized:

• Total Lock List Memory in Use

Amount of memory, in bytes, that is in use within the lock list. This data
element should be sampled, and an average value must be obtained. The
average value of the lock list memory in use should be less than 90 percent
of the memory set by the locklist configuration parameter.

• Locks Held

The number of locks currently held. When this data element is measured at
database level, it can provide guidance on the size of the lock list. Again,
this element should be sampled and an average value obtained. From this
average, the average use of the lock list can be obtained using the following:

28 DB2 Performance and Tuning

3.1.3.2 Avoiding Lock Escalations
Lock escalations occur when a unit of work requires more locks than the
database server is configured to assign. This will happen when:

• A single unit of work (UOW) tries to monopolize a big chunk of the lock list.
The server limits the maximum percentage of locks from the lock list that a
UOW can hold. It does this to ensure that other units of work will have locks
available. The limit is imposed through the maxlocks database configuration
parameter. By default, it is set to 10 percent for AIX servers and to 22
percent for OS/2 and NT servers.

• The lock list is undersized. If a UOW requests more locks than those
available in the lock list, a lock escalation will occur.

Escalations reduce the concurrency of the database and can lead to deadlocks.
The maxlocks parameter can be tuned using the following data elements:

• Locks Held

The number of locks currently held. When this data element is measured at
the application level, it provides the number of locks that are being held by
the application. This value has to be compared to maximum number of locks
that the database will allow to be held by an application.

• Maximum Number of Locks Held

The maximum number of locks held by the transaction being monitored.

• Lock Escalations

The number of times that locks have been escalated from row locks to a
table lock. It can be estimated at the database level.

Concurrence-related problems can be detected through the monitoring of the
following data elements:

• Current Applications Waiting On Locks

Number of applications waiting on a lock.

• Applications Connected Currently

Indicates the number of applications that are currently connected to the
database.

• Lock Waits

Number of times that applications waited for locks.

When tuning locks, the goal is always to increase concurrency. Using different
isolation levels, and thus, possibly reducing the number of locks required by a
unit of work, is one of your options. The size of the locklist or the maximum
percentage of the locklist held by a unit of work can also be increased.

Chapter 3. DB2 Performance Considerations 29

3.1.3.3 Deadlocks
Deadlocks appear when two applications are waiting for resources that are
being locked by each other. The database manager will roll back one of them to
resolve the deadlock. Deadlocks can be minimized by:

• Using correct isolation levels

• Avoiding lock escalation

Deadlocks can be detected through these data elements:

• Deadlocks Detected

Total number of deadlocks that have occurred. The database manager
checks for deadlocks at the frequency determined by the dlchktime
configuration parameter. Its default value is 10000 milliseconds.

• Number of Locks Timeouts

Number of times that a request for a lock timed out. Applications will wait
on locks according to the locktimeout database configuration parameter. By
default, this parameter is set to -1, which means that no lock timeout check
is made and the application will wait forever. A value of 30 seconds is
reasonable for an OLTP environment. For a batch environment, 60 seconds
is a good initial value.

The interval for deadlock checking, dlchktime, should be set to be less than the
locktimeout interval. Doing this, deadlocks are eliminated by rolling back one of
the conflicting applications, giving a chance to the non-rolled-back application
that is waiting for locks to complete its work.

3.1.3.4 Summary
The lock list is the memory area used by the database to store locks. Locks
affect the concurrence of the database. An improper size of the lock list may
cause:

• Lock escalations which reduce concurrency and increase the chance of
deadlocks.

• Applications waiting on locks.
• Timeouts for applications that have been waiting on locks.

The database configuration parameters involved when dealing with the lock list
are:

locklist Maximum size of the memory area reserved for locks.

maxlocks Maximum percentage of locks from the lock list that a UOW can
hold.

dlchktime Interval between deadlock detections.

locktimeout Time that an application will wait to obtain a lock before it times
out.

To detect if the lock list is undersized, you can check the ‘Lock Waits’ and the
‘Lock Escalations’ data elements. Having no lock waits and no lock escalations
points to a well-sized lock list.

If escalations appear, check for possible “greedy” applications and monitor them
through the ‘Locks Held’ and the ‘Maximum Number of Locks Held’ data
elements. A possible solution is to change the isolation level of the application,

30 DB2 Performance and Tuning

increase the maxlocks configuration parameter or increase the size of the Lock
List.

Deadlocks and lock timeouts point to problems with escalations or with isolation
levels. They can be detected through the ‘Deadlocks Detected’ and the ‘Number
of Locks Timeouts’ data elements. If either of these two data elements collects a
significant value, correct your database configuration, increasing the lock list, or
change the isolation level of the applications.

3.1.4 Utilities and Recovery
The memory area used by the LOAD, BACKUP and RESTORE utilities is called
the utility heap. The utility heap is allocated within the Database Global Memory
area. The utility heap includes both backup and restore buffers. It is only
allocated when needed. The maximum size of this heap is, by default, 5000 4KB
pages for all AIX, OS/2 or NT servers. Notice that the number of I/O servers
(async servers) available will also impact the performance of the backup and
restore utilities. Figure 13 shows the backup and the restore buffers allocated
within the utility heap. The amount of memory allocated for each utility will
depend on the size of the buffers and the number of them being used.

Utilities do not use the buffer pool. If more space is needed for the utility heap,
the size of the buffer pool can temporarily be reduced. Notice that the buffer
pool size cannot be changed while the database is active.

Figure 13. The Util ity Heap

3.1.4.1 Backup
The number of buffers and their size can be defined when the backup command
is executed. If not, the buffer size is set to the backbufsz database configuration
parameter, which has the default value of 1024 4KB pages.

For better performance, the number of buffers to be used during a backup should
be set to be at least twice the number of target physical devices where the
backup is being sent. This is due to the fact that devices are slower than the
ability of the database to write to a backup buffer. By doing so, the database
can write to a second backup buffer while the first backup buffer is being written
to the device.

Chapter 3. DB2 Performance Considerations 31

3.1.4.2 Restore
The number of buffers and their size are usually determined when the restore
command is executed. If not, the buffer size is set to the restbufsz database
configuration parameter. Its default value is 1024 4KB pages.

The number of buffers to be used during a restore should be set to be at least
twice the number of source physical devices from where the backup is being
restored for the same reasons described in 3.1.4.1, “Backup” on page 31.

3.2 Logging
From a performance point of view, two issues apply when discussing logging:

 1. The overhead of allocating primary or secondary log files.

• If using circular logging, all primary log files are pre-allocated and are
reused. Secondary log files are allocated when required and then
deallocated when no longer required. This creates allocated disk space
that can be avoided. To do so, the number and size of the primary log
files should be set to handle the daily transaction needs, avoiding
secondary log file allocation

• If using archival logging, primary log files are not reused. They are
retained, and new primary log files are allocated as the old ones are
archived. No secondary log files are used with archival logging. The
primary log file size should be set, if possible, to a high enough value to
minimize the overhead of allocating new primary log files.

 2. Log activity, including when logs are written to disk, may have an impact on
the response time of applications. Writing to logs is always necessary, but
the I/O activity can be reduced by choosing an appropiate size for the log
buffer and grouping commits.

3.2.1 Sizing Log Buffers
The size of the log buffer is limited by the logbufsz database configuration
parameter and by the dbheap configuration parameter, as shown in Figure 10 on
page 24. By default, the maximum size is set to 8 4KB pages. This memory is
allocated when needed and freed when not in use. The memory is allocated
from, and so limited to, the database heap.

The log buffer should have, at least, the space required by an average
transaction. When the buffer fills, the log data is written to disk. If commits are
being grouped, the size of the log buffer should be multiplied by the number of
commits being grouped.

The space required by a transaction can be estimated using the following data
element:

• Unit of Work Log Space Used

Amount of log space, in bytes, used in the current UOW of the monitored
application. Values should be obtained for a representative transaction.

32 DB2 Performance and Tuning

3.2.2 Grouping Commits
Commits are grouped according to the mincommit database configuration
parameter. Setting this parameter to a different value than its default value (1)
will attempt to group commits. If the number of transactions per second being
executed are less than the mincommit value, transactions will be committed every
second.

The parameter mincommit should be adjusted to the number of transactions per
second at the peak hour. To obtain the number of transactions executed, the
following data elements must be measured during the peak hour interval:

 1. Commit Statements Attempted

Total number of SQL commit statements that have been attempted.

 2. Rollback Statements Attempted

Total number of SQL rollback statements that have been attempted.

Add together the values obtained from these two measurements and then divide
by the number of seconds in the measured interval. This will tell you the
number of transactions per second.

3.2.3 Sizing Log Files
The following two database configuration parameters determine the appropiate
size for the primary log files:

• logprimary

Sets the number of primary log files to be used by the database. By default,
the database will use three log files.

• logfilsiz

Sets the size of these files. Its default value is 1000 4KB pages for AIX
servers and 250 4KB pages for OS/2 and NT servers.

When circular logging is being used, the number of secondary log files allocated
is given by the following data element:

• Secondary Logs Allocated Currently. If not zero, the next two data elements
show if the sizes and number of primary log files are much out of target:

− Maximum Secondary Log Space Used

Maximum amount of secondary log space used in bytes.

− Maximum Total Log Space Used

Maximum amount of total log space used in bytes. This should be
compared to the amount of space allocated to primary log files.

3.2.4 Summary
To log efficiently, the size of the log buffer must be large enough to meet the log
space requirements of a transaction. If commits are being grouped, multiply the
size of log buffers by the number of transactions being committed. There are
two database configuration parameters that regulate this:

• mincommit

Number of transactions being grouped.
• logbufsz

Chapter 3. DB2 Performance Considerations 33

Size of the log buffers.

Apart from buffers, the size and number of log files are set by the logprimary
and the logfilsiz configuration parameters. Circular or archived logging is
determined by the logretain configuration parameter.

3.3 Heaps used by Agents
Each agent has a private memory area. This private memory area contains the
following heaps and stacks:

 1. Application Heap. This heap is used for executing all SQL statements.

 2. Sort Heap. Used for sorting tables.

 3. Statement Heap. Used for compil ing SQL statements.

 4. Agent Stack. Controls the amount of memory used by each agent.

 5. Statistics Heap. Heap used for gathering statistics data.

 6. DRDA Heap.

 7. UDF Memory. Heap used to exchange data between UDFs and the database.

 8. Query Heap. Heap used to process requests/replies to/from local
applications.

 9. Client I/O Block. Memory area to process requests/replies from remote
applications.

Notice that a private memory area is allocated for each agent (active or idle) in
the machine where the database server is running. Every concurrent application
(local or remote) will be served by a separate agent.

3.3.1 Application Heap
One application heap is allocated with each connection being made. By default,
the maximum size of the application heap is 128 4KB pages (AIX, OS/2 or NT
servers). Only the minimum amount of memory required is allocated when the
application connects to the database. More memory is allocated as required,
until the maximum size of the application heap is reached. It is configured by
the applheapsz parameter. The application heap contains the package cache and
memory for other internal uses.

3.3.1.1 Package Cache
Package Cache is used to maintain the most-frequently accessed sections of the
package. The maximum size of this cache is, by default, 36 4KB pages (AIX,
OS/2 or NT servers), and it is configured by the pckcachesz parameter. It is
allocated from the application heap. The compiled SQL statements (packages)
are kept in the cache until one of the following occurs:

• The package is purged from the cache

• The cache fills up

• The application disconnects from the database

Sections of the package are purged from the cache when certain DDL
statements are executed. Invalid sections of the package will be recompiled and
will be inserted in the cache the next time they are used. Three data elements
help to monitor the package cache of an agent:

34 DB2 Performance and Tuning

• Package Cache Inserts

Number of times a package section was not in the cache and had to be
inserted.

• Package Cache Lookups

Number of times an application looked for a package section in the package
cache.

• Data Definition Language SQL Statements

This element can be measured at database or application level.

Success of this cache can be measured, at either the database or application
level, using the following ratio:

If no DDL statements are being executed, a low hit ratio points to a small
package cache or to a small application heap size. If the ratio is over 80
percent, the cache is considered to be working well.

The Package Cache has a big impact in application performance both for static
and dynamic applications.

3.3.2 Sorts
The Sort Heap is used to sort data-index or data pages. Its maximum size is
determined by the sortheap database configuration parameter. It’s only allocated
when required, and its default maximum value is 256 4KB pages for AIX, OS/2
and NT servers. The sortheap sets the maximum amount of memory available
for a sort. When the sorting is done, the memory used is released.

The size of the heap should be increased when large sorts are frequently used.
The larger the table, the higher the sortheap value required. At instance level,
the total amount of memory to be used by sorts is limited by the sheapthres
configuration parameter. This parameter is set to 4096 4KB pages for AIX
servers and to 2048 4KB pages for OS/2 and NT servers

When the amount of memory required by all sorts (at the instance level) reaches
sheapthres, new sort requests will not be denied; sheapthres is not a hard limit.
New sort requests will be accepted, but the database manager will not use piped
sorts to process the incoming sort requests.

Chapter 3. DB2 Performance Considerations 35

Figure 14. Sort Heap and Sort Heap Threshold

In Figure 14 the dashed area represents the sort heap threshold, while the bold
lines represent the sortheaps of each database. The figure shows three sorts
being executed against database 1, two against DATABASE 2 and one against
database 3. Notice that each database may have set different values for
sortheap. All agents performing sorts are limited by their own sortheap
configuration parameters. Global resources for sorting within an instance are
limited by the sheapthres configuration parameter.

Piped sorts provide a performance benefit. A sort is piped if the rows requested
by the application fit into the sort heap. A non-piped sort will use temporary
tables to perform the sorting. This is done by dividing the sort in several passes
where each pass sorts a subset of the entire set of rows being sorted. After all
passes are completed, a merge between all subsets is performed. These
temporary tables are stored in the buffer pool, so they can be paged to disk by
the page cleaners. Piped sorts have these performance benefits over non-piped
sorts:

 1. Piped sorts may reduce disk I/O activity.

 2. Sorts are performed in one phase.

The data elements associated with the sheapthres are:

• Piped Sorts Requested

Number of piped sorts, at instance level, that have been requested.

• Piped Sorts Accepted

Number of piped sorts, at instance level, that have been accepted.

• Post Threshold Sorts

Number of sorts that have requested heaps after the sheapthres has been
reached.

• Total Sort Heap Allocated

36 DB2 Performance and Tuning

Total number of allocated pages for all sorts. This should be measured at
instance level and compared to the sort heap threshold.

The sort heap threshold should be increased when:

 1. The number of post threshold sorts is significant when compared to the total
number of sorts.

 2. The difference between the number of piped sorts requested and the number
of piped sorts accepted is high. Notice that if there are no post threshold
sorts, but the difference of piped sorts requested and accepted is high, then
the sortheap is the cause and its value should be increased.

 3. The total sort heap allocated gets near the value set for the threshold.

Figure 15 shows the response time of a query using different sort heap sizes. In
no iteration was the sort heap threshold set by sheapthres surpassed. The query
sorted a fairly large amount of data. Notice that the response time improved
when the size of the sortheap was increased. The big increase in response time
is obtained when the sort did not overflow the sort heap. For small values of the
sortheap configuration parameter, the sort request overflowed the heap,
requiring the use of the buffer pool and the use of several sort phases and a
merge phase.

Figure 15. Sort Heap and Response Time

Another conclusion obtained from the figure is that using a sortheap size larger
than needed does not benefit the response time of the query. The goal of the
database administrator is to find the spot where as many sort overflows as
possible are avoided.

The sort heap is monitored through the following data elements, which can be
measured by the DB2 performance monitor or the snapshot monitor:

• Sort Overflows

Number of sorts that overflowed the sort heap, requiring space in the buffer
pool to complete. A high number of sort overflows point to the Sort Heap
being too small.

• Active Sorts

Number of sorts in the database that currently have a sort heap allocated.

• Total Sort Heap Allocated

Chapter 3. DB2 Performance Considerations 37

Measured at database level, total number of allocated pages for all sorts.

The average size of the sort heap being used by an application can be obtained
by sampling the number of active sorts and the total sort heap allocated. This
value can then be compared to the sortheap configuration parameter.

3.3.3 Monitoring Agents
An agent is a separate process or thread that carries all requests made by an
application. Every application will have its own agent which is dynamically
created when required. The database will assign one of the idle agents to
attend to the requests of each application.

The number of agents is limited by the lower of the following:

 1. Maximum number of applications that can be connected to a single
database. This number is set by the maxappls configuration parameter. By
default, it is set to 40 for AIX servers, 20 for OS/2 and NT servers with local
and remote clients, and 10 for OS/2 and NT servers with local clients only.

 2. The maximum number of agents that can be concurrently executing a
transaction. This is configured through the maxcagents configuration
parameter. Its default value is the value set by the maxagents parameter.

 3. The maximum number of agents for all databases created under a single
instance. This is set by the maxagents configuration parameter. By default, it
is set to 200 for AIX, OS/2 and NT servers.

Appropriate values for these configuration parameters can be set by:

 1. maxagents

These data elements apply to:

• Local Connections

Total number of local clients connected to any database of the instance.

• Remote Connections to Database Manager

Total number of remote clients connected to any database of the
instance.

• Maximum Number of Agents Registered

Maximum number of agents ever connected to any database of this
instance since the instance was started.

The values of maxagents should be set to be greater than the sum of local and
remote connections. It should also be increased if the maximum number of
agents registered gets close to the current value of maxagents.

 2. maxappls

• Applications Connected Currently: Number of applications connected to
the database being monitored.

 3. maxcagents

• Maximum number of Agents Waiting

Highest number of agents that have been waiting, at the same time, for
their transactions to be executed because the maxcagents limit has been
reached. This highest number is recorded since the instance was
started.

38 DB2 Performance and Tuning

• Maximum Number of Agents Registered

Notice that this is the high-water mark for the number of agents
connected at the same time.

3.3.3.1 Other performance issues
To avoid the overhead of creating new agents when a connection is requested,
the database manager can keep a number of idle agents. The number of idle
agents not assigned to any client is set by the max_idleagents configuration
parameter. By default, it is set to three for AIX, OS/2 and NT servers. When an
agent is released by the client, the database manager will not terminate the
agent process if the number of idle agents available is less than max_idleagents.

Agent priority can be set by the agentpri configuration parameter. By default it
is set to -1, meaning that all database processes and agents should be treated
by the operating system as any other process. Performance can be increased
setting a higher priority. Care should be taken when setting this parameter
because all other user processes, including those not related to DB2, will be
affected.

3.3.4 Client Applications
Clients and applications are used to represent the same concept. A client is
said to be local if it is being executed on the same machine as the database
server. A remote client, is the client being executed on another machine. To
attend the requests of a local client, a query heap is allocated within the agent
private memory. If the request comes from a remote client, a client I/O block is
allocated in the agent private memory. So, for a given client, only one of these
structures will be allocated; either a query heap or a client I/O block.

3.3.4.1 Local Clients - Query Heap
This heap is closely related to the application support layer heap. This heap is
used to store each query in the agent’s memory. It provides room to store the
following:

 1. The statement text

 2. Package name and creator

 3. Input and output SQLDA

 4. The SQLCA

The initial size of this heap is determined by the size of the application support
layer heap. Its maximum size is set by the query_heap_sz configuration
parameter. The value for the query_heap_sz parameter should be set so it fits the
requests/replies coming from the application support layer and leaves enough
room for blocking cursors.

The default setting of the query_heap_sz is 1000 4KB pages for AIX, OS/2 and NT
servers. Notice that the default size for the application support layer heap is 15
4KB pages.

Chapter 3. DB2 Performance Considerations 39

3.3.4.2 Remote Clients - Client I/O Block
The client I/O block of memory serves the request/replies from and to remote
applications. The default size of this I/O block is 32KB for AIX, OS/2 or NT
servers. The server will set the I/O block value to the value specified by the
rqrioblk or dos_rqrioblk at the client when the connection is made. The
dos_rqrioblk parameter applies only to DOS clients, while the rqrioblk
parameter applies to non-DOS clients.

3.3.5 Other Heaps
Other heaps are also allocated in the agent private memory. They have little or
medium impact in performance. They are described here for completeness
purposes.

 1. Statement heap

The statement heap is used for the compilation of SQL statements. For
dynamic SQL, it is used during execution of the application, while for static
SQL it is only used during binding. Its maximum size is set by the stmtheap
configuration parameter. By default, it is set to 2048 4KB pages for AIX,
OS/2 or NT servers.

 2. Statistics heap

This heap is used by the runstats command to collect statistics. It is
allocated when runstats is executed and freed when no runstats are in use.
Its maximum size is set ny the stat_heap_sz configuration parameter. By
default, it is set to 4384 4KB pages for AIX, OS/2 or NT servers.

 3. Agent stack

The stack is the amount of memory allocated by the operating system to
each agent. It is configured through the agent_stack_sz configuration
parameter, and its default size is 64 4KB pages for AIX and OS/2 servers and
16 4KB pages for NT servers.

 4. DRDA heap

The DRDA heap is used by DDCS and the DRDA application server. The
DRDA application server will allocate a heap for each DRDA application
request making a connection to the database. DDCS requestor will allocate
a heap when it connects to a DRDA application server. By default, the size
of this heap is set to 128 4KB pages for AIX, OS/2 and NT servers through
the drda_heap_sz configuration parameter.

 5. UDF heap

This heap is used to exchange data between the user-defined functions used
by the application and the database. It is configured through the udf_mem_sz
parameter. Its default value is 256 4KB pages for AIX, OS/2 and NT servers.
If the application being served by the agent does not use user-defined
functions, then this heap is not allocated.

3.3.6 Summary
The agent private memory area contains many heaps and stacks, but the two
important heaps dealing with agents are the application heap (which includes
the package cache) and the sort heap.

40 DB2 Performance and Tuning

The success of the package cache is measured through the ‘package cache hit
ratio’ data element. The size of the package cache is limited by both of these
configuration parameters:

• pckcachesz

Maximum size of the package cache.
• applheapsz

Maximum size of the application heap.

When sorting data, the goal is to perform as many piped sorts as possible. The
amount of memory available for the sort is limited by the sortheap configuration
parameter. The overall sort memory resources, within an instance, are also
limited by the sort heap threshold. This is determined by the instance
configuration parameter, sheapthres. This threshold is a “soft” limit. New sort
requests will be accepted if the threshold is surpassed. But the database
manager will not perform piped sorts.

Problems with the sort heap threshold are detected when:

• The post threshold sorts data element is not zero.
• The difference between the number of piped sorts accepted and the number

of piped sorts requested data elements is too high.
• The total sort heap allocated data element (measured by a database manger

snapshot) gets close to the amount of memory limited by sheapthres.

Sort heap problems are detected when:

• The sort overflows data element is not zero.
• Piped sorts are rejected, but there are no post-threshold sorts.

3.4 Heaps Used by Applications
Applications use one of these heaps to exchange information between the
application and the agent. The heap also is used for row blocking, which
retrieves a block of rows in a single operation. These rows are stored in a
memory area of one of the heaps, so each FETCH request will get the next
row from this memory area. The memory area is allocated when the
application opens a cursor. Blocking will be used depending on the options
specified when precompiling and binding the application.

The memory area used is determined by the location of the application,
whether is it local or remote:

 1. If the application is a local application, the application support layer heap
is used.

The application support layer heap is configured through the aslheapsz
database configuration parameter. By default, this is 15 4KB pages.
This value should be sized to contain an average request/reply between
the application and its agent. Its size should be increased if queries
retrieving large amounts of data are used.

 2. If the application is a remote application, the client I/O block is used.

This memory is allocated in the client. The default size of this I/O block
is 32KB for non DOS/Windows clients and 4KB for DOS/Windows clients.
It is configured by the rqrioblk or by the dos_rqrioblk configuration

Chapter 3. DB2 Performance Considerations 41

parameter. It is independent of the transport protocol used to connect
the client and the server.

Notice that an I/O block will be opened for every client connection to a
database. If a client is concurrently connected to several databases,
several I/O blocks will be opened.

3.5 Binds and Tuning Parameters
There are three bind-related factors that impact the performance of SQL
statements, both static and dynamic. These three factors are:

• The Isolation Level

The isolation level affects the performance of the application as CPU and
database resources are used to obtain and free locks.

• Blocking

Blocks of data can be retrieved in a single operation, improving the
performance of a query.

• Optimization Class

The optimization class is used by the optimizer to determine the access
plan.

3.5.1 Isolation Level
The isolation level determines how data is locked from other agents while being
accessed. Every package has its isolation level. The isolation level is specified
when the application is precompiled (prep command) or bound (bind command).
These four possible isolation levels:

 1. Repeatable Read

The application will lock all rows referenced within a unit of work. The
optimizer will determine, based on the locklist and maxlocks configuration
parameters, whether to lock the table for the access plan instead of locking
individual rows.

 2. Read Stability

The application will lock all the rows retrieved within a unit of work.
 3. Cursor Stability

The application will lock the row where the cursor is currently positioned.
 4. Uncommitted Read

No locks are acquired. The application does not even lock the row that it is
reading.

From a performance point of view, this means that if a query scans a 75000-row
table and only retrieves 500 though a predicate, it will lock all 75000 rows if
repeatable read is used (either holding a lock against each individual row or
locking the whole table), 500 rows if read stability is used, one row at a time if
cursor stability is used, and no rows if uncommitted read is used.

42 DB2 Performance and Tuning

3.5.2 Blocking
Cursor blocking is determined when applications are precompiled or bound.
Blocking is specified through the BLOCKING option of these commands. BLOCKING
options are:

• UNAMBIG

All cursors, not explicitly defined FOR UPDATE, are blocked.

• ALL

Ambiguous cursors are blocked.

• NO

Cursors are not blocked.

If no BLOCKING option is specified, the default row blocking is UNAMBIG, except for
the command line processor and CLI, where, by default, blocking is ALL.

When blocking is used, the number of rows returned (per block) to the
application is:

• For local applications

The size of the application support layer heap (in bytes) divided by the
output row length (in bytes).

• For remote applications

The size of the client I/O block (in bytes) divided by the output row length (in
bytes).

Notice that the number of rows per block returned to the application may be
conditioned by the OPTIMIZE FOR n ROWS clause of a SELECT SQL statement (but
notice that the OPTIMIZE FOR n ROWS clause will not limit the size of the answer
set).

3.5.3 Optimization Class
When an SQL statement is compiled, the optimizer will determine the access
plan for that query. To achieve a balance between the improvement in execution
performance of the query and the amount of resources used by the optimizer to
determine the best access plan, the concept of optimization class is used.

The optimization class limits the amount of resources used by the optimizer. To
set a specific optimization class, you should do the following:

 1. For static SQL statements:

When precompiling or binding, use the QUERYOPT option of these commands.
 2. For dynamic SQL statements:

Use the SET CURRENT QUERY OPTIMIZATION SQL command.

There are several optimization classes. By default, the optimizer will use class
5. The available classes are:

• Class 0

The optimizer uses minimum resources to optimize the query. This is
suitable for simple dynamic SQL queries accessing indexed tables. List
prefetch is not even considered as an access method; only basic query
rewrite rules are considered.

Chapter 3. DB2 Performance Considerations 43

• Class 1

List prefetch is disabled as an access method, and only a subset of query
rewrite rules are applied.

• Class 3

Most query rewrite rules are applied; list prefetch is considered as a
possible access method.

• Class 5

All query rewrite rules are applied (except computationally intensive rules).
For dynamic SQL statements, optimization is reduced, and all of the required
resources are available. This optimization class is suitable for mixed
environments (transactions + complex queries).

• Class 7

Same as class 5, without any reduction in optimization for dynamic SQL
statements.

• Class 9

Maximum level of optimization. Appropriate for very long and very complex
queries using large tables.

Notice that the size of the statement heap can affect the amount of optimization
that will be performed for complex SQL statements. If stmtheap is not large
enough, the optimization class may be ‘downgraded’ by the optimizer. If this
occurs, an SQL warning is received.

3.5.4 Rebinding Applications
To assure that the best access plan is used by the SQL statements to access
data, packages should be rebound after changing the settings of the following
database configuration parameters or executing runstats:

• buffpage

• sortheap

• locklist

• maxlocks

• seqdetect

• avg_appls

DB2 common server provides a utility, db2rbind, that rebinds all packages of a
database. It requires SYSADM or DBADM authority. The bind or the rebind
commands could also be used.

44 DB2 Performance and Tuning

Chapter 4. Database Monitoring

This chapter discusses the different methods available to monitor the database
activity, using tools such as the snapshot monitor, the event monitor and the
performance monitor. Based on the information provided by these tools, you
can make informed decisions about what actions need to be taken to tune the
database environment.

4.1 Overview
Understanding your database and applications helps you tune your database and
improve its performance. To do this, you may need to monitor your database to
gather performance and statistical information about the operations and tasks
that are executing.

There are three tools available with DB2 that can be used for monitoring your
database. These are the snapshot monitor, the event monitor and the
performance monitor.

The DB2 snapshot monitor can capture performance information at periodic
points of time. The DB2 event monitor is designed to provide a summary of
activity at the completion of events such as statement execution, transaction
completion or when an application disconnects. Finally, the performance
monitor can provide you with real-time performance data for the objects you
request.

In the following sections, we discuss the use of each of these tools, and how to
interpret the output.

4.1.1 Before You Start
The following items are several key points which may help you to understand the
importance of database monitoring. Using database monitoring can help you to:

• Determine the source and cause of problems

You can monitor different levels of databases such as database locking or
tablespaces activity. By analyzing the output data, it may be easier to find
possible problems.

• Tune configuration parameters

Based on the monitored data, you may correct any unsuitable configuration
values.

• Improve database and application performance

After figuring out any problems in your databases or applications, it may be
possible to modify them to produce better overall performance.

• Better understand user/application activity

Database monitoring provides you information about applications. You can
understand what the database manager is doing and how the database
manager deals with the applications. This will help you to comprehend the
activities occurring in databases.

 Copyright IBM Corp. 1996 45

For better use of database monitoring, you will need to perform some
preliminary steps.

Figure 16 outlines the steps that you should go through for monitoring and
tuning your database:

Figure 16. Database Monitor ing Procedures

 1. Outline Clear Objective

If you feel that there are some problems with your database performance,
you will need to make your objective clear. Your objective could be to
improve the performance of a specific application or to modify the database
configuration file values after some change to your database environment.

 2. Determine the Type of Data Required

Once you know your objective, you will need to decide on the type of
information you wish to monitor. The type of information you require may
dictate which if the different tools you will use to monitor your database. For
example, choosing the snapshot monitor when you want to analyze the
buffer pool usage, the amount of lock escalations or gather overall I/O
information for the entire database. Likewise, you would choose the event
monitor if you wanted to analyze the resources used for a query or record all
deadlocks.

 3. Assure Valid Data Collection

When collected data is to be analyzed, it is important that it reflects true
database activity. The analysis can only be as accurate as the data
collected. You may decide upon collecting data every hour, or at random

46 DB2 Performance and Tuning

time intervals. You need to be sure that the data is collected during times
that possible problems are likely to occur.

 4. Analyze Information

After gathering the data from the available tools, you will need to analyze the
information. You may use the data you collect now as a base that can then
be compared with the future data. It is also possible to graph the collected
data to show overall trends in area’s such as lock usage or wait time. Some
times to get the complete picture of the data, you need to check both
snapshot data and event monitor data.

 5. Perform Necessary Changes

Based on you analysis of the information obtained and your understanding,
you may decide to modify the database environment. This may involve a
hardware change, network modifications or changes to the database or
database manager parameters.

It is important to remember that after making some changes to the database,
you should monitor the effect closely. Sometimes, a small change can have a
large impact on your system, and this effect could be positive or negative.

4.2 Snapshot Monitor
The snapshot monitor provides you with information on database activity at a
specific point in time. The snapshot monitor will collect information on objects
like database heaps, buffers, locks, transactions and table activity. The amount
of information that is collected by the snapshot monitor is determined by a
number of switches that can be turned on or off at the database manager level.

4.2.1 Configuring the Snapshot Monitor
To use the snapshot monitor, you must have SYSMAINT, SYSCTRL or SYSADM
authority for the instance you wish to monitor. If you have this authority, then
you will be able to take a snapshot using the Command Line Processor (CLP), or
through the Database Director utility. It is also possible to take a snapshot using
the database system monitor APIs, and thus develop applications that collect the
information you require.

The snapshot monitor provides comprehensive and flexible data collection; you
can monitor over 150 performance variables using different data objects and
levels. The snapshot monitor breaks the information that can be collected into a
number of groups, known as monitor groups, which are set at the database
manager level. The snapshot monitor groups include:

• Basic

• Sort

• Lock

• Table

• Buffer Pool

• Unit of Work

• SQL Statement

Chapter 4. Database Monitoring 47

Within these groups, it is possible to define threshold values for each of the
variables being monitored. When these threshold values are reached, an action
can be triggered. This action may be a program or script that will be executed
by the monitor program. This is discussed in 4.4.2.1, “Monitoring Snapshot
Data” on page 72.

4.2.1.1 Basic Monitor Group
The basic monitor group information is collected by default. The information
collected by this group includes the following elements:

• General information

The general information includes the configuration name of the monitored
node, a time-stamp for when the monitoring information was taken, the
database name and path, and the type of snapshot monitor data.

• Database connections

The status of local and remote database connections are monitored, along
with additional information such as the total number of connections and the
maximum number of concurrent connections. This information will help you
to determine the level of concurrent processing that occurs in the database
manager.

• Locks and deadlocks

This element includes the total lock list memory, lock escalations, current
applications waiting on locks, the lock status and number of lock time-outs.
It can help you to analyze any resource contention problems or application
concurrency problems.

• SQL statement activity

SQL statement activity includes information on both static and dynamic SQL
statements. Information such as commit statements attempted is recorded
along with information on update, insert or delete SQL statements that are
executed and rollbacks that have been attempted.

• Sort work

Includes total sort heaps allocated, active sorts, and the piped sorts
requested and accepted. It can help you to determine any sort heap
problems.

• SQL cursors

Includes information about open local and remote cursors. You may
calculate the percentage of local cursors that are blocking cursors. If the
percentage is low, you may improve performance by improving the row
blocking in the application.

• Communication activity

Includes information about current communication heap size and maximum
communication heap size. Use this element to understand the memory
requirements for an application.

• Table activity

Table activity information includes rows that are inserted, updated or
deleted. This element can help you gain insight into activity within the
database manager.

• Database activity

48 DB2 Performance and Tuning

This element includes information about binds and precompiles attempted,
time-stamp for the last backup and the maximum database heap allocated.
Using this element can help you to evaluate the related database
configuration parameters.

• Agents and applications

Includes information about the agents registered, maximum number of
agents registered or waiting, application status, ID and name, client process
ID, communication protocol, and the number of idle agents.

• CPU usage

Information about the CPU includes user CPU time used by agent and
system CPU time used by agent. This information will help you to identify
applications that could possibly benefit from additional tuning.

• Logging

Includes the maximum total log space used, maximum secondary log space
used and number of log pages read/written. This information will help you to
evaluate your configuration settings and determine appropriate settings for
parameters such as logfilsz, logprimary, logsecond, logretain.

• Caching

Includes information about catalog cache inserts, lookups and overflows.
You can calculate the package cache hit ratio, and it will help you to see if
the package cache is being used effectively.

For more information about the individual data elements, refer to DB2 Database
System Monitor Guide and Reference - for common servers (S20H-4871).

4.2.1.2 Additional Monitor Groups
If you wish to collect information in addition to that supplied by the basic monitor
group, then you need to turn on one or more of the following monitor groups.
Detailed information about these groups can be found in the manual DB2
Database System Monitor Guide and Reference - for common servers
(S20H-4871).

Buffer Pool Monitor Group: The buffer pool monitor group includes information
about the number of reads, writes and time taken for data and index operations.
These data elements help you to measure bufferpool activities, such as the hit
ratio of the bufferpool and the prefetcher page number.

Lock Monitor Group: This group includes information on the number of lock
waits, types of locks, IDs of applications holding the locks and lock wait start
time-stamp. These data elements can help you to analyze the lock situation and
lock escalations that occur.

Sort Monitor Group: The sort group includes post threshold sorts, total sort
time, overflows and total sorts performed. It can help you to check if the sort
heap value is suitable.

Statement Monitor Group: The statement monitor group includes the statement
type, start time-stamp, end time-stamp, user CPU time used by statement and
system CPU time used by statement. This will help you determine if your
statements need to be further optimized.

Chapter 4. Database Monitoring 49

Table Monitor Group: This includes table types, rows read from the table since
connect and rows written to the table since connect. This will help you to
measure the activities of tables, such as if the table needs to be reorganized
using the reorg command.

Unit of Work Monitor Group: This includes total time the units of work waited on
locks, the start timestamp and end timestamp, completion status and log space
used. This information will help you to analyze the system contention problems,
to determine the reason a unit of work ended (due to deadlock or abnormal
termination).

By default, all these switches are off. The associated information will be
collected when the specific group switch is turned on; otherwise, only
information for the basic monitor group will be collected. When you turn a group
off, all the different data elements related to that group are reset. It is also
possible to reset the counters related to a monitor group, without turning the
group off. This is covered in 4.2.1.3, “Monitor Counters.”

It is possible to turn multiple switches on or off at the same time. However, if
you turn on or off a single monitor group, it will not affect other monitor groups’
data values.

4.2.1.3 Monitor Counters
Counters are used by the snapshot monitor to keep track of the different
activities/elements that are to be measured. These counters increase in value
over time, and because of this, there may be times when you will need to reset
the values.

Understanding when counting starts may help you select a suitable time to take
a snapshot. Counting can start at different times in response to the following:

 1. Application connection to the database

• At the application level, counting starts when the application connects

• At the database level, counting starts when the first application connects

• At the table level, counting starts upon the first table access

• At the tablespace level, counting starts upon the first tablespace access

 2. Last counter reset

 3. Responsible monitor group turned on

As an example, if you turn on a table switch for a table, no snapshot data for that
table will be collected until after the first access to that table.

Resetting Counters: There may be times when you need to reset the monitor’s
counters. For example, you may want to compare values from the same monitor
group over two different intervals in time. There are three ways to reset
counters:

 1. Using CLP command

RESET MONITOR {ALL | FOR DATABASE database-alias}

 2. Using APIs from an application

It is possible to use the API call, sqlmrset, to reset system monitor data
areas.

50 DB2 Performance and Tuning

 3. Using Performance Monitor

You can reset all or selected counter data elements. For detailed
information, refer to the Getting Started option found in the on-line help for
the Database Director.

4.2.2 Snapshot Monitor Commands
To execute the snapshot monitor commands, you will require SYSADM,
SYSCTRL or SYSMAINT authority.

The first task you will need to perform when preparing to take a database
snapshot is to check the current monitor switches that are associated with the
different monitor groups. To check the current monitor switch settings, you can
use the DB2 command get monitor switches, as shown in Figure 17.

$db2 get monitor switches

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = ON 07-02-1996 12:01:37.89
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

Figure 17. Getting Current Monitor Settings

To turn on or off the monitor switches, you use the command:

UPDATE MONITOR SWITCHES USING {switch-name {ON | OFF}...}
 switch-name:
 BUFFERPOOL, LOCK, SORT, STATEMENT, TABLE, UOW

If you wish to reset the monitor elements back to zero, then the following
command can be used:

RESET MONITOR {ALL | FOR DATABASE database-alias}

This command can specify a particular database or all databases. It is not
possible to specify the individual monitor group using the reset command. To
reset counters for a specific monitor group, you must turn that monitor group
switch off and then back on.

You should remember that if a monitor group is not turned on, then the
information supplied for that group by the snapshot tool will not be complete, as
only the basic monitor information is collected by default.

Once you have turned the appropriate monitor group on, you are ready to take a
snapshot while database activity is occurring. The command to take a snapshot
is:

GET SNAPSHOT FOR {DATABASE MANAGER | ALL DATABASES | ALL APPLICATIONS |
APPLICATION {APPLID appl-id | AGENTID agentid} | {ALL | DATABASE |
APPLICATIONS | TABLES | TABLESPACES | LOCKS} ON database-alias}

It is possible to obtain a snapshot from a remote instance by attaching to that
instance before taking the snapshot.

Chapter 4. Database Monitoring 51

It is also possible to perform the above operations using the Database Director.
From the Database Director, you will need to configure the database instance or
node to enable the monitor groups whose information you wish to collect, as
shown in Figure 18 on page 52.

Figure 18. Database Director - Enabling Monitor Groups

4.4, “Performance Monitor” on page 71, discusses how snapshot monitoring can
be done outside the Command Line Processor.

4.2.3 Taking a Snapshot
Once you have set the appropriate monitor switches, you are ready to take
snapshots of you database environment. There are six levels of snapshots that
you may perform. These levels are:

• Database manager level, for a snapshot of the database manager instance.

• Database level, for collecting information on all or selected databases.

• Application level, for all or selected applications.

• Table level, for tables accessed while the table switch/group is on.

• Lock level, for locks held by connected applications.

• Tablespace level, for tablespaces accessed while the bufferpool switch/group
is on.

Once you have chosen the level at which you wish to take the snapshot, there
are three ways that this may be done.

The first method for taking a snapshot is by using the Command Line Processor
and the command get snapshot. The second method is using the Database

52 DB2 Performance and Tuning

Director/performance monitor, which is covered in 4.4, “Performance Monitor”
on page 71. The final method is to use the available monitor APIs. Figure 19 on
page 53 compares the available APIs to the equivalent Command Line
Processor commands that perform the monitor functions.

Figure 19. Monitor APIs and CLP Commands

When programming with APIs, you need to call some routines such as
sqlmon() to turn on/off switches. It is important to note that, when using the
API to take a snapshot, you need to manually determine the buffer sizes that
will be used. This is done using the sqlmonsz() API. When using either of
the other two methods to take a snapshot, the buffersize is automatically
estimated. For information about the APIs you should refer to the DB2
Database System Monitor Guide and Reference - for common servers.

4.2.4 Interpreting Snapshot Output
The output from the snapshot monitor provides you with detailed information
about the database activity. From this data you can make an informed decision
about any actions that are required to improve the performance of your database
environment.

This section shows you how to interpret the information returned to you by the
snapshot monitor, and which database parameters should be modified, based on
this data, to improve the performance.

As mentioned previously, there are different levels of detail available through the
snapshot monitor. The following examples look at these different levels. Some
of the elements in the snapshot may not have any associated values; this may
be because the monitor group has been turned off or because there has been no
activity on that element since monitoring was enabled.

GET SNAPSHOT FOR DATABASE MANAGER: From the database manager
snapshot, shown in Figure 20 on page 54, we can see that the instance is a
server instance supporting local and remote clients. We can see that there are

Chapter 4. Database Monitoring 53

two remote connections to the database and one of the connections is executing
in the database manager. This means that only one of these connections is
executing a unit of work within the instance being monitored; in this example,
the instance db2.

Figure 20. Snapshot for Database Manager

The snapshot also indicates that all pipe sort requests have been accepted, and
that no sort heap is allocated. We also can infer from the post threshold sort
value that no sort requests were received while the sort heap threshold was
reached. If this were not the case, then you might need to tune the database
manager sort heap size parameter, sheapthres, or the database configuration
parameter, sortheap.

GET SNAPSHOT FOR DATABASE: The database snapshot provides an overall
look at the activity of the individual database you wish to monitor. The first part
of the database monitor output, as shown in Figure 21 on page 55, includes the
name and location of the database.

We can also see the locking status of the database. At the time the snapshot
was taken, there were 18 locks being held, and no application was waiting for a
lock. There have been no lock escalations, and so we can be fairly sure that the
locking configuration parameters are set high enough to handle the database
activity. If the number of lock escalations had been high, then you might have
considered increasing the maxlocks database configuration parameter.

54 DB2 Performance and Tuning

Database Snapshot

Database name = TPCD
Database path = /usr/data/db2/SQL00002/
Input database alias = TPCD
Database status = Active

Locks held currently = 18
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 2268
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Current applications waiting on locks = 0
Lock Timeouts = 0

Total sort heap allocated = 0
Total sorts = 1
Total sort time (ms) = 189
Sort overflows = 0
Active sorts = 0

Figure 21. Snapshot for Database (Part 1 - Database, Sorts and Locks)

From the database snapshot, we can also see the total number of sorts that
occurred and the number of overflows. An overflow will occur when there is
insufficient sort heap space to perform the sort, and disk space was used for
temporary storage. If this occurs, then you should look at increasing the sort
heap size at the database and/or instance level.

Figure 22 on page 56 is a continuation of the output from the database snapshot,
and this includes detailed information about the buffer pools and database I/O
that has occurred. The information about buffer pool I/O and direct I/O can help
you to tune the buffer size and should increase overall performance of read and
writes for transactions. 3.1.1, “Database Buffer Pool” on page 13, provides
further information on how these values can be used to estimate buffer pool hit
ratios.

The final section of output from the database snapshot is shown in Figure 23 on
page 57. This includes information about the types of statements and
applications that are being executed against the database and the operations
that are being performed. This includes information such as the success of the
transactions; wether they were committed or rolled back. You can also see if
statements were dynamic or static and how many rows were read, inserted,
updated or deleted.

This type of information can help you make decisions such as whether commits
should be grouped in the database environment.

Chapter 4. Database Monitoring 55

Buffer pool data logical reads = 1934
Buffer pool data physical reads = 131
Asynchronous pool data page reads = 108
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 119
Buffer pool index physical reads = 28
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 1488
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 333
Total elapsed asynchronous write time = 0
Asynchronous read requests = 6
LSN Gap cleaner triggers = 0
Dirty page steal cleaner triggers = 0
Dirty page threshold cleaner triggers = 0

Direct reads = 74
Direct writes = 0
Direct read requests = 10
Direct write requests = 0
Direct reads elapsed time (ms) = 256
Direct write elapsed time (ms) = 0

Database files closed = 0

Figure 22. Snapshot for Database (Part 2 - Buffers and I/O)

If you find that the database is performing a large amount of selects and few
inserts, updates or deletes, then you may decide to stop archival logging on that
database and add more table indexes to see if you are able to increase the
response for queries.

GET SNAPSHOT FOR APPLICATIONS: If you find that a particular application is
performing poorly, then an application snapshot can provide you with information
about what is happening.

Figure 24 on page 58 show the output from a snapshot for a remote connection
of an application running under the AIX operating system. From the snapshot,
we can determine the database being accessed, the application process ID and
both the authorization and execution ID being used.

From this snapshot, we can also see locking information about the application.
This shows the number of locks that the application is holding, plus the number
of times the application was required to wait for a lock and any deadlock
situations that have been detected. The database snapshot also lists deadlock
information, which can be used in conjunction with this information to help
narrow down any possible deadlock problems.

56 DB2 Performance and Tuning

Commit statements attempted = 6
Rollback statements attempted = 2
Dynamic statements attempted = 1963
Static statements attempted = 8
Failed statement operations = 3
Select SQL statements executed = 3
Update/Insert/Delete statements executed = 0

DDL statements executed = 0
Internal automatic rebinds = 0
Internal rows deleted = 0
Internal rows inserted = 0
Internal rows updated = 0
Internal commits = 2
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0

Rows deleted = 0
Rows inserted = 0
Rows updated = 0
Rows selected = 1946

Binds/precompiles attempted = 0

First database connect timestamp = 09-24-1996 15:05:23.616990
Last reset timestamp =
Last backup timestamp = 09-24-1996 14:05:13.041583
Snapshot timestamp = 09-24-1996 15:08:33.996282

High water mark for connections = 2
High water mark for database heap = 413687
Application connects = 2
Applications connected currently = 2
Appls. executing in db manager currently = 0

Maximum secondary log space used (Bytes) = 0
Maximum total log space used (Bytes) = 1920
Secondary logs allocated currently = 0
Log pages read = 0
Log pages written = 4

Package cache lookups = 13
Package cache inserts = 3

Catalog cache lookups = 8
Catalog cache inserts = 5
Catalog cache overflows = 0
Catalog cache heap full = 0

Figure 23. Snapshot for Database (Part 3 - Statements, packages and catalogs)

As with the database snapshot, the application snapshot also provides details
about the buffer pool and direct I/O requests. If you are receiving a poor buffer
pool hit ratio at the database level, then you may be able to narrow this problem
down to the individual application. You may find that by tuning some individual
applications, the overall database hit ratio will be improved.

Chapter 4. Database Monitoring 57

Application Snapshot

Agent ID = 17800
Application status = UOW Waiting
Status change time = 09-24-1996 15:08:34.293534
ID of code page used by application = 819
Country code of database = 1
DUOW correlation token = *TCPIP.8123DF3F.960924200523
Application name = db2bp_32
Application ID = *TCPIP.8123DF3F.960924200523
Sequence number = 0001
Authorization ID = RUSCONI
Execution ID = rusconi
Configuration NNAME of client = gundagai
Client database manager product ID = SQL02011
Process ID of client application = 3576
Platform of client application = AIX
Communication protocol of client = TCP/IP
Database name = TPCD
Database path = /usr/data/db2/SQL00002/
Client database alias = tpcd
Input database alias = TPCD

Locks held by application = 18
Lock waits since connect = 0
Time application waited on locks (ms) = 0
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Number of Lock Timeouts since connected = 0

Total time UOW waited on locks (ms) = 0
ID of Agent holding lock =
Application ID holding lock =
Sequence number holding lock =
Name of Tablespace holding lock =
Schema of Table holding lock =
Name of Table holding lock =
Lock mode =
Lock object type =
Lock object name =
Lock wait start timestamp =

Figure 24. Snapshot for Applications (Part 1 - Application and locks)

Figure 26 on page 60 shows the statement and UOW information that is returned
by the application snapshot. This information can be used to help track what an
application is doing in terms of database access, and it may in turn help you to
determine where application or database improvements may be made.

58 DB2 Performance and Tuning

Total sorts = 1
Total sort time (ms) = 189
Total sort overflows = 0

Buffer pool data logical reads = 2006
Buffer pool data physical reads = 21
Buffer pool data writes = 0
Buffer pool index logical reads = 83
Buffer pool index physical reads = 28
Buffer pool index writes = 0
Total buffer pool read time (ms) = 900
Total buffer pool write time (ms) = 0

Direct reads = 38
Direct writes = 0
Direct read requests = 5
Direct write requests = 0
Direct reads elapsed time (ms) = 201
Direct write elapsed time (ms) = 0

Commit statements = 1
Rollback statements = 0
Dynamic SQL statements attempted = 2049
Static SQL statements attempted = 1
Failed statement operations = 1
Select SQL statements executed = 3
Update/Insert/Delete statements executed = 0

DDL statements executed = 0
Internal automatic rebinds = 0
Internal rows deleted = 0
Internal rows inserted = 0
Internal rows updated = 0
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0

Rows deleted = 0
Rows inserted = 0
Rows updated = 0
Rows selected = 2038
Rows read = 2052
Rows written = 0

Binds/precompiles attempted = 0

Figure 25. Snapshot for Applications (Part 2 - Buffers and I/O)

Chapter 4. Database Monitoring 59

UOW log space used (Bytes) = 0
Previous UOW completion timestamp = 09-24-1996 15:05:25.123601
UOW start timestamp = 09-24-1996 15:06:09.461284
UOW stop timestamp =
UOW completion status =

Open remote cursors = 1
Open remote cursors with blocking = 1
Rejected Block Remote Cursor requests = 0
Accepted Block Remote Cursor requests = 3

Open local cursors = 0
Open local cursors with blocking = 0

Current communication heap size (Bytes) = 0
Maximum communication heap size (Bytes) = 0

Connection request start timestamp = 09-24-1996 15:05:23.616990
Connect request completion timestamp = 09-24-1996 15:05:25.104819
Last reset timestamp =
Snapshot timestamp = 09-24-1996 15:08:34.391125

Statement type = Dynamic SQL Statement
Statement operation = Fetch
Section number =
Application creator =
Package Name =
Cursor name = SQLCUR201
Statement sorts = 0
Statement operation start timestamp = 09-24-1996 15:08:34.292796
Statement operation stop timestamp = 09-24-1996 15:08:34.293570

Total User CPU Time used by statement (s) = 0.000000
Total System CPU Time used by statement (s)= 0.000000
Total User CPU Time used by agent (s) = 2.830000
Total System CPU Time used by agent (s) = 0.530000

Dynamic SQL statement text =
select * from tpcd.customer

Package cache lookups = 7
Package cache inserts = 3

Catalog cache overflows = 0
Catalog cache heap full = 0

Figure 26. Snapshot for Applications (Part 3 - UOW and statements)

GET SNAPSHOT FOR TABLES: Data placement may be a critical factor for
performance. If your system is spread over multiple disks, then it would be
beneficial to spread the I/O requests as evenly as possible across the disks. By
looking at the most-frequently accessed tables, you may be able to reorganize
these tables so they are spread out or on faster disks.

The output from the table snapshot, as shown in Figure 27 on page 61, not only
shows the number of rows read and written for each of the accessed tables but
also includes the number of overflows.

60 DB2 Performance and Tuning

An overflow will usually occur when a VARCHAR column has been updated and
no longer fits into the original space allocated for it. If the number of overflows
becomes high, then you should consider reorganizing the table with the reorg
utility.

 Table Snapshot

First database connect timestamp = 09-24-1996 15:05:23.616990

Last reset timestamp =
Snapshot timestamp = 09-24-1996 15:08:35.046271
Database name = TPCD
Database path = /usr/data/db2/SQL00002/
Input database alias = TPCD
Number of accessed tables = 7

Table Schema Table Name Table Type Rows Rows Overflows
Written Read

------------ -------------- ---------- -------- ---- ----------
TPCD CUSTOMER User 0 1962 0
SYSIBM SYSTABAUTH Catalog 4 3 0
SYSIBM SYSTABLES Catalog 0 85 0
SYSIBM SYSTABLESPACES Catalog 0 6 0
SYSIBM SYSPLANAUTH Catalog 0 1 0
SYSIBM SYSPLAN Catalog 0 2 0
SYSIBM SYSDBAUTH Catalog 0 5 0

Figure 27. Snapshot for Tables

By reorganizing a fragmented table, you may improve the access time and
minimize the number of actual I/O operations.

GET SNAPSHOT FOR TABLESPACES: If you require information about I/O and
buffer usage at a finer level than supplied by the database snapshot, you are
able to take a snapshot at the tablespace level, as shown in Figure 28 on
page 62.

The tablespace snapshot includes information about the buffer pool logical and
physical reads for both data and indexes.

By collecting this information and applying it to the formula displayed in
Chapter 3, “DB2 Performance Considerations” on page 11, you can maximize
the throughput for the individual tablespaces.

Chapter 4. Database Monitoring 61

 Tablespace Snapshot

First database connect timestamp = 09-24-1996 15:05:23.616990
Last reset timestamp =
Snapshot timestamp = 09-24-1996 15:08:35.146641
Database name = TPCD
Database path = /usr/data/db2/SQL00002/
Input database alias = TPCD
Number of accessed tablespaces = 3

Tablespace name = SYSCATSPACE

Buffer pool data logical reads = 61
Buffer pool data physical reads = 19
Asynchronous pool data page reads = 0
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 119
Buffer pool index physical reads = 28
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 1095
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0

Direct reads = 74
Direct writes = 0
Direct read requests = 10
Direct write requests = 0
Direct reads elapsed time (ms) = 256
Direct write elapsed time (ms) = 0

Number of files closed = 0

Figure 28. Snapshot for Tablespaces

GET SNAPSHOT FOR LOCKS: Poor performance can often be due to locking
problems and concurrency. By taking a snapshot of the locks, it is possible to
determine if one application is allocating too many locks, causing lock waits for
other applications.

 Lock Snapshot

Database name = TPCD
Database path = /usr/data/db2/SQL00002/
Input database alias = TPCD
Locks held = 18
Applications currently connected = 2
Applications currently waiting on locks = 0
Snapshot timestamp = 09-24-1996 15:08:35.324131

Figure 29. Snapshot for Locks (Part 1 - Locks)

62 DB2 Performance and Tuning

Figure 29 shows the general information about the lock snapshot, and Figure 30
on page 63 lists the output for one of the connected applications. In this
example, the application/agent shown is holding all the locks on the database.

Agent ID = 17800
Application ID = *TCPIP.8123DF3F.960924200523
Sequence number = 0001
Application name = db2bp_32
Authorization ID = RUSCONI
Application status = UOW Waiting
Status change time = 09-24-1996 15:08:34.293534
ID of code page used by application = 819
Locks held = 18
Agent ID holding lock =
Application ID holding lock =
Sequence number holding lock =
Tablespace Name of lock =
Table Schema of lock =
Table Name of lock =
Lock object type waited on =
Lock object name =

Object Object
Name Type Tablespace Name Table Schema Table Name Mode Status
------ ------ --------------- ------------ -------------- ---- ----------
23045 Row TPCD CUSTOMER S Granted
7 Table TPCD CUSTOMER IS Granted
286 Row SYSIBM SYSTABAUTH S Granted
1286 Row SYSIBM SYSTABLES S Granted
4 Row SYSIBM SYSTABAUTH S Granted
13 Table SYSIBM SYSTABAUTH IS Granted
4 Row SYSIBM SYSTABLES S Granted
2 Table SYSIBM SYSTABLES IS Granted
28 Table SYSIBM SYSTABLESPACES S Granted
22 Row SYSIBM SYSPLANAUTH S Granted
0 Row SYSIBM SYSPLANAUTH S Granted
12 Table SYSIBM SYSPLANAUTH IS Granted
0 Row SYSIBM SYSDBAUTH S Granted
5 Row SYSIBM SYSDBAUTH S Granted
4 Row SYSIBM SYSDBAUTH S Granted
11 Table SYSIBM SYSDBAUTH IS Granted
9 Row SYSIBM SYSPLAN S Granted
7 Table SYSIBM SYSPLAN IS Granted

Figure 30. Snapshot for Locks (Part 2 - Application/Agent)

4.3 Event Monitor
While the snapshot monitor allows you to look at the state of the database
environment when you take the snapshot, the event monitor will allow you to
collect database information when a particular event or transition occurs within
the database. For example, you do not usually know when a deadlock situation
is going to occur or at what point in time a transaction will complete. If you wish
to monitor this type of activity in the database, then you need to define an event
monitor.

Chapter 4. Database Monitoring 63

The different events that can be monitored include:

• Deadlocks

• Connections

• Transactions

• Statements

• Database

• Tablespaces

• Tables

The event monitor can provide you with information about your database when
the event you wish to monitor occurs.

Snapshots collect information at both the database manager and the database
levels, and the event monitor collects data for a single database. You may have
a multiple event monitors defined at any time, and they may be turned on or off
independently of each other.

To perform the event monitoring, you must have SYSMAINT, SYSCTRL or
SYSADM authority for the database you wish to monitor. Event monitor data can
be written to either a file or a named pipe.

Event monitors can be created by using the Command Line Processor or though
an application using embedded SQL statements.

4.3.1 Using Event Monitoring
As with the snapshot monitor, you should have an idea of the types of
information that you wish to collect. As with any monitoring tool, there is some
impact on the system, and unnecessary monitoring means unnecessary
overhead for your database environment.

As mentioned previously, the event monitors can be defined for different types of
events. You should define an event monitor to collect the information that you
require. Your choices include:

• Deadlock Monitor

A deadlock monitor records information about the different resources and
applications that are involved in the deadlock situation. This information
includes the time the deadlock was connected, the application IDs involved
in the deadlock, the locked object details plus table and tablespace details.

• Connections Monitor

This monitor collects information on connected applications. The information
collected includes the application’s name, execution ID and the time the
application connected. Details on the CPU time, sort time and any lock wait
time is recorded.

• Transaction Monitor

This specifies that the event monitor should record each completed
transaction. The type of information recorded against a transaction includes
the application details, start and stop times, and the completion status.

• Statement Monitor

64 DB2 Performance and Tuning

Transactions may include multiple statements, which are also recorded
through a statement monitor. This will record details such as the application
ID, type of SQL statement and operation, the package name, creator and
section number associated with the statement. Other details include the
start and stop times, the elapsed time and total CPU time as well as the
actual text of the SQL statement.

• Database Monitor

This specifies that the event monitor should record a database event when
the first application connects and when the last application disconnects from
the database.

• Tablespace Monitor

This directs the event monitor to record a tablespace event for each active
tablespace when the last application disconnects from the database.

• Table Monitor

This directs the event monitor to record a table event for each active table
when the last application disconnects from the database.

Once you have selected the event monitor or monitors that you wish to run, you
need to decide where the information is going to be written. This could be to a
named pipe or to a directory.

4.3.1.1, “Event Monitor Commands,” lists the commands to create and activate
an event monitor. You need to create the event monitor and set its state to
active before any monitoring will begin. You are able to have any number of
event monitors defined, but a maximum of 32 event monitors can be active at a
given time.

4.3.1.1 Event Monitor Commands
An event monitor can be created either through the Command Line Processor or
through an application using embedded SQL. You will require SYSADM or
DBADM authority to create an event.

The command used to create an event is shown in Figure 31 on page 66. For
the full syntax, refer to DB2 SQL Reference - for common servers.

Chapter 4. Database Monitoring 65

Figure 31. Create Event Monitor Command Syntax

There are many options in this command; you can select the information level
and use the WHERE clause to filter the data that is recorded for connections,
transactions, and SQL statements. Use the WRITE TO option to control where the
data is written (using files or named pipes).

The event monitor definitions are kept in the system catalog tables,
SYSCAT.EVENTMONITORS and SYSCAT.EVENTS. It is possible to check event
monitor information by performing an SQL query against these tables. For
example, to find the names of defined event monitors, you can use;

select evmonname from syscat.eventmonitors

If you select the AUTOSTART option for the event monitors, then they will be started
each time the database is started.

The command shown in Figure 32 creates an event monitor that will monitor all
the possible events for the database that it is defined in.

CREATE EVENT MONITOR monitor_all FOR
database, tables, deadlocks, tablespaces,
connections, statements, transactions

WRITE TO FILE
/usr/data/monitor

AUTOSTART

Figure 32. Sample Event Monitor

These events captured with the monitor will be written into the directory,
/usr/data/monitor, which must exist before monitoring is started. Once the
monitor has been defined, it must be set to the active state using the command:

SET EVENT MONITOR event-monitor-name STATE = 1

66 DB2 Performance and Tuning

This command will activate the event monitor. To determine the current state of
event monitors, you need to use the event_mon_state built-in function. An
example of this is shown in Figure 33 on page 67.

A state of 0 indicates the event monitor is inactive, while a state of 1 indicates
and active event monitor.

SELECT evmonname NAME, event_mon_state(evmonname) STATE
FROM syscat.eventmonitors;

NAME STATE
------------------ -----------
CNMON1 0
DBMON1 0
DLMON1 0
MON_ALL 1
STMON1 1
TBMON1 1
TRMON1 1
TSMON1 1

8 record(s) selected.

Figure 33. Display Event Monitor States

It is possible to delete an event monitor from the database if you do not intend to
use it again. You should first set its state to 0, to make it inactive, then use the
following command to delete its definition:

DROP EVENT MONITOR event-monitor-name

4.3.2 Analyze the Output of Event Monitor
There are two utilities provided to help you analyze the output generated by the
event monitor.

The db2evmon produces formatted text output that can be browsed for the
information that you require. A sample of the output generated by this utility is
shown in Figure 36 on page 69.

The second method for analyzing the output from the event monitor is to use the
graphical tool, db2eva. This tool displays the information collected as a series of
tables which may be filtered dynamically. Figure 34 on page 70 is an example of
the first window the db2eva tool displays.

You are able to expand any of the monitored time periods as connection,
deadlocks, deadlocked connections, overflows, transactions or statements. To
do
this, select the appropriate monitored time period and use the Selected option at
the top of the window. Alternatively you may double-click any of the time
periods,
and you will open the connection window automatically.

Chapter 4. Database Monitoring 67

Figure 34. Event Monitor Tool, db2eva - Monitored Periods

From the connections window, it is possible to see when applications connected,
whether they were local or remote, the application name and connection ID and
times taken for sorting, waiting on locks and CPU usage.

Figure 35. Event Monitor Tool, db2eva - Monitored Connections

68 DB2 Performance and Tuning

EVENT LOG HEADER

Event Monitor name: DB2STAT
Server Product ID: SQL02011
Version of event monitor data: 2
Byte order: BIG ENDIAN
Size of record: 76
Codepage of database: 850
Country code of database: 1
Server instance name: db2a

1) Database Header Event...
Database Name: TPCD
Database Path: /usr/data/db2a/SQL00002/
First connection timestamp: 07-22-1996 17:45:34.845570

2) Event Monitor Start Event...
Start time: 07-22-1996 17:53:43.015381

3) Connection Header Event...
Application Id: *LOCAL.db2a.960722224534
Sequence number: 0001
DRDA AS Correlation Token: *LOCAL.db2a.960722161132
Authorization Id: DB2A
Execution Id: db2a
Application Program Name: db2bp_32
Client NNAME:
Client product Id: SQL02011
Client Database Alias: tpcd

...

Figure 36. Partial Output from db2evmon

If you need to find further details about a particular connection, then you can
open the individual connections as data elements either by using the Selected
menu options or double-clicking the connection you wish to view.

The data elements view shows details such as the client’s operating system, the
code page used and the version of the client DB2 product. Details about the
application include connection information, buffer pool and sort details as well as
database cache and catalog information. If you are not sure about any of the
data elements, you can double-click any of the elements, and the DB2 help
window will be displayed showing information about the element plus details on
its usage and actions that may be taken if the value of the element is not
acceptable.

Chapter 4. Database Monitoring 69

Figure 37. Event Monitor Tool, db2eva - Connection Data Elements View

4.3.2.1 Choosing Snapshot Monitor or Event Monitor
You should be aware of the differences between snapshot monitor and event
monitors so that you can select the suitable tools to monitor data.

Table 3 on page 71 shows some differences between the snapshot monitor and
event monitor:

70 DB2 Performance and Tuning

Table 3. Differences between Snapshot Monitor and Event Monitor

Snapshot Advantages:

The snapshot monitor is especially useful to display the current status of your
system and recent trends. It gives you a lot of information on database
managers, databases, database connections, tables and tablespaces. It allows
you to calculate the average or peak loads for given periods of time.

Event Monitor Advantages:

The event monitor allows you to collect summary information about transient
events such as deadlocks and transaction completions, which is difficult to
monitor through snapshots.

Snapshot monitor is used to tune configuration parameters, such as maxagents
and maxcagents, which are related to applications. It also lets you check lock
escalations and use of indexes, efficiency of prefetchers, etc.

The event monitor is used to plan administration, prepare maintenance, and
check data placement and CPU usage, etc.

Snapshot Monitor Event Monitor

Record Content Current state at a
particular instance in
t ime

State at the time when
the specific event occurs

Data Collection Level At the database manager
and database levels

For a single database

Usage Sampling long-running
transactions

Historical comparison
monitor of transient
events

Resettable Counters Can be reset Cannot be reset without
stopping the monitor

4.4 Performance Monitor
The performance monitor is a graphical tool which allows you to collect and view
performance information for your database environment.

4.4.1 What is Performance Monitor
The performance monitor provides you with an interface for the collection of
performance data, plus the capability to view or analyze the data collected. With
this information, you will be able to further tune the database manager and
database configuration parameters, diagnose any performance problems,
analyze performance trends and identify application performance problems by
looking at how databases utilize the system resources.

You can access the performance monitor through the Database Director’s
graphical user interface. The Database Director and performance monitor
provide you with on-line help, including a section on getting started.

Chapter 4. Database Monitoring 71

4.4.2 Using Performance Monitor
With performance monitor, you can view performance data collected by the
snapshot monitor or the event monitor in real-time. The information can be
displayed in tables or as graphs. It is also possible to set threshold limits with
the performance monitor for the different data elements, causing a user-defined
action to occur if these thresholds are exceeded.

4.4.2.1 Monitoring Snapshot Data
Using performance monitor, you can monitor snapshot data at the database
manager instance, database, tablespaces, tables or connection level.

The snapshot monitoring functions include:

• Setting the intervals between snapshots

• Creating your own performance variables

• Defining threshold values and alerts

You can display monitored information using three different types of views:

• Summary

This includes key performance variables for all the monitored objects.

• Detail

This includes comprehensive performance data for a single monitored
object.

• Graph

This includes real-time data of current and recent activity.

To invoke the performance monitor from the database monitor, you need to
select the object you wish to monitor. For example, you may want to monitor the
tablespaces in the TPCD database. You need to expand the group until you see
the required object. Then, using the right button, you select start monitoring .

After the steps above, you will get a screen similar to Figure 38 on page 73
below. Note that there is a traffic light beside the TPCD.USERSPACE1 icon.
When the light turns green, it shows that you have started snapshot monitoring.

72 DB2 Performance and Tuning

Figure 38. Performance Monitor - Tablespace Monitor ing

If you want to monitor detailed information, just click on the TPCD.USERSPACE1
icon using the right button, then select Open as and finally, Performance Details .
Figure 39 on page 74 below shows an example of the performance detail
screen.

Chapter 4. Database Monitoring 73

Figure 39. Performance Monitor - Tablespace Detail

Thresholds: The first column by default will be the threshold indicator; this
indicator will turn red when the associated threshold value is exceeded.

You can change your threshold settings as well as define the alert action that
will be performed if the value is exceeded. To set the threshold, navigate to the
details screen for the object you wish to set up thresholds for, then select the
data element you wish to change. Click on the Performance variable , then select
change threshold . Figure 40 is an example of the threshold screen for the
Average I/O Time database element.

Figure 40. Average I/O Time (ms) - Change Threshold

74 DB2 Performance and Tuning

The final method for displaying performance data is to use the graphical display.
This will graphically plot snapshot data in real-time. The period of time between
snapshots is configurable, as are the types of data elements you wish to display.

It is also possible in the graph screen to set your thresholds, change your X-axis
and define alerts. Figure 41 is an example of the graph screen, showing the
tablespace usage.

Figure 41. Performance Graph - User tablespace

To stop the snapshot monitoring, just click on the monitored object’s icon and,
using the right button, select stop monitoring.

4.4.3 Tuning with the Performance Monitor
Performance monitor can be used to display gathered information and to control
the monitoring activities; it also can be used to analyze the performance of your
database manager and database applications. This information can assist in the
tuning of the database engine and applications.

Each DB2 instance has its own shared memory areas. The correct tuning of this
shared memory will have a large impact on the performance of the database
environment. The parameters that need to be looked at include:

• Buffer Pool Size (buffpage)

• Database Heap (dbheap)

• Catalog Cache Size (catalogchche_sz)

• Log Buffer Size (logbufsz)

• Utility Heap Size (util_heap_sz)

• Default Backup Buffer Size (backbufsz)

• Default Restore Buffer Size (restbufsz)

Chapter 4. Database Monitoring 75

• Maximum Storage for Lock Lists (locklist)

The first parameters that can generally be tuned are for the buffer pool size, log
buffer size and the lock list. The following table lists the data elements
associated with these parameters and the monitor type and level that can be
used to capture the information.

By viewing the database performance details screen, we can display the buffer
pool hit ratio and the buffer pool hit ratio index. An example of this screen is
shown in Figure 42 on page 77.

The bufferpool hit ratio indicates the percentage of time that the database
manager was able to load a page from buffer memory, rather than from disk, in
order to service a page request. The higher the buffer pool hit ratio, the lower
the frequency of disk I/O. By monitoring this percentage, you will be able to
obtain the best buffer size for your environment. You will reach a point where
increasing the buffer size no longer increases performance but in fact may
reduce performance by using up too much of the available system memory.

The index buffer pool hit ratio is similar to the buffer pool hit ratio, only it refers
to index pages rather than data pages. Creating more index buffer pool space
may also improve performance, but the same rules about monitoring the hit ratio
applies here. Making this buffer pool too large may no longer give performance
gains, and it may have the opposite affect.

76 DB2 Performance and Tuning

Figure 42. Performance Monitor - Database Details

To list the current settings of the buffer pool sizes, you may either use the
Database Director tool or issue the following command from the DB2 Command
Line Processor:

get database configuration for tpcd

A fragment of the output from this command is shown in Figure 43 on page 78.

Chapter 4. Database Monitoring 77

Catalog cache size (4KB) (CATALOGCACHE_SZ) = 64
Log buffer size (4KB) (LOGBUFSZ) = 8
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000
Buffer pool size (4KB) (BUFFPAGE) = 5000
Max storage for lock lists (4KB) (LOCKLIST) = 100

Sort list heap (4KB) (SORTHEAP) = 2048
SQL statement heap (4KB) (STMTHEAP) = 2048
Default application heap (4KB) (APPLHEAPSZ) = 128
Package cache size (4KB) (PCKCACHESZ) = 36
Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384

Figure 43. Database Configuration Listing (fragment)

When modifying these parameters, it is important to consider the total memory
installed in your database server platform and the memory requirements of any
other application running on the server. Allocating too many resources may
impact any other applications on the platform.

78 DB2 Performance and Tuning

Chapter 5. DB2 Tools and Utilities

DB2 Common Server provides a variety of tools that can be used to assist in
tuning your database environment and applications. This chapter discusses
each tool and its usage. Tools include:

• Explain tools based on analyzing packages

• Explain tools based on explain tables

• A benchmarking tool

• A bind file dump tool

• A tool to assist in building replica databases

• A tool to limit the resources used by applications

• An SNMP subagent with the RDBMS MIB

Not all of these tools are available on every DB2 Common Server platform.
Some of these tools have a graphical user interface, such as Visual Explain,
while others are ASCII tools or batch mode tools, more suitable for
non-interactive execution. Finally, some of the tools are provided on an as-is
basis and may not be well-documented elsewhere.

These tools will help the database administrator to:

 1. Obtain the access plan for any SQL statement, static or dynamic

 2. Obtain statistics on tables and indexes

 3. Measure the response time of SQL statements

 4. Limit the use of resources by applications

5.1 Explaining SQL Statements
The database manager retrieves information from a database when an
application requests it. When several tables or several operations are involved,
the database manager will have to determine an efficient step-by-step method to
retrieve the required data. This step-by-step method is referred to as the access
plan.

The access plan for any static SQL statement is contained in a package. The
package contains the access plans for all SQL statements in the application
program, or program module. If a program is made up of several program files,
then each file containing static SQL will have its own package. A package is
created when the application is precompiled and is stored in the system catalog
tables when bound to a database. For dynamic SQL statements, the access plan
for each SQL statement is created when the application is executed.

One of the most common reasons for poor performance is an inadequate choice
of an access plan for SQL statements. Access plans are chosen by DB2, and the
choice is influenced by the SQL statement itself, indexes, statistics, optimization
level, table design and the way that data was loaded.

There are several possible causes for an inadequate access plan. The first is
that the database table statistics may be out of date, or existing indexes may not
be the most adequate. The SQL statements may not be well coded, or there

 Copyright IBM Corp. 1996 79

may be concurrence problems due to locks or isolation levels. The optimizer in
DB2 Version 2.1.1 will be able to help in many of these areas, but not all
problems can be caught during optimization.

Database table statistics help to define the data model to the optimizer, which in
turn will determine the access plan. The statistics include information such as
the number of pages in a table, the number of rows in a table, the degree of
clustering of an index, the number of index levels and the number of distinct
values in a column. Statistics are only gathered when explicitly requested, such
as through the runstats utility, and are stored in the system catalogs.

Explaining SQL statements may help to determine why a program or a query is
not performing as expected. The SQL statement explanation shows the access
plan used to retrieve the data in response to the query. The easiest way to find
out the access plan is to ask DB2. DB2 provides the explain facility to show
what access plan it intends to use when the query is executed.

DB2 Common Server provides several tools to explain SQL statements and
access plans:

• Tools based on analyzing packages

Two tools are provided: db2expln for static SQL statements and dynexpln for
dynamic SQL statements.

• Tools based on explain tables

Explain table information can be retrieved by these methods:

− Querying the tables
− db2exfmt for non-graphic environments
− Visual Explain for graphic environments

5.1.1 SQL Explain Tool
The SQL explain tool, db2expln, is a package analyzer, so it will only explain the
access plan for a static SQL statement. A package contains the access plans for
all SQL statements in the application program, or program module. The input
for db2expln is not the explain tables but the access plan. Db2expln describes
the access plan selected for SQL statements in the packages. It provides the
step-by-step procedure used by the database manager to execute the SQL
statement.

Figure 45 on page 82 shows the process involved in generating the package
starting with a C application program (other supported languages are cobol,
fo r t ran and C++) . The process of generating the package for the application
program is called binding. The package is generated by the precompiler. The
precompiler will also generate a pure C language (or cobol, fortran, or C++)
file and, optionally, a bind file. Notice that, depending on the options used to
invoke the prep command, the precompiler will generate either:

• A package

• A bind file

• A package and a bind file

80 DB2 Performance and Tuning

Packages and Bind Files: A package is used as input for the db2expln tool. It is
important to remember that if statistics are changed, packages may need to be
rebound, as the optimizer determines the access plan for each SQL statement
based upon the statistics available when the application was bound.

Figure 44. Creating Packages - PREP

Packages can be added or re-created using the bind command. The bind
command uses a bind file as its input. The rebind commands allows you to
recreate a package but does not require the bind file. Package re-creation is
recommended when the statistics are changed. Figure 45 on page 82 shows the
bind and rebind process.

Chapter 5. DB2 Tools and Utilities 81

Figure 45. Adding or Replacing Packages - BIND and REBIND

In summary, a package contains the access plans for the static SQL statements
for an application. The precompiler (invoked through the prep command), may
create any combination of packages, bind files, or packages and bind files. The
precompiler will have to be invoked every time the source program is modified,
such as if an SQL statement is added to program.

The bind command uses the bind file, generated from the precompile, as its
input. It can add or re-create a package. The bind command can be used to
change any bind options, such as the isolation level. When re-creating a
package, and thus, the access plans for the SQL statement, it will take
advantage of the statistics currently stored in the system catalogs.

The rebind command does not require a bind file, as it can re-create a package
from the existing package. However, no bind options can be modified. The
rebind will take advantage of current database statistical information. It is the
fastest way to rebind a package.

As any other application, db2expln has to bind to the database. Db2expln binds
itself to the database the first time it is invoked. To execute the db2expln tool,
select access to the system catalogs and bind authority is required.

Explain Output: The output of the db2expln tool consists of two parts:

• Package information

The package information includes the package name, bind timestamp,
isolation level, blocking state and optimization class. The following is a
sample of the package information provided by db2expln:

******************** PACKAGE ***************************************

Package Name = NULLID.DB2LOOK
Prep Date = 1996/02/02
Prep Time = 17:38:07:085

Bind Timestamp = 1996-06-18-14.29.49.522332

82 DB2 Performance and Tuning

Isolation Level = Uncommitted Read
Blocking = Block All Cursors
Query Optimization Class = 5

• Section information

The section information includes the SQL statement being explained and the
explain output of the access plan for this statement. There can be as many
sections as SQL statements that are part of the package. Remember that if
an application is compiled from multiple source files, then a package will
exist for each source file, and that package will contain the access plans
only for the SQL statements found in that source file related to that package.
Db2expln may show one section or all sections of the package. This is an
example of information provided for one section by db2expln:

Section = 3

SQL Statement:

SELECT name, colno, coltype, length, nulls, colcard, high2key,
low2key, length(high2key), length(low2key), avgcollen,
nmostfreq, nquantiles, codepage

FROM SYSIBM.SYSCOLUMNS
WHERE tbname = :table_name and TBCREATOR = :table_creator
ORDER BY colno

Access Table Name = SYSIBM.SYSCOLUMNS ID = 3
| #Columns = 14
| Index Scan: Name = SYSIBM.IBM01 ID = 1
| | #Key Columns = 2
| | Data Prefetch: None
| | Index Prefetch: None
| Lock Intents
| | Table: Intent None
| | Row : None
| Create/Insert Into Sorted Temp Table ID = t1
| | #Columns = 12
| | #Sort Key Columns = 1
| | Sortheap Allocation Parameters:
| | | #Rows = 2
| | | Row Width = 127
| | Piped
Sorted Temp Table Completion ID = t1
Access Temp Table ID = t1
| #Columns = 12
| Relation Scan
| | Prefetch: Eligible
End of Section

Notice that the SQL statement shown may not exactly match the statement in the
SQL application. This is because the optimizer may have re-written the
statement to obtain better performance. It is this optimized statement that is
shown.

Chapter 5. DB2 Tools and Utilities 83

The explain text is divided into steps. Major steps are left-justified. Indentation
bars provide the scope of the operations. The explain may include information
about:

• Table access

Shows the name and type of the table. It also describes the access to the
table. (It includes the number of columns, scan direction, row access
method and lock intents.)

• Temporary tables

Temporary tables created during the statement execution.
• Joins

Shows the join and type of join operations performed.
• Data streams

Shows the flow of data from one operation to the other within the access
plan.

• Insert, update and delete statements
• Row identifier preparation

Preparation of RIDs before the table is accessed. RIDs may be sorted or
duplicates removed.

• Aggregation
• Miscellaneous statements

These include DDLs, SET statements, DISTINCT clauses, and UNION
operators.

The different parts of the explain output are explained in the follow sections.

5.1.1.1 Explain Text for Regular Tables
db2expln shows the names and the types of the tables being accessed. It also
shows and explains access plans for temporary tables. In our previous example,
two tables, a regular table and a temporary table, were explained.

Access Table Name = SYSIBM.SYSCOLUMNS ID = 3
| #Columns = 14
...
Access Temp Table ID = t1
| #Columns = 12
...
End of Section

The information provided includes the fully qualified name of the regular table.
The ID shown for regular tables corresponds to the TABLEID column in
SYSCAT.TABLES. For temporary tables, the values of ID are assigned by db2expln.

Indented information below the Access Table Name or the Access Temp Table
statement explains how the data is being accessed. In our example, access to
the regular table is listed below:

Access Table Name = SYSIBM.SYSCOLUMNS ID = 3
| #Columns = 14
| Index Scan: Name = SYSIBM.IBM01 ID = 1
| | #Key Columns = 2
| | Data Prefetch: None
| | Index Prefetch: None
| Lock Intents
| | Table: Intent None

84 DB2 Performance and Tuning

| | Row : None
| Create/Insert Into Sorted Temp Table ID = t1
...

From this output, we can determine the following:

 1. The table being accessed is SYSIBM.SYSCOLUMNS.
 2. The number of columns being used is 14.
 3. More than one row wil l be accessed. We know this because, if only a single

row is accessed, the explain text would include the statement:

Single Record

 4. The isolation level used for this table access is the same as the isolation
level for the package. The isolation level for the package is shown in the
package information (uncommitted read, in our example). The statement
that appears when the isolation level is different from that of the package is:

Isolation Level: xxxx

 5. The scan direction is forward, which is the default. If the database manager
reads the rows in reverse order, the following text will be shown:

Scan Direction = Reverse

 6. Rows are being accessed through an index. See “Row access.”
 7. No locks wil l be acquired. See “Lock intents” on page 86.
 8. A sorted temporary table, if necessary, wil l be created.

Row access: There are two ways of accessing data in a table. The first is by
directly reading the table (relation scan), and the second is accessing an index
on the table (index scan). The db2expln utility shows which of these two methods
is used to access the data.

If a table scan is being used, the following statement will be displayed:

Relation Scan
Prefetch: Eligible

The Prefetch statement displays if prefetch is applicable.

If an index scan is used, the format of the statement will be:

Index Scan: Name = schema.name ID = xx

where ID is the IID (index identifier) column in SYSCAT.INDEXES.

Index scans are further explained through additional statements within the
explain output. From our example, the statements that explain the index scan
are:

| Index Scan: Name = SYSIBM.IBM01 ID = 1
| | #Key Columns = 2
| | Data Prefetch: None
| | Index Prefetch: None

From these additional statements, we know how the index scan will be
performed:

 1. Two columns in the index key are being used to delimit the index scan
range. If the value of #Key Columns was 0, a full scan of the index would be
performed.

 2. Table data is being accessed. This is known because, when only indexes
are accessed, the following statement appears:

Chapter 5. DB2 Tools and Utilities 85

Index-Only Access

 3. No data or index prefetch wil l be used.
 4. No rows wil l be accessed by row ID (RID). If rows are accessed by RID, the

following statement is displayed:

Fetch Direct

Lock intents: Lock intents show the type of lock that will be acquired at both the
table level and the row level. The statements from our example that explain the
lock intents are:

| Lock Intents
| | Table: Intent None
| | Row : None

Possible values for table and row locks are:

• Table lock
− Exclusive
− Intent Exclusive
− Intent None
− Intent Share
− Share
− Share Intent Exclusive
− Super Exclusive
− Update.

• Row lock
− Exclusive
− None
− Share
− Update

5.1.1.2 Explain Text for Temporary Tables
Temporary tables are used when intermediate results do not fit in the sort heap,
or if subqueries are used in the search condition. It is also possible that the
temporary tables will be sorted or unsorted, and so the access of these tables
can affect performance.

The access plan provides a temporary table even if it intends to ‘pipe’ the sort.
By doing this, the database manager will be able to know how to build the
temporary table if it’s needed at execution time, and the access plan will be
independent of whether the results are kept in the sort heap or placed in the
temporary table. In our example, one sorted temporary table was explained.
The statements included in the explain text were:

| Create/Insert Into Sorted Temp Table ID = t1
| | #Columns = 12
| | #Sort Key Columns = 1
| | Sortheap Allocation Parameters:
| | | #Rows = 2
| | | Row Width = 127
| | Piped
Sorted Temp Table Completion ID = t1

From these statements, we can see the following:

 1. The temporary table is sorted. This is because, for non-sorted temporary
tables, the following statement would appear:

86 DB2 Performance and Tuning

Create/Insert Into Temp Table ID = tn

 2. Rows inserted in the temporary table have 12 columns.
 3. There is one key column used in the sort.
 4. The sort wil l require 2 rows of 127 bytes. This information can be helpful

when trying to pinpoint problems with sort heaps.
 5. The sort is piped. This means that the database manager wil l try to keep the

sort in the sort heap. But if there is not enough space in the heap, it will use
the temporary table. So the access plan is prepared for both events!

Notice that the table access information for the temporary table is detached from
this step. Explain text for temporary table access is shown in the next step.
Statements used to explain temporary table access are the same as those used
for ‘regular’ table access.

Access Temp Table ID = t1
| #Columns = 12
| Relation Scan
| | Prefetch: Eligible
End of Section

5.1.2 Explaining Dynamic SQL
Access paths for dynamic SQL statements are not determined until the
statement is being executed. In order to explain how dynamic SQL statements
will access the data, the following procedure can be used:

 1. Include the dynamic SQL statement in a C program as a static SQL
statement.

 2. Prep and bind the C program.

 3. Explain the package through db2expln.

DB2 common server provides the dynexpln utility, which will perform these steps
for you. It is a REXX procedure for OS/2 servers, a shell script for AIX servers
and an executable program for NT servers. It will execute these three steps.
The syntax of dynexpln is:

dynexpln <dbname> “<SQL statement>”

Bind options are specified through the environment variable
DYNEXPLN_OPTIONS, as in the following example (AIX servers, for OS/2 servers
use the set command):

export DYNEXPLN_OPTIONS=’blocking all isolation ur queryopt 3’

The output for the these statements is the same as explained in 5.1.1, “SQL
Explain Tool” on page 80.

5.1.3 Explain Tables
Explain tables are used by different tools to show the access plans of SQL
statements. A set of explain tables should be created by each user working with
these tools. Though explain tables can be queried as any other table,
information from these tables can easily be retrieved and formatted by db2exfmt.

Explain tables can also store explain snapshots. Snapshots are stored as binary
objects and are only used by the Visual Explain tool. An explain snapshot
contains all the information required by Visual Explain to graph access plans, as

Chapter 5. DB2 Tools and Utilities 87

well as the values of statistics and database configuration parameters at the
time the explain snapshot was taken.

5.1.3.1 Creating Explain Tables
Explain data is kept in the explain tables. These tables must be created before
Visual Explain is executed. For each database, a set of explain tables need to
be created. If multiple users are using Visual Explain, then multiple explain
tables should be created. There are seven tables used by the explain facility:

• EXPLAIN_INSTANCE

Contains the database configuration parameters settings when the explain
snapshot was taken.

• EXPLAIN_STATEMENT

Contains the SQL statement and the explain snapshot.
• EXPLAIN_ARGUMENT

Contains the characteristics for each operator.
• EXPLAIN_OBJECT

Contains all the data objects required by the access plan.
• EXPLAIN_OPERATOR

Contains all the operators needed in the execution of the SQL statement.
• EXPLAIN_PREDICATE

This table contains all the predicates applied by each operator.
• EXPLAIN_STREAM

This table contains the input and the output data streams between operators
and table objects.

The easiest way to create these tables is to use the supplied EXPLAIN.DDL file.
The EXPLAIN.DDL file is provided under the sqllibmisc subdirectory for OS/2
or NT servers (for AIX servers, under ./sqllib/misc). To create these tables,
follow these steps:

 1. Start the instance though db2start.

 2. Connect to the database.

 3. Create the explain tables executing this command:

db2 -tf EXPLAIN.DDL

5.1.3.2 Populating Explain Tables
Once these tables have been created, they are empty. These tables are
populated with two different sets of information:

• Explain Table Information.

Explain table information will populate all seven explain tables. The
information stored in these seven tables can be queried or used as an input
for the db2exfmt tool.

• Explain Snapshot Information.

Explain snapshot information will only populate two tables. It includes the
snapshot of the statement. The snapshot is stored in an internal binary
format in one of the explain tables. Snapshot information is only used by
Visual Explain.

88 DB2 Performance and Tuning

Explain Table Information: Explain table information is collected in different
ways for dynamic and static SQL statements. These are as follows:

 1. Dynamic SQL

To collect explain table information, there are two possible methods;

a. An EXPLAIN SQL statement such as:

db2 explain plan selection for <sql statement>

where <sql statement> is the statement to be explained. Explainable
SQL statements are DELETE, INSERT, SELECT, SELECT INTO, UPDATE, VALUES
and VALUES INTO.

b. Change the value of the current explain mode register so that explain
table information is collected by default when subsequent SQL
statements are executed:

db2 set current explain mode <value>

where <value> may be:
• NO

Subsequent dynamic SQL statements will be executed, but no
explain table data will be collected

• YES

The statements will be executed and the explain table data collected
• EXPLAIN

Explain table data will be collected for the statements, but the
statement will not be executed.

Every dynamic SQL statement executed after the value of the current
explain register has been changed will be affected. Care should be
taken not to leave the current explain mode register to an undesired
value.

 2. Static SQL

There are two different options for static SQL;

a. Within the program, using a static EXPLAIN statement.
b. At prep/bind time using the EXPLAIN option. Values of the EXPLAIN option

can be:

• NO

No explain table information will be gathered.

• YES

Explain table information will be gathered for static SQL statements
contained in the program.

• ALL

Explain table information will be collected for each static or dynamic
SQL statement contained in the program, even if the db2 set current
explain mode no command has been executed.

Explain Snapshot Information: Explain Snapshot information is stored in the
EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables, while the snapshot itself is stored
as a binary object in the EXPLAIN_STATEMENT table. You should note that the
explain snapshot is not a part of the snapshot monitor. Explain snapshots are

Chapter 5. DB2 Tools and Utilities 89

taken in two different manners for static and for dynamic SQL. These are listed
below and illustrated in Figure 46 on page 91:

 1. Dynamic SQL

• An EXPLAIN PLAN FOR SNAPSHOT SQL statement such as:

db2 explain plan for snapshot for <sql statement>

where <sql statement> is the statement object of the snapshot.

• An EXPLAIN PLAN WITH SNAPSHOT SQL statement such as:

db2 explain plan with snapshot for <sql statement>

where <sql statement> is the statement object of the snapshot. The WITH
SNAPSHOT option will collect both explain table information and explain
snapshot information for the statement.

• To take explain snapshots of any dynamic SQL statement by default, the
following DB2 command is used to assign a value to the current explain
snapshot register:

db2 set current explain snapshot <value>

where <value> can be:

− NO

No explain snapshot will be collected. Subsequent statements will
be executed.

− YES

Subsequent statements will be executed and the explain snapshot
collected for each one.

− EXPLAIN

Explain snapshot information will be collected for every statement,
but the statement will not be executed.

Every dynamic SQL statement executed after the value of the current
explain snapshot register has been changed will be affected. Care
should be taken not to leave the current explain mode register to an
undesired value.

 2. Static SQL

There are two different options available for static SQL:

a. Within the program, using the API, SQL_EXPLSNAP_OPT. when
preparing/binding.

b. At precompile/bind time using the EXPLSNAP option. Values of EXPLSNAP
can be:

• NO

No explain snapshot will be taken.
• YES

An explain snapshot for each static SQL statement included in the
program will be taken.

• ALL

An explain snapshot for each static and dynamic SQL statement
included in the program will be taken. This will occur even if the db2
set current explain snapshot no command has been executed.

90 DB2 Performance and Tuning

Figure 46. Populating Explain Tables with Snapshots

5.1.4 Visual Explain
Visual Explain is a graphical tool used to display and analyze access plans. It
also provides information about the decision criteria used by the optimizer in
choosing one plan over other alternative plans. The access plans displayed may
belong to either static or dynamic SQL statements.

Visual Explain can be started through the Database Director or using the db2vexp
command. When using the db2vexp command, you will have to provide the
database name and the SQL command to be explained.

Visual Explain uses two concepts when dealing with SQL statements. These are
explainable statements and explained statements.

• Explainable statement

An explainable statement is a static SQL statement that is included in a
package. An explainable SQL statement may or may not have associated
explain information.

• Explained statement

An explained statement is a static or dynamic SQL statement for which an
explain snapshot has been taken. A graph showing the access plan for the
statement can only be shown if the statement is an explained statement.

Visual Explain obtains its input information from these sources:

• The EXPLAIN_STATEMENT and EXPLAIN_INSTANCE tables.

• Database configuration parameters.

Chapter 5. DB2 Tools and Utilities 91

• Statistics collected by runstats or load utilities. These statistics are stored
in the following tables:

− SYSSTAT.STATS
− SYSSTAT.TABLES
− SYSSTAT.COLUMNS
− SYSSTAT.COLDIST
− SYSSTAT.INDEXES
− SYSSTAT.FUNCTIONS

5.1.4.1 Viewing explained statements
Explained statements can be accessed through the explained statements history
option in the Database Director. Selecting this option brings up a window with a
list of explained SQL statements.

Every row in the table shown is an explained statement. For each of the
explained statements, the following information can be provided:

• Package Name

• Package Creator

• Explain Snapshot, if any has been taken for the statement

• Latest Bind, to see if the statement is associated with the latest bound
package

• Dynamic Explain, set to yes for dynamic SQL statements

• Explain Date and Time

• Total Cost, of the statement, in timerons

• Statement Number, in the source code

• Section Number, the number of the section in the package

• Query Number

• Query Tag and SQL Text (only the first 100 characters)

Notice that the information shown is configurable through the View menu.

Figure 47. Explained Statements History

92 DB2 Performance and Tuning

In Figure 47, only six columns are configured to be shown. Selecting the
explained statement, several options are available:

• Show the access plan for this statement

The access plan can be displayed through:

− The pop-up menu brought up by the right button of the mouse.
− Clicking on the picture camera icon
− Through the pull-down menu: Statement, Show Access Plan.

• Show the SQL statement text

The SQL statement text is shown by:

− The pop-up menu brought up by the right button of the mouse
− Clicking on the SQL icon
− Through the pull-down menu: Statement, Show SQL Text

5.1.4.2 The Access Plan
The access plan is shown by Visual Explain as a hierarchical tree. The tree
should be interpreted from bottom to top, or right to left, depending on the
selected configuration. Figure 48 on page 94 shows an example of how Visual
Explain represents an access plan. The steps chosen by the optimizer are
shown as geometric figures. These figures or nodes may be:

• Operand nodes

Operand nodes represent tables and indexes. A table is represented as a
rectangle, and an index is shown as a diamond.

• Operator nodes

Operator nodes are represented as octagons or hexagons. Hexagons are
used for functions and octagons for operations. The following are types of
operators available:

− Delete
− Fetch
− Filter
− Grpby - Groups rows
− Insert
− Ixscan - Index scan
− Msjoin -Merge Join
− Nljoin - Nested loop join
− Return - Represents the return of data to the application
− Ridscn - Scan a list of row identifiers
− Sort
− Tbscan - Table scan
− Temp - Temporary table creation
− Union
− Unique - Duplicate row elimination
− Update
− Genrow - Built in function that produces a table

Chapter 5. DB2 Tools and Utilities 93

Figure 48. The Access Plan

A more detailed view of the nodes in the access graph can be obtained using
the zoom slider as shown in Figure 49 on page 95. The number present in each
operator node is the I/O cost, as this is what has been selected for display. The
access graph can be configured to show other information on the operator nodes
such as global cost, CPU cost, I/O cost or cardinality.

Global cost is measured in a unit called timerons. A timeron is an estimate of
the total resources that will be consumed by an operator, accounting for both
CPU and I/O activity.

94 DB2 Performance and Tuning

Figure 49. Access Plan Using the Slider

You can see in the access plans that nodes are linked by arrows. These arrows
indicate the flow of data. In addition, each operator node is assigned a unique
number, enclosed in parenthesis, for further identification.

5.1.4.3 Viewing Statistics and Details
To view the statistics of an operand (a table or an index) or to view more details
of an operator, you only have to click on the node from the access plan window.
The type of information that is returned depends upon the type of node selected.

Operand Nodes: Clicking on an operand node will display the statistics
associated with the notes table or index, as shown in Figure 50 on page 96.
This figure shows the statistics of the table TPCD.NATION and next to it, the
statistics of its column. NAME is also shown.

The statistics shown compare values for the statement when it was explained
with the values currently stored. Notice that the current values were obtained
the last time that the runstats utility was executed for the table.

Table statistics include:

CREATE_TIME Date of creation of the table.
STATS_TIME Date when a change was made to any of the statistics for the

table. Notice that in Figure 50 on page 96, the value is set to
Statistics not Updated, which means that there is a difference
between the current statistics and those used when the
statement was explained.

TABLESPACE Name of the tablespace where the table is stored.
INDEX_TABLESPACE Name of the tablespace where the indexes of the table are

stored.
COLCOUNT Number of columns in the table.
CARD Number of rows in the table.
NPAGES Number of pages of the table that contains more than one row.

Chapter 5. DB2 Tools and Utilities 95

FPAGES Number of pages used to store the table.
OVERFLOW Number of overflow pages used by the table

Index statistics include:

CREATE_TIME Date of creation of the index.
STATS_TIME Date when a change was made to any of the statistics for the

index.
UNIQUERULE Shows if it is a primary index.
COLCOUNT Number of columns in the index key.
NLEAF Number of leaf pages.
NLEVELS Number of index levels.
FIRSTKEYCARD Cardinality of the first column of the index.
FULLKEYCARD Cardinality of all columns of the index.
CLUSTERRATIO Data clustering of the index.
CLUSTERFACTOR Data clustering factor of the index.

Column statistics are shown by clicking on the Referenced Column button of the
table/index statistics window. Column statistics include:

COLNO Number of the column in the table.
COLCARD Cardinality of the column.
AVGCOLLEN Average length of the column.
NMOSTFREQ Filled up by distribution statistics, it is the number of most

frequent values (that is, duplicates) in the column. In
Figure 50, it is set to -1. This is caused by not using the with
distribution clause when runstats was executed.

NQUANTILES Filled up by distribution statistics, it is the number of
quantiles. Set to -1 in the example after running runstats
without the with distribution clause. Used by the optimizer
to figure out the distribution of data within a column.

HIGH2KEY Second highest value in the column.
LOW2KEY Second lowest value in the column.

Figure 50. Statistics of an Operand

Operator Nodes: Clicking on an operator node will show the details of that
operator. Figure 51 on page 98 is an example of the details for a table scan.
The details of an operator are grouped into three areas:

96 DB2 Performance and Tuning

 1. Cumulative Costs

• Total Cost
Measured in timerons.

• CPU Cost
Number of instructions.

• I/O cost
Number of I/O operations. This includes number of seeks and page
transfers.

• First Row Cost
Only available if a full level of detail is selected. This is not shown in
Figure 51 on page 98, as the level of detail selected is overview. The
first row cost is the estimated cost of obtaining the first row of the
answer set.

 2. Cumulative properties of the tables accessed by the operator.

• Tables
Name of the tables accessed by the operator.

• Count of columns
Number of columns accessed by the operator.

• Order of columns
Ascending, descending or none.

• Count of predicates
Set of predicates applied (searches or comparisons included in WHERE or
HAVING clauses).

• Cardinality
Number of rows to be returned. This value is obtained from the statistics
tables. The runstats utility should be executed after updates to maintain
this value.

 3. Input Arguments
The details vary depending on the type of the operator. For a table scan, the
arguments shown are:

• Scan source
Base tables in the example.

• Scanned Table
Name of the table to be scanned.

• Columns retrieved
Name of the columns accessed.

• Count of sargable predicates
A sargable predicate is a predicate that can be resolved by simple
comparisons instead of by subqueries.

• Scan direction
Forward or reverse.

• Count of residual predicates
• Prefetch

Only shown if the full level of detail is selected. Shows whether
sequential detection is enabled or displays a positive number showing
the number of row identifiers for list prefetching.

• Maximum pages
Only shown if the full level of detail is selected. Maximum pages
expected to be read from disk. None means that prefetching is not
enabled. All means that all pages are expected to be read, and <nnn>
is a positive number indicating the number of pages that are expected to
be read.

• Lock intents

Chapter 5. DB2 Tools and Utilities 97

Lock modes for accessing the table or rows.

Figure 51. Details of an Operator

5.1.4.4 Optimizer
Visual Explain also provides information about the work performed by the
optimizer. The optimizer can rewrite a query and generate the access plan. The
access plan generated will depend upon the values of certain configuration
parameters, such as the size of the buffer pool, the size of the table or the level
of isolation.

98 DB2 Performance and Tuning

Visual Explain can provide you with the information about the optimizer such as
the difference between the coded SQL statements and the optimized SQL
statements. Figure 52 on page 99 shows an example of an original SQL
statement and the optimized version of the statement.

Figure 52. Optimizer - Optimized SQLStatement

Through Visual explain, you can also obtain the values of the database
configuration parameters that have been used by the optimizer to calculate the
cost and to determine the access plan. The values of these parameters are
compared to their current values, as illustrated in Figure 53 on page 100.

Chapter 5. DB2 Tools and Utilities 99

Figure 53. Optimizer - Database Configuration Parameters

5.1.5 Explain Table Formulator
The tool db2exfmt will put the information found in the explain tables into a
format that can be more easily interpreted. It provides the access plan for the
explained statements, and it obtains information from all seven explain tables, as
seen in Figure 54 on page 101.

100 DB2 Performance and Tuning

Figure 54. Db2exfmt

The explain table formatting tool will prompt you for the following information:

• Database name

• Explain timestamp

• Name and schema of the package

This information can be obtained using the Database Director. Select Packages ,
and open the package with the Explained statements history menu item.
Alternatively, you can query the EXPLAIN_INSTANCE table. When db2exfmt is
invoked without parameters, it will request the required information, as shown in
the following example:

� �
$ db2exfmt

DB2 Common Server Version 2, 5622-044 (c) Copyright IBM Corp. 1995
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

Enter Database Name ==> tpcd
Connecting to the Database.
Connect to Database Successful.
Enter up to 26 character Explain timestamp ==> 1996-06-28%
Enter up to 8 character source name ==> sqlc26a0
Enter up to 8 character source schema ==> nullid
Enter section number (0 for all) ==> 0
Enter outfile name. Default is to terminal ==> /tmp/db2exfmt.out.ok
Output is in /tmp/db2exfmt.out.ok.
Executing Connect Reset -- Connect Reset was Successful.� �

Notice that wildcards, such as %, can be used. The output generated by the
explain table formatter is divided into several segments:

 1. Explain Instance information
Includes database context information and package context information.

• Database context information

Chapter 5. DB2 Tools and Utilities 101

Includes the values of the database parameters when the explain table
information was obtained. The values provided are only those values
that have some impact on the optimizer while determining the access
plan.

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 02.01.1

SOURCE_NAME: SQLC26A0
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 1996-06-28-12.13.47.297612
EXPLAIN_REQUESTER: DB2A

Database Context:

CPU Speed: 0.000031
Buffer Pool size: 1000
Sort Heap size: 256
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1130

• Package context information
Information about blocking and isolation level of the package.

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

 2. Statement information
Provides the original SQL statement and the optimized version of the SQL
statement. This section also includes the access plan of the statement and
information about tables and indexes involved in the access plan.

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No

• Original and optimized statement

Original Statement:

select a.name,b.name
from tpcd.region a,tpcd.nation b
where a.regionkey=b.regionkey
order by b.name

Optimized Statement:

SELECT Q2.NAME AS “NAME”, Q1.NAME AS “NAME”
FROM TPCD.NATION AS Q1, TPCD.REGION AS Q2

102 DB2 Performance and Tuning

WHERE (Q2.REGIONKEY = Q1.REGIONKEY)
ORDER BY Q1.NAME

• Access plan for the optimized statement
The access plan provides the total cost of the explained statement.

Access Plan:

Total Cost: 110.678146

Next, it provides information on each step (operator) of the access plan
in the following stanzas:

− The first stanza includes the total cost (in timerons), CPU cost, I/O
cost and first row cost of the step. Notice that the operator has been
assigned number 10. This number is used to follow the stream of
data.

10) TBSCAN: (Table Scan)
Cumulative Total Cost: 53.147976
Cumulative CPU Cost: 99962.000000
Cumulative I/O Cost: 2.000000
Cumulative First Row Cost: 25.510544

− Arguments
Including prefetching, locks and direction of scan.

Arguments:

MAXPAGES: (Maximum pages for prefetch) ALL
PREFETCH: (Type of Prefetch) NONE
ROWLOCK : (Row Lock intent) SHARE
SCANDIR : (Scan Direction) FORWARD
TABLOCK : (Table Lock intent) INTENT SHARE

− Input streams
Identifies the operator or the operand from which it will get its input.
In this case, the input is an operand: the TPCD.NATION table.

Input Streams:

5) From Object TPCD.NATION

Estimated number of rows: 25.000000
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+RID+NAME+REGIONKEY

− Output streams
This identifies the operator that will be the recipient of this output
step.

Output Streams:

6) To Operator #9

Estimated number of rows: 25.000000
Number of columns: 3
Subquery predicate ID: Not Applicable

Chapter 5. DB2 Tools and Utilities 103

Column Names:

+RID+NAME+REGIONKEY

• Information about the objects or operands (tables and indexes) used in
the access plan.

Objects Used in Access Plan:

Schema: TPCD
Name: NATION
Type: Table

Time of creation: 1996-05-30-11.18....
Last statistics update: 1996-06-26-15.06...
Number of columns: 4
Number of rows: 25
Width of rows: 39
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name: USERSPACE1
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Prefetch page count: 32
Container extent page count: 32
Table overflow record count: 0

Schema: TPCD
Name: REGION
Type: Table

Time of creation: 1996-05-30-11.18....
Last statistics update: 1996-06-26-15.05...

5.2 Benchmarking Tool
The utility db2batch is a benchmarking tool that provides performance
information. This tool processes batch SQL statements. When the db2batch tool
is invoked, it will perform the following:

• Connect to the database

• Read, prepare, and execute the SQL statements

• Disconnect from the database

• Return the answer set, allowing you to determine the number of rows to be
retrieved and the number of rows to be sent to output

• Return performance information, allowing you to specify the level of detail

• Return the mean values for ‘elapsed time’ and ‘Agent CPU time’ of all the
SQL statements executed

The db2batch is usually fed by an input file. In this file, the user is able to set the
different options and write the SQL statements that are to be executed by the
utility.

104 DB2 Performance and Tuning

� �
--#SET perf_detail 2
--#SET rows_fetch 20
--#SET rows_out 10
select name from tpcd.supplier;
--#SET rows_fetch -1
--#SET rows_out -1
select name,regionkey from tpcd.region order by name;� �

When writing an input file, such as the one above, the basic rules are:

 1. Options have the syntax --#SET <option> <value>. Table 4 lists the different
options available.

 2. Options apply only to the SQL statements below them.

 3. Options can be ‘unset’ by setting their value to -1.

 4. SQL statements must be terminated by a semicolon.

Table 4. Options for db2batch

The output of the db2batch utility can be sent to a file. The level of detail,
perf_detail, is set to 1 by default. This means that only the elapsed time for
each SQL statement, agent CPU time for each SQL statement and the mean
value of both will be returned. The default value for rows_fetch and rows_out is
-1, meaning to fetch all rows from the answer set and to send all rows fetched to
the output device.

Db2batch can be used to get snapshots easily. Setting perf_detail to 4 will get a
complete snapshot (database manager, database and application) for every SQL
statement included in the input file. Results include the same data elements
used by the snapshot monitor.

When benchmarking, setting rows_out to 0 will avoid ‘flooding’ the output device
with the rows fetched.

Chapter 5. DB2 Tools and Utilities 105

5.3 Bind File Dump Tool
The db2bfd utility displays the contents of a bind file. It may help to determine
how a package was built. The bind file dump utility provides the following
information about the bind file:

• The precompile options used to create the bind file and bind file header
information as shown in this screen:

/usr/lpp/db2_02_01/bnd/db2look.bnd: Header Contents

.Element name Description Value
------------- ------------------------------- ------------------
bind_id Bind file identifier :BIND V02:
relno Bind file release number :0x300:
application Access package name :DB2LOOK :
timestamp Access package timestamp :XBHmRCCM: 1996/02/02 17:38:07:085
creator Bind file creator :NULLID :
endian Bit representation :B: Big Endian (non-Intel)
sqlda_doubled Indicates if SQLDA doubled :1:
insert DB2/PE buffered inserts :0:
max_sect Highest section number used :22:
num_stmt Number of SQL statements :156:
statements Offset of SQL statements :1364:
declarel Size of data declarations :3760:
declare Offset of data declarations :32934:
prep_id Userid that created bindfile :NULLID :
date_value Date/Time format :0: Default (Default)
stds_value Standards Compliance Level :0: SAA (Default)
isol_value Isolation option :2: Uncommitted Read (Defined
blck_value Record blocking option :1: Block All (Defined)
vrsn_value Version option : : (Default)
...

• The SQL statements included in the bind file.

/usr/lpp/db2_02_01/bnd/db2look.bnd: SQL Statements = 156

Line Sec Typ Var Len SQL statement text
---- --- --- --- --
 147 0 10 0 13 INCLUDE SQLCA
269 0 5 0 21 BEGIN DECLARE SECTION
378 0 2 0 19 END DECLARE SECTION
445 0 5 0 21 BEGIN DECLARE SECTION
447 0 2 0 19 END DECLARE SECTION
 655 0 19 1 20 CONNECT TO :database
667 1 0 1 108 SELECT colcount INTO :snbr FROM SYSIBM.SYSTABLES

WHERE creator = `SYSIBM’ AND name=’SYSTABLES’
 771 2 15 6 718 DECLARE C1_SYSTABLES CURSOR FOR SELECT T1.t

bspace, ntables, name, creator, card, npages,
index_tbspace, long_tbspace, fpages, overflo

w FROM SYSIBM.SYSTABLES T1,
(SELECT T2.tbspace as

tsname, count(*) as ntables FR
OM SYSIBM.SYSTABLES T2 WHERE
T2.TYPE = `T’ GROUP BY T2.tbspa
ce) T3 WHERE (creat
or = :creator_userid OR :creator_userid:ind is NULL)

...

106 DB2 Performance and Tuning

5.4 Productivity Tool
The db2look tool helps to create a replica database from an existing one. This
replica may be used for benchmarking or tuning purposes. The output of the
db2look utility may include:

• The DDL statements to re-create the tables and indexes of the “source”
database.

• The SQL statements to update the catalog statistics of the replicated
database. Updating the statistics will ensure that the same access plan will
be used.

• The alter tablespace commands to set the extent and prefetch sizes of the
replicated database to be the same as the “source” database.

Figure 55. Db2look Util ity

Notice that db2look will not build a clone of the “source” database. As it is
shown in Figure 55, the output of the db2look utility is a file that will facilitate the
creation of a replica database. If trying to clone a database, other steps must by
executed by hand:

• Creation of the database, tablespaces and containers
• Creation of triggers and UDFs
• Loading of data into the tables

5.5 DB2 Governor Tool
The db2gov tool acts as a governor of databases. It is designed to limit the use
of resources by online DB2 users. It does not prevent access but limits the
amount of processing that can be performed by a query.

Db2gov periodically invokes the snapshot monitor, and with the information from
the snapshot, it determines what applications are exceeding the limits set in its
configuration file. Applications exceeding the limits are terminated, or the
priority of the agent servicing the application is changed. Offending applications
are posted in a report file. The syntax to invoke the db2gov tool is:

db2gov config_file report_file

Chapter 5. DB2 Tools and Utilities 107

Db2gov can only be used by the database administrator. In order to change the
priority of the agent servicing the offending application these two premises must
be met:

• For UNIX servers, root has to be the owner of the db2gov program, and the
setuid bit must be set.

• The agentpri database manager configuration parameter has to be set to its
default value.

If the database manager configuration parameter max_idleagents is not 0. There
is a chance that an application will reuse a database agent whose priority has
been changed. To avoid this effect, the first line of the configuration file should
read:

setlimit cpu 1 locks 1 rowsread 1 action priority 0;

5.5.1 Configuration File
The configuration file for db2gov includes the following information:

• Name of the database.

• Sleep interval.
Db2gov invokes the snapshot monitor, looks for applications that are using
more resources than they are allowed to and acts on the applications. The
process then sleeps for the number of seconds specified in this interval.

• Conditions under which applications are forced or their agents’ priorities
changed. These conditions can be filtered, and thresholds can be set.

 1. Filters

− Time of day

− APPLIDs

− AUTHIDs

 2. Thresholds
These thresholds are used to determine if the application should be
forced or if its agent’s priority should be changed. Limits may be
imposed on the following resources:

− Agent CPU time

− Number of locks held by the application

− Number of rows read by the application

− Elapsed time of the current UOW

The configuration file can be modified while db2gov is being executed. Db2gov
will check if the configuration file has been modified during its sleep interval.
The format of the configuration file is:

interval <seconds>:
dbname <databasename>:
<restriction> setlimit <limits> action <actions>:
<restriction> setlimit <limits> action <actions>:
<restriction> setlimit <limits> action <actions>:
...

Restrictions: The restrictions have the following syntax:

time <timeclause> authid <authidclause> applname <applnameclause>

108 DB2 Performance and Tuning

The format and meaning of the clauses are:

timeclause Interval in which the restriction applies. The format is hh:mm
hh:mm. The default value is 00:00 23:59.

authidclause List of authids, separated by commas, to which the restriction
applies. The default is all authids.

applnameclause List of application names, separated by commas, to which the
restriction applies. The default is all applications.

Limits: The limits have the following syntax:

setlimit cpu <nnn> locks <nnn> rowsread <nnn> uowtime <nnn>

where

cpu Agent CPU time in seconds. If set to -1, unlimited.

locks Number of locks held by the application. If -1, unlimited.

rowsread Number of rows read by the application. If -1, unlimited.

uowtime Number of seconds since the UOW began. If -1, unlimited.

One of the limits must be specified, and no limit can be set to 0. Notice that
<nnn> does not represent a 3-digit number but any possible natural number (or
-1).

Actions: The action clause specifies the action to take if one of the limits is
exceeded. The two possible actions to be taken are:

• Change the priority of the agent. Valid values of priority can range from -20
to 20. The format of the action clause is: action priority <nnn>

• Force the application. The format of the action is: action force.

If no action is specified, the default is to reduce the priority of the agent by 10.

5.5.1.1 Sample Configuration File
Figure 56 is a sample configuration file for the db2gov utility. Notice that all lines
are finished by a semicolon and that comments are enclosed in {}.

{db2gov will wake up every 10 seconds}
interval 10;
{our database name is tpcd}
dbname tpcd;
{The next clause is used to avoid problems with priorities of idle agents,
as it will set the priority of any agent to its default value as soon as the
agent has read a 1 row or used 1 second of CPU or is holding one lock}
setlimit cpu 1 locks 1 rowsread 1 action priority 0;

{The next clause will limit the cpu time of any agent to 10 minutes. The
offending application will be forced}
setlimit cpu 600 action force;

{The following clause limits the use of the CLP between 8 AM and 5 PM
to read less than 250 rows}

time 8:00 17:00 applname db2bp_32 setlimit rowsread 250 action force;

Figure 56. Sample db2gov Configuration File

Chapter 5. DB2 Tools and Utilities 109

5.5.2 Report File
The report file will contain errors posted by db2gov and records of applications
forced or that had their priorities changed by db2gov. A report file will look like
the file in this example:

DB2 Governor operational on Fri Jun 28 16:53:06 1996.
Config file: db2gov.config
Report file: db2gov.out
dbname: tpcd
Snapshot interval: 10 (seconds).

Fri Jun 28 16:53:06 1996. Forced application `db2bp_32`, authid `DB2A`. CPU
seconds = 3. Locks held = 4. Rows read = 9126.
Application satisfied restriction on line 5 of configuration file.

The application — in this case, the Command Line Processor — is terminated,
and db2gov appends its output to the report file, db2gov.out.

5.6 DB2 Simple Network Management Protocol Subagent
The DB2 Simple Network Management Protocol (SNMP) subagent, db2snmp, is
based on the RDBMS MIB. The RDBMS MIB contains objects that may be used
to manage relational database implementations. Specifically, it contains
information on installed databases, on servers, and on the relationship of
databases and servers. This MIB requires no writable objects, so it is not
expected to be used as the ‘active’ database management tool.

The RDBMS MIB is formed by three subtrees:

 1. RDBMS Objects
This subtree is made of the following tables:

rdbmsDbTable
This table contains one entry per database installed. It includes
the vendor name, database name and database contact.

rdbmsDbInfoTable
This table includes information on the actively opened databases.
It includes the product name, its version and the date of the last
backup.

rdbmsDbParamTable
 This table contains the configuration parameters of the database
and their values.

rdbmsDbLimitedResourceTable
This table contains information about limited resources of the
database. For DB2 servers, it contains information about
connections and the database heap. It includes its current values,
high-water marks and configuration limits (maxappls and dbheap).

rdbmsSrvInfoTable
This table maintains information about active database servers.
Information is divided into two tables:

applTable
Keeps information about application-specific objects. In this
context, the database manager is considered to be a ‘network
application’. It provides information about the status of the

110 DB2 Performance and Tuning

database manager, name, version, and associations (connections,
local and remote).

rdbmsSrvInfoEntry
Additional information on the database manager: start-up time,
finished transactions, disk reads, logical reads.

rdbmsSrvParam
Contains all the database manager configuration parameters.

rdbmsSrvLimitedResourceTable
This table maintains information about limited resources of the
database servers. It contains information about current agents,
high-water marks, and configuration limits (maxagents).

rdbmsRelTable
 The purpose of this table is to keep a track of the relationships
between database servers and databases. It contains an entry for
each database-database_manager relation.

rdbmsWellKnownLimitedResources
 This tree is for documentation purposes only. It only contains an
object for each limited resource (database or database manager)
but no values for those objects.

 2. rdbmsTraps
This subtree is made of the following tables:

rdbmsStateChange
An rdbmsStateChange trap signifies that one of the database
servers/databases managed by this agent has changed its
rdbmsRelState object in a way that makes it less accessible for
use. For these purposes, both active and available are
considered fully accessible. The possible states are: other,
active, available, restricted, unavailable. The state sent with the
trap is the new, less-accessible state.

rdbmsOutOfSpace
 An rdbmsOutOfSpace trap signifies that one of the database
servers managed by this agent has been unable to allocate space
for one of the databases managed by this agent. Care should be
taken to avoid flooding the network with these traps. It is not
implemented in this release.

 3. rdbmsConformance. This subtree is made of the following objects:

rdbmsCompliances
Minimum set to be supported by the agent to be compliant with
the RFC.

rdbmsGroups
 Groups and objects defined in RFC 1697.

The DB2 SNMP subagent will capture snapshot information based on the
snapshot monitor switch settings. These settings affect all the databases
created under the same instance. By default, it will capture snapshot
information every five seconds. This can be configured when the subagent is
started. Subagents are started by:

• Executing the following command for AIX servers:

db2snmp <instance> {-t nn]

The script db2snmp is placed in the /usr/lpp/db2_02_01/cfg directory.
The flag -t specifies the interval between snapshots.

Chapter 5. DB2 Tools and Utilities 111

• To start the SNMP subagent for OS/2 , you can click on the Start SNMP
Subagent icon or execute this command from the command line:

db2snmp [-t nn]

The subagent will monitor the ‘current’ instance; nn is the interval, in
seconds, between snapshots.

• For NT, the subagent is not available.

To stop the SNMP subagent from the command line:

db2snmpd -end

or click on the Stop SNMP Subagent icon.

112 DB2 Performance and Tuning

Chapter 6. Tasks and Methodology

This chapter covers procedures that may be used when tuning a database
environment or when trying to solve performance-related problems. When
dealing with performance, the first task is to define the environment and the
methodology to be used.

Performance is not an absolute value. The performance of an information
system can be measured as better or worse than a reference value. That
reference value should be established first, and then the results of tuning efforts
can be compared against the reference value.

The reference value has to be established according to the requirements of the
information system. Those requirements, or service level agreement, may
include the throughput of the system, limits on the response time for a percentile
of transactions or any other issue relevant to the end user.

6.1 Defining the Yardstick
Since performance is always a relative attribute, the database administrator will
have to define a reference, a unit of measurement for each database. Future
performance measurements should be compared to this unit of measurement.

Units of measurement are usually based on the response time of a given
workload. Other units of measurement may be based on transactions per
second, I/O operations, CPU use or a combination of the above.

6.1.1 Creating a Benchmark
To be able to compare results in different periods of time or under different
configurations, a “workload” must be created. This workload should be the
same kind of workload as the one created by applications that access the
production database.

The workload is a set of queries, SQL statements or database utilities that
reproduce the same type of work generated by the applications that will be
accessing the data contained in the database environment. The workload must
have the following two properties:

• The workload should not destroy the environment when executed.

• The workload must be reusable.

If the applications are static SQL applications, the workload will be imbedded in
an application. It may also be desirable to include some measuring tools or
method within the same application. To accomplish this task, DB2 provides
extensive APIs to all the data elements that monitor the instance, the database
or the application.

For dynamic SQL applications, there are different possibilities. The workload
can also be included in a program, like with the static SQL. Another alternative
is to use the db2batch utility, which is discussed in 5.2, “Benchmarking Tool” on
page 104. This utility provides a simple way to capture the data elements
through snapshots. Db2batch also computes response time of the SQL
statements.

 Copyright IBM Corp. 1996 113

6.1.2 Environment
When dealing with performance issues for a database environment, it is not
always possible to fully test modifications to configuration parameters or
applications because, in many cases, you may be dealing with a production
environment. Testing against a production database is not possible when:

• Changes to configuration parameters require you to stop and restart the
instance or require all applications to disconnect from the production
database.

• The tests include modifications (updates, deletes, inserts) of data.

• The tests include changes in the way data is accessed, such as different data
placement, different runstats or changes in the optimization level or access
plans.

• Testing requires recompiling and rebinding of applications.

A common approach is to have a trial or development instance with copies of
production databases. In this environment, configuration parameters can be
easily modified. This “trial” instance solves some of the problems found when
testing against production databases. But having this testing environment raises
other issues:

• Resources may not be available (machine, disk, memory...).

• The environment is not exactly the same as the production environment.

• Some tests may require you to simulate the workload of other users.

• Some tests may require you to simulate concurrent users.

• The volume of data of the trial databases may not be the same.

• The contents or placement of data of the trial databases may not be the
same as those of the production databases.

• Data may be accessed through different access plans than those of the
production databases.

• Any modification derived from this environment will have to be implemented
in the production environment.

So a balance must be achieved between testing against the production
databases and testing against trial databases. One one hand, you get the real
environment; on the other hand, you have the freedom and availability to test
modifications.

Some tests, such as those designed to monitor performance, can be executed
against production databases. The basic rule when testing against production
databases is that data cannot be modified. This is possible if tests are
query-only or if they roll back any executed transaction. Other tests, those
involving changes in configuration parameters or data, will have to be executed
against trial databases.

DB2 is shipped with a tool called db2look that will help the database
administrator create trial databases. This tool can create a file with the DDL
statements of an existing database and can also create the SQL statements that
allow you to clone the statistics of the existing/production database. This file
can then be used as the input for the Command Line Processor to create a
similar database environment to the existing production database.

114 DB2 Performance and Tuning

After a trial database is created, data has to be inserted into the tables. Often, it
is not possible to insert the same volume of data due to space restrictions. A
subset of data has to be selected and placed into the trial database. Working
with subsets of data limits the viability of some performance measurements.

6.1.3 Measuring and Monitoring
The results obtained when testing or benchmarking can be split into two different
categories:

• Attributes Being Measured

Usually, the response time is the only measured attribute. But any other
metric, such as a throughput, may be the target.

• Attributes Being Monitored

These attributes show the behavior of the database during the test. For
example, you may be interested in the way pages are being accessed
through prefetchers, or the watermark of a heap left by the execution of a
test. DB2 provides a variety of tools for this purpose: the event monitor tool,
the snapshot monitor tool and the performance monitor tool.

When measuring and monitoring, each of the steps of the test should be
carefully considered. The method you are going to use to measure must be
clearly established. You should be aware that the measuring and monitoring
activity may have some affect on the results obtained. Previous steps of the test,
or previous tests, may also have an impact because pools and caches are not
flushed unless you take steps to guarantee a clean measure.

Reports of the results should be kept for future performance references.
Performance is a relative issue, and progress is best tracked based on previous
performance issues. It makes sense to define what information should be kept
in a performance report. Reports should include not only the results, but also
the configuration parameters, the environment and values of other monitored
attributes.

6.2 Monitoring Performance
Periodic measurements on production databases can help provide the answer to
the question: How is my production database performing? These periodic
measures may be taken using any of the tools provided by DB2. An example of
the measures that can be taken using the available tools are:

• Creating an event monitor for each production database.

This event monitor will provide information of a “working-day”, as
information of the data elements is written when the last application
disconnects from the database. Analysis of high-water marks can be
compared to configuration parameter values. Overflows and rejections point
to improper configuration values.

• Creating event monitors for connections to active databases.

This event monitor will record an event each time an application connects to
and disconnects from the database. The distribution of connections can be
obtained from this monitor, as well as conclusions on the size of
configuration parameters for the number of agents and concurrent agents.
Obtaining the distribution of connects/disconnects may help the database

Chapter 6. Tasks and Methodology 115

administrator to schedule maintenance periods or to set the time frame for
the database backup policy.

• Creating event monitors for tables.

Event monitors for tables are useful to determine which tables are
more-frequently accessed. Such monitors may suggest changes in the
physical design of the database.

• Getting a snapshot for each production database at peak times.

Counters can be reset before taking the snapshot, for example, one hour
before. This will give cumulative values for the data elements during the
peak hour. Compare high-water marks to values of configuration
parameters. Check for overflows, rejections, etc.

• Using the performance monitor.

Resetting counters and establishing a one-hour interval between snapshots
will provide the same information as getting a snapshot on a peak hour. If
the interval is an eight-hour interval, you will obtain information of a
“working-day” such as that information provided by an event monitor for a
database.

• Obtaining response times.

The response time of the workload defined in 6.1.1, “Creating a Benchmark”
on page 113 can be measured. These values should be compared with
previous measurements.

The information collected can be compared on a daily or weekly basis to detect
trends on data elements. Analyzing trends may indicate corrective actions that
can be taken even before any performance problems appear.

Special attention may be taken after important changes are made, such as the
loading of large amounts of data or the modification of an important database
configuration parameter.

6.3 Tuning for Performance
One question in the mind of database administrators is: How can my database
perform better? Unrelated to a specific performance problem, the goal here is to
reduce the response time of applications or to minimize the resources allocated
to the database while maintaining the same level of response time.

The default configuration values in DB2 are oriented to machines with relatively
small amounts of memory and which are dedicated as database servers.
Configuration parameters should be modified when using large databases,
unique query or transaction loads or a large number of users.

It should also be kept in mind that tuning a database may not solve complex
performance problems. Through tuning, an important benefit can be achieved.
But it will not eliminate problems created by poor physical design of a database
or its applications.

When looking at tuning a database the following points are a guideline for the
tasks that need to be accomplished:

• Create or define the testing environment.
• Define the measuring unit.

116 DB2 Performance and Tuning

• Create or define the workload to be measured.
• Submit the workload, and measure the results.
• Modify only one configuration parameter.
• Reestablish the original testing environment.
• Submit the workload, and measure the results.
• Compare both sets of results obtained.

Choosing which of the configuration parameters to modify, and the decision to
increase the parameter or decrease it, will depend upon the objectives set by
the database administrator. If the objective is to reduce the response time of
applications, the database administrator will have to identify where the database
manager currently spends its time and resources when obtaining the answer
sets requested by applications. For example, in general, the response time can
be lowered by:

• Reducing the number of I/O operations

• Avoiding ‘waits’

• Cutting down the CPU requirements of applications

• Sorting and joining properly

• Returning the answer set to the application in big blocks of data

6.3.1 I/O Operations
Performance can be increased by reading more pages in each I/O operation or
by reducing the number of I/O operations required to obtain the answer set. The
number of I/O operations will be affected by both the settings of configuration
parameters and by the database design or operation.

Database Configuration: The number of pages read in each read operation will
depend upon whether prefetchers are being used. Deciding on whether to
prefetch or not is determined by the database manager, as the database
administrator can only turn off sequential prefetching, through the seqdetect
configuration parameter), but cannot force prefetching. The number of pages
read when prefetching is performed is limited by the prefetchsize configuration
parameter of each tablespace or by the def_prefetch_sz database configuration
parameter.

Prefetcher activity is monitored through its related data elements (buffer pool
data or index reads and buffer pool asynchronous reads). Tools that display the
values of these data elements are the performance monitor, the snapshot
monitor (for the database or for a tablespace) and the event monitor (database
or tablespace also). The performance monitor not only shows the values of
these data elements but also calculates buffer pool hit ratios and can graphically
display results over a period of time.

The number of I/O operations can be reduced by proper configuration of caches
and pools so that pages already resident in memory areas remain there for
subsequent requests. Data pages read stay in the buffer pool, table descriptors
reside in the catalog cache, and package-related information resides in the
package cache. These three memory areas are configured through the buffpage,
catalogcache_sz and pckcachesz database configuration parameters.

A hit ratio for these three memory areas is provided by the performance
monitor, as well as values for their related data elements. Values for these data

Chapter 6. Tasks and Methodology 117

elements are also provided through a snapshot monitor for the database or
through an event monitor for the database.

Database Design: Indexes may be chosen by the optimizer to process queries.
Access to data through indexes may improve the response time by a huge
factor. It is possible to use the explain utility to see if data is being accessed
through indexes. Also, by keeping statistics updated, using the runstats utility
will allow the optimizer to choose the best access plan for applications.

Clustering data by the most accessed index can greatly reduce the number of
I/O operations required to retrieve answer sets. With this in mind, you should
consider reorganizing tables frequently if the data is dynamic.

Using the reorgchk utility, you are able to determine when to reorganize tables.
If you want to reorganize a table based on an index, the reorg utility can be
used.

Pages can be read in parallel from different physical drives. This will depend on
the physical design of the database. Read operations can be executed in
parallel if the following conditions are met:

• Prefetching is being performed.

• The tablespace containing the table being accessed is distributed through
several containers.

• Containers are placed in different disk drives.

• The number of I/O servers used by the database is more than one. The
number of I/O servers is configured through the num_ioservers parameter.

By default, write operations to log files will be performed each time a transaction
is committed. Write operations to log files can be reduced by grouping commits
together. This will reduce the number of writes, thus improving the performance
of the database. But it will penalize the response time of small transactions, as
they will have to wait for other transactions to commit their work. If there are
not enough transactions ready to commit their work, the database manager will
commit transactions every second. The number of transactions that can be
grouped together is set by the mincommit configuration parameter.

The number of write operations is also higher if there is not enough space in the
log buffer. If a unit of work fills the log buffer, data will be written to the log files.
In order to reduce the number of unnecessary writes, the logbufsz configuration
parameter should be set to fit the log space requirements for the different units
of work being performed on the databases.

The amount of log space required by a unit of work can be monitored using the
performance monitor or the snapshot monitor for applications, or by creating an
event for the transaction that is to be measured.

I/O cleaners are triggered when the number of free pages in the buffer pool
exceeds their defined threshold. When triggered, they build a list of modified
pages and then write these pages to disk. The threshold value is set by the
maxchngpgs configuration parameter. The number of processes that will perform
this task is set by the num_iocleaners configuration parameter. To minimize I/O
activity, you can increase the size of the buffer pool or increase the threshold
that triggers the I/O cleaners. To write pages faster, set a proper number of
cleaners. As a guideline, you should have as many page cleaners as there are

118 DB2 Performance and Tuning

storage devices. Notice that setting maxchngpgs to a very high value may force
applications to wait for free pages in the buffer pool, and so you should monitor
the database carefully after any such changes.

There are data elements that monitor the number of times I/O cleaners are
triggered. For example, you can monitor elements such as the buffer pool
threshold cleaners triggered, which counts the number of times that I/O cleaners
have been triggered because the threshold of “dirty pages” has been reached.
This data element is provided by the performance monitor and by the snapshot
monitor tools.

6.3.2 Waits
A way to reduce the response time of applications is to avoid having applications
wait. Applications will wait for the following:

• I/O operations.

Applications will wait for synchronous I/O operations. Many synchronous
reads can be substituted by asynchronous reads performed by prefetchers.

Synchronous and asynchronous reads can be monitored though the
performance monitor, the snapshot monitor or the event monitor.

• Free pages in the buffer pool.

If there are no free pages in the buffer pool, the agent serving the application
will have to “clean” pages on its own. I/O cleaners assure that agents will
find free pages in the buffer pool.

There is not a data element that will keep track of the free pages in the
buffer pool. An undersized buffer pool is easily detected by the number of
times I/O cleaners are triggered. This number can be monitored through the
performance, snapshot or event monitors.

• Locks.

The agent serving an application will have to wait if the tables or rows
required are locked by other agents. Waiting on locks depends on the level
of isolation used by applications. Waiting time can be severely affected by
lock escalations. To avoid lock escalation, set proper values to the locklist
(memory area for locks) and maxlocks (max percentage of the lock list that
can be held by an agent) configuration parameters. Notice that lock waits or
lock escalations can be minimized, but usually cannot be entirely eliminated
in concurrent systems that provide data integrity.

Again, the performance, snapshot or event monitors can be used to monitor
the locking that occurs within the database or application.

• Prepare and bind.

Dynamic SQL statements have to be precompiled and bound unless they are
already found in the package cache of the agent from a previous execution.
The time expended in the prepare and bind is heavily influenced by the level
of optimization used. The objective is to find the balance between the level
of optimization and the execution time. Query optimization levels for a
package can be displayed using the db2bfd, db2exfmt, db2expln or Visual
eExplain utilities.

• An agent.

When an application connects to a database, the database manager will
create an agent (a process or a thread) to attend to its database requests.

Chapter 6. Tasks and Methodology 119

To avoid the having to wait until the agent is created, a number of idle
agents may exist. The number of idle agents that a database may have is
determined by the max_idleagents configuration parameter.

• For the first connection.

When the first application connects to a database, it will have to wait for the
database global memory area to be allocated. This can be avoided through
the use of the command db2 activate database.

6.3.3 CPU Requirements
The performance of applications will improve if the number of CPU cycles
required to retrieve the answer set is diminished. This can be achieved by using
the optimizer. The optimizer can rewrite queries and determine the access plan
for the most cost-effective execution of SQL statements. The amount of time
spent by the optimizer and the type of optimization algorithm is determined by
the optimization level. Notice that the higher the level of optimization, the better
the execution time that should be achieved. But also, higher optimization levels
imply that the optimizer will take more time to perform its tasks, which can
impact the performance of dynamic SQL statements.

The access plan is not only influenced by the level of optimization. The
optimizer uses the catalog statistics when choosing an access plan. Statistics
should be updated, via the runstats utility, when the amount of data stored in the
tables changes considerably.

Isolation levels and query optimization levels for a package can be displayed
using several of the tools available.

6.3.4 Sorts and Joins
Sorts and joins may have a big impact on application performance. When
creating indexes, you should consider defining them on the columns that will be
used in the join predicate. Often, sorting can be avoided, if well-clustered
indexes are used. However, even if indexes exist, a sort may occur if the
optimizer determines that it is less expensive than using indexes to retrieve the
answer set. The explain facilities (Visual Explain, db2expln) show the number of
sorts required to execute an SQL statement.

When dealing with sorts, piped sorts have a performance advantage. Piped
sorts rejections can be monitored, as well as sort overflows or post threshold
sorts. These elements monitor the size of the sort heap and the limit imposed
by the sort threshold. Performance and snapshot monitors can be used to
display the value of these elements. Sort overflows can also be shown by
creating an event monitor for the statement.

6.3.5 Block I/O
When an application retrieves a large answer set during a read-only operation,
application performance will improve if data is sent from the server to the client
in big blocks. In non-blocking operations, for each fetch request from the client,
one row is returned by the server. When blocking is used, a set of rows will be
returned by the server for each client fetch request.

The size of the memory areas used for blocking cursors is configured through
the aplheapsz (for local clients) and the rqrioblk (for remote clients) configuration
parameters.

120 DB2 Performance and Tuning

6.4 Solving Performance-Related Problems
When an application is expected to have a better response time than is being
obtained, the process of diagnosing the problem starts. If the workload on a
system increases, the throughput of the system may be maintained, but
individual application response time may be degraded.

6.4.1 Describing the Cause
As in any other problem-determination technique, the first step requires the
database administrator to be able to reproduce or identify the problem. Some
symptoms may be sporadic; others may be permanent.

After the problem is reproduced or identified, it will fall into one of these two
groups:

 1. Problems affecting all applications

Problems that affect all applications usually appear when changes are made
to data loads, the number of users, the operating system, or the database
configuration parameters. The cause of these types of problems is usually
found in the following areas:

• Configuration parameters (sorts, buffer pool, logs, lock list). Sometimes,
this is not caused by a modification in the parameter but by the
environment itself. Bigger tables that require a larger sort heap or the
updating of more rows in a table may require a larger log buffer. Also,
more users exhausting the lock list and provoking concurrence problems
can cause problems that affect all database applications.

• Operating system problems, such as I/O contention or excessive paging.

• Network problems, if the clients or applications are remote.

• Data access. Access plans may be obsolete, statistics may not have
been updated or packages may not be rebound.

 2. Problems affecting one application or a group of applications

Problems that affect a single application or a group of applications can be
furtherly subdivided into two categories:

• Applications that have had a good performance history in a
development/testing environment but do not perform as expected
working against the production database/databases. Working against
low volumes of data may hide problems. Some of the non-detected
problems may be those associated with casting, lack of indexes, joins,
sorts, access plans, isolation levels or size of the answer set.

• Applications whose behavior is erratic. These applications may usually
have good response times. But under certain conditions, their response
times are very degraded. These applications may have
concurrence-related problems: deadlocks, waits, etc.

6.4.2 Database Configuration Problems
Many of the database configuration problems are detected through SQLCODEs
or SQLSTATEs that are returned to applications. If the error handler routines are
well written, they should present the error to the end user. These errors should
lead to the cause of the problem and will facilitate the problem-determination
process.

Chapter 6. Tasks and Methodology 121

When a database configuration problem is suspected, but there is no certainty
about the conflicting parameter or parameters, the database should be
monitored. This monitoring can be achieved using the performance monitor, the
snapshot monitor, the event monitor or a combination of these. When planning
to monitor the database environment, you need to choose a significative period
of time for monitoring to take place; such as a 60-minute interval during peak
hours. Take time to examine the output collected from the monitoring tools, and
check for data elements that can point to specific configuration problems. These
data elements can be high-water marks, overflows or rejections.

Define a method for resolving problems, and stick to it. The following points can
be used a guidelines when establishing a problem-determination method:

• Choose the monitoring tool.
• Define the period of time and environment in which the database will be

monitored.
• Start monitoring the database
• Obtain the results of the monitoring tool.
• Based on the results of the monitored data elements, select the parameter to

be modified. Modify only the selected configuration parameter. Remember
to restart the database.

• Reestablish the original monitoring environment, if possible.
• Monitor again, obtaining the results of the data elements with the new value

of the configuration parameter.
• Compare the results obtained.
• If results are not positive, reestablish the configuration parameter to its old

value.

When a database is monitored, a large set of values for data elements may be
collected. Some values may point directly to the cause of a problem, but that is
not always the case. Table 5 on page 123 shows some of the data elements
that can be collected, their related configuration parameters and the problems
caused by incorrect configuration values. The table is only an example and is
not intended as a complete listing for problem determination. Many of the data
elements collected will relate directly to configuration parameters. When using
the performance monitor, is it possible through the online help to identify which
configuration parameter relates to the data elements.

122 DB2 Performance and Tuning

Table 5. Data Elements and Configuration Problems

The best way to evaluate if there are “too many” overflows, timeouts, or waits is
to compare results to previous results or a similar environment. When possible,
results should be compared to those obtained when the database did not have a
performance problem.

Concurrence problems occur only when more than one application is accessing
the database. They may point to an application problem related to the isolation
levels being used. They also may point to an insufficient size of the lock list
memory area. Notice that a snapshot monitor for locks may be taken. This can
provide valuable information to determine the cause of problem.

Data elements can be grouped to obtain ratios. Ratios are presented by the
performance monitor or can be calculated by the database administrator. The
DB2 Database System Monitor Guide and Reference - for common servers
(S20H-4871) contains a description of all the data elements for which information
can be collected and how to calculate ratios using the different elements. An
example of these ratios and their relationship to configuration parameters is
shown in Table 6.

Ratio Configuration Parameters Probable Cause

Buffer pool hit ratio buffpage If too low, prefetchers not
working, buffer pool too
small

Buffer pool index hit ratio buffpage If too low, prefetchers not
working, buffer pool too
small

Catalog cache hit ratio catalogcache_sz If too low, catalog cache
too small

Chapter 6. Tasks and Methodology 123

Table 6. Ratios and Configuration Problems

Ratio Configuration Parameters Probable Cause

Percentage of rollbacks
due to deadlocks

If significant, and the
number of rollbacks is
high, concurrence
problem

Percentage of sorts that
overf lows

sortheap If significant, sort heap
too small

6.4.3 Data Access Problems
Data access is the most probable cause of performance problems that can affect
all applications. To avoid these problems, the following steps can be taken:

• The database administrator should reorganize tables periodically.

• The database administrator should keep the statistics updated and should
periodically bind/rebind applications.

To check if reorganizations are required, DB2 provides the reorgchk utility.
When a performance problem is suspected, and data access is suspected to be
the cause, the database tables should be checked. If reorganizations show a
low clustering ratio for the clustering index of a table, then that table should be
reorganized. If clustered indexes are not being used, a big performance gain
could be obtained by reorganizing tables according to the most accessed index.

Operating system tools indicating I/O contention may point to problems with the
physical design of the database, such as placement of containers across
physical drives, or containers allocated to tablespaces.

6.4.4 Application Problems
There are two basic procedures to use when determining an application
problem. These are:

• Explaining the statement

This can be done through Visual Explain or any of the explain tools. The
access plan will show the work that the database manager needs to perform
to retrieve the answer set. This should be compared to the access plan
expected by the database administrator.

The access plan provides information not only about the work that the
database manager has to perform, but how the work will be done. It will
clarify if data is being accessed through indexes or not, and it will provide
information about the order of all other operators/operations (index scans,
table scans, sorts, merge joins, nested loop joins, inserts, temporary table
creations, fetches).

If not satisfied with the access plan being shown, the database administrator
may obtain different access plans for different levels of optimization without
needing to execute the statement.

For dynamic SQL statements, different levels of optimization will deliver
different access plans, but they also will show different times needed to
prepare the statement. The balance of the time required to prepare the
statement and the time required to execute it will yield to a better
performance of the statement.

124 DB2 Performance and Tuning

• Monitor the application/database

The application can be monitored through the performance monitor, taking a
snapshot of the application or defining an event monitor for the statements
or the transaction. For dynamic SQL statements, the db2batch tool also will
provide snapshots (for the application, database and instance, if the
appropriate level of detail is selected) and will measure the response time of
the statement/statements. Application monitoring will collect values for data
elements that can point to performance problems.

Data elements whose values are collected when monitoring the application
include: deadlocks; lock escalations; lock waits and lock wait time; index and
data reads and writes; number of sorts and sort time; and the package cache
hit ratio.

Chapter 6. Tasks and Methodology 125

126 DB2 Performance and Tuning

Appendix A. DATABASE 2 Sizing Worksheets

This appendix includes some guideline information designed to help you size
your disk and memory requirements. More detailed information on the sizing of
your environment can be found in the planning guides for the platforms you are
using.

A.1 DB2 for AIX
The following tables are recommended guidelines for both disk and memory.
These may be used as a starting point to help you determine your overall sizing
requirements for clients or servers on the AIX platform.

Table 7. Sizing DB2 for AIX Single-User

Table 8. Sizing DB2 for AIX Server

Table 9. Sizing DATABASE 2 Client Application Enabler for AIX (Remote Client)

 Copyright IBM Corp. 1996 127

Table 10. Sizing DATABASE 2 Software Developer’s Kit for AIX

Table 11. Sizing DDCS for AIX Multi-User Gateway

A.2 DB2 for OS/2
The following tables are recommended guidelines for both disk and memory.
These may be used as a starting point to help you determine your overall sizing
requirements for clients or servers on the OS/2 platform.

Table 12. Sizing DB2 for OS/2 Single-User

128 DB2 Performance and Tuning

Table 13. Sizing DB2 for OS/2 Server

Table 14. Sizing DATABASE 2 Client Application Enabler for OS/2 (Remote Client)

Table 15. Sizing DATABASE 2 Software Developer’s Kit for OS/2

Table 16. Sizing DDCS for OS/2 Single-User Gateway

Appendix A. DATABASE 2 Sizing Worksheets 129

Table 17. Sizing DDCS for OS/2 Multi-User Gateway

A.3 DB2 for NT
The following tables are recommended guidelines for both disk and memory.
These may be used as a starting point to help you determine your overall sizing
requirements for clients or servers on the Windows NT platform.

Table 18. Sizing DB2 for Windows NT Single-User

Table 19. Sizing DB2 for Windows NT Server

Table 20. Sizing DATABASE 2 Client Application Enabler for Windows NT

130 DB2 Performance and Tuning

Table 21. Sizing DATABASE 2 Software Developer’s Kit for Windows NT

Table 22. DDCS For Windows NT Single-User

Table 23. DDCS For Windows NT Multi-User Gateway

Table Notes:

a Additional memory for some database configuration parameters may
be required.

b Assumes one connection to local database, on one instance.

c This is for default database definition. Additional space may be
required for table definitions or additional log files.

d Assumes one remote connection to local database, on one instance.

e For memory and disk requirements for other platforms, refer to the
documentation supplied with the platform-specific product.

f Additional temporary disk space is required during installation. Refer
to the platform’s planning guide for details.

g This is the approximate size for English manuals. Other languages
may vary.

h This is in addition to the application memory requirement.

Appendix A. DATABASE 2 Sizing Worksheets 131

132 DB2 Performance and Tuning

Appendix B. Special Notices

This publication is intended to help the system or database administrator to
perform detailed database performance analysis and understand how to tune the
database environment to gain optimal performance. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by DB2 for Common Server. See the PUBLICATIONS section
of the IBM Programming Announcement for DB2 for Common Server Version
2.1.1 for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

 Copyright IBM Corp. 1996 133

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

AIX DATABASE 2
DB2 DRDA
IBM OS/2

C + + American Telephone and Telegraph
Company, Inc.

HP/UX Hewlett-Packard Company
Intel Intel Corporation
Notes Lotus Development Corporation
Solaris Sun Microsystems, Inc.
X/Open X/Open Company Limited

134 DB2 Performance and Tuning

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see Appendix D, “How To
Get ITSO Redbooks” on page 137.

• DB2 Version 2 Planning Guide for Database Administrators, SG24-2523

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

C.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

C.3 Other Publications
These publications are also relevent as further information sources.

• DB2 Information and Concepts Guide - for common servers Version 2,
S20H-4664

• DB2 Administration Guide - for common servers Version 2, S20H-4580

• DB2 Database System Monitor Guide and Reference - for common servers
Version 2, S20H-4871

• DB2 Command Reference - for common servers Version 2, S20H-4645

• DB2 SQL Reference - for common servers Version 2, S20H-4665

• DB2 Application Programming Guide - for common servers Version 2,
S20H-4643

• DB2 Messages Reference - for common servers Version 2, S20H-4808

• DB2 Problem Determination Guide - for common servers Version 2, S20H-4779

 Copyright IBM Corp. 1996 135

136 DB2 Performance and Tuning

Appendix D. How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

D.1 How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1996 137

D.2 How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

138 DB2 Performance and Tuning

D.3 IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

Appendix D. How To Get ITSO Redbooks 139

140 DB2 Performance and Tuning

List of Abbreviations

APA all points addressable

DRDA Distributed Relational Database
Architecture

IBM International Business Machines
Corporation

ITSO International Technical Support
Organization

LOB large object

MIB management information base

PROFS Professional Office System

RDBMS Relational Database Management System

RFC request for comments

SNMP Simple Network Managment Protocol

SQL Structured Query Language

UOW unit of work

 Copyright IBM Corp. 1996 141

142 DB2 Performance and Tuning

Index

A
abbreviations 141
Access Plan 93, 99
acronyms 141
Actions 109
Act ive Sorts 37
agent 119
Agent Private Memory 11
agent process 11
Agent Stack 34, 40
agent_stack_sz 40
agentpri 39, 108
aplheapsz 120
applheapsz 34, 41
application activity 45
Application Heap 34
applTable 110
Archival logging 32
asynchronous I/O 14
avg_appls 44

B
Backup 31
Basic Monitor Group 48
Benchmark 113
bibliography 135
bind 42, 119
Blocking 42, 43
Buffer Pool 12
Buffer Pool Hit ratio 14
Buffer Pool Monitor 49
buffer pool_hit ratio 14
buffer pools 11
buffpage 13, 44, 117

C
Caching 49
CARD 16, 17
Cardinality 97
catalogcache_sz 26, 27, 117
Circular logging 32
CLIENT 7
Client I/O Block 34, 39, 40
Cluster Ratio 18
clustering 124
Commands

alter tablespace 107
db2batch 104, 113
db2bfd 106, 119
db2exfmt 87, 100, 101, 119
db2expln 85, 119
db2gov 107

Commands (continued)
db2look 107, 114
db2snmp 110
db2vexp 91
DROP EVENT MONITOR 67
dynexpln 87
reorgchk 118, 124
runstats 95
SET EVENT MONITOR 67

Commit Statements Attempted 33
Communication 48
configuration 45
configuration parameters 5
connection

network 6
remote 6

containers 124
counters 11, 50
CPU 1, 2, 120
CPU usage 49
cursor 41
Cursor Stability 42
cursors 48

D
Data Collection 46
data elements 11
Database Activity 48
Database connections 48
database design 2
Database Global Memory 11
Database Heap 12
db2batch 18
db2cshrc 5
db2eva 67
db2evmon 67
DB2INSTANCE 5
db2profile 5
dbheap 27, 32
deadlocks 46, 48, 67, 121
def_prefetch_sz 117
diagnostic level 7
dirty pages 119
Disk 1, 3
dlchktime 30
dos_rqrioblk 40, 41
DRDA Heap 34, 40
drda_heap_sz 40

E
Environment 114
event monitor data 47

 Copyright IBM Corp. 1996 143

Events
Connections 64
Database 64
Deadlocks 64
Statements 64
Tables 64
Tablespaces 64
Transactions 64

explain 118
Explain Table Formulator 100
Explain Tables 88
EXPLAIN_ARGUMENT 88
EXPLAIN_INSTANCE 88
EXPLAIN_OBJECT 88
EXPLAIN_OPERATOR 88
EXPLAIN_PREDICATE 88
EXPLAIN_STATEMENT 88
EXPLAIN_STREAM 88
Explainable statement 91
Explained statement 91

F
F1, F2, F3 16
F4, F5, F6 17
Filters 108
FP 16
fragmented table 61
Free pages 119

G
gauges 11
GET SNAPSHOT 51, 52
Global Memory 12
Govenor

Configuration File 108
Governor Tool 107

H
HACMP 3
heaps 11

I
I/O Operations 117
I/O servers 13
idle agents 11
Index Pool Hit Ratio 14
index pool_hit ratio 13
Index Scan 85
indexes 5, 120
Input streams 103
instance 5
Instance Owner 5
ISIZE 17
isolation 98

Isolation level 42, 85, 102

J
Joins 84, 120

K
KEYS 17

L
LEAF 17
Limits 109
load 15
Lock intents 86, 97
Lock List 12
Lock Monitor 49
Locking 1, 45
locklist 30, 44, 119
Locks 48, 62, 119
locktimeout 30
log space 118
logbufsz 32, 33, 118
logfilsiz 22, 33, 34
logfilsz 49
Logging 49
Logical Reads 14
logprimary 22, 33, 34, 49
logretain 49
logsecond 49
LVLS 17

M
max_idleagents 39, 108, 120
maxagents 38
maxappls 38
maxcagents 38
maxchngpgs 22, 23, 118
maxlocks 30, 44, 54, 119
Memory 1, 3
methodologies 1
Methodology 113
mincommit 33, 118
Monitor

Connections 64
Database 65
Deadlock 64
Statement 64
Table 65
Tablespace 65
Transaction 64

Monitor Groups 47
Basic 47
Buffer Pool 47
Lock 47
Sort 47
Table 47

144 DB2 Performance and Tuning

Monitor Groups (continued)
Unit of Work 47
Work SQL 47

Monitor Leveks
Tablespace 52

Monitor Levels
Application 52
Database 52
Database Manager 52
Lock 52
Table 52

monitor switches 51
Monitoring Performance 115

N
NP 16
num_iocleaners 23
num_ioservers 118
numdb 12

O
Operand nodes 93, 95
Operator nodes 93, 96
Optimization class 42, 43
Optimizer 98
Output streams 103
OV 16
overf lows 60, 116

P
Package Cache 34
Package Creator 92
Package Name 92
Packages5 101
page cleaners 13
pckcachesz 34, 41, 117
perf_detail 105
Performance Monitor 45, 51
Physical Reads 14
piped sorts 41
Prefetch 85, 97
prefetchers 14, 19, 23
prefetchsize 117
Prepare 119
Private Memory 34

Q
Query 34
Query Heap 39
QUERY OPTIMIZATION 43
query_heap_sz 39
QUERYNO 102
QUERYTAG 102

R
rdbmsCompliances 111
rdbmsDbInfoTable 110
rdbmsDbLimitedResourceTable 110
rdbmsDbParamTable 110
rdbmsDbTable 110
rdbmsGroups 111
rdbmsOutOfSpace 111
rdbmsRelTable 111
rdbmsSrvInfoEntry 111
rdbmsSrvInfoTable 110
rdbmsSrvLimitedResourceTable 111
rdbmsSrvParam 111
rdbmsStateChange 111
rdbmsWellKnownLimitedResources 111
Read Stabil ity 42
reorg 15, 16, 17, 50
reorgchk 15
Repeatable Read 42
RESET MONITOR 51
Restore 32
Rollback Statements Attempted 33
Row Identifier 84
rows_fetch 105
rows_out 105
rqrioblk 40, 41, 120
runstats 15, 40

S
Scan Direction 85
Scan source 97
Schema 1
seqdetect 44, 117
Server 2, 7
sheapthres 35, 36, 41, 54
Snapshot 61

output 56
snapshot data 47
Snapshot monitor 47, 51
snapshots 116
SNMP 110
softmax 22
Software 4
Sort Heap 34, 35
Sort Monitor 49
Sort Overflows 37
Sort work 48
sortheap 35, 36, 41, 44, 54
Sorts 120
SQLCA 39
SQLCODE 121
SQLDA 39
sqlmon() 53
sqlmonsz() 53
SQLSTATE 121
stacks 11

Index 145

stat_heap_sz 40
statement activi ty 48
Statement Heap 34, 40
Statement Monitor 49
statistics 107
Statistics Heap 34, 40
stmtheap 40, 44
SYSADM 47, 64
SYSCAT

EVENTMONITORS 66
EVENTS 66
TABLES 84

SYSCATSPACE 8
SYSCTRL 47, 64
SYSIBM

SYSCOLUMNS 85
SYSMAINT 47, 64
SYSSTAT

COLDIST 92
COLUMNS 92
FUNCTIONS 92
INDEXES 92
STATS 92
TABLES 92

System Administration Group 5
System Control Group 5
System Maintenance Group 5

T
Table activity 48
Table lock 86
Table Monitor 50
tablespaces 5, 7

Long 8
Regular 8
System Catalog 8
Temporary 8
User 8

TEMPSPACE1 8
thrashing 3
threshold 48
Thresholds 108
timerons 94
timestamps 11
tr iggers 107
TSIZE 16
Tuning 116

U
UDF heap 40
UDF Memory 34
udf_mem_sz 40
UNAMBIG 43
Uncommitted Read 42
Unit of Work Monitor 50
UPDATE MONITOR SWITCHES 51

USERSPACE1 8
Uti l i ty Heap 13

V
Visual Explain 88, 91, 98

W
Waits 119
water marks 11
workload 113

Y
Yardstick 113

146 DB2 Performance and Tuning

IBML

Printed in U.S.A.

SG24-4814-00

