
SG24-4714-00

Administering IBM DCE and DFS Version 2.1
for AIX (and OS/2 Clients)

August 1996

International Technical Support Organization

Administering IBM DCE and DFS Version 2.1
for AIX (and OS/2 Clients)

August 1996

SG24-4714-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 305.

First Edition (August 1996)

This edition applies to the IBM DCE Version 2.1 Family for AIX Version 4.1 and the IBM DCE 2.1 for OS/2 Warp
Beta Program.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Preface . xi
How This Document is Organized . xii
The Team That Wrote This Redbook . xii
Comments Welcome . xiv

Chapter 1. Introduction . 1
1.1 Overview of Client/Server Technologies . 2

1.1.1 Two-Tier Client/Server Model . 3
1.1.2 Three-Tier Client/Server Model . 4

1.2 DCE Overview . 5
1.2.1 OSF DCE Architecture . 5
1.2.2 DCE Threads . 6
1.2.3 DCE Remote Procedure Call . 7
1.2.4 DCE Security Service . 7
1.2.5 DCE Directory Service . 10
1.2.6 DCE Distributed Time Service (DTS) . 11
1.2.7 Distributed File System . 11
1.2.8 Mutual Dependencies between DCE Components 13
1.2.9 DCE Management Services . 13
1.2.10 Structure of a Distributed Computing Environment 15

1.3 IBM DCE Product Information . 16
1.3.1 DCE 1.3 Product Family for AIX 3.2.5 . 16
1.3.2 DCE 2.1 Product Family for AIX 4.1.4 . 17
1.3.3 Directory and Security Server (DSS) for AIX, Version 4 17
1.3.4 DCE for OS/2 and Windows . 18
1.3.5 Directory and Security Server for OS/2 Warp 18

Chapter 2. Planning DCE Cells . 19
2.1 General Considerations for DCE Cell Design 19
2.2 Technical Implications Imposed by the Core Components 21

2.2.1 Replication Capabilities . 21
2.2.2 Server Selection Mechanisms . 23
2.2.3 Login Integration . 24

2.3 Sizing Guideline . 24
2.3.1 Static Sizing . 24
2.3.2 Dynamic Sizing . 25

2.4 Planning the User Namespace . 25
2.5 Planning the CDS Namespace . 26
2.6 Planning for Migration . 27
2.7 Conclusions and Planning Tips . 28

2.7.1 One Cell or Multiple Cells? . 28
2.7.2 Tips for Service Layout and Application Design 29

2.8 Planning Summary . 33

Chapter 3. Implementing DCE Cells . 37
3.1 Overview and Cell Layout . 37
3.2 Preparing for DCE Configuration on AIX . 38

3.2.1 Preparing Disk Space . 38
3.2.2 Checking Network Name Resolution . 39

 Copyright IBM Corp. 1996 iii

3.2.3 Checking Network Routing . 40
3.2.4 Checking the Order of Network Interfaces 41
3.2.5 Synchronizing the System Clocks . 42
3.2.6 Language Environment Variable . 42

3.3 Installing the DCE Code on AIX . 42
3.4 Configuring the Initial DCE Servers and Clients on AIX 43

3.4.1 Configuring the Initial Security Server on AIX 44
3.4.2 Configuring the Initial CDS Server on AIX 45
3.4.3 Configuring the DTS Server . 46
3.4.4 Configuring Multiple Servers at the Same Time 47
3.4.5 Configuring an AIX DCE Client . 47

3.5 Installing and Preparing for DCE Configuration on OS/2 Warp 53
3.5.1 Installing the DCE Code . 53
3.5.2 Verifying the MPTS Installation and Customization 53
3.5.3 Checking Network Name Resolution . 55
3.5.4 Checking Network Routing . 55
3.5.5 Checking the Network Interfaces . 56
3.5.6 Synchronizing the System Clocks . 56

3.6 Configuring DCE Clients on OS/2 Warp . 56
3.6.1 DCE Client Configuration Using the GUI 56
3.6.2 DCE Client Configuration Using the Command Line Interface 64

3.7 Configuring Core Server Replica on AIX . 65
3.7.1 Replicating a CDS Server . 65
3.7.2 Replicating the Security Server . 67

3.8 Configuring Server Replica on OS/2 Warp 69
3.8.1 Replicating the CDS Server on OS/2 WARP 69

3.9 Summary . 70
3.9.1 Inventory on the AIX Platform . 70
3.9.2 Inventory on the OS/2 Warp Platform 70
3.9.3 Cell Configuration and Status Information 71
3.9.4 Summary of Daemons and Processes 73

Chapter 4. Implementing DFS . 75
4.1 Overview and Cell Layout . 75
4.2 Configuring a DFS Server . 76

4.2.1 Configuring a System Control Machine 77
4.2.2 Configuring a Fileset Location Database Machine 78
4.2.3 Configuring the DFS File Server Machine 80
4.2.4 Configuring a DFS Root Fileset . 81
4.2.5 Configuring a DFS Client . 82
4.2.6 Testing Access to the DFS Root Fileset 83
4.2.7 Fixing Access Permissions (ACLs) . 84
4.2.8 Adding Another Fileset . 86

4.3 A DFS Client on OS/2 Warp . 88
4.3.1 Preparing OS/2 Warp for DFS . 88
4.3.2 Starting Up the DFS Client . 88

4.4 Replicating Filesets on AIX . 89
4.4.1 Configuring and Starting a Replication Server on ev1 90
4.4.2 Replicating the Root Directory on ev1 90
4.4.3 Configuring File and Replication Servers on ev4 92
4.4.4 Setting Up Replication for Another Fileset 94
4.4.5 Double-Check Your Work . 98

4.5 Defining Home Directories in DFS . 98
4.5.1 Defining the User in DCE . 99
4.5.2 Tasks of the Local Administrator . 101

iv Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

4.5.3 User’s Tasks . 101
4.6 Summary . 103

Chapter 5. Implementing Various LAN/WAN Scenarios 105
5.1 Local (LAN-type) Cells . 105

5.1.1 Scenario 2: Master Servers on One Machine and Replicas on
Another . 106

5.1.2 Scenario 3: Master Servers and Replicas on Different Machines . . 112
5.2 LAN/WAN Cells . 117

5.2.1 Scenario 4: A Small Branch Connected via WAN (X.25/SLIP) 118
5.2.2 Scenario 5: A Large Branch Connected via WAN (X.25/SLIP) 126
5.2.3 Scenario 6: A Branch Connected with Two Links 130
5.2.4 Scenario 7: Intercell Communication 132

Chapter 6. Administering DCE Cells . 139
6.1 Migrating a DCE 1.x Cell to DCE 2.1 . 140

6.1.1 Compatibility . 140
6.1.2 One-Shot Migration . 141
6.1.3 Migration Scenario . 141
6.1.4 Migrating the Security Server . 142
6.1.5 Migrating the CDS Server . 144

6.2 Changing Cell Configurations . 145
6.2.1 Splitting Cells . 145
6.2.2 Joining Cells . 147
6.2.3 Changing IP Addresses . 148
6.2.4 Moving Services Within the Cell . 157

6.3 Backup/Restore and Other Housekeeping Tasks 166
6.3.1 Full System Backup . 167
6.3.2 Backing Up DCE-Core-Services-Related Information 167
6.3.3 Backing Up DFS-Servers-Related Information 173
6.3.4 Backing Up and Restoring DFS Data 177
6.3.5 Controlling Disk Space: System-Created Files 178
6.3.6 Managing Caches on Client Machines 181

6.4 Administering Users and Groups . 186
6.4.1 Managing Users With the rgy_edit Command on AIX and OS/2 . . . 186
6.4.2 Managing Users With the dcecp Command on AIX and OS/2 189
6.4.3 Operating System-Dependent Management Tools 191
6.4.4 Mass User-Management Tools on AIX 191
6.4.5 A Test with a Large Number of Users 203
6.4.6 Configuring Integrated Login . 206

6.5 Managing the cell_admin Account . 207
6.5.1 Restoring the Password for the Cell Administrator 207
6.5.2 Cell Administrator Accidentally Removed 208
6.5.3 Adding a New Cell Administrator . 211

6.6 Integrating an NFS/NIS Environment . 212
6.6.1 Migrating from NIS Domains to DCE Cells 213
6.6.2 Migrating Users from NIS to DCE . 215
6.6.3 Migrating NFS Files to DCE/DFS . 218
6.6.4 Configuring DFS Access from NFS Clients 222

6.7 Managing Remote Servers . 226
6.7.1 DCE RCP Applications: Functional Overview 226
6.7.2 The DCE Host Daemon (dced) . 228
6.7.3 Checking Availability of Remote Services 229
6.7.4 Controlling Remote Core and Application Servers 232
6.7.5 Working with the Hostdata . 235

Contents v

6.7.6 Managing the Keytab . 236
6.8 Running DCE Authenticated Batch Jobs 239

6.8.1 Running Batch Jobs Using start_batch 239

Chapter 7. Miscellaneous Tools and Technologies 241
7.1 DCE for AIX Release History . 241

7.1.1 AIX DCE 1.3 New Features Overview 241
7.1.2 IBM DCE 2.1 New Features Overview 246

7.2 DFS Replication . 252
7.2.1 Overview . 252
7.2.2 Why Fileset Replication? . 252
7.2.3 Which Files to Replicate? . 253
7.2.4 Prerequisites for Replication . 253
7.2.5 Mount Points . 255
7.2.6 DFS Clients . 257

7.3 NFS-to-DFS Authenticating Gateway . 257
7.3.1 Introduction . 257
7.3.2 Scope of Service . 258
7.3.3 Concept . 258
7.3.4 Administration Tasks for the System Administrator 260
7.3.5 Administration Tasks for the DFS User 262
7.3.6 Making DFS Access Available on the NFS Clients 264

7.4 Integrated Login AIX and DCE . 265
7.4.1 AIX 4.1+ Authentication Parameters 265
7.4.2 User Synchronization Between AIX 4.1+ and DCE 267
7.4.3 Configuring a System for Integrated Security 270
7.4.4 Managing Passwords . 271

7.5 Mass User/Group (and ACL) Management 271
7.5.1 User Identifications, Groups, and Access Rights 272
7.5.2 Management-Tool Structure and Overview 273
7.5.3 Group Management . 283
7.5.4 Adding Users: add_users . 287
7.5.5 Enabling Users for DCE Login: rgy_enable_users 292
7.5.6 Enabling the Users Home Directory: dfs_enable_users 294
7.5.7 Enabling the ACLs in CDS and DFS: acl_enable_users 296
7.5.8 Suspending Users: susp_users . 298
7.5.9 Deleting Users: del_users . 298
7.5.10 Getting Information for Users from DCE: get_info_users 299
7.5.11 Getting Information for All Users from DCE: get_all_info 300

Appendix A. Installing the Tools . 303

Appendix B. Special Notices . 305

Appendix C. Related Publications . 307
C.1 International Technical Support Organization Publications 307
C.2 Other Publications . 307
C.3 DCE Information on the World Wide Web (WWW) 308

How To Get ITSO Redbooks . 309
How IBM Employees Can Get ITSO Redbooks 309
How Customers Can Get ITSO Redbooks . 310
IBM Redbook Order Form . 311

List of Abbreviations . 313

vi Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Index . 315

Contents vii

viii Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figures

 1. Options in a Distributed Environment . 1
 2. Client/Server Model . 2
 3. Example of C/S Application . 3
 4. Two-Tier Model . 4
 5. Three-Tier Model . 4
 6. DCE Architecture . 6
 7. Dependencies between the DCE Components 13
 8. DCE Cell . 15
 9. DCE Multicell Environment . 16
10. Example of a Cell Namespace . 27
11. Cell with DCE Components and Related Platforms 37
12. MPTS Configure Window . 54
13. DCE Menu Window . 56
14. Configuration Logo Window . 57
15. Select Configuration Path Window . 57
16. Specify Configuration Response File Name Window 58
17. Specify Setup Parameters Window . 58
18. Specify Protocols and Component Selection Option Window 59
19. Select Security Components Window . 59
20. Identify Security Server Window . 60
21. Select Directory Components Window . 60
22. Identify Directory Server Window . 61
23. Select DFS Components Window . 61
24. Select an Event Management Window . 61
25. Select DTS Component and Server Type Window 62
26. Select a Time Provider Window . 62
27. Specify Clock Synchronization Window . 63
28. Select Configuration Type Window . 63
29. Identify the Cell Administrator Window . 63
30. Run Configuration Window . 64
31. Display Configuration Progress Window 64
32. Tailored Path Window . 69
33. Configuration - Tailored Path Window . 70
34. Verify Component Configuration Selections Window 71
35. List of Processes and Daemons for DCE Machine Roles 73
36. DFS Implementation Within Scenario 1 . 75
37. Minimum Basic DFS Machine Roles . 77
38. Simple Fileset Splitup for AIX and OS/2 Warp 86
39. DFS Status After Replicating root.dfs . 91
40. DFS Status After Replicating warp001.ft . 96
41. List of Processes and Daemons for DFS Machine Roles 104
42. Scenario 2: One Master Server - One Replica Server 106
43. Scenario 3: DCE Servers on Different Machines 112
44. Scenario 4: A Small Branch Connected via 19,200 bps X.25 118
45. Scenario 5: A Large Branch Connected via X.25 126
46. Scenario 6: A Branch Connected with Two Links 130
47. Scenario 7: Intercell Communication . 133
48. Migration Scenario . 142
49. Extract of a CDS Namespace . 150
50. Workflow Description of the cleanif Procedure 151
51. Workflow Description to Change an IP Address 153

 Copyright IBM Corp. 1996 ix

52. Scenario with Coexistence of NFS Clients and DCE/DFS 222
53. Information Used to Identify and Access a Compatible Server 227
54. Objects Maintained by dced . 228
55. Availability Layers for DCE Applications 229
56. Remote Keytab Creation from EV5 to EV6 237
57. Encoding Services . 247
58. Generic Security Service API (GSS-API) 247
59. DCE Control Program . 248
60. Delegation . 249
61. Replicating from ev1 to ev4 . 254
62. DFS Hierarchy File System . 256
63. DFS/NFS Translator Architecture . 258
64. User-Management Workflow . 274
65. The Central Repository . 276
66. DCE User-State Diagram . 280
67. DCE Group-State Diagram . 284
68. The add_users Procedure . 288

x Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Preface

Setting up an initial DCE/DFS cell with all the required machine roles and with
users is fairly easy. However, if you want to do it right or if you want to
reconfigure (parts of) your cell, you need in-depth knowledge — and guidance.
This book is unique in its coverage of many of the planning and administration
aspects of OSF’s Distributed Computing Environment (DCE) and the Distributed
File System (DFS).

The book begins by presenting a high-level overview of DCE and IBM’s product
packaging on the AIX and OS/2 Warp platforms. Then, beginning with a
discussion of business requirements, guidance is provided on structuring the
DCE/DFS cell-component layout for optimum performance and availability.

It walks step-by-step through the installation and customization of DCE and DFS
services in both AIX and OS/2 Warp, putting particular emphasis also on the
replication of DCE/DFS servers and DFS filesets.

After these basic configuration instructions, the discussion continues with
different network topologies. Shortcut, step-by-step instructions for the
implementation of several LAN-only, LAN/WAN, and intercell scenarios are
provided, and special issues as well as performance and availability
considerations for each of these environments are discussed.

The major part of this book is dedicated to DCE/DFS administration tasks ranging
from day-to-day maintenance, such as backups and user management, to
challenging endeavors, such as changing IP addresses or moving servers
around. The following task-groups are covered in detail:

• Migration
• Splitting/joining cells, moving services, changing IP addresses
• Backup/restore
• Client cache and disk-space management
• Mass user administration and cell_admin account
• NIS/NFS integration and migration
• Managing remote services and servers
• Authenticated batch jobs

On the diskette that comes with this book are tools that support the
administrator in tasks such as changing IP addresses, moving or copying a
clearinghouse, refreshing client caches, and managing a large number of users.
These tools currently only run on an AIX platform, but can be used to manage
heterogeneous cells.

The first two chapters are intended for anyone who needs to understand the
basic DCE components and related planning issues. System administrators and
people involved in the marketing of DCE will gain insight as to what components
must be used in certain business environments. The rest of the document is
mainly intended for DCE administrators. It gives them guidance on how to lay
out and implement the DCE components for different network topologies and how
to perform many important administration routines.

This document is an update of the Using and Administering AIX DCE 1.3
(GG24-4348) redbook, which remains valid for AIX 3.2.5/DCE 1.3 environments.

 Copyright IBM Corp. 1996 xi

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Introduction” on page 1

This chapter describes distributed client/server environments in general. It
gives a short introduction on each DCE component, administration
commands, and packaging.

• Chapter 2, “Planning DCE Cells” on page 19

This chapter gives planners and administrators all the information they need
to lay out a cell with all its servers and clients based on customer and
business needs. It discusses technical feasibility and summarizes
performance and availability issues that affect the cell layout.

• Chapter 3, “Implementing DCE Cells” on page 37

This chapter walks step-by-step through the basic installation and
configuration of the DCE core services on the AIX and OS/2 Warp platforms.

• Chapter 4, “Implementing DFS” on page 75

This chapter covers the configuration of the Enhanced DFS environment.
After detailed basic configuration instructions, it emphasizes fileset
configuration and replication.

• Chapter 5, “Implementing Various LAN/WAN Scenarios” on page 105

This chapter provides step-by-step configuration instructions for scenarios
with different network topologies. It discusses laboratory experiences as
well as performance and availability issues for each scenario.

• Chapter 6, “Administering DCE Cells” on page 139

This chapter is organized in a task-oriented format. It describes certain
administration routines in step-by-step detail. The tasks range from
performing daily administration tasks to reconfiguring certain aspects of
entire cells. It also covers integration/migration from an NFS/NIS
environment as well as management of remote servers. System
administrators will find this chapter especially beneficial.

• Chapter 7, “Miscellaneous Tools and Technologies” on page 241

This chapter describes, as kind of a product history, the features that were
new in DCE 1.3 and the ones that are new in DCE 2.1. It also introduces a
framework of shell scripts to facilitate the entire user management of a cell.

The Team That Wrote This Redbook
Through the efforts of a team of specialists from around the world, this redbook
was written at the International Technical Support Organization, Austin Center.

Rolf Lendenmann is an advisory system engineer at the International Technical
Support Organization, Austin Center. He writes extensively on all areas of DCE.
Before joining the ITSO two and a half years ago, Rolf worked for nine years in
the AIX Technical Support department in Zurich, Switzerland as a product
specialist and consultant supporting all areas of AIX system management,
networking (SNA, TCP/IP), and middleware (DCE).

xii Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Brice Muang-Khot is a system engineer at the Field Support Center in Paris,
France. He provides DCE support (design, implementation, problem resolution)
to customers and IBM sales and technical representatives

Hanspeter Nagel is an advisory system engineer at the Banking Unit in Basel,
Switzerland. He has eight years of experience in the distributed client/server
field. His areas of expertise include middleware (DCE, CICS) and systems
management. He has written extensively on DCE Administration.

Egide van Aerschot is a consultant system engineer at IBM’s Banking Unit in
Brussels, Belgium. He joined IBM 29 years ago, during which he has worked
with customers for 26 years and taught classes at the International Education
Center in La Hulpe for three years. His current activities include supporting
installations of IMS, MQI/MOSeries, and DCE as well as designing and
prototyping applications under Common Language Environments (LE) written in
PL/I, ASM, and C using APPC and DCE with access to DLI, DB2, and MQI
resources.

Manabu Kurasawa is a system engineer at the Field Support Center in Tokyo,
Japan. He joined IBM 5 years ago. Working as an IT specialist, he has 4 years
of experience in distributed processing middleware on AIX (DCE, Encina, and
MQSeries).

Scott Vetter is an ITSO VM Area Specialist in the United States. He has 5 years
of experience in his current field. He has completed 12 years with IBM. His
areas of expertise include Open Edition functionality covering the POSIX, DCE,
and GUI components. He has written many redbooks that cover DCE, POSIX,
GUI, and core VM functionality. His latest redbook is the VM/ESA DCE Notebook.

Heinz Johner is an advisory system engineer from IBM Switzerland with several
years of field experience in large UNIX customer environments. His major work
areas in these projects were distributed-systems management and
implementation of DCE. He is currently a staff member at the ITSO Center in
Austin and is assuming the responsibilities for DCE on AIX and OS/2 that were
previously held by Rolf Lendenmann.

This document is an update of the document Using and Administering AIX DCE
1.3 (GG24-4348), which remains valid for AIX 3.2.5/DCE 1.3 environments. The
previous document was created by:

Rolf Lendenmann IBM ITSO Austin
Brice Muang-Khot IBM France
Hanspeter Nagel IBM Switzerland
Salvatore La Pietra IBM Germany
Jacques Dubuquoy IBM Belgium

We would like to offer our thanks to Marcus Brewer of the ITSO Austin and to the
IBM Austin DCE and DFS development teams, the DCE sales team, and the DCE
brand management team for their invaluable advice and assistance in the
reviewing of this document.

Preface xiii

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

xiv Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 1. Introduction

Distributed client/server (C/S) environments represent a way to quickly and
transparently deliver information to users from various different sources and
locations. C/S technology can help companies reduce cost and time as well as
improve quality and customer satisfaction. However, this technology must be
well understood before being deployed and should be supported from company
management down to system administrators and users. The C/S distributed
environment sets new dimensions for its design, architecture and management.
Even company policies should adapt to meet the challenge of C/S distributed
environments. Benefits and new implications must be carefully studied when
you design and architect new applications based on C/S technology.

Figure 1. Options in a Distributed Environment

When looking for right-sizing and re-engineering some of their existing
applications with distributed C/S technology, most customers have no idea how
much this transition phase will cost in terms of:

• New hardware equipment
• Software
• Time
• Resources
• Skills
• Administration
• Security

and how much C/S technology will change the way companies do business.

In the last few years technologies have evolved faster than businesses. What
appeared innovative turned out to be a waste of capital investment.
Nevertheless, most customers agreed a distributed C/S environment is a good
choice because it will:

• Leverage the mainframe investment

• Localize problems and solutions

 Copyright IBM Corp. 1996 1

• Reduce software development cost

• Reduce software/hardware maintenance cost

• Better organize data and applications

• Increase application portability

• Increase scalability and migration

• Improve system and network performance

• Allow for a multi-vendor environment with a wider choice of platforms

• Make users more autonomous by moving applications closer to them

• Facilitate the use of standards and acceptance of open systems

In the following sections of this chapter, we will present an overview of C/S
technologies and the Open Software Foundation Distributed Computing
Environment (OSF DCE) components and architecture. We also explain the DCE
packaging for AIX and OS/2.

1.1 Overview of Client/Server Technologies
The phrase client/server was first adopted by Sybase in the late 1980s to market
their database technology. The C/S model implies cooperative and distributed
processing. C/S computing relies on a message-based communication between
a requester (or a client) that asks for a specific service and a responder (or a
server) that provides the information. The message exchange can be
synchronous or asynchronous. Examples of synchronous communications are
Remote Procedure Calls (RPCs) or System Network Architecture (SNA) LU 6.2
conversations. Asynchronous examples are the Encina Recoverable Queueing
System (Encina RQS) or the Message Queueing Interface (MQI), which is part of
the IBM Messaging and Queueing Series (MQSeries) as defined in the IBM Open
Blueprint.

Figure 2. Client/Server Model

The simplest form of C/S computing has only two pieces: a client process and a
server process connected via a network. The server process is the provider of
services, and the client is a consumer of services. Clients usually manage the
user-interface portion of the application, while server programs generally receive
requests from client programs, execute the specified action, and dispatch the
response to clients. C/S programming has become the most widely accepted
paradigm to develop distributed applications that interoperate across a network.

2 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Distributed C/S systems enable users to make better use of their computer
resources. They provide better control over the applications and help integrate
diverse sets of hardware and software. The flexibility introduced by distributed
C/S systems brings with it several questions, options, and approaches on how to
plan, configure, and manage all the resources in such an environment.
Resources can be computers, devices, applications, users, groups, and so on.

In a C/S distributed environment, the distributed services can be replicated for
high availability; a server request can turn into a client request to another
server, and multiple servers can run on the same system and so on.

Figure 3. Example of C/S Application

Although the C/S model is the same, a small distinction should be made
between a two-tier model and a three-tier model.

1.1.1 Two-Tier Client/Server Model
The two-tier model, also called data-oriented model, shown in Figure 4 on
page 4, is the classic C/S computing model where the client sends a request for
data and the server searches and sends the data back to the client. Remote
Procedure Call services based on DCE or Open Network Computing (ONC) map
to this model.

Chapter 1. Introduction 3

Figure 4. Two-Tier Model

The most popular representation of a two-tier model are Relational Database
Management Systems (RDBMSs). The client machine accesses a server that
holds data. The application logic is on the client, which prepares SQL data
access commands and may receive a large amount of data to process.

1.1.2 Three-Tier Client/Server Model
For the three-tier model, also called application-oriented, shown in Figure 5, a
monitor is included. The clients request application services from the monitor
and supply the required parameters. The monitor locates the desired service,
verifies the security credentials, and schedules the request for execution by an
application service.

Products such as Encina and CICS working on top of DCE map to such a model.

Figure 5. Three-Tier Model

Data access and processing is made on fast distributed and replicated servers
which are connected with powerful database machines over fast links. The
clients are only front ends that need not be too powerful and need not be
connected with fast links. So the three-tier model has several advantages over
the two-tier model:

4 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

• Better availability

• Better scalability

• Better load balancing

• Lower costs for client machines and networks

• More application- and business-process oriented

The elegance of any type of C/S model and its ability to mix and match
languages and HW/SW platforms is obvious. However, this flexibility makes
administration difficult in this environment.

1.2 DCE Overview
DCE has established a defacto standard in the client/server arena that is
available on all IBM operating systems or platforms, such as AIX, OS/2, MVS,
VM, and OS/400. It is also available on major competitor platforms, such as
Microsoft Windows (Windows 3.1, Windows 95, and Windows-NT), DEC VMS,
Siemens-Nixdorf BS/2000, HP MPE/ix, and on all the UNIX flavors including: AIX,
Digital UNIX, Solaris, HP/UX, DG/UX, Sinix, and SCO. All this has evolved in less
than three years from the first release of OSF DCE 1.0. You can find up-to-date
information on supported platforms and available DCE applications on the OSF
World Wide Web at page http://www.osf.org/dce.

In this documentation, we want to help system engineers (SEs), customers, and
marketing representatives to:

• Plan for DCE

• Understand what configuration can best map the customer’s business
environment

• Recognize the most common administration tasks in a DCE environment

• Understand what to do when migrating from NIS to DCE or from an
environment of networked systems to DCE

• Optimize performance and availability of your DCE environment

We try to answer all these questions and provide a good, fair DCE perspective.

1.2.1 OSF DCE Architecture
OSF DCE is a complete architecture that takes full advantage of the client/server
paradigm. It offers a set of services and APIs that can be used to build
distributed applications and a set of management tools to manage the
distributed environment. It can interoperate with other environments.

Chapter 1. Introduction 5

Figure 6. DCE Architecture

If we consider DCE as Middleware (like other Network Operating Systems, such
as Novell NetWare), the operating system is hidden to a certain extent by a set
of core and extended services offered by DCE. The users will only see the
distributed client/server application. It will be completely transparent to them
whether the application is local or distributed and what operating system is
underneath a distributed service. The architecture viewing DCE as middleware
is explained in the following sections.

1.2.2 DCE Threads
Threads support the creation, management, and synchronization of multiple
concurrent execution paths within a single process. This provides a great deal
of flexibility to application developers in a variety of areas, such as parallel
execution, task control, exploitation of multiprocessor machines, and faster task
switching. On the other hand, threads introduce considerable, additional
complexity.

The DCE core services and all dependent applications use threads. This all
happens behind the scenes. Customer applications may or may not use threads
for their own purposes. However, application developers must know they are
using threads anyway through the DCE RPC run-time services, unless they
explicitly implement a single-threaded server.

DCE threads are originally based upon Digital’s implementation of Concert
Multithread Architecture (CMA). The current DCE threads implementation (OSF
DCE 1.1) is based on the POSIX specification 1003.4a Draft 4, called the pthreads
interface. It is designed as a user-level thread package that can run on
operating systems that do not support threads in their kernel.

If the operating system, such as AIX 3.2, does not support threads in its kernel,
the threads are running in (non-privileged) user mode. The kernel is not aware
of threads running in a process — it can only see (and dispatch) the process as a
whole. The problem is that one thread could put the entire process into a wait

6 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

state, thereby making all other threads also wait. Programmers have to be
aware of this situation if they use threads.

If an operating system has an alternative implementation of POSIX-compatible
threads, the DCE thread calls may be mapped directly to kernel threads, and the
DCE threads library just has a mapping function. The (kernel) threads library for
AIX 4.1 follows the POSIX 1003.4a Draft 7 specification. AIX 4.1 offers a DCE
pthreads compatibility library which is an implementation of the user-level
threads on top of its kernel threads. This compatibility library maps the DCE
threads (Draft 4) to the AIX kernel threads (Draft 7). However, the signal
semantics adheres to POSIX 1003.4a Draft 7. This gives us source compatibility
for existing multithreaded programs.

For a complete overview on the threads facility, see Chapter 11 in the ITSO
Austin redbook Understanding OSF DCE 1.1 for AIX and OS/2 and the
DCE-related documentation listed in Appendix C, “Related Publications” on
page 307.

1.2.3 DCE Remote Procedure Call
The DCE Remote Procedure Call (RPC) facility allows individual procedures in an
application to run on a computer somewhere else in the network. DCE RPC
extends the typical procedure call model by supporting direct calls to procedures
on remote systems. RPC presentation services mask the differences between
data representations on different machines and networking details to allow
programs to work across heterogeneous systems.

DCE RPC provides programmers with several powerful tools necessary for
building client/server applications. Development tools consist of:

• Interface Definition Language (IDL) and related compiler idl

• uuidgen — generates UUIDs (a 32-digit number) to uniquely identify
resources, services, and users in DCE independently from time and space

• Run-time service — implements the network protocol and communication
between the client and server applications

Using RPC in combination with threads allows a client application to call several
servers at once, for instance, for parallel calculation processes. For a complete
overview on the RPC facility, see Chapter 10 in the ITSO Austin redbook
Understanding OSF DCE 1.1 for AIX and OS/2 and the DCE-related
documentation listed in Appendix C, “Related Publications” on page 307.

1.2.4 DCE Security Service
Distributed computing encourages a free flow of data between nodes, thereby
expanding the capabilities of interconnectivity and interoperability. Security
breaches might come from any component of the distributed system. Security
threats can be:

• Eavesdropping: Data can be read as it flows over the network.

• Masquerading: A system can pretend to be another system and thus gain
unauthorized access to resources.

• Modification: Data can be modified as it flows over the network.

• Denial of service: Service can be denied from an unauthorized source.

Chapter 1. Introduction 7

These are just a few of the problems that can affect requirements such as:

• Confidentiality: Protection against unauthorized access to information

• Integrity: Protection against unauthorized modification of information

• Availability: Protection against unauthorized impairment of functionalities

The DCE Security Service is a strong building block of the DCE core services
based on Kerberos technology that provides secure authentication,
authorization, and auditing mechanisms for users and distributed client/server
applications. For data encryption, DCE uses either Data Encryption Standard
(DES) or the Common Data Masking Facility (CDMF). CDMF works with a 40-bit
encryption key in contrast to the 52-bit DES key. CDMF is allowed to be exported
from the USA, whereas DES underlies certain export restrictions.

Security is one of the main reasons why customers are interested in DCE.
Developers can use the DCE Security Service to make their distributed
client/server applications or products secure. They do not necessarily need to
use the DCE RPC API. The GSS-API allows interaction with the DCE Security
Service without using any other DCE components. In their Open Blueprint
strategy paper, IBM announced that it would integrate the DCE Security Service
into other products to provide them a higher and common level of security.

Administrators must understand all the concepts and components of the Security
Service. As other products, such as RACF, DB2, LAN Server, CICS/6000, or AIX
security in general, imbed a DCE security layer, the importance of DCE security
is growing dramatically. DCE becomes the only choice for a centralized secure
environment for all the IT security needs of a company.

The DCE security component comprises three services running on the security
server and several other facilities. Most of the DCE security is related to the
concept of a principal. A principal is an entity that can be securely identified and
can engage in a trusted communication. A principal usually represents a user, a
network service, a particular host, or a cell. Each principal is uniquely named
and identified by its principal UUID. A record for each principal containing the
name, the private keys, and the expiration date is kept in the registry database
on a highly secure system.

The three services are:

• Registry Service (RS) — A replicated service that maintains the cell’s
security database. This database contains entries for accounts, principals,
groups, organizations, and administrative policies.

• Authentication Service (AS) — Used to verify the identity of principals. It
contains a Ticket-Granting Service (TGS) that grants tickets to these
principals and services so they can engage in a secure communication.

• Privilege Service (PS) — Certifies a principal’s credentials that are going to
be forwarded in a secure way to DCE servers. The credentials (see EPACs
below) allow the target server to check the principal’s access rights to
resources.

These services are implemented in the security server daemon (secd).

The administrator can create several security replica servers to balance the load
on the master security server and to preserve the cell in case the master
becomes disabled. The sites where the security database will be replicated

8 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

must be as secure as the site where the master copy of the security database is
stored.

 Note

Each replicated security server requires a separate license of the program.

On each client machine, there is a Security Validation Service integrated into the
DCE daemon process (dced) whose duties is to verify that the security server is
authentic, to manage the machine principal and to certify the login contexts.

Client applications actually use the Security Service facilities and services via a
Security Service API or the Generic Security Services API (GSS-API). The
facilities serving these APIs are:

• Login Facility (LF) — Initializes a user’s DCE security environment (login
context) and provides them with their security credentials.

• Extended Registry Attribute (ERA) — Extends the standard set of registry
database attributes (which cannot be changed) and allows for user-defined
attributes.

• Extended Privilege Attribute Certificate (EPAC) — Basically a certified list of
the principal’s name, the groups to which the principal is a member, and the
ERAs for an authenticated principal. A client must present its EPAC to a
server when performing authenticated RPC. The server uses the EPAC to
examine the client’s access rights. Other information in the EPAC allows
clients and servers to invoke secure operations through one or more
intermediate servers (delegation).

• Access Control List (ACL) Facility — An ACL is a list of principals or groups
and their access permissions. ACLs are assigned to any type of resource
that DCE servers manage. The ACL facility provides a generalized means of
checking a principal’s access request against the ACLs on the requested
resource.

• Key Management Facility — Enables non-interactive principals (such as
application servers) to manage their secret keys.

• ID Map Facility — Allows intercell communication, mapping local cell
principal names to global cell principal names and vice versa.

• Password Management Facility — Enables principal passwords to be
generated and to be submitted to strength checks beyond those defined in
DCE standard policy.

• Audit Service — Detects and reports events that are relevant to the
management of a secure environment. Events are written in a log file called
an audit trail file. The application programmers need to use an audit API to
build auditing of relevant operations into their applications.

A complete set of DCE Security APIs is offered for writing trusted distributed
applications. For a complete overview on DCE Security, see Chapter 3 in the
ITSO Austin redbook Understanding OSF DCE 1.1 for AIX and OS/2 and the
DCE-related documentation listed in Appendix C, “Related Publications” on
page 307.

Chapter 1. Introduction 9

1.2.5 DCE Directory Service
A distributed computing environment contains many users, computers,
applications, and printers dispersed in the network. This creates a complex
group of resources and users that somehow have to be located. These
resources and users, also referred to as objects, can easily be located if we
have a centralized process that keeps track of every change in the network.

The Directory Service is the component that makes it possible for the user to
locate objects in the network without knowing their physical location. For the
user, the distributed nature of the environment is hidden. It is like a telephone
directory assistance service that provides the phone number when given a
person’s name.

Users do not normally access or use directory services directly. They run
applications that may use the directory services to find objects. The only thing a
user might have to know is object names and maybe the naming model.

The heart of this Directory Service is the Cell Directory Service (CDS)
namespace. The CDS namespace consists of one or more clearinghouses.
Each of them may be on a different system that runs a secondary directory
server. Because the clearinghouses may be distributed over several CDS
servers, the CDS namespace represents a highly distributed database with all its
advantages and problems. We developed some scripts to help you to manage
this distributed database. However, DCE administrators must understand the
directory service in order to be able to administer objects and manage the
service and its database.

The programmer can either use the X/Open Directory Service (XDS) API to
directly access the directory service or the RPC Name Service Interface (NSI)
from within DCE applications.

The DCE Directory Service includes the:

• Cell Directory Service (CDS)

• Global Directory Service (GDS)

• Global Directory Agent (GDA)

• Application Programming Interface (API)

The CDS manages information within a cell. The GDS is based on the CCITT
X.500 name schema and provides the basis for a global namespace. The GDA is
the CDS gateway to intercell communication. The GDA supports both Internet
addresses and X.500 addresses. If the address passed to the GDA is an X.500
address, the GDA contacts the GDS. If the address passed to GDA is an Internet
address, then the GDA uses the Internet Domain Name Service (DNS) to locate
the foreign cell. Both CDS and GDS use the X/Open Directory Service (XDS) API
as a programming interface.

For a complete overview on DCE Directory Service, see Chapter 2 in the ITSO
Austin redbook Understanding OSF DCE 1.1 for AIX and OS/2 and the
DCE-related documentation listed in Appendix C, “Related Publications” on
page 307.

10 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

1.2.6 DCE Distributed Time Service (DTS)
DTS provides precise, fault-tolerant clock synchronization on the computers
participating in a DCE environment both over LANs and WANs. The
synchronized clocks enable DCE applications to determine event sequencing,
duration and scheduling. The core services, especially the Ticket Granting
Service, rely heavily on synchronized clocks. Note that installing DTS is not a
requirement; the clocks could be synchronized by other time services. However,
the use of DTS is highly recommended because it uses security service and
adjusts time smoothly rather than correcting system clocks all at once or even
backwards. The DTS clerks obtain time information from at least three DTS
servers in a LAN and adjust their time. If they do not receive the required
number of time values in their LAN, they contact global DTS servers.

DTS is based on Coordinated Universal Time (CUT or UTC), an international time
standard. Different types of time servers provide for different transmission
delays between LANs and WANs that would influence correct time calculation:

• Local DTS Servers maintain synchronization within a LAN and synchronize
their own clocks using the responses of all other DTS servers in the LAN. If
they do not get at least responses from two other DTS servers in their own
LAN, they have to contact global DTS servers.

• Global DTS Servers (usually at least one per LAN) advertise themselves into
the CDS so other DTS servers or even clerks can contact them, if they do not
have the required number of DTS servers in their own LAN. To adjust their
own clocks, they act like local DTS servers. If they get their time from an
external time provider, they do not adjust their clocks with values obtained
from other DTS servers.

• Courier DTS Servers (usually one per LAN) maintain synchronization
between multiple LANs. Any local or global DTS server can have a courier
role. What is special about this role is, they must contact one global DTS
server, even if they get enough time values from DTS servers in their own
LAN.

A DCE DTS API is offered as well as a Time Provider Interface (TPI) which allows
a time provider process to pass its UTC time values to a DTS server. Many
standards bodies disseminate UTC by radio, telephone, and satellite. TPI also
permits other distributed time services, such as the Network Time Protocol
(NTP), to work with DCE.

Replication of DTS servers does not require additional licenses because DTS is
included in the DCE base product. For a complete overview on the DTS facility,
see Chapter 4 in the ITSO Austin redbook Understanding OSF DCE 1.1 for AIX
and OS/2 and the DCE-related documentation listed in Appendix C, “Related
Publications” on page 307.

1.2.7 Distributed File System
The Distributed File System (DFS) is a DCE application that provides global file
sharing. Access to files located anywhere in interconnected DCE cells is
transparent to the user. To the user, it appears as if the files were located on a
local drive. DFS servers and clients may be heterogeneous computers running
different operating systems.

The origin of DFS is Transarc Corporation’s implementation of the Andrew File
System (AFS) from Carnegie-Mellon University. DFS conforms to POSIX 1003.1

Chapter 1. Introduction 11

for file system semantics and to POSIX 1003.6 for access control security. DFS is
built onto and integrated with all of the other DCE services and was developed to
address identified distributed file system needs, such as:

• Location transparency
• Uniform naming
• Good performance
• Security
• High availability
• File consistency control
• NFS interoperability

DFS is a distributed file system which allows users to share files stored in a
network of computers as easily as files stored on a local machine/workstation.
The DCE Distributed File System uses the client/server model that is common to
other distributed file systems. The file system gives users a uniform name
space, file location transparency, and high availability. Reliability is enhanced
with a log-based physical file system which allows quick recovery after server
failures. Files and directories can be replicated to multiple machines to provide
reliable file access and availability. Security is provided by a secure RPC
service and Access Control Lists that conform to POSIX 1003.6. DFS implements
a superset of that POSIX ACL Draft.

As shown in Figure 6 on page 6, DFS is an extended service and is built on the
DCE core services: Security, CDS and DTS. When accessing remote data, DFS
uses DCE Remote Procedure Calls (RPCs) to communicate between participating
systems, exchanging authorization requests, access requests, file and directory
data, and synchronization information. It uses the DCE Naming Services to
resolve global names and the DCE Security Service to authenticate users and
services. DFS requires synchronized clocks among all involved systems. This is
achieved with the DCE Time Service.

The DCE Local File System (LFS) is a log-based file system that is integrated into
the kernel. It is also based on aggregates that are equivalent to standard UNIX
disk partitions or AIX logical volumes. Aggregates are logically composed of
multiple filesets, which are mountable subtrees. Filesets share the disk blocks
within an aggregate. Filesets can be administered and referenced individually.
Quotas can be set on a per fileset basis. Filesets are the units that provide
support for administrative functions needed in a distributed environment, such as
replication, cloning, reconfiguration (move filesets for load balancing), and
backup. The cloning function provides copy-on-write semantics so that double
disk space is not needed when a fileset is cloned. Cloning also allows the
above-mentioned functions to be performed while the filesets are on-line with
minimal down time for users of the filesets.

Directories and files can be accessed by users anywhere on the network, using
the same file or directory names, since all DCE resources are part of a global
namespace. High performance is achieved through caching on the client side to
reduce access time and network traffic.

DFS has many advantages over NFS:

• Stateful implementation allows for caching on client side
• Provides single site read/write semantics
• Fileset replication
• Security (Authentication and ACLs)
• Cloning

12 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

• Backup Servers

DFS files can be exported to NFS so that NFS clients can access them as
unauthenticated users. The NFS/DFS Authenticating Gateway product provides a
mapping of NFS users into authenticated DFS users. To achieve this, NFS users
use the dfsiauth command to perform a DCE login to set up credentials for a
certain combination of userIDs/nodeIDs, which will be revoked when the ticket
expires.

For more information on the DFS facility, see the ITSO Austin redbook The
Distributed File System (DFS) for AIX/6000 and the DCE-related documentation
listed in Appendix C, “Related Publications” on page 307.

1.2.8 Mutual Dependencies between DCE Components
Core services in DCE, such as the Cell Directory Service and Distributed Time
Service, use the Security Service. The Security Service in turn uses CDS and
RPC and so on. The following table shows what uses what.

Figure 7. Dependencies between the DCE Components

CDS is not dependent upon GDS, but it can use it via the Global Directory Agent
(GDA) component of CDS.

Because of these interdependencies, the services must be configured and
started up in a certain sequence and there are auxiliary files to bypass
yet-missing components.

1.2.9 DCE Management Services
Several administration tools are provided to manage DCE. The following
commands are provided by OSF and are therefore available on all DCE
implementations:

• Security Service

rgy_edit Security registry management (principals, accounts)
acl_edit Consistent interface to different ACL managers
sec_admin Controls operation of the security servers
rmxcred Purges expired tickets from the credentials directory
passwd_import Creates registry entries from /etc/passwd files (UNIX)
passwd_export Creates /etc/passwd type file out of registry entries

(UNIX)

• Directory Service

cdscp General CDS client and server management interface

Chapter 1. Introduction 13

cdsli Listing of all CDS namespace entries
cdsbrowser Query tool for CDS objects
cdsdel Can recursively delete entire directory subtrees in the

CDS namespace

• Remote Procedure Call

rpccp Management of RPC daemon and RPC CDS entries

• Time Service

dtscp Management of time servers

• Distributed File System

fts Command suite for file server management
bos Command suite management for general DFS

management
bak Command suite for data backup management
cm Command suite for DFS client cache management

• DCE Control Program dcecp

The DCE Control Program (the dcecp command) is the new administrator tool
in OSF DCE 1.1 that integrates the functions of several tools used in OSF
DCE 1.0.x, such as cdscp, rpccp, rgy_edit, acl_edit, and dtscp. The dcecp
language is based on the Tool Command Language, generally known as Tcl
(pronounced ″tickle″). The dcecp commands are implemented as Tcl
commands in a Tcl interpreter.

For a complete overview on the dcecp facility and Tcl, see Chapter 9 in the
ITSO Austin redbook Understanding OSF DCE 1.1 for AIX and OS/2 and the
DCE-related documentation listed in Appendix C, “Related Publications” on
page 307.

IBM improved the DCE management aspects by creating new high-level
configuration commands and integrating all procedures into SMIT, thus hiding
some of the complexity of the OSF commands. Examples of high-level
commands in AIX are:

mkdce Defines a machine with all its roles into a cell
rmdce Deletes a machine from a cell
mkdfs Defines DFS services on a machine
rmdfs Deletes DFS services from a machine
mkdfslfs Creates an LFS fileset on a DFS server machine, exports and

mounts it
rmdfslfs Removes an LFS fileset from a DFS server machine
mkdfsjfs Exports a JFS file system from a DFS server machine and

mounts it
rmdfsjfs Removes a JFS file system from the DFS file space
lsdce Lists the configuration status for the machine
rc.dce, rc.dfs Start up script for selected or all DCE (DFS) services
dce.clean Stop script for selected or all DCE (DFS) services
dfs.clean Stop script for selected or all DFS services only

The SMIT menus can easily administer single entities (users, groups, accounts,
ACLs), but there is no convenient way to administer multiple users. There is
also a lot to do in the area of reconfiguring parts of the cell. It is the objective of
this publication to provide a set of tools and tips to improve the administration of
DCE.

14 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

In OS/2 we find the following added-value commands:

cfgdce Command-line interface (CLI) for DCE configuration
cfgdceg Starts the graphical user interface (GUI) for configuration
ucfgdce Deletes a machine from a cell
showcfg Lists the configuration status for the machine
dcestart Start up command for selected or all DCE (DFS) components
dcestop Stop command for selected or all DCE (DFS) components

1.2.10 Structure of a Distributed Computing Environment
In DCE a cell represents the smallest unit of resources, such as systems, users,
services, and nodes, that work together and are administered together.

A minimal cell must include threads, the RPC communication layer, and at least
one instance of all the core services:

• Cell Directory Server

• Security Server

• Distributed Time Servers (optional; at least three are recommended)

Figure 8. DCE Cell

Cells can be defined and configured in different ways depending on the user,
administration and/or company requirements. For example, a small company
that offers only one kind of service can be set up as a single cell as is shown in
Figure 8.

Another example might be the faculty departments at the University of Texas at
Austin. They can have their own manageable cells and use intercell
communication for common services or data.

Chapter 1. Introduction 15

Figure 9. DCE Mult icel l Environment

Intercell communication is provided through GDA. The DCE architecture
supports different types of network protocol families. The current OSF DCE
reference implementation runs over the Internet Protocol (IP) family, using either
UDP (User Datagram Protocol) or TCP (Transport Communication Protocol) as
transport layers.

The home cell for a principal shows the cell where the information about the
principal is stored. More generally speaking, a cell represents the collection of
resources that use a common naming and security policy.

1.3 IBM DCE Product Information
There have been several IBM releases of DCE for both AIX and OS/2 DCE.
Following is a description of the base OSF source code release and the major
differences in packaging and prerequisites for each release.

1.3.1 DCE 1.3 Product Family for AIX 3.2.5
This release in based on OSF DCE V1.0.3 and consists of the following orderable
packages:

• 5765-117, IBM DCE Base Services (DCE Client)

Includes DCE Threads and all DCE client daemons plus DTS server and base
DFS client and server, DCE Programming Tools and DES library option.

• 5765-118, IBM DCE Security Server

• 5765-119, IBM DCE Cell Directory Server

• 5765-120, IBM DCE X.500 Global Directory Server

• 5765-121, IBM DCE Enhanced DFS

• 5765-457, IBM DCE NFS to DFS Authenticating Gateway

• 5765-456, DCE Manager for NetView for AIX

16 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

1.3.2 DCE 2.1 Product Family for AIX 4.1.4
This release in based on OSF DCE V1.1 and consists of the following orderable
packages:

• IBM DCE Base Services - integrated with AIX 4.1.x

Like in DCE 1.3, DCE Threads and all DCE client daemons plus DTS server
and base DFS client and server are included. However, the DCE
Programming Tools as well as the DES and CDMF libraries are NOT
included.

AIX DES is available in 5765-418 and AIX CDMF is available in 5765-538 (User
Data Masking Encryption Facility).

• 5765-533, IBM DCE Security Server

• 5765-534, IBM DCE Cell Directory Server

• 5765-537, IBM DCE Enhanced DFS

• 5765-540, IBM DCE NFS to DFS Authenticating Gateway

• 5765-532, Getting Started With DCE

Contains all the DCE programming tools and sample programs. The IDL
compiler also comes with this package.

• 5765-418, AIX Data Encryption Specification

DES only needs to be ordered if you are writing encrypted applications. Only
one license is needed per building.

• 5765-538, DCE User Data Masking Encryption Facility

This encryption service can be used in countries where the export of DES is
prohibited. Only one license is needed per building.

1.3.3 Directory and Security Server (DSS) for AIX, Version 4
DSS for AIX is the same code base as DCE V2.1 for AIX (with applied PTFs), but
repackaged for ease of installation and ordering. It includes:

• Security Server
• Cell Directory Server
• Programming Tools

The DCE and DFS Base Services are still integrated with AIX V4.1.4+. However,
for the customer’s convenience, the DCE/DFS Base Services are also contained
on the DSS distribution media. This is the package that can be ordered:

• 5765-639, Directory and Security Server (DSS) for AIX, Version 4

The DSS directory and security servers may be installed on separate physical
RISC System machines. Extra individual DCE CDS or Security Servers can be
ordered using the DCE V2.1 product numbers (above); Enhanced DFS must be
ordered with the DCE V2.1 product number above.

Chapter 1. Introduction 17

1.3.4 DCE for OS/2 and Windows
The following packages are based on OSF DCE V 1.0.3:

• 5871-AAA, Feature Number 6199 - 96F8690 DCE SDK V1.0 OS/2 & Windows

This package comes with the User Data Privacy (DES) option.

• 5871-AAA, Feature Number 6203 - 96F8691 DCE Client for OS/2

This package comes with the User Data Privacy (DES) option.

• 5871-AAA, Feature Number 6201- 96F8692 DCE Client 1.1 for Windows

This package comes with the User Data Privacy (DES) option.

1.3.5 Directory and Security Server for OS/2 Warp
This product is based on OSF DCE V1.1. The official Beta version was used in
preparing this book. DSS for Warp will be generally available in 3Q96.

The part numbers for DSS for OS/2 Warp are as follows:

• 10H9754, DSS for OS/2 Warp, Version 4 (DES)

• 25H7945, DSS for OS/2 Warp, Version 4 (CDMF)

Both of these packages include the DCE base services, the CDS and Security
servers, the DFS client, programming tools, and a software adoption layer for
Warp Server integration.

DSS for Warp allows unlimited replication of the DCE Client for Warp.

Customers using non-Warp DSS servers, such as AIX DCE servers, should order
one of the following DCE Client for Warp packages:

• 25H7940, DCE Client Including DFS, Version 4 (DES)

• 25H7946, DCE Client Including DFS, Version 4 (CDMF)

18 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 2. Planning DCE Cells

This chapter intends to give planners and administrators all the information they
need to lay out a cell, with all its servers and clients, based on customer and
business needs, but also being aware of the technical feasibility and efficiency.

It summarizes the experiences we made during our testing or in discussions
with development. It should also help provide a basic understanding of the DCE
planning issues to readers not interested in technical details.

It explains, to a certain extent, how the different base components work as well
as the technical restrictions implied by the DCE core servers and DFS. A
planner must understand this to be able to design a solution for a customer
which makes sense regarding:

• Reliability
• Availability
• Security
• Performance/Efficiency
• Cost

This chapter is organized in the following way:

• 2.1, “General Considerations for DCE Cell Design”

• 2.2, “Technical Implications Imposed by the Core Components” on page 21

• 2.3, “Sizing Guideline” on page 24

• 2.4, “Planning the User Namespace” on page 25

• 2.5, “Planning the CDS Namespace” on page 26

• 2.6, “Planning for Migration” on page 27

• 2.7, “Conclusions and Planning Tips” on page 28

• 2.8, “Planning Summary” on page 33

2.1 General Considerations for DCE Cell Design
Today’s client/server computing systems are not only based on communication
protocols and peer-to-peer connections but on a real network operating system.
DCE is such a network operating system, and its functionality is as powerful as
most of the known single-node operating systems, such as UNIX.

Based on the experiences we made during this project, we would like to give
you some guidelines on how to design a DCE cell.

Prior to installing and configuring DCE, it is very important that you plan and
design your cell carefully. Several aspects have to be taken into account.
Therefore, you must clarify several questions beforehand:

 1. Are you familiar with the different DCE core components?

In order to understand how a DCE cell has to be designed, it is absolutely
crucial that you really understand the core components of DCE and the way
they work. For example, a high performance network may not improve your
DCE performance when the preferred binding handles point to a slow
interface. Or skulking over slow links (for example a 9600 baud connection)

 Copyright IBM Corp. 1996 19

may slow down the operation of your whole cell, if it is done too frequently.
These are just two examples of things that can happen.

 2. How is your company structured?

• How large are the branches or regional offices?
• How many and what kind of network services do the branches need?
• How does the business data flow?
• What kind of data and service access needs are there between branches

and the main site?
• What kind of data and service access needs are there from branch to

branch?
• What is the amount and frequency of such data access?

The answers to these questions will help to decide whether we need a single
or multicell design.

 3. Does your company have naming conventions?

Naming conventions are not only important for DCE but also for many other
Information Technology (IT) areas. They are the base for security, stability,
reliability, and accessibility in a network. Once you assign a name to any
type of entity in a complex networked environment, it becomes very difficult
to change it when necessary. Making changes is always more expensive
than carefully planning ahead.

 4. Does your company have security conventions?

Most companies have security conventions or even a security department
that takes care of all the security issues within the company. Since security
is a major strength of DCE, it is absolutely necessary to get these people
involved in your activities or at least to take their rules into account.
Questions such as:

• Where should a security server be placed?
• Does a security server have to be a dedicated system?
• Who is responsible for all user information?
• Who is responsible for access control lists?

are very important and must be answered properly in order for DCE to be
part of the technologies that satisfy the company’s security policy.

 5. Does your company have system administration conventions?

System management for distributed systems becomes more and more
important as the size and the complexity of the distributed environment
grow. The main disciplines of open client/server system management are:

• Configuration and change management
• Security management
• Inventory, monitoring and reporting
• Operations management
• Client/server application management
• Network management
• Helpdesk

While designing a DCE environment, you should consider who has to take
care of these issues and how they are being solved. It may have an impact
on how you will place certain services/servers and/or what kind of tools you
are going to use.

 6. Does your company already have any network operating systems?

20 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

If your company is already using network operating systems other than DCE,
which is likely, you must consider how these different systems can coexist.
In certain cases, these systems not only have to coexist but also interoperate
with each other. For example, if you are already working with NIS, you
probably have also installed NFS. As you are going to set up DCE/DFS, you
will want to integrate NFS into your DCE/DFS environment. This may have
an impact on where you place your services within your network.

 7. What are the physical connection possibilit ies between the branches of your
company?

Your physical network has a big influence on where you place which
services. Maintaining replicas through a slow communication link, may slow
down the whole cell, or at least particular functions.

This means you must understand the way your whole company works, rather
then just have IT experience. In the following sections, we will discuss the
considerations for designing a cell in more detail.

2.2 Technical Implications Imposed by the Core Components
In order to decide how to lay out the DCE core services, we must know the way
they work. The aspects to look at are:

• Replication capabilities

• Server selection mechanisms

• Login integration capabilities

2.2.1 Replication Capabilities
All DCE core and DFS servers can be replicated. Replication means that there
are multiple instances of the service available in the cell, each of which controls
its own copy of a replicated database.

So, there are multiple copies of the same databases in the cell, but each type of
database has one master copy and possibly several read-only copies. Changes
can only be made to the master copy. As long as the applications or the core
service clients, respectively, only need read access, they can call any of the
available servers. This increases:

• Performance: load balancing

• Availability: if one server fails, another can do the job

Since most of the accesses to the DCE core service databases are read-only, it
makes sense to exploit these replication capabilities. Even to DFS many
accesses are read-only. However, replication done the wrong way can cause
slow operation of the whole cell.

The way in which the various DCE components replicate their data is different.

Chapter 2. Planning DCE Cells 21

2.2.1.1 Security Replication
The security server has one master server which holds the master database.
Replica servers can be configured. They hold a copy of the entire registry
database. The administrator does not need to configure anything; the replica
databases are automatically created and updated when the replica server is
configured.

2.2.1.2 CDS Replication
The CDS database is called a clearinghouse. It is tree structured and has
directories which can contain further directories or leaf objects. Replication is
defined on a per-directory basis. Each copy of a directory is called a replica. All
copies of a certain directory build its replica set. One of these replicas is the
master replica; the others are read-only replicas.

Since replication is on a directory level, the CDS database is a distributed
database. The master replicas of all directories in the namespace tree can be
distributed over several clearinghouses.

In order for replication to happen, administrators must define every detail. They
must explicitly create replicas, define the replica set with a master, and define
the skulking intervals. Skulking is the process of copying a directory’s content to
all read-only replicas.

2.2.1.3 DFS Replication
DFS administers its own namespace. In the CDS namespace, it is just known as
a junction. It uses a special global path name that follows the global naming
convention to locate the binding information for a DFS name server. So the root
of the DFS cell file system /: is resolved to the global name /.../<cell_name>/fs,
which is an object in CDS.

The DFS name server is actually called the DFS Fileset Location Database
(FLDB). It stores the location (the DFS file server) of all filesets in DFS.

When a DFS client wants to access a file, it first has to contact the FLDB to ask
for a DFS file-server address. This involves a read access to the FLDB. Then,
depending on the type of access desired, you either get the address of the file
server with the master copy of the file or the address of one of the replica
servers with a read-only copy of the fileset.

The FLDB and fileset data can be replicated.

Replication of the FLDB is achieved by just adding another FLDB server.
Nothing more can be configured. The FLDB servers organize themselves. By
means of internal library routines (called the ubik library), they determine a
master server. The master server holds the master database, and the ubik
routines update the databases of the slave servers. All servers hold the entire
FLDB.

DFS data is replicated on a fileset level. One copy is the read/write copy and
others are read-only copies. Updates from the master copy to the replicas are
done on a file basis; in other words, when anything is changed in a file, the
whole file is transmitted to every read-only fileset. The administrator determines
the frequency with which the updates are performed.

Furthermore, DFS provides a fileset backup server that can also be replicated.

22 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

2.2.2 Server Selection Mechanisms
The clients all use a random server selection to access services that can be
replicated as described in the previous section. If a DCE client or even another
server needs access to one of these services, they call CDS for an address, a
binding handle. These calls go to a CDS object which is an RPC group entry.
The RPC group contains a list of servers with the same capabilities. In general,
a requester can get all these addresses or one after the other. Depending on
the call used, the sequence is either in the order the binding handles are stored
in CDS, or it is a random order. All the above DCE servers use the random
method. This is basically adequate to provide load balancing, but it can
introduce a performance penalty if a server is connected via a slow WAN.

This is why special care must be taken for the choice of locations for replica
servers.

Some services allow specifying preferences for a specific server. This option
can be used if you have to implement replication over a WAN.

However, specifying certain preferences means manual configuration. Before
you make use of this option, you should estimate the potential benefit. Only if
access to a server is mostly read access and the service is accessed very
frequently would you care where the calls go.

2.2.2.1 Security Service
The security service calls have a fallback method for locating the security
service if CDS is not available. The binding handles of all security servers are
stored in the file /opt/dcelocal/etc/security/pe_site.

If an environment variable BIND_PE_SITE is defined, the calls to the security API
bypass CDS and get the binding information from that file. However, this
requires manual configuration (editing) of this file on all client machines. See
“Security” on page 128 for a discussion on this topic.

2.2.2.2 CDS
CDS has no option to bias the cds_clerk on which clearinghouse it should use.
The cdscp set cdscp preferred clearinghouse command is only used for the cdscp
command itself. However, the CDS clerk knows which clearinghouses are on the
same LAN, and it always tries this clearinghouse first, whenever possible.

2.2.2.3 DFS
New in this release of DFS (2.1) is that the DFS clients follow the same algorithm
to select an FLDB server as they used to select a DFS file server in the previous
release (1.3). A -fldb flag has been added to the cm setpreferences command to
allow administrators to set priorities. It is recommended that the number of the
FLDB servers should be an odd number to ease voting process for a master.

The DFS client can specify a preferred file server or even a list of preferred file
servers with priorities. The command is cm setpreferences. If the user does not
specify priorities, the cache manager assigns default priorities according to
whether there is a file server on the local machine, in the same subnetwork, in
the same network, or in a different network. The lowest number has the highest
priority.

Chapter 2. Planning DCE Cells 23

2.2.3 Login Integration
Login integration is designed to present the typical end user with a single
system image, rather than a separate image of a local operating system and a
remote DCE system. This facility is available with AIX/DCE 2.1 on AIX 4.1.3+.
Since this facility allows administrators to integrate all users or only particular
users, care should be taken in terms of:

• Unavailability of DCE

In effect, when DCE fails or is not available, the administrator can decide for
all users, or for each user, which authentication protocol to use. If a local
authentication protocol is used, then users must have an account on the
machine that they are logging into.

• Protection of local resources

The local administrator should also be aware about protecting local
resources from wandering users. In this case, synchronization between AIX
accounts and DCE accounts should be considered.

For more details on this subject, see 7.4, “Integrated Login AIX and DCE” on
page 265.

2.3 Sizing Guideline
There are two aspects to this: static sizing (″How much resource do I need on
my servers to support X users and Y client machines?″) and dynamic sizing
(″How much resource do I need if Z users are running applications generating N
requests per second?″).

2.3.1 Static Sizing
For the case of static sizing, any disk growth will take place in /var. Each extra
user will take a little bit more registry space. Some quick experiments with
adding a thousand principals and accounts show a pretty linear growth of 960
bytes per additional user in disk space requirements. Memory usage was less
straightforward, presumably because the storage mechanism is a Btree, but at
the upper end, the dominant factor seems to be a linear increase of about 3-4
KB per additional user.

Adding more client machines will take additional entries in the namespace. For
each client, there is a new directory under /.:/hosts and four entries in that
directory: cds-clerk, config, self, and profile. Some quick experiments adding the
entries for a thousand client machines show a pretty linear growth of 1.4 KB per
additional machine in disk space requirements. Memory usage increased by
about 1.7 KB per additional machine. Remember, cdsd logs all changes as
transactions and checkpoints them daily or when you shut down the server. You
need to have enough room in /var/dce for two copies of the checkpoint file (old
and new) plus the transaction log.

Additional clients are not the only contributors to namespace entries, though.
The primary user of CDS is applications. So the size of your namespace is
going to be very dependent on the applications that you develop and run. The
highest we’ve taken these experiments so far has been 100,000 users and
100,000 client machines. The only limitation you’re likely to run into is with the
registry since each security server holds the entire registry in memory. Thus,

24 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

the main limitation will be how much virtual memory you can make available for
the security servers.

2.3.2 Dynamic Sizing
Dynamic sizing is a more difficult question. As an example, in a typical question:

We are responding to a request for information (RFI) which requires a single
DCE-configured cell to serve a potential of 100,000 registered users and
20,000 concurrent users. Each active user is expected to use between 1 to 2
transactions per second (TPS) with the servers in the cell. Some of my
questions are:

 1. How do I determine the number of machines to use in this cell?

 2. What benchmarks should I use for the machines sizing to support the
20,000 concurrent users? Is tpcA (Sybase C/S) a good indicator?

 3. Is there any information available that tells you how to size for DCE
applications?

The 100,000 registered users is a static number. The 20,000 concurrent users
using 1-2 TPS is a dynamic question. The answer is going to depend very much
on what the applications are doing. For example, if your users all dce_login
once in the morning, then start up a long-running application client that makes
one CDS lookup to find its server and then uses that server for the rest of the
day, the security and CDS servers are only going to see one request apiece from
each of those 20,000 users per day. If, however, the users start a new client for
each transaction, then the CDS server will be seeing 20,000 requests per second.
That’s a big difference.

There’s also the application servers themselves. The sizing of these is going to
depend on how heavyweight the transactions are. For example, compare the
TPC-A benchmark, where numbers are expressed as transactions per second, to
the TPC-C benchmark, where numbers are expressed in transactions per minute.
A server is going to be able to support several orders of magnitude more TPC-A
clients than TPC-C clients.

So, dynamic sizing is going to take several steps. First, you need to figure out
what load your application will be putting on the security and CDS servers, and
from that, figure out the server resources required. For a very rough estimate,
assume a model 95 OS/2 or a model 520 AIX CDS server can handle about 500
requests per second and scale upward to the size machine you want to use.
Since CDS keeps its directory in memory, it should be CPU-bound and scale
about the same as standard benchmarks. We don’t have any good numbers on
the security server, but it tends to have a lot less interaction with applications.

2.4 Planning the User Namespace
Users working on a system are identified by means of their user ID (UID). All
activities of users are associated with their UID and can be backtracked if
accounting and audit features are configured accordingly. Access to files or
permission to run a certain process are granted to certain users and groups.
UNIX traditionally only distinguishes access rights for the owner, the primary
group, and others. But with higher security requirements, customers tend to
deploy Access Control Lists (ACLs), which allow a much finer granularity of
access control.

Chapter 2. Planning DCE Cells 25

The flexibility of ACLs has its price. ACLs need a lot more administration. This
is where groups come into play. It is good practice to define only groups (and
not single users) into ACLs of objects. The advantage is that the number of ACL
entries is lower, the ACL itself is more static, and the granting of rights to users
is much easier, because they have to be added to or deleted from groups.

The purpose of this discussion is to show the need for careful planning of the
user and group namespace. Before you define users and groups, you should
decide on:

• Security policy for all objects in the DCE environment

• Present and future cell layout within the entire company

• Potential number of users

• Login integration

• Amount of intercell access, in the case of multiple cells

If a company decides to implement multiple cells, the user names and UIDs
should be unique across these closely related cells. This will make the job of
joining cells much easier, should that ever be necessary. If there is a lot of
intercell access, having unique UIDs is also useful with DFS so that a
company-wide unique user name is shown as the owner of files when a directory
is listed.

2.5 Planning the CDS Namespace
The Cell Directory Service (CDS) is a distributed, replicated database service. It
is distributed because the information that forms the database is stored in
different places. CDS consists of a hierarchical set of names called the
namespace. Each name has a set of associated attributes. Given a name, its
associated attributes can be looked up through CDS. For example, given the
name of a print server, the directory server can return its location. This
information is kept in the clearinghouse. A clearinghouse is a physical CDS
database, a collection of directory replicas. By replicating a particular directory
in different clearinghouses, you can increase the accessibility as well as the
availability of information. On the other hand, the more replicas we have on
different systems, the more complex the cell becomes.

26 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 10. Example of a Cel l Namespace

Based on the experiences with our scenarios, we can give you the following
recommendations for building a CDS namespace:

 1. Keep it simple! Start with one centralized clearinghouse that contains all
master replicas and another one that contains all read-only replicas. This
ensures the availability of the namespace.

 2. Make your first hierarchy (right after root) location-dependent. Put all
objects or directories particular to a specific location in the
location-dependent directory. This allows you to have further clearinghouses
created at the locations, if necessary, which can help to improve accessibility
of DCE services at the location sites. If necessary, you can eventually define
the master replicas of these directories on the locations where they are
mostly accessed. This is useful when many write accesses occur from only
one location.

 3. Do not use soft l inks from one location to another. This makes you very
dependent on other locations, which also means that it becomes more
complex to manage a large cell.

2.6 Planning for Migration
When migrating an existing cell to a newer DCE version, you should consider the
two following strategies. Which strategy you choose depends on the degree of
availability you want to maintain for end users. The two strategies are:

• Migration of all machines in your cell at once

This can be done easily if your cell is not large and the availability is not
crucial. Save your environment and systems, and plan a weekend to
migrate. Tools and hints are provided in this book to facilitate this task.

• Migration one-by-one

Chapter 2. Planning DCE Cells 27

This strategy is the most recommended since the newer version of DCE can
coexist with an older one. You can plan to migrate at your pace. And the
most important thing to consider is the availability of the end users. The
same tools and hints are also provided for a smooth migration.

For more details on this subject, see 6.1, “Migrating a DCE 1.x Cell to DCE 2.1”
on page 140.

2.7 Conclusions and Planning Tips
This section summarizes the experiences we made while working with the
different scenarios and provides recommendations for cell layout with respect to
possible customer requirements, technical facts and geographical aspects
(network topology).

User requirement considerations:

• Performance
• Availability
• Security
• Cost

Technical implementation considerations:

• Server selection mechanisms
• Replication capabilities

Geographical considerations:

• Business data and service flow
• Reliability of the network
• Transmission speeds and bandwidth

Combining all these factors and trying to come up with an optimal solution is not
an easy task. As with many other decisions, it will result in a compromise. So,
we cannot suggest concrete solutions, but we can give general
recommendations and point out consequences of certain decisions.

2.7.1 One Cell or Multiple Cells?
One of the most important things you have to think about when you start to
implement DCE at your company is the work and data flow of your business.
This is dependent on:

• Structure of the company
• Existence of remote locations, called branches hereafter
• Type of business
• Size of the branches
• Number and kind of network services the branches need
• Business data flow
• Data and service access needs between branches and main site
• Data and service access needs from branch to branch
• Amount and frequency of such data access

There is no general recommendation for designing a DCE environment. Roughly
we can say, if your company concentrates on one business area with a high
degree of dependencies between its departments, it could be a good candidate
for a one-cell scenario (for example, banking). The opposite of that could be a

28 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

company that is working in different business areas with many independent
departments (for example, a university).

2.7.2 Tips for Service Layout and Application Design
What a DCE user perceives is how applications perform and whether they are
reliable as far as availability is concerned. This actually depends on many
different factors:

• The application’s architecture and implementation in DCE
• The robustness of the application (replication)
• How the application copes with more users and data
• How the application uses the DCE core services
• How often an application uses the DCE core services
• The speed of the network connections
• The robustness of the network
• The robustness of the DCE core services (replication, availability)

The term robustness stands for the ability to deal with error conditions, provide
high availability and optimize performance.

Once the decision is made about the number of cells a company is going to
need, each cell has to be designed. For that decision, we believe that
performance and availability aspects are the main issues, which means ease of
use and reliability. Another high priority is ease of administration.

So, technical issues are the deciding factors for the cell layout rather than
business needs. From a user perspective, it is not so relevant where the
services or data are, but that they are easily and reliably accessible. However,
business needs are the most important factors for DCE application design.
Applications have to serve a certain business structure and have to make use of
the technology to optimally achieve that. The application implementation should
be such that installations can follow the same layout rules as for the core
services outlined below. Last but not least, the application should be able to
respond to growth; it should be scalable.

The following sections discuss each of the technical aspects listed above.

2.7.2.1 The Application’s Architecture and Implementation in DCE
Applications are mainly designed according to business needs and data flow.
The implementation should make the best use of DCE technology to provide the
necessary performance, availability and scalability.

2.7.2.2 The Robustness of the Application (Replication)
Applications should implement replication of their servers, whenever possible.
This increases performance and availability. If the application involves data
access, replicated or distributed data storage is necessary. This requires
coordination among the replicated application servers. For that, it is important
whether data access is mostly read or write.

For a data access model, there are different solutions possible. They range from
a networked file system like DFS, as a very simple model, to a state-of-the-art
three-tier transaction model with a powerful database as the backend. See also
1.1.2, “Three-Tier Client/Server Model” on page 4.

Chapter 2. Planning DCE Cells 29

2.7.2.3 How Does the Application Cope with More Users and Data?
An application is scalable when the administrator can install additional instances
of the same service and the load from the clients is equally shared between all
of the servers. This is what is described in the above item on replication.

2.7.2.4 How Does the Application Uses the DCE Core Services?
The application server should export its interfaces to CDS when it starts and
remove them when it ends. This allows for load balancing, provided that
replication is implemented. On the other hand, it saves clients from nasty
time-outs, which can happen if a server stops but its interface information is still
available from CDS.

The client side of the application should, in turn, be ready to try another server
address when receiving a communication error because one server is
unavailable. If this happens, the application client should immediately request
new binding information from the CDS database rather than from the CDS clerk
cache, thereby forcing a refresh of the clerk cache. That also saves other clients
on the same machine from getting the same invalid binding information.

Furthermore, the application should provide a configuration option for the clients
to declare a preferred server location. This is important in cells which involve
slow communication links where you want to prevent RPC calls from using too
many of these.

From a CDS point of view, application servers should use RPC groups, which are
able to provide a random selection of server interfaces to application clients.
Application clients should select the servers that make sense; that is, use
servers on the LAN as opposed to going across a WAN to get to the identical
server interface. To do so, they should use string bindings and explicit binding
handles to be able to inspect the binding information received from CDS, and
select the closest one or one according to their configured priorities.

2.7.2.5 How Often Does an Application Use the DCE Core
Services?
This question must be answered to find out how sophisticated the layout of the
core services needs to be.

If users log in once in the morning and start up one or two long-running
applications, the usage of security service and CDS is low. Performance aspects
of Security Service and CDS are not critical. You only have to make sure the
services are available.

On the other hand, if users log in several times a day and use many different
applications, or if a lot of applications are started and stopped again, Security
Service and CDS are used frequently. CDS experiences a lot of write access if
application servers start and stop. In such a situation, performance is an issue,
and the cell layout has to take this into consideration.

2.7.2.6 The Speed of the Network Connections
If you have a company with a main site and several branch offices and you have
decided to implement just one cell, the type of network connections have a big
influence on the layout of the servers.

If all connections are fast and have enough bandwidth, you do not have to care
where and how your DCE service calls travel.

30 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

2.7.2.7 The Robustness of the Network
This is actually the key to the availability of the whole DCE cell if remote
locations are involved. For any type of topology, you want to make sure that any
single part of the cell, which means each LAN, can continue to work if it is
separated from the rest of the cell.

You could achieve this to a certain extent by replicating all services into each
LAN, which can be a local segment or a distant LAN. This requires a lot of
server licenses, is expensive to administer and, if used with slow WAN
connections, can decrease performance in the whole cell. You could never
guarantee write access to the servers.

We suggest implementing redundant network connections and relying on
dynamic network routing for high availability of DCE services. The best solution
is a reliable multiprotocol router network. This can offer dynamic routing or
even dynamic load balancing or bandwidth assignment. On the low end, you
could install a cheap switched line with SLIP which is only used when the
primary link fails.

If you have a robust network, you can concentrate on performance issues for the
cell layout.

2.7.2.8 The Robustness of the DCE Core and DFS Services
Or in other words: How good is the design of the DCE cell?

From an availability point of view, you would have to replicate all services to
each separate local or distant LAN. From a performance point of view, this
would lead to calls travelling all over the cell and slowing down operation of the
whole cell, especially if slower links are involved.

We suggest implementing a reliable network to achieve high availability and
concentrating on performance issues for the layout of DCE services in the cell. If
there are no slow links, you can just replicate services to achieve load
balancing. Note that all remote locations connected with fast links (fiber links
with Asynchronous Transfer Mode (ATM) or Fiber Channel Standard (FCS)
protocols) are not considered as remote in the following discussion.

If the cell topology includes slow communication links and replication of services
is required across such links, the replication capability of each component has to
be considered separately.

In the following sections we want to look at replication to locations connected via
slow WAN links. We discuss the replication capability of each DCE component
and how preferred servers can be defined to avoid unnecessary calls over the
slow network connections.

CDS: See also 2.5, “Planning the CDS Namespace” on page 26. CDS supports
replication on a directory level. CDS clients have no option to set a preferred
CDS server. The CDS clerk knows which clearinghouses are in the same LAN
and tries to access these whenever possible. If data is not available in the same
LAN, the call randomly goes to any server that has the requested data. The only
possibility we have to control where the calls go is to make sure that the
requested data is in the location from where it is requested most often.

Start off with a simple CDS configuration. Design the namespace so that objects
or directories are grouped together by location, if possible. Keep all master

Chapter 2. Planning DCE Cells 31

replicas in one clearinghouse, which means do not distribute the CDS. Replicate
the CDS only in the main site and never over slow links.

If you experience performance problems because of this CDS configuration, you
can install secondary CDS servers in the remote location that has the problem
and install replicas of these location specific directories. Directories that are
used by all locations should not be replicated to a remote location, because all
locations not having a replica would randomly access this remote location over
the slow link.

If you want to avoid any calls for location-specific objects to the central site,
move the particular master replica to the remote site. If you want to have a copy
of it in the central site for backup purposes, you can create a separate
clearinghouse in the central site, create a read-only replica in it, and disconnect
it to prevent it from being regularly used. To refresh this backup clearinghouse,
you would have to connect this clearinghouse regularly and trigger a skulk from
the master copy.

Security: Start with a security server on the same machines as the CDS servers
so that these two core components can optimally work together.

The security server database is replicated as a whole. Start replicating it in the
central site only. If Security Service access becomes a performance bottle neck,
you might consider replicating it to large remote locations. But as soon as you
do that, you want to make sure security access calls go to the locations you
want. So you have to work with the pe_site files as described in 2.2.2.1,
“Security Service” on page 23.

DFS FLDB: If the DFS FLDB is replicated, the DFS clients can now be biased as
to which FLDB server they should try to use. The FLDB-internal ubik routines
determine among multiple copies of the database which one is the master.
These routines keep communicating with each other. The optimum number of
FLDB servers is three. This keeps the network traffic low between them and yet
offers increased performance and availability. Few cells require more than three
servers.

Preferably replicate the FLDB in the main site and avoid an FLDB across from a
slow WAN link.

DFS Data: The DFS clients can be biased as to which DFS file server they
should try to use.

Design the DFS fileset hierarchy so that subtrees of the file system can be
grouped by location into filesets. Start off with central DFS file servers. Install
file servers in the remote locations as soon as there is demand for them. This
might be because of the size of the location or the amount of data accessed from
this location or because of the network connection. Of course, in large cells, this
might happen on the first day.

Once you start implementing file servers in the remote sites, location-specific
files should be located where they are used. If they are used mostly for writing
or updating, then the read/write copies should be in the locations. For filesets
that are mostly accessed for read, it makes sense to replicate them and have,
for instance, one copy in the central site and as many copies as necessary for a
good load balancing on the remote sites.

32 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Filesets that are accessed from all remote locations should have their read/write
copy in the central site. When they are accessed read-mostly, they can be
replicated, and replicas can be in the remote locations as demand requires. To
make sure the DFS access calls stay within the remote location, you need to set
the preferred file server(s).

Updates of file servers are based on whole files. So, when you have very large
files and slow communication links, replication to remote file servers can take a
long time, even if only a single byte in that file is changed. While a server is
being updated, the data is not available to clients. On the other hand, DFS
clients cache data in a finer granularity. In the case of (smaller) remote sites
with slow communication links, consider having only DFS clients in that location
and no file server. However, if the number of DFS clients is too high, this
approach can be disadvantageous. A last resort in this case could be to have a
small number of DFS clients running the NFS/DFS translator. All NFS clients use
the same cache on the DFS client which they are using as their NFS server.
This, however, means that you would also have NFS in your LAN with all its
disadvantages.

2.8 Planning Summary
We discuss planning relevant issues in several sections of this book. The
following is a list of the most important references:

• 2.7.1, “One Cell or Multiple Cells?” on page 28
• 2.4, “Planning the User Namespace” on page 25
• 2.5, “Planning the CDS Namespace” on page 26
• 2.7.2, “Tips for Service Layout and Application Design” on page 29
• Chapter 5, “Implementing Various LAN/WAN Scenarios” on page 105,

performance and availability discussions in each scenario

The above-referenced sections can be summarized into the following planning
tips:

• Decision for one or multiple cells

This decision is dependent on the structure of the company and the type of
business it is running. If there is a main site and many branch offices and
their business requires a lot of data exchange among each other and they
have common data, it is a candidate for a one-cell environment.

• Plan your user namespace

Use unique user names and UIDs throughout the whole company if you
decide to have multiple cells. It is much easier to migrate users from one
cell to the other or to join cells should this ever become necessary.

• Plan your CDS namespace

Begin with a simple non-distributed CDS server layout, which means all
master replicas on the same machine. Create location-specific directories
that contain all objects or subdirectories that are mostly used in a specific
location. This enables you to easily create secondary CDS servers in remote
locations and move the master copies of their directories and objects to
these servers if you see performance problems with the central CDS server.

• Plan your DFS filespace

You can choose basically the same approach as for CDS. Create
location-dependent directories and fileset mount points that are high up in

Chapter 2. Planning DCE Cells 33

the file hierarchy. This makes sure you have shorter path names and their
resolution does not have to hop from network to network. Create separate
filesets for entities that might have to be moved between locations as a
whole, such as users.

• For availability, rely on the network

Implement redundant links either with a multiprotocol router network or via
switched backup lines. The underlying network can have sophisticated
dynamic routing capabilities, whereas DCE relies on the error handling
implemented by the application programmer.

• Do not export any (slow) WAN interfaces into CDS

Again, rely on the routing capabilities of the network and exclude all
interfaces not associated with a LAN. Use the environment variable
RPC_UNSUPPORTED_NETIFS. This prevents clients from trying network addresses
that might be temporarily unavailable or that do not follow the fastest path.

• Layout of DCE services only for good performance

If there are no slow links in the cell, you can put replication servers
anywhere to achieve load balancing. If you have slow links or pay the links
based on data volume, replication has to be planned very carefully. With
inadequate replication, you might experience slow performance in the whole
cell because server selection is completely at random and may lead to
unnecessary calls over the slow links. Each component has its own specific
characteristics. For details see 2.7.2.8, “The Robustness of the DCE Core
and DFS Services” on page 31.

As a very simplified summary of Chapter 2, “Planning DCE Cells” on
page 19 and Chapter 5, “Implementing Various LAN/WAN Scenarios” on
page 105, we suggest the following layout for production cells:

− In a LAN, install all master servers on one machine and replica servers
on one (or more) other machine(s) as in 5.1.1, “Scenario 2: Master
Servers on One Machine and Replicas on Another” on page 106.

− For a production cell that goes across slow links, install and replicate the
servers on the main site as described above for a LAN environment.

− If remote locations are small, install only DCE clients there, but install a
secondary communication link for increased availability as described in
5.2.3, “Scenario 6: A Branch Connected with Two Links” on page 130.

− For larger remote locations where you want to install replicated services,
replicate on only those parts of the server databases that are relevant for
a specific remote location and define preferred servers, if possible. Each
component has its own specific characteristics, for details see 2.7.2.8,
“The Robustness of the DCE Core and DFS Services” on page 31.

• Follow the development guidelines when designing DCE applications

Users work with DCE applications and not as much with the core services.
The core services must be well planned and laid out to provide a good basis
for the applications. It is very important that the application is designed and
implemented properly to provide high performance and availability through
replication and to avoid unnecessary time-outs by correctly handling
interface exports to CDS. See also 2.7.2.4, “How Does the Application Uses
the DCE Core Services?” on page 30.

• Use HACMP/6000 for highly available write access

34 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Put the DCE core services, DFS, or any application server into cluster of
systems running IBM High Availability Cluster Multi-Processing/6000
(HACMP/6000) when you need to guarantee write access all times. However,
be aware that upon a takeover, DCE is restarted on the fallback system and
long lasting client/server connections will be interrupted and may not be
able to survive the takeover. What this means is that applications using
context handles will lose their context and have to restart also the client
side. Write access to CDS is needed when applications export and unexport
their interfaces. If they do so, you might be unable to start these
applications when the CDS master directory is unavailable. Write access to
the security registry is only needed to add or change something, for example
accounts. Tickets are granted without write access.

• Plan for a migration

In the case of having an existing cell, two strategies should be considered
when you want to migrate your cell to a newer version of DCE. Depending
on your environment, migration can be done for all the machines in the cell
at the same time, or it can be done one by one. Beyond the new capabilities
provided by the a new version of DCE, you should have in mind that the
availability issues for end users have also to be considered.

Note: Most often when talking about availability of server systems, people think
of redundant hardware or software solutions, such as HACMP, to handle
common hardware failures, such as a disk crash. In real life, however, hardware
failures occur very seldom and do not usually keep system administrators very
busy. Most server outages are caused by trivial accidents that could easily have
been avoided if one had anticipated them. Such trivial things are cables, cable
connectors, power connections, physical access to the system, other applications
running on the same system, or allowing many interactive users on a critical
server system. Thorough planning and installation of a system that runs critical
services must therefore include adequate system-management functions and a
proper physical installation. It is a good idea having DCE server systems locked
up in dedicated system rooms and have no other applications or user accounts
running on them.

Chapter 2. Planning DCE Cells 35

36 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 3. Implementing DCE Cells

In this chapter we extensively describe the installation and configuration of a cell
that is composed of several distinct hardware and software platforms. We
include two versions of AIX (3.2.5 and 4.1.4) and also OS/2 (V3, WARP). In
Chapter 5, “Implementing Various LAN/WAN Scenarios” on page 105, we will
give short-path instructions to quickly install different scenarios. Besides giving
step-by-step installation instructions for different network topologies, we will also
discuss performance and availability issues in that chapter.

After we will have installed and configured a basic DCE cell with all its core
services, we will augment this cell with the DFS (Distributed File System). The
DFS configuration will be explained in the next chapter.

3.1 Overview and Cell Layout
The following DCE and AIX levels are used in the configuration:

• DCE 2.1 for AIX 4.1.4

• DCE 1.3 for AIX 3.2.5

• DCE (BETA 1/21/96) for WARP OS/2 V3

The objective that we achieved is clearly explained in scenario 1 and depicted in
Figure 11. The figure also shows what software is used on what platforms, and
it indicates the distribution of the DCE functions among the machines in the cell.
Besides the minimum required server configuration, we replicate the servers
whose reliability has a high impact on the global functioning of the cell.

Figure 11. Cell with DCE Components and Related Platforms

According to the tasks that have to be executed to achieve our cell objective, we
discuss the following topics:

• Preparing and installing the DCE software for configuration on AIX

 Copyright IBM Corp. 1996 37

• Configuring DCE core servers and clients on AIX

− Configuring the master security server on host ev1

− Configuring the CDS server on host ev1

− Configuring a local DTS server on host ev1

− Configuring DCE clients on ev2

• Preparing and installing DCE code for configuration on OS/2 Warp

• Configuring DCE core clients on OS/2 Warp

− Configuring DCE clients on hosts EV5 and EV6 (OS/2 Warp)

• Configuring server replica on AIX

− Replication of CDS on host ev3 (DCE 1.3)

− Replication of the security server on host ev4 (DCE 2.1)

• Configuring server replica on OS/2 Warp

− Replication of CDS on host EV5 (OS/2 Warp)

• Summary and conclusions

3.2 Preparing for DCE Configuration on AIX
The purpose of this section is to guide you through all the necessary preparation
steps that are required for all scenarios. These are:

 1. Preparing disk space

 2. Checking network name resolution

 3. Checking network routing

 4. Checking the network interfaces

 5. Synchronizing the system clocks

 6. Language Environment Variable

3.2.1 Preparing Disk Space
Installation and configuration of DCE servers and clients require some reserved
disk space that should not be overwritten or used by other components. The
safest way to guarantee independence is to create separate file systems. These
file systems should be created before DCE is installed, meaning before you
execute installp.

We also suggest a careful review of the release notes associated with the
delivered DCE products to determine the disk space requirements for each DCE
component.

 1. Paging space

We suggest that twice the size of the installed RAM or at least 100 MB is
allocated for paging space. Display the current settings using the following
command:

lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd61 hdisk1 rootvg 32MB 76 yes yes lv
hd6 hdisk0 rootvg 32MB 75 yes yes lv

38 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

We have a total of 64 MB for paging space. Since more than 70 percent is
used, we suggest you increase it. To increase both disks to 60 MB each, we
have to add seven partitions of 4 MB:

chps -s’7’ hd6
chps -s’7’ hd61

 2. Disk space for /var/dce

The /var file system is used by the operating system to store various files
that can grow in size and number, such as the print spool and trace files.
On the other hand, DCE also has some files that use more and more disk
space, for instance, core server databases and credential files. It is
important for AIX and DCE not to interfere with each other.

The size of this file system actually depends on what is going to be installed
on the system. The most current requirements for the specific components
can be found in the release notes. Since we had enough disk space, we
decided to use 20 MB on all systems to hold all possible server and client
code:

crfs -v jfs -g’rootvg’ -a size=’40000’ -m’/var/dce’ -A’yes’ -p’rw’
mount /var/dce

 3. Disk space for /var/dce/adm/dfs/cache (not required for DCE!)

Creating this file system is helpful on a DFS client machine to avoid getting
stuck. An incorrectly defined cache could fill up the /var/dce file system, or
files underneath /var/dce could use up space meant to be reserved for DFS
disk cache. The cache to be configured may at most be 85 percent of the
actual disk space available. The following example makes room for a 10 MB
cache on a 12 MB file system.

crfs -v jfs -g’rootvg’ -a size=’24000’ -m’/var/dce/adm/dfs/cache’
-A’yes’ -p’rw’

mount /var/dce/adm/dfs/cache

 4. Other candidates are /var/dce/directory and /var/dce/security :

These directories contain the databases of CDS and security service,
respectively. If they become very large, separate file systems should be
considered.

3.2.2 Checking Network Name Resolution
Some commands expect a hostname as an input parameter. Internally, this
name is used to find the Internet address. Be sure that forward and reverse
translation is correctly working for all involved systems.

 1. Forward resolution. If you use the same hostname for different network
interfaces, be sure the name resolves to the primary interface you want to
be used. To achieve this, the primary interface must be defined first.

hostname
ev1
host ev1
ev1.itsc.austin.ibm.com is 9.3.1.68
host ev2
ev2.itsc.austin.ibm.com is 9.3.1.120

 2. Reverse resolution

Chapter 3. Implementing DCE Cells 39

host 9.3.1.68
ev1.itsc.austin.ibm.com is 9.3.1.68
host 9.3.1.120
ev2.itsc.austin.ibm.com is 9.3.1.120

If it is not working correctly or as expected, it should be fixed. To change the
definitions of the system on which you are running the commands (ev1 in the
above example), you call the following SMIT menu:

smit tcpip
-> Minimum Configuration & Startup

If name resolution of a remote system returns an incorrect value or times out,
you must fix the name server database or the /etc/hosts file if you are not
running a DNS (domain name server).

3.2.3 Checking Network Routing
Before configuring DCE, make sure that all machines in your network
communicate correctly with each other using the TCP/IP protocol. Use the
ping -R -c 1 <hostname> command to test all connections and visualize the
routes that the packets are following.

You can also use the following command to know which route is in use:

netstat -r

Routing tables
Destination Gateway Flags Refcnt Use
Interface
Netmasks:
(root node)
(0)0 ff00 0
(0)0 ffff ff00 0
(root node)

Route Tree for Protocol Family 2:
(root node)
default ev4 UG 1 104 en0
193.1.10 ev3 U 10 47708 en0
127 loopback U 1 3479 lo0
(root node)

Route Tree for Protocol Family 6:
(root node)
(root node)

Be very careful when using the default routing. Setting a default route prevents
the node from doing dynamic routing. The recommendation is to use gated for
routing, which is at present the most sophisticated routing daemon.

40 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Most common source of failure

Incorrect routing is the most common source of failure not only in TCP/IP but
also in DCE. Even if in TCP/IP you get through to another node, you might
experience timeouts in DCE because DCE might first try to use another
interface for which no route is available.

In order for a ping command to succeed, the route must be accurate in both
directions.

3.2.4 Checking the Order of Network Interfaces
The order of the network interfaces determines the way a server’s interfaces or
binding handles are exported to CDS. You can check the network interfaces with
this command:

netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 1536 <Link> 14992 0 14992 0 0
lo0 1536 127 loopback 14992 0 14992 0 0
tr0 1492 <Link> 17654 0 14115 0 0
tr0 1492 9.3.1 ev1 17654 0 14115 0 0
xs0 1500 <Link> 3 0 3 0 0
xs0 1500 192.1.20 ev1 3 0 3 0 0

What is discussed here is not relevant for pure client systems. They do not
export any interfaces.

As you can see, tr0 comes before xs0, which is as it should be. When a server
exports its interfaces, they are exported in the order they are listed with the
netstat command. If a client performed a lookup in CDS, he would get the TCP
binding handle associated with tr0 first. Even though all DCE/DFS clients choose
their server and binding handles at random, we observed that the first handle
was chosen more often. So if you have multiple interfaces which are
considerably different in speed, we recommend to change the order so that the
fastest is on the top of the list. If you have, for instance, a fast FDDI connection
and an Ethernet between the same systems, you probably want to give FDDI a
higher probability of being chosen.

To move an interface from the top to the end of the list, you must delete it with
rmdev -dl and redefine it.

Another option in AIX DCE is the ability to exclude a network interface from ever
being exported into CDS. For example, if you want to only use tr0, you must set
up an environment variable in the /etc/environment file as shown below before
you configure any server:

..
RPC_UNSUPPORTED_NETIFS=xs0
export RPC_UNSUPPORTED_NETIFS
..

If you exclude xs0 anyway, the order returned by the netstat command is not
relevant in this case.

Chapter 3. Implementing DCE Cells 41

Exclude WAN interfaces

We recommend always excluding the WAN interfaces (X.25 or SLIP). You can
always rely on the fast LAN interfaces and TCP/IP routing mechanisms. If a
DCE service call actually involves two nodes connected over a WAN
connection, it will find its way thanks to IP routing. In this way DCE never
tries to connect over a specific WAN connection, but leaves the decision up
to IP, which might have sophisticated routing selection mechanisms in place
to find the fastest available route.

DCE, by itself, does not have any inherent algorithms. If you do not exclude
these interfaces in DCE, you are more likely to experience timeouts because
DCE might (randomly) choose a network link that is temporarily unavailable.

Even if you do not have redundant network links right now, you might put a
sophisticated router network in place later on. It is much easier to
implement if you do not have to get rid of unwanted binding information in
the whole CDS.

3.2.5 Synchronizing the System Clocks
DCE services rely on highly synchronized time. If, for instance, the clock value
of a client system requesting a ticket differs too much from the security server’s
clock, no ticket is granted. The first time this may happen is when you configure
a DCE client.

It is very important that you start with synchronized clocks. Issue the setclock
command on all systems to get one specific system’s clock value, and use that
on all other systems. For instance, to set the clock on ev2 according to ev1’s
clock, issue the following command on ev2:

setclock ev1

Run setclock on DCE clients

It is good practice to run a setclock-equivalent command on DCE client
systems that are regularly powered-off over nights, weekends, vacations, and
so on before you start DCE on them.

3.2.6 Language Environment Variable
Problems can arise during installation and/or configuration if the LANG
environment variable is not set to C or En_US. Some shell scripts in AIX DCE
have hard-coded checks on English-language character strings. Also, our shell
scripts provided on the diskette have not been tested in another language
environment.

3.3 Installing the DCE Code on AIX
Installing DCE is the procedure of loading the software onto the harddisk. Call
smit installp and choose the appropriate program objects to install.

The point we want to make here is that installation is a separate step that must
be executed after all preparation steps, particularly after all the necessary file

42 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

systems have been created and mounted. If you have not done this yet, go back
to 3.2, “Preparing for DCE Configuration on AIX” on page 38.

Check with the release notes whether certain PTFs are required.

If you are upgrading DCE in an existing cell, you do not have to unconfigure and
reconfigure the cell. Perform the following steps:

 1. Stop all DCE services

 2. Install the new DCE release for all DCE components

 3. Reboot the machine

 4. Restart DCE

The DCE configuration and the databases are preserved. However, we
recommend you back up all your DCE databases prior to the upgrade. See 6.3,
“Backup/Restore and Other Housekeeping Tasks” on page 166 for details.

3.4 Configuring the Initial DCE Servers and Clients on AIX
This section describes how to initialize a cell with the core services. Here are
the steps to follow:

 1. Configure the security server

 2. Configure the CDS server

 3. Configure the DTS server

Installation of all basic core components will be done on host ev1. We use the
cell name itsc.austin.ibm.com, which is also the name of the IP domain.

We could use both the ASCII interface (smitty) or the graphical interface for SMIT
to configure the components. For documentation reasons, we chose the ASCII
interface to perform all client and server configurations on AIX. You can
navigate through the different SMIT screens step by step, or you can call SMIT
with a fastpath, which brings you automatically to the correct configuration
panel.

Most configurations can also be executed from the command line with the mkdce
command. To get help on this command, just call it without arguments or call
the DCE man page in the following way (on AIX 4.1):

dceman mkdce
mkdce

Purpose

 Configures DCE components.

Format

 mkdce [-n cell_name] [-h dce_hostname] [-a cell_admin] [-s
 security_server] [-c cds_server]
 [-P min_principal_id] [-G min_group_id] [-O min_org_id] [-M
 max_UNIX_id] [-p profile]
 [-t time_courier_role] [-R] [-r sec_rep_name] [-o full | -o local | -o
 admin -i machine identifier]
 component ...

Chapter 3. Implementing DCE Cells 43

3.4.1 Configuring the Initial Security Server on AIX
The first role that has to be configured in a cell is the initial security server.
Later, it can be replicated on another platform. Call SMIT and follow the
indicated path, or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> SECURITY Server

-> 1 primary
(fastpath = mkdcesecsrv)

� �
SECURITY Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com>
* Cell ADMINISTRATOR’s account [cell_admin]
Machine’s DCE HOSTNAME [ev1]
PRINCIPALS Lowest possible UNIX ID [100]
GROUPS Lowest possible UNIX ID [100]
ORGANIZATION Lowest possible UNIX ID [100]
MAXIMUM possible UNIX ID [32767]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Selecting Enter=Do starts the configuration of the master security server. You
will notice by the progress list that besides the sec_srv, two additional
components, the RPC Endpoint Mapper and the security client sec_cl are
configured. In reality, the sec_cl is included in the dced process, which
encompasses also the endpoint mapper function, while the sec_srv is
instantiated in the secd daemon process. The following list shows the progress
report during the configuration:

Password to be assigned to initial DCE accounts:
Re-enter password to be assigned to initial DCE accounts:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully
Configuring Security Server (sec_srv)...
Password must be changed!
Configuring Security Client (sec_cl)...
Security Client (sec_cl) configured successfully
Security Server (sec_srv) configured successfully

Current state of DCE configuration:
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

The following command has the same effect:

mkdce -n itsc.austin.ibm.com sec_srv

44 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

3.4.2 Configuring the Initial CDS Server on AIX
At this point, you can start to configure a CDS server function. This can be done
on the same machine as the security server machine or on another machine in
your network. If you configure the CDS server on another machine, you have to
make sure that the route between the security server machine and the machine
where you are going to configure the CDS server are set up correctly. Call SMIT
and follow the indicated path or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> CDS (Cell Directory Service) Server

-> 1 initial
(fastpath = mkcdssrv)

� �
CDS (Cell Directory Service) Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com>
* SECURITY Server [ev1]
* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.:/lan-profile>
Machine’s DCE HOSTNAME [ev1]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

The CDS server will reside on the same platform as the security server. An
Enter=Do starts the configuration. You will notice in the progress report that
besides cds_srv, the CDS client, cds_cl, also gets configured. The cds_srv
function is contained in the cdsd daemon, while the cds_clerk is part of the CDS
advertiser process, cdsadv. This is the progress list:

Enter password for DCE account cell_admin:

Password must be changed!
Configuring Initial CDS Server (cds_srv)...
Configuring CDS Clerk (cds_cl)...
Waiting (up to 2 minutes) for cdsadv to find a CDS server.
Found a CDS server.

Initializing the namespace ...
Modifying acls on /.:
Creating /.:/cell-profile
Exporting cds-clerk and cds-server attributes
Modifying acls on /.:/subsys/dce/sec
Modifying acls on /.:/cell-profile
Modifying acls on /.:/lan-profile
Modifying acls on /.:/hosts
Modifying acls on /.:/sec
Modifying acls on principal ...
Modifying acls on principal/krbtgt ...
Modifying acls on principal/hosts/ev1 ...
Modifying acls on group ...

Chapter 3. Implementing DCE Cells 45

Modifying acls on group/subsys ...
Modifying acls on group/subsys/dce ...
Modifying acls on org ...
Modifying acls on policy ...
Modifying acls on /.:/sec/replist
Modifying acls on /.:/ev1_ch

Initial CDS Server (cds_srv) configured successfully
CDS Clerk (cds_cl) configured successfully
Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

This CDS server configuration could have been done via the command line:

mkdce cds_srv

If you wanted to install the CDS server on another system in the same LAN, you
could run this command:

mkdce -n itsc.austin.ibm.com -s ev1 cds_srv

3.4.3 Configuring the DTS Server
DCE cell functioning is highly reliant on time. It is advisable to configure enough
″time distributors″ in the cell. We will configure a local DTS role on ev1. Call
SMIT and follow the indicated path, or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DTS (Distributed Time Service) Server

(fastpath = mkdtssrv)

� �
DTS Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Type of SERVER local +
Type of COURIER noncourier +

* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.:/lan-profile]
Machine’s DCE HOSTNAME [ev1]� �

The following shows the progress list:

Enter password for DCE account cell_admin:
Configuring Local DTS Server (dts_local)...
Local DTS Server (dts_local) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server

46 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

Normally, we need to have at least three DTS server machines per LAN in a cell.
Remember, you cannot configure a DTS server on a machine where a DTS client
is already configured; you first have to unconfigure the DTS client and then
configure the DTS server.

This DTS server configuration could also have been done via the command line:

mkdce dts_local

3.4.4 Configuring Multiple Servers at the Same Time
We configured all servers, one after the other, on the same platform. When
using the mkdce command from the command line, you can specify all servers on
the same machine at once:

mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts_local

3.4.5 Configuring an AIX DCE Client
As we have seen, when we configure a DCE core server, the client part is
automatically configured. Other clients must be explicitly configured.

In DCE 1.3 and 2.1, we have the ability to split the configuration process; The part
that requires write access to CDS and the security server can be done centrally
by the cell administrator. In fact this step prepares the server machine(s) to
accept new clients machine in the cell.

The system administrator of a client machine need not know cell_admin’s
password to configure his machine into the DCE cell.

The split configuration feature also includes split unconfiguration. This actually
enables large-scale, central DCE administration.

We propose two methods here. You can choose the method you want:

• Full configuration

This method performs all configuration steps only on the client machine,
which requires cell_admin’s password. This means the DCE administrator
has to do everything or give away the password. As long as all machines
are in the same (trusted) LAN, the cell_admin can remotely log in to each
client and perform the configuration.

• Split configuration

This method is very helpful. You will not be constrained with space and
time. The cell_admin can preconfigure DCE client machines. Each DCE
client machine can be configured simply by a local system administrator at
their convenience without knowing cell_admin’s password.

Finally, we discuss our experiences with the split configuration.

Chapter 3. Implementing DCE Cells 47

3.4.5.1 Full Configuration Method
We assume you are logged in to the machine where you will configure DCE
clients. Call SMIT and follow the indicated path, or call SMIT with the fastpath
name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Clients
-> 1 full configuration for this machine

(fastpath = mkdceclient)

� �
Full DCE/DFS Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com]
* CLIENTS to configure [rpc sec_cl cds_cl dts_cl]
* SECURITY Server [ev1]
CDS Server (If in a separate network) [ev1]

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.:/lan-profile]
Client Machine DCE_HOSTNAME [dce_ev2]

The following fields are used
ONLY if a DFS client is configured

* DFS CACHE on disk or memory? [disk] +
* DFS cache SIZE (in kilobytes) [10000]
* DFS cache DIRECTORY (if on disk) [/var/dce/adm/dfs/cache]� �

Password for DCE account cell_admin:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Password must be changed!
Security Client (sec_cl) configured successfully

Password must be changed!
Configuring CDS Clerk (cds_cl)...
Waiting (up to 2 minutes) for cdsadv to find a CDS server.
Found a CDS server.

Modifying acls on hosts/dce_ev2
Modifying acls on hosts/dce_ev2/self
Modifying acls on hosts/dce_ev2/cds-clerk
Modifying acls on hosts/dce_ev2/profile
Modifying acls on /.:/lan-profile

CDS Clerk (cds_cl) configured successfully
Configuring DTS Clerk (dts_cl)...
DTS Clerk (dts_cl) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
dts_cl COMPLETE DTS Clerk
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue

This following command has the same effect:

48 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

mkdce -n itsc.austin.ibm.com -h dce_ev2 -s ev1 all_cl

At this point, all DCE core clients are configured. See Chapter 4, “Implementing
DFS” on page 75 to understand how to configure a DFS server machine and a
DFS client machine.

3.4.5.2 Split Configuration Method
With this type of configuration, we have to consider two steps:

• What is to be done by cell_admin?

• What is to be done by a local system administrator?

Administrator Part: The following are the tasks that need to be performed by
the cell_admin from any machine already configured in the DCE cell. We
assume we are on machine ev1 and want to preconfigure the DCE client
machine, ev2:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Clients
-> 3 admin only configuration for another machine

(fastpath = mkdceclient)

� �
Administrator DCE Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CLIENTS to configure [sec_cl cds_cl] +
* Cell ADMINISTRATOR’s account [cell_admin]
Client Machine DCE_HOSTNAME [dce_ev2]

* Client Machine IDENTIFIER [ev2]
* LAN PROFILE [/.../itsc.austin.ibm.com/lan-profile]

� �

Enter password for DCE account cell_admin:
Configuring Security Client (sec_cl) for dce_host dce_ev2 on
machine ev2 ...

Password must be changed!
Completed admin configuration of Security Client (sec_cl) for
dce_host dce_ev2 on machine ev2

Configuring Security Client (sec_cl) for dce_host dce_ev2 on
machine ev2 ...

Completed admin configuration of Security Client (sec_cl) for
dce_host dce_ev2 on machine ev2

Configuring CDS Clerk (cds_cl) for dce_host dce_ev2 on
machine ev2 ...

Modifying acls on hosts/dce_ev2
Modifying acls on hosts/dce_ev2/self
Modifying acls on hosts/dce_ev2/cds-clerk
Modifying acls on hosts/dce_ev2/profile
Modifying acls on /.:/lan-profile

Completed admin configuration of CDS Clerk (cds_cl) for
dce_host dce_ev2 on machine ev2

Cell administrator’s portion of client configuration has completed

Chapter 3. Implementing DCE Cells 49

successfully. Root administrator for ev2 should now
complete the client configuration on that machine.

Press Enter to continue

You must specify two machine names, which was introduced with DCE 1.3:

� �
...
Client Machine DCE_HOSTNAME [dce_ev2]

* Client Machine IDENTIFIER [ev2]
...� �

The DCE_HOSTNAME is the name under which the machine is known in DCE. It
is used for the machine principal name and the CDS entries. The IDENTIFIER is
the TCP/IP hostname. You can use the same name for both entries. If the DCE
hostname is not specified, the TCP/IP hostname is used. Pay attention to the
output display of the command, and notice what DCE hostname is generated to
make sure you use the same when you configure the client part. However, we
recommend always explicitly specifying both names (-h flag and -i flag) to avoid
problems. See also 7.1.1.2, “Split Configuration” on page 242.

Only sec_cl and cds_cl can be preconfigured with this method. Neither dts_cl
(for DTS client) nor dfs_cl (for DFS client) is proposed in the menu, but it is not a
problem. They can be configured on the DCE client machine by the local system
administrator without having to specify cell_admin’s password.

The same can be achieved with following command (the new flags are
highlighted):

mkdce -o admin -h dce_ev2 -i ev2 sec_cl cds_cl

At this point, the task of cell_admin is finished. The local system administrator
on the DCE client machine can configure their machine at their own pace.

Local Part: The following shows how the local system administrator needs to
configure their machine as a DCE client. Call SMIT and follow the indicated
path, or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Clients
-> 2 local only configuration for this machine

(fastpath = mkdceclient)

50 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

� �
Local DCE/DFS Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com]
* CLIENTS to configure [rpc sec_cl cds_cl dts_cl]
* SECURITY Server [ev1]
CDS Server (If in a separate network) [ev1]

* Client Machine DCE_HOSTNAME [dce_ev2]
The following fields are used
ONLY if a DFS client is configured

* DFS CACHE on disk or memory? [disk] +
* DFS cache SIZE (in kilobytes) [10000]
* DFS cache DIRECTORY (if on disk) [/opt/dcelocal/var/adm/dfs/cache]� �

On this screen, you can select all clients. After pressing Enter, the system
displays:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Security Client (sec_cl) configured successfully on the
local machine

Configuring CDS Clerk (cds_cl)...
CDS Clerk (cds_cl) configured successfully on the
local machine

Configuring DTS Clerk (dts_cl)...
DTS Clerk (dts_cl) configured successfully on the
local machine

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
dts_cl COMPLETE DTS Clerk
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue

At this point, all clients are configured. You do not have to provide cell_admin’s
password to configure the DCE client machine.

The same can be achieved with the following command (the new flags are
highlighted):

mkdce -o local -n itsc.austin.ibm.com -s ev1 -h dce_ev2 all_cl

3.4.5.3 Experience with Split Configuration
This feature is easy to use and understand. It is very useful to administer DCE
client machine configurations in a large DCE cell. Owners of client workstations
can request DCE preconfiguration from the DCE administrator who does the
admin part and lets the requester know what was defined. The requester can
then configure their own workstation into the cell. The procedure could also be
automated in a large DCE cell.

Chapter 3. Implementing DCE Cells 51

When we used the new feature, we experienced one error situation. We did not
specify the DCE hostname. The server part installation was as follows:

mkdce -o admin -i ev8 sec_cl cds_cl
Enter password for DCE account cell_admin:
Configuring Security Client (sec_cl) for dce_host ev8.itsc.austin.ibm.com on
machine ev8.itsc.austin.ibm.com ...

Password must be changed!
Completed admin configuration of Security Client (sec_cl) for
dce_host ev8.itsc.austin.ibm.com on machine ev8.itsc.austin.ibm.com

Configuring Security Client (sec_cl) for dce_host ev8.itsc.austin.ibm.com on
machine ev8.itsc.austin.ibm.com ...

Completed admin configuration of Security Client (sec_cl) for
dce_host ev8.itsc.austin.ibm.com on machine ev8.itsc.austin.ibm.com

Configuring CDS Clerk (cds_cl) for dce_host ev8.itsc.austin.ibm.com on
machine ev8.itsc.austin.ibm.com ...

Modifying acls on hosts/ev8.itsc.austin.ibm.com
Modifying acls on hosts/ev8.itsc.austin.ibm.com/self
Modifying acls on hosts/ev8.itsc.austin.ibm.com/cds-clerk
Modifying acls on hosts/ev8.itsc.austin.ibm.com/profile
Modifying acls on /.:/lan-profile

Completed admin configuration of CDS Clerk (cds_cl) for
dce_host ev8.itsc.austin.ibm.com on machine ev8.itsc.austin.ibm.com

Cell administrator’s portion of client configuration has completed
successfully. Root administrator for ev8.itsc.austin.ibm.com should now
complete the client configuration on that machine.

Nothing wrong is reported and everything seems correct, but the client will not
install correctly. Since the DCE hostname was not specified, the TCP/IP name
was taken which resolves into a full domain name.

The local part of the client installation on ev8 then failed with an invalid
password:

mkdce -n /.../itsc.austin.ibm.com -s ev7 -o local sec_cl cds_cl
Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Sorry. Password Validation Failure. - Invalid password (dce / sec)
Cannot authenticate as DCE user hosts/ev8/self
Before you reconfigure, your cell administrator must reset
the password for DCE user hosts/ev8/self.

Current state of DCE configuration:
rpc COMPLETE RPC Endpoint Mapper
sec_cl PARTIAL Security Client

The DCE client hostname was omitted (-h ev8). Here, the configuration
procedure generated ev8 for the DCE hostname and tried to authenticate as
principal hosts/ev8/self which does not exist. The local hostname was used,
which had been set without the domain name.

We recommend to always specify the DCE hostname for both sides of the split
configuration even if it is the same as the TCP/IP hostname.

52 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

3.5 Installing and Preparing for DCE Configuration on OS/2 Warp
The following steps are required for a successful installation of DCE on OS/2
Warp.

 1. Installing the DCE code

 2. Verifying the MPTS installation and customization

 3. Checking network name resolution

 4. Checking network routing

 5. Checking the network interfaces

 6. Synchronizing the system clocks

In this scenario the OS/2 Warp machine will only be used as a client.

3.5.1 Installing the DCE Code
The DCE for OS/2 Warp version that we used was not a release level. It was
built on 01/21/96, and it differs quite a lot from the original DCE Warp Beta
release distributed in 1995.

The installation of the DCE code is very simple and depends on the medium on
which the code is distributed.

• If the code is delivered on a CD-ROM, simply point to the CD-ROM by its
drive letter.

• If the code is available on an NFS server, it will be necessary to set up
TCP/IP in order to be able to mount the directory with the DCE installation
code and point to the correct directory.

• An equivalent action is required if the code is available on a LAN Server
server.

While pointing to the directory with the installable code, enter the command
install and follow the self-explanatory Presentation Manager (PM) panels. It is
best to accept the update of the CONFIG.SYS file; otherwise it has to be done
manually afterwards. Finally, the procedure will present you a screen with
component selections.

Depending on the intentions for this platform, selections have to be made. We
decided to install the code for all possible components (DFS client included).
This installation is only an unpacking of the code; NO configuration is done yet.
The total package (without samples and books) requires about 50 MB of disk
space. This may become smaller for the generally available code.

Finally, after the selections for the target drives, the install push button activates
the copy/download of the DCE package components. After the completion of the
download, it will be necessary to boot the system.

3.5.2 Verifying the MPTS Installation and Customization
The IBM DCE for OS/2 Warp supports TCP/IP and NetBIOS protocols. We use
TCP/IP to be able to communicate with the AIX machines. However, you could
choose NetBIOS between two OS/2 machines. The DCE protocol sequences for
NetBIOS are ncadg_nb_dgram (connectionless) and ncacn_nb_stream
(connection-oriented).

Chapter 3. Implementing DCE Cells 53

Before you install DCE, the network must be properly configured and working:

 1. Install MPTS (Multi-Protocol Transport Service) for OS/2 Warp
 2. Configure your network adapter and protocol stacks in MPTS
 3. Configure TCP/IP

The MPTS installation is done, for example, from diskettes with the A:INSTALL
command. This installs an MPTS icon on the desktop. Double-click this icon to
configure MPTS.

In the Configure window (Figure 12 below), you need to select the LAN adapters
and protocols (LAPS) to configure the network adapter and protocol drivers you
use. Be sure to select the TCP/IP protocol. This is done in the LAPS
Configuration window. Back in the Configure window, you must select the
Socket MPTS Transport Access . Again, be sure to select TCP/IP. Then, click on
Configure and eventually on the Exit buttons.

Figure 12. MPTS Configure Window

After executing this task, another system boot will be required to complete the
MPTS update and to unlock locked files.

To configure TCP/IP, double-click on the TCP/IP folder and on the TCP/IP
Configuration icon within that folder. This brings up the TCP/IP Configuration
window with a notebook-like interface to fill in the different configuration
parameters. On the Network page, fill in the IP address and the subnet mask.
On the Routing page, fill in at least a default route by pushing the Insert Before
button. On the Services page one, fill in the hostname (put EV5), the domain
name and domain name server address. Then, exit the program and test the
network, for example, with the ping command.

54 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

3.5.3 Checking Network Name Resolution
During the configuration of the OS/2 Warp machine, the platform will become
part of the cell itsc.austin.ibm.com with master security and CDS servers on host
ev1. Assuming that we are going to configure EV5 now, we must have a correct
forward and reverse name resolution between EV5 and ev1.

Forward Resolution: Use the hostname and host commands to check out the
forward resolution of symbolic names to all involved systems:

� �
[<ev5>-C:]hostname
ev5.itsc.austin.ibm.com

[<ev5>-C:\]host ev1
ev1.itsc.austin.ibm.com is 9.3.1.68

[<ev5>-C:\]host ev3
ev3.itsc.austin.ibm.com is 9.3.1.122� �

Reverse Resolution: Using an IP address as apposed to a symbolic name allows
us to check the reverse resolution.

� �
[<ev5>-C:]host 9.3.1.68
9.3.1.68 is ev1.itsc.austin.ibm.com

[<ev5>-C:\]host 9.3.1.122
9.3.1.122 is ev3.itsc.austin.ibm.com

[<ev5>-C:\]host 9.3.1.124
9.3.1.124 is ev5.itsc.austin.ibm.com� �

3.5.4 Checking Network Routing
Before configuring host EV5, it is also required to verify the connectivity with the
master hosts of the cell and the correct setting of IP routes.

Checking Connectivity to ev1: This can be done in a very simple way with the
ping command.

� �
.[<ev6>-C:]ping ev1
PING ev1.itsc.austin.ibm.com: 56 data bytes
64 bytes from 9.3.1.68: icmp_seq=0. time=0. ms
64 bytes from 9.3.1.68: icmp_seq=1. time=0. ms
64 bytes from 9.3.1.68: icmp_seq=2. time=0. ms
64 bytes from 9.3.1.68: icmp_seq=3. time=0. ms� �

We can also use the netstat command to verify routes and interfaces. We must
make sure we have at least a default route set.

� �
[<ev6>-C:]netstat -r

destination router refcnt use flags snmp intrf
metric

 default 9.3.1.74 0 0 U -1 lan0
9.3.1.0 9.3.1.125 1 627 U -1 lan0� �

Chapter 3. Implementing DCE Cells 55

3.5.5 Checking the Network Interfaces
Using the -a (address) option of the netstat command allows you to inspect the
interfaces.

� �
[<ev6>-C:]netstat -a
addr 9.3.1.124 interface 0 mask ffffff00 broadcast 9.3.1.255� �

OS/2 Warp platform EV5 has one interface with address 9.3.1.124.

3.5.6 Synchronizing the System Clocks
Time in DCE is based on the Coordinated Universal Time (UTC). For the local
time representation, a Time Difference Factor (TDF) is applied. The latter is
determined by the TZ environment variable. Since we are in the Central Time
zone of the U.S., we set this variable in the CONFIG.SYS file as follows:

SET TZ=cst6edt

Reboot the system for the correct environment to be in effect.

The clock of the OS/2 Warp system has to be verified before starting the
configuration process. This can happen with the time command:

[<ev5>-C:]time
Current time is: 17:35:42.41
Enter the new time: < Enter NEW TIME

3.6 Configuring DCE Clients on OS/2 Warp
We intend to use Hosts EV5 and EV6 as DCE clients. After a correct installation
of the DCE software and going through all the preparation steps as outlined in
3.5, “Installing and Preparing for DCE Configuration on OS/2 Warp” on page 53,
we are ready to configure DCE on the OS/2 Warp platforms. After discussing the
use of the GUI, we will show how the same configuration can be achieved with
the command line interface (CLI).

3.6.1 DCE Client Configuration Using the GUI
During the installation of the DCE Software, a DCE icon has been placed on the
desktop. Opening this icon shows a submenu, which among other options
presents a Configure DCE icon, as shown in Figure 13.

Figure 13. DCE Menu Window

56 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Double-clicking on this icon activates the OS/2 DCE configuration. A similar
result can be obtained by starting the program optdcelocalbincfgdceg.exe.

The first screen to be presented is the IBM logo, as shown in Figure 14.

Figure 14. Configuration Logo Window

On this screen, we click on the Continue button, and the system starts to query
its current configuration. After a short time, the following selection panel is
shown.

Figure 15. Select Configuration Path Window

We have the possibility to select different configuration paths. The tailored path
gives you a notebook-like interface with a set of pages dedicated to each DCE
component. In general, the Easy path will do it, and that’s the one we select in
Figure 15 above.

This will bring up the Specify Configuration Response File Names window as
shown in Figure 16 on page 58.

Chapter 3. Implementing DCE Cells 57

Figure 16. Specify Configuration Response File Name Window

There is the opportunity to save a response file so that you can store different
configurations and revert back to them when needed. We did not use a
response file and therefore left the input area empty. Then click on the OK
button, which will bring up the Specify Setup Parameters window shown in
Figure 17 below.

Figure 17. Specify Setup Parameters Window

Enter the cell name and the DCE host name. In general, take the TCP/IP name
for the DCE hostname. The other options indicate when and how, the configured
components will be started. Then click on the OK button.

58 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 18. Specify Protocols and Component Selection Option Window

In the upcoming Specify Protocols window we select both TCP/IP protocols, and
in the Specify Component Selection Option window (Figure 18), we will select
Select components to configure . This option gives us full control of all steps.
Then click on the OK button to proceed to the Select Security Components
window shown in Figure 19 below.

Figure 19. Select Security Components Window

Select the DCE security Client, and click on the OK button.

Chapter 3. Implementing DCE Cells 59

Figure 20. Identify Security Server Window

Identify the security server via hostname or IP address. For this, ev1 would be
sufficient if the network name resolution is set up correctly by using either the
Domain Name Service or the hosts file. We have used the fully qualified host
name in the Identify Security Server window in Figure 20.

Figure 21. Select Directory Components Window

Next, select the CDS Client component in the upcoming Select Directory
Components window in Figure 21. Currently we are not interested in the Global
Directory Agent and therefore have not selected it.

60 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 22. Identify Directory Server Window

In Figure 22 we need to specify the CDS server configured previously. We use
the option to fill in the IP host name of ev1.

Figure 23. Select DFS Components Window

Although the DFS server has not yet been configured, for the ease of the
preparation, we already request a DFS client. This is done in the Select DFS
Components Window as shown in Figure 23. It will configure a dfsd daemon and
will add a driver into the config.sys file. After start-up, during system boot, the
driver will act as an extension of the Warp kernel.

The Select an Event Management window shown in Figure 24 allows us to
specify whether or not this system will forward events to an Simple Network
Management Protocol (SNMP) manager.

Figure 24. Select an Event Management Window

Chapter 3. Implementing DCE Cells 61

We chose not to use event management for this configuration. After proceeding
with the OK button, we get to the DTS configuration.

Figure 25. Select DTS Component and Server Type Window

We have the possibility to configure a DTS client or server. We selected a DTS
Local server (in the upper-left window of Figure 25), with a Non-courier role (in
the lower-right window). A local DTS non-courier server only has a responsibility
in the LAN.

Figure 26. Select a Time Provider Window

To use the OS/2 internal clock, we selected the DTS NULL time provider option
in Figure 26.

62 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 27. Specify Clock Synchronization Window

As mentioned in 3.5.6, “Synchronizing the System Clocks” on page 56,
synchronization of the clocks is very important in a DCE cell. A time drift of
more than five minutes will prevent the platform from configuring. You can
import the time of your security server with the panel shown in Figure 27.

Figure 28. Select Configuration Type Window

Here we have the opportunity to specify a full configuration or a local
configuration. The local requires an anticipated administrative configuration by
cell_admin. We go with the full configuration because EV5 has not been
preconfigured into DCE.

Figure 29. Identify the Cel l Administrator Window

Because we selected a full configuration, we are required to provide the cell
administrator’s name and password, as shown in Figure 29 above. Now we are

Chapter 3. Implementing DCE Cells 63

ready to execute the configuration with the parameters we have set. Clicking
the OK button brings up the Run Configuration window.

Figure 30. Run Configuration Window

Clicking on Run configuration, shown in Figure 30, will start the configuration
process.

Figure 31. Display Configuration Progress Window

Finally, the configuration started and after a few minutes, the task result was
presented as completed successfully. This is shown in Figure 31.

3.6.2 DCE Client Configuration Using the Command Line Interface
In order to achieve the same DCE and DFS client configuration as with the GUI
above, issue the following command:

[C:] cfgdce cds_c sec_c dts_l dfs_c -o full -h EV5 -c tcpip -n itsc.austin.
ibm.com -s h.ev1 -t h.ev1 -S courier -T DTSnull
Gathering current configuration information...
0x1131505A: The cell administrator password is required for configuration.
0x1131505C:
Type the cell administrator password:

64 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Configuring DCE...
Verifying data for the configuration or unconfiguration request.
All data needed for the request has been verified.
Configuration of DCE Host, EV5, will now begin.
Configuring the Security client...
Security client configuration is complete.
Configuring the Directory client...
Directory client configuration is complete.
Configuring the Distributed Time Service...
Distributed Time Service configuration is complete.
Configuring the Distributed File Service client...
Distributed File Service client configuration is complete.
Configuring the time provider...
Time provider configuration is complete.
Gathering component state information...

DCE Component Summary for Host: EV5
Component Configuration State Running State

Security client Configured Running
Directory client Configured Running
DTS Local server Configured Running
DFS client Configured Running

The DCE component summary is complete.
Configuration has completed.

The cfgdce -? command displays help information.

3.7 Configuring Core Server Replica on AIX
In this part of the chapter we will complete our cell design by installing replicas.
The reason for installing replicas can be manifold, especially in cells, which
encompass WAN connections. However, in all cells it is also a matter of
reliability and safety.

DCE core services that can be replicated are the CDS server, the security server
and the DTS server. For the DTS server, the term replication is not appropriate;
we would rather use the term redundancy.

Replication increases availability and load-balancing, but you should know that
DCE replication has its limitations; replicated resources are read-only. Write
access might be unavailable at times when a primary server fails.

In this section we discuss:

• Configuring a CDS replication server

• Configuring a security replication server

3.7.1 Replicating a CDS Server
The following are the steps to follow on the machine where you want to add
another CDS server. Our example uses ev3. The DCE version installed on ev3
is DCE 1.3 on AIX 3.2.5. We start the additional configuration with SMIT:

Chapter 3. Implementing DCE Cells 65

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> CDS (Cell Directory Service) Server

-> 2 additional
(fastpath = mkcdssrv)

� �
CDS (Cell Directory Service) Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com>
* SECURITY Server [ev1]
Initial CDS Server (If in a separate network) []

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.:/lan-profile]
Machine’s DCE HOSTNAME [ev3]� �

Selecting Enter=Do starts the configuration of the additional CDS server with the
following progress list:

Enter password for DCE account cell_admin:

Password must be changed!
Configuring Additional CDS Server (cds_second)...

Modifying acls on ev3_ch
Additional CDS Server (cds_second) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_second COMPLETE Additional CDS Server
dts_cl COMPLETE DTS Clerk
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue

The previous display shows that we now have an additional CDS server on this
machine (ev3). The component is called cds_second.

Since ev3 already was a DCE client, the following command would have had the
same effect:

mkdce cds_second

At this point, even if you have configured the machine to become a CDS
replication server, you have not achieved any replication of CDS data, with the
exception of the cell root (/.:) directory and its content (the leaf objects).

You have to manually replicate (sub)directories. The word replica has a special
meaning with respect to the CDS; the first instance of a (sub)directory is already
called a replica, and each further copy of this directory object is another replica.
The read/write copy is called the master replica. The replication of the CDS is
distributed, which means that the master replicas of different directories may be
in several distinct clearinghouses. This opens a way for complex setups.

66 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

We decided to keep this replication straightforward and to replicate the entire
CDS master structure into the new clearinghouse on ev3. A shell script has
been written to fulfill this task. This script carries the name copy_ch.

ev1::/-> copy_ch -h
Usage: copy_ch [-m] -s <source CH> -t <target CH> [-h]

Version 2.1

[-m] Will define master replicas on the target
-s <Source clearinghouse> Can contain master and/or read-only replicas
-t <Target clearinghouse> Will contain R/O replicas unless -m is given
[-h] help

Example:

copy_ch -m -s ev7_ch -t new_ch

This example creates all replicas of /.:/ev7_ch in /.:/new_ch, no
matter whether they are master or read-only replicas. When you use
the -m flag, every master replica found in /.:/ev7_ch is established
as a master replica in the target clearinghouse (/.:/new_ch), thereby
relocating the master role.

There may be more clearinghouses defined in the cell. This command
correctly redefines the replica set of every directory of which
/.:/ev7_ch has an instance. The target clearinghouse does not need
to be empty; therefore the command can also be used to merge the
source clearinghouse into the target clearinghouse.

The copy_ch command basically performs three steps, using the dcecp command
now offered by DCE 2.1. It uses Korn shell and some UNIX tools; therefore it
only runs on AIX DCE 2.1 machines. However, it can copy or move
clearinghouses between any platform. It could be developed completely in the
Tcl language, which would provide the advantage of enabling portable code for
all platforms. The three steps are:

 1. The script first collects the names of all (sub)directories in the original
clearinghouse and puts them in a table.

 2. For each existing (sub)directory, a create replica is done into the new
clearinghouse.

 3. For each (sub)directory (or replica), the replica set is redefined, no matter
how many clearinghouses there are. This step is achieved with the
cdscp set directory to new epoch master command, which also implicit ly
invokes a skulking (update of the read-onlys).

This script is on the diskette accompanying this redbook. It is well documented,
and details can be seen in the script file.

3.7.2 Replicating the Security Server
Security servers have to be replicated on a system with the same or higher DCE
software level. This is something that we found out by trying first to replicate on
the ev3 system with AIX 3.2.5 and DCE1.3. By using the dcecp command, we can
find out that the currently active DCE registry on ev1 is on level 1.1. A
replication on a DCE 1.3 would imply a downgrade of the registry, and this is not
possible.

Chapter 3. Implementing DCE Cells 67

dcecp> registry show
{deftktlife +0-10:00:00.000I-----}
{hidepwd yes}
{maxuid 32767}
{mingid 100}
{minorgid 100}
{mintktlife +0-00:05:00.000I-----}
{minuid 100}
{version secd.dce.1.1}

Replication of the security server is really making a new copy of the existing
security databases. We will build this new security server on the ev4 system
with AIX4.1.4 and DCE 2.1.

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> SECURITY Server

-> 2 secondary
(fastpath = mkdcesecsrv)

� �
SECURITY Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com>
* Cell ADMINISTRATOR’s account [cell_admin]
* REPLICA name [ev4]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* LAN PROFILE [/.:/lan-profile]
Machine’s DCE HOSTNAME [ev4]� �

Selecting Enter=Do starts the configuration of the additional security server with
the following progress list:

Enter password for DCE account cell_admin:

Password must be changed!

Configuring Security Server (sec_srv)...

Modifying acls on /.:/sec/replist
Modifying acls on /.:/subsys/dce/sec
Modifying acls on /.:/sec
Modifying acls on /.:
Modifying acls on /.:/cell-profile

Security Server (sec_srv) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Replica)

Press Enter to continue

This following command has the same effect:

68 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

mkdce -R -r ev4 -n itsc.austin.ibm.com -s ev1 sec_srv

The security server on this machine is marked (Replica). If the security master
server goes down, you can continue to log in to the cell, but it may take a long
time. Access to the security servers is randomly selected, and some calls are
directed toward the unavailable server because its bindings are still exported or
cached in CDS. In this case, a client will experience a time-out before it looks
for an alternative server to get tickets from.

3.8 Configuring Server Replica on OS/2 Warp
CDS and registry (security) replica can also be put on an OS/2 Warp platform.
This is what we describe in this section.

3.8.1 Replicating the CDS Server on OS/2 WARP
We will configure EV5 for a CDS secondary. Remember that configuring a
cds-second does not duplicate any data. This has to be done later on.

To describe this configuration, we will restart from the Select Configuration Path
window as shown Figure 15 on page 57 and select the Tailored path. This
brings us up to the following PM screen.

Figure 32. Tailored Path Window

The tailored path presents us a notebook look, as shown in Figure 32. The
major tabs on the right allow for scrolling through the component groups. Within
a group, we can scroll through the detail panels using the tabs at the bottom.

The window is already positioned on the CDS component; it shows the current
status of CDS functions on this platform. With the minor tabs, we page to the
Additional and Client CDS page in the notebook.

Chapter 3. Implementing DCE Cells 69

Figure 33. Configuration - Tailored Path Window

We fill in the required data in Figure 32 on page 69, and the Run configuration
button will start the work. Upon successful completion, the additional CDS will
be configured.

3.9 Summary
All DCE core services in our cell have now been configured, and we are ready to
use this environment for applications. It is easy to find out which components
have been configured on each platform

3.9.1 Inventory on the AIX Platform
On an AIX platform, type the following command:

ev1::/-> lsdce
Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

3.9.2 Inventory on the OS/2 Warp Platform

70 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 34. Verify Component Configuration Selections Window

Within the tailored Configuration Path, it is possible to get an overview of the
configuration status of the OS/2 Warp machine. The panel shown in Figure 34 is
presented just before beginning the configuration execution. It clearly shows all
Installed, Configured and Pending components. This can also obtained
component by component. The showcfg.exe command presents the same
information.

Another way to find out the configuration status of an OS/2 Warp platform is to
use the following server cat command:

dcecp> server cat /.:/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/time_provider
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/cdsadv
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dfsd
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dtsd

From this, we find out what components have been configured on EV5.

3.9.3 Cell Configuration and Status Information
The dcecp shell in general will be extremely valuable to verify and interrogate
the cell status. For instance, look at the following commands:

• Displaying the cell status information:

Chapter 3. Implementing DCE Cells 71

dcecp> cell show
{secservers
 /.../itsc.austin.ibm.com/subsys/dce/sec/master
 /.../itsc.austin.ibm.com/subsys/dce/sec/ev4}
{cdsservers
 }
{dtsservers
 /.../itsc.austin.ibm.com/hosts/ev1/dts-entity
 /.../itsc.austin.ibm.com/hosts/EV5/dts-entity
 /.../itsc.austin.ibm.com/hosts/EV6/dts-entity}
{hosts
 /.../itsc.austin.ibm.com/hosts/EV5
 /.../itsc.austin.ibm.com/hosts/EV6
 /.../itsc.austin.ibm.com/hosts/ev1
 /.../itsc.austin.ibm.com/hosts/ev2
 /.../itsc.austin.ibm.com/hosts/ev3
 /.../itsc.austin.ibm.com/hosts/ev4}

• Listing all hosts that are part of the cell:

dcecp> host cat
/.../itsc.austin.ibm.com/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV6
/.../itsc.austin.ibm.com/hosts/ev1
/.../itsc.austin.ibm.com/hosts/ev2
/.../itsc.austin.ibm.com/hosts/ev3
/.../itsc.austin.ibm.com/hosts/ev4

• Listing the status of the CDS replication:

We also developed a TCL script that lists the complete status of the CDS
replication. It works on AIX and OS/2:

[C:] dcecp show_cds
==> List of Clearinghouses
/.../itsc.austin.ibm.com/ev1_ch
/.../itsc.austin.ibm.com/ev3_ch

number of clearinghouses = 2
==> Analyze clearinghouse /.../itsc.austin.ibm.com/ev1_ch
==> Analyze clearinghouse /.../itsc.austin.ibm.com/ev3_ch
 scan of ClearingHouses terminated total replicas 24
 cell /.../itsc.austin.ibm.com cellname_length = 25
 directory /.:/
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/hosts
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/hosts/EV5
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/hosts/EV6
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/hosts/ev1
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/hosts/ev2
ev1_ch { Master}
ev3_ch { ReadOnly}

72 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 directory /.:/hosts/ev3
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/hosts/ev4
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/subsys
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/subsys/dce
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/subsys/dce/dfs
ev1_ch { Master}
ev3_ch { ReadOnly}
 directory /.:/subsys/dce/sec
ev1_ch { Master}
ev3_ch { ReadOnly}
 number of Clearinghouse directories 12

3.9.4 Summary of Daemons and Processes
Let’s give a brief overview of the required components on each server. The
following table shows what daemons and processes are required in order to
enable a particular function.

Figure 35. List of Processes and Daemons for DCE Machine Roles

Chapter 3. Implementing DCE Cells 73

74 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 4. Implementing DFS

The Distributed File System (DFS) is one of the first real DCE applications. It is
not considered a core service. See 1.2.7, “Distributed File System” on page 11
in this publication for a short description on DFS. The redbook The Distributed
File System (DFS) for AIX/6000, GG24-4255, has more details on DFS.

In this chapter we describe the configuration of DFS in an already configured
DCE cell composed of several distinct hardware and software platforms. We
extend scenario 1 configured in Chapter 3, “Implementing DCE Cells” on
page 37, with detailed configuration instructions for DFS. We also discuss
experiences with fileset replication, a feature which was not available at the time
the redbook titled The Distributed File System (DFS) for AIX/6000 was created.

In Chapter 5, “Implementing Various LAN/WAN Scenarios” on page 105, we give
short-path instructions to quickly install different scenarios. Besides giving
step-by-step installation instructions for different network topologies, we also
discuss performance and availability issues in that chapter.

4.1 Overview and Cell Layout
The following DFS and AIX levels are used in the configuration:

• DFS 2.1 for AIX 4.1.4 as DFS servers and clients

• DFS 1.3 for AIX 3.2.5 as DFS server and clients

• DFS (BETA 21/01/96) for OS/2 Warp (OS/2 V3) as DFS clients only

Before starting, let’s again have a closer look at the objective that we like to
achieve and the role that the machines of the DCE cell will play in the DFS setup.
We recall that the DFS is a distributed application, with different roles attributed
to particular machines, as shown in Figure 36 below.

Figure 36. DFS Implementation Within Scenario 1

 Copyright IBM Corp. 1996 75

According to the tasks that have to be executed to achieve our cell objective, we
discuss the following topics:

• Configuring DFS server roles on AIX

− Configuring the DFS SCM role on ev1

− Configuring the DFS FLDB role on ev1

− Configuring a fileset server role on ev1

− Preparing the DFS root fileset

− Adding an additional Fileset

• Configuring a DFS client on OS/2 Warp

• Replicating DFS filesets under AIX

− Configuring a replication server on ev1

− Configuring a fileset replication server on ev4

− Replicating the root.dfs directory on ev1

− Replicating the fileset warp001 on ev4

4.2 Configuring a DFS Server
This section contains the basic steps to configure a base DFS server
environment. For more detailed information, see The Distributed File System
(DFS) for AIX/6000 redbook.

Before starting to configure the base DFS server environment, make sure that all
DCE core services are configured and the Enhanced DFS product is installed. If
not, install it according to 3.3, “Installing the DCE Code on AIX” on page 42 or
3.5, “Installing and Preparing for DCE Configuration on OS/2 Warp” on page 53.

A DFS fileset server actually serving data is only one of the many machines that
are part of the DFS server complex. Before we are able to export some files, an
environment has to be prepared that is composed of three machine roles:

 1. System Control Machine (SCM)

 2. Fileset Location Data Base Machine (FLDB)

 3. Fileset Server Machine(s)

After setting up these roles, one can start with the building of the real ″file
server″ function. This function will be supported by one or several machines,
with or without replication. Configuration of the DFS filespace has to start with a
root directory. The first file server to be added to the DFS set has to include this
directory.

Below is a short summary description of the different DFS components (roles) to
be configured:

• System Control Machine

The System Control Machine (SCM) controls various lists of users and
groups that can perform administrative functions on the different types of
DFS servers. The SCM houses the master copy of these lists that are
distributed to the various fileset servers. A DFS domain is the set of
machines that is controlled by one SCM and respectively by the same lists of

76 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

DFS administrators. There can be multiple domains in a DFS server
complex.

• Fileset Location DataBase Machine

A fileset location database machine stores the Fileset Location Database
(FLDB). The purpose of the FLDB is to take a path name for a file that is
located in the DFS namespace and determine the location of the file server
that houses that file. The end result is that the user never has to know the
physical location of a file. The user is only confronted with an hierarchical
look of the total DFS filespace.

• File Server Machine

A file server machine is used to store and export DFS LFS file systems or
non-LFS file systems into the DFS namespace. In AIX/DCE, a non-LFS file
system is a JFS (Journaled File System). AIX/DCE supports JFS and LFS file
systems. New in this release (2.1) is the support for CD-ROM file systems.
In our example, we will use LFS file systems. A fileset is a subtree of files
and directories that is smaller or equal to a logical disk partition.

Figure 37. Minimum Basic DFS Machine Roles

These machine roles can be configured on different platforms or on the same
platform. As shown in Figure 37, we will configure all these servers on ev1.
After having configured these roles, we can export the root.dfs fileset and other
filesets. Below are the steps to create such a DFS filespace.

If you plan to replicate a fileset, you can also replicate this fileset immediately
after having created the read/write fileset, without creating mount points first.
This would prevent any DFS clients from obtaining access to the read/write
fileset via a regular mount point. See 4.4, “Replicating Filesets on AIX” on
page 89 for a discussion on when to replicate filesets and when to create mount
points.

4.2.1 Configuring a System Control Machine
We first start configuring the SCM role on ev1. Call SMIT and follow the
indicated path, or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DFS (Distributed File Service) System Control Machine

(fastpath = mkdfsscm)

Chapter 4. Implementing DFS 77

� �
DFS System Control Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../itsc.austin.ibm.com>
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.../itsc.austin.ibm.com>� �

The following progress report is produced:

Enter password for DCE account cell_admin:
Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

Enter password for DCE account cell_admin

Password must be changed!
Configuring DFS System Control Machine (dfs_scm)...
DFS System Control Machine (dfs_scm) configured successfully

Current state of DFS configuration:
dfs_scm COMPLETE DFS System Control Machine

The following command would have had the same effect:

mkdfs dfs_scm

There are two processes always running on a DFS SCM role machine. A third
process could also be present if a Binary Distribution role were configured.

• upserver — Responsible for the distribution of the administrative lists to all
server machines in the domain.

• bosserver — Also called the Basic Overseer Server process; it is responsible
for keeping the system outages at a minimum.

• upclient — For the retrieval of binary files from the Binary Distribution
Machine. This is not discussed in this setup.

4.2.2 Configuring a Fileset Location Database Machine
The next machine to configure is the FLDB role. We put it also on ev1. Call
SMIT and follow the indicated path, or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DFS Fileset Database Machine

(fastpath = mkdfsfldb)

78 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

� �
DFS Fileset Database Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Additional GROUP to administer filesets on this []

machine
DFS System CONTROL machine to get []

administration lists from
FREQUENCY to update administration lists (in sec) []
LOG file for administration list updates []

* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.../itsc.austin.ibm.com]� �

The following progress report is produced:

Enter password for DCE account cell_admin:

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

Enter password for DCE account cell_admin:

Password must be changed!
Configuring DFS Fileset Database Machine (dfs_fldb)...
Waiting (up to 5 minutes) for Fileset Database machines to elect
a synchronization site...

/.../itsc.austin.ibm.com/hosts/ev1 has been elected
synchronization site for the Fileset Location Database.
Waiting (up to 5 minutes) for the server entry for /.:/hosts/ev1
to be added to the fileset location database.

Server entry for /.:/hosts/ev1 has been added
to the fileset location database.

DFS Fileset Database Machine (dfs_fldb) configured successfully

Current state of DFS configuration:
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_scm COMPLETE DFS System Control Machine

The following command would have had the same effect:

mkdfs dfs_fldb

Each fileset database (FLDB) machine runs the following processes:

• flserver — A fileset location server process in charge of tracking the locations
of all filesets in a cell and recording changes in the FLDB.

• upclient(1) — A process to retrieve configuration files from the SCM machine.

• bosserver — A monitoring process for the required processes.

• upclient(2) — For the retrieval of binary files from the binary distribution
machine (BDM). The BDM is not discussed in this setup.

Chapter 4. Implementing DFS 79

4.2.3 Configuring the DFS File Server Machine
The configuration of the first real file server role machine begins here. Call
SMIT and follow the indicated path, or call SMIT with the fastpath name:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DFS File Server Machine

(fastpath = mkdfssrv)

� �
DFS File Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Additional GROUP to administer filesets on this []

machine
Load LFS kernel extension? [yes] +
DFS System CONTROL machine to get []

administration lists from
FREQUENCY to update administration lists (in sec) []
LOG file for administration list updates []

* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.../itsc.austin.ibm.com]

� �

The following progress report is produced:

Enter password for DCE account cell_admin:

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

Enter password for DCE account cell_admin:
Password must be changed!
Configuring DFS File Server Machine (dfs_srv)...
DFS File Server Machine (dfs_srv) configured successfully

Current state of DFS configuration:
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE DFS File Server Machine

The following command would have had the same effect:

mkdfs -e dfs_srv

The following processes run on a file server machine:

• ftserver — Accepting interoperation with the fts command suite.

80 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

• upclient(1) — Responsible for the contacts with the upserver of the SCM
machine.

• fxd — Responsible for the initialization of the file exporter, which runs as an
extension of the kernel on each file server machine. It provides the same
services across the network as the operating system provides for a local
disk.

• dfsbind — An interface to the CDS and Security Services of the DCE cell.

• bosserver — Supervises the required processes.

• upclient(2) — (Optionally) For the retrieval of binary files from the binary
distribution machine. This is not discussed in this setup.

After the successful configuration of these DFS server (roles), we can start the
build-up of the DFS file system. The file system starts with a root that can be
addressed by several names. The DFS hierarchy starts from the fs junction
point in the CDS. This junction is the root of the filespace hierarchy and can be
addressed by several names:

/.../itsc.austin.ibm.com/fs global absolute name

/.:/fs cell relative name (only from within the cell)

/: the special short name (only from within the cell)

4.2.4 Configuring a DFS Root Fileset
Creating a DCE/LFS fileset requires the following steps when the fileset is
created on a new aggregate:

 1. Making a logical volume (mklv)

 2. Creating an aggregate (newaggr)

 3. Creating the DFS root directory by:

• Editing the /var/dce/dfs/dfstab (/opt/dcelocal/var/dfs/dfstab) file
• Exporting the aggregate (dfsexport)
• Creating the fileset (fts create)
• Creating a mount point in the DFS namespace (fts crmount)

The root directory will be contained in the root.dfs fileset. This fileset is a real
LFS fileset and is contained in an aggregate. It is advisable to reserve this
aggregate exclusively for the root.dfs fileset. Let’s have a look into the details.

 1. Create a logical volume:

The aggregate does not need to be very large. Creating a logical volume
with one block (4 MB) is sufficient. We suggest you do not use the root
directory /: to store files and data. This directory should only be used to
hold subdirectories or mount points for other filesets.

Create a logical volume with the following command:

mklv -t lfs -y lfsroot rootvg 1

 2. Create an aggregate

The new logical volume has to be initialized as an aggregate. An aggregate
is able to contain several filesets, while a basic logical volume can only
house one JFS (non-LFS) fileset. So, make the /dev/lfsroot logical volume an
LFS logical volume:

Chapter 4. Implementing DFS 81

newaggr -aggregate /dev/lfsroot -block 8192 -frag 1024 -overwrite
*** Using default initialempty value of 1.
*** Using default number of (8192-byte) blocks: 511
*** Defaulting to 50 log blocks (maximum of 5 concurrent transactions).
/dev/rlfsroot: Already marked as non-BSD.
Done. /dev/rlfsroot is now an Episode aggregate.

The command newaggr is only available to be used on a logical volume. It is
used to prepare a logical volume for holding LFS fileset(s) as opposed to a
single JFS.

 3. Create the DFS root directory

Using standard OSF commands, this step would require creating the
/opt/dcelocal/var/dfs/dfstab file, exporting the aggregate /dev/lfsroot,
creating the root.dfs fileset, and mounting it at the DFS junction. This can all
be achieved with the IBM-only mkdfslfs command as follows:

mkdfslfs -r -d /dev/lfsroot -n lfsroot

The -r flag specifies that the root.dfs fileset be created. Below you find the
output of this command:

readWrite ID 0,,1 valid
readOnly ID 0,,2 invalid
backup ID 0,,3 invalid

number of sites: 1
server flags aggr siteAge principal owner
ev1 RW lfsroot 0:00:00 hosts/ev1 <nil>
Fileset 0,,1 created on aggregate lfsroot of /.:/hosts/ev1

At this point, the DFS root directory /: is available. The name root.dfs was
automatically assigned to the root fileset (that is what the -r flag did), and
three file ID numbers were reserved, one for each replica type that can exist
for this fileset.

Before being able to access the DFS namespace, you have to configure a
DFS client.

4.2.5 Configuring a DFS Client
Before configuring a DFS client you should verify the DCE core services are
configured properly. This task is the same on every machine that will house DFS
clients.

Make sure you have followed all the preparation steps outlined in 3.2, “Preparing
for DCE Configuration on AIX” on page 38. The separate file system for the DFS
cache has to be mounted before you begin. If you want to choose a cache size
other than 10 MB (default), you should call SMIT. Otherwise, type the following
command (you will not need cell_admin’s password):

mkdfs dfs_cl
Configuring DFS Client Machine (dfs_cl)...
dfsd: start sweeping disk cache files
dfsd: All DFS daemons started.
DFS Client Machine (dfs_cl) configured successfully

Current state of DFS configuration:
dfs_cl COMPLETE DFS Client Machine
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE DFS File Server Machine

82 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

4.2.6 Testing Access to the DFS Root Fileset
You have to wait some time before being able to access the DFS filespace
because at each restart, the DFS file server has to reestablish the state of its
tokens with its DFS clients. This happens even if it is the first time you configure
DFS and there are no clients to wait for. When you type the following command
for the first time:

ev1::/-> cd /:
/bin/ksh: /:: Permission denied.

You get the permission denied message. Look at the output of the ls -l /:
command:

ev1::/-> ls -l /:
lrwxrwxrwx 1 root system 27 Feb 12 11:17 /: -> /.../itsc.austin.ibm.com/fs

This output looks good, but it does not show the effective permissions. Look at
the ACLs for the root directory:

ev1::/-> dcecp -c acl show /:
{user_obj rwxcid}
{group_obj ------}
{other_obj ------}
ev1::/->

See 4.2.7, “Fixing Access Permissions (ACLs)” on page 84, for explanations on
initial ACL settings and how to set correct ACLs. In order to test DFS access, we
set read permission for everybody on the root directory. It might be necessary
to dce_login again if the previous dce_login occurred before the machine was
configured for DFS. Then enter the following command:

ev1::/-> chmod a+rx /:

After a successful completion of the above modification, you can execute the
following commands to check the status of the file system:

 1. Enter the DFS root directory:

ev1::/-> cd /:
ev1::/-> pwd
/:

 2. List the contents of the dfstab file:

ev1::/-> cat /opt/dcelocal/var/dfs/dfstab
#blkdev aggname aggtype aggid [UFS fsid]
/dev/lfsrootv lfsroot lfs 1

 3. List the aggregates that are exported on this machine:

ev1::/-> dfsexport
Aggregate Device Name Type Aggr ID Non-LFS fileset ID
/dev/lfsroot lfsroot lfs 1

 4. List the FLDB:

ev1::/-> fts lsfldb
root.dfs

readWrite ID 0,,1 valid
readOnly ID 0,,2 invalid
backup ID 0,,3 invalid

number of sites: 1
server flags aggr siteAge principal owner
ev1 RW lfsroot 0:00:00 hosts/ev1 <nil>

Chapter 4. Implementing DFS 83

Total FLDB entries that were successfully enumerated: 1 (0 failed; 0 wrong aggrtype)

4.2.7 Fixing Access Permissions (ACLs)
When a DCE LFS fileset is created and mounted into the DFS file space, the
owning UID is the DCE principal associated with the 0 UID, which is usually the
DCE root principal. The owning group is the DCE group associated with the GID
of 0, which is usually the system group. The default permissions are 700. If you
are DCE-authenticated as a member of the subsys/dce/dfsadmin group, you can
change these permissions by either using the chmod command or acl_edit or
dcecp acl. The cell_admin DCE principal is normally in the dfsadmin group.
When a fileset is created, it is important that the ownership and permissions are
set up according to how the fileset will be used.

Before we can create the mount point for another fileset, it is necessary to adapt
the permissions of the parent DFS object (here the /: directory). The mounting of
the new fileset will otherwise be denied. Normally, DFS objects are protected by
access control lists (ACL), but when a fileset is first created in the DFS filespace,
the permissions for the mount point directory default to the AIX mode
permissions 700, with an owner of UID 0. An ACL for this directory does not
really exist at this time. The default AIX authorizations set for the root directory
/: are, in general, not sufficient for allowing new subdirectory inserts.

ev1::/-> pwd
/:
ev1::/-> ls -al
total 3
drwxr-xr-x 2 root system 256 Jun 01 16:56 .
dr-xr-xr-x 3 root system 2048 May 12 1989 ..
ev1::/->
ev1::/-> touch testfile
touch testfile: The file access permissions do not allow the specified action.

Remember, in 4.2.6, “Testing Access to the DFS Root Fileset” on page 83, we
had to fix the AIX permissions (to 755) to be able to list the contents of the DFS
root directory and to change into it. Write permission is not sufficient for
inserting a new directory and/or file; we need insert permission, which can be
granted by changing the ACL.

The owner of the DFS root (/:) directory is user root, belonging to group system.
We logged in for UNIX as this user, but this user is not authenticated for DCE.
We logged in to DCE as cell_admin. Several solutions are possible to adapt the
authorizations so that we can insert and work on the /: directory.

Let’s first show the different ACLs for the /: directory.

ev1::/-> dcecp
dcecp> acl show /:
{user_obj rwxcid}
{group_obj r-x---}
{other_obj r-x---}

dcecp> acl show -io /:
{user_obj rwxc--}
{group_obj rwx---}
{other_obj rwx---}

84 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

dcecp> acl show -ic /:
{user_obj rwxcid}
{group_obj rwx-id}
{other_obj rwx-id}

When using acl modify of dcecp or acl_edit, an ACL will be created from the
current setting of the AIX file permissions. To allow for the creation of new
subdirectories in /:, at least insert authority is required. All modifications are
done with an acl modify subcommand of dcecp.

dcecp> acl modify /: -add {user cell_admin rwxcid}
dcecp> acl show /:
{mask_obj r-x---}
{user_obj rwxcid}
{user cell_admin rwxcid effective r-x---}
{group_obj r-x---}
{other_obj r-x---}

The mask_obj is created from the existing UNIX permission bits for group. It
limits cell_admin’s permission; so, we also have to adapt the mask_obj to get the
required authorizations for cell_admin. You need to decide how many privileges
you want to give cell_admin; it does not need to get the full permission set
granted. In the following example, we open up the mask_obj completely.

dcecp> acl modify /: -change {mask_obj rwxcid}
dcecp> acl show /:
{mask_obj rwxcid}
{user_obj rwxCid}
{user cell_admin rwxcid}
{group_obj r-x---}
{other_obj r-x---}

If you want cell_admin to inherit ACLs on files and directories created within the
root fileset, you can now create an entry for the initial object creation and the
initial container creation ACLs. Run the following commands:

dcecp> acl modify -io /: -add {user cell_admin rwxcid}
dcecp> acl modify -io /: -change {mask_obj rwxcid}
dcecp> acl modify -ic /: -add {user cell_admin rwxcid}
dcecp> acl modify -ic /: -change {mask_obj rwxcid}

Note: The inheritance is limited to the fileset boundaries. For filesets mounted
underneath /:, the same permission problems will arise again. Note also that
the umask setting may further limit the initial ACL settings. If cell_admin creates
a file, /:/testfile, it will not have write permission for group and others, unless
you had changed the umask for the user with UID 100.

At this point, some AIX users are allowed to do what is required. To find the
permissions you will be granted, just determine who you are, to which group you
belong, and who has the ownership of the object. If you are not affiliated with
the owner or the primary group, look for the other authorizations.

ev1::/-> whoami
root

ev1::/-> pwd
/:
ev1::/-> ls -las
total 5

1 drwxrwxrwx 4 root system 384 Jan 30 11:37 .

Chapter 4. Implementing DFS 85

0 dr-xr-xr-x 3 root system 2048 May 12 1989 ..

With this information, we see that the user_obj is root (actually a user with user
ID 0), and the group_obj is system (actually a group with group ID 0). However,
when logged in to DCE as cell_admin, we have a user ID of 100, which is usually
assigned to AIX user guest. So, we are not associated with the user_obj and
need a separate user entry if we want to give cell_admin full permissions.

With this new setting, we should have all required permissions for mounting the
new fileset.

4.2.8 Adding Another Fileset
We can add many filesets within a single LFS aggregate. However, we suggest
not adding another fileset to the lfsroot aggregate. We suggest creating another
aggregate for other filesets. Adding other filesets can be done on every DFS
server machine.

The DFS setup that we want to achieve here is very simple, and it reflects the
fact that the DFS system will be used by both AIX and OS/2 clients. Figure 38
shows an example of a file subtree that will only be used by OS/2 clients (below
mount point warp001) and another one that contains all the home directories for
users. The /home directory is an ordinary directory within the root.dfs fileset
and contains a subdirectory for each user, each of which is a mount point for a
separate fileset (shown is fileset brice.ft mounted to /:/home/brice). The home
directories will be accessed by AIX and OS/2 users.

Figure 38. Simple Fileset Splitup for AIX and OS/2 Warp

Those two filesets may reside in the same or in different aggregates. In the rest
of this section, we want to explain how warp001 is created. For that, we want to
add another fileset, warp001.ft:

 1. Create a logical volume, dfs001, with five blocks:

ev1::/-> mklv -t lfs -y dfs001 rootvg 5

You can list the logical volumes:

86 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

ev1::/-> lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
........
lfsroot lfs 1 1 1 open/syncd N/A
dfs001 lfs 5 5 1 open/syncd N/A

 2. Create a new aggregate on /dev/dfs001:

ev1::/-> newaggr -aggregate /dev/dfs001 -bl 8192 -fr 1024

*** Using default initialempty value of 1.
*** Using default number of (8192-byte) blocks: 2559
*** Defaulting to 50 log blocks (maximum of 5 concurrent transactions).
/dev/rdfs001: Marked as not a BSD file system any more.
Done. /dev/rdfs001 is now an Episode aggregate.

If you have some problem when creating the aggregate, try to use the
-overwrite option as shown here:

ev1::/-> newaggr -aggregate /dev/dfs001 -bl 8192 -fr 1024 -overwrite

 3. Export the aggregate:

ev1::/-> mkdfslfs -d /dev/dfs001 -n dfs001

At this point, we created two aggregates. Aggregates are the containers for
the LFS filesets, and as explained earlier on, several filesets can be
contained in one aggregate. Aggregates do not have a mount point. A
mount point can be specified only for a fileset contained in an aggregate.

• The lfsroot aggregate contains the root.dfs fileset, and of course the root
directory (/:).

• The dfs001 aggregate has to contain a warp001.ft fileset mounted on
/:/warp001.

 4. Create a fileset with a mount point:

ev1: : / -> mkdfslfs -f warp001.ft -m /:/warp001 -n dfs001

readWrite ID 0,,4 valid
readOnly ID 0,,5 invalid
backup ID 0,,6 invalid

number of sites: 1
server flags aggr siteAge principal owner
ev1 RW dfs001 0:00:00 hosts/ev1 <nil>
Fileset 0,,4 created on aggregate dfs001 of /.:/hosts/ev1

If you forgot to log in to DCE and the following message appears,

fts crmount: error making mount point for /:/warp001: Permission denied
Cannot create mount point /:/warp001 in DFS file space.

you should log in as cell_admin, and enter the following command:

ev1: : / -> fts crmount -dir /:/warp001 -fileset warp001.ft

At this point, you should have two filesets available. If you issue the fts
lsfldb command, you should receive the following output:

ev1::/-> fts lsfldb
root.dfs

readWrite ID 0,,1 valid
readOnly ID 0,,2 invalid
backup ID 0,,3 invalid

number of sites: 1

Chapter 4. Implementing DFS 87

Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

ev1.itsc.austin.ibm RW,RO lfsroot 0:00:00 hosts/ev1 <nil>
warp001.ft

readWrite ID 0,,4 valid
readOnly ID 0,,5 invalid
backup ID 0,,6 invalid

number of sites: 2
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

ev1.itsc.austin.ibm RW,RO dfs001 0:00:00 hosts/ev1 <nil>

Total FLDB entries that were successfully enumerated: 2

 5. In order to be able to access the new fileset, set the appropriate ACLs as
described in 4.2.7, “Fixing Access Permissions (ACLs)” on page 84. For the
sake of simplicity, we just modify the UNIX permissions:

chmod a+rwx /:/warp001

4.3 A DFS Client on OS/2 Warp
Machine EV5 and EV6 will be used as DFS clients.

4.3.1 Preparing OS/2 Warp for DFS
A preliminary requirement for a DFS client on an OS/2 Warp platform is to be
part of the DCE cell. This has already been done in 3.6, “Configuring DCE
Clients on OS/2 Warp” on page 56. At the same time, we also selected the
configuration of the DFS client. As a result, the following line has been added to
the CONFIG.SYS file:

IFS=C:OPTDCELOCALBINDFSCLI.IFS

This entry points to an Installable File System driver that receives the requests
from OS/2. This acts as a kernel extension of OS/2 Warp.

4.3.2 Starting Up the DFS Client
Before being able to use the DFS filespace from OS/2 Warp, the dfsd daemon
has to be started:

EV5-> DFSD
dfsd: The number of DFS client threads is 2 .
DFS Cache Manager (DFSD.EXE) registering with IFS driver.
dfsd: Junction Life TTL set to 143600
dfsd: Prefix Life TTL set to 143600
dfsd: NotFound Life TTL set to 6400
dfsd: OS/2-style Attribute support has NOT been activated
dfsd: OS/2 Extended Attribute support has NOT been activated
dfsd: start sweeping disk cache files
dfsd: All DFS daemons started.
dfsd: Initialization is continuing........

Attaching drive + to the DFS File System.
The DFS path prefix associated with this drive is /:
Successfully Attached drive D.

The DCE DFS Daemon has initialized successfully.

88 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The dfsd has been started, and the DFS filespace has been associated with drive
letter d: . Two processes have to be active in OS/2 to enable DFS client support:

 1. The dfsd process is responsible for the caching.

The dfsd command initiates the DFS cache manager and starts the related
daemons. A lot of parameters can be specified with this command, for
example:

• blocks (number of cache blocks)
• mountdir (DFS subdirectory to become top-level directory for drive d:)

Specifying values here overrides the defaults and the values that are stored
in the optdcelocaletccachinfo file. This file can contain information like:

• Initial cache settings
• Time to Live settings (TTL) associated with the DFSBIND function
• DFS drives to be auto attached at dfsd initialization

 2. The dfsbind process is also started with dfsd. It is responsible for the
contacts with CDS and Security.

All mounts from OS/2 are associated with a drive letter. After starting dfsd,
additional mounts can be created with the dfsdrive command:

dfsdrive -attach e: /:/warp001

From here on, drive letter e: corresponds to /.:/fs/warp001 in the DFS filespace.

Note: NO replication has been done for any fileset.

4.4 Replicating Filesets on AIX
Before reading this section, we recommend you read the discussion about DFS
replication in 7.2, “DFS Replication” on page 252:

• Why do we need to replicate a fileset?

• Which filesets to replicate?

More examples on how to set up DFS replication can be found in the scenario
configuration instructions in chapter Chapter 5, “Implementing Various
LAN/WAN Scenarios” on page 105. There we replicate the filesets before we
create a mount point to prevent anyone from obtaining unwanted write access.

In this section we describe how to replicate a fileset which had been created
before it was decided to replicate it. This task is based on Figure 36 on
page 75. Therefore, we assume the machine ev1 is housing the read/write
root.dfs fileset.

However, there is not a right or a wrong way of setting up replication. You can
configure the whole fileset tree with read/write filesets and regular mount points,
populate the filesets, and then decide some time later on what to replicate. Or
you can create the read-only replicas immediately after creating the read/write
fileset, and then create the mount point(s), if you already know that you want to
replicate the fileset.

If we use release replication (see 4.4.4.1, “Configuring Fileset Using Release
Replication” on page 94) we must replicate the root.dfs fileset on the same
machine that physically houses this root.dfs fileset before we can replicate any

Chapter 4. Implementing DFS 89

other fileset. The root.dfs fileset is the fileset that houses the root directory (/:)
of DFS. This section discusses in detail the following issues:

• Configuring the replication server on ev1

• Replicating the root.dfs fileset

• Replicating the warp001.ft fileset on ev4

4.4.1 Configuring and Starting a Replication Server on ev1
Before any replication can be done, each fileset server machine which intends to
replicate some of its filesets must be configured with a replication server role.
We will now configure such a replication function on ev1.

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DFS Fileset Replication Server Machine

(fastpath = mkdfsrepsrv)

� �
DFS Fileset Replication Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry
Fields]
* Cell ADMINISTRATOR’s account [cell_admin]� �

Enter password for DCE account cell_admin:

Password must be changed!
Configuring DFS Replicated Fileset Server Machine (dfs_repsrv)...
DFS Replicated Fileset Server Machine (dfs_repsrv) configured
successfully

Current state of DFS configuration:
dfs_cl COMPLETE DFS Client Machine
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_repsrv COMPLETE DFS Replicated Fileset Server Machine
dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE DFS File Server Machine

Press Enter to continue

The following command has the same effect:

mkdfs dfs_repsrv

4.4.2 Replicating the Root Directory on ev1
A replication server role was configured above. Before being able to replicate
any other fileset, the root.dfs must be replicated. The current root.dfs is
mounted at the root directory (/:) via a regular mount point. The replication
steps of the root.dfs that we describe will create another mount point for this
fileset, a read/write mount point, which will be named /:/.rw. The read/write
fileset will be moved to /:/.rw and will only be accessible via this path. The
former root directory (/:) will access the readonly fileset. So, at the end of this
section, we will have the following picture:

90 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 39. DFS Status After Replicating root.dfs

We assume that root.dfs is properly configured on an LFS fileset. See 4.2.4,
“Configuring a DFS Root Fileset” on page 81 for information on how to configure
the root.dfs.

The following are the steps to replicate the root.dfs fileset. We assume we are
on ev1 where the root.dfs fileset is located.

 1. Create a read/write mount point for root.dfs:

fts crmount /:/.rw root.dfs -rw

 2. Define the replication type for root.dfs:

fts setrepinfo -fileset root.dfs -rel
fts setrepinfo: Using default value for maxage of 2:00:00
fts setrepinfo: Using derived value for failage of 1d0:00:00
fts setrepinfo: Using default value for reclaimwait of 18:00:00

With this command, you apply the type of replication to the root.dfs fileset.
The type of replication here is release.

 3. Define the replication site (on the same machine):

fts addsite -fileset root.dfs -server /.:/hosts/ev1 -aggr lfsroot
Added replication site /.:/hosts/ev1 lfsroot for fileset root.dfs

 4. Create the read-only fileset and force replication from the read/write source:

fts release -fileset root.dfs
Released fileset root.dfs successfully

 5. Leave the DFS root directory; otherwise you are stil l connected to the
read/write fileset of the /: directory:

cd

 6. Force the local cache manager to refresh its knowledge about the fileset
configuration:

cm checkfilesets

 7. Check whether you can create a file in /: now (should be denied):

cd /:
touch testfile
touch: 0652-046 Cannot create testfile.

 8. You can create the testfile only via the read/write mount point:

Chapter 4. Implementing DFS 91

cd /:/.rw
touch testfile
ls

At this point, you can start to replicate other filesets. In the next sections,
we will replicate the warp001 fileset on ev4.

Verify the status of the fileset in the FLDB:

fts lsfldb

root.dfs
readWrite ID 0,,1 valid
readOnly ID 0,,2 valid
backup ID 0,,3 invalid

number of sites: 1
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

ev1 RW,RO lfsroot 0:00:00 hosts/ev1 <nil>

Notice that the root.dfs readOnly fileset version is now marked valid.

 Note

When you plan to replicate filesets, we recommend replicating root.dfs
immediately after having created it and before you create any other filesets.
This prevents other DFS clients from getting unwanted access to the
read/write fileset of root.dfs.

If a DFS client had connected to /: before you created the root.dfs replica, it
continues to have write access. To stop read/write access, users of this DFS
client must leave that fileset, and cm ckeckfilesets must be run on that node.

Each cache manager automatically refreshes its fileset information every
hour, which is the equivalent function to the cm ckeckfilesets command. So,
unwanted fileset access is usually automatically terminated after one hour,
unless users are still in this directory.

4.4.3 Configuring File and Replication Servers on ev4
Since ev4 is going to be a file server machine in our DCE/DFS scenario, it has to
be configured with a fileset server. This is done in the usual way.

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DFS File Server Machine

(fastpath = mkdfssrv)

92 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

� �
DFS File Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Additional GROUP to administer filesets on this machine[]
Load LFS kernel extension? [yes] +
DFS System CONTROL machine to get [/.:/hosts/ev1]

administration lists from
FREQUENCY to update administration lists (in seconds) []
LOG file for administration list updates []

* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR’s account [cell_admin]
* LAN PROFILE [/.:/lan-profile]� �

Here is the progress list:

Enter password for DCE account cell_admin:

File /opt/dcelocal/var/dfs/dfstab already exists--
check it for old entries after configuration is complete.

Password must be changed!
Configuring DFS File Server Machine (dfs_srv)...
Waiting (up to 5 minutes) for the server entry for /.:/hosts/ev4
to be added to the fileset location database.

Server entry for /.:/hosts/ev4 has been added
to the fileset location database.

DFS File Server Machine (dfs_srv) configured successfully

Current state of DFS configuration:
dfs_srv COMPLETE DFS File Server Machine

This command would have had the same effect:

mkdfs -s /.:/hosts/ev1 -e dfs_srv

We also have to configure a replication server role on ev4:

smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Servers
-> DFS Fileset Replication Server Machine

(fastpath = mkdfsrepsrv)

� �
DFS Fileset Replication Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Cell ADMINISTRATOR’s account [cell_admin]

� �

Here is the progress report:

Chapter 4. Implementing DFS 93

Enter password for DCE account cell_admin:

Password must be changed!
Configuring DFS Replicated Fileset Server Machine (dfs_repsrv)...
DFS Replicated Fileset Server Machine (dfs_repsrv) configured successfully

Current state of DFS configuration:
dfs_repsrv COMPLETE DFS Replicated Fileset Server Machine
dfs_srv COMPLETE DFS File Server Machine

After this, we are ready to start the replication of the warp001.ft fileset on server
ev4.

4.4.4 Setting Up Replication for Another Fileset
We assume we want to replicate the warp001.ft fileset on ev4.

For all types of replication (release or schedule), you must have previously
installed and configured a DFS fileset server and a DFS replication server
(repserver process) on the machine that is to serve as DFS fileset replication
server (ev4 in this case). See 4.4.3, “Configuring File and Replication Servers on
ev4” on page 92.

We assume in this example, that ev1 is the system control machine. According
to Figure 39 on page 91, we assume we have a fileset called warp001 that we
want to replicate on another machine ev4. The warp001 fileset is physically
housed on ev1. We assume also the regular mount point of the warp001 fileset
is /:/warp001 before and after replication.

4.4.4.1 Configuring Fileset Using Release Replication
Actions have to be taken on both the source and the target platform. Replication
of a fileset to another platform than the housing machine always first requires a
replication on the local machine. This replication is not a full replication, but is
merely a pointer-like cloning. This aspect is explained in detail in 7.2, “DFS
Replication” on page 252.

 1. On ev1, which physically houses the fileset:

a. Set the replication parameters for release replication:

fts setrepinfo -fileset warp001.ft -rel

b. Define the same machine as a replication site:

fts addsite -fileset warp001.ft -server /.:/hosts/ev1 -aggr dfs001

 c. Create the read-only fileset and force replication from the read/write
source:

fts release -fileset warp001.ft

 2. On a target machine (ev4):

a. Create an aggregate large enough to house the fileset:

Suppose the aggregate dfs001 has five blocks of 4 MB. We have to
provide at least that same size on the source machine.

Create a logical volume as large as on ev1:

mklv -t lfs -y dfs001 rootvg 5

b. Create an aggregate on /dev/dfs001:

94 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

newaggr -aggreg /dev/dfs001 -bl 8192 -fr 1024 -overwrite

 c. Export the aggregate:

mkdfslfs -d /dev/dfs001 -n dfs001

d. Define the new replication site:

fts addsite -fileset warp001.ft -server /.:/hosts/ev4 -aggr dfs001

e. Create the read-only fileset and force replication from the read/write
source:

fts release -fileset warp001.ft
Released fileset warp001.ft successfully

Since the /:/warp001 directory with the regular mount point existed
before, we need not force an update of the /: parent directory at this
point.

f. Configure a DFS client if it does not already exist:

mkdce dfs_cl

g. Leave the /:/warp001 directory which might still be connected to the
read/write fileset if you had accessed it from ev4 before you created the
first replica for warp001.ft.

cd /:

h. In order to be able to access the new fileset, set the appropriate ACLs as
described in 4.2.7, “Fixing Access Permissions (ACLs)” on page 84, if
you did not do it right after creation of the fileset. For the sake of
simplicity, we just modify the UNIX permissions:

chmod a+rwx /:/.rw/warp001
fts release -fileset warp001.ft

i. Force the local cache manager to read the new fileset information:

cm checkfilesets

j. Check whether you can create a file in /:/warp001 now:

cd /:/warp001
touch testfile
touch: 0652-046 Cannot create testfile.

You are not able to create files in /:/warp001 because this path accesses
the read-only fileset. You can access the read/write fileset via
/:/.rw/warp001, or you can create a read/write mount point, /:/.warp001, if
you do not plan to keep /:/.rw available for daily use.

Chapter 4. Implementing DFS 95

Figure 40. DFS Status After Replicating warp001.ft

To create the read/write mount point, follow these steps:

 1. Create the mount point:

fts crmount /:/.rw/.warp001 warp001.ft -rw

 2. Update the read-only copy of root.dfs to make the /:/.warp001 directory
available:

fts rel root.dfs

 3. Force the local cache manager to read the new fileset information:

cm checkfilesets

Now you can access the read/write fileset and create a file.

High availability of read-only filesets

If we create an additional DFS file server to increase the availability of a
fileset, for instance of the warp001.ft.readonly fileset, we need to make sure
that all filesets above it in the fileset hierarchy are also replicated on the
same server. In other words, root.dfs should be replicated on ev4 to make
sure /:/warp001 can be accessed if ev1 fails.

4.4.4.2 Configuring a Fileset Using Scheduled Replication
With this type of replication, you do not need to use the command fts addsite
on the machine with the read/write fileset, but you need to use it on the target
machine. However, you may use it on the source if you want to create a
read-only copy on this primary machine.

 1. On ev1, which physically houses the fileset:

a. Set the replication parameters for scheduled replication:

fts setrepinfo -fileset warp001.ft -sched

 2. On a target machine (ev4):

These are the steps to be done on each target machine:

a. Create an aggregate large enough to house the fileset:

96 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Assume the aggregate dfs001 has five blocks of 4 MB. Create a logical
volume as large as on ev1:

mklv -t lfs -y dfs001 rootvg 5

b. Create an aggregate on /dev/dfs001:

newaggr -aggreg /dev/dfs001 -bl 8192 -fr 1024 -overwrite

 c. Export the aggregate:

mkdfslfs -d /dev/dfs001 -n dfs001

d. Define the new replication site:

fts addsite -fileset warp001.ft -server /.:/hosts/ev4 -aggr dfs001

e. Create the read-only fileset, and force replication from the read/write
source using the update command:

#fts update -fileset warp001.ft -all
fts update: Repserver on ev1 requested to update fileset 0,,5
fts update: Repserver on ev4 requested to update fileset 0,,5

At this point, the fileset is replicated.

Since the /:/warp001 directory with the regular mount point existed
before, we need not force an update of the parent directory (/:) at this
point.

f. Configure a DFS client if it does not already exist:

mkdce dfs_cl

g. Leave the /:/warp001 directory which might still be connected to the
read/write fileset, if you had accessed it from ev4 before you created the
first replica for warp001.ft.

cd /:

h. Force the local cache manager to read the new fileset information:

cm checkfilesets

i. Check whether you can create a file in /:/warp001 now:

cd /:/warp001
touch testfile
touch: 0652-046 Cannot create testfile.

You are not able to create files in /:/warp001 because this path accesses
the read-only fileset. You can access the read/write fileset via
/:/.rw/warp001, or you can create a read/write mount point, /:/.warp001, if
you do not plan to keep /:/.rw available for daily use.

To create the read/write mount point, issue:

fts crmount /:/.rw/.warp001 warp001.ft -rw

j. Update the read-only copy of root.dfs to make the /:/.warp001 directory
available:

fts rel root.dfs

 k. Force the local cache manager to read the new fileset information:

cm checkfilesets

Now you can access the read/write fileset and create a file.

Chapter 4. Implementing DFS 97

4.4.5 Double-Check Your Work
You can use the following commands on every DFS machine.

• Consult the FLDB:

fts lsfldb

root.dfs
readWrite ID 0,,1 valid
readOnly ID 0,,2 valid
backup ID 0,,3 invalid

number of sites: 1
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

ev1 RW,RO lfsroot 0:00:00 hosts/ev1 <nil>

warp001.ft
readWrite ID 0,,4 valid
readOnly ID 0,,5 valid
backup ID 0,,6 invalid

number of sites: 2 <<--- Here note that number is two!!
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

ev1 RW,RO dfs001 0:00:00 hosts/ev1 <nil>
ev4 RO dfs001 0:00:00 hosts/ev4 <nil>

The readOnly fileset is now marked valid.

• List the fileset header:

ev4::/-> fts lsheader -server ev1
Total filesets on server ev1 aggregate lfsroot (id 1): 2
root.dfs 0,,1 RW 17 K alloc 17 K quota On-line
root.dfs.readonly 0,,2 RO 17 K alloc 17 K quota On-line
Total filesets on-line 2; total off-line 0; total busy 0

Total filesets on server ev1 aggregate dfs001 (id 2): 2
warp001.ft 0,,4 RW 16 K alloc 17 K quota On-line
warp001.ft.readonlyl 0,,5 RO 17 K alloc 17 K quota On-line
Total filesets on-line 2; total off-line 0; total busy 0

Total number of filesets on server ev1: 4

• Access to DFS filespace:

dce_login cell_admin mypasswd

cd /:/warp001

4.5 Defining Home Directories in DFS
Defining the home directory for DCE users is now easy with the integrated login
feature provided in AIX/DCE 2.1. You can log in from anywhere into any system
supporting DFS using the Common Desktop Environment (CDE) screen on the
console or a remote login (telnet, rlogin). When authenticated, you will
automatically reach your home directory. We suppose here that the system into
which you are logging implements the integrated login. Then, defining a DFS
home directory is straightforward. For more information about the integrated
login see 7.4, “Integrated Login AIX and DCE” on page 265.

98 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Let’s assume that user brice is to have a home directory in DFS, namely
/:/home/brice. User brice may or may not have a local account in the system
into which he is logging. The most important thing is that user brice has to be
registered in the DCE registry database. Below are the steps to follow to add an
account with the home directory in the DFS space. For more information about
configuring DFS, see 4.2, “Configuring a DFS Server” on page 76.

4.5.1 Defining the User in DCE
Creating a DCE user account with a DFS home directory must be performed by
the cell_admin user from any system within the cell.

 1. Log in as cell_admin.

 2. Create a DCE user account:

dcecp> user create brice -uid 900 -gr none -org none -home /:/home/brice\
> -passw <brice_passwd> -mypwd <cell_admin_passwd>

 3. Check the user profile:

dcecp> user show brice
{fullname {}}
{uid 900}
{uuid 00000384-6d39-21cf-9700-10005aa8cff8}
{alias no}
{quota unlimited}
{groups none}
{acctvalid yes}
{client yes}
{created /.../itsc.austin.ibm.com/cell_admin 1996-02-22-10:52:14.000-06:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1996-02-22-10:52:13.000-06:00I-----}
{group none}
{home /.../itsc.austin.ibm.com/fs/home/brice}
{lastchange /.../itsc.austin.ibm.com/cell_admin 1996-02-22-10:52:14.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
No policy
dcecp>

 4. Design the DFS user space.

Before we can create the home directory for brice, we must decide about
how we will manage our DFS namespace. As you remember, we mentioned
that the root.dfs fileset was purposely kept small because it would only
contain a set of directories and no files. The home directory can reside
here, and we use the mkdir command to create it. Your current working
directory must be the read/write file tree.

cd /:/.rw
mkdir home

 5. Create the necessary filesets.

Chapter 4. Implementing DFS 99

We feel it is best for the user data to reside in a separate aggregate on its
own logical volume. In addition, each user can be put into a unique fileset.
This is just one way to manage users. Another way would be to place
groups of users in a single fileset, but then it would not be possible to
control space on an individual user basis this way. Possibly a combination
of the two approaches is ultimately the best, consisting of a series of user
filesets within an aggregate representing an administrative unit, such as a
department or division.

mklv -t lfs -y dfsu01 rootvg 2
newaggr -aggregate /dev/dfsu01 -bl 8192 -fr 1024 -overwrite
mkdfslfs -d /dev/dfsu01 -m /:/.rw/home/brice -n dfsu01 -f brice.ft

 6. Back out in case errors have occurred.

It is understandable that something may go wrong when the mkdfslfs
command is running. It performs many steps. The following commands are
needed to delete a fileset and logical volume after the above steps have
completed. These commands will not remove every trace, they are
considered the minimum that is needed. The rmdfslfs command can also be
used by those who like to perform many steps in a single command to back
out from an error.

fts delmount -dir /:/.rw/home/brice
fts delete -fileset brice.ft -server ev1 -aggregate dfsu01
vi /opt/dcelocal/var/dfs/dfstab (remove entry for aggregate)
dfsexport -aggregate dfsu01 -detach
rmlv dfsu01

 7. To check, list the mount point and also the aggregates:

fts lsmount -dir /:/.rw/home/brice
fts lsfldb

 8. Release the read/write fileset and update the cache:

fts release -fileset root.dfs
cm checkfileset

 9. Create the ACL entry for user brice:

dcecp> acl show /:/home/brice
{user_obj rwxcid}
{group_obj -----}
{other_obj -----}
dcecp> acl modify /:/home/brice -add {user brice rwxcid}
dcecp> acl modify /:/home/brice -change {mask_obj rwxcid}

These settings will allow user brice to define the ACLs he wishes to set. If
he does not want to mess with any ACL definitions, which is probably typical
for most of the users, the umask will be in effect. In this case, it is important
for cell_admin to set at least the permissions that correspond to the umask
on the top directory. Otherwise, no user will ever get access to anything
underneath that top directory. If, for instance, Brice’s umask is 022, set the
permissions to 755:

chmod 755 /:/home/brice

10. Try to create a file with user cell_admin:

100 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

cd /:/home/brice
touch afile
touch: 0652-046 Cannot create afile.
pwd
/:/home/brice

klist
DCE Identity Information:

Warning: Identity information is not certified
Global Principal: /.../itsc.austin.ibm.com/cell_admin
Cell: f2d03530-6708-11cf-9367-10005aa8cff8 /.../itsc.austin.ibm.com
Principal: 00000064-6708-21cf-9300-10005aa8cff8 cell_admin
Group: 0000000c-6708-21cf-9301-10005aa8cff8 none
Local Groups:

0000000c-6708-21cf-9301-10005aa8cff8 none
00000064-6709-21cf-8301-10005aa8cff8 acct-admin
00000065-6709-21cf-8301-10005aa8cff8 subsys/dce/sec-admin
00000066-6709-21cf-8301-10005aa8cff8 subsys/dce/cds-admin
00000068-6709-21cf-8301-10005aa8cff8 subsys/dce/dts-admin
00000067-6709-21cf-8301-10005aa8cff8 subsys/dce/dfs-admin

.......
mkdir /:/home/brice/dir2
mkdir: 0653-357 Cannot access directory ..
.: The file access permissions do not allow the specified action.

You can notice here that even cell_admin cannot create a file or a directory
on /:/home/brice once the ACL is set. This is different from UNIX, where the
root account can do everything, whereas here in the DFS space, users, even
cell_admin, need the appropriate ACLs entries.

The task of the cell_admin user stops here. It is now up to user brice to protect
his own directory by setting appropriate ACL entries.

4.5.2 Tasks of the Local Administrator
The local administrator needs to enable the integrated login in the local system,
which means defining DCE as an authentication method to the local AIX system.
He or she must be careful about allowing DCE users to access the machine. For
more information, see 7.4.2, “User Synchronization Between AIX 4.1+ and DCE”
on page 267.

4.5.3 User’s Tasks
The user needs to set appropriate ACL entries for his or her directory,
subdirectories or files.

 1. Log into AIX and DCE at the same time:

AIX Version 4
(C) Copyrights by IBM and by others 1982, 1994.
login: brice
brice’s Password:
**
* *
* Welcome to AIX Version 4.1! *
* *
**

...

Chapter 4. Implementing DFS 101

$ pwd
/.../itsc.austin.ibm.com/fs/home/brice
$ id
uid=900(brice) gid=12(none)
$ touch myfile
$ ls -l
total 0
-rw-r--r-- 1 brice none 0 Feb 22 11:37 myfile

$ dcecp -c acl show .
{mask_obj rwxcid}
{user_obj rwxcid}
{user brice rwxcid}
{group_obj r-x---}
{other_obj r-x---}

 2. It is not necessary to set any initial creation ACLs because for everything
Brice creates, he will be the owner and obtain the user_obj permissions. He
can set ACLs for other users, though.

Add an entry for the home directory for a user, friend:

$ dcecp -c acl modify /:/home/brice -add {user friend rwxcid}

ACLs for further directories:

$ dcecp -c acl modify -ic /:/home/brice -add {user friend rwxcid}
$ dcecp -c acl modify -ic /:/home/brice -change {mask_obj rwxid}
$ dcecp -c acl show -ic /:/home/brice
{mask_obj rwx-id}
{user_obj rwxcid}
{user friend rwxcid effective rwx-id}
{group_obj rwx-id}
{other_obj rwx-id}

Set ACL for further files:

$ dcecp -c acl modify -io /:/home/brice -add {user friend rwxc}
$ dcecp -c acl modify -io /:/home/brice -change {mask_obj rwx}
$ dcecp -c acl show -io /:/home/brice
{mask_obj rwx---}
{user_obj rwxc--}
{user friend rwxc-- effective rwx---}
{group_obj rwx---}
{other_obj rwx---}

Note: If Brice creates a directory or file in his home directory, its mask_obj
might be restricted by the umask setting. If, for instance, umask is 022, then the
UNIX group permission will be r-x, which will create a mask_obj that has no
write permission, which in turn will restrict friend’s access.

The task of the user is basically done now. Try to log into a system again:

$exit

AIX Version 4
(C) Copyrights by IBM and by others 1982, 1994.
login: brice
brice’s Password:
**
* *
* Welcome to AIX Version 4.1! *

102 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

* *
**
...
$ pwd
/.../itsc.austin.ibm.com/fs/home/brice
$ umask
022
$ ls -l
drwxr-xr-x 2 brice none 256 Feb 22 11:57 dir1
-rw-r--r-- 1 brice none 0 Feb 22 11:37 myfile

Now everything should work correctly. If you log in from the Common Desktop
Environment (CDE), the system automatically creates profiles for you.

$ls -la
total 18
drwxrwxr-x 4 brice none 480 Feb 22 12:06 .
drwxrwxr-x 3 root none 288 Feb 22 11:05 ..
-rw------- 1 brice none 97 Feb 22 12:06 .Xauthority
drwxr-xr-x 10 brice none 544 Feb 22 12:06 .dt
-rwxr-xr-x 1 brice none 3970 Feb 22 12:06 .dtprofile
-rw------- 1 brice none 78 Feb 22 12:07 .sh_history
drwxr-xr-x 2 brice none 256 Feb 22 11:57 dir1
-rw-r--r-- 1 brice none 0 Feb 22 11:37 myfile

4.6 Summary
We achieved our objective as depicted in Figure 36 on page 75 in the
introduction to this chapter. DFS clients have been set up on the OS/2 Warp
machines. The components configured for DFS can be determined in the
following way on AIX.

ev1::/-> lsdfs
Current state of DFS configuration:
dfs_cl COMPLETE DFS Client Machine
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_repsrv COMPLETE DFS Replicated Fileset Server Machine
dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE DFS File Server Machine

On OS/2 Warp, only clients can be configured. A server cat command issued
locally or remotely shows us the presence of the dfsd daemon in the srvrconf.db
maintained by the DCE daemon on every machine:

dcecp> server cat /.:/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/cdsadv
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dtsd
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/time_provider
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dfsd

Locally, the command could look like:

DCECP> server cat

In the table below we indicate the daemons/processes which have to be
activated on machines with respect to the roles that they have to fulfill.

Chapter 4. Implementing DFS 103

Figure 41. List of Processes and Daemons for DFS Machine Roles

104 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 5. Implementing Various LAN/WAN Scenarios

To gain experience with different topologies, cell layouts, and administration
issues, we decided to implement different scenarios. Our approach was to
create scenarios based on different technical aspects rather than to try to
describe examples of business areas and possible solutions for them. We
figured that many different businesses would end up with the same cell layout
based on abstract factors such as:

• Amount of central data or service access

• Need for interchange of data and services between branch offices,
subsidiaries, or even other companies

• Size of branch offices

• Availability requirements

• Interoperability with other systems, clusters, and so on

• Growth expectations

• Cost

It is much easier for customers to decide what abstract technical solution fits
their business best when they know what they should pay attention to. The
scenarios we were looking at can be divided into the following groups:

 1. Local (LAN-type) scenarios

 2. LAN/WAN scenarios

 3. Intercell setup

We look at different network topologies and vary the placement of the different
core services. We provide step-by-step implementation instructions for selected
scenarios to enable the reader to do a quick installation of each scenario.
Besides configuration instructions, we also document our experiences with the
different environments and discuss performance and availability issues.

For detailed installation and configuration instructions see:

• For DCE — Chapter 3, “Implementing DCE Cells” on page 37

• For DFS — Chapter 4, “Implementing DFS” on page 75

Note: Whenever we create a new fileset, we set the permissions for its parent
directory to 777. This is not the recommended setup for mount-point directories.
We do this for the sake of simplicity. See 4.2.7, “Fixing Access Permissions
(ACLs)” on page 84, for a discussion on ACL settings.

5.1 Local (LAN-type) Cells
This section discusses cell topologies without slow communication links. They
can be considered to be a local environment. The simplest case is a single LAN
with all nodes attached to it. Also, a much more complex topology with bridges
and routers in between multiple LANs can logically be thought of as a LAN.
These LANs can be directly connected by a router or a bridge, or they can be
part of Metropolitan Area Network (MAN) with fast connections, such as:

• Fiber Distributed Data Interface (FDDI)

 Copyright IBM Corp. 1996 105

• Asynchronous Transfer Mode (ATM)
• Fiber Channel Standard (FCS)

An example can be a university campus with an FDDI backbone dropping off
several Ethernet LANs in each different building or even on different floors in all
the buildings.

This section concentrates on logically pure LAN topology. If there are bridges
and routers involved, we assume that the router network provides a fast and
reliable environment to be logically considered as a single LAN. We describe
step by step how to configure a DCE cell with the following different layout of the
core services:

• All master services on one server and replicated servers on another
• Master and replica servers on different nodes

We provide all commands to create each specific scenario so that there is a
complete guideline that can be followed. For more explanations, sample SMIT
screens, and command output, see Chapter 3, “Implementing DCE Cells” on
page 37.

5.1.1 Scenario 2: Master Servers on One Machine and Replicas on Another
As shown in Figure 42, we configure all master servers on ev1 and all
replication servers on ev4.

Figure 42. Scenario 2: One Master Server - One Replica Server

5.1.1.1 Preparation Steps
Before you configure any of the DCE machines, you should have:

• Created the necessary file systems
• Checked network name resolution
• Checked network routing
• Checked the network interfaces

106 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

• Synchronized the system clocks
• Installed DCE (last of these steps)

For details, see 3.2, “Preparing for DCE Configuration on AIX” on page 38.

5.1.1.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.

Configuring machine ev1

 1. Configure the core components:

mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts_local

Test a few commands to see if DCE is working correctly:

dce_login cell_admin cell_password
dcecp
dcecp> cell show
dcecp> directory list /.:
dcecp> principal cat
dcecp> quit

 2. Configure the DFS components:

a. Configure the system control machine (SCM), DFS fileset database
(FLDB), DFS server, and DFS client all in one step. The -e flag loads the
DFS kernel extension for now and for subsequent restarts:

mkdfs -e dfs_scm dfs_fldb dfs_srv dfs_cl

b. Create an aggregate for the root.dfs fileset:

mklv -t lfs -y lfsroot rootvg 1
newaggr -aggreg /dev/lfsroot -bl 8192 -fr 1024 -overwrite

 c. Export the root.dfs fileset:

mkdfslfs -r -d /dev/lfsroot -n lfsroot

d. Log in as cell_admin:

dce_login cell_admin cell_password

e. Give cell_admin the permission to access the DFS filespace:

chmod 777 /:

f. Try to access the DFS filespace:

cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

g. Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication just
to show how to replicate a fileset. If you want more information about
replicating filesets, see sections 7.2, “DFS Replication” on page 252 and
4.4, “Replicating Filesets on AIX” on page 89.

1) Configure the fileset replication server:

mkdfs dfs_repsrv

Chapter 5. Implementing Various LAN/WAN Scenarios 107

2) Create read/write mount point for root.dfs:

fts crmount /:/.rw root.dfs -rw

3) Define the replication type for root.dfs:

fts setrepinfo -fileset root.dfs -rel

4) Define the same machine as a replication site:

fts addsite -fileset root.dfs -server /.:/hosts/ev1 -aggr lfsroot

5) Create the read-only fileset and force replication from the read/write
source:

fts release -fileset root.dfs

6) Leave the DFS root directory; otherwise you are still connected to the
read/write fileset of the /: directory:

cd

7) Force the local cache manager to refresh its knowledge about the
fileset configuration:

cm checkfilesets

8) Check whether you can create a file in /: now:

cd /:
touch testfile
touch: 0652-046 Cannot create testfile.

9) You can create the testfile only via the read/write mount point:

cd /:/.rw
touch testfile
ls

h. Create another fileset:

• Create a logical volume /dev/usrbin with five blocks of 4 MB:

mklv -t lfs -y usrbin rootvg 5

• Create an aggregate on the /dev/usrbin:

newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

• Export the aggregate:

mkdfslfs -d /dev/usrbin -n usrbin

• Create a fileset without a mount point:

mkdfslfs -f usrbin.ft -n usrbin

• See if the fileset is correctly exported:

fts lsfldb

i. Replicate this fileset before you create the mount point:

1) Define the replication type for usrbin.ft:

fts setrepinfo -fileset usrbin.ft -rel

2) Define the same machine as a replication site:

fts addsite -fileset usrbin.ft -server /.:/hosts/ev1 -aggr usrbin

3) Create the read-only fileset and force replication from the read/write
source:

fts release -fileset usrbin.ft

108 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

j. Mount the fileset and test access to it:

1) Create the regular mount point, /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

fts crmount /:/.rw/usrbin usrbin.ft
chmod 777 /:/.rw/usrbin

2) Update the read-only copy of root.dfs to make the directory /:/usrbin
available:

fts rel root.dfs

3) Force the local cache manager to read the new fileset information:

cm checkfilesets

You will not be able to create files in /:/usrbin because this path
accesses the read-only fileset. You can access the read/write fileset via
/:/.rw/usrbin, or you can create a read/write mount point /:/.usrbin if you
do not plan to keep /:/.rw available for daily use.

To create the read/write mount point, issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machines ev2, ev3

 1. Configure the core components for ev2:

mkdce -n itsc.austin.ibm.com -s ev1 sec_cl cds_cl dts_local

Test a few commands to see if DCE is working correctly:

dce_login cell_admin cell_password
dcecp
dcecp> cell show
dcecp> directory list /.:
dcecp> principal cat
dcecp> quit

 2. Configure the DFS components for ev2:

mkdfs dfs_cl

Test a few commands to see if DFS is working correctly:

fts lsfldb
cd /:
ls -al

 3. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

cm checkfilesets

 4. Repeat above steps for ev3:

Configuring machine ev4

 1. Configure the core components:

mkdce -n itsc.austin.ibm.com -s ev1 sec_cl cds_cl dts_local

 2. Configure the CDS replication server:

mkdce cds_second

Chapter 5. Implementing Various LAN/WAN Scenarios 109

See 3.7.1, “Replicating a CDS Server” on page 65 for more details about
CDS replication.

 3. Configure the security replication server:

mkdce -R -r ev4 sec_srv

 4. Configure the DFS components:

a. Force a bind to the master security server:

export BIND_PE_SITE=1

This avoids problems that we have encountered when mkdfs is bound to
the slave security server.

b. Configure the DFS client:

mkdfs dfs_cl

 c. Configure the fileset database (FLDB):

mkdfs -s /.:/hosts/ev1 dfs_fldb

d. Configure the DFS file server with the option to load the kernel extension:

mkdfs -s /.:/hosts/ev1 -e dfs_srv

e. Configure the DFS replication server machine:

mkdfs -s /.:/hosts/ev1 dfs_repsrv

f. Release the forced connection to the master security server:

unset BIND_PE_SITE

g. Create logical volumes as large as on ev1:

mklv -t lfs -y lfsroot rootvg 1
mklv -t lfs -y usrbin rootvg 5

h. Create the aggregates:

newaggr -aggreg /dev/lfsroot -bl 8192 -fr 1024 -overwrite
newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

i. Export the aggregates:

mkdfslfs -d /dev/lfsroot -n lfsroot
mkdfslfs -d /dev/usrbin -n usrbin

j. Define the new replication site:

fts addsite -fileset root.dfs -server /.:/hosts/ev4 -aggr lfsroot
fts addsite -fileset usrbin.ft -server /.:/hosts/ev4 -aggr usrbin

 k. Create the read-only filesets and force replication from the read/write
sources:

fts release -fileset root.dfs
fts release -fileset usrbin.ft

l. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to force the local cache manager to read the new fileset
information:

cm checkfilesets

110 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

5.1.1.3 Scenario Experiences
Note that being successful configuring a secondary CDS server does not mean
that any directories and names are replicated. You have to manually replicate
each selected directory to machine ev4. Suppose we have a directory called
/.:/branch1 and we want to replicate it on machine ev4. Here is how you do it:

dce_login cell_admin cell_password
cdsli -rd | grep branch1 | xargs -i -t cdscp create replica {} \
clearinghouse /.:/ev4_ch
cdsli -rd | grep branch1 | xargs -i -t cdscp set dir {} to new \
epoch master /.:/ev1_ch readonly /.:/ev4_ch

The commands recursively copy all directories underneath the directory
/.:/branch, too.

There is a shell script copy_ch provided on the diskette with this publication that
copies all directories to a new clearinghouse.

5.1.1.4 Special Issues
The DFS recommendation is to have an odd number (preferably three) FLDBs to
ease their voting process for a master FLDB. If we had more file server nodes,
we would have to install one more FLDB server as well. Most environments do
not need more than three FLDB servers; the voting process would be more
complicated and would create more network traffic.

There is not a right or a wrong sequence of steps to set up fileset replication.
We replicate a fileset immediately after having created it and before we create
the mount point. By doing so, we prevent any DFS clients from accessing the
read/write fileset via the path name consisting of regular mount points. But if
you do not know yet whether you will ever replicate a fileset later on, it is
perfectly right to first create all filesets and mount points, populate the file space,
and then possibly replicate some of the filesets. See 4.4, “Replicating Filesets
on AIX” on page 89 and 7.2, “DFS Replication” on page 252 for more
information on how to replicate filesets.

5.1.1.5 Response Times
All the DCE/DFS commands we tested in this scenario (dce_login, rgy_edit,
cdscp, rpccp and others) took less than five seconds when all servers are
available.

5.1.1.6 Performance Di scussion
Having replicated servers means load balancing for registry, CDS, FLDB, and
DFS fileset access, provided that the right CDS directories are replicated and the
DFS data access to replicated filesets is read-mostly.

Depending on the problems that may be experienced, the following
improvements are possible:

• Removing other services/applications from the DCE server machines

• Creating more replicated servers of all types to spread load

• If frequent write access to CDS and/or DFS files occur, consider distributing
CDS master replicas and/or DFS read/write filesets to different nodes close
to where they are accessed

Chapter 5. Implementing Various LAN/WAN Scenarios 111

5.1.1.7 Availability Discussion
In this scenario the entire registry database is replicated, which makes sure that
tickets can be issued as long as one of the security servers is reachable.
Changes to the registry, such as adding a new principal, might be temporarily
impossible, if ev1 is unavailable.

The FLDB is replicated, which improves availability in the case of a network
partition or if one of the servers becomes unavailable.

In order to get highly available read access to the fileset usrbin.ft.readonly, all
filesets containing the mount point and its parent directories, all the way up to
the root directory (/:), should be replicated, too. This means root.dfs must be
replicated on ev4 to make sure /:/usrbin can be accessed if ev1 breaks.

Note that for CDS, you must explicitly replicate each directory you want to make
highly available. The same is true for DFS filesets. For both CDS and DFS files,
high availability is only assured for read access. Write access always goes to
the master copy, which might become temporarily unavailable.

The use of the IBM AIX High-Availability Cluster Multi-Processing (HACMP)
product should be considered for all cases in which even temporary
unavailability to read/write databases is unacceptable. Having the CDS and
security master servers for the core services, or a DFS fileset server for DFS, in
an HACMP cluster improves availability of write access to these services.

5.1.2 Scenario 3: Master Servers and Replicas on Different Machines
As shown in Figure 43, we spread all master and replication servers over
different machines.

Figure 43. Scenario 3: DCE Servers on Different Machines

112 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

5.1.2.1 Preparation Steps
Before you configure any of the DCE machines, you should have:

• Created the necessary file systems
• Checked network name resolution
• Checked network routing
• Checked the network interfaces
• Synchronized the system clocks
• Installed DCE (last of these steps)

For details, see 3.2, “Preparing for DCE Configuration on AIX” on page 38.

5.1.2.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.

Configuring machine ev1

 1. Configure the core components:

a. Configure the security server machine:

mkdce -n itsc.austin.ibm.com sec_srv

Note that you have to configure the core services on machine ev2 now,
before you continue with the next steps.

b. Configure the DTS server and other DCE core clients:

mkdce cds_cl dts_local

Test a few commands to see if DCE is working correctly:

dce_login cell_admin cell_password
dcecp
dcecp> cell show
dcecp> directory list /.:
dcecp> principal cat
dcecp> quit

 2. Configure the DFS client machine:

mkdfs dfs_cl

Configuring machine ev2

 1. Configure the core components:

mkdce -n itsc.austin.ibm.com -s ev1 cds_srv sec_cl dts_local

 2. Configure the DFS components:

a. Configure the system control machine (SCM):

mkdfs dfs_scm

b. Configure the DFS fileset database:

mkdfs dfs_fldb

 c. Configure the DFS file server with the option to load the kernel extension:

mkdfs -e dfs_srv

d. Configure the DFS client:

mkdfs dfs_cl

e. Create an aggregate for the root.dfs fileset:

Chapter 5. Implementing Various LAN/WAN Scenarios 113

mklv -t lfs -y lfsroot rootvg 1
newaggr -aggreg /dev/lfsroot -bl 8192 -fr 1024 -overwrite

f. Export the root.dfs fileset:

mkdfslfs -r -d /dev/lfsroot -n lfsroot

g. Log in as cell_admin:

dce_login cell_admin cell_password

h. Give cell_admin the permission to access the DFS filespace:

chmod 777 /:

i. Try to access the DFS filespace:

cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

j. Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication just
to show how to replicate a fileset. If you want more information about
replicating filesets, see sections 7.2, “DFS Replication” on page 252 and
4.4, “Replicating Filesets on AIX” on page 89.

1) Configure the fileset replication server:

mkdfs dfs_repsrv

2) Create the read/write mount point for root.dfs:

fts crmount /:/.rw root.dfs -rw

3) Define the replication type for root.dfs:

fts setrepinfo -fileset root.dfs -rel

4) Define the same machine as a replication site:

fts addsite -fileset root.dfs -server /.:/hosts/ev2 -aggr lfsroot

5) Create the read-only fileset, and force replication from the read/write
source:

fts release -fileset root.dfs

6) Leave the DFS root directory; otherwise you are still connected to the
read/write fileset of the /: directory:

cd

7) Force the local cache manager to refresh its knowledge about the
fileset configuration:

cm checkfilesets

8) Check whether you can create a file in /: now:

cd /:
touch testfile
touch: 0652-046 Cannot create testfile.

9) You can create the testfile only via the read/write mount point:

114 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

cd /:/.rw
touch testfile
ls

 k. Create another fileset:

• Create a logical volume /dev/usrbin with five blocks of 4 MB:

mklv -t lfs -y usrbin rootvg 5

• Create an aggregate on the /dev/usrbin:

newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

• Export the aggregate:

mkdfslfs -d /dev/usrbin -n usrbin

• Create a fileset without a mount point:

mkdfslfs -f usrbin.ft -n usrbin

• See if the fileset is correctly exported:

fts lsfldb

l. Replicate this fileset before you create the mount point:

1) Define the replication type for usrbin.ft:

fts setrepinfo -fileset usrbin.ft -rel

2) Define the same machine as a replication site:

fts addsite -fileset usrbin.ft -server /.:/hosts/ev2 -aggr usrbin

3) Create the read-only fileset, and force replication from the read/write
source:

fts release -fileset usrbin.ft

m. Mount the fileset, and test access to it:

1) Create the regular mount point, /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

fts crmount /:/.rw/usrbin usrbin.ft
chmod 777 /:/.rw/usrbin

2) Update the read-only copy of root.dfs to make the directory /:/usrbin
available:

fts rel root.dfs

3) Force the local cache manager to read the new fileset information:

cm checkfilesets

You will not be able to create files in /:/usrbin because this path
accesses the read-only fileset. You can access the read/write fileset via
/:/.rw/usrbin, or you can create a read/write mount point /:/.usrbin if you
do not plan to keep /:/.rw available for daily use.

To create the read/write mount point, issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machine ev3

 1. Configure the DTS server and DCE core clients:

mkdce -n itsc.austin.ibm.com -s ev1 sec_cl cds_cl dts_local

Chapter 5. Implementing Various LAN/WAN Scenarios 115

 2. Configure the CDS replication server:

mkdce cds_second

See 3.7.1, “Replicating a CDS Server” on page 65 for more details about
CDS replication.

 3. Configure the DFS components:

a. Configure the DFS client:

mkdfs dfs_cl

b. Configure the DFS fileset database (FLDB):

mkdfs -s /.:/hosts/ev2 dfs_fldb

 c. Configure the DFS file server machine with the option to start the kernel
extension:

mkdfs -s /.:/hosts/ev2 -e dfs_srv

d. Configure the DFS replication server machine:

mkdfs -s /.:/hosts/ev2 dfs_repsrv

e. Create logical volumes as large as on ev2:

mklv -t lfs -y lfsroot rootvg 1
mklv -t lfs -y usrbin rootvg 5

f. Create the aggregates:

newaggr -aggreg /dev/lfsroot -bl 8192 -fr 1024 -overwrite
newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

g. Export the aggregates:

mkdfslfs -d /dev/lfsroot -n lfsroot
mkdfslfs -d /dev/usrbin -n usrbin

h. Define the new replication site:

fts addsite -fileset root.dfs -server /.:/hosts/ev3 -aggr lfsroot
fts addsite -fileset usrbin.ft -server /.:/hosts/ev3 -aggr usrbin

i. Create the read-only filesets and force replication from the read/write
sources:

fts release -fileset root.dfs
fts release -fileset usrbin.ft

j. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to force the local cache manager to read the new fileset
information:

cm checkfilesets

Configuring machine ev4

 1. Configure the DTS server and DCE core clients:

mkdce -n itsc.austin.ibm.com -s ev1 sec_cl cds_cl dts_local

 2. Configure the security replication server:

mkdce -R -r ev4 sec_srv

 3. Configure the DFS client machine:

mkdfs dfs_cl

116 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 4. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

cm checkfilesets

5.1.2.3 Scenario Experiences
The same discussion as in scenario 2 applies. Please see 5.1.1.3, “Scenario
Experiences” on page 111.

5.1.2.4 Special issues
There are no special issues in this scenario.

5.1.2.5 Performance Di scussion
The same discussion as in scenario 2 applies. Please see 5.1.1.6, “Performance
Discussion” on page 111.

5.1.2.6 Availability Discussion
The same discussion as in scenario 2 applies. Please see 5.1.1.7, “Availability
Discussion” on page 112.

5.2 LAN/WAN Cells
This section discusses cell topologies that involve remote sites connected to a
central site via wide area networks (WANs) that use relatively slow
communication links. This is probably the most common real-world picture of
companies today, where a (usually) big number of subsidiaries or branch offices
need access to a (usually) small number of central sites. These remote sites are
very different in size. They may range from a single remote workstation to a site
with hundreds of workstations.

In our limited test environment, we set up a few scenarios with a central site,
which is marked by the token-ring LAN, and one remote site. We looked at two
different types of remote sites, a small one that does not run any servers or
services and a large one that consists of a few servers and many client
workstations. The following is a list of two-site scenarios with different link types
that we look at in this section:

• A small branch connected via WAN (scenario 4)
• A large branch connected via WAN (scenario 5)
• A branch with redundant communication links (scenario 6)
• An intercell scenario

Today companies are establishing their vital communication links and networks
with routers and bridges which allow for several protocols to be transmitted so
the same infrastructure can be used in a heterogeneous environment. They may
even implement alternate communication links so that we need not worry about
availability of the network. The more sophisticated the network, the less we
need to be concerned about the location of the DCE servers and replicas
because the entire network resembles one big LAN.

However, there are environments where IP routing is done by regular
workstations or servers. This is what we implemented in our scenarios. The
most important result we want to get across is that the DCE servers should not
export slow WAN interfaces into CDS. Always exclude, for instance, X.25 or SLIP

Chapter 5. Implementing Various LAN/WAN Scenarios 117

interfaces by setting the environment variable RPC_UNSUPPORTED_NETIFS. See 3.2.3,
“Checking Network Routing” on page 40, for details.

For a summary of our findings and planning hints, see Chapter 2, “Planning DCE
Cells” on page 19.

We provide all commands to create each specific scenario; so there is a
complete guideline which can be followed. For more explanation, sample SMIT
screens, and command output, see Chapter 3, “Implementing DCE Cells” on
page 37.

In these scenarios, be careful with the routing. For the sake of simplicity, we
used the /etc/hosts file and static routes. Please be aware that you most likely
will find domain name servers and routing daemons in a customer environment.
It is beyond the scope of this document to explain their setup.

5.2.1 Scenario 4: A Small Branch Connected via WAN (X.25/SLIP)
As shown in Figure 44, we install all servers in the central site. The Ethernet
network with ev3 and ev4 simulates a small branch.

Figure 44. Scenario 4: A Small Branch Connected via 19,200 bps X.25

There are many kinds of communication links for WANs at present. However, in
respect to DCE configuration, the underlying communication medium does not
matter if a TCP/IP connection is configured on it. We used an X.25 link between
two sites as an example of a WAN link. Other communication links, for example
SLIP (which we tested in the previous version of this book, GG24-4348), can be
used following almost the same steps.

118 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

5.2.1.1 Preparation Steps
Before you configure any of the DCE machines, you should have:

• Created the necessary file systems
• Checked network name resolution
• Checked network routing - see below
• Checked the network interfaces
• Synchronized the system clocks
• Installed DCE (last of these steps)

For details, see 3.2, “Preparing for DCE Configuration on AIX” on page 38. To
communicate to each other, we have to set the routes on each machine:

On machine ev1: List the network interfaces:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 12316 0 12316 0 0
lo0 16896 127 localhost 12316 0 12316 0 0
tr0 1492 <Link>10.0.5a.4f.46.29 11431 0 5585 0 0
tr0 1492 9.3.1 ev1.itsc.austin 11431 0 5585 0 0
xs0 1500 <Link> 248151 0 165313 0 0
xs0 1500 192.1.20 ev1x25 248151 0 165313 0 0

Check name resolution:

host ev1
ev1 is 9.3.1.68
host ev1x25
ev1x25 is 192.1.20.3
host ev4et
ev4et is 193.1.10.4
host ev4x25
ev4x25 is 192.1.20.2

In order for ev1 to get to the Ethernet network, we have to specify ev4’s X.25
interface as the gateway:

route add -net 193.1.10 ev4x25 1

Note that AIX 4.1 doesn’t do IP forwarding by default. To make IP routing
available, issue:

no -o ipforwarding=1

We recommend placing the above command in a file, for example /etc/rc.tcpip,
which is called during system boot.

Exclude the X.25 interface now and forever:

export RPC_UNSUPPORTED_NETIFS=xs0
echo ″export RPC_UNSUPPORTED_NETIFS=xs0″ >> /etc/environment

Chapter 5. Implementing Various LAN/WAN Scenarios 119

 SLIP

This is the only X.25-specfic part in the configuration process. In case of
SLIP, you should issue:

export RPC_UNSUPPORTED_NETIFS=sl0
echo RPC_UNSUPPORTED_NETIFS=sl0 >> /etc/environment

If both X.25 and SLIP exist on one machine, you should issue:

export RPC_UNSUPPORTED_NETIFS=xs0:sl0
echo RPC_UNSUPPORTED_NETIFS=xs0:sl0 >> /etc/environment

On machine ev2: List the network interfaces:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 16153 0 16153 0 0
lo0 16896 127 localhost 16153 0 16153 0 0
tr0 1492 <Link>10.0.5a.a8.cf.f8 399804 0 148114 0 0
tr0 1492 9.3.1 ev2.itsc.austin 399804 0 148114 0 0

Set the appropriate route to always go via ev1:

route add default ev1 1

On machine ev3: List the network interfaces:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 1536 <Link> 1611 0 1611 0 0
lo0 1536 127 localhost 1611 0 1611 0 0
en0 1500 <Link> 964 0 942 0 0
en0 1500 193.1.10 ev3et 964 0 942 0 0

Check name resolution, and set the appropriate route:

host ev4et
ev4et is 193.1.10.4
host ev3et
ev3et is 193.1.10.3
host ev1
ev1 is 9.3.1.68
host ev1x25
ev1x25 is 192.1.20.3
route add default ev4et 1

On machine ev4: List the network interfaces:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 5407 0 5422 0 0
lo0 16896 127 loopback 5407 0 5422 0 0
en0 1500 <Link>2.60.8c.2f.6.53 3995 0 4445 0 0
en0 1500 193.1.10 ev4et 3995 0 4445 0 0
xs0 1500 <Link> 304244 0 126259 0 0
xs0 1500 192.1.20 ev4x25 304244 0 126259 0 0

Check name resolution, and set the appropriate route:

120 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

host ev1
ev1 is 9.3.1.68
host ev1x25
ev1x25 is 192.1.20.3
route add -net 9.3.1 ev1x25 1

Make IP forwarding available:

no -o ipforwarding=1

5.2.1.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.

Configuring machine ev1

 1. Configure the core components:

mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts_global

Test a few commands to see if DCE is working correctly:

dce_login cell_admin cell_password
dcecp
dcecp> cell show
dcecp> directory list /.:
dcecp> principal cat
dcecp> quit

 2. Configure the DFS components:

a. Configure the system control machine (SCM), DFS fileset database
(FLDB), DFS server, DFS client all in one step: The -e flag loads the DFS
kernel extension for now and for subsequent restarts:

mkdfs -e dfs_scm dfs_fldb dfs_srv dfs_cl

b. Create an aggregate for the root.dfs fileset:

mklv -t lfs -y lfsroot rootvg 1
newaggr -aggreg /dev/lfsroot -bl 8192 -fr 1024 -overwrite

 c. Export the root.dfs fileset:

mkdfslfs -r -d /dev/lfsroot -n lfsroot

d. Log in as cell_admin:

dce_login cell_admin cell_password

e. Give cell_admin the permission to access the DFS filespace:

chmod 777 /:

f. Try to access the DFS filespace:

cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

g. Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication just
to show how to replicate a fileset. If you want more information about

Chapter 5. Implementing Various LAN/WAN Scenarios 121

replicating filesets, see sections 7.2, “DFS Replication” on page 252 and
4.4, “Replicating Filesets on AIX” on page 89.

1) Configure the fileset replication server:

mkdfs dfs_repsrv

2) Create read/write mount point for root.dfs:

fts crmount /:/.rw root.dfs -rw

3) Define the replication type for root.dfs:

fts setrepinfo -fileset root.dfs -rel

4) Define the same machine as a replication site:

fts addsite -fileset root.dfs -server /.:/hosts/ev1 -aggr lfsroot

5) Create the read-only fileset, and force replication from the read/write
source:

fts release -fileset root.dfs

6) Leave the DFS root directory; otherwise you are still connected to the
read/write fileset of the /: directory:

cd

7) Force the local cache manager to refresh its knowledge about the
fileset configuration:

cm checkfilesets

8) Check whether you can create a file in /: now:

cd /:
touch testfile
touch: 0652-046 Cannot create testfile.

9) You can create the testfile only via the read/write mount point:

cd /:/.rw
touch testfile
ls

h. Create another fileset:

• Create a logical volume /dev/usrbin with five blocks of 4 MB:

mklv -t lfs -y usrbin rootvg 5

• Create an aggregate on the /dev/usrbin:

newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

• Export the aggregate:

mkdfslfs -d /dev/usrbin -n usrbin

• Create a fileset without a mount point:

mkdfslfs -f usrbin.ft -n usrbin

• See if the fileset is correctly exported:

fts lsfldb

i. Replicate this fileset before you create the mount point:

1) Define the replication type for usrbin.ft:

fts setrepinfo -fileset usrbin.ft -rel

2) Define the same machine as a replication site:

122 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

fts addsite -fileset usrbin.ft -server /.:/hosts/ev1 -aggr usrbin

3) Create the read-only fileset, and force replication from the read/write
source:

fts release -fileset usrbin.ft

j. Mount the fileset and test access to it:

1) Create the regular mount point, /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

fts crmount /:/.rw/usrbin usrbin.ft
chmod 777 /:/.rw/usrbin

2) Update the read-only copy of root.dfs to make the directory /:/usrbin
available:

fts rel root.dfs

3) Force the local cache manager to read the new fileset information:

cm checkfilesets

You will not be able to create files in /:/usrbin because this path
accesses the read-only fileset. You can access the read/write fileset via
/:/.rw/usrbin, or you can create a read/write mount point, /:/.usrbin if you
do not plan to keep /:/.rw available for daily use.

To create the read/write mount point, issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machine ev2

 1. Configure the DTS server and DCE core clients:

mkdce -n itsc.austin.ibm.com -s ev1 sec_cl cds_cl dts_global

 2. Configure the CDS replication server:

mkdce cds_second

See 3.7.1, “Replicating a CDS Server” on page 65, for more details about
CDS replication.

 3. Configure the security replication server:

mkdce -R -r ev2 sec_srv

 4. Configure the DFS components:

a. Force a bind to the master security server:

export BIND_PE_SITE=1

This avoids problems that we have encountered when mkdfs is bound to
the slave security server.

b. Configure the DFS client:

mkdfs dfs_cl

 c. Configure the the fileset database (FLDB):

mkdfs -s /.:/hosts/ev1 dfs_fldb

d. Configure the DFS file server with the option to load the kernel extension:

mkdfs -s /.:/hosts/ev1 -e dfs_srv

e. Configure the DFS replication server machine:

Chapter 5. Implementing Various LAN/WAN Scenarios 123

mkdfs -s /.:/hosts/ev1 dfs_repsrv

f. Release the forced connection to the master security server:

unset BIND_PE_SITE

g. Create logical volumes as large as on ev1:

mklv -t lfs -y lfsroot rootvg 1
mklv -t lfs -y usrbin rootvg 5

h. Create the aggregates:

newaggr -aggreg /dev/lfsroot -bl 8192 -fr 1024 -overwrite
newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

i. Export the aggregates:

mkdfslfs -d /dev/lfsroot -n lfsroot
mkdfslfs -d /dev/usrbin -n usrbin

j. Define the new replication site:

fts addsite -fileset root.dfs -server /.:/hosts/ev2 -aggr lfsroot
fts addsite -fileset usrbin.ft -server /.:/hosts/ev2 -aggr usrbin

 k. Create the read-only filesets, and force replication from the read/write
sources:

fts release -fileset root.dfs
fts release -fileset usrbin.ft

l. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to force the local cache manager to read the new fileset
information:

cm checkfilesets

Configuring machines ev3, ev4

 1. Configure the core components for ev3:

mkdce -n itsc.austin.ibm.com -s ev1 -c ev1 sec_cl cds_cl dts_local

Test a few commands to see if DCE is working correctly:

dcecp
dcecp> cell show
dcecp> directory list /.:
dcecp> principal cat
dcecp> quit

 2. Configure the DFS components for ev3:

mkdfs dfs_cl

Test a few commands to see if DFS is working correctly:

fts lsfldb
cd /:
ls -al

 3. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

cm checkfilesets

 4. Repeat above steps for ev4:

124 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

5.2.1.3 Scenario Experiences
When we configure the DCE/DFS client machines on the Ethernet side, it takes
more time than when we configure them on the token-ring side where the
servers are located.

5.2.1.4 Special Issues
The DFS recommendation is to have at least three FLDBs to ease their voting
process for a master FLDB. If we had more file server nodes, we would have to
install one more FLDB server as well.

The DTS recommendation is to have at least three servers on each LAN
segment. We would have to add more local DTS servers if we had more nodes.
Make sure that every DTS entity can reach at least the required number of
servers. Per default, DTS clerks need one DTS server; DTS servers need three
time values from DTS servers, including their own clock value. If there are not
enough DTS servers defined, adjust the number of required servers.

We decided that only the central site is responsible for the correct time. By
defining global servers on the central site only, we make sure that:

 1. The central site’s servers adjust their clocks only among themselves.
 2. The remote sites synchronize with one global server of the central site and

with their own local servers.

Note that if a third local DTS server were added to the Ethernet LAN, ev4 would
have to be a courier to make sure that a global server is contacted. Since there
are only two, the DTS local servers on the Ethernet automatically contacts a
global server to get three clock values.

Since the CDS servers are on another LAN, we must specify the -c flag with the
first mkdce command.

5.2.1.5 Response Times
On the token-ring side, even though we integrate a WAN, performance is still as
good as in scenario 2 and 3. However, on the Ethernet side, response is not as
good as on the token-ring side. The reason is that all DCE client commands
have to go across the slower WAN link, which is an X.25 line with 19,200 bps in
this scenario.

When a WAN is between DCE/DFS clients and servers, access to DCE/DFS
always takes more time, but all DCE commands work correctly with an
acceptable response time.

5.2.1.6 Performance Di scussion
Having replicated servers means load balancing, as we discussed in scenario 2
(see 5.1.1.6, “Performance Discussion” on page 111), as long as we do not
replicate servers to the remote sites. The improvements mentioned there are
valid only within the central site. Faster communication links would be the first
step for better performance at the remote sites.

Further improvements in the branches can be achieved by moving or replicating
certain DCE servers and resources to the remote sites. This has to be well
designed; otherwise you will experience a lot of unnecessary traffic to servers in
the remote sites. This would affect performance of the entire cell. In our
scenarios we would consider a remote site with DCE/DFS servers a large

Chapter 5. Implementing Various LAN/WAN Scenarios 125

branch. Therefore, see in 5.2.2.6, “Performance Discussion” on page 128
(scenario 5), for a discussion on server replication over WAN.

5.2.1.7 Availability Discussion
The availability discussion as far as the central site is concerned is the same as
in scenario 2 (see 5.1.1.7, “Availability Discussion” on page 112).

The remote sites are at a certain risk. If the link becomes unavailable or one of
the gateway nodes drop out, DCE is not working for this branch anymore. The
solution for improved availability is either replicating the servers (which is very
delicate according to the above performance discussion) or redundant layout of
the underlying TCP/IP with dynamic routing. See also 5.2.3, “Scenario 6: A
Branch Connected with Two Links” on page 130.

5.2.2 Scenario 5: A Large Branch Connected via WAN (X.25/SLIP)
As shown in Figure 45, the Ethernet network with ev3 and ev4 simulates a large
branch with replication servers this time.

Figure 45. Scenario 5: A Large Branch Connected via X.25

5.2.2.1 Preparation Steps
Before you configure any of the DCE machines, you should have:

• Created the necessary file systems
• Checked network name resolution
• Checked network routing
• Checked the network interfaces
• Synchronized the system clocks
• Installed DCE (last of these steps)

For details, see 3.2, “Preparing for DCE Configuration on AIX” on page 38.

126 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Be careful with the routing. The routes to be set are the same as in scenario 4a.
See 5.2.1.1, “Preparation Steps” on page 119.

Exclude the X.25 interface on ev1 and ev4 now and forever:

export RPC_UNSUPPORTED_NETIFS=xs0
echo RPC_UNSUPPORTED_NETIFS=xs0 >> /etc/environment

 SLIP

This is the only X.25-specfic part in the configuration process. In case of
SLIP, you should issue:

export RPC_UNSUPPORTED_NETIFS=sl0
echo RPC_UNSUPPORTED_NETIFS=sl0 >> /etc/environment

If both X.25 and SLIP exist on one machine, you should issue:

export RPC_UNSUPPORTED_NETIFS=xs0:sl0
echo RPC_UNSUPPORTED_NETIFS=xs0:sl0 >> /etc/environment

5.2.2.2 Configuration Steps
To configure all machines in this scenario, you can follow exactly the same steps
as in scenario 2, as described in 5.1.1.2, “DCE Configuration Steps” on page 107.
The only exception is you must replace the very first mkdce command for these
systems. The correct commands are shown below:

First mkdce for machine ev1

mkdce -n itsc.austin.ibm.com -t courier sec_srv cds_srv dts_global

First mkdce for machine ev2

mkdce -n itsc.austin.ibm.com -s ev1 sec_cl cds_cl dts_global

First mkdce for machine ev3

mkdce -n itsc.austin.ibm.com -s ev1 -c ev1 sec_cl cds_cl dts_local

First mkdce for machine ev4

mkdce -n itsc.austin.ibm.com -s ev1 -c ev1 -t courier sec_cl cds_cl dts_global

5.2.2.3 Scenario Experiences
We can configure all services on machine ev4 as planned, but it all takes more
time to configure. We tested with and without an FLDB server on ev4. When
FLDB servers were on both sides of the X.25 link, response times in the whole
cell became really slow. Response times for all DCE operations went up, and
even regular TCP/IP commands over this link became very slow. As soon as the
FLDB server was removed from ev4, operation went back to normal, and
response times were good.

5.2.2.4 Special Issues
Since we assume that the branch is a large one with a sufficient number of local
DTS servers, we need a courier-type server to make sure this site’s clocks are
synchronized with the central site. The courier server always includes the time
of one global DTS server in the calculation for adjustment of its own clock.

Chapter 5. Implementing Various LAN/WAN Scenarios 127

Since the central site also has a courier DTS server, it takes into consideration
the time values of global DTS servers of remote sites. If you wanted the central
site to synchronize the clocks internally and remote sites to adjust to the central
site, you would define the DTS server on ev1 as noncourier.

5.2.2.5 Response Times
There is no difference from scenario 4a (5.2.1.5, “Response Times” on page 125)
as far as DCE core service access times is concerned when we do not have an
FLDB server on ev4. Configuring FLDB servers on both sides of the X.25 link
generates considerable extra traffic on this (slow) line, and commands
sometimes take a long time to complete.

5.2.2.6 Performance Di scussion
Replicating servers usually means load balancing. Since the servers are all
randomly selected, statistically, half of the read-only access calls go to servers
on ev1 and the other half to ev4. That is the case for:

• Getting a ticket from the security server
• Finding a service from CDS
• Finding the location of a fileset from the FLDB
• Read access to the replicated fileset, usrbin.ft

This can also be the case with DCE-based products or customer-developed
applications that support replicated services, if they rely on RPC group entries in
CDS and/or use random selection of binding handles. However, an application
developer has all the freedom to implement some sophisticated features for
server selection. One can, for instance, analyze the binding handles received
from CDS or read an environment variable with a preferred server address and
so on. There are many possibilities. In the core components or DFS, there are
some built-in optimization features and/or configuration options that we discuss
in following sections.

The nice thing about load balancing through random server selection can turn
into a major performance penalty in the whole cell when almost half of all these
calls have to go across a slow WAN link. Is there anything that can be done to
override random selection? We have some configuration options that we
describe below for every component. However, before we implement any of
these optimizations, which certainly do not make administration of a cell any
easier, we must anticipate what the performance gain might be. We should not
try to improve something that is happening infrequently at the cost of
complicated configuration and administration efforts. We must be aware of the
fact that all DCE and DFS components are extensively caching. If clients are
statically acting on the same resources all day long, caching is very effective,
and the cell layout can be very simple.

Security: The binding handles of all security servers are defined in the file
/opt/dcelocal/etc/security/pe_site. This file builds a fallback address repository
and is consulted when the binding handle for the security daemon is not in the
client’s CDS cache and CDS is not reachable. The security API tries all binding
handles in that file from top to bottom.

We can force the pe_site file to be used right away by exporting the environment
variable BIND_PE_SITE. The top entries are built from the security server site
specified in the mkdce command, which should be the master. All updates of the
file for additional security server entries have to be manually initiated by calling

128 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

chpesite. The steps for ev3 to always access the security server on ev4 first
would be:

 1. Update the pe_site file to contain all existing security servers:

chpesite

This command overwrites the pe_site file with binding information about all
existing security servers. The master security server is put on top of the list.
In order for this command to succeed, CDS must be running normally.
Otherwise, you must add the entries manually with an editor.

 2. Edit the pe_site file so that the binding handles for ev4 become the top
entries.

 3. Set and export the environment variable:

export BIND_PE_SITE=1

However, this option has to be used with caution because it would introduce
static definitions and manual interaction on each node. It does make sense in
large LAN/WAN cells if there is a lot of security server access or many slow
links. The security server is mainly accessed when a ticket needs to be issued.
Once a ticket is issued, it remains valid for a configurable amount of time in
which no further security server access is needed. So, an over-proportional load
would occur when ticket lifetimes are too short as well as when many users log
in at the same time or do frequent logins and logoffs.

CDS: Access is to the clearinghouse in the same LAN if the requested directory
has a replica there. If the directory is not there, another CDS server is randomly
selected, and there is no way to bias the CDS clerk towards a specific CDS
server. The only configuration option we have for such cases is to put specific
directories only on specific clearinghouses so that accesses over slow WAN links
are minimized. In other words, we need to make sure that CDS is correctly
designed so that all the directories with frequent access from the remote site
have a replica there. See 2.5, “Planning the CDS Namespace” on page 26, for a
CDS design discussion.

FLDB and DFS file server: Access to the FLDB can now be predetermined. On
the DFS client, preferences can be set for the cache manager to access certain
FLDB and/or file servers with higher priority. The cm setpreferences command
does this.

As with CDS, we have to be careful while designing the layout of the servers.
The need to contact the FLDB should be minimized, which can be achieved with
a flat hierarchy of the file tree as far as mount points are concerned. What this
means is that filesets should not be mounted too many levels underneath each
other because during path-name resolution the FLDB has to be contacted at
each mount point. The FLDB should never be replicated to locations that are
connected over a slow WAN link with the rest of the cell.

The filesets should be defined location-oriented so they can be as geographically
close to the DFS clients as possible. If there is a lot of read-only access,
replicas should be made for load balancing. If the filesets are defined
location-oriented, only few replicas have to be defined for each read-only fileset.
This ensures that updates of certain filesets do not have to go to all locations,
which would cause performance problems.

Chapter 5. Implementing Various LAN/WAN Scenarios 129

5.2.2.7 Availability Discussion
From an availability point of view, all resources should be replicated in all
locations where at least read access is needed all the time and where there is a
possibility that the communication link to the rest of the cell might become
unavailable.

These requirements might introduce a conflict of interest with the configuration
requirements for good performance as mentioned above. Putting replicated
servers on branches connected with slow WAN links certainly enhances
availability, but careful DCE cell design is required to also achieve load
balancing and to avoid too much traffic on the slow links (see performance
discussion above). One might be able to do that for a couple of branches, but
for a cell with hundreds of branches, we would probably need more than three
times as many DCE core servers, which is difficult to manage and costs a lot of
money.

Instead of putting a sophisticated cell configuration in place, which automatically
also complicates cell administration, it might be easier to just make the link to
the central site more highly available. This can be achieved with a multiprotocol
router network or by simply building a backup link that can be activated in case
of a failure of the primary link. 5.2.3, “Scenario 6: A Branch Connected with Two
Links” discusses this topic.

5.2.3 Scenario 6: A Branch Connected with Two Links
As shown in Figure 46, we connect the branch with two links to make the
connection with the DCE servers more highly available.

Figure 46. Scenario 6: A Branch Connected with Two Links

Because of a lack of time, we did not install this scenario. Nevertheless, we
would like to discuss it.

130 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The main purpose of this scenario is to provide redundant connections to the
main site. This allows us to make DCE highly available in remote sites without
having to install replica servers. We might want to install replica servers for
performance reasons. However, this does not affect the recommendation to
exclude all WAN interfaces from being used in binding handles. For instance, on
a system with two X.25 interfaces and one SLIP interface, you would issue the
following command:

echo RPC_UNSUPPORTED_NETIFS=xs0:xs1:sl0 >> /etc/environment

The result is that when DCE server programs export all their binding interfaces,
these interfaces are ignored and hence not exported to CDS or the local
endpoint map.

In this way, we completely rely on TCP/IP routing for DCE calls crossing the WAN
links. Suppose ev3 needs access to the security server because a user logs in.
It needs to contact CDS first to find a binding handle for the security server. The
servers are all on ev1. Since broadcasting is not supported on most WAN links
or IP routers, the cds_clerk on ev3 needs a hint where CDS is located. This is
done by the command cdscp defined cached server. This command is implicitly
added to the /etc/rc.dce start-up file by the mkdce -c CDS_server_name command.
Since CDS on ev1 has only exported its token-ring (T/R) interface, the binding
handle for CDS contains the T/R IP address. Thanks to correct IP routing
definitions, the call from ev3 to ev1’s T/R network interface will be found over
X.25 or SLIP, depending on which one is available and how the routes are set.

The call to CDS will return possible binding handles for the security server.
Again, since we had excluded X.25, these will all be T/R addresses. The call to
the security server will find its way to ev1 thanks to IP routing.

With dynamic IP routing and multiple links, we will never get stuck with DCE
time-outs because of having tried a binding handle for which the link is not
available. Remember that server binding handles are randomly selected by all
DCE/DFS clients. If X.25 were not excluded and we happened to get a binding
handle for an X.25 network interface, chances are higher that IP routing would
direct us to the X.25 link even though it might be down. We would experience a
30-second DCE time-out before the next handle is tried, which again could be an
X.25 binding handle.

The problem of avoiding time-outs is shifted from DCE to TCP/IP, or setting up
correct IP routing, respectively. Most likely, you will set up dynamic routing with
routed or, preferably, gated because it supports more routing protocols and is
more sophisticated. If TCP/IP encounters a problem with one link, the routes are
adjusted to use the backup link. Routing mechanisms might even be able to
optimize network usage and prioritize faster links if there are redundant routes
between two nodes. Multiprotocol routers are usually able to do this.

The simplest case of redundant network connection to a branch is shown in
Figure 46 on page 130. The X.25 network is the primary link, whereas the SLIP
connection is a backup link only and is usually not up. The SLIP link would be
manually started when a network operator is alerted that the X.25 network is
down. If the routes are not managed by routing daemons on the DCE client
machines, the routes then have to be manually changed with the route
command.

Chapter 5. Implementing Various LAN/WAN Scenarios 131

There are many automation possibilities to get an environment somewhere
between this most simple case of a SLIP backup connection and a full-fledged
router network. The two connections can be any combination of X.25, ISDN,
SLIP, or even something faster. The only concern is to make sure they are
really independent of each other to minimize the chance that both links become
unavailable at the same time.

5.2.3.1 Performance Di scussion
The advantage of highly available network connections is we can focus on load
balancing issues when we plan the layout of the server in the DCE cell.

As discussed in scenario 5, 5.2.2.6, “Performance Discussion” on page 128,
there are many factors which need to be considered for a decision on whether to
configure replicated servers in branches. The slower the network link, the more
sophisticated the distributed CDS or DFS design needs to be to avoid
unnecessary calls over the slow links.

5.2.3.2 Availability Discussion
By having redundant links, there is no need for replicated servers in the
branches to have a highly available DCE environment. As outlined above, there
are many levels of comfort with which such an environment can be built. The
nice thing about shifting the responsibility for availability from DCE to TCP/IP is
that we can decouple performance and availability issues to a great extent. We
can limit our discussion about server replication to performance issues.

5.2.4 Scenario 7: Intercell Communication
In Figure 47 on page 133, the Ethernet network with ev3 and ev4 simulates a
pretty much self-sufficient subsidiary of the company marked by the Token-Ring
network.

132 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 47. Scenario 7: Intercel l Communication

To enable intercell communication, we must globally define both cells (either as
X.500 or DNS). As shown in Figure 47, we have two DCE cells in the same
TCP/IP domain (itsc.austin.ibm.com). So, we must define these cells in DNS.

In our environment, we set ev1 as the DNS server. For our test environment, we
did that in a quick-and-dirty way by defining ev1 as a secondary DNS server to
our department’s DNS server. To enable intercell communication, you will have
to define your cells on the DNS server. After registering the cells globally, you
must establish a trust relationship between the two cells.

5.2.4.1 Preparation Steps
Before you configure any of the DCE machines, you should have:

• Created the necessary file systems
• Checked network name resolution (Extremely important here)
• Checked network routing
• Checked the network interfaces
• Synchronized the system clocks
• Installed DCE (last of these steps)

For details, see 3.2, “Preparing for DCE Configuration on AIX” on page 38.

5.2.4.2 DCE Configuration Steps
Following are all the configuration steps for the server machines of this scenario.

Configuring cell2: On ev4:

mkdce -n cell2.itsc.austin.ibm.com sec_srv cds_srv dts_local gda

Chapter 5. Implementing Various LAN/WAN Scenarios 133

Do not forget to append the domain name to the cell name. Otherwise, you may
fail later. Test a few commands to see if DCE is working correctly:

dce_login cell_admin cell_password
dcecp
dcecp> cell show
dcecp> directory list /.:
dcecp> principal cat
dcecp> quit

Configuring cell1: For all machines, follow exactly the steps in 5.2.1, “Scenario
4: A Small Branch Connected via WAN (X.25/SLIP)” on page 118. However, for
the cell name, you put cell1.itsc.austin.ibm.com, and on ev2, you add a GDA.

On ev1:

mkdce -n cell1.itsc.austin.ibm.com sec_srv cds_srv dts_global

On ev2:

#mkdce -R -n cell1.itsc.austin.ibm.com -s ev1 sec_srv cds_seond dts_global gda

5.2.4.3 Intercell Communication Configuration Steps
To register cell1 globally, log in as root on ev1. Then log in to DCE as the cell
administrator. Call smit in the following way:

dce_login cell_admin <password>
smitty mkdce

->Register Cell Globally

� �
Register Cell Globally

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Name of INPUT File []
Name of named DATA FILE [/etc/named.data]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Fill in the fields with your appropriate file names, and select Do . This command
will add the following resource records to the named.data file:

;BEGIN DCE CELL /.../cell1.itsc.austin.ibm.com INFORMATION
;Initial CDS server
cell1.itsc.austin.ibm.com. IN MX 1 ev1.itsc.austin.
ibm.com.
cell1.itsc.austin.ibm.com. IN A 9.3.1.68
cell1.itsc.austin.ibm.com. IN TXT ″1 5583b618-f812-11ce-99
ca-10005a4f4629 Master /.../cell1.itsc.austin.ibm.com/ev1_ch 54aa689a-f812-11ce-
99ca-10005a4f4629 ev1.itsc.austin.ibm.com″
;Secondary CDS server
cell1.itsc.austin.ibm.com. IN MX 1 ev4.itsc.austin.
ibm.com.
cell1.itsc.austin.ibm.com. IN A 9.3.1.123
cell1.itsc.austin.ibm.com. IN TXT ″1 5583b618-f812-11ce-99

134 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

ca-10005a4f4629 Read-only /.../cell1.itsc.austin.ibm.com/ev4_ch 657883c2-f813-11
ce-9520-02608c2f0653 ev4.itsc.austin.ibm.com″
;END DCE CELL /.../cell1.itsc.austin.ibm.com INFORMATION

The first resource record (of type Mail Exchanger, MX) contains the host name of
the system where the CDS server resides. The second resource record (of type
Address record, A) contains the address of the system where the CDS server
resides. The third record of type TXT, contains information about the replica of
the CDS root directory that the server maintains. This information includes the
UUID of the cell namespace, the type of replica (Master), the global CDS name of
the clearinghouse (ev1_ch), the UUID of the clearinghouse, and the DNS name of
the host where the clearinghouse resides.

The same information is added for additional CDS servers in the cell. After
having added the information to the DNS server’s configuration file, this
command refreshes the named daemon. Run the following command to check
that the machine, ev4, that runs the global directory agent in cell2 can resolve
the name of cell1. On ev4, type the following command:

host cell1.itsc.austin.ibm.com
cell1.itsc.austin.ibm.com is 9.3.1.68

 On Error

If the cell name is not known, make sure the /etc/resolv.conf file on ev4
points to the name server on ev1 and not to the regular name server of your
main domain, unless you modified your primary name server for the intercell
setup.

If this was not the reason, then signal the name daemon on ev1:

kill -1 `cat /etc/named.pid`

If this does not help, try the following:

stopsrc -s named; startsrc -s named

On any machine in cell2, log in as root and as cell_admin, and do the following:

cdscp show cell as dns > /tmp/dns_cell2
cdscp show clearinghouse /.:/* CDS_CHLastAddress >> /tmp/dns_cell2

Transfer the dns_cell2 file to the DNS server (ev1), and call SMIT on ev1 in the
following way:

smitty mkdce
->Register Cell Globally

� �
Register Cell Globally

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Name of INPUT File [/tmp/dns_cell2]
Name of named DATA FILE [/etc/named.data]� �

This command will add the information of cell2 to the DNS data file and refresh
the DNS server (named process). Note that a temporary file, such as

Chapter 5. Implementing Various LAN/WAN Scenarios 135

/tmp/dns_cell2, was not necessary in cell1 because the cell registration on the
DNS name server machine has direct access to cell1 information.

Now, we must establish the direct trust peer relationship between the two cells.
The gdad daemon must be running on both cells. If it is not running, start it with
the following command on the system where it resides:

rc.dce gdad

On any machine in cell1, run the following command:

dcecp
dcecp> registry connect /.../cell2.itsc.austin.ibm.com -group none \
-org none -mypwd dce -fgroup none -forg none -facct cell_admin -facctpwd dce

The registry connect command creates a mutual authentication surrogate in
both cells. You can also create the same trust relationship by running the
rgy_edit command as follows:

rgy_edit
Current site is: registry server at /.../cell1.itsc.austin.ibm.com/subsys/dce/se
c/master
rgy_edit=> cell /.../cell2.itsc.austin.ibm.com
Enter group name of the local account for the foreign cell: none
Enter group name of the foreign account for the local cell: none
Enter org name of the local account for the foreign cell: none
Enter org name of the foreign account for the local cell: none
Enter your password:
Enter account id to log into foreign cell with: cell_admin
Enter password for foreign account:
Enter expiration date [yy/mm/dd or ’none’]: (none)

 On Error

If you get an error message, make sure that the GDA is correctly configured
on ev4.

host cell1
cell1.itsc.austin.ibm.com is 9.3.1.68

If this command does not find the address of ev1, check the /etc/resolv.conf
file on ev4. It must point to the name server on ev1. Then stop and restart
the GDA daemon on ev4:

dce.clean gdad
rc.dce gdad

You can now view the contents of the registry database to check the principals
that have been created in both cells. Still in cell1, you can access the registry
service of cell2 with the following commands:

rgy_edit
Current site is: registry server at /.../cell1.itsc.austin.ibm.com/subsys/dce/se
c/ev2 (read-only)
rgy_edit=> site /.../cell2.itsc.austin.ibm.com
Site changed to: registry server at /.../cell2.itsc.austin.ibm.com/subsys/dce/se
c/master
rgy_edit=> do p
Domain changed to: principal
rgy_edit=> v

136 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

nobody -2
root 0
daemon 1
...
dce-ptgt 20
dce-rgy 21
cell_admin 100
krbtgt/cell2.itsc.austin.ibm.com 101
hosts/ev4/self 102
hosts/ev4/cds-server 103
hosts/ev4/gda 104
krbtgt/cell1.itsc.austin.ibm.com 108

In the registry of cell2, the registry connect command has created a principal,
krbtgt/cell1.itsc.austin.ibm.com for cell1. You can run the same command on
cell1 to check the principal that has been created for cell2. The principal there is
krbtgt/cell2.itsc.austin.ibm.com.

To further check out intercell access from a machine in cell1, you can log into an
account of cell2:

dce_login /.../cell2.itsc.austin.ibm.com/cell_admin
Enter password:

5.2.4.4 Scenario Experience
We can configure intercell communication between two cells. If DNS has been
correctly configured, it is not difficult to configure intercell communication.
But some commands take more time to respond. For example, when we issue
the following on ev4 to see the CDS namespace on cell1:

cdsli -woRld /.../cell1.itsc.austin.ibm.com

The response time is acceptable, but takes more time than the single cell case.
This means intercell communication is a burden to DCE. Especially in WAN
environments, you should take care when you design cell topology. If you
estimate many intercell RPCs, you should consider the additional burden.

Chapter 5. Implementing Various LAN/WAN Scenarios 137

138 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 6. Administering DCE Cells

We identified a list of tasks administrators might have to perform in their DCE
cell(s) and which we felt were not documented sufficiently or not supported by
the existing commands and tools. We created the task list from our own
experience with customers and from issues which were discussed in news
groups or with development.

We grouped them into categories of tasks, some of which are overlapping and
could have been assigned to other categories as well. You might find a certain
task you want to perform in a different place than you would expect, or you
might not find it all because, besides our creativity, time was a limiting factor.
We cannot claim to present a complete workbook for administrators, but we
believe at least some useful guidelines, tools, and step-by-step instructions are
included.

Our task categories are:

• Migrating from IBM DCE 1.x to IBM DCE 2.1

• Changing Cell Configurations

Once defined, cells cannot easily be reconfigured. Changes of IP addresses,
host names, server locations, or even splitting and joining cells are realistic
challenges for administrators. Machines can be added and servers can be
replicated or moved as the customer’s business grows. Faster networks can
be added, and slower networks can be removed.

• Backup/Restore

All of the core DCE servers and DFS servers can be replicated; so there
seems to be no need for backup. However, one can never completely
exclude bad things from happening. Databases can be corrupted by
inadvertent administrator actions or software defects.

• Mass user and group management

This category shows how to perform tasks such as adding, modifying, and
deleting users, accounts, and groups in DCE on a large scale.

• Managing the cell_admin account

cell_admin is per default the omnipotent DCE account. If the cell_admin
password or the entire cell_admin account gets lost, specific steps have to
be followed to restore the lost information.

• Integrating an NFS/NIS environment

Many customer installations today use NFS/NIS to store common
configuration files and share files. The purpose of this section is to discuss
and give instructions on how to integrate NFS/NIS into DCE/DFS and how to
migrate from NFS/NIS to DCE/DFS.

• Managing Remote Servers

The DCE daemon (dced) running on every DCE node manages the DCE
processes and the DCE application servers running on its system. This
section explains the dced objects and how remote DCE (application) servers
can be configured and managed from any single point in the cell. This
includes server password management.

 Copyright IBM Corp. 1996 139

6.1 Migrating a DCE 1.x Cell to DCE 2.1
This section outlines our experience in migrating machines in a cell configured
with DCE 1.3 (on AIX Version 3.2.5) to DCE 2.1 (on AIX Version 4.1.4+; which
means 4.1.4 or higher). We set out the steps that we used to migrate the cell.

If a customer has a one-machine cell and no other AIX machines available,
options for migration are very limited. A machine with AIX 3.2.5 and DCE 1.3 can
be migrated very easily. Migrate the AIX (standard migration), install the new
DCE 2.1 code without reconfiguring it, and restart DCE. The databases will be
automatically converted to the new format.

If, however, a customer has the DCE servers spread over several machines in a
cell, a couple of options are available. The customer can choose to migrate all
of the machines in the cell, one after the other, to AIX Version 4.1.4 and then to
AIX DCE Version 2.1 as explained above for the one-machine cell. The problem
here is the availability. While a machine is being upgraded, the DCE services it
provides are unavailable.

The migration strategy that we employ takes advantage of the fact that, by
design, machines running OSF DCE 1.0.x and machines running OSF DCE 1.1
may coexist within a cell. We also take advantage of the fact that the primary
security server and the initial CDS server can be moved to other machines in the
cell. So, we move the DCE services to another machine in the cell while the
original server machine is upgraded. This second approach gives the
administrator more flexibility in scheduling the upgrade of the machine, and the
server is made unavailable for only a few minutes. The downside of this is that
moving servers around can be very complex.

Because servers and clients with different DCE levels can coexist in the same
cell, the upgrade process does not have to be performed all at once. In any
case, we recommend creating backups for DCE servers before you run the
migration.

6.1.1 Compatibility
We tested a mix of DCE servers and clients running at both the AIX DCE 1.3 level
(OSF DCE 1.0.3) and the AIX DCE 2.1 level (OSF DCE 1.1) in the same cell, and
this is what we found.

Servers and clients at both levels can coexist in the same cell. You can even
use the dcecp interface from an AIX DCE 2.1 machine to perform a subset of
functions on AIX DCE 1.3 machines. The functions you can perform are limited
to those you would normally be able to perform with the cdscp or the sec_admin
commands. Commands for distributed management of clients and servers are
not available for AIX DCE 1.3 machines because the dced daemon is not
available on those machines. The value would be in using the dcecp shell (or
the Tcl language) to automate or customize some tasks.

Some features of the CDS in OSF DCE 1.1, such as cell name aliases and
hierarchical cells, require that you upgrade the Directory Version attribute on the
cell root directory to Version 4.0. The default Directory Version for AIX DCE 2.1
is 3.0. At the 3.0 level, the CDS of AIX DCE 1.3 and 2.1 is compatible. AIX DCE
1.3 CDS is not compatible with CDS Directory Version 4.0.

140 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Note: Cell name aliasing and hierarchical cells are still not available to any
vendor from OSF or the integrator responsible for these CDS changes.

By design, the Security Service provides for incompatibilities between security
clients and servers with different DCE levels. For instance, DCE servers on the
OSF DCE 1.1 level provide Extended Registry Attributes (ERAs) that are included
in the Privilege Attribute Certificates (PACs), now called Extended PACs (EPACs).
The EPACs are used to enable authorization checks. Towards OSF DCE 1.0.x
clients, the OSF DCE 1.1 security server behaves like an OSF DCE 1.0.x server
and does not expect the client to send preauthentication information. In tickets
issued for use with OSF DCE 1.0.x servers, it does not provide ERAs and EPACs,
only PACs. For more details, see DCE Security Service component and facilities
in the Understanding OSF DCE 1.1 for AIX and OS/2 redbook, SG24-4616-00.

As outlined above, we are able to move server functions between machines
running AIX DCE at the 2.1 and the 1.3 level. This allows for a greater degree of
flexibility when migrating a cell to the new DCE version. Although we used these
procedures in a migration process, they have equal value in maintaining the
availability of a cell.

6.1.2 One-Shot Migration
Each individual machine in a cell can be upgraded from AIX 3.2.5 with DCE 1.3 to
AIX 4.1.4 and DCE 2.1. We upgrade an AIX Version 3.2.5 system to AIX 4.1 using
the migration option. After the base operating system is at the new level, we
have to install the DCE for AIX 2.1 code. When the installation completes, we
find that DCE has been upgraded to the 2.1 level, and all of our data remains
intact. We also find the installation procedure does not remove the reference to
the AIX DCE 1.3 code from the object data manager. This can easily be
remedied by using smit install_remove to remove the reference.

6.1.3 Migration Scenario
As outlined above, our strategy is to move the DCE services to other machines
to provide continuous DCE availability during the migration. Figure 48 on
page 142 shows our test environment for the migration.

Chapter 6. Administering DCE Cells 141

Figure 48. Migration Scenario

We first upgrade the DCE client machine ev1 to AIX 4.1.4 and DCE 2.1. Then we
configure secondary security and CDS servers on ev1 and move the security and
CDS servers from ev3 to ev1. This is what corresponds to Figure 48 above.

Once the DCE core services are on another machine, we upgrade the original
DCE server machines from AIX 3.2.5 to AIX 4.1.4 and install the new AIX DCE 2.1
code. Then we move the relocated services back to the original system.

6.1.4 Migrating the Security Server
To upgrade the security server on ev3, we move it to ev1, which was previously
migrated to AIX 4.1.4. Then we upgrade ev3 and move the security server back
to ev3. Details about this procedure can be found in 6.2.4.4, “Relocating the
Primary Security Server” on page 165. Here is a summary of the steps you can
follow:

 1. Migrate ev1 to AIX 4.1.4 and configure DCE.

a. Install AIX 4.1.4 on ev1 using the migration option.

b. Install the AIX/DCE 2.1 core components on ev1.

 c. Restart DCE (it still is a client):

/etc/rc.dce

d. Configure a secondary DCE security server:

mkdce -R -r ev1 sec_srv

Note: On a DCE 1.3 security server, you will get many of the messages
shown below when it is accessed by requests from DCE 2.1 nodes. The
messages, appearing on the console, can be ignored.

RPC_CN_AUTH_VFY_CLIENT_REQ) on server failed status = 14129090
RPC_CN_AUTH_VFY_CLIENT_REQ) on server failed status = 14129090

 2. Stop the security server on ev3 :

142 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

/etc/dce.clean secd

 3. Log in to DCE as cell_admin on any machine in the cell.

 4. Designate the previously defined security replica to be the new master:

dcecp
dcecp> registry designate -master /.:/subsys/dce/sec/ev1

 5. Upgrade the registry to the OSF DCE 1.1 level:

dcecp> registry modify -version secd.dce.1.1

 6. Adjust the pe_site files on ev1 and ev3 .

Using your favorite editor, edit the /opt/dcelocal/etc/security/pe_site file on
both machines, and enter the correct addresses. Remove the entries
pointing to ev3 and any ncacn_unix_stream protocol entries (local RPCs) on
AIX; they are no longer supported under AIX DCE 2.1.

 7. Unconfigure the original master security server on ev3:

a. Stop and restart DCE:

/etc/dce.clean
/etc/rc.dce

b. Unconfigure the original master server:

rmdce sec_srv

Ignore the message warning you that you would have to reconfigure the
entire cell. The master server is not on ev3 anymore.

 8. From ev1 delete the entries for the old master from CDS and the replica list:

dcecp -c rpcgroup remove -member /.:/subsys/dce/sec/master /.:/sec
dcecp -c rpcgroup remove -member /.:/subsys/dce/sec/master /.:/sec-v1
dcecp -c object delete /.:/subsys/dce/sec/master
dcecp -c registry delete /.:/subsys/dce/sec/master -force

 9. Restart DCE also on the new security server on ev1 :

/etc/dce.clean
/etc/rc.dce

10. Change all pe_site files of all your clients (here on ev4).

11. If time-outs are experienced on the DCE clients now, a refresh of their CDS
cache might help:

dcecp -c rpcgroup list /.:/sec
/.../test/subsys/dce/sec/ev1
dcecp -c rpcgroup list /.:/sec-v1
/.../test/subsys/dce/sec/ev1

Now migrate the CDS Server before you upgrade ev3 to AIX 4.1.4.

Note: There is no longer a security server named master. However, some other
programs, such as the DFS configuration, rely on the presence of the original
master server name. Therefore, we recommend creating a secondary security
server with the following command:

mkdce -R -r master sec_srv

Then either just designate this new server the master or follow the above steps
for moving the security server again, correctly replacing the names ev1 and
master .

Chapter 6. Administering DCE Cells 143

6.1.5 Migrating the CDS Server
This section contains instructions on how to relocate a CDS server to another
system in the cell. We will migrate the CDS server from AIX/DCE 1.3 to AIX/DCE
2.1.

The improved copy_ch command provided on the diskette in this book is used to
move the clearinghouse from one machine to another. In certain circumstances,
the script may produce warnings or even errors. In this case, do not stop the
execution of the program. Let it finish and clean up remaining entries on the
original CDS server later on. The messages will not produce any loss of data.

For details about this procedure, see “Relocating a CDS Server by Merging
Clearinghouses” on page 163. Below is a summary of the steps to follow in our
scenario:

 1. Configure an additional CDS Server on ev1 :

mkdce cds_second

 2. On ev1 run the script provided on the diskette of this book:

copy_ch -m -s ev3_ch -t ev1_ch | tee logfile

The command only runs on a DCE 2.1 machine. It takes a while to finish.
Log all messages into a log file. In order to be able to check the result of
the copy_ch command, we recommend to also run the list_ch command (see
next step) beforehand.

 3. From ev1 check the source clearinghouse (ev3_ch) for master replica entries:

list_ch | tee cds_struct

This command lists all replicas in the cell with their location. If you find any
leftover master replica entries in ev3_ch, you must move them manually as
described in “Relocating the Master Replica for a Directory” on page 161.

 4. Update the /opt/dcelocal/etc/mkdce.data file.

You have swapped the Initial CDS Server and the Additional CDS Server.
Now we must modify the /opt/dcelocal/etc/mkdce.data files on both machines
to reflect the change.

On ev3 change the line:

from: cds_srv COMPLETE Initial CDS Server
to: cds_second COMPLETE Additional CDS Server

On ev1 change the line:

from: cds_second COMPLETE Additional CDS Server
to: cds_srv COMPLETE Initial CDS Server

 5. Unconfigure CDS Server on ev3

rmdce cds_second

If you have proceeded successfully so far, you can now unconfigure the CDS
server with your source clearinghouse if you need to.

Now you can upgrade ev3 to AIX 4.1.4, and if you want to bring back the Security
and CDS server from ev1 to ev3, repeat all steps described in 6.1.4, “Migrating
the Security Server” on page 142 and in this section, interchanging ev1 and ev3.

144 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.2 Changing Cell Configurations
Once defined, cells cannot easily be reconfigured. Changes of IP addresses,
host names, server locations, or even splitting and joining cells are realistic
challenges for administrators. Machines can be added and servers can be
replicated or moved as the customer’s business grows. Faster networks can be
added, and slower networks can be removed. In this section, we describe the
following tasks:

• Splitting a cell

• Joining cells

• Changing IP addresses

• Moving services

• Changing a replica into a master service

Many of these tasks are performed with tools we have developed or modified.
The tools we use are all on the diskette that comes with this redbook.

6.2.1 Splitting Cells
Splitting an existing cell means defining some machines into another cell and
moving some services, data, and users to the new cell.

Please Note

The steps outlined here are a summary of ideas based on our experiences in
this project and were not tested due to lack of time. However, we wanted to
include them to give you ideas on how to tackle this important issue.

Splitting a cell is a complex undertaking, and the necessary steps depend on
what is installed in the cell. DCE applications cannot be discussed because
every application can require different steps:

• If services are duplicated in the new cell, it might be possible to install them
in the new cell without any difficulties or conflicts with the original cell.

• If services administer common data that needs to be split, you might be able
to use application-specific tools. Or, in the worst case, you have to delete
and redefine part of the data.

DCE core services and DFS servers with their databases have to be rebuilt in the
new cell. The databases cannot be moved over cell boundaries, nor can they be
backed up and restored in the new cell. So we actually need to extract all the
necessary information from the databases in the old cell and reconfigure it in the
new cell.

The biggest effort in splitting a cell is probably the migration of users with their
files and ACL definitions. We have created a user management tool that is
designed to support moving users and their associated data. For additional
important information about migration of users and files, see the following
sections:

• 7.5, “Mass User/Group (and ACL) Management” on page 271

• 6.6.3, “Migrating NFS Files to DCE/DFS” on page 218

• 2.4, “Planning the User Namespace” on page 25

Chapter 6. Administering DCE Cells 145

The following list describes a general procedure to move users from one cell to
a new cell.

 1. Create a list of user names to be moved.

 2. Create a list of groups to be moved or copied.

 3. If you are not sure whether the UDFs (user definition files) of these users are
up to date, run get_info_users.

This step extracts the current registry definitions and all ACLs for each user
in the list and updates the UDFs.

 4. Run get_info_groups for all groups that need to be created in the new cell.

 5. Suspend the users with the susp_users command.

 6. Delete the users with the del_users command.

Before any user is deleted from all groups and from the DCE registry, all
ACLs for this user are deleted. Then the UDF is moved to the cemetery
directory.

 7. Delete the groups which will not be present in the old cell anymore with the
del_groups command.

This step deletes the groups from the security registry and moves their GDFs
to the cemetery directory, provided that they do not have any members left.

 8. Back up the DFS files with AIX commands such as tar.

The ACL information is intentionally destroyed by this step. The information
to recreate it is in the UDFs/GDFs of the deleted users/groups. The
UDFs/GDFs can be edited to remove entries not desired in the new cell, if
necessary. This can be done with shell scripts that make global changes in
multiple UDFs/GDFs.

If ACLs were conserved by using DFS dump and restore, it would be a
tedious job to adjust all ACLs to the new cell name. First we would have to
define the users with the same UUID in the new cell. Then we would have to
edit each ACL to change the cell name, and we might have to delete user
and group entries that belong to nameless UUIDs because their users or
groups do not exist in the new cell. Furthermore, it might also be necessary
to change the cell name in ACL entries for foreign users or groups.

 9. Delete the machines in the old cell with rmdce all.

It might be necessary to move services away from those machines first. See
6.2.4, “Moving Services Within the Cell” on page 157 on how to achieve this.

10. Install the DCE and DFS servers in the new cell.

11. Move the UDFs (from the cemetery) to the new cell.

12. Copy the GDFs of groups which will be in both cells and move them together
with the GDFs of the deleted groups to the new cell.

13. Inspect the UDFs/GDFs and make changes, if necessary.

Since we are going to a new cell, the UIDs will remain unique and need not
be changed.

14. Add the groups with add_groups.

15. Add the users with add_users.

The add_users procedure only adds DCE users. If you are not using the
integrated login, you would have to create AIX user accounts as well.

146 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

16. Run rgy_enable_users to enable the DCE accounts.

17. Create the necessary fileset hierarchy in DFS.

If you do not assign a fileset to each user, you should at least create their
home directory now so that the initial creation ACLs can be assigned before
the files are restored.

18. Set the initial object and container creation ACLs.

• Manually for filesets which are not covered in the UDFs

• Run dfs_enable_users to apply all ACLs to the users’ home directories

19. Restore the DFS files.

Do this as cell_admin, and use tar -xp to preserve file ownership and
permission bits.

Be aware that when you list the files, the owner seems to be non-existent
from an AIX point of view. If you are using the integrated login, then you did
not define local AIX accounts for the users and file owners are shown as
UIDs and GIDs.

20. Once all DFS and CDS objects are present, run acl_enable_users to apply all
ACLs the users might have in those objects.

21. Run update_groups to apply all group ACLs.

6.2.2 Joining Cells
For a general procedure on how to join cells or move parts of an existing cell to
another cell, see 6.2.1, “Splitting Cells” on page 145. The procedure is basically
the same: We cannot directly move anything across a cell boundary; we must
extract the necessary information, delete it at the old place, and reconfigure it in
the new cell.

If you are in an environment that you had originally designed for unique UIDs
and principal names across multiple cells as discussed in 2.4, “Planning the
User Namespace” on page 25, you can go ahead and follow the procedure
outlined for splitting a cell.

Otherwise, you must inspect all UDFs/GDFs you are going to migrate to another
cell. To do this, run get_all_info also in the target cell, and check the two sets
of UDFs/GDFs for conflicting UIDs/GIDs and/or user/group names.

Some groups might be the same in both cells. To merge these, you must make
sure they have the same GID in both cells. Otherwise, you must run a global
change in one of the cells. For groups which will be new in the target cell, you
must check for GID conflicts and possibly run a global change, too. Follow the
same steps as outlined below for the users.

For every UDF of the old cell that would cause a conflict in the new cell, you
must do the following in the old cell after you have deleted the respective user:

 1. Find a new user name and/or UID.

 2. Recursively change the user’s DFS file ownerships to the new UID.

 3. Find file or directory names that contain the old user name and change them
to the new name. An example of this is the home directory name.

 4. Change name and contents of the UDF to reflect the new name, UID, home
directory, and so on.

Chapter 6. Administering DCE Cells 147

Once this is done in the old cell, the procedure is the same as for splitting a cell.
You can then continue with the step that backs up the DFS files.

6.2.3 Changing IP Addresses
Several reasons might make it necessary to change the IP address of a
workstation or server. For instance, a machine is to be relocated to another
floor or a whole network is to get a new IP address. If this happens, we need to
change the TCP/IP definitions, such as LAN interface configuration, name server
entry, and routing for the machines involved. As a summary of the
considerations presented in the following section, 6.2.3.1, “RPC Binding
Information or CDS Towers,” we can say that for DCE we need to change every
occurrence of an IP address in CDS and in all clients’ caches.

To support the necessary reconfiguration steps in DCE, we have created the
following shell scripts:

cleanif Searches for IP address entries in the namespace
cleanup_ip Changes the evaluated entries
renew_dir_entries Updates Tower information in affected CDS directories

The following shell scripts are also needed to refresh the local CDS cache on
each client machine. They are described in 6.3.6, “Managing Caches on Client
Machines” on page 181:

cleanup_cache Refreshes CDS and credential caches; requires DCE restart
cleanup_cds_cache Refreshes CDS clerk cache only, without DCE restart
create_cds_entry Enters knowledge of a CDS server into the CDS clerk cache

The following subsections describe:

• Binding handles
• Each shell script
• The generalized procedure on how an IP address change is performed with

the help of our scripts
• Our experiences

6.2.3.1 RPC Binding Information or CDS Towers
The difference between, for example, reading a local file on a single machine
and performing the same read on a remote file in DCE is like the difference
between reading information from a phone book yourself and dialing an operator
for the same information. The remote operation requires the addition of another
active entity that can be requested to perform it for you. Associated with every
remote object (for instance, a data file) available on a network is a remote
server to manage that object and make it available. The user may not be aware
of that server, but it is there.

Clients call remote procedures. They need to find a service on a remote server
node. CDS is the operator that tells you which number to dial to get to that
server node. The number, also called a binding handle, contains an IP address
and is stored in the directory service.

The DCE documentation often speaks of binding to an object. In reality, clients
can bind only to servers, which may then be requested to perform operations on
objects that are under their management. A binding handle consists of the
server node IP address, a protocol sequence such as UDP or TCP, an interface
UUID to select the server process, and object UUIDs to specify certain objects on

148 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

which an action is to be performed. The following example shows RPC binding
information as it is stored in CDS for access to the FLDB server:

rpccp show entry /.:/hosts/donald/flserver
objects:
001a1f6c-4816-1e0a-9950-08005a01befd

binding information:
<interface id> 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0
<string binding> ncadg_ip_udp:9.13.113.156[]
<string binding> ncacn_ip_tcp:9.13.113.156[]

The same entry displayed from a CDS point of view:

cdscp show object /.:/hosts/donald/flserver
SHOW

OBJECT /.../itsc.austin.ibm.com/hosts/donald/flserver
AT 1994-09-09-00:09:24

RPC_ClassVersion = 0100
RPC_ObjectUUIDs = 6c1f1a0016480a1e995008005a01befd

CDS_CTS = 1994-06-24-02:42:32.898697100/08-00-5a-01-be-fd
CDS_UTS = 1994-06-24-02:42:34.844623100/08-00-5a-01-be-fd

CDS_Class = RPC_Entry
CDS_ClassVersion = 1.0

CDS_Towers = :
Tower = ncacn_ip_tcp:9.13.113.156[]

CDS_Towers = :
Tower = ncadg_ip_udp:9.13.113.156[]

The string bindings as seen with the rpccp command are stored as CDS
attributes called CDS_Towers. We will use the term Towers hereafter.

Other entries, such as the one for /.:/subsys/dce/sec/master, can have multiple
interfaces and object UUIDs managed all by one server process. To build
binding handles from this CDS entry, all object UUIDs, interface UUIDs, and
string bindings are combined. So, in the above example, we would get two
binding handles, one for UDP and one for TCP.

The following figure shows an example of the tree structured CDS namespace.
To make it more confusing, CDS calls its leaf entries objects.

Chapter 6. Administering DCE Cells 149

Figure 49. Extract of a CDS Namespace

Many services mediated by CDS can be running on the same server node. That
means that multiple CDS objects can contain one specific IP address multiple
times.

Once a client has obtained the dial number for a service, it memorizes (caches)
the information so it does not have to call the operator again for the same
information. If the number changes, we have to tell that to each client that
memorized it.

To change an IP address in a cell, we need to change every occurrence of it in
CDS and in all clients’ caches.

6.2.3.2 The cleanif Procedure
We created the cleanif shell script, which finds all the objects in the namespace
containing a specific IP address. It generates rpccp commands to change the
binding information pertaining to that IP address for all these CDS objects. The
generated commands are written into a file.

#cleanif
Usage: cleanif -i <ipaddr> -n <newipaddr> -f <output file> [-s] [-h]

-i <ipaddr> ipaddr is the IP address to be removed
-n <newipaddr> new IP address to replace iaddr
-f <output file> generated rpccp input file
-s save temp files (for debugging cleanif)
-h help

150 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 50. Workflow Description of the cleanif Procedure

The file that is generated contains unexport and export subcommands for the
rpccp command. The unexport commands affect CDS entries. They remove
interfaces that contain binding handles with that IP address. Since unexport can
only remove an entire interface, which might also contain other valid IP
addresses, we must re-export the interface with the bindings that are still valid
and with the ones that have a new IP address. This is what the generated export
commands do. The following is an extract of a generated file:

unexport -i 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0
-o 00013376-feed-1eb0-b6cc-10005aa8cff8 /.:/hosts/ev2/bosserver

export -b ncadg_ip_udp:9.3.1.123[] \
-i 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0 \
-o 00013376-feed-1eb0-b6cc-10005aa8cff8 /.:/hosts/ev2/bosserver

export -b ncacn_ip_tcp:9.3.1.123[] \
-i 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0 \
-o 00013376-feed-1eb0-b6cc-10005aa8cff8 /.:/hosts/ev2/bosserver

unexport -i 4ea31de8-9a94-11c9-bb60-08002b0f79aa,3.0 \
-o dc8c6fc0-6143-11ca-b4b9-08002b1bb4f5 /.:/hosts/ev2/cds-clerk

export -b ncadg_ip_udp:9.3.1.123[] \
-i 4ea31de8-9a94-11c9-bb60-08002b0f79aa,3.0 \
-o dc8c6fc0-6143-11ca-b4b9-08002b1bb4f5 /.:/hosts/ev2/cds-clerk

export -b ncacn_ip_tcp:9.3.1.123[] \
-i 4ea31de8-9a94-11c9-bb60-08002b0f79aa,3.0 \
-o dc8c6fc0-6143-11ca-b4b9-08002b1bb4f5 /.:/hosts/ev2/cds-clerk

At the same time, cleanif creates another shell script called
/tmp/renew_dir_entries. This procedure is explained in 6.2.3.4, “The
renew_dir_entries Procedure” on page 152 and will be used only if CDS servers
change their address.

This script was tested with DCE core services and DFS. It may not work for
certain DCE applications. Therefore, use it with care and consider testing it
before using it within a productive cell. Check the contents of the generated
files. When you use it with DCE applications, be sure to stop all applications
before you run cleanif. In this way, CDS will be cleaned from binding
information that applications might export and unexport by themselves.

Chapter 6. Administering DCE Cells 151

The cleanif procedure can also be used to search the entire CDS namespace
for binding information containing a specific IP address:

cleanif -i 9.3.1.120 -n 1.1.1.1 -f /tmp/out.cds

Notice the comments that are displayed. As soon as it says used for a CDS
object or directory, you know that this object contains that IP address. However,
do not run cleanup_ip, which would change all occurrences of 9.3.1.120 into
1.1.1.1 in CDS!

6.2.3.3 The cleanup_ip Procedure
The script cleanup_ip takes the file previously generated by cleanif and
executes all the rpccp commands in it. Again, we recommend reviewing this file
carefully before using it. Then call it as follows:

cleanup_ip -f <file_generated_by_cleanif>

6.2.3.4 The renew_dir_entries Procedure
If the node to be changed is a CDS server, then its IP address is stored in the
CDS_Tower attribute of all directories that have an occurrence (replica) on that
server. You can check them with cdscp show dir <dir_name>. The Tower is used
to bind to the CDS server that hosts a certain directory. If the server’s address
changes, the Tower information has to be changed for all these directories.

The renew_dir_entries shell script is generated by cleanif. It has commands
that rebuild each directory’s replica set, which forces an update of the Tower
information for each directory. The following is an example of what
renew_dir_entries contains:

#!/bin/ksh
/bin/klist | grep Principal | grep cell_admin > /dev/null 2>&1
if [$? -ne 0] ; then
echo ″Must be cell_admin, please dce_login.″
exit 1

fi
echo ″\n !!! Execution may take a long time !!! \n″
cdscp set dir /.:/hosts to new epoch master /.../itsc.austin.ibm.com/ev1_ch
readonly /.../itsc.austin.ibm.com/ev4_ch
cdscp set dir /.:/subsys to new epoch master /.../itsc.austin.ibm.com/ev1_ch
...

Check the file before you execute it. In order to succeed, the whole replica set
has to be specified for each directory to set a new epoch master.

6.2.3.5 Generalized Procedure to Change an IP Address
Figure 51 on page 153 contains a workflow description of all necessary steps to
change an IP address. We have tested this procedure in many different
combinations of DCE and DFS server configurations. All steps need to be
performed on the system of which the IP address needs to be changed. Some
additional steps need to be executed on other systems, as indicated, depending
on the DCE/DFS server role of the system that has been changed.

152 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 51. Workflow Description to Change an IP Address

6.2.3.6 Experiences
In order to change an IP address within all namespace entries, it is absolutely
necessary that cell_admin has access to all these entries. If this is not the case,
a full change of an IP address may not be guaranteed. However, in case of an
unauthorized access to a directory, object, or clearinghouse, cleanif will alert
you, and this information can be logged.

Remember that you must release a fileset and run cm checkfilesets on a DFS
client to see any changes made to the read/write filesets. This actually has
nothing to do with an IP address change, but it may be the reason for not seeing
changes when you test your DFS after an IP address change.

The steps that need to be executed to change the IP address of a DCE/DFS node
are outlined in Figure 51. What needs to be done on that particular machine and
on other systems in the cell depends on the role of machine on which the

Chapter 6. Administering DCE Cells 153

address is changed. If the machine has multiple roles, the suggested actions
need to be performed altogether. Let’s have a look at every machine role and
the special considerations for each:

DCE Client: To change to IP address of a pure client, stop all applications first.
Then follow the procedure; it should work. Only a few changes are necessary in
CDS, and no other machines are affected. So, no cache refreshes are
necessary. Rebooting the system is necessary if a DFS client runs on that
system. Otherwise, restarting DCE might be sufficient.

Another option is to simply unconfigure DFS and DCE, change the IP address,
adjust the TCP/IP definitions, and reinstall the client. If split configuration is
used, the central administrator part has to be performed as well. This method is
easier to understand, and hardly anything can go wrong.

DCE Security Server: The /opt/dcelocal/etc/security/pe_site file contains binding
information to the security server. If you change an IP address on a security
server, this file must be changed on all systems in the cell. If CDS is running
normally, you can run chpesite on every AIX system to update the pe_site file.
The following example shows the contents of a pe_site file:

/.../itsc.austin.ibm.com 006cd1ee-148c-1e06-8e09-10005a4f15da@ncacn_ip_tcp:9.3.1.68[]
/.../itsc.austin.ibm.com 006cd1ee-148c-1e06-8e09-10005a4f15da@ncadg_ip_udp:9.3.1.68[]

To change the address from 9.3.1.68 to 9.3.1.120, edit the file with a text editor:

/.../itsc.austin.ibm.com 006cd1ee-148c-1e06-8e09-10005a4f15da@ncacn_ip_tcp:9.3.1.120[]
/.../itsc.austin.ibm.com 006cd1ee-148c-1e06-8e09-10005a4f15da@ncadg_ip_udp:9.3.1.120[]

If time-outs or other problems are experienced on other machines in the cell,
you might also want to perform additional actions on these machines:

• Applications might have security server bindings cached. In particular,
long-running applications that automatically renew their ticket tend to cache
a binding handle. For instance, dced is one. It keeps the machine principal
valid. When dced is stopped and restarted with the following commands, it
destroys all existing credentials for the machine principal:

dce.clean dced
dced -p

• One of the next commands should also be executed to refresh the CDS clerk
cache entry for the security server, depending on whether it was the master
or a replica server:

dcecp -c rpcentry show /.:/subsys/dce/sec/master
dcecp -c rpcentry show /.:/subsys/dce/sec/rep<number>

• If you do not know which other applications cache information, stop all
applications and run cleanup_cache to destroy credentials and cache entries;
see 6.3.6, “Managing Caches on Client Machines” on page 181.

CDS Server: We have tested the procedure in a cell with two CDS servers. The
renew_dir_entries procedure recognizes the entire replica set of all directories if
none of the replicas are excluded (see 6.2.3.4, “The renew_dir_entries
Procedure” on page 152). However, check the contents of renew_dir_entries
before you execute it to be sure the replica sets are correctly generated.

In AIX DCE 1.3, there used to be a file, /opt/dcelocal/etc/cds_config, in which the
IP address had to be changed. This file no longer exists in DCE 2.1.

154 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The CDS clerk caches should be refreshed if the client systems immediately
need the updated information. After approximately 8 to 12 hours, the entries
would be invalidated, and the clerk would obtain updated information from the
CDS server if the caches are not refreshed. See 6.3.6.1, “Managing the CDS
Clerk Cache” on page 181, for more information about cache refreshing.

DFS FLDB: The IP address of each FLDB server is stored in the FLDB. Change
this address with the fts edserv command, and regularly stop DFS on the FLDB
server on which you change the IP address. This allows for correct DFS token
management before you run cleanup_ip.

Also determine which of the FLDB servers is the sync site:

/opt/dcelocal/bin/udebug /.:/fs /.:/hosts/ev2 -long
Host 9.3.1.120, his time is -1
Vote: Last yes vote for 9.3.1.120 at -12 (sync site); Last vote started at -12
Local db version is 783799213.1
I am sync site until 78 (3 servers)
Recovery state 1f
Sync site’s db version is 783799213.1
0 locked pages, 0 of them for write
This server last became sync site at -5981

Server 9.3.1.123: (db 783799049.1)
last vote rcvd at -11, last beacon sent at -11, last vote was yes
dbcurrent=1, up=1 beaconSince=1

Server 193.1.10.4: (db 0.0)
last vote rcvd at -11, last beacon sent at -11, last vote was yes
dbcurrent=1, up=1 beaconSince=1

Run this command for each FLDB server defined in the /.:/fs RPC group. If the IP
address is changed on an FLDB server that is not the sync site, you must now
run cleanup_cache and reboot the sync site server as well (just restarting the
flserver on the sync site was not sufficient when we tested it). Otherwise, the
sync site FLDB server would keep the old IP address cached, and ubik would try
to synchronize the FLDB on the old address.

It is sufficient to reboot the sync site server only. Our recommendation,
however, is to clean up and reboot all FLDB server systems in the cell because
otherwise ubik might take a long time to synchronize all servers and eliminate
the stale address everywhere.

Then check whether the sync site FLDB stores the correct IP address of the
other FLDB servers with the following command:

/opt/dcelocal/bin/udebug /.:/fs /.:/hosts/<sync_site_fldb> -long

The DFS client systems use the CDS entry /.:/hosts/<fldb-host>/self to get to an
FLDB server. To avoid possible time-outs on the DFS clients, you may want to
refresh this CDS clerk cache entry on all DFS clients:

dcecp -c rpcentry show /.:/hosts/<fldb-host>/self
old # rpccp show entry /.:/hosts/<fldb-host>/self -u

If more than one FLDB server is running, the DFS clients would get to an FLDB
without the above command. However, they may experience a 30-second
time-out when the old binding information is tried.

Chapter 6. Administering DCE Cells 155

New in this release of DFS (2.1) is that the clients maintain FLDB server
preferences just as they did for DFS file servers in the previous release (1.3).
So, use the cm getp -fldb command to check, and the cm setp -fldb command to
update, the preferences if necessary. Look under DFS file server for details.

Run the cm check command to refresh the DFS clients’ binding information to the
FLDB and the to DFS file servers.

DFS File Server: If a DFS file server is to be changed, its IP address in the
FLDB has to be changed first (fts edserv command). Then after all steps have
been performed on this server and it is up and running again, all repservers for
which the changed file server contains the master filesets need to be restarted:

/opt/dcelocal/bin/bos restart /.:/hosts/<repserver-name> repserver

Otherwise, a release or update of the fileset would not reach the repservers.
The release command for the fileset would seem to succeed, but actually, the
read-only filesets would not be updated on the systems that had not restarted
their repservers.

On all DFS client systems, the cache manager preferences need to be checked:

cm getp
cm getp
ev4 40006
ev2 20015
9.3.1.123 20008

In the above example, ev2 was changed from 9.3.1.123 back to its original
address 9.3.1.120. The cache manager has the highest priority (lowest number)
on a stale address where there is no longer a server. The only way to get rid of
this entry is to reboot the client system. However, to avoid using the stale
address, we could assign a very low priority to that address:

cm setp 9.3.1.123 60000

Run the cm check command to refresh the DFS clients’ binding information to the
FLDB and to the DFS file servers.

DCE applications: When you use this procedure with DCE applications, be sure
to stop all applications before you run cleanif. In this way, CDS will be cleaned
from binding information which applications might export and unexport by
themselves. After the change, the application should be able to start and export
their new interfaces, provided that the DCE core services are running normally
after the change.

If an installation procedure for an application had defined static binding
information in CDS, these entries will be changed to the new IP address while
the procedure depicted in Figure 51 on page 153 is executed.

However, if an application stores or caches binding information internally on its
clients or peer servers, you have to somehow be able to refresh this application
cache on each system running a client or another server of this application. This
is very application dependent.

Also consider refreshing the CDS clerk caches on all systems in order to avoid
time-outs. See 6.3.6.1, “Managing the CDS Clerk Cache” on page 181, for more
information about cache refreshing.

156 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 Caution

Back up all your databases before you change the IP address of a server,
and be ready to redefine the cell just in case. See 6.3, “Backup/Restore and
Other Housekeeping Tasks” on page 166.

6.2.4 Moving Services Within the Cell
Client/server application frameworks are supposed to be easily scalable. When
demand for a service increases, a new server can be added if the application is
designed to allow for this. In such a dynamic environment, requirements for
services can change. We must be able to move the following services from one
machine to another, possibly without interrupting their availability:

• DCE applications

• DFS services

• CDS resources

• Security server

6.2.4.1 DCE Applications
The effort it takes to move a DCE application depends on how the application is
designed. An application server may provide CPU access for parallel processing
of numerically intensive tasks. This case is easy to handle. You can just add
and delete servers.

It is more difficult to handle redundant services when they access data. You
may have one defined master server and replicas which have a read-only copy
of the data. This would be the DCE security server-type approach. Or you can
have multiple servers that know of each other and agree on a master among
themselves, such as the DFS FLDB.

There are many variants of the above-mentioned patterns. Each application
should provide specific instructions on how to relocate their services.

There is one general rule for making applications relocatable. If an application
leaves all address lookup tasks to CDS and does not store any addresses of
peer servers locally, it is easier to relocate. The application may cache
information, but the caches should be refreshable with a management command.
In addition, it should register itself in CDS and remove the interfaces upon
termination.

The relocation steps would then be:

 1. Stop the service; this should remove the interfaces from CDS.

 2. Remove all RPC mappings for that application from the local machine if the
server is not going to be rebooted; a well behaving application does that by
unregistering itself from dced.

 3. Backup its data(base).

 4. Install the server in the new location.

 5. Restore the data(base).

 6. Start the service; this should read the database and export the interfaces to
CDS.

Chapter 6. Administering DCE Cells 157

 7. Refresh the CDS cache on all client systems if you want to prevent time-outs
with one of the following methods:

• Refresh the entire cache with the procedures described in 6.3.6,
“Managing Caches on Client Machines” on page 181

• Force the CDS client to read the CDS object from CDS rather than from
the local cache with one of the following commands, depending on
whether it is a regular RPC interface entry or an RPC group entry:

dcecp -c rpcentry show <entry_name>
dcecp -c rpcgroup list <entry_name>

This will update the queried entries in the CDS clerk cache.

6.2.4.2 DFS Services
DFS has various machine roles that can be on the same or different machines.
We discuss them separately. For more details, consult the The Distributed File
System (DFS) for AIX/6000 redbook.

FLDB and Backup Server: These two machine roles work the same as far as
replication and database access is concerned. The ubik routines designate one
master server and update that database. The other servers, if there are any,
become slaves, and their database is automatically updated by the ubik routines.

All we have to do is add another FLDB server with mkdfs -s <scm-host> dfs_fldb
issued on the new node and remove the old one with rmdfs dfs_fldb.

It is seldom necessary to restart client or server machines if you reconfigure a
cell’s FLDB machines. As long as at least one FLDB machine remains the same
after reconfiguration, all machines can continue to access the FLDB via that
machine. Eventually, all machines will recognize the current set of FLDB
machines.

If no FLDB remains the same, a CDS clerk cache refresh for the DFS junction, an
RPC group entry, may be helpful. Use one of the following commands:

dcecp -c rpcgroup show /.:/fs
old # rpccp show group /.:/fs -u

DFS File Server: Read/write filesets can be moved to other machines in the
same cell, whereas read-only filesets should be removed and recreated as
shown in the following steps:

 1. Install new file server machine:

mkdfs -s <scm_machine> -e dfs_srv
mkdfs -s <scm_machine> dfs_repsrv

 2. Create and export the necessary aggregates on the new site, for example:

mklv -t lfs -y lfsroot rootvg 1
newaggr /dev/lfsroot 8192 1024 -overwrite
mkdfslfs -d /dev/lfsroot -n lfsroot

 3. Use the fts move command to move every read/write fileset to the new
location:

fts move root.dfs ev1 lfsroot ev2 lfsroot

The fileset to be moved must not exist as a replica on the target system;
otherwise the move fails.

158 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 4. Follow the steps outlined in 4.4, “Replicating Filesets on AIX” on page 89, to
create the same replica filesets on the new location as are defined at the old
location

 5. Use fts rmsite to remove all replica filesets at the old location.

The replica filesets associated with read/write filesets that were moved away
from this server need not be removed; they are transferred with the master
copy.

 6. Unexport the aggregate(s), and remove the logical volume(s):

rmdfslfs -n lfsroot
rmlv -f lfsroot

 7. Remove the DFS file server at the old location, rmdfs dfs_srv, and reboot the
system to get rid of the kernel extension.

SCM Machine: The System Control Machine (SCM) machine is running an
upserver process that is contacted by the upclient processes of other DFS
servers in the same administrative domain. An administrative domain is built by
all DFS servers defined to belong to a particular SCM machine. Administrative
lists, which define who is authorized to administer DFS servers, are maintained
only on the SCM. The upclient processes then contact the upserver process on
the appropriate SCM to send down all administrative lists.

The SCM machine does not know which client machines are in its domain. The
clients know which SCM machine is theirs because it was specified with the -s
flag of the mkdfs command.

So, what we have to do is:

 1. Be sure to be root and cell_admin.

 2. Install a new SCM machine with mkdfs dfs_scm.

 3. Copy all administrative list files in directory /opt/dcelocal/var/dfs from the
old to the new SCM machine (or backup/restore the files).

 4. On each SCM client, which means on all DFS servers in the same
administrative domain, change the entry for the upclient.scm (or upclient)
process in the BosConfig file. Issue all of the following commands on one
line each:

/opt/dcelocal/bin/bos stop -s <scm_client_system> -p upclient.scm
/opt/dcelocal/bin/bos delete -s <scm_client_system> -p upclient.scm

/opt/dcelocal/bin/bos create -s <scm_client_system> -p upclient.scm \
-type simple -cmd ’/opt/dcelocal/bin/upclient -s <new_scm_machine> -path \
/opt/dcelocal/var/dfs /admin.bos /opt/dcelocal/var/dfs/admin.ft \
/opt/dcelocal/var/dfs/admin.fl /opt/dcelocal/var/dfs/admin.bak’

 5. On the old SCM site, delete the upserver process:

/opt/dcelocal/bin/bos stop -s /.:/hosts/<old_scm> -p upserver
/opt/dcelocal/bin/bos delete -s /.:/hosts/<old_scm> -p upserver

 6. Delete the SCM machine on the old site:

rmdfs dfs_scm

 7. Then create an upclient.scm entry for the former SCM machine if the
machine runs other DFS servers and needs to become an SCM client now.

 8. You can check the SCM clients with the following command:

Chapter 6. Administering DCE Cells 159

/opt/dcelocal/bin/bos status /.:/hosts/<scm_client_system> upclient.scm
-long

6.2.4.3 Moving CDS Resources
CDS controls a distributed database. Replication is performed on the directory
level. Each directory is a replica, one of them being the master. Master replicas
of different directories can be on different systems. Before we move CDS
resources, we should know the structure of our namespace. Therefore, we
include a short caveat to show how to analyze the namespace:

• How to list directories?

• Where are replicas of a directory and which one is the master?

• What type of directory is in the /.:/ev1_ch clearinghouse?

The commands that give answers to the above questions can be combined to
answer other questions, such as: ″Where are the master replicas for all
directories″?

Then we want to look at relocating different CDS resources, such as:

• Master replica of a directory

• Clearinghouse

• CDS server

After all these changes, a refresh of all CDS clerk caches is useful to avoid
time-outs caused by a client still trying to access outdated information. The
clients become aware of the change through advertisements sent out by the CDS
servers.

Change or add cached server definitions

If clients are not in the same LAN as a CDS server, they do not receive any
advertisements from CDS servers because broadcasts do not go across any
IP routers. If a CDS server is moved, you must check whether any clients
need to change or if the cached server definitions need to be added.

Let’s assume we have moved a CDS server from ev2 to ev1, and ev4 is
connected to them via X.25. To enable ev4 to find the new CDS location, we
need to run the following commands on ev4:

cdscp show cached server ev* (optional; it lists all entries)
cdscp clear cached server ev2
cdscp define cached server ev1 tower ncacn_ip_tcp:9.3.1.68

When you first configure a DCE node with mkdce -c, the cached server entry
is put into the /etc/rc.dce file. When you change this definition or add a new
one, you must update your /etc/rc.dce file. Look for the line that assigns a
value to the variable CACHE_SRV and update it:

CACHE_SRV=″cdscp define cached server ev1 tower ncacn_ip_tcp:9.3.1.68″

The create_cds_entry command that comes with this book can be used to
create a cached server entry. See in 6.3.6, “Managing Caches on Client
Machines” on page 181.

160 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Listing Directories: The IBM-provided option is cdsli -rd, which lists all
directories in the namespace. With one of the following OSF-provided
commands, you can list the directories that are present in a certain
clearinghouse:

dcecp -c clearinghouse show /.:/ev7_ch | grep Dir_Name
dcecp -c clearinghouse show /.:/ev7_ch | grep Dir_Name | cut -f2 -d’{’ \
| cut -f2 -d’ ’| sed ″s/}//g″

old # cdscp show object /.:/ev1_ch | grep Name | cut -f2 -d=

Finding all Replicas and the Master: The following commands look up a certain
directory and print which clearinghouses contain the master and read-only
copies of that directory:

dcecp -c directory show /.:/hosts | egrep ″CH_Name|Replica_T″
old # cdscp show directory /.:/hosts CDS_Replicas | sed /Tower/d | sed /UUID/d

Finding the Replica Type in a Specific Clearinghouse: You can answer the
question by looking at the output of the cdscp show directory command as shown
above. If you want to include that query into a shell script, the following
commands provide a more direct method:

dcecp -c directory show /.:/hosts -clearinghouse /.:/ev1_ch | grep caType
{CDS_ReplicaType Master}

old # cdscp show replica /.:/hosts clearinghouse /.:/ev1_ch | grep caType
CDS_ReplicaType = master

Finding the Location of Replicas in the Cell: Probably the most useful command
for getting a picture of the distributed structure of the name space is the list_ch
command that we provide on the diskette in the back of this book:

list_ch

It lists all directories and for each of them, the location (clearinghouses) of the
master and all the read-only replicas. Also on the diskette is a show_cds Tcl
script that runs on AIX and OS/2 and does the same as the list_ch command.

[C:] dcecp show_cds

Relocating the Master Replica for a Directory: As mentioned earlier, each
occurrence of the same directory is called a replica. One of them must be
defined as the master. In order to relocate an existing master directory, for
instance /.:/hosts, you must have a read-only replica of that directory. Check
which replicas are defined and where they are.

If you want the master to be in a new clearinghouse, create one, for example
/.:/xyz_ch, in one of the two following ways:

 1. Install a secondary CDS server, which automatically creates a clearinghouse:

mkdce [-n <cell_name> -s <sec_srv_name>] cds_second

 2. Create another clearinghouse on any CDS server system:

dcecp -c clearinghouse create /.:/xyz_ch
old # cdscp create clearinghouse /.:/xyz_ch

If this command fails, refresh the local CDS clerk cache with the command
below, and then try again.

<tool_dir>/cleanup_cds_cache

Chapter 6. Administering DCE Cells 161

See Appendix A, “Installing the Tools” on page 303, and replace <tool_dir>
in the above command with the directory name you choose for the tools,
which is /dce_tools according to the instructions.

If you want the master to be in a clearinghouse that does not have a read-only
replica of that directory, create a replica:

dcecp -c directory create /.:/hosts -replica -clearinghouse /.:/xyz_ch
old # dcecp create replica /.:/hosts clearinghouse /.:/xyz_ch

The actual relocation is done through redefining the replica set. You must
specify which replica will become the master and which will be read-only. For
this command, you have to specify all existing replicas of a directory. Assume
the master was on ev1, a read-only was on ev2, and you want the master to be
on /.:/xyz_ch. Use the following command to achieve this:

cdscp set directory /.:/hosts to new epoch master /.:/xyz_ch
readonly /.:/ev1_ch /.:/ev2_ch

There is no equivalent dcecp command for this task.

Relocating a Clearinghouse by Transferring the Database Files: The steps
described hereafter back up the whole clearinghouse and restore it to another
existing CDS server. If the target system does not have a CDS server installed,
you must first install one. Assuming you want to relocate the clearinghouse on
ev1 to ev2, follow these steps:

 1. Install a CDS server on ev2 if it is not already there:

mkdce -n <cell_name> -s <sec_srv_name> cds_second

 2. Disconnect the clearinghouse from the server where it is currently running:

dcecp -c clearinghouse disable /.:/ev1_ch
old # cdscp clear clearinghouse /.:/ev1_ch

This command must be run on ev1. It updates the clearinghouse disk files
and ensures the files are consistent.

 3. Backup the ev1_ch clearinghouse files on ev1:

tar -cvf/dev/rmt0 /opt/dcelocal/var/directory/cds/*ev1_ch.*
/opt/dcelocal/etc/cds_attributes

 4. Transfer the clearinghouse database files from their current location (source
server system) to their new location (target server system).

 5. Perform the next steps on the target system (ev2):

a. Restore the files.

b. Create a new clearinghouse:

dcecp -c clearinghouse create /.:/ev1_ch
old # cdscp create clearinghouse /.:/ev1_ch

You must use the same clearinghouse name as used on the source
server system from which you copied the database files. If this
command detects the copied clearinghouse database, it will reinitialize it
to be used on your new server.

 c. This step is optional; it explains what to do in an error situation that used
to occur in DCE 1.3 but is fixed in DCE 2.1.

Other than in the previous DCE version, the IP address (Tower or binding
information) of the new location is correctly updated in all objects now.

162 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

To see which elements in CDS still contain the old address (9.3.1.68), you
can run a cleanif command:

cleanif -i 9.3.1.68 -n 9.3.1.120 -f out.rpc | tee logfile
 ...
Checking cds object /.:/ev1_ch ... skipped.
Checking cds object /.:/hosts/ev1/config ... used.
 ...

Objects that indicate used, still contain the old address. Of course,
entries that point to a still-existing service on ev1 must display used.
Only if you detected an object that should have been changed would you
have to manually change the IP address. In the previous release, the
address was not updated in the clearinghouse object itself and in all the
directory entries. In such a case, you would edit the generated out.rpc
file, delete to good entries and leave the bad entries that need a change.
Then you would run the cleanup_ip command to perform these changes.
See 6.2.3, “Changing IP Addresses” on page 148 for information on the
commands.

d. Refresh the CDS clerk cache:

<tools_dir>/cleanup_cds_cache

e. The clearinghouse is now on system ev2. If you had to install a new CDS
server (mkdce cds_second) on ev2 for the purpose of restoring the
clearinghouse, a /.:/ev2_ch clearinghouse was created for you. You
might want to delete it and keep only /.:/ev1_ch.

dcecp -c clearinghouse delete /.:/ev2_ch
old # cdscp delete clearinghouse /.:/ev2_ch

 6. If this was the only clearinghouse on the old location ev1, you might want to
remove the CDS server from the cell with the following steps:

a. If ev1 is the initial CDS server:

The initial CDS server only distinguishes itself from secondary CDS
servers in that it hosts the master copy of /.: (root directory). Since you
have moved the master replica of the root directory, the roles of Initial
CDS Server and Secondary CDS Server were switched between the two
systems.

To reflect this fact in your cell configuration, you must edit the
/opt/dcelocal/etc/mkdce.data file on ev1 and ev2 and switch the two
following lines between these systems:

cds_srv COMPLETE Initial CDS Server
cds_second COMPLETE Additional CDS Server

b. Refresh the CDS clerk cache on ev1:

<tools_dir>/cleanup_cds_cache

 c. Remove the CDS server locally from ev1:

rmdce cds_second

 7. Refresh the CDS clerk caches on all systems now:

<tools_dir>/cleanup_cds_cache

Relocating a CDS Server by Merging Clearinghouses: In the above-mentioned
procedure of relocating a clearinghouse, you get a clearinghouse (ev1_ch) on the
new site (ev2) that is named after the old location. That prevents you from
regularly installing a secondary CDS server on the old system (ev1) in the future.

Chapter 6. Administering DCE Cells 163

Also, if you already had a clearinghouse on the target system, you would have
two clearinghouses after the relocation.

The challenge to overcome these problems is to merge the contents of ev1_ch
into ev2_ch that might already contain a number of master or read-only replicas,
and then delete ev1_ch. The improved copy_ch command provided on the
diskette that comes with this book allows you to do that. Here are the steps to
follow:

 1. In order to be able to track the relocation, list the namespace now. Run the
following command on a DCE 2.1 machine:

list_ch | tee cds_struct_before

 2. Move the contents of the source to the target clearinghouse:

copy_ch -m -s ev1_ch -t ev2_ch | tee logfile

This command creates a replica in the target clearinghouse for every replica
it finds in the source clearinghouse. It correctly redefines the replica set no
matter how many replicas of directories exist or how many clearinghouses
there are. The -m flag makes it establish the master in the target
clearinghouse for every master replica currently found in the source
clearinghouse.

 3. Skip this step if you intend to delete the whole CDS server on ev1. If you just
want to delete the source clearinghouse, which is now purely read-only, do
the following:

dcecp -c clearinghouse delete /.:/ev1_ch

Although all replicas and the clearinghouse are removed, the command may
end with an error message and leave a /.:/ev1_ch entry in the namespace,
which is just an empty pointer. You can delete it with the following
command:

dcecp -c object delete /.:/ev1_ch

Should the deletion of the clearinghouse fail for any other reason, you need
to check the /.:/ev1_ch clearinghouse for leftover master replica entries. At
any time you can run the list_ch command to check the replication structure
of the whole namespace.

 4. Remove the CDS server on ev1.

Once the old clearinghouse /.:/ev1_ch contains only read-only replicas, it can
be deleted. This is done by the rmdce command.

If this server was the initial CDS server, we must edit the
/opt/dcelocal/etc/mkdce.data file on both sites and switch the two following
lines between the two nodes:

cds_srv COMPLETE Initial CDS Server
cds_second COMPLETE Additional CDS Server

This is described above in “Relocating a Clearinghouse by Transferring the
Database Files” on page 162. Then the secondary CDS server can be
removed with:

rmdce cds_second

Note: The list_ch and copy_ch scripts used here run on AIX 4.1.3+ only. They
use dcecp commands. However, while running on an AIX 4.1.3+ system, copy_ch
can move a clearinghouse on any platform in the cell, regardless of its operating
system (AIX, MVS, OS/2).

164 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.2.4.4 Relocating the Primary Security Server
This section contains instructions on how to relocate the primary security server,
its registry database, and associated files to another machine in the cell. The
target machine may be an existing client or a security secondary machine. This
procedure may also be used to relocate a security server to a different platform
or to migrate from OSF DCE 1.0.3 to OSF DCE 1.1.

Here are the steps you can follow to move the master security server from ev3
to ev1:

 1. Configure a secondary DCE security server on the target system (ev1) which
is already configured as a DCE client. Run the following command on ev1:

mkdce -R -r ev1 sec_srv

 2. Stop the security server on the source machine (ev3) by running the
following command:

dce.clean secd

 3. On ev1, log in to DCE as cell_admin.

 4. Designate the previously defined security replica to be the new master:

dcecp
dcecp> registry designate -master /.:/subsys/dce/sec/ev1

This could be done from any DCE 2.1-configured machine in the cell.

 5. Using your favorite editor, edit the /opt/dcelocal/etc/security/pe_site file on
both machines (ev1 and ev3), and enter the correct addresses.

 6. If you move your master registry from OSF DCE 1.0.3 to OSF DCE 1.1 and you
would like to have full DCE 1.1 support, you must now modify your registry
version. With the registry show subcommand of dcecp, you get something
similar to the following:

dcecp> registry show
{deftktlife +0-10:00:00.000I-----}
{hidepwd yes}
{maxuid 2147483647}
{mingid 100}
{minorgid 100}
{mintktlife +0-00:05:00.000I-----}
{minuid 100}
{version secd.dce.1.0.2}

The last line shows the current version of your registry. To upgrade to the
OSF DCE 1.1 supported version, enter the command:

dcecp> registry modify -version secd.dce.1.1

 7. Unconfigure the original master security server (ev3):

a. Stop and restart DCE now on your original security master server.

dce.clean
rc.dce

b. Unconfigure the DCE security server now on the original master server.

rmdce sec_srv

 8. From ev1, delete the entries for the old master from CDS and the replica list:

Chapter 6. Administering DCE Cells 165

dcecp -c rpcgroup remove -member /.:/subsys/dce/sec/master /.:/sec
dcecp -c rpcgroup remove -member /.:/subsys/dce/sec/master /.:/sec-v1
dcecp -c object delete /.:/subsys/dce/sec/master
dcecp -c registry delete /.:/subsys/dce/sec/master -force

As long as these entries exist, all DCE clients would be stuck at this point.
They still get answers from the new security server, but communication with
CDS fails with a message that the Key Distribution Center cannot be
reached.

 9. Restart DCE also on the new security server (on ev1):

dce.clean
rc.dce

10. Change all pe_site files on systems in the cell.

If you have not already changed the pe_site files of your clients, you must do
it now. Change the IP address found in the /opt/dcelocal/etc/security/pe_site
file to the one assigned for the new master security server. In DCE 2.1, the
pe_site file can be remotely managed as a dced object (see 6.7.5, “Working
with the Hostdata” on page 235).

11. If time-outs are experienced on the DCE clients now, a refresh of the their
CDS cache might help:

dcecp -c rpcgroup list /.:/sec
/.../test/subsys/dce/sec/ev1
dcecp -c rpcgroup list /.:/sec-v1
/.../test/subsys/dce/sec/ev1

Note: There is no longer a security server named master. However, some other
programs, such as the DFS configuration, rely on the presence of the original
master server name. Therefore, we recommend creating a secondary security
server with the following command:

mkdce -R -r master sec_srv

6.3 Backup/Restore and Other Housekeeping Tasks
As with any operating system, application program, and data, a failure of
hardware or software or a mistaken administrator operation can jeopardize the
functionality of the service.

All DCE and DFS services provide replication of their databases, which can be
considered an on-line backup. However, replication is not sufficient, and
traditional backups are still needed or at least recommended in cases such as:

• System time accidentally set backwards
• Release upgrades
• Attempt to change the cell name
• Unsuccessful change of an IP address
• Accidental removal of database files, namespace entries, or DCE accounts

A DCE cell consists of different types of data. Some data are never changed;
some are changed from time to time, and others are highly dynamic. In order to
recover a system after an accident, we need to make proper backups. Since the
implementation of certain configuration files are platform-specific, most of the
following approaches are only valid for AIX and may slightly vary on other
platforms.

166 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The following sections cover:

 1. Full system backup

 2. Backup/restore of DCE core services databases

 3. Backup/restore of DFS databases

 4. Backup/restore of DFS data

 5. Controlling system-created files that may fill disk space

 6. Managing caches

6.3.1 Full System Backup
AIX offers a very efficient method to make a clean, bootable full system backup
of a machine. It is done with the mksysb command or through SMIT with the
smitty mksysb command.

You are advised to perform an mksysb frequently or at least every time you
change something in your system configuration or install new applications or
PTFs.

In order to backup your DCE configuration properly with mksysb, you must shut
down DCE first with the dce.clean all command. However, because mksysb may
take between half an hour and two hours, depending on the size of your server,
it may not be convenient for you to make full backups too frequently. Because
DCE has dynamic data which need to be backed up frequently, we recommend
you use another backup method in addition to the occasional mksysb.

The same is, of course, true for OS/2. Every time you run an OS/2 backup which
also saves the OS/2 DCE data, you must stop DCE first!

6.3.2 Backing Up DCE-Core-Services-Related Information
This step focuses on the DCE data that is necessary for the DCE core services to
run as configured. The subsequent sections give an overview of the files that
need to be backed up and show different ways to back up the core services.

6.3.2.1 Important Files
Below, we describe the DCE data you should back up frequently (we recommend
once a day):

• /opt/dcelocal/var/dced

This is the directory where all the dced databases are stored. Some of the
files are never changed; some are highly dynamic. The *.db files together
build the dced database, whereas the other ones are carrying configuration
information only. When dced starts the first time, it initializes all necessary
*.db files. All *.db may be recreated from scratch when using the dced -i
command. It initializes the dced databases and ACLs and exits. If the
databases exist, this option displays an error.

The Ep.db file contains the local RPC endpoint maps. This is the endpoint
map that is stored on disk so that the DCE daemon (formerly rpcd) can be
stopped and restarted without requiring servers to reregister with the DCE
daemon. After a system reboot, RPC-based servers restart and reregister
with the endpoint map service; so the database file needs to be deleted
before the DCE daemon starts. This is done by the /etc/rc.dce script, which
starts up all the DCE processes.

Chapter 6. Administering DCE Cells 167

• /opt/dcelocal/var/security

This directory stores all the security-relevant information.

• /opt/dcelocal/var/directory/cds

This directory contains all the clearinghouse-specific information.

• /opt/dcelocal/etc/cds_attributes

This file stores the CDS-specific attributes.

The exact same files are also used on OS/2. However, the path names contain
the backslash () instead of the forward slash (/), and the cds_attributes file is
cds_attr because it can only be eight characters long.

6.3.2.2 Configuring the DCE Backup Server
DCE Version 1.1 includes a very nice backup tool within the dcecp Tcl
environment. Once it is configured, you simply enter the cell backup
subcommand of dcecp, which starts a tar backup of your important security
and/or CDS server data. It backs up the master security database and each
clearinghouse with master replicas in the cell. This operation requires that a
dced is running on each of the server hosts being backed up. It does not take
care of the DCE host daemon (dced) data.

Unfortunately, the dcecp Tcl scripts were not readily ported to OS/2 when we
tested this. The tar command that the cell backup uses is not available on OS/2.
However, since dcecp> cell backup is the OSF proposed backup method, it must
eventually be platform-independent. So, if you run DCE core servers on OS/2,
we suggest you use this method as soon as it is available.

To enable the use of the cell backup, the cell must be prepared by setting up a
backup destination (bckp_dest) Extended Registry Attribute (ERA). Its value
specifies a file that needs to be accessible through the local file tree of the
respective server. It is typically a tape archive (disk file or tape device file). It
can be a DFS file if a DFS client is configured.

Add the new ERA to the principals for the master DCE security registry database
and all CDS clearinghouses with master replicas that you want to back up. To
do this, follow these steps:

 1. Create an ERA as a string that specifies a backup destination. Name the
ERA /.:/sec/xattrschema/bckp_dest, and set the type to printstring. Select the
principal ACL manager, and set its four permission bits to r (read), m
(manage), r (read), and D (Delete) as shown in the following command:

dcecp> xattrschema create /.:/sec/xattrschema/bckp_dest
-encoding printstring > -aclmgr {principal r m r D}

 2. Add the new ERA (bckp_dest) to the principal, dce-rgy, that represents the
DCE Security Service registry database. Set the value to be the tar file name
or the device that is the backup destination:

dcecp> principal modify dce-rgy -add {bckp_dest tarfilename_or_device}
dcecp>

 3. Add the new ERA (bckp_dest) to all / . : /hosts/<hostname>/cds-server
principals (the CDS Servers). Set the value to be the tar file name or the
device that is the backup destination

168 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

dcecp> principal modify /.:/hosts/hostname/cds-server
-add {bckp_dest tarfilename_or_device}

dcecp>

Now, whenever you want to back up your registry database or CDS database,
you need only invoke a cell backup operation. You can back up another cell by
including the cell name as an argument to the cell backup operation. Note that
you need the necessary permissions in the remote cell.

The dcecp> cell backup method does not take care of your /opt/dcelocal/var/dced
files. These have to be manually backed up using the tar command. You can
also add this backup to the existing backup Tcl script. If you chose to add the
backup of /opt/dcelocal/var/dced to the backup Tcl scripts of dcecp, you must
store it in another directory; otherwise, installing a PTF or another DCE release
may remove your changes.

The privileges required to run the cell backup command are:

• Local superuser (root)
• DCE cell administrator (cell_admin)

This new backup only works on systems that run OSF DCE 1.1 or AIX DCE 2.1. If
you have servers on an older DCE level, you must still perform a traditional
file-based backup for every service on that platform. Following, we describe the
common backup methods for mixed DCE environments.

6.3.2.3 Backing Up the Files of the DCE Daemon
Besides the databases that it can re-create by itself, the DCE daemon also
stores user-defined information, such as the keytab objects. The should be
backed up with the following commands:

 1. Log in at the machine running the DCE daemon.

 2. Stop the DCE daemon:

/etc/dce.clean dced

 3. Back up all dced files:

tar -cvf/dev/rmt0 /opt/dcelocal/var/dced

 4. Restart the DCE daemon:

/etc/rc.dce dced

On OS/2 use dcestop and dcestart commands and back up the same directory.

6.3.2.4 Restoring the Files of the DCE Daemon
Make sure the DCE daemon is not running and restore all the files. If the system
was rebooted, the Ep.db file can be deleted. Then start the DCE daemon.

6.3.2.5 Backing Up the Files of the Security Server
Please Note

The following backup methods have been used and tested with AIX only. The
same is also true for the backup tools.

The following steps need to be performed on the master security server. There
is no need or benefit in saving a replica server’s database.

Chapter 6. Administering DCE Cells 169

 1. Log in at the master security server site as cell_admin.

 2. Put the security registry database in read-only mode, which causes the
in-memory copy to be saved to disk.

sec_admin
sec_admin> state -maintenance

or stop secd (dce.clean sec_srv)

 3. Back up the associated files, for example:

tar -cvf/dev/rmt0 /opt/dcelocal/var/security/.mkey
/opt/dcelocal/var/security/rgy_data

If you use the cp command, be sure to save the master key file, .mkey, in the
same directory, too. The master key is used to encrypt the registry
database, and if the key is lost, the backup is useless.

 4. Reactivate the security server.

sec_admin
sec_admin> state -service

If stopped, restart it with the rc.dce sec_srv command.

6.3.2.6 Restoring the Files of the Security Server
Follow these steps to restore the security server:

 1. Log in at the master security server site as cell_admin.

 2. Stop the security server:

dce.clean sec

 3. Restore the associated files:

tar -xvf/dev/rmt0

 4. Restart the security server:

rc.dce sec

 5. Check the state of the security server, and put it in the service state if it is
still in maintenance mode:

sec_admin
sec_admin> info
sec_admin> state -service

6.3.2.7 Backing Up the Files of a CDS Server
Please Note

The following backup methods have been used and tested with AIX only. The
same is also true for the backup tools.

The CDS namespace is divided into one or several clearinghouses. This section
looks at how to back up the files associated with one specific clearinghouse. We
tested two different cases:

 1. The first case represents the situation where CDS can be suspended for
copying the CDS files from that specific server. This is the most general way
that works even if the namespace is distributed and replicated.

170 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 2. The second case considers keeping the name service active by creating a
copy for the clearinghouse to be backed up. If uninterrupted write access to
the clearinghouse is required, you can back up the read-only clearinghouse.

Backing Up by Disabling the Service: This is the normal procedure as
suggested in the DCE product documentation. It will work no matter how
distributed and replicated your CDS is.

If your CDS is distributed, you have to back up all clearinghouses that contain
one or more master replicas of any directory. Back up all these clearinghouses
at the same time as much as possible, and try not to change the replica set of
any directory until you have backed up all clearinghouses. This means that you
should not make new replicas or change a read-only into a master in the
meantime. Otherwise, you might have to do some extra work to re-create
consistency upon restore.

 1. Display the whole CDS replication structure and save it in a file:

list_ch | tee /tmp/cds_structure_062096

The list_ch shell script, issued from an AIX 4.1.3+ machine, shows you
where the master and read-only replicas of all directories are. See also
6.2.4.3, “Moving CDS Resources” on page 160, for other helpful commands
for finding master and read-only replicas.

 2. Log in as cell_admin on the CDS server you want to back up.

 3. Disable the clearinghouse you want to back up, for instance /.:/ev1_ch, with
one of the two following methods:

• Disabling the CDS server, which would affect all clearinghouses on ev1:

dce.clean cds

The same is achieved with cdscp disable clerk followed by cdscp disable
server.

• Disconnecting a specific clearinghouse from the CDS server:

dcecp -c clearinghouse disable /.:/ev1_ch
old # cdscp clear clearinghouse ev1_ch

This updates the clearinghouse files and ensures the files are consistent.
However, this method takes a long time to reconfigure the clearinghouse.

 4. Back up the files associated with the clearinghouse(s) on ev1.

If you back up all clearinghouses on ev1, issue the following command:

tar -cvf/dev/rmt0 /opt/dcelocal/var/directory/cds
/opt/dcelocal/etc/cds_attributes /opt/dcelocal/etc/cds.conf

If you back up a particular clearinghouse, do the following:

tar -cvf/dev/rmt0 /opt/dcelocal/var/directory/cds/*ev_1ch.*
/opt/dcelocal/var/directory/cds/cds_files \
/opt/dcelocal/etc/cds_attributes /opt/dcelocal/etc/cds.conf

Remember to also back up the file you created before with the list_ch
command.

 5. Reactivate the clearinghouse according to the method by which you had
stopped activities before:

• Restarting the CDS server:

/etc/rc.dce cds

Chapter 6. Administering DCE Cells 171

Or with OSF commands:

cdsadv
cdsd

• Reconnecting the clearinghouse with the CDS server

dcecp -c clearinghouse create /.:/ev1_ch
old # cdscp create clearinghouse /.:/ev1_ch

Keeping a Clearinghouse Active: If you cannot afford to disable the
clearinghouse, you can copy it to a temporary clearinghouse. While access is
possible to that temporary clearinghouse, you can back up the original
clearinghouse. If you establish the master replicas contained in the original
clearinghouse in the temporary clearinghouse, you could even provide
uninterrupted write access. However, if you back up the clearinghouse
information while an extra clearinghouse exists, the restore of the backups will
be more complex, because you need to define the replica set for each directory,
thereby explicitly excluding the temporary clearinghouse.

Which method should you use? Introducing the temporary clearinghouse
requires extra, manual steps to re-create the correct replica set because while
the backup is made, some information concerning this temporary clearinghouse
is stored along with the data you actually want to conserve. Test how long the
previously described method takes and whether you can accept the
unavailability of CDS for such an amount of time. Remember that CDS clients
are caching information and do not need to access a server for every look-up
request.

If you need to enable continuous CDS access, perform the following steps:

 1. Create a temporary clearinghouse, /.:/xxx_ch, on the same CDS server:

dcecp -c clearinghouse create /.:/xxx_ch
old # cdscp create clearinghouse /.:/xxx_ch

 2. Copy the contents of /.:/ev1_ch to /.:/xxx_ch:

copy_ch -s ev1_ch -t xxx_ch

If you want continuous read/write access to /.:/xxx_ch, use the -m flag to
move the master role for every directory to /.:/xxx_ch if present in /.:/ev1_ch:

copy_ch -m -s ev1_ch -t xxx_ch

 3. Back up /.:/ev1_ch as described above in “Backing Up by Disabling the
Service” on page 171.

 4. If you specified the -m flag above, copy the clearinghouse back to /.:/ev1_ch,
again using the -m option.

 5. Once /.:/ev1_ch is backed up and running, the temporary clearinghouse can
be deleted on the machine that is housing it:

dcecp -c clearinghouse delete /.:/xxx_ch
old # cdscp delete clearinghouse /.:/xxx_ch

172 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.3.2.8 Restoring the Files of a CDS Server
To restore any of the clearinghouses, perform the following steps:

 1. Stop CDS.

 2. Restore the database(s).

 3. Edit the list of existing clearinghouses to make sure it reflects exactly the
valid clearinghouse files:

vi /opt/dcelocal/var/directory/cds/cds_files

Especially, remove from the file any temporary clearinghouses that you used
for an uninterrupted-access backup. The CDS server would try to activate
them and hang.

 4. Restart CDS.

 5. If you defined a temporary clearinghouse to maintain an uninterrupted CDS
access during the backup, use the CDS structure file you created with the
list_ch command before the backup and redefine each replica set according
to that structure file, thereby excluding the temporary clearinghouse.

Note that in some cases it may seem unnecessary to run the cdscp set dir
to new epoch master command and that CDS works correctly without
excluding the temporary clearinghouse. However, the knowledge of this
dummy clearinghouse is still there, and it may cause failures later on, for
example, when you define an additional, new replica and want to redefine
the corresponding replica set.

 6. Synchronize every directory:

for DIR in `cdsli -rd`; do
> echo ″$DIR \c″
> dcecp -c directory synchronize $DIR
> done

If you get errors on a directory because of changes that have been made
since the backup, you need to decide which version of the directory you want
to keep and redefine the replica set (a new epoch master) accordingly.
Execute a cdscp set dir to new epoch master command, specifying the
clearinghouse with the good replica of the directory as the master and all
other existing replicas as readonly or exclude. In this way you could even
designate a read-only replica as the new master if the original master is
unrecoverable.

 7. If you want to avoid time-outs on the clients, clean all clerk caches with
cleanup_cds_cache (see 6.3.6, “Managing Caches on Client Machines” on
page 181)

6.3.3 Backing Up DFS-Servers-Related Information
There are two types of entities that need backup considerations. The first
consists of the two DFS databases, which are the fileset location database
(FLDB) and the backup configuration database. The fileset data builds the
second type, which is discussed in 6.3.4, “Backing Up and Restoring DFS Data”
on page 177.

DFS provides a sophisticated backup subsystem that allows you to create full or
incremental backups of filesets or aggregates. The backup database defines
backup families, backup schedules, location of machines with one or multiple
tape devices (tape coordinators), and which families use which tape coordinator.

Chapter 6. Administering DCE Cells 173

The backup database is a distributed database that uses the same ubik
algorithm to synchronize among its server processes, like the FLDB. The
backup database can be backed up within the backup subsystem with bak
savedb. For more details about the backup subsystem or the bak command suite,
consult The Distributed File System (DFS) for AIX/6000 redbook.

In the following subsections, we want to provide a short recapitulation on how
the FLDB is backed up and restored.

6.3.3.1 Backing up the FLDB
The FLDB is a distributed database that stores fileset locations. Multiple FLDB
servers are running in a cell, each of them controlling a database. Update
requests go through a set of calls belonging to a library named ubik. The ubik
routines designate one master server and update that database. The other
servers, if there are any, become slaves, and their database is automatically
updated by the ubik routines.

The set of information stored for each fileset in the FLDB can be created from
information stored on the fileset itself, the fileset header. Under normal
circumstances this redundant information is consistent or synchronized. The fts
command suite offers options to synchronize FLDB and fileset header
information in both directions.

The chances of losing the entire FLDB are minimal if this service is replicated as
recommended. Furthermore, most of the FLDB information can be recreated
from all fileset headers. Exceptions are non-LFS filesets, which do not have
fileset headers, and replication information.

To be prepared for the worst, it might make sense to back up the FLDB in
regular intervals, especially if you are using a lot of fileset replication or non-LFS
filesets.

 1. Keep the status of the FLDB database in a readable file for information:

date > /tmp/BACKUP/dfs/ls_fldb_output
fts lsfldb >> /tmp/BACKUP/dfs/ls_fldb_output

 2. Stop the FLDB (flserver) service via the bos command suite:

/opt/dcelocal/bin/bos status /.:/hosts/ev8 -localauth
Instance upserver, currently running normally.
Instance flserver, currently running normally.
Instance ftserver, currently running normally.
/opt/dcelocal/bin/bos stop /.:/hosts/ev8 flserver -localauth
/opt/dcelocal/bin/bos status /.:/hosts/ev8 -localauth
Instance upserver, currently running normally.
Instance flserver, disabled, currently shutdown.
Instance ftserver, currently running normally.

 3. Copy the FLDB files to the backup media:

di /opt/dcelocal/var/dfs/fldb*
-rw------- 1 root 145472 Jun 10 14:24 /opt/dcelocal/var/dfs/fldb.DB0
-rw------- 1 root 64 Jun 10 14:24 /opt/dcelocal/var/dfs/fldb.DBSYS1
cp -v /opt/dcelocal/var/dfs/fldb* /tmp/BACKUP/dfs

 4. Restart the FLDB service via the bos command suite:

174 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

ps -ef | grep flserver
root 11945 8382 4 14:47:13 pts/2 0:00 grep flserver

/opt/dcelocal/bin/bos start /.:/hosts/ev8 flserver -localauth
ps -ef | grep flserver

root 6829 8382 3 14:47:40 pts/2 0:00 grep flserver
root 11947 10700 35 14:47:35 - 0:00 /opt/dcelocal/bin/flserver

From this file, in case of reloading, it will be possible to repopulate a new FLDB
server and from there to synchronize the cell file servers (ftserver processes) of
the cell, if needed.

During this suspension of the FLDB activity, the DFS clients currently in
communication with DFS servers are not affected. Only the new requests for the
location of servers are delayed.

6.3.3.2 Restoring an FLDB
Please Note

The steps outlined here are a summary of ideas based on our experiences in
this project and were not thoroughly tested due to lack of time. However, we
wanted to include them to give you ideas on how to tackle this important
issue.

FLDB databases have version numbers assigned to them. If any problem occurs
and the ubik routines that manage the FLDB databases have elected a new
synchronization site, this site checks all other FLDB servers and copies the
database with the highest version number to its own machine. This will
eventually become the master database from which the others are updated.

So if we want to restore an FLDB database, we have two problems:

 1. We cannot predict which server wil l be elected to become the master.
 2. Our backup might have a lower version number and therefore be overwritten

by an existing one.

Therefore, we recommend trying one of the two following procedures. However,
before you try this, be sure the effort to synchronize from the fileset headers is
really too big and the backup of the FLDB is not outdated for too long a time.

Restoring the FLDB on All Servers: Try this procedure first:

 1. Stop DFS on all servers with dfs.clean.

 2. Restore the FLDB files on all flserver machines.

 3. Start DFS on all servers with rc.dfs.

Restoring the FLDB on One Server by Removing the Others: If the first
procedure does not work:

 1. Remove all FLDB servers but the one on which you made the backup as
outlined in 6.3.3.1, “Backing up the FLDB” on page 174; use rmdfs dfs_fldb,
if this is still possible.

 2. If this is not possible, try a local unconfiguration and manually delete the
CDS entries for these servers:

• rmdfs -l dfs_fldb

• Delete the CDS entries of the form /.:/host/ev1/flserver.

Chapter 6. Administering DCE Cells 175

• Remove the RPC group members from /.:/fs.

 3. Restore the FLDB files on the one flserver machine that has been left over.

 4. Start the flserver. If this does not work, remove and reconfigure the FLDB
server, restore the files once again, and restart the flserver.

 5. Reconfigure the other FLDB servers.

6.3.3.3 Recreating an FLDB
If the files of the FLDB servers are corrupted or accidentally destroyed, the
flserver can be started anyway, but it produces the following error message:

fts lsfldb -localauth
Could not access the FLDB for attributes
Error: FLDB: cannot create FLDB with read-only operation (dfs / vls)

By using the fts syncfldb for each fileset server in the cell, the needed entries
are repopulated from information on each server. Here are the required steps
when starting from an empty FLDB.

 1. Establish the list of servers; for that purpose, it is a good habit to periodically
list the contents of the FLDB into a file with fts lsfldb.

 2. Create the server entries:

The fts crserverentry command has to be executed for each server that has
filesets which need to be known in the FLDB. The command requires the
knowledge of the appropriate principal for getting the information from the
server. This will be given by bos lsadmin.

Example for server ev8:

/opt/dcelocal/bin/bos lsadmin /.:/hosts/ev8 admin.fl -localauth
Admin Users are: user: hosts/ev8/dfs-server, group: subsys/dce/dfs-admin
fts crserverentry /.:/hosts/ev8 hosts/ev8/dfs-server -localauth
fts lsserverentry -all -localauth
9.3.1.127 (2:0.0.9.3.1.127)
FLDB quota: 0; uses: 0; principal=’hosts/ev8/dfs-server’; owner=<nil>

 3. Populate the FLDB database with the fileset entries from all the servers:

fts syncfldb -server /.:/hosts/ev8
number of sites: 1

server flags aggr siteAge principal owner
9.3.1.127 RW lvs.root 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 6 of total 9 --
Creating an entry for fileset 0,,7 in FLDB

readWrite ID 0,,7 valid
readOnly ID 0,,8 invalid
backup ID 0,,9 invalid

number of sites: 1
server flags aggr siteAge principal owner

9.3.1.127 RW lfsroot 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 7 of total 9 --
Creating an entry for fileset 0,,4 in FLDB

readWrite ID 0,,4 valid
readOnly ID 0,,5 invalid
backup ID 0,,6 invalid

number of sites: 1

176 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

server flags aggr siteAge principal owner

9.3.1.127 RW lfsroot 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 8 of total 9 --
Creating an entry for fileset 0,,1 in FLDB

readWrite ID 0,,1 valid
readOnly ID 0,,2 invalid
backup ID 0,,3 invalid

number of sites: 1
server flags aggr siteAge principal owner

9.3.1.127 RW lfsroot 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 9 of total 9 --
FLDB synchronized with server /.:/hosts/ev8

The fts syncfldb command inspects filesets residing on the file server
machine specified by -server. It checks either all of the filesets on -server or
only the filesets on the optionally specified -aggregate. It then checks that
the FLDB correctly records every fileset whose fileset header is marked
on-line and changes any necessary FLDB entry to be consistent with the
status of each fileset on the server.

This command also performs the following additional functions:

• If it finds a backup fileset whose read/write source no longer exists at the
same site, it removes the backup from the site.

• If it finds a fileset ID number that is larger than the value of the counter
used by the flserver when allocating fileset ID numbers, it records this ID
number as the new value of the counter. The next fileset to be created
receives a fileset ID number one greater than this number.

• If necessary, it increments or decrements the number of fileset entries
recorded as residing on a file server machine in the FLDB entry for the
server.

It is recommended that fts syncserv is run for all file server machines in a
cell after fts syncfldb is run against all file server machines in the cell.

The fts syncfldb and fts syncserv commands cannot restore replication
information that was lost when an entry for a DCE LFS fileset was removed
from the FLDB. Replication information must be reconstructed with the fts
setrepinfo and fts addsite commands.

You can use fts syncfldb against non-LFS filesets although they do not have
fileset headers. If they are dfsexport’ed, syncfldb will create an entry called
″SYNCFLDB-GENERATED-0-<fileset ID>″. It makes up this name because it
can’t find a name from the header. The fts rename can then be used to
rename the generated name back to the original name.

6.3.4 Backing Up and Restoring DFS Data
There are basically two methods to back up DFS data:

• Using the DFS backup subsystem with the bak command suite.

As mentioned above in 6.3.3.1, “Backing up the FLDB” on page 174, the
backup service allows for setting up sophisticated automated backup
procedures. You define tape coordinator machines that have tape drives
attached to them, and you define families of filesets and/or aggregates that

Chapter 6. Administering DCE Cells 177

are going to be backed up together with the same schedules and to the
same tape coordinator.

• Instantaneous backups with the fts command suite.

The fts dump and fts restore commands let you create instantaneous
backups to files or to media.

These are the only two options that preserve the DFS ACL information. All AIX
backup/restore commands only consider owner and group IDs (UID/GID) and the
UNIX mode bits derived from the user_obj, group_obj, mask_obj, and other_obj
permissions.

For more information, consult The Distributed File System (DFS) for AIX/6000
redbook or the AIX DFS documentation.

 ADSM

The current release of the ADSTAR Distributed Storage Manager (ADSM) is
not aware of DFS ACLs. Therefore, the only way to use ADSM and preserve
the ACLs is to use the method described above as Instantaneous Backup.

This means you can create a backup file using the fts dump command and
back up the backup file with ADSM.

6.3.5 Controlling Disk Space: System-Created Files
DCE creates a lot of files that it uses for its operation, such as:

• Database files

• Caches

• Credential files

• Socket special files

All these files can vary a lot in size and number. So they can use up all the disk
space or i-nodes of a file system. If a file system becomes full for one of these
reasons, the affected components will not work anymore, which may have an
influence on the operation of other components.

DCE stores all these files underneath the /opt/dcelocal/var directory. In AIX this
directory is a symbolic link to /var/dce in the /var file system. The /var file
system is also used for other system files that vary in size and can grow very
big, such as print spool or trace files. It is important to create separate file
systems for DCE to decouple DCE from the operating system as advised in 3.2,
“Preparing for DCE Configuration on AIX” on page 38.

6.3.5.1 Databases
Most DCE servers control a database which grows with the number of objects
stored in it. The database files are in the following directories:

• Security server: /opt/dcelocal/var/security/rgy_data

The files within this directory mainly grow with the number of principals and
accounts at a rate of about 1 KB per user.

• CDS server: /opt/dcelocal/var/directory/cds

178 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The database files mainly grow with the number of client workstations
(approximately 1.4 KB per client) and also with the number of application
servers.

• DCE daemon: /opt/dcelocal/var/dced

The endpoint map file, Ep.db, grows with the number of application servers.
The number of socket files in /opt/dcelocal/var/rpc/socket grows with the
number of DCE client applications running on a server system, which
corresponds to the number of concurrent local client/server connections.

• DFS FLDB: /opt/dcelocal/var/dfs

The FLDB grows with the number of filesets. It may become large if there is
a lot of users and each of them has their own fileset.

Observe these directories and increase the file system size(s) as necessary.
See also the sizing guidelines in 2.3, “Sizing Guideline” on page 24 for
information on disk space requirements.

6.3.5.2 Cache Files
Cache files can be found on every DCE client system. There are two caches in
/opt/dcelocal/var/adm, and their size can be limited:

• CDS clerk cache: /opt/dcelocal/var/adm/directory/cds

The size of the clerk cache can be limited if the cdsadv process is started
with the -c flag.

• DFS cache: /opt/dcelocal/var/adm/dfs/cache

This cache can be configured with the DFS client configuration or with the
-block option to the dfsd command or within the file
/opt/dcelocal/etc/CacheInfo. It should not be set to a value larger than 85
percent of the logical volume size. For a new cache size to take effect, the
system must be rebooted.

See also 6.3.6, “Managing Caches on Client Machines” on page 181, for more
information about cache management.

6.3.5.3 Credential Files
A credential file is created, for instance, when a principal logs in. It contains all
tickets that are granted to a principal as long as his Ticket Granting Ticket (TGT)
is valid. The next time the same user logs in, he gets a new credential file. So
the number of these files is increasing and may reach the maximum number of
i-nodes defined for a file system or fill up the file system space. The rmxcred
command should be used to remove stale credential files:

rmxcred -?
Usage: rmxcred [-h hours] [-d days] [-v] [-f | -p principal]

Default: all ticket caches totally expired are purged except
for the machine context, and except for those used by the
secd and cdsd programs. (To remove any of these explicitly,
specify -p and the name ’self’, ’dce-rgy’, or ’cds-server’)

Use -d and -h options to only remove caches that have
been expired for the specified # of days or hours. They can
be set separately or in combination. Use -p to remove stale
caches for the specified principal only. OK to specify xyz
for principals of form ’hosts/machine/xyz’. Use -f option to

Chapter 6. Administering DCE Cells 179

force removal of all stale caches, including special ones
’self’, ’dce-rgy’, and ’cds-server’. -f ignored if -p is also
specified

The following example shows how the number of credential files is reduced:

ls /opt/dcelocal/var/security/creds | wc -w
17

rmxcred -v
Principals with expired tickets:

/.../old.itsc.austin.ibm.com/cell_admin
/.../old.itsc.austin.ibm.com/cell_admin
/.../old.itsc.austin.ibm.com/cell_admin
/.../old.itsc.austin.ibm.com/cell_admin

ls /opt/dcelocal/var/security/creds | wc -w
13

Put the command rmxcred into crontab so that credentials are cleaned up at
regular intervals:

 1. Log in as root.

 2. Call crontab -e, which opens up a vi editor session on your crontab file.

 3. Insert, for instance, the following line which causes rmxcred to be run daily at
1:00 am:

0 1 * * * /bin/rmxcred -h 10

It will remove credential files that have been expired for 10 or more hours.

 4. Save the file.

 5. You can check the entry with crontab -l.

6.3.5.4 Socket Files for Local RPC
In AIX DCE 1.3, ncacn_unix_stream binding handles were available to represent
RPC connections within the same machine. The protocol sequence was used to
communicate over a local socket special file. Its file name was created with an
embedded UUID, which guaranteed that the same name was never used over
again. This could create a large number of socket files that need to be cleaned
up. These ncacn_unix_stream bindings are no longer used in AIX DCE 2.1.

Socket files are created only for endpoints using the connection-oriented
ncacn_ip_tcp protocol sequence. When a well-written DCE server application
exits under normal conditions, it will unregister its endpoints from the RPC
endpoint map, among other things, before it exits. This should also remove the
socket file.

When for any reason these files are not properly cleaned up, you will get stale
socket files, which occupy i-nodes. The following utility can be run to delete
stale socket files:

rpc.clean -p /opt/dcelocal/var/rpc/socket

This command is also executed as part of the dce.clean script to stop DCE. In
fact, once DCE is stopped, the files in /opt/dcelocal/var/rpc/socket could also be
manually deleted.

180 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.3.6 Managing Caches on Client Machines
Client systems house two local caches, one for CDS and one for DFS. They
speed up CDS lookups and DFS data access. However, they can cause DCE
operations on the client to be either really slow, because many time-outs occur,
or to completely hang if one of the following occurs:

• They point to a server that is not running.
• Information is outdated.
• Cache is corrupted or destroyed by a mistaken operator intervention.

This section covers the aspects of refreshing these caches. See also 6.3.5.2,
“Cache Files” on page 179, for limiting the cache sizes.

6.3.6.1 Managing the CDS Clerk Cache
In order to bind to servers, DCE client programs need to contact the CDS for
binding handles. All client requests go via the local cds_clerk. The cds_clerk
caches all the information it gets from the CDS servers in a local cache. The
cache is basically held in virtual memory. It is written to disk when the CDS
clerk is disabled. It can be found in directory
/opt/dcelocal/var/adm/directory/cds.

CDS access requests from client applications always go via a CDS clerk and its
cache. If the cache gets messed up or contains outdated information because
some server information has been changed in the cell, the application may
experience time-outs or, in the worst case, fail because it receives invalid
binding information. Since binding handles are usually received in a random
order, one application may be lucky to get a good binding handle, another gets a
stale handle, and the server call fails with a communication error. The default
time-out is 30 seconds. The application can try the next handle and so on. So
we must find a way to get rid of the stale entries.

The CDS server does not know what information the clients store; so it cannot
notify the clients of any changes. The only information that is passed to CDS
clients is the location of clearinghouses via advertisements. However, it is only
a matter of time when CDS clerk cache entries are refreshed by client requests.
The expiration age is usually between 8 and 12 hours. See “Expiration Age of
CDS Clerk Cache Entries” on page 182, for more information.

Many of the administration tasks described in this publication state that it is
recommended to refresh all client caches. Think twice before you do it,
because:

• You have to do work on each client.

• It can affect network performance.

• If the client is connected via WAN, it has a cached CDS server entry that is
wiped out and must be manually added again.

If only a minor change was made to CDS server information, you may decide to
accept some infrequent time-outs on client machines for a few hours until they
are refreshed by subsequent client requests. Before you wipe out the whole
cache, you should consider forcing updates from the CDS server for specific CDS
entries with one of the following commands:

dcecp -c rpcentry show /.:/<some_entry_name>
dcecp -c rpcgroup list /.:/<some_rpc_group>
old # rpccp show entry /.:/<some_entry_name> -u

Chapter 6. Administering DCE Cells 181

Note that for the dcecp command you do not need an -u flag. The default is to
always update the CDS clerk cache entry. If you did not want to contact the CDS
server on every command, you would have to specify the -noupdate flag:

dcecp -c rpcentry show /.:/<some_entry_name> -noupdate

The rest of this section covers the following topics:

 1. An AIX DCE documentation excerpt about expiration age

 2. A procedure to wipe out the CDS clerk cache

 3. A procedure that wipes out caches, credentials, and endpoint maps

 4. A procedure to define the cached server entry on a WAN-connected client

Expiration Age of CDS Clerk Cache Entries: It is the responsibility of the client
side to have updated CDS information. Normally, the client program does not
have to do anything; the RPC runtime takes care of checking the age of the
cache entry that is being queried and triggers a refresh from the CDS server, if
necessary. However, the application can set an expiration age. This has to be
used with care because frequent refreshes may affect network performance.

The following description of the rpc_ns_mgmt_set_exp_age() routine is an excerpt
out of the AIX DCE documentation:

When an application begins running, the RPC runtime specifies a random value
of between 8 and 12 hours as the default expiration age. The default is global to
the application. Normally, avoid using this routine; instead, rely on the default
expiration age. The RPC NSI next operations, which read data from name
service attributes, use an expiration age. A next operation normally starts by
looking for a local copy of the attribute data that an application requests. In the
absence of a local copy, the next operation creates one with fresh attribute data
from the name service database. If a local copy already exists, the operation
compares its actual age to the expiration age being used by the application. If
the actual age exceeds the expiration age, the operation automatically tries to
update the local copy with fresh attribute data from the name service database.
If updating is impossible, the old local data remains in place and the next
operation fails, returning the rpc_s_name_service_unavailable status code.

Setting the expiration age to a small value causes the RPC NSI next operations
to frequently update local data for any name service attribute that your
application requests. For example, setting the expiration age to 0 (zero) forces
all next operations to update local data for the name service attribute that your
application has requested. Therefore, setting small expiration ages can create
performance problems for your application. Also, if your application is using a
remote server with the name service database, a small expiration age can
adversely affect network performance for all applications.

The cleanup_cds_cache Procedure: Binding handles are cached in each CDS
clerk cache. If we want to avoid nasty time-outs, you should refresh the clerk
caches on all systems when binding handles become invalid. The following
procedure deletes the CDS clerk cache without interrupting DCE operation
significantly:

#!/bin/ksh
#cds cache cleaning.
#Shell Script to remove the local CDS cache
#(It will be recreated, when cdsadv starts again)
#
Tested with AIX DCE 2.1 01/19/96

182 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

#
CDS_SERVER=NO

ps -ef | grep cdsd | grep -v grep >/dev/null 2>&1
if [$? = 0]
then
CDS_SERVER=YES
echo ″Disabling CDS server and clerk″
/etc/dce.clean cds
With OSF commands:
#cdscp disable clerk # Disable clerk first. Once the server is
#cdscp disable server # gone, the clerk cannot be disable anymore

else
echo ″Disabling CDS clerk″
/etc/dce.clean cdsadv
With OSF commands:
#cdscp disable clerk

fi

echo ″Removing CDS clerk cache″
rm /opt/dcelocal/var/adm/directory/cds/cds_cache.*
rm /opt/dcelocal/var/adm/directory/cds/cdsclerk_*

if [$CDS_SERVER = ″YES″]
then
echo ″Restarting CDS server and clerk″
/etc/rc.dce cds
With OSF commands:
#cdsadv
#cdsd

else
echo ″Restarting CDS advertiser (and clerk)″
/etc/rc.dce cdsadv
With OSF commands:
#cdsadv

fi

echo ″CDS clerk cache is cleared ″
echo ″You can look at it with \″cdscp dump clerk cache\″\n″

On an OS/2 client, you need to perform the same steps, which means stopping
the CDS client, erasing the files and restarting the client:

[C:] dcestop cds_c
[C:\] cd \opt\dcelocal\var\adm\dir\cds
[C:\OPT\DCELOCAL\VAR\ADM\DIR\CDS] erase cdscache.*
[C:\OPT\DCELOCAL\VAR\ADM\DIR\CDS] cd \
[C:\] dcestart cds_c

If applications store binding information internally or have no sufficient recovery
mechanism to handle communication errors, applications may need to be
stopped and restarted. In such cases, the application would not read the
refreshed CDS clerk cache and hence cleanup_cds_cache would not help.

The cleanup_cache Procedure: This is the full cache refresh procedure. This
procedure should actually only be used in problem situations where
cleanup_cds_cache does not help, for instance when the RPC endpoint map gets
corrupted on a system that is a server of any kind.

Since cleanup_cache removes everything that DCE servers and clients need to
communicate, you must also stop and restart all DCE applications running on
that system. If DFS is running, the system must be rebooted.

The procedure first stops DFS and DCE, if they are running. Then it removes all
the caches on that system as shown in the listing below. This ensures that a
system does not use its invalid cache anymore. Under normal circumstances,

Chapter 6. Administering DCE Cells 183

the CDS cache is kept while rebooting or restarting DCE. RPC endpoint maps
and credentials are removed upon restart of DCE after a system reboot.

#!/bin/ksh
#general cache cleaning.
#Shell Script to remove the rpc config files and the credential files
#to make sure the cache and the endpoint mapper are cleaned up.
#
Tested with AIX DCE 2.1 01/19/96
#

cat << EOI
If you want to continue, you will have to restart all your DCE Applications
and users have to login again, because this script removes all credentials
and RPC end points.

If you run DFS (client or server), you must reboot this system.

If you just want to clean the CDS clerk cache, use cleanup_cds_cache.

EOI
echo ″Do you want to continue [y/n]: \c″
read a

if [X$a != X″y″]
then
exit 1

fi

echo ″Stopping DCE and DFS ...″
/etc/dfs.clean
/etc/dce.clean

echo ″Removing socket files ...\n″
rm -f /opt/dcelocal/var/rpc/socket/*

echo ″Removing the endpoint maps ...\n″
rm -f /opt/dcelocal/var/dced/Ep.db # for DCE 2.1
rm -f /opt/dcelocal/var/rpc/rpcdep.dat # for DCE 1.3
rm -f /opt/dcelocal/var/rpc/rpcdllb.dat # for DCE 1.3

echo ″Removing everyone′ s credentials ...\n″
ls /opt/dcelocal/var/security/creds | grep -v ffffffff | xargs -i rm -f {}

echo ″Removing the CDS cache files ...\n″
rm -f /opt/dcelocal/var/adm/directory/cds/cds_cache.*
rm -f /opt/dcelocal/var/adm/directory/cds/cdsclerk_*

echo ″All cache files erased.\n″
echo ″Remember: DCE/DFS is currently stopped.\n″

On an OS/2 system, you need to perform the same steps, which means stopping
the DCE and DFS, erasing the files and restarting the DCE and DFS:

[C:] dcestop
[C:\] erase \opt\dcelocal\var\dced\Ep.db
[C:\] erase \opt\dcelocal\var\security\creds*
[C:\] erase \opt\dcelocal\var\adm\dir\cds\cdscache.*

Then shut down and reboot the system and call dcestart.

The create_cds_entry Procedure: When a client system cannot be reached via
IP broadcasts from a CDS server or vice versa, it cannot find a CDS server. A
cached server entry must be manually defined into the CDS clerk cache:

cdscp define cached server <ip_name> tower ncacn_ip_tcp:<ip_addr>

When you first install a DCE node that is not in the same network as the CDS
server, you call mkdce with the -c flag. This instructs mkdce to set up a cdscp

184 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

defined cached server call and to put this call also into the /etc/rc.dce startup
file.

The information is stored in the clerk cache. So when you wipe the cache out,
you need to redefine the cached server. The following shell script
create_cds_entry does that for you:

#!/bin/ksh
if [″$1″ != ″-c″]
then
echo ″\nUsage: create_cds_entry -c <CDS_server_name>\n″
echo ″Purpose: Sets a cached CDS server for the local CDS clerk\n″
exit

fi

cat << EOI
Since CDS is not working you must be able to find the security
server via the pe_site file.
EOI
echo ″Is /opt/dcelocal/etc/security/pe_site up to date? [y/n]: \c″
read a

if [X$a != X″y″]
then
echo ″\n>> Please edit /opt/dcelocal/etc/security/pe_site first;″
echo ″ . . chpesite does not work at this point, it needs a working CDS.″
exit 1

fi

ip=`host $2 | cut -f3 -d’ ’`
BIND_PE_SITE=1; export BIND_PE_SITE
cdscp define cached server $2 tower ncacn_ip_tcp:$ip
unset BIND_PE_SITE

Then you need to edit the /etc/rc.dce file, look for the line that contains the
CACHE_SRV environment variable, and enter the cdscp defined cached server
command there.

6.3.6.2 Managing the DFS Client Cache
This topic is comprehensively described in The Distributed File System (DFS) for
AIX/6000 redbook and in the AIX DFS documentation. The cm command suite is
used to manage the DFS client’s cache manager. This section should serve as a
short reminder of some of the most important cm subcommands:

cm flush Forces the cache manager to discard data cached from
specified files or directories and affects only data which has
not been altered. Data that needs to be stored back to the
server remains in the cache.

cm flushfileset Forces the cache manager to discard data cached from
filesets that contain specified files or directories. Again, this
affects only unaltered data.

cm lsstores Lists filesets that contain data the cache manager cannot
write back to a file server machine.

cm resetstores Cancels attempts by the cache manager to contact
unavailable file server machines and discards all data the
cache manager cannot store to such machines. You should
run cm lsstores first to check which filesets are concerned.

cm checkfilesets Forces the cache manager to update fileset-related
information. It forces the cache manager to fetch the most
recent information available about a fileset from the FLDB.

cm setpreferences Sets the cache manager’s preferences for file server
machines. The cm setpreferences -fldb command sets
preferences for FLDB server access.

Chapter 6. Administering DCE Cells 185

There is no command to flush the entire cache. Should this ever be necessary,
do not just delete the files as with CDS, but remove and reconfigure the DFS
client.

6.4 Administering Users and Groups
DCE is designed to manage a large number of users in a cell. Administrators
work on tasks such as adding, modifying, and deleting users, accounts, and
groups in the DCE security registry. DCE provides some basic commands for the
tasks. Managing single users is nicely supported by these commands or within
SMIT. But current DCE implementations lack tools to perform these in a large
scale. Not even a nice Administration GUI (graphical user interface) solves this
problem, unless it provides some form of command-line interface to enable
using scripts.

The second problem after mass DCE user management is that DCE login is not
integrated into AIX login by default. However, AIX Version 4 now supports an
authentication method that contacts the DCE registry and imports all necessary
user information from there.

Tools for mass user-management and login integration are required to deploy
DCE on a large scale. We can propose a solution for both issues:

• In 7.5, “Mass User/Group (and ACL) Management” on page 271, we describe
a set of tools for user management which we have designed and
implemented during this project.

• A summary description of the integrated login feature available on AIX DCE
2.1 is given.

Our user-management tools are designed to also manage user-related ACLs.
This is important for supporting tasks such as migration from other environments
to DCE or splitting/joining of existing DCE cells.

This section focuses on the user-management tools as well as some general
user-management issues and explains how to configure the integrated login
feature. The following items are discussed:

 1. Using the rgy_edit command on both AIX and OS/2 to manage users

 2. Using the dcecp command on both AIX and OS/2 to manage users

 3. Operating system-dependent user-management tools

 4. Mass user management on AIX (tools provided on the diskette of this book)

 5. A test with a large number of users

 6. Configuring integrated login

6.4.1 Managing Users With the rgy_edit Command on AIX and OS/2
The rgy_edit command has been provided since the first release of DCE. It is a
tool for managing the registry database, such as adding, modifying, and deleting
users, accounts, and groups. The rgy_edit command is supported on every DCE
platform, such as AIX DCE 1.3, AIX DCE 2.1, DCE for OS/2 Warp, and so on.
Typically, its subcommands are used from its interactive prompt (rgy_edit=>).
The following simple examples show how to manage users by using the rgy_edit
command. These commands are used in our user-management tools.

186 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.4.1.1 Adding Users
Make sure you are cell_admin or have cell_admin privileges; then use the
following commands to create a principal, and view what you created:

rgy_edit
Current site is: registry server at /.../itsc.austin.ibm.com/subsys/dce/sec/master
rgy_edit=> domain principal
Domain changed to: principal
rgy_edit=> add manabu 1001
rgy_edit=> view manabu -f
manabu 1001
Uuid: 000003e9-60d1-21cf-9300-10005a4f4629

 Primary: pr Reserved: --
 Quota: unlimited

A principal named manabu whose UID is 1001 was created. Then the principal
you just created is added to an account. The account in this case has a
password of secret, and it becomes a member of the group none and the
organization none. The cell_admin password in this example is -dce-.

rgy_edit=> domain account
Domain changed to: account
rgy_edit=> add manabu -g none -o none -pw secret -mp -dce-
rgy_edit=> view manabu -f
manabu [none none]:*:1001:12::/::
created by: /.../itsc.austin.ibm.com/cell_admin 1996/02/06.16:00
changed by: /.../itsc.austin.ibm.com/cell_admin 1996/02/06.16:00
password is: valid, was last changed: 1996/02/06.16:00
Account expiration date: none
Account MAY be a server principal
Account MAY be a client principal
Account is: valid
Account CAN NOT get post-dated certificates
Account CAN get forwardable certificates
Certificates to this service account MAY be issued via TGT authentication
Account CAN get renewable certificates
Account CAN NOT get proxiable certificates
Account CAN NOT have duplicate session keys
Good since date: 1996/02/06.16:00
Max certificate lifetime: default-policy
Max renewable lifetime: default-policy

6.4.1.2 Adding Groups
Create a new itsc group with a GID of 20 and view it:

rgy_edit=> domain group
Domain changed to: group
rgy_edit=> add itsc 20
rgy_edit=> view itsc -f
itsc 20
Uuid: 00000014-6193-21cf-9301-10005a4f4629

 Primary: pr Reserved: --
 Project List:l

Chapter 6. Administering DCE Cells 187

6.4.1.3 Modifying Users
Change the primary group of user manabu to the group you just created:

rgy_edit=> domain account
Domain changed to: account
rgy_edit=> change -p manabu -ng itsc
Change account ″manabu none none″ [y/n/g/q]? y
rgy_edit=> view manabu -f
manabu [itsc none]:*:1001:20::/::
.....
.....

Next, disable login for user manabu (modify the status to not valid):

rgy_edit=> domain account
Domain changed to: account
rgy_edit=> change -p manabu -anv
Change account ″manabu none none″ [y/n/g/q]?y
rgy_edit=> view manabu -f
.....
.....
Account is: NOT valid
.....
.....

6.4.1.4 Deleting Users
Delete principal manabu, and verify that it is really gone:

rgy_edit=> domain principal
rgy_edit=> delete manabu
Please confirm delete of name ″manabu″ [y/n]? (n) y
rgy_edit=> view manabu -f
?(rgy_edit) Cannot retrieve entry for manabu - Entry not found (Registry Edit
Kernel) (dce / sad)
rgy_edit=> exit

When you exit, all the changes you have made are committed. The account is
deleted together with the principal.

6.4.1.5 Deleting Groups
Delete group itsc, and check with the view command to make sure it is deleted:

rgy_edit=> domain group
Domain changed to: group
rgy_edit=> del itsc
WARNING: any accounts for this group (itsc) will also be deleted.
Please confirm delete of name ″itsc″ [y/n]? (n) y
rgy_edit=> view itsc
?(rgy_edit) Cannot retrieve entry for itsc - Entry not found (Registry Edit
Kernel) (dce / sad)

Together with the group, all accounts with this group as their primary group will
also be deleted, but not the principal associated with the account.

188 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.4.2 Managing Users With the dcecp Command on AIX and OS/2
The dcecp command is the general systems-management tool of DCE and has
been supported since OSF DCE 1.1. So it is supported on OSF DCE 1.1-based
systems, such as AIX DCE 2.1, DCE for OS/2 Warp, and so on. From a functional
point of view, it is a command that integrates many of the existing DCE
commands, such as rgy_edit, acl_edit, cdscp, and so on. Typically, we use its
subcommands on its interactive prompt (dcecp>). The dcecp command is
implemented as a superset of tclsh; consequently, we can use Tcl commands on
dcecp as well.

The following sections show simple examples of how to manage users by using
the dcecp command. These examples fully correspond to the examples
described in 6.4.1, “Managing Users With the rgy_edit Command on AIX and
OS/2” on page 186.

6.4.2.1 Adding Users
Create a user, manabu, using the dcecp command. You will immediately see
how it is different from the nonintegrated commands:

dcecp
dcecp> user create manabu -uid 1001 -mypwd -dce- -password secret \
-group none -org none
dcecp> user show manabu
{fullname {}}
{uid 1001}
{uuid 000003e9-616a-21cf-9300-10005a4f4629}
{alias no}
{quota unlimited}
{groups none}
{acctvalid yes}
{client yes}
{created /.../itsc.austin.ibm.com/cell_admin 1996-02-07-10:16:31.000-06:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1996-02-07-10:16:31.000-06:00I-----}
{group none}
{home /}
{lastchange /.../itsc.austin.ibm.com/cell_admin 1996-02-07-10:16:31.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}

Note: The dcecp command works on objects. Here, an object of user means a
combination of a principal and an account. The only difference to the procedure
that uses rgy_edit is that the user create subcommand of dcecp creates a CDS
directory on the user’s behalf under /.:/users. Check it using the cdsli command
or the dcecp command:

Chapter 6. Administering DCE Cells 189

cdsli -woRld /.:
.....
d /.:/users
d /.:/users/manabu
.....

or

#dcecp
dcecp> directory list /.:/users -s
manabu

The concept of user objects was introduced in OSF DCE 1.1.

6.4.2.2 Adding Groups
Create an itsc group with a GID of 20:

dcecp
dcecp> group create itsc -gid 20
dcecp> group show itsc
{alias no}
{gid 20}
{uuid 00000014-6198-21cf-9301-10005a4f4629}
{inprojlist no}
{fullname {}}

6.4.2.3 Modifying Users
Change the primary group of user manabu to the group you just created:

dcecp> group add itsc -member manabu
dcecp> account modify manabu -group itsc
dcecp> user show manabu
.....
.....
{group itsc}
.....
.....

Disable manabu’s account (set it to status invalid):

dcecp> account modify manabu -acctvalid no
dcecp> user show manabu
.....
.....
{acctvalid no}
.....
.....

6.4.2.4 Deleting Users
Delete user manabu, and verify that it is really gone:

dcecp> delete user manabu
dcecp> user show manabu
Error: User ″manabu″ doesn’t exist.

190 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.4.2.5 Deleting Groups
Delete group itsc, and check with the view command to make sure it is deleted:

dcecp> group delete itsc
dcecp> group show itsc
Error: Registry object not found

Together with the group, all accounts with this group as their primary group will
also be deleted, but not the principal associated with the account.

6.4.3 Operating System-Dependent Management Tools
Since OSF does not provide an integrated, user-friendly administration tool for
DCE, vendors usually create tools for the administration of DCE. On AIX, SMIT
was enhanced to manage DCE. As for OS/2, a user-friendly GUI tool is provided.

6.4.3.1 SMIT on AIX
SMIT (System Management Interface Tool) is a nicely designed
system-management tool on AIX. It provides GUI-based screens and
character-based screens. Whichever you prefer can be used. The DCE
management commands were integrated so that SMIT can be used to manage
the DCE environment. Easy-to-use menus and integrated assistance allow you to
manage a DCE environment without deep knowledge of commands. At the
present time, however, SMIT is still calling the ’old’ commands, such as
rgy_edit.

6.4.3.2 GUI-Based DCE Configuration Tool on OS/2
DCE for OS/2 WARP offers a GUI-based DCE administration tool. The structure
of the tool is similar to SMIT. Easy-to-use menus allow administration of the DCE
environment without knowledge of DCE commands. See Figure 13 on page 56.
In this window, click on the DCE Administration icon. It shows you an
easy-to-understand submenu. You can manage users, groups, and accounts
with this tool. The GUI is based on a new object-oriented class library, the
MOCL (Managed Object Class Library), and is independent of OSF-provided
management commands, such as rgy_edit or dcecp. The MOCL is based on
IBM’s System Object Model (SOM). For the time being, the MOCL is not made
available to programmers.

6.4.4 Mass User-Management Tools on AIX
Our user-management tools provide a sophisticated solution to manage a
large-scale DCE environment. The concepts and structure of the tools as well as
the details about the commands are described in 7.5, “Mass User/Group (and
ACL) Management” on page 271.

Make sure the management tools have been installed. See Appendix A,
“Installing the Tools” on page 303, for instructions how to install the tools.
Assume we have a directory, /umgt, which is to hold our user information
database, and we have restored the shell scripts into this directory. In order to
use the commands correctly, we need to make this directory the current
directory. Also, make sure the PATH variable contains the current directory:

cd /umgt
PATH=$PATH::

Note: The tools use the old-style OSF commands as well as the Korn shell.
Furthermore, they use some other UNIX-specific tools, such as grep, sed, cut,

Chapter 6. Administering DCE Cells 191

and awk. The dcecp is based on the Tcl shell and is theoretically
platform-independent. However, since we were using early code, we had some
problems trying to port the tools to Tcl and eventually ran out of time. So,
porting the tools would be the subject of a further project.

6.4.4.1 Adding Users
The concepts and the syntax of the commands used to add new users is
described in 7.5.4, “Adding Users: add_users” on page 287, and in 7.5.5,
“Enabling Users for DCE Login: rgy_enable_users” on page 292.

This section gives a few examples of the usage, such as:

 1. Creating users from list of user names

 2. Creating a user with specific UID

Adding Users from a List of Names: This is an example where the DCE registry
automatically assigns the UIDs. It takes the next available UIDs.

 1. Create a file with user names:

echo ″mary manabu mark″ > /tmp/users

 2. Call add_users to create the principals and a default account that wil l not be
enabled for login yet:

cd /umgt
add_users /tmp/users
Checking to be sure you are cell_admin ...
 You must login as cell_admin first ... sorry

 3. Log in as cell_admin and try again:

add_users /tmp/users
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to add ...
Checking mary ...ok (file will be created)
Checking manabu ...ok (file will be created)
Checking mark ...ok (file will be created)

You are going to add 3 users
Starting to work with rgy_edit ...

Please provide your password:

Adding principal mary ...ok
Adding principal manabu ...ok
Adding principal mark ...ok

*** Ended to add users in DCE

 4. Check the principals that were created:

dcecp
dcecp> principal cat -s
.....
mary
manabu
mark

 5. Check the accounts that were created:

192 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

dcecp> account cat -s
.....
mary
manabu
mark
.....
dcecp> account show mary
{acctvalid no}
{client yes}
{created /.../itsc.austin.ibm.com/cell_admin 1996-01-30-09:54:15.000-06:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1996-01-30-00:00:00.000-06:00I-----}
{group none}
{home /}
{lastchange /.../itsc.austin.ibm.com/cell_admin 1996-01-30-09:54:15.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid no}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}

 6. The UDF of user mary looks as follows:

cat dce_users/mary

-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349
groups=none
--- Account info:
group=none
org=none
valid=NO
gecos=Account for mary
homedir=/:/dfs_home/mary
size=
initprog=/bin/ksh
expir_date=97/01/30
good_since=96/01/30
--- ACL_INI info:
--- ACL info:
--- State and last access:
state=SUSPENDED
last_time_access=Tue Jan 30 10:25:41 CST 1996 op=add_users
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):
#!! Edit below (values to be applied next time):

At this point, the user is added but not enabled for DCE login; the user’s
state is SUSPENDED and the account invalid. In this state, we could now
change the parameters. Let’s do it and change, for example, the GECOS
field which was generated per default into Mary White, Dept 99S.

Chapter 6. Administering DCE Cells 193

echo ″ADD_gecos=Mary White, Dept 99S″ >> dce_users/mary
cat dce_users/mary

 7. Enable all three users for DCE login:

rgy_enable_users /tmp/users
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to rgy_enable ...
Checking mary ...ok
Checking manabu ...ok
Checking mark ...ok

You are going to rgy_enable 3 users
Starting to work with rgy_edit ...

mary manabu mark
RGY-enabling principal mary ... ok
RGY-enabling principal manabu ... ok
RGY-enabling principal mark ... ok

*** Ended to rgy_enable users in DCE

 8. List the DCE accounts:

dcecp> account show mary
{acctvalid no}
{client yes}
{created /.../itsc.austin.ibm.com/cell_admin 1996-01-30-09:54:15.000-06:00I-----}
{description {Mary White, Dept 99S}}
{dupkey no}
{expdate 1997-01-30-00:00:00.000-06:00I-----}
{forwardabletkt yes}
{goodsince 1996-01-30-00:00:00.000-06:00I-----}
{group none}
{home /.../itsc.austin.ibm.com/fs/dfs_home/mary}
{lastchange /.../itsc.austin.ibm.com/cell_admin 1996-01-30-10:25:41.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid no}
{renewabletkt yes}
{server yes}
{shell /bin/ksh}
{stdtgtauth yes}

All the account information is now filled in. Note the GECOS field for user
mary.

 9. List the UDF file for mary again; her GECOS field is now changed, and the
ADD_gecos has disappeared. The state is now RGY_ENABLED and her
account valid:

cat dce_users/mary

-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349
groups= none
--- Account info:
group=none
org=none

194 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

valid=YES
gecos=Mary White, Dept 99S
homedir=/:/dfs_home/mary
size=
initprog=/bin/ksh
expir_date=97/01/30
good_since=96/01/30
--- ACL_INI info:
--- ACL info:
--- State and last access:
state=RGY_ENABLED
last_time_access=Tue Jan 30 10:35:45 CST 1996 op=rgy_enable_users
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):

Create a User with a Specific User ID: To accomplish this task, we first create
an empty UDF, fill in the desired values, and then run the add_users command.
This is also the procedure you may want to use when you create a new tool to
migrate users from an existing base.

Let’s assume we want to add a user named felix whose UID should be 1001
because he is defined as such in AIX:

 1. Create an empty UDF:

CR_EMTPY_UDF

 Usage: CR_EMPTY_UDF udf-file udf-dir
CR_EMPTY_UDF -h

udf-file = User definition file to read (=username)
 udf-dir = Repository name

-h = Display more information

CR_EMTPY_UDF felix dce_users

 2. Add the instruction ADD_uid to the UDF, and check the UDF:

echo ″ADD_uid=1001″ >> dce_users/felix
cat dce_users/felix

 3. Create the DCE principal:

add_users felix
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to add ...
Checking felix ...ok

You are going to add 1 users
Starting to work with rgy_edit ...

Please provide your password:

Adding principal felix ...ok

*** Ended to add users in DCE

 4. Check the UDF again:

cat dce_users/felix

Chapter 6. Administering DCE Cells 195

The UID is set to 1001, and default account values, like homedir, have now
been added to the UDF but not to the registry yet. Before you enable the
account, you could now change other account attributes.

 5. You can also check the DCE registry definition for the new principal and
account with:

dcecp> principal show felix
{fullname {}}
{uid 1001}
{uuid 000003e9-5be6-21cf-9f00-10005a4f4629}
{alias no}
{quota unlimited}
{groups none}

dcecp> account show felix
{acctvalid no}
{client yes}
{created /.../itsc.austin.ibm.com/cell_admin 1996-01-31-09:48:55.000-06:00I-----}
{description {Account for felix}}
{dupkey no}
{expdate 1997-01-31-00:00:00.000-06:00I-----}
{forwardabletkt yes}
{goodsince 1996-01-31-00:00:00.000-06:00I-----}
{group none}
{home /.../itsc.austin.ibm.com/fs/dfs_home/felix}
{lastchange /.../itsc.austin.ibm.com/cell_admin 1996-01-31-11:16:44.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid no}
{renewabletkt yes}
{server yes}
{shell /bin/ksh}

 6. Enable the user for DCE login:

rgy_enable_users felix
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to rgy_enable ...
Checking felix ...ok

You are going to rgy_enable 1 users
Starting to work with rgy_edit ...

felix
RGY-enabling principal felix ...ok

*** Ended to rgy_enable users in DCE

 7. Check the DCE account:

dcecp> account show felix
{acctvalid yes}
{client yes}
{created /.../itsc.austin.ibm.com/cell_admin 1996-01-31-09:48:55.000-06:00I-----}
{description {Account for felix}}
{dupkey no}
{expdate 1997-01-31-00:00:00.000-06:00I-----}
{forwardabletkt yes}
{goodsince 1996-01-31-00:00:00.000-06:00I-----}
{group none}

196 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

{home /.../itsc.austin.ibm.com/fs/dfs_home/felix}
{lastchange /.../itsc.austin.ibm.com/cell_admin 1996-01-31-11:11:30.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid no}
{renewabletkt yes}
{server yes}
{shell /bin/ksh}
{stdtgtauth yes}

 8. Also check the UDF file. The account is valid now, and its state is
RGY_ENABLED.

6.4.4.2 Modifying Users
Modifying users means changing some of their definitions in an already existing
account. To modify their attributes, we have to bring the user into the
SUSPENDED state. Suspending a user can be done from any of the states:
RGY_ENABLED, DFS_ENABLED, or FULL_ENABLED.

We want to look at two examples:

 1. Changing the primary group of user mary

This could have been done right between the add_user and rgy_enable steps
as well.

 2. Adding ACLs for user felix’s DFS home directory

This step does not require you to suspend users first because they are not
yet DFS-enabled.

Changing the Primary Group of a User: In order to assign user mary a new
primary group, g7, we must perform the following steps

 1. Check the DCE account information; the primary group is none:

dcecp> account show mary
......
......
{group none}
......
......

 2. Suspend user mary:

susp_users mary
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to suspend ...
Checking mary ...ok

You are going to suspend 1 users
Starting to work with rgy_edit ...

Suspending account mary ...ok

*** Ended to suspend users in DCE

 3. Add the necessary instructions into her UDF:

echo ″ADD_newgrp=g7″ >> dce_users/mary

If you had to do this for multiple users, you can write a short for loop:

Chapter 6. Administering DCE Cells 197

for user in `cat /tmp/users`; do
echo ″ADD_newgrp=g7″ >> dce_users/$user; done

 4. Enable user mary again:

rgy_enable_users mary
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to rgy_enable ...
Checking mary ...ok

You are going to rgy_enable 1 users
Starting to work with rgy_edit ...

RGY-enabling principal mary ...ok

*** Ended to rgy_enable users in DCE

 5. Check the DCE account information:

dcecp> account show mary
.....
.....
{group g7}
.....
.....

 6. Check the UDF and the principal definition of mary:

cat dce_users/mary
.....
.....
groups= none, g7
.....
.....
group= g7
.....

dcecp
dcecp> principal show mary
.....
.....
{groups none g7}
.....
.....

User mary was a member in the group none before, which was her primary
group. Adding a new primary group does not delete her membership in
group none. In order to achieve that, we need the instruction
DEL_groups=none. We could have specified this in the same step where we
added the instruction ADD_newgrp=g7.

susp_users mary
.....

echo ″DEL_groups=none″ >> dce_users/mary
rgy_enable_users mary
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to rgy_enable ...
Checking mary ...ok

You are going to rgy_enable 1 users
Starting to work with rgy_edit ...

RGY-enabling principal mary ...ok

198 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

*** Ended to rgy_enable users in DCE

dcecp
dcecp> principal show mary
.....
.....
{groups g7}
.....

cat dce_users/mary
-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349
groups= g7
.....

Creating DFS ACLs for a User’s Home Directory: We must add ADD_ACL_INI
instructions in the UDF. Since many users might start off with the same set of
ACLs for their home directory and many of them would never change them
thereafter, the same set of instructions would be added to many UDFs with a for
loop.

In order for this step to succeed, the DFS directory must exist. However, if it
does not exist, an error message appears, and the ADD_ACL_INI instructions
remain in the UDF.

This step would typically be executed during a migration from NFS/NIS or the
splitting/joining of a cell.

 1. Preparation:

The principal must be added, and the account must be in the RGY_ENABLED
state. Make sure the directory exists, is accessible, and belongs to the
correct principal. Finally, you should log in as cell_admin.

Note: Other than in DFS 1.3, cell_admin does not have sufficient permission
to manipulate files or ACLs per default. Make sure that the necessary ACLs
are set on the home directories. See 4.5, “Defining Home Directories in
DFS” on page 98, for information.

However, dfs_enable_users will check all these prerequisites and fail with an
appropriate message if something is wrong.

 2. Add all the ADD_ACL_INI instructions to the UDF(s). We can also set the initial
object ACLs and the initial container-creation ACLs:

cat << EOI >> dce_users/mary
ADD_ACL_INI=dfs#/:/dfs_home/mary#mask_obj:r-x---
ADD_ACL_INI=dfs#/:/dfs_home/mary#user_obj:rwxcid
ADD_ACL_INI=dfs#/:/dfs_home/mary#group_obj:rwx---
ADD_ACL_INI=dfs#/:/dfs_home/mary#other_obj:r-x---
ADD_ACL_INI_OC=dfs#/:/dfs_home/mary#mask_obj:r-x---
ADD_ACL_INI_OC=dfs#/:/dfs_home/mary#user_obj:rwxcid
ADD_ACL_INI_OC=dfs#/:/dfs_home/mary#group_obj:rwx---
ADD_ACL_INI_OC=dfs#/:/dfs_home/mary#other_obj:r-x---
ADD_ACL_INI_CC=dfs#/:/dfs_home/mary#mask_obj:r-x---
ADD_ACL_INI_CC=dfs#/:/dfs_home/mary#user_obj:rwxcid
ADD_ACL_INI_CC=dfs#/:/dfs_home/mary#group_obj:rwx---

Chapter 6. Administering DCE Cells 199

ADD_ACL_INI_CC=dfs#/:/dfs_home/mary#other_obj:r-x---
EOI

 3. Enable user mary for DFS ACLs:

dfs_enable_users mary
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to dfs_enable ...
Checking mary ...ok

You are going to dfs_enable 1 users
Starting to work with rgy_edit ...

Checking Availability of DFS ...ok
DFS-enabling principal mary ...ok

*** Ended to dfs_enable users in DCE

The same ADD_ACL_INI instructions would be used to change any of the existing
ACL definitions. They would simply be overwritten. You are not limited to
mask_obj, user_obj, group_obj, and other_obj. You could, for instance, also give
the group g99 access to the home directory of users (such as mary’s in the
example below) with the following set of entries:

ADD_ACL_INI=dfs#/:/dfs_home/mary#group:g99:rwx---
ADD_ACL_INI_OC=dfs#/:/dfs_home/mary#group:g99:rwx---
ADD_ACL_INI_CC=dfs#/:/dfs_home/mary#group:g99:rwx---

With instructions like DEL_ACL_INI, some of these entries can be deleted. The
ACLs for owner, group, and others cannot be deleted, though.

Now, how do ACL_INI entries differ from the other category of ACL entries in the
UDF?

The ACL_INI entries are related to a certain object and define all permissions for
that object. The owner of the UDF that contains these object entries is the owner
of the object and represented by the user_obj entry. Thus, if the user is deleted,
the object will probably also be removed by the administrator later on. However,
since removing the object makes it unnecessary to remove the ACLs, they will
not be removed. The primary purpose of this entry is to provide support for
managing home directories.

The other type of ACL entries in the UDFs pull all permissions together that a
specific user has on any CDS and DFS object. This makes it possible to remove
a user or group and to find and delete all their specific ACLs defined anywhere.

To define these other types of ACLs, you follow the same steps as outlined for
the ACL_INI entries. The account has to be in state DFS_ENABLED, and the
procedure to be used is acl_enable_users.

6.4.4.3 Deleting or Moving Users
Deleting an account involves suspending it and then actually removing it.
Removing means first deleting all the ACL entries and group memberships that
exist for the user and eventually removing it from the registry. The UDF will be
copied to the cemetery directory. This is what the delete_users procedure does.

200 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The objects that the deleted user owned are not automatically deleted; so now is
the last chance, for instance, to back up the DFS files. The administrator can
then remove these objects.

Since the UDF file is still around and reflects the last state and set of definitions
the user had in this cell, the UDF can be used to redefine the user in another
cell. So, this procedure can be used to split cells or to join cells.

Let’s assume we want to delete all users that have ever been defined with our
tools, which means users with a UDF in directory dce_users.

 1. First suspend the users. This wil l set the account to invalid, and users
cannot log in anymore. Already logged in users are not affected as long as
their ticket is valid:

susp_users all
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to suspend ...

You are going to suspend 4 users
Starting to work with rgy_edit ...

Suspending account manabu ...ok
Suspending account mark ...ok
Suspending account mary ...ok
Suspending account felix ...ok

*** Ended to suspend users in DCE

 2. Then delete all users:

del_users all
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to delete ...

You are going to delete 4 users
Starting to work with rgy_edit ...

Deleting manabu ...ACLs...Principal... ok
Deleting mary ...ACLs...Principal... ok
Deleting mark ...ACLs...Principal... ok
Deleting felix ...ACLs...Principal... ok

*** Ended to delete users in DCE

 3. The files are now in directory cemetary_users:

cat dce_users/mark
cat: 0652-050 Cannot open dce_users/mark.
cat cemetary_users/mark
---!!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=0000015f-92d4-2e78-a100-02608c2fff91
uid=351
groups=none
--- Account info:
group=none
org=none
valid=NO
gecos=Account for mark
homedir=/:/dfs_home/mark
size=

Chapter 6. Administering DCE Cells 201

initprog=/bin/ksh
expir_date=97/01/30
good_since=96/01/30
--- ACL_INI info:
--- ACL info:
--- State and last access:
state=DELETED
last_time_access=Tue Jan 30 10:25:42 CST 1996 op=del_users
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):
#!! Edit below (values to be applied next time):

 4. The ACLs and principals are deleted.

dcecp> principal show mark
Error: Registry object not found

6.4.4.4 Users Aliases
Users can have aliases. In fact, you create a new principal name for the same
UID and UUID. For the alias name, you can define a new account with new
attributes, such as a new primary group and/or other group memberships.

Let’s create a principal, pier, and an alias, sal, for pier:

dcecp> principal create pier -uid 1002
dcecp> principal show pier
{fullname {}}
{uid 1002}
{uuid 000003ea-5c0b-21cf-8000-10005a4f4629}
{alias no}
{quota unlimited}
dcecp> principal create sal -uid 1002 -alias yes
dcecp> principal show sal
{fullname {}}
{uid 1002}
{uuid 000003ea-5c0b-21cf-8000-10005a4f4629}
{alias yes}
{quota unlimited}

As you can see, once the principal is created, it has the same user identifier
(UID) number and the same universal user identifier (UUID). The user now can
be added as an account with a different group and organization. So, when user
pier logs in as sal, he has other privileges than when he logs in with his original
account.

Let’s add pier as a member of the group staff:

dcecp> group add staff -member pier

User sal can now be added as a member of group dev:

dcecp> group add dev -member sal

Now the only difference is the group ID. Let’s modify an ACL for the object /.:/fs:

202 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

dcecp> acl modify /.:/fs -entry -add {user pier r}
dcecp> acl modify /.:/fs -entry -add {user sal rw}
dcecp> acl show /.:/fs -entry
.....
{user sal rw---}
.....

Since pier and sal are the same principal, the ACL does not reflect both names
but only the last change, which was for sal. Different access permissions for the
two accounts can only be achieved via group memberships. Add an ACL entry
for the two groups that the users sal and pier belong to:

dcecp> acl modify /.:/fs -entry -add {group staff rw}
dcecp> acl modify /.:/fs -entry -add {group dev r}
dcecp> acl show /.:/fs -entry
.....
{group staff rw---}
{group dev r----}
.....

The staff group has read and write permissions, while the dev group has only
read permission. When the user is logged in with the account pier, it can access
the object /.:/fs for read and write because it belongs to the group staff. When
he is logged in as account sal, he has only read access to the same object
because the group he belongs to has only read permission.

6.4.5 A Test with a Large Number of Users
The POSIX standard defines the least common denominator for the different
UNIX implementations. The number of users is limited by the UID (User
identifier), which is a signed 2-byte integer. So by default, when you configure a
cell, the maximum number (MAXIMUM possible UNIX ID) is set to 32767. This
number is not a limit for DCE; it can be dynamically changed to the number you
want within the signed 32-bit number. The theoretical number of users is
actually 2147483647 (2 Giga). We have experimented successfully at setting the
UID number to 2147483647. There is no incompatibility between AIX DCE 2.1 and
AIX 4.1; this number is supported in both environments. As such, mapping AIX
users to DCE users (or vice versa) is a straightforward task, and DCE login
integration with AIX 4.1 is easy.

6.4.5.1 How to Prepare For Setting a Larger Number of Users
As a matter of fact, even if the theoretically allowable number of users is high,
there are other limits you have to consider. Before starting to add many users
in your cell, you must solve at least the following issues:

• The amount of RAM memory available on your system

This feature is very important on the machine where the security server is
running, be it a master security server or a replicated security server.
Actually, the whole registry database is held in memory. If you have limited
memory, then enlarge your paging space. According to our experience,
when you add a user, it will take approximately 1.5 KB.

• Paging space

As stated above, the paging space needs to be large enough to hold a whole
registry database. Normally, the paging space is configured with twice the
RAM size. But this size may not be sufficient; so care must be taken when
adding many users.

Chapter 6. Administering DCE Cells 203

• Disk space /var/dce

The directory /var/dce/security is the place where the registry database is
located. Care must also be taken. It is strongly recommended that you
create a separate file system at least for /var/dce. Then you can increase
the space dynamically as needed.

• Maximum allowable User ID

This is a software setting. You might increase the maximum number to the
limit you want.

6.4.5.2 How to Set and Use the Maximum Number of Users
This number can be changed dynamically to the threshold number needed.
Show the current limit in the registry:

#dce_login cell_admin
Enter Password:

#dcecp
dcecp> registry show
{deftktlife +0-10:00:00.000I-----}
{hidepwd yes}
{maxuid 32767}
{mingid 100}
{minorgid 100}
{mintktlife +0-00:05:00.000I-----}
{minuid 100}
{version secd.dce.1.1}
dcecp>

Then try to add a user with a big UID number

dcecp> user create brice -uid 2000000 -gr none -org none -passw <brice_passwd>
-mypwd <cell_admin_passwd>

Error: Invalid data record
dcecp>

The system responds by issuing the message Error: Invalid data record.
Actually, the current maximum UID is set to 32767. To be able to add a user with
a number bigger than 32767, you have to set the maxuid to the threshold you
need. Let’s set this number to 3000000 (three million). Set the maximum
number of users (maxuid) and verify:

#dcecp
dcecp>registry modify -uid 3000000
dcecp> registry show
{deftktlife +0-10:00:00.000I-----}
{hidepwd yes}
{maxuid 3000000}
{mingid 100}
{minorgid 100}
{mintktlife +0-00:05:00.000I-----}
{minuid 100}
{version secd.dce.1.1}
dcecp>

We can notice above that the maxuid is effectively set to 3000000. From now on,
we can add up to 3000000 users. Try again to create a user with a big number:

204 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

#dcecp
dcecp>user create brice -uid 2000000 -gr none -org none -home /:/home/brice\
>-passw <brice_passwd> -mypwd <cell_admin_passwd>
dcecp>
dcecp> user show brice
{fullname {}}
{uid 2000000}
{uuid 00000bb8-630b-21cf-a700-10005a4f4629}
{alias no}
{quota 0}
{groups daemon}
{acctvalid no}
{client yes}
{created /.../itso/cell_admin 1996-02-09-12:00:51.000-06:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1996-02-09-12:00:41.000-06:00I-----}
{group daemon}
{home /:/home/brice}
{lastchange /.../itso/cell_admin 1996-02-09-12:00:51.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid no}
{renewabletkt yes}
{server yes}
{shell /usr/bin/ksh}
{stdtgtauth yes}
No policy

Log on to AIX and DCE at the same time. For this, we assume that the DCE
login is integrated with AIX according to 7.4, “Integrated Login AIX and DCE” on
page 265.

AIX Version 4
(C) Copyrights by IBM and by others 1982, 1994.
login: brice
brice’s Password:

ev2::/-> id
uid=2000000(brice) gid=12(none)

ev2::/-> touch /tmp/myfile
ev2::/-> ls -l /tmp/myfile
-rw-r--r-- 1 brice none 0 Feb 09 15:23 /tmp/myfile

Note that user brice has no local account and that the system displays the
coherent owner of the file that user brice created. This is thanks to the dceunixd
process, which maintains synchronization with AIX. The command below also
shows that user brice receives his credentials (and tickets) after his (single)
login to AIX. This is shown by the principal identity of the klist command.

ev2::/-> klist
DCE Identity Information:

Global Principal: /.../itso/brice
Cell: 001c7122-b6fd-111a-bf77-10005a4f52c2 /.../itso
Principal: 001e8480-6311-21cf-a700-10005a4f4629 brice
Group: 0000000c-b6fd-211a-bf01-10005a4f52c2 none

Chapter 6. Administering DCE Cells 205

Local Groups:
0000000c-b6fd-211a-bf01-10005a4f52c2 none

Identity Info Expires: 96/02/09:23:15:10
Account Expires: never
Passwd Expires: never

Kerberos Ticket Information:
Ticket cache: /opt/dcelocal/var/security/creds/dcecred_470c5f00
Default principal: brice@itso
Server: krbtgt/itso@itso

valid 96/02/09:15:15:10 to 96/02/09:23:15:10
Server: dce-rgy@itso

valid 96/02/09:15:15:10 to 96/02/09:23:15:10
Server: dce-ptgt@itso

valid 96/02/09:15:15:11 to 96/02/09:17:15:11
Client: dce-ptgt@itso Server: krbtgt/itso@itso

valid 96/02/09:15:15:11 to 96/02/09:17:15:11
Client: dce-ptgt@itso Server: hosts/ev2/self@itso

valid 96/02/09:15:15:11 to 96/02/09:17:15:11
Client: dce-ptgt@itso Server: dce-rgy@itso

valid 96/02/09:15:17:08 to 96/02/09:17:15:11

6.4.6 Configuring Integrated Login
Use the following short path to configure a system for integrated security
operations (for details, see 7.4.3, “Configuring a System for Integrated Security”
on page 270):

 1. Ensure that the module /usr/l ib/security/DCE is installed on the machine.

 2. Edit the /etc/security/login.cfg file to include the following lines:

DCE:
program = /usr/lib/security/DCE

This defines the DCE authentication method to the system.

 3. Ensure that the dceunixd daemon is running on the machine; if not, start this
program:

dceunixd

This daemon communicates to the DCE servers secd and dced on behalf of
the AIX commands. It should be added to the /etc/inittab file as
dceunixd -d 1.

 4. Edit the /etc/security/user stanza file to allow and/or deny DCE access for
users. See 7.4.1, “AIX 4.1+ Authentication Parameters” on page 265, for
instructions on editing this file.

 5. Create or edit the /opt/dcelocal/etc/passwd_override and
/opt/dcelocal/etc/group_override files to explicitly prevent DCE access by
certain users. See 7.4.2, “User Synchronization Between AIX 4.1+ and DCE”
on page 267, for instructions on editing this file.

206 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.5 Managing the cell_admin Account
The cell_admin account is by default the omnipotent DCE account that has the
necessary rights to configure all aspects of DCE. If the cell_admin password or
the entire cell_admin account gets lost, specific steps have to be followed to
restore the lost information.

This section focuses on the following tasks:

 1. What to do if the cell_admin password is lost
 2. What to do if the cell_admin account has accidentally been removed
 3. Adding a new cell administrator account

This last procedure also shows you where cell_admin needs to be defined to
have all the necessary rights. If you do not like the fact that one single account
is omnipotent, you can assign the rights to several other special accounts.

6.5.1 Restoring the Password for the Cell Administrator
This is the procedure to follow when the cell_admin password is lost or forgotten
for any reason:

6.5.1.1 Restoring cell_admin’s Password on AIX 4.1
Log in as root on the security server machine, and perform the following steps:

 1. Kill the security daemon secd:

/etc/dce.clean secd

 2. Call the secd command in maintenance mode as follows:

secd -locksmith cell_admin -lockpw
Enter password for locksmith account: <NEW PASSWORD: not-echoed password>
Reenter password to verify: <NEW PASSWORD: not-echoed password>

 3. After this step, the command hangs; so either press Ctrl-Z followed by the bg
command to put it in the background, or open another window and continue
in the new window.

 4. Log in to DCE with the new password:

dce_login cell_admin
Enter Password: <NEW PASSWORD: not-echoed password>

 5. You must stop secd, which is stil l running in the background:

dcecp
dcecp> registry stop /.:/subsys/dce/sec/master
dcecp> quit
#

 6. Restart the security server with /etc/rc.dce secd or by simply call ing secd
from the command line.

 7. Log in to DCE again with cell_admin, using the new password.

6.5.1.2 Restoring cell_admin’s Password on OS/2 Warp
The following steps show you how to restore the password on OS/2 Warp:

 1. Stop the security daemon secd:

Go to the secd window by clicking on the Window list . Stop the secd
window.

Chapter 6. Administering DCE Cells 207

 2. Call the secd command in maintenance mode as follows:

c:>secd -locksmith cell_admin -lockpw
Enter password for locksmith account: <NEW PASSWORD: not-echoed password>
Reenter password to verify: <NEW PASSWORD: not-echoed password>

 3. After this step, the command hangs; open another window to start the
dcelogin session.

 4. Log in to DCE with the new password:

c:>dcelogin cell_admin
Enter Password: <NEW PASSWORD: not-echoed password>

 5. You must stop secd, which is stil l running in the background:

c:>dcecp
dcecp> registry stop /.:/subsys/dce/sec/master
dcecp>quit
c:>

 6. Restart secd from the DCE Admin window by clicking on the DCE Start icon.

 7. Log in to DCE again as cell_admin, using the new password.

6.5.2 Cell Administrator Accidentally Removed
Accidentally, a cell administrator might remove their own user ID:

dce_login cell_admin
Password:
#dcecp
dcecp> user del cell_admin

From now on, every time the cell administrator tries to log in, the following
message is displayed:

dce_login cell_admin
Sorry.
User Identification Failure. - Registry object not found (dce / sec)

Let’s first remember how the cell_admin principal and account was set up. Each
cell administrator is created initially with the following principal, account, group,
and ACL information. That information must be recreated now:

dcecp
dcecp> user show cell_admin
{fullname {}}
{uid 100}
{uuid 00000064-5da3-21cf-bf00-10005aa8cff8}
{alias no}
{quota unlimited}
{groups none acct-admin subsys/dce/sec-admin subsys/dce/cds-admin
subsys/dce/dts-admin subsys/dce/audit-admin subsys/dce/dfs-admin}
{acctvalid yes}
{client yes}
{created /.../brice_cell/cell_admin 1996-02-02-14:49:59.000-06:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1996-02-02-14:49:59.000-06:00I-----}
{group none}
{home /}

208 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

{lastchange /.../brice_cell/cell_admin 1996-02-02-14:49:59.000-06:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid no}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
No policy

User cell_admin has an ACL entry user:cell_admin:rwdtc in the following objects
and directories:

/.:/cell-profile
/.:/fs
/.:/lan-profile
/.:/sec
/.:/sec-v1
/.:/hosts
/.:/users
/.:/users/username
/.:/hosts/hostname
/.:/hosts/hostname/cds-clerk
/.:/hosts/hostname/cds-server
/.:/hosts/hostname/profile
/.:/hosts/hostname/self
/.:/subsys
/.:/subsys/dce
/.:/subsys/dce/dfs
/.:/subsys/dce/dfs/bak
/.:/subsys/dce/sec

There may be more CDS objects on which cell_admin has such an ACL entry,
depending on the exact configuration of the cell. To find out all the current rights
of cell_admin, you can run the get_info_user cell_admin command. See 7.5,
“Mass User/Group (and ACL) Management” on page 271, for more information
about the user-management tools. The user definition file (UDF) created by the
get_info_user command can be also used to recreate the cell_admin account.

6.5.2.1 Recovering cell_admin’s Account on AIX 4.1
Log in as root on the security server machine, and perform the following steps to
recreate the cell_admin account:

 1. Kill the security daemon:

/etc/dce.clean secd

 2. Start the security daemon secd in maintenance mode with the locksmith
option:

secd -locksmith cell_admin
Account for cell_admin doesn’t exist. Create it [y/n]? (y) y
Enter password for locksmith account: <NEW PASSWORD: not-echoed password>
Reenter password to verify: <NEW PASSWORD: not-echoed password>

 3. At this point, the command hangs; so either type in Ctrl-Z followed by the bg
command to put it in the background, or open another window and continue
in the new window.

 4. Run the dce_login command for the cell_admin user:

Chapter 6. Administering DCE Cells 209

dce_login cell_admin
Enter Password: <NEW PASSWORD: not-echoed password>
#

 5. Run the dcecp command, and make cell_admin a member of the groups
listed below:

#dcecp
dcecp> group add acc-admin -member cell_admin
dcecp> group add subsys/dce/sec-admin -member cell_admin
dcecp> group add subsys/dce/cds-admin -member cell_admin
dcecp> group add subsys/dce/dts-admin -member cell_admin
dcecp> group add subsys/dce/dfs-admin -member cell_admin
dcecp> quit

 6. Exit from your current session, and log in again as cell_admin:

exit
dce_login cell_admin
Password:
#

 7. Update the ACL entries for all the directories and objects with the following
command:

dcecp
dcecp> set x [exec cdsli -oRdc]
dcecp> foreach i $x {acl modify -entry $i -add {user cell_admin rwdtc}}

 8. Run the dcecp command with the registry stop subcommand to stop the
security daemon which is still running in maintenance mode in the other
window or in the background:

dcecp
dcecp> registry stop /.:/subsys/dce/sec/master
dcecp> quit

 9. Start up the security daemon again, and start working in normal mode:

rc.dce secd
Starting DCE daemons:

starting secd

6.5.2.2 Recovering cell_admin’s Account on OS/2 Warp
Perform the following steps to recreate the cell_admin account:

 1. Stop the security daemon secd:

Go to the secd window by clicking on the Window list . Stop the secd
window.

 2. Call secd command in maintenance mode as follows:

c:> secd -locksmith cell_admin
Account for cell_admin doesn’t exist. Create it [y/n]? (y) y
Enter password for locksmith account: <NEW PASSWORD: not-echoed password>
Reenter password to verify: <NEW PASSWORD: not-echoed password>

 3. After this step, the command hangs; open another window to start the
dcelogin session.

 4. Log in to DCE with the new password:

c:> dcelogin cell_admin
Enter Password: <NEW PASSWORD: not-echoed password>

210 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 5. Run the dcecp command, and make cell_admin a member of the groups
listed below:

c:> dcecp
dcecp> group add acc-admin -member cell_admin
dcecp> group add subsys/dce/sec-admin -member cell_admin
dcecp> group add subsys/dce/cds-admin -member cell_admin
dcecp> group add subsys/dce/dts-admin -member cell_admin
dcecp> group add subsys/dce/dfs-admin -member cell_admin
dcecp> quit

 6. Exit from your current session, and log in again as cell_admin:

c:> exit
c:> dce_login cell_admin
Password:
c:>

 7. Update the ACL entries for all the directories and objects with the following
command:

c:> dcecp
dcecp> set x [exec cdsli -oRdc]
dcecp> foreach i $x {acl modify -entry $i -add {user cell_admin rwdtc}}

 8. Run the dcecp command with the registry stop subcommand to stop the
security daemon, which is still running in maintenance mode in the other
window:

c:> dcecp
dcecp> registry stop /.:/subsys/dce/sec/master
dcecp> quit
c:>

 9. Restart secd from the DCE Admin window by clicking on the DCE Start icon.

6.5.3 Adding a New Cell Administrator
A new cell administrator can be added to the system with the same rights as the
original one. You may want to have two administrators or delete the old one
afterwards.

6.5.2, “Cell Administrator Accidentally Removed” on page 208, shows how
cell_admin is defined when it is first created. More definitions or permissions
might be there depending on the complexity of the distributed environment.

To find out all the current rights of cell_admin, you can run the get_info_user
cell_admin command. See 7.5, “Mass User/Group (and ACL) Management” on
page 271, for more information about the user-management tools. The user
definition file (UDF) created by the get_info_user command can also be used to
create the new_admin account.

6.5.3.1 Creating a New cell_admin Account on AIX 4.1
To add a new cell administrator user on AIX 4.1, do the following:

 1. Log in to DCE as cell_admin.

 2. Add the new_admin user:

#dcecp
dcecp> user create new_admin -uid 1000 -gro none -org none \
> -passw secret -mypwd cel_admin_passwd

Chapter 6. Administering DCE Cells 211

 3. Run the dcecp command, and make new_admin a member of the groups
listed below:

#dcecp
dcecp> group add acc-admin -member new_admin
dcecp> group add subsys/dce/sec-admin -member new_admin
dcecp> group add subsys/dce/cds-admin -member new_admin
dcecp> group add subsys/dce/dts-admin -member new_admin
dcecp> group add subsys/dce/dfs-admin -member new_admin
dcecp quit

 4. Create ACL entries for the following CDS objects:

#dcecp
dcecp>s et x [exec cdsli -oRdc]
dcecp> foreach i $x {acl modify -entry $i -add {user cell_admin -rwdtc}}
dcecp>quit

From now on, new_admin has the same rights as cell_admin.

6.5.3.2 Creating a New cell_admin Account on OS/2 WARP
To add a new cell administrator user on OS/2 Warp, do the following:

 1. Log in as cell_admin:

c:>dcelogin cell_admin

 2. Add the new_admin user:

c:> dcecp
dcecp> user create new_admin -uid 1000 -gro none -org none \
> -passw secret -mypwd cel_admin_passwd

 3. Run the dcecp command, and make new_admin a member of the groups
listed below:

c:> dcecp
dcecp> group add acc-admin -member new_admin
dcecp> group add subsys/dce/sec-admin -member new_admin
dcecp> group add subsys/dce/cds-admin -member new_admin
dcecp> group add subsys/dce/dts-admin -member new_admin
dcecp> group add subsys/dce/dfs-admin -member new_admin
dcecp quit

 4. Create ACL entries for the following CDS objects:

c:> dcecp
dcecp> set x [exec cdsli -oRdc]
dcecp> foreach i $x {acl modify -entry $i -add {user cell_admin -rwdtc}}
dcecp> quit

From now on, new_admin user has the same rights as cell_admin.

6.6 Integrating an NFS/NIS Environment
The Network Information System (NIS) and Network File System (NFS) are
network services that were developed and introduced in 1985 by Sun
Microsystems. NIS provides a distributed database system for common
configuration files. NIS servers manage copies of the database files and NIS
clients request information from the server instead of looking them up in their
local copies of the files. For example, /etc/hosts can be managed by NIS. NIS
servers manage copies of the information contained in the /etc/hosts file. All

212 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

NIS clients ask these servers for TCP/IP address information instead of
consulting their local /etc/hosts file.

NFS is a distributed file system. An NFS server has one or more file systems
exported that may be mounted by clients. To the NFS client, these file systems
look like local file systems. Although NFS works with NIS, it can also be used
separately. DCE/DFS serves the same purpose as NFS/NIS, but has many
advantages. However, DFS is relatively new and is just about to establish itself
as a standard platform for file sharing in client/server (C/S) environments. Many
customer installations today use NFS/NIS to store common configuration files or
to build RPC-based client/server applications or a distributed file system.

In order to convince customers to purchase DCE, we must show them one or
both of the following ways to deal with the established NFS/NIS environment:

• How to integrate NFS/NIS into DCE/DFS

• How to migrate from NFS/NIS to DCE/DFS

The purpose of this section is to discuss these two issues. In most of the cases
where DCE/DFS is introduced, we will see both steps. DCE/DFS-capable
platforms could be migrated, whereas other platforms would continue to use NFS
but with transparent access to DFS. This scenario determines the logical
sequence of our subsections:

 1. Migrating from NIS Domains to DCE cells

 2. Migrating users from NIS to DCE

 3. Migrating NFS file systems to DFS

 4. Configuring NFS to DFS access

6.6.1 Migrating from NIS Domains to DCE Cells
NIS can centrally manage configuration files usually needed on each single
system. Files like, for instance, an /etc/passwd file are present on each system,
but they contain an escape sequence that directs the lookup call to a central file.
These configuration files managed by NIS are converted into keyword and value
pair tables called maps. You can look up these maps with the command ypcat.
If you enter, for example, ypcat hosts, you concatenate your local /etc/hosts file
with the database information about hosts and display them as if you were
displaying a regular /etc/hosts file.

If you are using NIS within your environment, you may want to migrate NIS
information over to DCE. Considerations for this migration are discussed in this
chapter.

First you must evaluate the maps administrated by NIS. Following is a list of
possible maps:

• /etc/groups
• /etc/passwd
• /etc/aliases
• /etc/hosts
• /etc/protocols
• /etc/services
• /etc/rpc
• and possibly more, specific to each customer

Chapter 6. Administering DCE Cells 213

Once you have this list, decide what network information is important to have
commonly available within your cell. There are maps which have to be treated
differently. The following list gives you some ideas how to manage them:

• /etc/hosts

The map of /etc/hosts should be migrated to the Domain Name Service
(DNS) standard of the Internet. This allows you also to go for intercell
communication later on.

• /etc/passwd and /etc/group

The password and the group file information is managed in the DCE security
registry, one of the core pieces of DCE. This version of DCE (AIX/DCE 2.1)
supports the single login. It means that DCE login and AIX login can be
integrated together. You need to log in to DCE and AIX in one step, giving
the DCE password. As with NIS, users need not be defined in the passwd
files of the AIX machines, and before machines can be integrated, their file
ownerships must be adjusted to the global NIS or DCE user IDs. See 7.4.2.3,
“Synchronized Users” on page 268, for a discussion about issues of defining
users for integrated login.

In 6.6.2, “Migrating Users from NIS to DCE” on page 215, we describe how to
populate the DCE user registry database from NIS maps.

• Other configuration files such as /etc/services, /etc/rpc and others

All the other configuration files listed above can be managed either with
DCE/DFS or with objects in the namespace. This is described in the rest of
this section.

In a network, there is always data which must be consistent and well known
among all the connected systems. The /etc/services or /etc/protocols files are
two examples of such files. Within DCE, there are several ways to provide the
network consistency of such files.

Since these files build part of the definitions for TCP/IP, which itself is an
enabling layer for DCE, the files cannot simply be in DFS. They would not be
available when TCP/IP needs them. What this means is they need to be local.
Our approach is to find a way with DCE to keep them synchronized on all the
systems.

6.6.1.1 Distribution via Binary Distribution Machine (BDM)
BDM is a feature provided by DFS to update common files within the network. A
BDM server machine running an upserver process is listening for client
machines running upclient processes. The upclients pull files from the BDM.
The files need to have the exact same full-path name on all systems. If this is
not the case for certain files, another family of upserver/upclients can be
defined.

Files like /etc/services or /etc/protocols can be maintained on a central system
running a BDM. By default, the upclient process on each involved machine
checks its BDM for new (or different) versions of certain predefined files every
five minutes; if it finds new versions, it automatically copies the files to its local
machine.

For more detailed information, consult The Distributed File System (DFS) for
AIX/6000 redbook or the AIX DFS documentation.

214 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.6.1.2 Distribution via DFS Namespace
You can maintain the files on one machine and copy them to the DFS
namespace. All other systems use the same mechanism to copy the files from
DFS to their local file system.

The copy procedure can compare the versions by checking the modification time
and copy only if something has changed. This procedure would have to be
executed in regular intervals controlled by cron.

This is a very simple but effective way of being consistent within the network.

6.6.1.3 Distribution via CDS Namespace
Although it is not recommended to store data in the CDS namespace, there is
the possibility of keeping information that has to be consistent throughout the
cell in a CDS object. Following is an example for the file /etc/services:

 1. Add a new attribute to the file /opt/dcelocal/etc/cds_attribute:

echo ″1.3.22.1.3.60 CDS_TCPIP_SERVICES char″ >> /opt/dcelocal/etc/cds_attribute

This defines the attribute CDS_TCPIP_SERVICES of character type to be used
within your namespace. The /opt/dcelocal/etc/cds_attribute is also a file
which needs to be consistent on all the systems within the cell.

 2. Now you are ready to enter the information to be distributed into the object.
For example, the following entries of /etc/services:

domain 53/tcp namserver # domain name server
domain 53/udp namserver

would be entered into CDS with

dcecp> object create /.:/services -attribute {
>{CDS_TCPIP_SERVICES domaine:53/tcp:nameserver} \
>{CDS_TCPIP_SERVICES domaine:53/udp:nameserver}}

The colons (:) are used as field delimiters. Process each entry of
/etc/services in this way.

 3. Once you have filled in all these attribute entries into the object, they are
available for every system in your cell. The systems now need a script
which must frequently check the content of the object for updates and if
necessary update the local /etc/services. Use cron to execute this check at
regular intervals.

We cannot tell you which method is the best for you. Each case needs to be
analyzed separately. However, you must always keep in mind that you should
not fill up your CDS database with too much non-DCE-relevant data.
Clearinghouses are not designed to be used as general purpose databases but
to provide important binding information to your network application.

6.6.2 Migrating Users from NIS to DCE
As explained above, NIS users are centrally managed in a passwd map. The
passwd map can be looked up by entering the command:

ypcat passwd

The output of this command has the same format as if you were displaying a
local /etc/passwd file

cat /etc/passwd

Chapter 6. Administering DCE Cells 215

To migrate users from NIS to the DCE registry database, we use mainly our
user-management tools as described in 7.5, “Mass User/Group (and ACL)
Management” on page 271.

All we must have is a small shell script nis2dce_users that reads the information
from ypcat passwd and transforms the entries into UDF format (user definition file)
for use by our add_users and enable_users procedures. For explanations on how
this script works, we include a listing in 6.6.2.3, “The nis2dce_users Procedure”
on page 217.

There is one important issue when migrating from any environment to DCE:
unique user IDs and group IDs (UIDs/GIDs). Most likely you will have to unify
UIDs and GIDs when introducing DCE in a previously unorganized environment
of single workstations. Even in an NFS/NIS environment, it might be necessary
to unify UIDs/GIDs first when multiple NIS domains are migrated into one DCE
cell or when NIS and DCE have to be merged because a DCE cell is already
there. So we have to look at two cases:

 1. Unifying UIDs/GIDs and adjusting all their properties before the migration

 2. Moving user accounts and groups straight into DCE

6.6.2.1 Unifying UIDs/GIDs and Adjusting File Ownerships
As mentioned above, it might be necessary to make UIDs unique before they can
be entered into the DCE registry. Before you can reassign UIDs/GIDs to existing
users/groups, you must find out what resources they own or have access rights
to. Remember the user and group names are just for the user’s or
administrator’s convenience. Internally, everything is based only on the UID and
GID, simply called ID hereafter. Candidates to look at are, for example:

• Files and directories

• Databases

• Configuration files that define access rights, such as:

− .rhosts

− /etc/exports

These particular examples of configuration files use user or group names.
As long as the IDs are consistently changed on all systems, these files need
not be changed because the user names still have the desired effect.

There might be more subsystems in your environment that will be affected by a
global ID change. We pick the most common case and show how ownership of
files and directories need to be changed. It is a somewhat tedious task, but it
has to be done sooner or later. Otherwise, you will become very confused when
you start to deal with DFS Access Control Lists and DCE IDs do not match AIX
IDs.

The following is the generalized procedure to perform global ID changes on files
and directories:

 1. Find out which subsystems wil l be affected as outlined above.

 2. Create a list of existing UIDs/GIDs in DCE and all other repositories.

 3. Create a cross reference list that shows which existing IDs need to be
changed into what target DCE ID.

216 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 4. Check whether on each individual system one of the target IDs is already in
use by another user. If this is the case, the other user needs to be moved
away from that target ID first.

This means: Sort the cross reference list so that you do not inadvertently
lump together files of different owners to one UID. You might have to create
intermediate UIDs if there are too many mutual dependencies.

 5. Start global changes from the top of your sorted cross-reference list, one at
a time on each involved system:

find / -user <old_UID> -print | xargs chown <new_UID>

Caution: be sure that <new_UID> is not in use (anymore)!

The same steps need to be followed for the group IDs (GIDs). Then create the
DCE user accounts as outlined below.

6.6.2.2 Moving User Accounts and Groups into DCE
Migrating users and groups from an existing environment means extracting their
existing user account and group information and put them into UDF and GDF
format files so they can be treated with our DCE user-management tools. See
7.5, “Mass User/Group (and ACL) Management” on page 271, for explanations
on UDF/GDF and the tools.

Assuming you installed the user-management scripts in directory /umgt and
directory temp_users does not yet exist, you perform the following steps:

cd /umgt
mkdir dce_users
nis2dce_users temp_users
nis2dce_groups temp_groups

Since you have checked all UIDs/GIDs for duplications and fixed possible
problems beforehand, you can now copy all the files from the temporary
repository to the DCE repositories dce_users and dce_groups and add the users
and groups:

dce_login cell_admin <passwd>
add_groups all
add_users all
rgy_enable_users all

The nis2dce_users script is shown below. It could easily be modified for use
with other environments. A procedure, pwd2dce, is also provided with this
publication.

6.6.2.3 The nis2dce_users Procedure
This procedure reads the passwd NIS map and writes a user definition file (UDF)
for each user. It uses the READ_UDF and WRITE_UDF scripts. See 7.5, “Mass
User/Group (and ACL) Management” on page 271, for information about the
user-management tools.

In READ_UDF, you will see what variables can be set. READ_UDF assigns the
default values to the new user file. Then WRITE_UDF writes the upper part of the
file and eventually writes the extracted values to the end of the file as ADD
instructions.

Chapter 6. Administering DCE Cells 217

You might want to change the script before you run it, for instance to exclude old
home directory information. You should inspect all UDFs before you move them
to the repository dce_users. They might contain information that you want to
change, add, or remove.

#!/bin/ksh
This script extracts NIS records and write a UDF file
for each user
$1 must be a new repository

dir=$1

if [$# = 0]
then

echo ″Usage: nis2dce_users <new_repository>″
exit

fi

if [-d ″$dir″]
then

echo ″Directory $dir already exists, specify a new directory″
exit

fi
mkdir $dir

Read the NIS passwd map
ypcat passwd | {

while read input
do

user=`echo $input | cut -f1 -d:`
echo ″Writing UDF for user $user ...″
. READ_UDF $user $dir
. WRITE_UDF $user $dir NEW define_udf
echo ″ADD_uid=`echo $input | cut -f3 -d:`″ >> $dir/$user
GROUPID=`echo $input | cut -f4 -d:`
GROUP=`ypcat group | grep :$GROUPID: |cut -f1 -d:`
echo ″ADD_newgrp=$GROUP″ >> $dir/$user
echo ″ADD_gecos=`echo $input | cut -f5 -d:`″ >> $dir/$user
echo ″ADD_homedir=`echo $input | cut -f6 -d:`″ >> $dir/$user
echo ″ADD_initprog=`echo $input | cut -f7 -d:`″ >> $dir/$user

for p in `ypcat group | grep $user |grep -v :$GROUPID:` ; do
MEMBER=″$MEMBER`echo $p | cut -f1 -d:` ″

done
if [-n ″$MEMBER″]
then
echo ″ADD_groups=$MEMBER″ >> $dir/$user

fi
MEMBER=″″

done
}

echo ″All files are created in directory $dir″
echo ″Inspect them before you move them into the repository dce_users\n″

6.6.3 Migrating NFS Files to DCE/DFS
Before you move any files into DFS, make sure you have unique UIDs/GIDs. If
you had to make them unique, be sure to have also changed the ownership of
files and directories to the new UIDs/GIDs as outlined in the previous chapter.

218 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 Note

If you continue with mismatches between AIX/NFS UIDs and DCE UIDs, you
will always become confused about actual file ownerships and access
permissions.

Even though it might be a very tedious job to unify UIDs/GIDs, do it now to
save you a lot of trouble later on.

Before you can move the files to DFS, the framework of directories with mount
points for filesets should be in place. This step actually needs a lot of design
work because, for performance reasons, it probably makes sense to create the
filesets in different aggregates and on different file servers. Please refer to
Chapter 5, “Implementing Various LAN/WAN Scenarios” on page 105, for tips
and guidelines on designing and implementing DFS.

Moving files from AIX or NFS to DCE is a simple task, but you have to be aware
of how ACLs are assigned or inherited when the files are created. We would like
to give a short description on DCE ACL inheritance before we show how to copy
the files.

6.6.3.1 DFS ACL Inheritance
ACL inheritance is the method by which a file or a directory is given an ACL
when it is created. Certain values, we call them Initial Creation ACLs, are
defined on the parent directory and are passed on to new files and directories
within that directory. For files, the values that are passed are the Initial Object
Creation (IOC) ACL. Directories receive the Initial Container Creation (ICC)
ACLs for themselves, plus they store the IOC and ICC to further pass them to
files or directories underneath.

DFS considers three things when it creates the ACLs for a new object or
directory:

 1. The AIX mode bits specified with the system call that creates a file or
directory.

For example, a command such as touch or redirection of output into a file
uses the open() system call with permissions rw-rw-rw- when creating a new
file without a umask set. If the file is already there, permissions are not
changed. Commands like cp or tar use the permission of the source file if
they are creating a new file. If the file is already there, permissions are not
changed.

 2. The Initial Creation ACL set for the parent directory.

 3. The umask attribute of the process creating the file.

If Initial Creation ACLs are set, then items 1 and 2 will be used for the new
object. On the entries user_obj, group_obj, mask_obj, and other_obj, which are
directly related to the user/group/others permission sets in AIX, the more
restrictive set is applied (AND operation).

If the parent directory does not have Initial Creation ACLs defined, the umask is
used to possibly further restrict the permission bits as explained in item 1. In
this case, an ACL for the newly created file or directory will not be created, and
the protection will be only by AIX mode bits.

Chapter 6. Administering DCE Cells 219

Note: It may seem that the Initial Creation ACLs are always set when you list
them with the acl_edit or dcecp command. However, if you have not explicitly
set them, they are not there, and what you see is the umask which is interpreted
by acl_edit or dcecp.

But how do we know whether the Initial Creation ACLs are set or not?

The following procedure shows a way to test whether ACLs are on the directory
/:/testdir:

ev2 (/) # cd /:
ev2 (/:) # dcecp -c acl show -io testdir
{user_obj rwxc--}
{group_obj r-x---}
{other_obj r-x---}

ev2 (/:) # umask
022

The umask 022 means that write permissions for group and others are masked
out. So the above ACL corresponds to the umask, which makes it likely that
ACLs have not been set. To verify this, we need to change the umask with the
umask command and list the ACL again:

ev2 (/:) # umask 0
ev2 (/:) # umask
00
ev2 (/:) # touch testdir/t
ev2 (/:) # rm testdir/t
ev2 (/:) # dcecp -c acl show -io testdir
{user_obj rwxc--}
{group_obj rwx---}
{other_obj rwx---}

The fact the Initial Object Creation ACL is changing along with the umask
indicates that the ACL has not been set. Touching a file seems to be necessary
for dcecp acl to reflect the new umask value.

We recommend setting the Initial Creation ACLs on the directory that will be the
top directory for the new file subtree. Furthermore, you should set ACLs on all
underlying fileset mount points because ACL inheritance does not go across
fileset boundaries. In this way, you make sure all new files and directories
created in the future will also receive ACLs.

If you do not want to set the ACL, you should check whether ACLs are already
set or whether the umask will be in effect. If the latter is true, no ACLs will be
set, and the umask will also in the future be used when new files or directories
are created.

6.6.3.2 Moving the Files
Before you copy the files over to DFS, you should have:

• Unified UIDs/GIDs
• Adjusted file ownerships to the new UIDs/GIDs at the old location
• Created the DFS fileset framework
• Set Initial Creation ACLs on all filesets

220 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

This is just a summary of the steps explained above. Now that you are
prepared, you can use any copy method that allows preserving of file ownership
and permissions, for example:

• cp -pr
• rcp -pr
• tar -xpvf

Assume we want to move the /home file system with all users’ home directories
to /:/dfshome. To be able to better control the users’ resources and quotas, we
want to give each user their own fileset. The following generalized example
outlines the necessary steps:

 1. Log in as root.

 2. Run nis2dce_user and nis2dce_groups and check whether you need to adjust
any IDs.

 3. Now is the last opportunity to adjust UIDs/GIDs and file ownerships.

 4. Create the archive:

cd /home
tar -cvf/dev/rmt0 .

 5. Log in to DCE as cell_admin.

 6. Add the new groups to DCE with add_groups.

 7. Add the new users to DCE with add_users.

 8. Now is the last opportunity to create all the necessary filesets and target
directories that will serve as mount points.

 9. Check all DFS filesets for availability.

cd /:/dfshome
cd /:/dfshome/user1
cd /:/dfshome/user2

10. Check, or better, actually set the Initial Creation ACLs on all involved filesets
such as /:/dfshome/user1 and so on. Remember that ACLs are not passed
across mount points.

11. Restore the files:

cd /:/dfshome
tar -xpvf/dev/rmt0

It is necessary to be root and cell_admin in order to preserve file ownership
upon creating the new DFS files. The -p flag overrides the umask or Initial
Creation ACLs that might be in use and sets the mode bits as they were defined
on the old files.

Note: It is nevertheless important to set the Initial Creation ACLs because we
want the IOCs and ICCs to be passed on to subdirectories. They are not
overwritten by the -p flag. Also, all explicitly defined ACLs, other than user_obj,
group_obj, other_obj, and mask_obj, are applied if defined.

Chapter 6. Administering DCE Cells 221

6.6.4 Configuring DFS Access from NFS Clients

Figure 52. Scenario with Coexistence of NFS Clients and DCE/DFS

This is the task to configure step-by-step the NFS/DFS Translator and how to
access the DFS file space remotely from NFS client machines. Before starting to
configure DFS access from NFS clients, we suggest you read 7.3, “NFS-to-DFS
Authenticating Gateway” on page 257, to understand the basics about the
translator.

According to Figure 52, machine ev4 is a DFS client machine and also houses
the NFS/DFS Translator. The machine ev3 is an NFS UNIX machine, ev5 is an
NFS OS/2 machine, and ev6 is an NFS DOS/Windows machine. Suppose we
want to export a DFS directory, /:/dfshome/brice, to the NFS server and that the
user account brice exists on ev4 (in /etc/passwd) and in the DCE registry
database. The directory /:/dfshome/brice is a mount point for fileset hbrice.ft
and is the home directory for user brice.

See 4.5, “Defining Home Directories in DFS” on page 98, for tips how to define a
user’s home directory in DFS.

Here is an overview over the steps we will perform and describe in this section:

• Applying ACLs to a directory before exporting

• Configuring and starting the NFS/DFS Translator on a DFS client machine, on
ev4 in our case

• Exporting a directory

• Registering the authentication mappings

• Mounting a DFS remote directory via NFS to a local one

222 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.6.4.1 Preparation Steps
See 3.2, “Preparing for DCE Configuration on AIX” on page 38. To install the
DCE cell follow the configuration steps exactly in 3.4, “Configuring the Initial DCE
Servers and Clients on AIX” on page 43, for machines ev1, ev2, and ev4.

Install and test TCP/IP and NFS on the OS/2 and the DOS/Windows machines.
Please follow the appropriate system documentation.

6.6.4.2 Creating and Mounting the Filesets for Home Directories
 1. Create a logical volume /dev/dfshome with five blocks of 4 MB:

mklv -y’dfshome’ rootvg 5

 2. Create an aggregate on the /dev/dfshome:

newaggr -aggreg /dev/dfshome -bl 8192 -fr 1024

 3. Export the aggregate:

mkdfslfs -d /dev/dfshome -n dfshome

 4. Log in to DCE as cell_admin.

 5. Create the dfshome fileset with mount point:

mkdfslfs -f dfshome.ft -m /:/dfshome -n dfshome
chmod 0775 /:/dfshome
dcecp -c acl modify /:/dfshome -add {user cell_admin rwxcid}

Adding the ACL entry for cell_admin effectively creates the ACL, and with it a
mask_obj entry that is derived from the group permission set of /:/dfshome.
In order for cell_admin to be able to insert new objects (including fileset
mount points) underneath /:/dfshome, the mask_obj must contain insert
permission. This had been achieved by giving group write access with chmod
0775. Had we used chmod 0755, would cell_admin not get insert permission
because the mask_obj would restrict its permission set.

 6. Create Brice’s fileset with a mount point in the same aggregate:

mkdfslfs -f hbrice.ft -m /:/dfshome/brice -n dfshome
chmod 0755 /:/dfshome/brice

Here, there is no need for group having write permission, unless we want to
give other users write access to Brice’s home directory. Another way to
allow for that would be to modify the mask_obj directly after is has been
created.

 7. See if the filesets are correctly exported:

fts lsfldb

 8. Make Brice the owner of the new fileset:

chown brice.staff /:/dfshome/brice

6.6.4.3 Applying ACLs to a Directory
To make sure that this directory is protected, user brice has to apply ACLs on it
if it is not already done. Normally, this step is to be done by the owner of the
directory. However, since most users won’t ever touch ACLs, a DFS
administrator or cell_admin has to define the initial ACLs for the home
directories.

 1. Log in as DCE brice principal on ev4:

$ dce_login brice brice_passwd

Chapter 6. Administering DCE Cells 223

 2. Apply (add or modify) ACLs on the directory /:/dfshome/brice to the values
you want to be automatically set for every new file or directory:

$dcecp
>dcecp acl modify /:/dfshome/brice -add { ... }

Inherited rights when you create another subdirectory:

$dcecp
>dcecp acl modify -io /:/dfshome/brice -add { ... }

Inherited rights when you create files underneath this point in the file tree:

$dcecp
>dcecp acl modify -ic /:/dfshome/brice -add { ... }

The job of user brice stops here for the moment. He has to wait for the
NFS/DFS Translator to be started and for the directory to be exported to NFS.

6.6.4.4 Configuring and Starting the NFS/DFS Translator on ev4
This step has to be executed by a UNIX system administrator. Be sure that:

• The DFS client is configured and running on the machine

• The NFS server is running on the machine

Start the NFS/DFS Authenticating Translator via SMIT:

smitty dce
-> Configure DCE/DFS

-> NFS/DFS Authenticating Translator Administration
-> Start NFS/DFS Authenticating Translator

(fastpath = dfsnfs)

Press Enter . Then the following message is shown:

The NFS to DFS Authenticating Translator has been started successfully.

Instead of using SMIT, you can also simply start the NFS/DFS authentication from
the command line:

/etc/rc.dfsnfs

If you want to automatically start the NFS/DFS Authentication Translator, you
have to put this command into the /etc/inittab file.

6.6.4.5 Exporting the DFS Directory to NFS
This task needs to be done by a UNIX super user.

Call SMIT and follow the indicated path, or call SMIT with the fastpath name:

smit nfs_menus
-> Network File System (NFS)

-> Add a Directory to Exports List
(fastpath = dfsnfsexp)

224 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

� �
Add a Directory to Exports List

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* PATHNAME of directory to export [/:/dfshome/brice]
* MODE to export directory read/write +
HOSTNAME list. If exported read-mostly []
Anonymous UID [-2]
HOSTS allowed root access []
HOSTS & NETGROUPS allowed client access [ev3,ev5,ev6]
Use SECURE option? no +

* EXPORT directory now, system restart or both both +
PATHNAME of Exports file if using HA-NFS []� �

Check if the directory is exported correctly by using exportfs command:

exportfs

At this point, the directory is exported to the NFS clients. Nevertheless, NFS
client users cannot yet access this DFS fileset until user brice has registered his
authentication mapping on the NFS/DFS Translator site.

6.6.4.6 Registering Your Authentication Mappings on ev4
As we previously explained: Before a directory can be mounted for authenticated
DFS access by an NFS client, a DCE principal must register his authentication
mapping on the NFS/DFS Translator site. This task can be done either by user
brice who has a UNIX account and a DCE account or by a UNIX super user who
knows brice’s DCE password. We suppose here that user brice is doing that
himself. User brice is still logged into AIX and DCE on ev4.

The command to use on the NFS/DFS Translator site is:dfsiauth, for example:

$ dfsiauth -add -r ev3 -i 107 -u brice -p brice_passwd
$ dfsiauth -add -r ev5 -i 107 -u brice -p brice_passwd
$ dfsiauth -add -r ev6 -i 107 -u brice -p brice_passwd

Check if the registering is done correctly:

$ dfsiauth -list

Host Uid Principal @sys @host Expiration
---- ------ ---------- ----- ----- ----------
ev3 107 brice 5/27/94 00:30
ev5 107 brice 5/27/94 00:30
ev6 107 brice 5/27/94 00:30

6.6.4.7 Mounting the Directory
Before trying to mount the remote directory, make sure that TCP/IP and NFS are
running on all machines.

 1. On a UNIX machine (ev3), enter:

#mount -v nfs -n ev4 /:/dfshome/brice /u/brice

 2. On an OS/2 system (ev5), enter:

c>mount E: ev4:/:/dfshome/brice
UID: 107
GID: 100

Chapter 6. Administering DCE Cells 225

 3. On a DOS/Windows system (ev6), enter:

c>mount E: ev4:/:/dfshome/brice

We assume the disk unit E: is defined on the DOS system.

6.7 Managing Remote Servers
In the DCE cell, many platforms and machines are tied together. Some have
server roles (replica, master, secondary); others are only clients. However, the
preallocation of roles discussed in this book so far is only valid for the core
services, where the functions have been distributed by the cell administrator
during the cell configuration. The functional applications that also use the
client/server pattern are freely distributed among the different machines.
Application servers could reside on machines that have been configured as DCE
(core) clients, and vice versa.

In this section, we will discuss:

 1. A functional overview on RPC and the involved DCE components
 2. The DCE daemon and its managed objects
 3. How the availability of remote services can be checked
 4. How remote services can be started and stopped
 5. The management of hostdata objects
 6. The management of keytab objects

6.7.1 DCE RCP Applications: Functional Overview
DCE offers a high degree of flexibility to create client/server applications. An
application can be called a DCE client/server application when it uses DCE RPC
(remote procedure calls). Although we consider Security and Directory Services
an integral part of the DCE functions, it is, in some circumstances, possible to
have a client/server connection for applications without those services. This
situation should be avoided because these services are the primary values you
get when using DCE, but in a testing situation, this could be acceptable.

When an application client contacts an application server, it goes through a
binding process. Depending on the way this binding is realized, the impact of
the core services will be more or less important.

• Using a string binding, the client can use a server without contacting the
CDS and even without security authentication. The client has to know the
binding elements to compose the binding handle from a string. The
elements to know are the IP address and the network transport protocol.
Using this explicit binding method, you do not even have to define a DCE
cell. Of course, the explicit binding method can also use the services of CDS
and security, which is usually the case.

• Another method of binding is to import the binding elements, usually a
partial binding handle, from the CDS server. Obviously, in this case, the DCE
core services have to be available. This can be done completely
automatically and under the covers so that a client program does not even
know it is using a binding handle. This is called automatic binding.
Accessing the CDS information also requires some authentication of the
client. This authentication can be implicit or explicit.

The (binding) information needed by an RPC client includes the following:

 1. The interface UUID and version number obtained from the client stub

226 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 2. The IP address and protocol obtained in one of the following ways:

• Hard-coded in the program
• As a parameter passed to the program at startup
• Extracted from the CDS if the server was exported using the

rpc_ns_binding_export() call.

 3. An optional object UUID obtained in one of the following ways:

• Hard-coded in the program (but that seems rather painful)
• Extracted from the exported information in CDS

The DCE daemon (dced) on the server machine maintains an endpoint map.
Application servers may register their interface(s) with the endpoint mapper
function of the dced and get an endpoint assigned. The dced acts as a
portmapper and listens to the well-known port 135. Figure 53 shows the
components involved for a successful server binding.

Figure 53. Information Used to Identify and Access a Compatible Server

Usually, the first call of a client comes in with a partially bound handle, meaning
it does not have an endpoint. Such a call gets to the dced, which completes the
handle by adding the correct endpoint. The client can then directly call the
server process with a fully bound handle.

If a client knows the endpoint and can create a string binding that includes the
endpoint, not even the dced is necessary on the server side. Of course, that
would be very unusual.

Usually, an operational client/server application needs to be secured. There are
different levels of security available with DCE:

• Authentication of the client and server principals
• Access control
• RPC data security ranging from none to full data encryption

It is not the purpose of this section to discuss these options. The point here is
that servers need to run under an authenticated principal if you want security
between client and server. An interactive principal (a user) usually
authenticates itself with the Security Service by providing its name and
password. A server process, however, needs to be started automatically,
without user intervention.

But how can a server provide a password?

A keytab object is maintained by every DCE daemon. The server can retrieve its
(encrypted) password from the keytab of the machine it is running on. See 6.7.2,

Chapter 6. Administering DCE Cells 227

“The DCE Host Daemon (dced)” on page 228, for information about the dced and
6.7.6, “Managing the Keytab” on page 236, for more details about the keytab and
its management.

6.7.2 The DCE Host Daemon (dced)
The DCED daemon plays a more and more important role in the DCE cell.
Known as the RPC daemon (rpcd), its function was strictly confined to the
endpoint mapping, whereas now it includes the sec_cl (Security Service client)
function that maintains the machine principal’s credentials. It also manages and
monitors a series of databases and tables, both static and dynamic, on each DCE
server and client machine.

Figure 54. Objects Maintained by dced

Figure 54 shows the objects which are maintained by the DCE daemon. They
currently are:

• HostData — HostName, cell name, and much more (see 6.7.5, “Working with
the Hostdata” on page 235)

• SrvrConf — Information about all configured servers, including DCE core
service daemons and user application servers if they have been entered in
this database

• SrvrExec — Information about running servers, including both core and user
servers

• Keytab Info — Keytab entries with information about the private keys
(passwords) of application server principals

These dced objects keep status and can be queried and updated. The DCE
daemon maintains its own junction in the CDS namespace so that all these
objects have a representation in the CDS namespace and can be manipulated
from remote sites. The junction is / . : /hosts /<hostname>/conf ig .

Depending on the site from where you access these objects, the service name
has to be qualified:

• On the local host — service@hosts/host (Only from programming API)
• In the local namespace — /.:/hosts/host/config/service
• Global name — /.../cell_name/hosts/host/config/service

228 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Programs can be written with a binding to all those different services in the
dced. A dced binding is special; it is not just a binding to the dced but also to a
well-defined, specific service maintained by the dced. A lot of manipulation can
also be done via the dcecp shell. For example, to get a list of services enter:

$ dcecp
dcecp> host show /.:/hosts/EV5
{time_provider running}
{cdsadv running}
{dfsd running}
{dtsd running server}

Note: This command did not return correct results from AIX DCE systems at the
time we were testing. It just returned an empty list.

6.7.3 Checking Availability of Remote Services
An adequately functioning DCE cell requires an activated presence of several
layers of functions. Although we could split it up in many layers, for the sake of
simplicity, we decided to limit it to four well distinct layers, which are shown in
Figure 55 below.

Figure 55. Availability Layers for DCE Applications

Availability of the DCE applications requires the layers in a top/down way, while
the investigation of a problem should be tackled bottom/up. In this section, we
discuss how the availability of these layers can be checked.

6.7.3.1 The Platform Base
Before any DCE task can be executed, DCE has to be installed and configured.
To verify whether this task has been executed correctly, we have a few tools at
our disposal.

The investigation can be done remotely if a remote shell (telnet) can be opened,
or has to be done locally if this is not possible.

 1. The customization of an AIX platform could be verified by commands like:

• lsdce — Listing of the current state of the local DCE configuration

• lsdfs — Current state of the DFS configuration

• ps -ef — Listing of processes.

To list all process with the search term dce, issue the following
command:

Chapter 6. Administering DCE Cells 229

ev1::/-> ps -ef | grep dce
root 7440 1 0 15:06:37 - 0:00 /opt/dcelocal/bin/cdsadv
root 8774 1 0 15:06:55 - 0:02 /opt/dcelocal/bin/dtsd -s
root 17094 1 0 15:05:57 - 0:57 /opt/dcelocal/bin/dced -b
root 17812 8130 0 15:14:01 pts/1 0:03 dcecp
root 18214 1 0 15:06:42 - 0:12 /opt/dcelocal/bin/cdsd
root 18658 1 0 15:06:08 - 0:07 /opt/dcelocal/bin/secd
root 21760 1 0 15:57:14 - 0:00 /opt/dcelocal/bin/bosserver
root 22018 7440 0 15:57:18 - 0:11 /opt/dcelocal/bin/cdsclerk -w
root 22276 21760 0 15:57:23 - 0:00 /opt/dcelocal/bin/upserver
root 22534 21760 0 15:57:23 - 0:02 /opt/dcelocal/bin/flserver
root 22792 21760 0 15:57:23 - 0:00 /opt/dcelocal/bin/ftserver
root 23050 21760 0 15:57:24 - 0:02 /opt/dcelocal/bin/repserver
root 23590 1 0 15:57:34 - 0:00 /opt/dcelocal/bin/dfsbind
root 23906 1 0 15:58:00 pts/0 0:00 /opt/dcelocal/bin/fxd
root 26744 1 0 15:58:00 pts/0 0:00 /opt/dcelocal/bin/fxd
root 27544 1 0 15:58:05 pts/0 0:00 /opt/dcelocal/bin/dfsd

To list all processes with search term dfs, enter:

ev1::/-> ps -ef | grep dfs
root 21416 18796 0 10:42:24 - 0:00 /opt/dcelocal/bin/upserver
root 21672 1 0 11:14:14 - 0:10 dfsbind
root 24008 1 0 11:14:22 pts/1 0:00 fxd -mainprocs 7 -admingroup
subsys/dce/dfs-admin
root 26846 1 0 11:14:23 pts/1 0:00 fxd -mainprocs 7 -admingroup
subsys/dce/dfs-admin
root 28264 1 0 11:16:57 pts/1 0:00 dfsd

• Other commands that could be used for DFS are:

/opt/dcelocal/bin/bos status -server servername

 2. On OS/2 Warp, the verification can de done with the following command:

showcfg.exe

This returns the status of configured and running components.

6.7.3.2 The Transport Layer
Between AIX and OS/2 Warp platforms, all DCE transport relies on TCP/IP or on
AnyNet (using TCP/IP). Without a functioning transport layer, there is no
successful functioning of a DCE cell.

It is quite easy to verify this layer with the ping command. Other tools that can
be used to verify the correctness of the network definitions are, for instance, the
netstat command or the host command to check proper name resolving. These
and others have been covered sufficiently in previous chapters.

The point that we want to make here is that once you have transport
connectivity, you will probably be able to open a telnet session into the other
platform where you suspect some malfunctioning or a lack of configuration. With
a look into the remote platform, you can verify the following points.

• Is the platform fully configured for its functions?

• Are the required daemons up (especially dced)?

• Are the required application servers running?

If the transport connectivity cannot be realized, we have to return to local
platform investigations, as explained in the previous paragraph. To establish a

230 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

telnet session, a running telnetd daemon is required on the target platform, and
we must be allowed to activate this remote shell into the target machine.

Although very convenient, a telnet session creates a security exposure because
the password is submitted in clear text. So, if this is an issue, consider the
options that the DCE daemon offers first, which are explained below.

6.7.3.3 The DCE Daemon
The DCE daemon is explained in more detail in 6.7.2, “The DCE Host Daemon
(dced)” on page 228. This section concentrates on some commands you can
use to check the availability of the DCE daemon and its services.

• A view of the endpoint mappings of the local hosts can be obtained with:

dcecp> endpoint show
{{object 032070a1-600e-11cf-b924-08005aceea02}
 {interface {006e0b04-0538-1d34-8366-0000c09ce054 1.0}}
 {binding {ncacn_ip_tcp 9.3.1.124 135}}
 {annotation {Server Execution}}}

{{object 032070a1-600e-11cf-b924-08005aceea02}
 {interface {006e0b04-0538-1d34-8366-0000c09ce054 1.0}}
 {binding {ncadg_ip_udp 9.3.1.124 135}}
 {annotation {Server Execution}}}

{{object 019ee420-682d-11c9-a607-08002b0dea7a}
 {interface {019ee420-682d-11c9-a607-08002b0dea7a 1.0}}
 {binding {ncacn_ip_tcp 9.3.1.68 2135}}
 {annotation {Time Service}}}

• List the services controlled by the dced of machine EV5:

dcecp> host show /.:/hosts/EV5
{time_provider running}
{cdsadv running}
{dfsd running}
{dtsd running server}

Host EV5 has been DCE-configured with security, CDS, DFS clients, and a
DTS server function. This information is kept in the srvrconf.db, while the
srvrexec.db contains information about the currently running processes, if
they have been exported to dced. By comparison of both tables, the
contacted daemon on a particular host is able to return the information as
indicated.

Note: This command did not return correct results from an AIX DCE system
at the time we were testing; it just returned an empty list. But it worked for
querying OS/2 Warp systems.

• List the configured servers on a particular host (including user application
servers):

dcecp> server cat /.:/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/time_provider
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/cdsadv
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dfsd
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dtsd

Note the complete name of a configured server. The srvrconf refers to the
static server configuration portion for an installed DCE server.

Chapter 6. Administering DCE Cells 231

Note: This command did not work correctly for AIX DCE systems at the time
we were testing; it just returned an empty list. But it worked for querying
OS/2 Warp systems.

The information related to the so-called host services is kept in containers. The
access to those containers is protected by the DCE Security Service with ACLs
on the container objects. You can show, and eventually change, the access
rights. The following acl show command displays the current ACL status.

dcecp> acl show /.:/hosts/EV5/config/srvrexec
{unauthenticated criI}
{any_other criI}

dcecp> acl show /.:/hosts/EV5/config/srvrconf
{unauthenticated criI}
{any_other criI}

It is important that the ACLs are correctly set to allow you the desired access to
dced objects.

6.7.3.4 Application Servers
As mentioned in 6.7.3.3, “The DCE Daemon” on page 231 above, we need to
define the user applications as dced objects, and then they can be monitored via
the server cat, server show, server ping subcommands of dcecp from anywhere
in the cell. These commands contact the remote dced.

6.7.4 Controlling Remote Core and Application Servers
In previous versions of DCE, a server had to be started manually on a platform.
In DCE 2.1, additional starting/stopping capabilities are available:

 1. The starting/stopping of servers can be remotely controlled if the server has
been defined in the srvrconf.db of the host.

 2. The start of servers can be automatically triggered by the client if the
adequate definition has been created.

A client with partial binding arriving at the DCE daemon in search of a
compatible server will first initiate a lookup of the dynamic table srvrexec.db,
which contains a view of all active and exported servers/daemons. If a
compatible server is found, dced can redirect the client’s request to that
particular server.

If an active server is not found, the lookup extends into the static srvrconf.db
table. If a compatible description is found here and it allows for automatic start
(triggering), the server will be started, and again redirection can take place.

6.7.4.1 Entering Binding Information into CDS
Normally, a well-written application server exports its interface(s) into CDS
(rpc_ns_binding_export() call) so that clients can use automatic binding methods
and look up compatible servers in the directory. However, if we want to trigger
the startup of a server by a client request, then the server has no chance to
export anything beforehand. We must manually create the CDS entry:

DCECP> rpcentry create /.:/subsys/servers/SVRAPPL1

and complete it afterwards with the next command:

232 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

DCECP> rpcentry export /.:/subsys/servers/SVRAPPL1
-interface { d58ab008-b3c6-11ca-891c-c9c2d4ff3b52 1.0 } \
-binding [ncadg_ip_udp:9.3.1.124 }

To check the created CDS entry, run the following command:

dcecp> rpcentry show /.:/subsys/servers/SVRAPPL1
{d58ab008-b3c6-11ca-891c-c9c2d4ff3b52 1.0
{ncadg_ip_udp 9.3.1.124}}

noobjects

6.7.4.2 Defining a Server to the DCE Daemon
To allow for application servers to be remotely started and stopped, the following
two conditions must be met:

 1. The server entry has to be created as in the following command (example on
OS/2):

DCECP-> server create
/.:/hosts/EV5/config/srvrconf/SVRAPPL1 \
-program {\util\server\bin\svrappl1.exe} \
-principal {SVRAPPL1} \
-entryname {/.:/subsys/servers/SVRAPPL1} \
-starton {explicit failure auto } \
-services {{annotation { automatically started server 1}} \
{interface {d58ab008-b3c6-11ca-891c-c9c2d4ff3b52 1.0}}}

Alternative Options for Command Entry

Instead of using the interactive dcecp shell, the command could be
entered from the command line with the dcecp -c command. It worked
when we tried it, but it is error prone. We had rather enter it by a Tcl
procedure, but in both AIX and OS/2 we got the following results:

Error: msgid=0x1131F009 Too many arguments specified in command

This was a bug in the release we were using, and it should be fixed in
the release-level code.

 2. The EP (endpoint, listening port) of an application server must be exported
by the server’s server code with the following call:

rpc_ep_register()

A server cat shows the presence of the new application server:

dcecp> server cat /.:/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/cdsadv
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dtsd
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/time_provider
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/dfsd
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/SVRAPPLA
/.../itsc.austin.ibm.com/hosts/EV5/config/srvrconf/SVRAPPL1

Note: This command did not work correctly for AIX DCE at the time we were
testing; it just returned an empty list. But it worked for querying OS/2 Warp.

After creating the application entry in the srvrconf.db, the entry can be queried
with:

Chapter 6. Administering DCE Cells 233

dcecp> server show /.:/hosts/EV5/config/srvrconf/SVRAPPL1
{uuid 939a4af4-65a2-11cf-a1f9-10005a4f4629}
{program c:\util\servers\bin\SVRAPPL1}
{arguments {}}
{prerequisites {}}
{keytabs {}}
{entryname /.:/subsys/servers/SVRAPPL1}
{services
 {{ifname {}}
{annotation { automatic started server 1}}
{interface {d58ab008-b3c6-11ca-891c-c9c2d4ff3b52 1.0}}
{bindings {}}
{objects {}}
{flags {}}
{entryname {}}}}

{principals /.../itsc.austin.ibm.com/SVRAPPL1}
{starton auto failure}
{uid 0}
{gid 0}
{dir {}}

The application server’s interface UUID and version have to correspond with the
UUID and version in the DCE RPC stubs. Note also the starton option set to auto,
which allows for a client-triggered startup of this server.

Eventually, this entry can be deleted with:

DCECP>server delete /.:/hosts/EV5/config/srvrconf/SVRAPPL1

6.7.4.3 Starting and Stopping Remote Servers
Once defined as dced objects, all servers can be remotely started and stopped.
If set up for client-triggered start-up, the first RPC request will start the server
process. With following command, you can explicitly start a remote server:

DCECP>server start /.:/hosts/EV5/config/srvrconf/SVRAPPL1

A host show command will indicate the updated situation, including the
application servers. This information is collected from a combination of the
srvrconf.db and srvrexec.db containers:

dcecp> host show /.:/hosts/EV5
{dtsd running}
{time_provider running}
{SVRAPPLA notrunning}
{cdsadv running}
{dfsd running}
{SVRAPPL1 running}

We find SVRAPPL1 running. To stop the same server, enter:

DCECP>server stop /.:/hosts/EV5/config/srvrexec/SVRAPPL1

234 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Errors encountered

In the releases we were testing, we were not able to activate a server
through a client request although we defined the -starton auto option.

When trying to stop SVRAPPL1, we received the following error message:

dcecp> server stop /.:/hosts/EV5/config/srvrexec/SVRAPPL1
Error: No Bindings

6.7.5 Working with the Hostdata
Another resource list that can be manipulated, and is located on each host, is
the hostdata entry list. To have an idea of the contents of those entries, and also
to know the object names as available through the dced junction in the CDS
namespace, you can issue the following command:

dcecp> hostdata cat /.:/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/passwd_override
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/cds_globalnames
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/host_name
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/cell_name
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/cds_attributes
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/pe_site
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/cds-cache-info
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/krb.conf
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/dfs-cache-info
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/group_override
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/post_processors
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/cds.conf
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/cell_aliases
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/dce_cf.db
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/clock-synch-info
/.../itsc.austin.ibm.com/hosts/EV5/config/hostdata/svc_routing

The catalog of the hostdata shows the object names that can be used as in the
following show command for the pe_site object.

dcecp> hostdata show /.:/hosts/EV5/config/hostdata/pe_site
{uuid 4bed6d84-c0d1-11cd-975f-0000c09ce054}
{annotation {PE Site file}}
{storage C:\opt\dcelocal/etc/security/pe_site}
{hostdata/data
 {/.../itsc.austin.ibm.com dd1d96e4-654e-11cf-819a-10005a4f4629@ncacn_ip_tcp:9.3.1.68[]}
 {/.../itsc.austin.ibm.com dd1d96e4-654e-11cf-819a-10005a4f4629@ncadg_ip_udp:9.3.1.68[]}}

Here follows the result of the show command for the dce_cf.db object:

dcecp> hostdata show /.:/hosts/EV5/config/hostdata/dce_cf.db
{uuid 002c7cdf-4301-1d77-af44-0000c09ce054}
{annotation {DCE name config file}}
{storage C:\opt\dcelocal/dce_cf.db}
{hostdata/data
 {cellname /.../itsc.austin.ibm.com}
 {hostname hosts/EV5}}

Chapter 6. Administering DCE Cells 235

6.7.6 Managing the Keytab
A keytab file contains the keys for one or more server principals and must be
located on the same host as the application servers. Keys for servers are
analogous to passwords for human users. Keys play a major role in the
authentication procedures. Server keys and user passwords have to follow the
same change policy. This means that a server periodically has to generate a
new key. For a human user, the password is memorized, for a server it is stored
in a keytab file. This file must have restricted access by the local entities.

It is more complex for a server to change keys than it is for a human user. A
server may have to maintain a history of its keys with version numbers. The
passwords (keys) are maintained at two locations: the Security Server Registry
and the keytab. A client having obtained a ticket to a server holds an encoded
version of the server’s key. If in the mean time the server changes its key, at
the next contact between client and server, the key (stored in the ticket) would
be outdated, except if a certain history of the keys is kept in the keytab. New
tickets will contain the new updated secret key.

Between the two locations where the secret key is located (keytab, registry), the
key has to be synchronized. If the key is specified in plain text, this
synchronization could be done manually, but if the key is automatically
generated (at random), the generation process has to update both sites.

6.7.6.1 DCED and the Keytab File
A series of dcecp commands can be used to maintain the keytab files:

keytab create Creates keytab files and their entries

keytab delete Deletes keytab files and their entries

keytab add Adds key entries to an existing keytab file

keytab remove Removes key entries from keytab files

In DCE 2.1, the keytab is also registered as an object in the CDS name space
and can be manipulated remotely. Local access is still available.

First, we need the name of the keytab object. This can be obtained by the
following command. On ev1, execute the keytab catalog command for two hosts.

dcecp> keytab cat
/.../itsc.austin.ibm.com/hosts/ev1/config/keytab/self
dcecp> keytab cat /.:/hosts/EV5
/.../itsc.austin.ibm.com/hosts/EV5/config/keytab/self

We can show the contents of the object and find out whether a disk file is already
linked to this object. The keytab information (principal-password pairs) is not
contained in the object itself but in a local file linked by the object. The keytab
file and its format is still the same as in previous DCE releases, but now, it can
be accessed through a dced object.

dcecp> keytab show /.:/hosts/ev1/config/keytab/self
{uuid 00096565-4301-1d77-9108-0000c09ce054}
{annotation {Host Principal Keytab}}
{storage /krb5/v5srvtab}
{/.../itsc.austin.ibm.com/hosts/ev1/self des 1}
{/.../itsc.austin.ibm.com/hosts/ev1/cds-server des 1}
{/.../itsc.austin.ibm.com/hosts/ev1/cds-server des 2}

236 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

{/.../itsc.austin.ibm.com/hosts/ev1/dfs-server des 1}
{/.../itsc.austin.ibm.com/hosts/ev1/dfs-server des 2}

A keytab show command on the local host could look like:

dcecp> keytab show self

6.7.6.2 Step-by-step Instructions to Create a Keytab
The commands discussed in this section were tested with the simple setup
shown in Figure 56 below. We created a small cell composed of two OS/2 Warp
machines. EV5 contains the master servers. In this scenario, we will create a
keytab file on EV6 and populate it with some users, all from EV5.

Figure 56. Remote Keytab Creation from EV5 to EV6

On EV6, no keytab file is yet registered. The first action would be the creation of
the keytab on EV6. This can be done locally or remotely from another system,
but some authorizations are required. We will try to do it remotely.

From the EV5 system, we enter the following command. The user, SERVERA,
does currently not exist in the registry:

DCECP>keytab create /.:/hosts/EV6/config/keytab/SVRAPPL
-attr {{storage /opt/dcelocal/key/SVRAPPL_keys } \
{data { SERVERA plain 3 itso}}}

The previous command did the following:

• Created an object /.:/hosts/EV6/config/keytab/SVRAPPL

• Created the keytab file /opt/dcelocal/key/SVRAPPL_keys

• Added in this keytab file one entry for account SERVERA

It seems impossible to create an empty keytab file; at least one entry has to be
specified as in the previous example.

The keytab cat command verifies the just-created keytab:

keytab cat /.:/hosts/EV6
/.../itsc.warp5.ibm.com/hosts/EV6/config/keytab/self
/.../itsc.warp5.ibm.com/hosts/EV6/config/keytab/SVRAPPL

A keytab show of the object gives the following result:

Chapter 6. Administering DCE Cells 237

dcecp> keytab show /.:/hosts/EV6/config/keytab/SVRAPPL
{uuid bb9ae380-67b7-11cf-a2dd-08005a49f2f8}
{annotation {}}
{storage /opt/dcelocal/key/SVRAPPL_keys}
{/.../itsc.warp5.ibm.com/userb des 3}

For the principal, SERVERA, additional actions have to be taken:

• The account SERVERA has to be registered in the security database.

• The password has to be synchronized between keytab and registry.

SERVERA is added into the registry by a series of commands:

• group create creates a group, SVRAPPL, in the registry.

• org create creates an organization, IBM, in the registry.

• user create creates principal SERVERA, account SERVERA belonging to the
above group and organization. The password to specify must be the same
as during the keytab create action.

With the server account now present in the keytab and in the registry, and
synchronized with respect to the password, we are able to switch to a
randomized key pattern. This can be done in the following way.

DCECP> keytab add /.:/hosts/EV6/config/keytab/SVRAPPL -member SERVERA
-registry -random

This command has been executed remotely from EV5 to EV6.

Additional users can now be defined in the registry, and in the keytab, but to
activate a randomized key for an account, a two-step procedure will always be
required as outlined in the previous example. Additional users can be added to
an existing keytab file and randomized with the following two command:

DCECP> keytab add /.:/hosts/EV6/config/keytab/SVRAPPL -member SERVERB
-key itso -version 1
DCECP> keytab add /.:/hosts/EV6/config/keytab/SVRAPPL -member SERVERB \
-registry -random

From a central point, keytab files can be maintained on remote target platforms.
Additional members can be added; keys can be regenerated periodically. For
these protected actions, permissions are required that are controlled by the ACL
on the keytab object in CDS. Here is the result of the show command.

dcecp> acl show /.:/hosts/EV6/config/keytab/SVRAPPL
acl show /.:/hosts/EV5/config/keytab/SVRAPPL
{unauthenticated acdepr}
{any_other acdepr}

Long-running server applications usually spawn a thread that checks the
password expiration date, goes to sleep, wakes up shortly before the password
expires, and updates the password with another randomly generated password.
The dced process does this for the password of the machine principal.

238 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

6.8 Running DCE Authenticated Batch Jobs
Due to the nature of DCE and its principles and standards, every kind of user, no
matter whether this is a human user, a program, a system, or anything else,
needs to be authenticated in order to make use of the functionality DCE provides.
This authentication is done by providing an ID and a password, which the DCE
Security Service compares against its registry database.

Let’s verify this with a human user. He (or she) logs into the operating system
and then into DCE by using the dce_login command, providing his (her) user ID
and password. Of course, this double login could also happen in one step using
AIX 4.1.3+ or other integrated single-login techniques. DCE then provides the
user with the credentials that all processes subsequently started by this user
inherit. Without such credentials, neither the user nor any launched non-DCE
application could ever benefit from any DCE services.

This can cause some headache if a system administrator wants to automate
certain tasks that need DCE authentication and have them started automatically,
for example by cron. A simple solution would be to have a dce_login done
within a shell script. Although technically simple and possible, this would
require the password to be stored somewhere in a file. Moreover, if that
password would be passed to that shell script as a parameter, anyone could see
it with a ps command.

DCE server applications also need to provide a password (here called a key) in
order to register successfully with DCE. They usually do it the same way as all
DCE components by storing an encrypted version of their keys in a so-called
keytab file. All DCE components, such as a DFS or CDS server, use the file
/krb5/v5srvtab. The contents of this file can be viewed and managed with the
rgy_edit command. Its subcommand, ktlist, lists all the names of the
principals that have keys stored in this file (for security reasons, you cannot list
the encrypted keys themselves). For more details on keytab entries and
management, see 6.7.6, “Managing the Keytab” on page 236.

6.8.1 Running Batch Jobs Using start_batch
If any program is to be started with appropriate DCE credentials, but lacks the
functionality of doing a DCE login on its own, like a simple shell script, someone
else has to do the login. This would be a system administrator in most cases,
starting the programs from his user environment.

This would not work if a program is to be launched off-line from cron or from
inittab during system startup.

We provide a tool called start_batch on the diskette that comes with this book. It
does basically the same as described above what DCE components and other
DCE server processes do:

 1. It accesses the /krb5/v5srvtab file to get the key for a given principal.

 2. It does a DCE login with that principal name and the key.

 3. Upon success, it starts a program with the DCE credentials.

The start_batch command needs two mandatory parameters:

start_batch <principal> <command-to-be-executed>

Chapter 6. Administering DCE Cells 239

The given principal must be defined and have a valid key in the keytab file on
the machine where it is supposed to run. This one-time definition must be done
by the administrator. The command can be any command that could also have
been entered via a command line, for example:

start_batch backup_principal DFS_backup

An equivalent of a dce_login is performed with the principal name
backup_principal and its key obtained from /krb5/v5srvtab. Then the command
DFS_backup is executed. In this way, any program can be run in a DCE
authenticated environment.

Caution: Although such a tool is desirable or even necessary in almost any DCE
installation, it may lead to some questions about security. We strongly
recommend the following:

 1. Do not use the principal cell_admin for this purpose. This is not only a
security issue. Whenever the password of cell_admin changes, one would
also have to change the key(s) in the keytab file(s). Add another principal
with the appropriate privileges for this purpose.

 2. Only root should have access to this tool. It should have restricted file
permissions: 700 (-rwx------).

 3. You may even make it part of the Trusted Computing Base (TCB).

If you add a new principal and account for this tool by using SMIT, then you
should specify that this account is going to be an RPC server. This way, SMIT
will do all the entries in /krb5/v5srvtab.

start_batch is a simple implementation of such a tool. It does not alter the key
in the keytab file automatically after expiration, and it only allows you to use the
default keytab file, /krb5/v5srvtab.

240 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Chapter 7. Miscellaneous Tools and Technologies

This chapter is a collection of additional technologies or tools for DCE
administrators. The level of detail given here would have overloaded the
previous how-to chapters. We cover the following topics in this chapter:

 1. DCE for AIX release history

 2. DFS file server replication

 3. NFS/DFS authentication translator

 4. DCE Web

 5. Login integration

 6. A mass user/group management tool

In the previous chapters, we showed how to use all these features without
explaining the details.

7.1 DCE for AIX Release History
In this section, we will provide a brief overview of the most important new
features and functions that came with DCE Version 1.3 and DCE Version 2.1.
Some of them are IBM-exclusive.

7.1.1 AIX DCE 1.3 New Features Overview
The purpose of this chapter is to list and explain the most important new
features of AIX DCE 1.3. Some of the enhancements are performance oriented,
some provide extended functionality.

Two of the most important new features, DFS replicated file server and the NFS
to DFS Authenticating Gateway, are covered in more detail in separate sections.
See 7.2, “DFS Replication” on page 252 and 7.3, “NFS-to-DFS Authenticating
Gateway” on page 257.

These are the new features that are explained in the rest of this overview
section:

• Security server replication

• DFS fileset replication - see 7.2, “DFS Replication” on page 252

• NFS to DFS Authenticating Gateway - see 7.3, “NFS-to-DFS Authenticating
Gateway” on page 257

• Split configuration

• Local RPCs

• Environment variable RPC_UNSUPPORTED_NETIFS

• Monitoring function in IBM NetView for AIX

• Exportable data encryption facility (Common Data Masking Facility, CDMF)

• Stub-size reduction

• Preferred file server for DFS clients

 Copyright IBM Corp. 1996 241

7.1.1.1 Security Server Replication
This feature is actually already part of OSF DCE 1.0.2, but was added later in
DCE for AIX. It has been delivered for AIX DCE 1.2 now as PTF#U431018. See
3.7.2, “Replicating the Security Server” on page 67, for an example on how to
configure it. See also the release notes that come with the PTF and with AIX
DCE 1.3 for various considerations and detailed explanations of the Security
Service in general.

The security registry database is copied as a whole to all defined replication
servers, where it is read-only. This is sufficient for getting tickets for dce_login
or DCE server access. The only time write access is needed is when a new
principal, account, or group is added/changed/deleted.

Once you have installed one or more security replication servers, you can
indicate any of them when you issue mkdce -s <sec_server_name> <DCE_component>
to install new components. If you specify a replica server, a connection is made
to this server, and its binding information is put into the pe_site file in the first
position:

cat /etc/dce/security/pe_site
/.../itsc.austin.ibm.com 007abb9c-8a15-1df3-b3c0-10005aa8c755@ncacn_ip_tcp:9.3.1.127[]
/.../itsc.austin.ibm.com 007abb9c-8a15-1df3-b3c0-10005aa8c755@ncadg_ip_udp:9.3.1.127[]

Since configuring a new component requires write access to the registry, a
connection is automatically made to the master security server. However, you
usually specify the master security server with the mkdce command.

If there are multiple security servers in a cell or after a new security replication
server has been added, the pe_site file can be updated to contain a list of all
available security servers:

chpesite

This is an IBM-provided tool. It must be run on all systems in order to update
their pe_site file.

7.1.1.2 Split Configuration
This feature, which also includes a split unconfiguration, separates configuration
of DCE client machines into a central DCE administrator part and a local system
administrator part.

Up to now, we only had the full client configuration method. The administrator
who configured the client had to be logged in as the local root user and had to
provide the DCE cell_admin password to the configuration routine. This was
because entries had to be made for the new client in the security registry and
the CDS namespace, which required write access.

These entries are still necessary, but can now be preconfigured by cell_admin
from any machine already configured in the cell. This is what the admin part of
the split configuration is all about.

The owner of a workstation who wants to be part of a DCE cell can now request
configuration from a central DCE administrator. Once the workstation is
preconfigured, the user can configure their machine as a DCE client without
having to know cell_admin’s password. This is very convenient for very large
DCE cells.

The mkdce command has some new flags to allow for split client configuration:

242 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

mkdce -o configtype -h dce_hostname -i ip_identity

configtype Specifies what type of DCE client configuration is used:
full This is the default. It is the old-style

configuration where everything is
done on the client to be installed.

admin This is the admin part of the split
configuration where the cell_admin
password has to be known.

local This is the local part of the split
configuration to be executed on the
client to be installed.

dce_hostname This is a specifically selected name for the new client under
which they will be known in DCE. This affects the machine
principal name in the security registry and the hosts entry in
CDS. It can be the same name as the TCP/IP name, which is
somewhat long, though, when it contains the domain name.

ip_identity This is either the IP address or the TCP/IP hostname of the
machine for which a DCE client is being preconfigured.

7.1.1.3 Local RPCs
If DCE client and server applications are running on the same system,
communication now goes through a local UNIX socket rather than through a
network interface and the network layers. This prevents a server connection
from being established over the network either to another or to their own
machine when the service is available on their own machine. This brings
performance improvements for client programs that run on a server machine.

If a client uses CDS to obtain binding handles, it will always get the local sockets
first, even with calls such as rpc_ns_import_binding_next(), which returns
bindings in a random order.

This binding information is not stored in CDS because all clients would get these
local sockets. It is rather the client’s RPC runtime which realizes that some of
the handles it receives contain an IP address that corresponds to the client’s
own system. It creates the local binding handles and returns them to the caller
in the first place, before those from CDS.

The following is an example of a local RPC socket compared to regular TCP and
UPD sockets. The example is the pe_site file of a system that runs a security
server. It could also be the response to consecutive
rpc_ns_import_binding_next() calls, which return partly bound handles without
endpoints:

cat /etc/dce/security/pe_site
/.../jacques.itsc.austin.ibm.com 007abb9c-8a15-1df3-b3c0-
10005aa8c755@ncacn_unix_stream:[]
/.../jacques.itsc.austin.ibm.com 007abb9c-8a15-1df3-b3c0-
10005aa8c755@ncacn_ip_tcp:9.3.1.127[]
/.../jacques.itsc.austin.ibm.com 007abb9c-8a15-1df3-b3c0-
10005aa8c755@ncadg_ip_udp:9.3.1.127[]

The endpoint for a ncacn_unix_stream binding handle is represented as full path
names to a UNIX socket file. A unique socket file is used for each association
established between a client and server process. By default, these socket files
are opened in the directory /opt/dcelocal/var/rpc/socket. Also by default, the
name for each socket file is an object UUID, which ensures the uniqueness of

Chapter 7. Miscellaneous Tools and Technologies 243

each file name. This means there is no chance that a socket file will ever be
used over again on two invocations of a DCE application.

Here is an example of a ncacn_unix_stream string binding:

ncacn_unix_stream:[/var/dce/rpc/socket/0063980e-357b-le07-878b-10005a4f3bce]

When a well-written DCE server application exits under normal conditions, it will
unregister its endpoints from the RPC endpoint map, among other things, before
it exits. The ncacn_unix_stream endpoints are user-space files. Over time,
these socket files will accumulate. They are zero-length files, but each one
occupies an i-node entry in the file system that it was created in. It is necessary
to have some means of cleaning up these stale socket files. This is done by the
RPC endpoint map.

By building their own string bindings, applications can define other file names for
the socket files. However, this incurs additional overhead, and the stale socket
files are not removed automatically. The rpc.clean command has to be called
together with the directory name that contains user-created socket files.

7.1.1.4 Environment Variable RPC_UNSUPPORTED_NETIFS
This variable excludes a list of network interfaces from being used in DCE
binding handles. The following examples excludes xt0 and sl0:

export RPC_UNSUPPORTED_NETIFS=xt0:sl0

This environment variable should be set in the /etc/environment file before DCE
is configured. It prevents services from exporting their interfaces into CDS. This
is a very important instrument in the performance and availability considerations
for the DCE cell layout. This is discussed in more detail in Chapter 5,
“Implementing Various LAN/WAN Scenarios” on page 105, and in 3.2,
“Preparing for DCE Configuration on AIX” on page 38.

It is also required and used in HACMP/6000 configurations with DCE because
HACMP/6000 has redundant interfaces, and some of them must not be used by
regular applications. They need to be idle in the HACMP/6000 configuration such
that they are ready for takeovers.

7.1.1.5 DCE Manager for AIX
IBM NetView for AIX is the platform for network management based on the
simple network management protocol (SNMP). It can be used for monitoring any
kind of TCP/IP devices and for managing devices that are able to support the
SNMP protocol. An SNMP agent is the interface to and from such SNMP-capable
devices. SNMP agents have a database of system control variables that are
standardized. It is called the Management Information Base (MIB). An SNMP
management node can manage an SNMP agent node by changing MIB values.
SNMP agents can be configured to send traps or alerts to the manager node
when certain events happen or when thresholds are exceeded.

IBM NetView for AIX provides a GUI to display network topologies so that users
will be alerted and can respond to abnormal conditions in their network. APIs
on both sides, the manager and the agent side, provide an opportunity to
integrate new applications into this management interface.

Applications integrated on the management side usually do not communicate via
SNMP protocol to the other nodes. They just run on the central node and have
their own method or protocol to get information from their clients. They may

244 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

even be able to manage their clients through the use of this proprietary method
or protocol.

Applications implemented on the SNMP agent side are called subagents. They
basically function like the agent itself. They support MIB values and generate
traps. They implement an extended MIB that allows the manager node to
actually manage these subagents via a regular SNMP methods.

What does IBM NetView for AIX now do for DCE?

The DCE monitoring function (the DCE Manager for AIX) is implemented on the
management side and does not support SNMP. It uses traditional DCE tools to
look up, for example, CDS entries or RPC endpoint maps or to test availability of
services. Even though it cannot manage any DCE services or databases, it gives
significant value to customers, such as:

• DCE topology view providing location, function, and role of DCE services in
the network. This information is dynamic and responds to changes in the
DCE or network configuration.

• Monitoring the basic state of the DCE services in the network and indicating
fault conditions to the network administrator.

7.1.1.6 Exportable Data Encryption Facility CDMF
The Common Data Masking Facility (CDMF) is an exportable user data
encryption facility that can replace the DES algorithm. DES may be exported
within a product that does not export any interface to DES routines. So, DCE
internally continues to use DES, but as an option, users can install CDMF if they
need access to encryption routines.

CDMF is an IBM-patented encryption algorithm that utilizes the underlying DES
support in DCE without exposing it directly to the application. It uses the DES
algorithm but exposes a weaker 40-bit key to the application in contrast to the
full 52-bit DES key.

7.1.1.7 Stub-Size Reduction
This performance enhancement produces smaller RPC stubs, thus improving
throughput and reducing memory allocation needs. Since all DCE services and
applications are based on RPC, this should significantly improve overall
performance in the cell.

7.1.1.8 Preferred File Server for DFS Clients
The Cache Manager maintains ranks for file server machines. A file server
machine’s rank determines the Cache Manager’s preference for electing to
access replicas that reside on the file server machine over replicas that reside
on other file server machines. You can specify preferences for file server
machines to bias the Cache Manager’s selection process.

This is an important feature for cells having WAN connections. It may help
reduce network traffic that could have occurred with random server selection.

Chapter 7. Miscellaneous Tools and Technologies 245

7.1.2 IBM DCE 2.1 New Features Overview
The most important new items of the this release are highlighted here. It is well
known that the DCE 2.1 release implemented on AIX 4.1 and OS/2 Warp
corresponds to OSF DCE 1.1. It is important to mention that the OSF DCE 1.1
implementation also is available on MVS 5.2.2, currently with the exception of the
Directory Services.

Most of the new features came as part of the new OSF DCE 1.1 release, such as:

• Integration Services
• DCE Control Program
• DCE Host Daemon
• Cell Aliasing
• Security Delegation
• Auditing
• ACL Manager Library
• Password Management API
• Internationalized Interfaces
• Character Code Set Interoperability
• IDL Compiler

In addition to these OSF features, IBM provided some enhancements to their
IBM DCE 2.1 for AIX and OS/2 Warp, such as:

• Event Management Service
• Automatic local RPCs
• Configurable preferences for FLDB server access
• Support for a CD-ROM file system in DFS

7.1.2.1 Integration Services
Within this category, we mention all the items that are part of this new release
but which could be used without the Remote Procedure Call and which could be
very useful for other client/server approaches like APPC/CPI-C and MQSeries
products.

Encoding Services: The IDL Encoding Services provide client and server
applications with a method for encoding data types of input parameters into a
byte stream and decoding data types in output parameters from a byte stream.
Encoding and decoding are analogous to marshalling and unmarshalling, except
that the data is stored in a local buffer and is not transmitted over the DCE
network.

Encoding flattens complex data (structures) into a byte stream in a local buffer or
restores the complex data from the flattened data in the buffer. Encoded data
can be written to a file or forwarded by a message-passing system. This is a way
to exchange complex data types (even binary data) between different platforms,
regardless of their data type size and endianness. The only DCE service needed
is an RPC runtime on both the encoding and the decoding end.

246 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Figure 57. Encoding Services

The encode and decode part both use the same API offered by IDL-generated
stubs. So in the above case, two stubs have to be generated: one for the
request and one for the response. For additional details, look into the IBM DCE
2.1 for AIX Application Development Guide - Core Components or equivalent
OS/2 Warp and MVS publications.

GSS-API - Generic Security Services API: The Generic Security Service (GSS)
provides an alternative way of securing distributed applications that handle
network communications by themselves. With the GSS-API, applications can
establish secure connections and act like DCE RPC servers.

The GSS-API is a standard API for interfacing with security services, as defined
by the IETF RFCs 1508 and 1509. It allows flexible use of the DCE security by
programs, even if they don’t use DCE RPC to communicate (see Figure 58).
Because the GSS-API is product neutral, you can define your security policy and
implement it using the generic API.

Figure 58. Generic Security Service API (GSS-API)

Chapter 7. Miscellaneous Tools and Technologies 247

The GSS available with DCE includes the standard GSS-API routines (Internet
RFC 1509) as well as OSF DCE extensions to the GSS-API routines. These
extensions are routines that enable an application to use the DCE Security
Service. However, if applications make use of the DCE extensions, they will not
be portable to other security mechanisms because they will not understand, for
instance, EPACs.

A GSS-API caller (usually the application client) accepts tokens provided to it by
its local GSS-API implementation and transfers the tokens to a peer (usually the
application server) on a remote system. That peer then passes the received
tokens to its local GSS-API implementation for processing.

Clients as well as servers first have to authenticate themselves with the security
server (network login).

Extended Registry Attributes: The registry stores specific information about
principals, groups, organizations, and accounts. The kind of information stored
in the registry database is defined in a registry schema, which is essentially a
catalog of the kinds of data stored in the database. There is a schema entry
definition for each type of attribute that can be associated with a registry object.
Using the Extended Registry Attribute (ERA), you can add your own schema
entries. These attributes are called extended attributes. Once those extended
attributes have been defined, they can be attached to a registry object (principal,
group...) with dcecp commands.

A useful implementation of this feature can be the Identity Mapping between the
DCE principal and the MVS Resource Access Control Facility (RACF) user. The
RACF user is the user ID against which the access lists stored in the RACF
database are checked.

If a principal has extended attributes, these attributes are carried with the
Extended Privilege Attribute Certificate (EPAC) obtained when the principal has
been authenticated. More information about this subject can be found in the
redbook Understanding OSF DCE 1.1 for AIX and OS/2.

7.1.2.2 DCE Control Program
The DCE Control Program (dcecp) provides consistent, portable, and secure
access to nearly all DCE administration functions from any point in a DCE cell.

Figure 59. DCE Control Program

As Figure 59 above shows, dcecp incorporates into a single command interface
most of the operations previously performed by using various components’
control programs. In cooperation with the DCE host daemon (dced), it allows for
remote administration of the DCE machines.

248 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

It also includes the Tool Command Language (Tcl), a powerful and portable
scripting language. Tcl is platform-independent and should run on each platform
where DCE Version 1.1 is installed. Portable extensions to dcecp can be written
in Tcl to simplify administrative tasks.

7.1.2.3 DCE Host Daemon
The DCE host daemon (dced) enables complete remote administration of DCE
services and other applications. It incorporates the functions of the previous
RPC daemon and the security client daemon.

This function not only allows the administration of the DCE-related servers, such
as CDS and security, but also provides the opportunity to manage some remote
objects that are local to the individual platforms, such as servers, hostdata, and
keytabs.

Another interesting capability offered by the new dced is the possibility to get an
application server started by an incoming client. This assumes that the server
has been registered in the srvrconf.db and eventually that its interface has been
manually exported into the CDS directory.

7.1.2.4 Cell Aliasing
This feature permits a cell to have multiple names and eventually allows the
primary name of the cell to be changed.

The first step consists in creating the cell_aliases object in dcecp, which is an
alias name of the cellname. Afterwards, this alias name can be set to the
primary name. The cellalias operation is very powerful because it also tries to
change data in the hostdata container of all machines in the cell.

However, although it may seem that this dcecp object is there and can be used,
cell aliasing is not yet working. None of the DCE vendors received working code
from OSF to support cell aliasing or hierarchical cells.

7.1.2.5 Security Delegation
This feature allows intermediary servers to act on behalf of an initiating client
while preserving the client’s and server’s identities and access control attributes
across chained RPC operations.

Figure 60. Delegation

The DCE delegation model requires the extension of two components:

 1. Extended privilege attributes certificates (EPACs)
 2. ACL model

The EPACs need to contain all involved identities. The ACL contains more entry
types, such as user_obj_delegate, group_obj_delegate, user_delegate, and so on.

Chapter 7. Miscellaneous Tools and Technologies 249

The object being protected by ACLs has to set up the according permissions if it
wants to allow for delegated access.

An application server can also impersonate the client, meaning it can
temporarily adopt the identity of the client.

7.1.2.6 Auditing
This allows administrators to track security-related events within a DCE’s trusted
computing base. An API is included and permits the development of servers that
record audit events. The data structures and API functions involved in this
auditing capability are derived from those of POSIX 1003.6. The features of the
DCE Audit Service are the following.

 1. An audit daemon (auditd) that may run on all hosts in the cell.

 2. An API that can be used to record audit events. This can also be used to
craft tools that analyze the audit records.

 3. An administrative interface to the audit daemon.

 4. An event classification mechanism that allows the logical grouping of a set of
events.

 5. Audit records can be directed to the log or to the console.

7.1.2.7 ACL Manager Library
The ACL Library provides simple and practical access to the ACL Manager
Interface and the ACL Network Interface for the convenience of programmers
who are writing ACL managers called on by the DCE servers. The library
provides DCE developers with a set of convenience functions so that they can
implement ACL managers more easily.

The ACL API consists of three parts.

 1. The sec_acl...() API is used by clients that need browse and edit ACLs. The
acl_edit or dcecp acl commands are built using this interface.

 2. The network interface rdacl..(). ACL managers must implement the code to
the predefined calls of this interface. A working ACL manager must be able
to respond to all these calls. Callers can be clients that use the sec_acl
interface.

 3. The ACL manager l ibrary dce_acl...() enables the server code to perform the
DCE-conformant authorization lookups at run-time.

7.1.2.8 Password Management API
User passwords are the weakest link in the chain of the DCE security. Easily
memorized passwords are also easy for attackers to crack. The Password
Management facility is intended to reduce this risk by providing the tools
necessary to develop customized password-management servers and to call
them from the client password change programs. It enables enforcement of:

 1. Stricter constraints on user passwords.

 2. Automatic generation of user passwords.

250 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.1.2.9 Internationalized Interfaces
This allows you to use a message catalog for all user-visible messages. It is
now possible to localize DCE programs by supplying DCE messages in other
languages.

7.1.2.10 Character Code-Set Interoperability
This is another aspect of the internationalization. It allows the development of
RPC applications that automatically convert character data from one code set to
another, and it enables the preservation of the character data integrity.

7.1.2.11 IDL Compiler
The compiler generates smaller and cleaner RPC stub code. It also supports
new IDL constructs such as unique pointers, user exceptions, and node
deletions.

As already mentioned, the Encoding Service (part of the marshalling) can be
used as a stand-alone function. This functionality is requested by an appropriate
IDL in combination with an ACF definition, specifying encode and decode.

7.1.2.12 DFS Enhancements
DFS now supports exporting an AIX CD-ROM file system and file system sizes
greater than 2 GB.

The AIX authentication service for PC-NFS clients is now integrated with the
NFS-to-DFS gateway.

7.1.2.13 Event Management Service
The DCE Event Management Service (EMS) supports asynchronous event
management for use by system management applications. EMS uses the
concepts of event suppliers and event consumers and sets up an event channel
between them to support asynchronous communication. In the context of DCE,
event suppliers are any DCE core service or DCE-based application (client or
server), and event consumers can be any application with an interest in
receiving asynchronous events from one or more DCE processes. The
transmission of events between suppliers and consumers is uncoupled by
routing events via EMS which is the implementation of an event channel. EMS
also provides a filtering mechanism to allow administrators and consumers
control over which events EMS will send. EMS provides integration for DCE
clients and servers using the DCE Serviceability (SVC) interface. DCE
applications can use the APIs offered in SVC to become event suppliers.

A Simple Network Management Protocol (SNMP) subagent for DCE gets its
information, besides other sources, from EMS by registering as an event
consumer. The SNMP traps and events are then sent by the SNMP agent on the
local machine to an SNMP manager, such as the IBM SystemView.

These features are available on OS/2 Warp but not in this release of AIX DCE.

7.1.2.14 Automatic Local RPCs
The UNIX protocol sequences introduced with AIX DCE 1.3 and described
in7.1.1.3, “Local RPCs” on page 243, are no longer needed. The RPC runtime
handles client/server connections on the same machine now ″under the covers″.
It uses UNIX domain sockets and still creates socket files for local RPC
connections, but the DCE applications always see regular binding handles as if a
network were involved.

Chapter 7. Miscellaneous Tools and Technologies 251

7.2 DFS Replication
This subject is already fully covered in theory by the The Distributed File System
(DFS) for AIX/6000 redbook. However, since this feature was not available when
the DFS redbook was published, we tested it and give a general overview and
guideline. The reader should be familiar with DFS in general before reading this
section.

For a step-by-step instruction on how to set up DFS replication see 4.4,
“Replicating Filesets on AIX” on page 89.

7.2.1 Overview
DFS replication is the ability to have one or more read-only copies (replicas) of a
read/write DCE LFS (Local File System) fileset. The different copies are hosted
on multiple file servers. Therefore, if one server machine goes down, you can
still access the information from other available servers.

Replication is supported only for DCE LFS filesets, not for non-LFS filesets. An
example of a non-LFS fileset is the AIX Journaled File System (JFS). The AIX
JFS can be exported into the DFS file space, but it lacks the ability to be
replicated.

A read-only fileset is an exact copy, or replica, of all data contained in a
read/write source fileset. The read-only fileset receives a .readonly extension to
the fileset name. It is updated when changes are made to the read/write fileset.
The frequency of updates depends on the type of replication. Two types of
replication are available with DCE LFS filesets:

• Release replication
• Scheduled replication

With release replication, you manually propagate the update from the read/write
fileset server to the read-only fileset server(s) at the frequency you want. This
type of replication is useful if the fileset seldom changes or if you need to closely
monitor the replication process.

With scheduled replication, you specify replication parameters that dictate how
often DFS is to automatically update replicated filesets with new versions of
source read/write filesets. This type of replication is useful if you prefer to
automate the process and do not need to track exactly when releases are made.

Both types of replication produce the same result: Changes to the read/write
source filesets are copied to different server machines. It is the duty of the
system administrator to choose which type of replication to use with each fileset.
The next sections give a summary of the DFS replication concepts.

7.2.2 Why Fileset Replication?
One of the advantages of the DCE DFS over another distributed file system is its
ability to replicate a fileset on multiple machines. Actually, when you replicate
your fileset, you can benefit from higher availability and load balancing.

• Availability

Replication minimizes the effects of machine outages. If one machine
housing a DCE LFS fileset is unavailable, replicated versions of the filesets
are still available from other machines. To achieve this goal, it is not

252 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

sufficient to have just that one fileset replicated; all filesets higher up in the
access path must also be replicated.

• Load balancing

Requests for files of popular or frequently used DCE filesets are then spread
across different machines, preventing any one machine from becoming
overburdened with data requests.

These advantages are of course only valid for files which are accessed mostly
for reading (see below).

7.2.3 Which Files to Replicate?
Even though we may replicate any fileset, care should be used in deciding which
filesets would benefit most from replication. If the type of access is read-only,
replication works perfectly, whereas filesets with frequent write accesses or
updates should not be replicated. They would cause either a lot of network
traffic, because they would have to be updated frequently, or even worse, the
DFS clients would access outdated files. If the filesets are accessed
read-mostly, it is your decision how often writes occur and how important it is for
clients to always read the most current data. If that is not critical, you may
decide to replicate for availability and performance (load balancing).

The DFS namespace should be planned accordingly; so you should put
read/write files into read/write filesets and read-only files into read-only filesets.
The fileset candidates for replication should also be put at a high level in the
cell’s file tree (for example root.dfs and its direct subdirectories). The reason for
this is the fact that the decision algorithm of the Cache Manager to use
read/write or read-only filesets depends on the availability of the replica on all
intermediate steps in the search path. This point is further explained in 7.2.5,
“Mount Points” on page 255.

7.2.4 Prerequisites for Replication
To allow for replication, all machines participating in the fileset exports must
have been configured with the appropriate machine roles; this also includes the
replication server.

It is also required to have a replication of the root.dfs fileset because it is the
top-level fileset in any DFS full-path name, and to enable access to any read-only
fileset, all higher level filesets traversed must also be read-only. Although it is
sufficient to have a replication in the same aggregate as the read/write replica,
from an availability point of view, additional replicas should also be created on
other machines.

Chapter 7. Miscellaneous Tools and Technologies 253

Figure 61. Replicating from ev1 to ev4

When a fileset is selected for replication on another platform, the following steps
have to be executed.

• On the target platform, we have to prepare the aggregate and export it.

• We select the replication method via the fts setrepinfo command.

• With the fts addsite command, we indicate which sites we want to hold a
read-only copy of the read/write fileset. This has to include a mandatory add
site for the platform that houses the read/write fileset (ev1).

• Finally, depending on the selected replication method:

− We issue the fts release command to activate a replication for the
release replication.

− We issue an fts update command to request an immediate update of the
replicas in case we defined scheduled replication.

When the read-only fileset is created in the same aggregate as the read/write
fileset (same server and aggregate), DFS attempts to save disk space by having
the filesets share data that is the same across the different types of filesets. As
shown in Figure 61, this is accomplished in the following way.

• When the read-only fileset is created, the new fileset is filled with an array of
pointers to the data housed by the read/write source.

• Then the identities of the read/write and the read-only are exchanged so that
the current read-only becomes the read/write source and vice versa. As
long as the read-only remains identical to the read/write fileset, this one
stays small. However, as changes are made to the data in the read/write
fileset, the amount of storage for this set will increase.

When the fts release command is issued, the read-only copy on the same file
server machine as the source is updated. The repserver on each machine that
houses a replica of the read-only fileset then updates its replica to match the
read-only replica on the source platform. The read-only will not change until
there is a new fts release.

254 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.2.5 Mount Points
In order to become accessible by DFS clients, filesets need to be mounted.
Mount points have to be created in the DFS filespace. Figure 62 on page 256
shows several such mount points. Mount points show up as directory names.
Directories and files within a fileset can be accessed by specifying their full path
name. A full path name contains one or more directory names that are fileset
mount points.

There are two types of mount points that play an important role in the decision
whether the read/write or the read-only fileset is going to be accessed:

• Regular mount point

This is the usual type, to which any type of fileset can be mounted. If the
read/write fileset name is mounted there, the Cache Manager will decide
which fileset to access based upon criteria explained below.

• Read/write mount point

Only read/write filesets can be mounted and accessed via this type of mount
point.

The Cache Manager running in each DFS client system interprets the path name.
When it encounters a fileset mount point, it looks up information about the fileset
in the FLDB. Once it traverses a read/write type mount point, it only accesses
read/write filesets, even if the underlying mount points are regular mount points
associated with replicated filesets. As long as the Cache Manager traverses
regular mount points, it accesses read-only filesets if they exist; if a read-only
fileset does not exist, it accesses the read/write fileset. Once it encounters a
read/write fileset that is not replicated, any underlying mount points will also
access the read/write fileset even if a read-only fileset exists.

If the Cache Manager does not find the fileset type it looks for, it returns an
error. In other words, for example, it never accesses the read/write fileset as a
fallback variant when none of the replicas are available.

Before starting to replicate a fileset, we previously have to replicate the root.dfs
fileset. If we use release replication, the first replica must be on the same
machine that physically houses this root.dfs fileset. In order to use replication
for any other fileset, we must create read-only versions (replicas) of all filesets
mounted above it at higher levels in the file system. This means that we must
create read-only copies of the filesets that contain their parent directories.

Chapter 7. Miscellaneous Tools and Technologies 255

Figure 62. DFS Hierarchy File System

We can see in Figure 62 that the normal root directory mount point for the
root.dfs read/write fileset is /:/.rw when the replication is active. /: becomes the
access path to the root.dfs.readonly fileset. The two directories, /: and /.rw, are
identical; they show the same contents. The difference is, however, that when
you specify /:/.rw, you deliberately choose to access the read/write version of /:
and all underlying directories and files, even though you might have other
regular mount points and read-only filesets below the /: directory. An
administrator may want to unmount the /:/.rw for daily use so that only the
read-only fileset is accessible, and no changes can be made in the top directory.
Unmounting a fileset actually means deleting its mount point.

Note in Figure 62:

• /:/project1 is mounted via a regular mount point and is not replicated. This
read/write fileset is always accessible in read/write mode via /: or /:/.rw.

• /:/usr is a regular mount point for the usr fileset. Since usr is replicated,
only the usr.readonly fileset is accessed via the /:/usr path.

• /:/.usr is a read/write mount point for the usr fileset. The read/write fileset
can now be accessed by specifying the path name, /:/.usr, or via /:/.rw/usr or
/:/.rw/.usr. It is especially useful when /:/.rw is deleted for daily use.

• /:/src is a regular mount point for the src fileset. It accesses the
src.readonly fileset only because it is a replicated fileset, and the
administrator decided to not create a read/write mount point. If changes
need to be applied in the src fileset, a read/write mount point needs to be
temporarily created, or access has to go via /:/.rw.

256 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.2.6 DFS Clients
DFS clients can be located on AIX (UNIX) platforms and OS/2 Warp platforms.
These machines need to be configured as DCE and DFS clients.

DFS clients are not only caching fileset data but also fileset information, which
means path names to fileset associations. Assume having had a read/write
fileset mounted at a regular mount point for a while and DFS clients accessing it.
Then you decide to replicate it with the intention to force further access to the
read-only fileset. Since DFS clients are caching, they will continue to access the
read/write fileset after you have created the replica as long as they work in that
directory and the cache information is still valid. The cache information expires
after one hour if the directory is not the working directory.

To make a replica available on a DFS client, the following steps need to be
performed:

 1. Force an update of read-only fileset containing the parent directory with fts
release or fts update. If the regular mount for a new replica had existed
before, you need not do that; the read-only fileset containing the mount point
should be up-to-date.

 2. Change the working directory to a directory outside of that fileset if it was
accessible before the replication.

 3. Refresh the cache’s fileset information with cm checkfilesets.

The problem that DFS clients are able to access a read/write fileset via a regular
mount point even though it is replicated can be avoided if you create the replica
before you define the mount point. For details about configuration steps, see 4.4,
“Replicating Filesets on AIX” on page 89.

7.3 NFS-to-DFS Authenticating Gateway
This section provides the description of the NFS to DFS Authenticating Gateway,
sometimes also called the NFS/DFS Translator. This new functionality provides
DFS the ability to interoperate with NFS (Network File System). We do not
explain NFS; users are supposed to be familiar with it.

For a step-by-step configuration example of authenticated DFS access, see 6.6.4,
“Configuring DFS Access from NFS Clients” on page 222.

7.3.1 Introduction
We know that many customers are currently using NFS as a technology to
distribute file systems across the network. Many of their NFS client systems are
OS/2 clients or even more often DOS/Windows workstations. For these
platforms, DFS is not available yet. These customers need a transition period
within which they can access the DFS filespace from their non-DFS or even
non-DCE workstations. This has actually been possible since DFS was released.
DFS clients can export their directories to NFS, but since NFS users are not
authenticated, they obtained very limited access rights; they are considered
unauthenticated users.

The functionality known as NFS/DFS Authenticating Translator or NFS/DFS
Translator effectively provides NFS client users access to the DFS filespace. The
NFS/DFS Translator provides a mechanism for establishing a bridge between the
diverse authentication information by allowing a mapping to be established

Chapter 7. Miscellaneous Tools and Technologies 257

between an NFS client and an authenticated DCE principal. See Figure 63 on
page 258.

Figure 63. DFS/NFS Translator Architecture

Two scenarios are possible for sys3: it can be part of the cell, but DFS is not
available on it, or it is not part of the DCE cell, because not even DCE is
available on it.

7.3.2 Scope of Service
The primary function of the NFS/DFS Translator is to provide authenticated DFS
access from NFS clients. The NFS client views the same DFS namespace, with
the same file system hierarchy, as the DFS client, and we can, for example,
export parts of the file systems to NFS. This allows NFS client users who do not
have DFS ports for their hardware platform to participate in DFS file-sharing.

The NFS/DFS Translator does not provide complete DCE services from the NFS
client side. DCE services, such as directory services, security services, and RPC
services, are not available. Tools to modify ACLs or DFS administrative
commands are also not available to NFS clients.

The real goal of the NFS/DFS Translator is to provide authenticated access to the
DFS filespace from NFS client machines that do not need any extra software.

7.3.3 Concept
The standard DFS technology provides NFS access to the DFS filespace by
allowing an NFS server to export the DFS client’s view of the global filespace to
an NFS client machine. This is achieved by exporting the root directory, /..., or
any underlying directory, such as /.../<mycellname>/fs/mydirectory, to NFS.
However, this functionality is limited to allowing only unauthenticated access to
the DFS global filespace because NFS is unaware of DCE Kerberos-based
authentication. As a result, anyone who is not identified as a DCE principal and
makes an NFS request to the DFS filespace is treated as an anonymous user. In
order to provide authenticated access to the DFS filespace from NFS, an
additional agent is necessary to map the NFS-provided authentication
information into DCE authentication information suitable for issuing an

258 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

authenticated DFS request. In other words, an NFS user needs to be mapped to
a DCE principal.

The role of the translator is to map an incoming NFS client request credential
into a credential representing a DCE principal. The NFS server then makes the
file system request through the DFS client’s virtual file system with the mapped
credential so that the request looks to the DFS client as if it were made by a DCE
authenticated process.

7.3.3.1 Functionality and Implementation
NFS and DFS both provide service from inside the kernel. Since the NFS/DFS
Translator needs to reference NFS and DFS services that are not exported to
user processes, the translator must also reside inside the kernel. On AIX, this is
achieved by adding a kernel extension.

DFS, like NFS, is a layer underneath the VFS (Virtual File System). VFS is an
abstraction of a physical file system implementation. It provides a consistent
interface to multiple file systems, both local and remote. A virtual node (v-node)
represents access to an object within a virtual file system. Associated with each
v-node is a vector of procedures (read, write, create, remove), the vnodeops.
The NFS server performs the service indicated in a received request by calling
the vnodeop operations. Since the DFS client is integrated into the VFS model, it
also provides a full set of vnodeops. These vnodeops are used by the NFS
server to export the file system as seen from the DFS client.

7.3.3.2 NFS/DFS Translator Administration Model
DFS uses DCE Kerberos-based authentication. The role of the translator is to
map an incoming NFS client request credential into a credential representing a
DCE principal. NFS/DFS Translator administration requires commands or
services to administer authenticated mappings in order to:

• Authenticate a DCE principal to be associated with an NFS host IP address/
UID pair

• Register NFS/DFS translation mappings on the NFS/DFS Translator site, also
known as a translation point

• Query registered authentication mappings

• Remove authentication mappings from the translator

The dfsiauth command is the tool for administering these functions. It is part of
the translator and resides therefore only on the machine running the translator.
To access this command, the DCE user who exports their files must log in to the
translator machine. They can do so on a local terminal or via a remote login
utility (telnet, rlogin). The command can be executed, and then the session
can be terminated. After this session, the authentication mapping is active, and
NFS client users can mount the exported directory to a free local directory and
then begin to access the DFS filespace.

Credentials can expire after a certain time (10 hours by default). When DCE
credentials expire, the translator user will not be able to use the kinit command
to renew his credentials. From the user’s point of view, when their DCE
credentials expire, they will start to experience access permission errors
because they become an authenticated user. To re-authenticate, the user must
use the translator registration command once again to register the mapping.
Then they can continue to access the DFS filespace.

Chapter 7. Miscellaneous Tools and Technologies 259

On the NFS client machine, you don’t need to unmount and remount the file
system.

7.3.4 Administration Tasks for the System Administrator
Administration and configuration of the NFS/DFS Translator involves steps to be
performed by the AIX system administrator and by the DCE users who are willing
to make their DCE authentication available to the NFS users.

This section covers the administration tasks to be executed by the system
administrator on the translator machine. For the administration tasks of the DFS
users who make their data accessible from NFS consult 7.3.5, “Administration
Tasks for the DFS User” on page 262.

Eventually, to provide file access to the end users, a system administrator on the
NFS client machine must mount the exported DFS directory. This is described in
7.3.6.1, “Using the Translator from a UNIX NFS Client Machine” on page 264.

The following tasks of a system administrator are performed on the NFS/DFS
Translator site:

• Installing and starting the NFS/DFS Translator

• Exporting DFS to NFS

• Managing expired authentication mappings

• NFS anonymous mappings

• Local ID differences

7.3.4.1 Installing and Starting NFS/DFS Translator
The first step is to install the package dcedfsnfs.obj, which includes:

• The AIX kernel extension for the NFS/DFS Translator

• The dfsiauth command to register(add), delete, and list authentication
mappings

• The libdceiauth.a user library

• The dcedfs/dceiauthapps.h include file for application development

• The System Management Interface Tool (SMIT) screens for NFS/DFS
Translator management

Then provide (start) NFS/DFS Translator service by:

 1. Verifying DCE/DFS and NFS are configured and running on your system.

 2. Loading dfsiauth.ext (the kernel extension) by running the /etc/rc.dfsnfs script
file.

The translator can also be started from the SMIT menu by calling smit dfsnfs.

Put the /etc/rc.dfsnfs script into the /etc/inittab file to support automatic
start-ups. It should be added after the rc.dce and rc.nfs lines in the inittab file
because it needs them to be active.

260 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.3.4.2 Exporting the DFS Filespace to NFS
The DFS filespace should be made available to NFS clients by NFS-exporting the
DFS filespace. This means that any portion of the DFS file tree can be exported
just like any regular AIX directory.

The top of the DCE tree is /..., global root. Below that is the cell name and the
junction point into DFS (/.../cellname/fs). Any portion of this part may be
exported. By exporting /..., NFS clients will have access to other cells for which
intercell registration is set up. However, in most cases, access to the foreign
cells will be unauthenticated access. By export ing /. . . /<cel lname>/fs, NFS
client accesses will be limited to a particular cell. Administrators should
consider these options when deciding what part of the DFS filespace is to be
exported.

However, when you export the DFS filespace to NFS, you can expose it to a
decreased level of protection due to the less secure nature of the NFS/RPC
compared to the DCE/RPC. Administrators should take precautions against
forged NFS requests, replays, and IP address spooling. They should be careful
by exporting only to a specific group of machines and not to everybody.

After considering these alternatives, the DFS filespace can be exported to NFS
clients.

7.3.4.3 Removing Expired Authentication Mappings
Credentials can expire. See also 7.3.5.6, “Managing Expired Authentication
Mappings” on page 264, for explanations how to renew them. Expired mappings
are removed by the translator.

In addition, a local system administrator can explicitly clean all expired
mappings by using the following dfsiauth command:

#dfsiauth -flush

7.3.4.4 NFS Anonymous Mappings
An NFS server, by default, maps root (UID=0) requests to the nobody (uid=-2)
remote requests. NFS administrators can choose to map remote root to local
root. With the NFS/DFS Translator, you can also do the same thing by modifying
the /etc/exports file. For example, if you have a DCE principal root with UID=0
and you need access to root’s DFS files from an NFS client, then:

 1. The NFS anon mapping must be set to UID 0.

 2. An authentication mapping for U I D = 0 must be set for the DCE principal root.

7.3.4.5 Local UID Difference
The NFS/DFS Translator adds the authentication information to NFS requests
before they are passed to DFS. This authentication mechanism allows the NFS
request to become associated with some DCE principal. The DCE value for the
UID associated with the principal may be different from the name and UID of the
NFS client. In fact, any NFS UID can be mapped to any DCE known principal
identifier. This difference can lead to unexpected behavior. For this reason, it is
highly recommended to synchronize your client’s local or NIS-maintained
/etc/passwd file with the DCE registry or vice versa.

See 6.6, “Integrating an NFS/NIS Environment” on page 212, which demonstrates
ways of making UIDs unique.

Chapter 7. Miscellaneous Tools and Technologies 261

7.3.5 Administration Tasks for the DFS User
As explained in the previous section, administration and configuration of the
NFS/DFS Translator involves steps to be performed by the AIX system
administrator and by the DCE user who is willing to make his DCE authentication
available to the NFS users.

This section covers all the steps that these DCE users have to execute, which is
basically the dfsiauth command. However, our recommendation is to create one
or more special users operated by the system administrator because we
suppose that you would not want to leave these tasks up to regular users.

Eventually to provide file access to the end users, a system administrator on the
NFS client machine must mount the exported DFS directory.

Here are the tasks for a DFS user to perform on the NFS/DFS Translator site:

• Registering (add) authenticating mappings

• Deleting authentication mappings

• List existing authentication mappings

• Setting @sys and @hosts values within a mapping

• Managing expired authentication mappings

7.3.5.1 The dfsiauth Command
The dfsiauth command can be used by either the AIX super user or by a normal
AIX user if they have a DCE account. This command is only available on the
system where the NFS/DFS Translator is running. To use it, a user must log in
into that system, either locally or remotely. The DCE account that is used for a
particular mapping must already exist in the DCE security registry.

$dfsiauth -?

dfsiauth -add [-overwrite] | -delete -r remote_host -i numeric_uid
[-u principal] [-p password] [-s sysname] [-h host]
Usage: dfsiauth -list [-u principal] [-p password] | -flush

The meaning of the options is the following:

-r remote_host Hostname of the machine requesting authenticated access
-i remote_uid UID of the user requesting authenticated access
-u principal DCE principal to authenticate as
-p password Password of the DCE principal
-s sysname Associate parameter sysname with the @sys property for the

input host/UID pair
-h hostname Associate parameter hostname with the @host property for the

input host/UID pair.
-add Add the specified mapping information
-delete Delete the specified mapping information
-overwrite Change information about an existing mapping. Option only

valid with the -add option
-list List the registered authentication mappings
-flush Remove expired authentication mappings

The password does not have to be entered in the dfsiauth command in clear
text. If it is omitted, the user is prompted for it. The dfsiauth -list command
displays the currently active mappings.

262 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

For more information, we suggest reviewing the DCE for AIX NFS/DFS
Authenticating Gateway Guide and Reference.

7.3.5.2 Registering Authentication Mappings
This task is to register your authentication mapping. In order for an NFS client
user to have authenticated access to DFS, an authentication mapping must exist
that maps the NFS client machine’s IP address and remote UID to a DCE
principal that has the proper access rights to DFS.

If the authentication mapping does not exist, DFS will determine the NFS client’s
request for data is unauthenticated. This is equivalent to a DFS user not having
previously performed a dce_login.

The following command adds an authentication mapping for user ID 107 of NFS
client system ev5, who will be authenticated as DCE principal brice:

$dfsiauth -add -r ev5 -i 107 -u brice

Note that this command is normally executed by the user brice, but the system
administrator can also use this command on behalf of brice if user brice lets this
administrator know his (brice’s) DCE password.

7.3.5.3 Display Authentication Mappings
You can display the translation mappings by using the following command:

$dfsiauth -list -u brice

Host Uid Principal @sys @host Expiration
---- ------ ---------- ----- ----- ----------
ev6 107 brice 5/27/94 00:30

7.3.5.4 Unregistering Authentication Mappings
When you no longer need your authentication mapping, you can remove it by
using the following command:

$dfsiauth -delete -r ev5 -i 107 -u brice

7.3.5.5 Setting @sys and @host Variables
DFS uses the @sys and @host variables to access operating system-specific and
host-specific files and directories if the administrator has set them up. The DFS
client expands @sys and @host names that it encounters to a defined system
name or hostname.

The NFS/DFS Translator also has the capability to make these path name
substitutions if the @sys and @host values are registered for a host/UID pair.
To register a host/UID pair, you use the dfsiauth command with values for @sys
and @host substitution options.

The following command registers the user with UID 107 from remote host ev3 as
authenticated DCE principal brice. The sysname rs_aix32 is also associated with
this mapping.

$dfsiauth -add -r ev3 -i 107 -u brice -p my_passwd -s rs_aix32

dfsiauth:<ev3, 107> mapping added
DCE principal:brice
System Type (@sys)rs_aix32

Chapter 7. Miscellaneous Tools and Technologies 263

For more information, we suggest reviewing the DCE for AIX NFS/DFS
Authenticating Gateway Guide and Reference.

7.3.5.6 Managing Expired Authentication Mappings
As we previously said, credentials can expire. When DCE credential tickets
expire, the NFS client user is not notified. On the NFS client machine, it will
appear to the user that authenticated access has been suddenly lost. They start
to experience access denied errors. If this happens, you (who are a known DCE
principal user) should renew the ticket by loging in to the NFS/DFS Translator
site. There you must reregister your authenticated mappings by using this
command:

$dfsiauth -add -r ev2 -i 107 -u brice -p my_passwd -s rs_aix32

You will notice that it is exactly the same command as was entered to first set
up the mapping.

In addition, the NFS/DFS translator will collect the expired authentication
mappings and remove them from the authentication mapping table to avoid
overrunning the translator with expired mappings.

In addition to that, a local system administrator can explicitly clean all expired
mappings as outlined under the system administrator’s tasks.

7.3.6 Making DFS Access Available on the NFS Clients
As outlined above, you need to set up a mapping on the translator machine
before you can get authenticated access from any remote NFS client machine.
The following three options achieve this before mounting an exported directory
to a local one:

• Make a remote login (telnet, rlogin) to the server machine, and issue the
dfsiauth command to register your authentication mapping.

• Log in locally on the server machine and do the same task.

• Let a system administrator on the translator machine know your DCE
password to do this for you.

As you know, when you perform telnet or rlogin, you expose your password
across the network. So we recommend using this method only in a LAN
environment, if at all.

For all systems, check that TCP/IP and NFS are running correctly before trying to
mount a directory.

7.3.6.1 Using the Translator from a UNIX NFS Client Machine
If you have already registered your authentication mappings on the NFS/DFS
translator, you issue the mount command:

#mount -v nfs -n ev5 /:/remote_dir /your_local_dir

264 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.3.6.2 Using the Translator from an OS/2 NFS client
There are two ways two mount the DFS filespace from an OS/2 machine:

 1. Mount by using the login ID and password.

 2. Mount by not providing the login ID and password.

In this case, you must set some parameters on the OS/2 machine. For
example, if you have login ID 107 on the server machine and you belong to a
group ID number 100 in the same system, you must do this on the OS/2
system before mounting:

>set UNIX.UID=107
>set UNIX.GID=100

Then issue the command:

c>mount E: nfs_server_machine:/:/remote_dir

7.3.6.3 Using the Translator from a PC-NFS Client
If the translation mapping is already done, issue this following command:

c>mount E: nfs_server_machine:/:/remote_dir

7.4 Integrated Login AIX and DCE
In DCE for AIX Version 2.1, the AIX base operation security services have been
integrated with the DCE Security Services. In previous versions of DCE, the user
had to log in to AIX first and then to DCE. This required the maintenance of two
user IDs and passwords. Furthermore, the DCE login credentials (represented
by the environment variable KRB5CCNAME) could only be passed to child
windows but not to parent windows or other descendents of the parent window.
Depending on your environment, you might have had to log in to DCE several
times.

This release of DCE permits the user to see a single-system image rather than
separate images of AIX and DCE. Most users will be able to acquire DCE
credentials through AIX commands, such as login and su, to change their
password through the AIX passwd command and to get information from the
standard C library (libc.a) routines, such as getpw*() and getgr*(). Note,
however, that getpwent() and getgrent() are not DCE-integrated. Remote telnet
or ftp users will also authenticate with the DCE registry when they access an
account set up for DCE authentication.

7.4.1 AIX 4.1+ Authentication Parameters
To support DCE integration with the AIX login, two new user attributes (SYSTEM
and registry) have been defined in the /etc/security/user file. This file defines
such things as authentication methods, password policies, or the umask for the
user accounts of the local system. It defines default values and allows you to
create a stanza for each individual user that may override some or all of the
default values. The file also contains lots of explanations.

It is important to note that the user attributes are applied on a domain-relative
name basis. That means that a wandering DCE user who logs onto a system as
brice, /.:/brice or /.../this_cell/brice, is affected by user attributes that can be
present in a stanza for a local user brice in the /etc/security/user, the

Chapter 7. Miscellaneous Tools and Technologies 265

/etc/security/limits, and the /etc/security/audit/config files. However, the
wandering user is not affected by the local password attributes.

7.4.1.1 The SYSTEM Attribute
The auth1 (or auth2) attribute in /etc/security/user specifies a primary (or a
secondary) authentication method to access the AIX system. The value SYSTEM
means that a system-provided authentication method is to be used in contrast to
a user-provided authentication method, which is also possible.

The SYSTEM attribute is used to select one or more of the system-provided
methods which authenticate a user to the local machine. The valid values for
this attribute are Boolean expression strings made up of the following tokens.
Their meanings are:

files Use local authentication with the /etc/security/passwd file
compat Use local files and/or NIS
DCE Authenticate through DCE

The value for the SYSTEM attribute can be a complex expression formed by
concatenating the methods (tokens) above with the AND and OR Boolean
operators. If the method succeeds, its value is TRUE. To test for other
conditions, you can also specify an expected result for the method, and if the
method ends with this given result, it evaluates as TRUE. The syntax is
method[result]. Valid results are:

UNAVAIL Authentication service was unavailable
NOTFOUND User was not found in the database
FAILURE Authentication failed for a different, unspecified reason
SUCCESS Authentication succeeded (default, when no result is specified)

In the following example, the primary method is to verify (authenticate) the user
with the DCE registry. If this fails because DCE is not available, authentication
can be performed either with the local passwd file or via NIS:

auth1 = SYSTEM
SYSTEM = ″DCE OR (DCE[UNAVAIL] AND compat)″

Explained in more detail, this entry means: The first method to be used is DCE.
If it fails, another combination of methods can be tried (OR). The second
construct will succeed if the DCE method failed because DCE was not available
(and not for any other reason) and if a compatible method succeeds. In other
words, if login DCE fails because the user does not exist or the password is not
correctly entered, login fails without trying the compatible methods.

The default stanza in /etc/security/user contains SYSTEM=compat. It is globally
valid for all users unless it is overwritten in the stanza of a particular user. The
local administrator can change this stanza in order to create another default, or
he/she can define a SYSTEM attribute in the stanza for users who require
another authentication scheme. The local user root should always have
SYSTEM=compat (as well as registry=files) to make sure that the superuser is not
dependent on non-local authentication mechanisms.

266 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.4.1.2 The registry Attribute
The registry attribute defines the database where a user’s password is
administered. This attribute determines where password queries and changes
take place. The valid values for this attribute are:

files Use the local /etc/security/passwd file
NIS Use NIS
DCE Use the DCE registry

There is no default value for registry and, as explained later, the administrator
can choose to leave the default undefined. Notice that the local user root should
always be defined as registry=files (as well as SYSTEM=compat). In that way,
superuser password operations are not dependent on non-local mechanisms.

7.4.1.3 Access Method Identification
After authentication, an AUTHSTATE variable is set in the user’s environment.
This variable is set to the authentication mechanism with which the user was
successfully authenticated. It can have a value of compat, NIS, or DCE.

The AUTHSTATE variable determines which database will be accessed for a
user’s subsequent password operations. However, if the user’s registry attribute
is defined, password operations are directed toward the database defined by
registry attribute, regardless of the user’s AUTHSTATE.

The AUTHSTATE variable also determines whether the getpw*() and getgr*()
calls look first for their information in the local AIX files or in DCE. If the
information is not found in the first choice, the others will be searched.

The local administrator should make sure that a user’s registry attribute does
not conflict with the user’s AUTHSTATE, which is determined indirectly by the
SYSTEM attribute. One method is to leave the registry attribute undefined for all
but local-only users. Local-only users (such as root) should always be defined
as registry=files.

7.4.2 User Synchronization Between AIX 4.1+ and DCE
In an integrated environment between AIX and DCE, we have to solve two major
issues. One is the definition of authentication methods in the /etc/security/user
file as described in 7.4.1, “AIX 4.1+ Authentication Parameters” on page 265,
and the other one is the mapping of user/group IDs defined on the AIX machines
and in the DCE registry.

It is strongly recommended to maintain the DCE registry and local files
synchronized as closely as possible. This means that for a particular user or
group, the user ID and group ID should be the same on all systems of the cell
and in the registry. If this is not the case, a user authenticating with DCE might
assume the user ID of another user defined locally on the machine. There are
ways to map different IDs, but this can become very complex and confusing.

In this section, we discuss:

• How user IDs and group IDs can be synchronized between AIX and DCE
• How user IDs and group IDs can be mapped between AIX and DCE
• What a synchronized user is and how they are defined
• What wandering users are
• How to protect AIX systems from wandering users

Chapter 7. Miscellaneous Tools and Technologies 267

7.4.2.1 Synchronizing User/Group IDs
The /opt/dcelocal/bin/passwd_import command is a mechanism for creating
registry database entries from local password and group file entries. If there are
duplicate entries, passwd_import follows your directions on how to handle them.

The /opt/dcelocal/bin/passwd_export command creates local password and
group files from registry data. Use passwd_export to keep these local files
consistent with the registry database. When passwd_export runs, it makes backup
copies of the current password and group files, if they exist. The files are named
passwd.bak and group.bak, respectively. The passwd_export is commonly run
through an entry in root’s crontab file. However, with the possibility to define
wandering users, it might, in many cases, become unnecessary to synchronize
local password files with the DCE registry.

7.4.2.2 Mapping DCE User/Groups to AIX Users/Groups
The local administrator can redefine user information for DCE users accessing
the local AIX machine by putting the appropriate entries in the
/opt/dcelocal/etc/passwd_override or /opt/dcelocal/etc/group_override fi le. The
override information that you enter is in effect only for the local machine, which
is the machine on which the passwd_override file is stored. When a user logs
into a machine with an override file, any information for the user’s account in the
override file replaces the pertinent information obtained from the registry.

Entries in the passwd_override file have a format similar to those in a regular
passwd file as found on every UNIX system:

principal:passwd:UNIX_id:grp_id:GECOS:home_dir:shell

The principal, UNIX_id and grp_id fields are key fields. Empty fields are not
overwritten; they are accepted by AIX as submitted by the DCE registry. For
instance, the following entry would assign the Korn shell to all DCE users
coming in with a DCE group ID of 22:

:::22:::/bin/ksh

If a principal is specified, then the UNIX_id and grp_id fields are used to reassign
these values for the local AIX system. An incoming DCE principal that matches
a principal field specified in the file gets the values of that entry assigned for
the session on the local AIX machine. For example, if DCE user brice logs in to
an AIX machine with a passwd_override file and the following entry in that file:

brice::0:0:Brice:/home/root/:/bin/ksh

he becomes root user on this machine. See also 7.4.2.5, “Denying DCE
Users/Groups Access to AIX Machines” on page 270, for more information on
the usage of the override files.

7.4.2.3 Synchronized Users
In a well-integrated cell, most users are defined and administered in the DCE
registry. If some users are also defined locally on any machine, then their local
definition should be synchronized with a DCE user. Such a user is referred to as
a synchronized user.

The passwd_export utility can be used to synchronize all local user information
with the DCE registry except for passwords. The AIX passwd user command or
the pwdadm administrative command should then be used to synchronize
passwords. When a synchronized user uses regular AIX Base Operating System

268 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

(BOS) commands that require or maintain the password, commands are
automatically directed toward the registry defined by the registry or the
AUTHSTATE attributes. See 7.4.4, “Managing Passwords” on page 271, for more
information on synchronizing passwords.

To enable a user to use the DCE registry, the user’s stanza (whether a specific
stanza or the default) in /etc/security/user should have a SYSTEM attribute that
defines DCE as the first authentication method to try, as shown in the following
examples:

SYSTEM = ″DCE OR (DCE[UNAVAIL] AND compat)″
SYSTEM = ″DCE OR (DCE[FAILURE] AND compat)″
SYSTEM = ″DCE AND compat″

In the above examples, DCE is the first authentication method tried. If
authentication passes, the user is granted access; all UNIX-type information (UID,
GID, home directory, login shell) as well as DCE credentials are obtained
through DCE. In the first example, if DCE fails because of unavailability, local
authentication is attempted. The second example attempts local authentication if
DCE authentication fails for any reason. The third example requires both DCE
and local authentication to succeed before the user is allowed access to the
system.

Note: For synchronized users, do not set the registry attribute.

A user’s AUTHSTATE environment variable is set to the first authentication
method that succeeds, and subsequent password operations are directed toward
the registry defined by AUTHSTATE (see access method identification in this
section). If the registry attribute is explicitly set to a registry that conflicts with
the AUTHSTATE of the user, password operations can fail.

7.4.2.4 Wandering DCE Users
Wandering DCE users are users defined in the DCE registry but not defined on
the local machine. You can enable wandering users to log onto DCE from any
machine by setting the default SYSTEM attribute as follows:

default:
SYSTEM = ″DCE OR compat″

Any DCE user can log on to any machine configured in that way by supplying his
or her DCE name and password. Of course, if local users with colliding names
or IDs exist and have been protected either by their own stanzas (in the
/etc/security/users file) or by entries in the passwd_override or group_override
files, a wandering user is denied system access.

If you generally allow access to wandering DCE users, you should set an
individual entry for the local root user as shown below:

root:
SYSTEM = compat
registry = files

In this way, all authentication and password operations are directed toward local
files.

Chapter 7. Miscellaneous Tools and Technologies 269

7.4.2.5 Denying DCE Users/Groups Access to AIX Machines
The local administrator can deny DCE authenticated access to the local machine
for a specific principal by putting the appropriate entry in the
/opt/dcelocal/etc/passwd_override or /opt/dcelocal/etc/group_override fi le. For
example, to deny local system access to DCE user joe, we can add the following
line to the passwd_overrride file:

joe:OMIT:::::

Similar entries, keyed by user ID or group ID, can prevent DCE authentication to
the local system of users having the specified ID.

Another way to prevent wandering DCE users from gaining access to the local
system is to exclude DCE from the SYSTEM attribute in /etc/security/user:

default:
SYSTEM = compat
registry = files

Local users who are synchronized with the DCE registry can still acquire DCE
credentials at login by having DCE specified as an authentication method in their
individual stanzas. For example, we will have this entry in the /etc/security/user
for user brice.

brice:
SYSTEM = ″DCE OR DCE[UNAVAIL] AND compat″

Note: For performance reasons, it is preferable to protect local resources with
the /etc/security/user file (if possible), rather than with the DCE override file.

7.4.3 Configuring a System for Integrated Security
To activate the security integration, you must do the following:

 1. Ensure that the /usr/l ib/security/DCE module is installed on the system.

 2. Edit the /etc/security/login.cfg file, and add the following lines:

DCE:
program = /usr/lib/security/DCE

This defines the DCE authentication method to the system.

 3. Ensure that the dceunixd daemon is running. If not, start it:

dceunixd

This daemon communicates to the DCE servers secd and dced on behalf of
the AIX commands. Be sure to start the DCE services before dceunixd. You
can add this daemon to the /etc/inittab file, but then the command must be
entered as dceunixd -d 1.

 4. Edit the /etc/security/user stanza file to define the authentication method(s)
for the users. This means setting the auth1 and SYSTEM attributes as
explained above.

 5. To explicitly prevent certain DCE users from any access to the local system,
you should modify the /opt/dcelocal/etc/passwd_override and
/opt/dcelocal/etc/group_override fi les.

270 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Set passwd_override ERA

For users that authenticate via DCE, you should set the passwd_override
extended registry attribute (ERA) to 1. This allows them to log in with an
expired password. If the passwd_override ERA is 0 or undefined, users are
locked out of DCE when the password expires. The DCE administrator would
have to set a new password in this case and revalidate the account.

If the ERA is set and the user’s password is expired, DCE grants the login
and notifies the calling process of the fact that the password is expired. In
the case of the integrated login, the AIX login process that performs the
authentication with DCE notices that and enforces a change of the password.

7.4.4 Managing Passwords
Password operations are directed toward the registry defined by the registry
user attribute or, in the absence of a registry attribute definition, to the registry
defined by the AUTHSTATE environment variable. Password operations are not
directed to both local and DCE registries in one shot.

Changing passwords for a DCE-only users can be done through dcecp. Changing
passwords (both DCE and local) for a synchronized user can be done with the
AIX passwd command in a two-step procedure:

$ AUTHSTATE=DCE passwd
$ AUTHSTATE=compat passwd

The user should echo the AUTHSTATE value before changing it and should set it
back to the original value after changing is complete.

Note: Passwords must be kept synchronized for synchronized users. If they are
not, either DCE or the local authentication fails. Also, if a user exists locally on
more than one machine, the local password must be synchronized on all
machines.

7.5 Mass User/Group (and ACL) Management
User management encompasses tasks such as adding, modifying, and deleting
users, accounts, and groups. The user namespace or the policy according to
which user names and user identification numbers (UIDs) are assigned has to be
carefully planned. It might be necessary to keep the names and UIDs unique
over multiple cells belonging to the same company. Please refer to 2.4,
“Planning the User Namespace” on page 25, for planning information.

Managing single users is well supported within SMIT. Easy-to-use menus allow
one to add, modify, and delete users, accounts, groups, and organizations.
However, if a security registry has to be populated with dozens or hundreds of
users at the same time, using SMIT menus is no longer practical. The following
situations may require tools that are able to handle a lot of users:

• First DCE installation
• Migration from Open Network Computing (ONC) or NFS/NIS environments
• Global changes within a cell
• Splitting and joining cells

Chapter 7. Miscellaneous Tools and Technologies 271

The purpose of this section is to show how to manage multiple users at the
same time. We created sample tools to add, modify, and delete a lot of users.
Information about users is managed from a so-called central repository. This
central repository is a directory and consists of a file for each user, the user
definition file (UDF). This file can be generated with default values or from
existing sources, such as an /etc/passwd file, NIS, or a DCE cell. The
administration tools then access these files and maintain a state for each user.
Values can be modified when the user is in the SUSPENDED state. The resulting
changes will be applied upon reenabling the user.

The way the user information is provided can easily be changed, and these
scripts can be adjusted to perform additional tasks.

As a matter of fact, our tools go far beyond the scope of just adding, modifying,
and deleting users. By providing and even managing ACL information for each
user, they actually build a complementary ACL management environment. DCE
provided ACL managers can list all users and groups with their access rights to
a specific object, but there is no way to answer the question: to which objects
does a specific user have any rights?

The following sections describe the idea and tools for mass user management.

Please Note

Our tools, as well as the underlying architecture, should be seen as a
working framework for DCE administrators who want to manage large DCE
environments in a more effective way. Their usage can be very simple when
you rely on the defaults you can set, or it can be used as a sophisticated
user and ACL management tool. See 6.4, “Administering Users and Groups”
on page 186, for tips on how to use the tools in specific tasks.

They probably need more work or adjustments before they can be applied in
specific customer scenarios.

7.5.1 User Identifications, Groups, and Access Rights
Each cell in DCE has a cell administrator which has comprehensive privileges in
DCE, just like root in UNIX. The cell administrator is responsible for user/group
management as well as for all other security-related tasks, such as password
composition policy, expiration policy, ticket lifetime, and so on. Each cell has a
security database, called the registry database. It is located under the directory
/opt/dcelocal/var/security/rgy_data.

Users are accessing objects. In order to do so, they need access rights because
objects are protected and carry Access Control Lists. ACLs specify which user
has which kind of rights. In order to facilitate administration of access rights,
users with equal access rights or job profiles can be lumped into groups.
Groups, as well as the information on which users belong to which groups, are
stored and managed in the registry database as well.

Each object in DCE is represented through the universally unique identifier
(UUID), which is a 128-bit string. In DCE, users are solely identified by their
UUID. Access rights and ownership to objects are expressed by UUIDs. DCE
commands internally use UUIDs, but for display purposes, they look the name up
in the registry database and display the user’s name. If a user is deleted from

272 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

the registry, DCE objects show an orphaned UUID string instead of the name if
that user still has any rights on these objects.

DCE also stores with each user and group a user identifier (UID) and a group
identifier (GID), similar to UNIX. These IDs, however, need not be the same as in
UNIX. Thus, for example, user heinz can have a UID of 123 in UNIX and a UID of
456 in DCE. DCE also encodes the UID/GID into the UUID of the user/group
when it creates the principal/group. This makes it impossible to change the IDs
after the creation of a user or group.

UNIX commands do not know how UIDs/GIDs are related to principal/group
names in DCE. And DCE commands do not care about local UNIX UID and GID
definitions. Which UID/GID is considered depends on the context in which a
command is executed. Suppose somebody logged in as root (UID 0) in UNIX and
cell_admin (UID 100) in DCE. If that person creates a file in the DFS file space,
UID 100 becomes the owner of the file, and if the file is in the local file tree, UID
0 becomes the owner. The ls -l command in UNIX takes the UID and looks the
name up in the /etc/passwd file. The file created in DFS then seems to belong to
user guest that has a UNIX UID of 100.

A similar confusion arises when heinz logs in using the integrated login. His
DCE UID of 456 will be assigned to him for his AIX session unless an override is
defined. When he creates a file, 456 will be the owning UID. Depending on who
runs the ls -l command now, the owner name may appear to be different.
Since heinz’s login is integrated, he will see heinz as the owner because, for
him, the UID is resolved with the DCE registry. A local user, for instance root,
will see the name of the user defined with that UID in /etc/passwd.

So, if UUID and UID do not match, DFS file ownership may appear differently
when the file is looked at with UNIX or DFS commands.

Please Note

The absolutely most important prerequisite in user/group management is that
for each user and group, the UID/GID in the registry must match the UID/GID
defined for them on any possible UNIX system in the cell.

Synchronizing the users can be achieved with the integrated login in AIX
4.1+ (see 7.4, “Integrated Login AIX and DCE” on page 265).

OS/2 and Windows workstations do not suffer from the same problem
because they are not multi-user systems and hence do not have UIDs.

7.5.2 Management-Tool Structure and Overview
AIX DCE 2.1 provides a DCE shell called dcecp. It is Tcl (Tool Command
Language)-based and covers almost all functions supported by the existing DCE
commands, such as rgy_edit, acl_edit, cdscp, and so on. The
user-management tools we describe in this chapter were created using the
existing DCE commands. Originally, they were developed on AIX DCE V1.3. We
tested them on AIX DCE V2.1, and they worked accurately without any change.
So, the only changes we made to the tools were to fix some minor bugs.

Chapter 7. Miscellaneous Tools and Technologies 273

Figure 64. User-Management Workflow

As you can see from Figure 64, the commands are:

get_all_info Extracts principal, account, and ACL information for all users
defined in the DCE registry. Creates a UDF for each user in a
(possibly separate) repository directory. This is useful also
for integrity checks with the central repository. If the central
repository is specified, all existing UDFs are updated, and new
ones are created for users who did not have one.

Group definition files (GDFs) are created in the same run.

get_info_users Gets information on certain users only and updates the
central repository with current information as defined in the
registry and in the ACLs of all objects.

Existing DONE records, which reflect recent changes to ACL
definitions, are deleted because the currently valid ACLs are
extracted from DCE.

add_users Adds accounts to the registry database and to the central
repository.

This will create principals and basic accounts that are not yet
enabled for login. All account attributes are set to their
default value, except for the UIDs, which can be predefined in
a file in the central repository.

If not already there, a file is created for each user in the
central repository.

274 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

rgy_enable_users Enables accounts for DCE, applying all DCE registry
information found in the user definition files, such as the home
directories, group memberships, and so on. The users’ state
is set to RGY_ENABLED.

dfs_enable_users This step basically sets all the ACLs for the users’ initial
containers, their home-directories. It also sets the initial
container creation and initial object creation ACLs.

If nothing is specified in a file when this command is used, no
ACLs are set. However, the accessibility of the user’s home
directory is checked and then the state is updated to
DFS_ENABLED, assuming the ACLs had already been set
upon the creation of the directory.

acl_enable_users This step basically sets all the ACLs in CDS and DFS objects
for which the users have a user type ACL entry. The state is
updated to FULL_ENABLED.

susp_users Suspends the accounts for the users and updates their state
information. The users can now be moved to another cell, or
they can be deleted or re-enabled.

del_users Removes the users from DCE. Entries in the DCE registry
database and ACLs are removed. The initial containers are
not touched; they should be removed with regular AIX or DFS
commands.

All of the above commands accept single user names, a file with a list of users,
or read user information files from the central repository that contain a certain
state. Users can have names such as: usr2, rolf, hans, and so on. But they can
also take on the form paris/brice or munich/sal. These types of names will be
stored in the central repository with file names like paris%brice and
munich%sal.

The approach we used is simple and is not intended to solve all your
user-management problems, but it can represent a good foundation for further
development.

7.5.2.1 Central Repository
The reason for writing new tools was the lack of tools to add and modify many
users at once. This might become necessary for migration processes such as:

• Migrating from AIX to DCE
• Migrating from NIS to DCE
• Splitting a DCE cell
• Joining DCE cells

Another requirement was to manage, at the same time, not only the registry
information but also state, ACL, and file system information for users. So the
central repository looks like:

Chapter 7. Miscellaneous Tools and Technologies 275

Figure 65. The Central Repository

Organized in this way, the central repository (dce_users directory) contains ACL
information related to a specific account or user. This is information that cannot
easily be accessed otherwise. With the standard acl_edit command, you can
only access ACLs per object. However, not all ACL information is covered within
the central repository.

One of the main objectives of the ACL entries in the repository was to enable an
administrator to clean up all the ACL entries when a user is deleted and to
support recreation of the same information in another (or the same) cell.

Which objects are relevant for that purpose?

The answer is: ACLs for objects owned by that user and ACLs for other objects
in which that user has a specific entry in the form user:usr1:rw----. To find the
latter type of entries, all objects have to be searched. Objects owned by that
user are too numerous to capture all ACL information. It could be done, though,
but in order to limit these type of object entries in the user definition file, we
decided to just manage the DFS home directories.

Our goal was to maximize the coverage of standard situations with a reasonable
effort. This led us to the following assumptions:

 1. Users do not own CDS objects, but they can have ACL entries in CDS objects
in the form user:sal:rw----. This means no ACL_INI entries supported for CDS
objects in the UDFs.

 2. Users only own DFS objects (files and directories) underneath one single
directory (usually their home directory). This means we do not look for other
objects owned by the users; we just look up their home directories.

276 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 3. Files and directories underneath a home directory all belong to the same
user and they do not change any ACLs themselves. This means we can rely
on the initial creation ACLs for all new files and directories underneath the
home directory.

 4. A user can have specific entries in other DFS objects in the form
user:sal:r-x---.

In a well-organized production environment, you are very likely to find these
conditions, and our tools might possibly be used as they are. Exceptions from
these assumptions require special treatment. Depending on how close you are
to the ideal environment, you will have to:

• Treat other objects that do not fit into the above-mentioned scheme
manually. For instance, run a find command to find all files belonging to a
certain user, and do whatever you need to do with these files (delete,
backup, and so on)

• Edit our user definition files manually or with stream editing commands (sed)

• Extend our scripts to do more sophisticated things

ACL management on a per-user basis is actually a big weakness in today’s DCE.
Maintenance of a global ACL repository should be built into the acl_edit
command so that integrity is always guaranteed. In order to extract ACL
information from the CDS and DFS objects into our central repository, we have to
scan through all objects. This will most likely only be done before major
reconfigurations or deletion of users. However, modifications to ACL entries for
users could always be made in our repository and applied with acl_enable_users
instead of using acl_edit. In this way the central repository would always be
up-to-date in this regard without the need to extract the information over and
over again.

The central repository can be located anywhere in the file system, for instance
on the security server or any other central system. It can even be located in
DFS. It is a directory named dce_users and contains a file for each user. Each
file represents a user profile. The next section provides details about the
attributes in that file.

7.5.2.2 User Definition File (UDF)
The UDF of usr2 could look like this:

-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=000001b5-76ec-2e02-ad00-10005a4f4165
uid=437
groups=fsc, staff, security
--- Account info:
group=itso
org=ibm
homedir=/:/dfs_home/usr2
size=487408
initprog=/bin/ksh
expir_date=1995/06/17
good_since=1994/06/17
--- ACL_INI info:
ACL_INI=dfs#/:/dfs_home/usr2#mask_obj:r-x---
ACL_INI=dfs#/:/dfs_home/usr2#user_obj:rwxcid
ACL_INI=dfs#/:/dfs_home/usr2#group_obj:rwx---
ACL_INI=dfs#/:/dfs_home/usr2#other_obj:r-x---

Chapter 7. Miscellaneous Tools and Technologies 277

ACL_INI_OC=dfs#/:/dfs_home/usr2#mask_obj:r-x---
ACL_INI_OC=dfs#/:/dfs_home/usr2#user_obj:rwxcid
ACL_INI_OC=dfs#/:/dfs_home/usr2#group_obj:rwx---
ACL_INI_OC=dfs#/:/dfs_home/usr2#other_obj:r-x---
ACL_INI_CC=dfs#/:/dfs_home/usr2#mask_obj:r-x---
ACL_INI_CC=dfs#/:/dfs_home/usr2#user_obj:rwxcid
ACL_INI_CC=dfs#/:/dfs_home/usr2#group_obj:rwx---
ACL_INI_CC=dfs#/:/dfs_home/usr2#other_obj:r-x---
--- ACL info:
ACL=cds#/.:/sec#user:usr2:r----
ACL=cds#/.:/subsys/dce/dfs#user:usr2:r----
ACL=cds#/.:/sec#user:usr2:r----
ACL=dfs#/:/dev/dce#user:usr2:rw----
ACL=dfs#/:/dev/aix#user:usr2:r-----
--- ACL history (will be consolidated by next ″get_info_users″)
DONE=ADD_ACL#cds#/.:/hosts#user:usr2:rw
--- State and last access:
state=FULL_ENABLED
last_time_access=Mon Jun 20 10:55:03 CDT 1994 op=acl_enable_users
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):
ADD_groups=g8
#!! Edit below (values to be applied next time):
DEL_groups=fsc
DEL_ACL=cds#/.:/sec#user:usr2

The following parameters are filled in and updated only by the user-management
procedures and should never be edited manually; otherwise you are most likely
to introduce inconsistencies. For the administrator, these values are for
information only. You can run the powerful UNIX commands, such as sed, grep,
awk, cut, and so on, against these files and attributes to get useful information
about your cell. The user-management tools need this information to determine
the current state and definitions for a user to be able to correctly apply changes.

uuid Universal unique identifier

uid UNIX user identifier

groups All groups of which the user is member

group Primary group

org Organization

valid Indicates whether the user may log in or not; should
correspond to the state

gecos UNIX GECOS field for user description

homedir Home directory of the user

size Size of the user’s home directory

initprog User’s favorite shell

expir_date Account expiration date

good_since Account good since date

ACL_INI ACLs for the initial container, normally /:/dfs_home/user

ACL_INI_OC Initial Object Creation ACLs for the initial container

ACL_INI_CC Initial Container Creation ACLs for the initial container

278 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

ACL=cds# ACLs for the user on a CDS directory or object

ACL=dfs# ACLs for the user on a DFS directory or file

DONE=ACL#dfs# Reflect changes to ACLs as executed by ADD_ACL or
DEL_ACL instructions; they are consolidated and deleted with
the next get_info_users command

state Account state information

last_time_access Logs time and operation of the last access to this user
definition file

The next section of the file contains values that should have been applied in the
last enabling process and failed for some reason.

ADD_groups=g8 The user should have been added as a member to group
g8, but the group did not exist. The entry is left there for a
later update or for manual deletion.

The last section of the file is where an administrator is allowed to specify
modifications. He can add or delete values. In order to do so, he should
suspend the users. During the next re-enabling steps, all the values defined
here are applied. When this is successful, the value is deleted from the
modification section, and the according values in the top section are updated to
reflect the correct situation. If one value fails to be applied, it is moved to the
section values that could not be applied. The following are valid modification
values:

ADD_uid This is to predefine the UID; this is only applied with the
add_users command

ADD_groups A list of groups to which the user is to be added as a
member

DEL_groups A list of groups from which the user is to be removed as a
member

ADD_newgrp (Re)define the primary group

ADD_neworg (Re)define the organization

ADD_gecos Add or change the GECOS field

ADD_homedir (Re)define the home directory

ADD_initporg (Re)define the shell or initial program

ADD_ACL_INI Define a new ACL entry for the home directory (or for which
the user is the owner)

ADD_ACL_INI_CC Define a new initial container creation ACL entry for the
home directory (or for which the user is the owner)

ADD_ACL_INI_OC Define a new initial object creation ACL entry for the home
directory (or for which the user is the owner)

ADD_ACL Define a new CDS or DFS ACL entry for the user

DEL_ACL* All of the ADD_ACL-entries have a counterpart that allows
removal of an ACL entry from an object

The expiration date and the good-since date can be defined as part of the
environment and will be applied in the same way for all users. See 7.5.2.4,

Chapter 7. Miscellaneous Tools and Technologies 279

“General Structure and Customization” on page 281, for global configuration
options.

7.5.2.3 Account State Information
The state in the central repository can provide cell administrators with
information such as:

• The number of enabled users
• The number of suspended users
• The users that have been deleted

The state information is used by the different scripts and commands during the
decision process about which files need to be touched. To answer the above
questions, an administrator can run UNIX commands such as grep, sed, awk,
and so on against the UDFs.

Figure 66. DCE User-State Diagram

As shown in Figure 66, each user defined with these set of tools is always in a
certain state. The defined commands are used for state transition. The
following states are used:

NEW Users can be added without a UDF. Then they get default
values for their UID. If a UID needs to be predefined, a UDF has
to be created, and the state has to be set to NEW. The
command CR_EMPTY_UDF creates an empty UDF. UDFs can also
be created for instance from an /etc/passwd file.

SUSPENDED The account for the user is defined but not enabled for login.
Files in this state can be edited. Changes will be applied by a
subsequent rgy_enable_users command.

280 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

RGY_ENABLED The account for the user is enabled in the DCE registry and is
working in DCE. No ACL information is applied yet.

DFS_ENABLED The account for the user is enabled in the DCE registry, and the
user’s home directory is in DFS and has the correct ACLs set.

FULL_ENABLED The account for the user is enabled in the DCE registry, and all
defined ACLs are generated.

DELETED The user has been removed from DCE and the central repository
and moved into the cemetery repository.

An account cannot be deleted from DCE if it is not in a SUSPENDED state. So,
before deleting an account, the cell administrator needs to suspend it. The
suspension state disables the user and prevents the user from logging into DCE,
but it keeps all information about group membership and ACLs. However, it
does not force a user out of DCE. As long as their ticket from a previous login is
valid, they can work. The suspension state is a transition state. Together with
NEW, it is the only state in which the UDFs should be edited.

If users need to be modified, they have to be put into the SUSPENDED state first.
This is the way it is implemented now to keep everything in an order. This
means, for instance, to change an ACL requires the sequence susp_users,
rgy_enable_users, dfs_enable_users, and finally acl_enable_users. This is not a
big penalty because none of the steps does unnecessary processing; they just
change the state.

7.5.2.4 General Structure and Customization
Our user-management tools are contained in the tar file ugmgt.tar. They expand
in the current directory, no matter what directory you choose.

 1. Primary commands as described in this publication:

 ./umgt
 ./get_all_info
 ./get_info_users -> umgt
 ./add_users -> umgt
 ./rgy_enable_users -> umgt
 ./dfs_enable_users -> umgt
 ./acl_enable_users -> umgt
 ./susp_users -> umgt
 ./del_users -> umgt

 2. Internal commands used by the primary commands:

 ./ADD_USER
 ./DEL_USER
 ./SUSP_USER
 ./RGY_ENABLE_USER
 ./DFS_ENABLE_USER
 ./ACL_ENABLE_USER
 ./GET_PRINCIPAL
 ./GET_ACCOUNT
 ./GET_ACL
 ./GET_ACL_INI

 3. Internal commands that are partly configurable:

 ./ENVIRONMENT
 ./READ_UDF
 ./WRITE_UDF
 ./LOG

Chapter 7. Miscellaneous Tools and Technologies 281

 4. Directories (repositories):

 ./cemetary_users
 ./dce_users
 ./dce_groups
 ./tmp

In order to run the commands, you must be in this directory. All commands,
including the internal commands, can be called with a -h flag, which displays the
purpose of each command. All scripts are extensively commented.

The primary commands, such as add_users, rgy_enable_users, and so on, are all
linked to the same script umgt because they basically all perform the same task.
They prepare a candidate list of users with the correct state and call the right
internal command.

The commands in capital letters are those which are called internally by the
primary commands. They all accept an unlimited number of user names as
arguments and could just as well be called manually. However, if you call them
manually, there is no state checking performed, and the user definition is applied
in the registry as they appear in the file.

The ENVIRONMENT File: All of the scripts read their environment variables
from the script ENVIRONMENT. This allows you to configure certain things at
one place for all commands:

USER_PWD Initial password supplied for each new account.

CENTRAL_REPOS The default directory name for the repository is dce_users in the
directory where all commands are located. This can be
changed to any other directory and path name.

DFS_STARTDIR In well-structured file systems, the files to which users have
specific ACL entries are probably concentrated into only a
subtree of the entire file system. By setting this variable, an
administrator can limit the scanning process for ACL entries to
a subtree.

DEF_EXPIR_DATE Specifies an expiration date for login accounts. It is currently
calculated to be one year from the current date. This will be
applied to every account, whenever rgy_enable is called.

DEF_GOOD_SINCE Is set to the current date.

LOGFILE Name of the log file.

The READ_UDF File: This is the place to define all default values for new
accounts. This script reads the UDF and is called from all the internal
commands. The first section of this file can be edited:

--
Assign the default values ($1 is basically the user name):
--
!!!!!! DO NOT use a ’:’ in GECOS. Otherwise parsing will be corrupted
gecos=″Account for $1″
homedir=/:/dfs_home/$1
initprog=/bin/ksh
expir_date=$DEF_EXPIR_DATE
good_since=$DEF_GOOD_SINCE

282 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

The rest of the script first resets all values, then reads the values from the UDF,
and finally assign the values to variables used in the other scripts. If new
parameters will be introduced, an entry has to be made in the big case
statement. Otherwise, the parameter will be overlooked.

The WRITE_UDF File: This script is called from all other routines to write the
UDF. By changing this script, the outlook of the UDF can be changed.

7.5.2.5 Migration from Other Environments
To create a tool which translates specific user-definition information, such as an
/etc/passwd file into UDF format, you can use the READ_UDF and WRITE_UDF
scripts.

In READ_UDF you will see what variables can be set. A conversion tool has to
perform the following steps for each user:

 1. It needs to execute the . READ_UDF command, which assigns the default
values to the new user file.

 2. Then it must call . WRITE_UDF to write the upper part of the file with the
default values.

 3. Finally, it needs to interpret the values in the old environment and to create
and append ADD instructions to the UDF.

The pwd2dce procedure is provided on the diskette that comes with this
publication. It is essentially the same procedure as performed by nis2dce_users,
which is listed in 6.6.2.3, “The nis2dce_users Procedure” on page 217.

When UDFs are created from an old environment, they should be carefully
inspected before the users are added to DCE.

7.5.2.6 Integrity of the UDF
There are two ways of maintaining integrity in the user definition files:

 1. If you do not care whether there are inconsistencies between the UDFs and
what is defined out there in the DCE registry and/or in the CDS or DFS ACLs,
you can just run get_info_users. This command gathers all information for
the specified users from DCE and overwrites the UDFs. So, this basically
just refreshes the UDFs.

 2. If you want to know what might be inconsistent, you run get_all_info and
extract the information for all users into a separate directory. You can then
compare the UDFs in the central repository with the files in the new directory
with regular UNIX commands such as diff.

7.5.3 Group Management
It was very easy to adapt the user-management concepts to group management.
We decided anyone who intends to use the user-management tools will also
want to treat groups in the same way. The concept for the group management is
basically the same as for users, and the commands work in the same way.

Note: The members of groups are managed through UDFs rather than through
GDFs. When a group is created, it has no members. Users are then added to or
deleted from groups with ADD_groups or DEL_groups entries. This is a more
natural way for defining group memberships. When you add a new user, you
want to specify a list of groups he/she is supposed to belong to, as opposed to

Chapter 7. Miscellaneous Tools and Technologies 283

updating every group with a new member. GDFs show their members for
information only. To make this happen, you must run the get_info_groups or the
get_all_info commands. Groups cannot be deleted as long as they contain
members.

7.5.3.1 Group State Overview
Please refer to 7.5.2.3, “Account State Information” on page 280, for the general
idea of the states and the commands that are possible in each state.

Figure 67. DCE Group-State Diagram

The following states are used:

NEW Groups can be added without a GDF. They receive default
values for their GID. If a GID needs to be predefined, a GDF has
to be created, and the state has to be set to NEW. The
command CR_EMPTY_GDF creates an empty UDF. GDFs can also
be created, for instance, from an /etc/group file.

ADDED The group is defined in the registry. Files in this state can be
edited. Changes will be applied by a subsequent update_groups
command.

DELETED The group has been removed from DCE and the central
repository and moved into the cemetery repository.

A group cannot be deleted from DCE if it still has members or if previous
ADD_ACL or DEL_ACL entries have been executed, but the GDF is not
consolidated yet, which means it still contains DONE entries.

7.5.3.2 Group Commands Overview
Please refer to 7.5.2, “Management-Tool Structure and Overview” on page 273,
for an overview on how the user management tool is structured.

The commands needed for group management are:

284 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

get_all_info Is the same as described for user management. It extracts all
user and group related information from the DCE registry and
writes the UDFs and GDFs.

get_info_groups Gets information on certain groups only and updates the
central repository with current information as defined in the
registry and in the ACLs of all objects.

add_groups Adds groups to the registry database and to the central
repository. If the GDF already exists, the group is created
with the specified GID.

If it is not there yet, a file is created for each group in the
central repository, and the GID is automatically assigned.

update_groups This step basically sets all the ACLs in CDS and DFS objects
for which the groups have a group type ACL entry. The state
remains ADDED.

del_groups Removes the groups from DCE. Entries in the DCE registry
database and ACLs are removed. If the group still has
members, the group is not deleted. You must first delete that
particular group membership from each user. This prevents
any accounts from being deleted together with the group, if
this was their primary group. If ACLs cannot be removed or if
there are still any DONE entries in the file, the group is not
deleted either. This ensures that no orphaned UUIDs are left
in object ACLs.

All of the above commands work with the same logic as the ones for user
management. The group repository is dce_groups.

7.5.3.3 Central Group Repository
The central repository for groups is the directory dce_groups. It works the same
way as the user repository, which is described in 7.5.2.1, “Central Repository” on
page 275.

7.5.3.4 Group Definition File
The GDF of g7 could look like this:

-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Group info:
uuid=00000070-77c4-2e88-8801-02608c2fff91
gid=112
--- Memberships (information only; managed via principals):
users=cell_admin
--- ACL info:
ACL=cds#/.:/hosts#group:g7:-w-t-
--- State and last access:
state=ADDED
last_time_access=Wed Sep 28 11:44:02 CDT 1994 op=GET_ACL
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):
DEL_ACL=cds#/.:/hosts#group:g7
#!! Edit below (values to be applied next time):

Chapter 7. Miscellaneous Tools and Technologies 285

The following parameters are filled in and updated only by the user-management
procedures and should never be edited manually; otherwise you are most likely
to introduce inconsistencies:

uuid Universal unique identifier for the group

gid UNIX group identifier

users List of group members (for information only)

ACL=cds# ACL entry for the group in a CDS directory or object

ACL=dfs# ACLs for the user on a DFS directory or file

state Group state information

last_time_access Logs time and operation of the last access to this group
definition file

The next section of the file contains values that should have been applied in the
last process, which failed for some reason. Or they did not have to be executed,
because a get_info_groups command was run.

DEL_ACL=g8 An ACL entry for a CDS object should have been updated or
created. The entry is left there for a later update or for manual
deletion.

The last section of the file is where an administrator is allowed to specify
modifications. They can add or delete values. If one value fails to be applied, it
is moved to the section values that could not be applied. The following are
valid modification values:

ADD_gid Predefines the GID; this is useful with the add_groups command only

ADD_ACL Defines a new CDS or DFS ACL entry for the group

DEL_ACL Deletes a CDS or DFS ACL entry for the group

7.5.3.5 General Structure and Customization
Our group-management tools are contained in the tar file ugmgt.tar. Together
with the user-management commands, they expand in the current directory, no
matter what directory you choose.

 1. Primary commands as described in this publication:

 ./gmgt
 ./get_all_info
 ./get_info_groups -> gmgt
 ./add_groups -> gmgt
 ./update_groups -> gmgt
 ./del_groups -> gmgt

 2. Internal commands used by the primary commands:

 ./ADD_GROUP
 ./DEL_GROUP
 ./ACL_ENABLE_GROUP
 ./GET_GROUP
 ./GET_ACL

 3. Internal commands that are partly configurable:

 ./ENVIRONMENT
 ./READ_GDF
 ./WRITE_GDF
 ./LOG

286 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

 4. Directories (repositories):

 ./cemetary_groups
 ./dce_groups
 ./tmp

In order to run the commands you must be in this directory. All commands
including the internal commands can be called with a -h flag, which displays
what the purpose of each command is. All scripts are extensively commented.

7.5.3.6 Migration from Other Environments
To create a tool that translates specific group definition information, such as an
/etc/group file into GDF format, you can use the READ_GDF and WRITE_GDF
scripts.

In READ_GDF you will see what variables can be set. A conversion tool has to
perform the following steps for each group:

 1. It needs to execute the . READ_GDF command, which assigns the default
values to the new group file.

 2. Then it must call . WRITE_GDF to write the upper part of the file with the
default values.

 3. Finally, it needs to interpret the values in the old environment and to create
and append ADD instructions to the GDF.

The grp2dce procedure is provided on the diskette that comes with this
publication.

When GDFs are created from an old environment, they should be carefully
inspected before the groups are added to DCE.

7.5.4 Adding Users: add_users
The add_users procedure is a simple shell script that adds principals and
accounts to DCE. After execution of this step, the accounts are not yet enabled
for login; their state is SUSPENDED. If there is no user definition file for a user
in the central repository, this step creates one.

There are special scripts to create user definition files from the following user
definition environments:

• Network Information System
• AIX
• DCE

Chapter 7. Miscellaneous Tools and Technologies 287

Figure 68. The add_users Procedure

7.5.4.1 Syntax
The command takes one of the following forms:

add_users <username>
add_users <filename>
add_users all
add_users -h

7.5.4.2 Arguments
username Single user name to be added, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users in the state NEW

-h Displays more information on the purpose of the program

7.5.4.3 Description
The command requires exactly one argument. If it is not all, it checks whether
it is a file name. If not, it assumes it is a user name. If the argument is a file,
that file may only contain user names or comment lines that begin with #.

The first step is to evaluate a candidate list of potential users to be added. New
users may either be added without being defined in the central repository at all
or from user definition files which need to have their state set to NEW. If the
argument is a file or a single user, these prerequisites are checked before a
user is added to the candidate list. If the argument was all, then all users in the
central repository with state NEW yield the candidate list. The candidate list is

288 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

simply an environment variable, $ulist, that contains all the approved user
names.

The user definition files can be prepared by running CR_EMPTY_UDF new_file repos
and filling in the correct values with an editor, or they can be generated from
other sources, such as an /etc/passwd file. Consult 7.5.2.1, “Central Repository”
on page 275, for information about which parameters may be set.

Internally, the add_users procedure then calls ADD_USER $repos $user_list. The
administrator is told how many users are going to be added and is prompted for
the password:

You are going to add ″nn″ users
Starting to work with rgy_edit ...

Please provide your password:

If user definition files are used and UIDs are specified, these UIDs are checked
to see if they are already in use. If this happens or if the user is already defined,
an error message is displayed and entered into the log file.

The account is then created with all values defined in the UDF but not enabled
for login in DCE. In order to enable the user for login and to apply the rest of the
attributes, you must run the rgy_enable_users procedure. A file for each new
user is then created in the central repository, or it is updated if it had been
previously defined.

At the end of the of the adding operation, an additional message might be given
to the administrator telling him which users have failed to be added and
indicating the reason for the failure:

The following users/accounts were not good for ″add″ ,
please check again:

paris/brice excluded from list. Reason: state not NEW
ADD_USER daemon failed. Reason: Principal already exists
ADD_USER guest failed. Reason: UID already exists

you can find them in the file: .../tmp/no_good_users

The result of the operation is logged in the file log_user. For each user, there
will be an entry telling whether he was successfully added or not. For all
unsuccessful entries, the reason for the failure is indicated:

account:a2 date:Tue Jun 21 11:27:31 CDT 1994 op=add_users from_host:ev4
aix_user:root result=SUCCESS
account:adm date:Tue Jun 21 11:27:32 CDT 1994 op=add_users from_host:ev4 \
aix_use r:root result=FAILURE why=uid already exist
account:usr2 date:Wed Jun 22 18:19:02 CDT 1994 op=enable_users from_host:ev4 \
from_user:root op_result=FAILURE why=user not in NEW state

After successful creation of a user, his new state and the attribute
last_time_access is entered to that user’s file in the central repository:

state=SUSPENDED
last_time_access=Tue Jun 21 11:28:44 CDT 1994 op=add_users

The file is now ready for the rgy_enable_users command. If other than the default
values need to be specified, they should now be filled in the UDF.

Chapter 7. Miscellaneous Tools and Technologies 289

7.5.4.4 Implementation Specifics
The add_users script is a link to the umgt script, because the checks to be
performed are the same for user management scripts.

The kernel of the ADD_USER command, which is internally called, are the following
few rgy_edit commands:

rgy_edit << EOF >/dev/null 2>&1
domain principal
add $princ_name $uid
quit
EOF

rgy_edit << EOF >/dev/null 2>&1
domain account
add $princ_name -g none -o none -anv -pw ″$USER_PWD″ -mp ″$PASSWD″ -pnv
quit
EOF

The option account not valid (-anv) is provided; so the user is added as account
but cannot log in to DCE because he/she is in the SUSPENDED state.

7.5.4.5 How to Specify UIDs
The only way to predefine specific UIDs for the add_user function is to predefine a
user definition file in the central repository and set its state to NEW. You can
predefine any of the supported attributes in the user definition files (see also
7.5.2.1, “Central Repository” on page 275):

• ADD_uid=120
• ADD_newgrp=dev
• ADD_homedir=/: /dfs_home/usr2
• ADD_ini tprog=/bin/csh
• state=NEW
•etc.

Only the add_users command can apply the UID because this value cannot be
changed later on. The rest of the attributes can be defined at any time. This
might be important when you move users from NFS or AIX into DCE and want to
keep their UID assignment.

Another way to control UID assignment to a certain extent is to set the lowest
UID for principal creation registry property to a value of your choice, for
example to 2400:

dcecp
dcecp> registry show
.....
.....
{minuid 100}
.....
.....
dcecp> registry modify -minuid 2400
dcecp> registry show
.....
.....
{minuid 2400}
.....
.....

290 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

By running this procedure each time before executing the add_users command,
you can at least control the range of each portion of users you want to add. This
lowest UID can be set anytime and does affect already existing accounts.

7.5.4.6 Error Checks and Messages
The add_users command does the following checks:

• If no argument is given, the add_users command displays the following
message:

Usage: add_users <username>
add_users <filename>
add_users all
add_users -h

<filename> = File with a list of user names
<username> = String like joe or austin%joe
all = Extracts info for all users in the according state
-h = Display more information

• If the current user is not cell administrator, the following message is
displayed:

Checking to be sure you are cell_admin
 You must login as cell_admin first ... sorry

• If a list of users is given as a file, it first checks if the file is not an empty list.
If it is, the following error message is displayed:

A file must contain something !!!

• If the single user or some of the specified users of <filename> already
have a user definition state, but it is not NEW, the following message
appears:

Creating a candidate list of users to add:
Checking user97 ...not ok (state not NEW)

• If users or UIDs of the candidate list already exist in the DCE registry, the
following message appears on the screen:

Checking user95 ...failed (Principal already exists)
Checking user98 ...failed (UID already exists)

• If the candidate list is empty because the specified users have a user
definition file, but none of them is in the state NEW, the following message is
displayed:

All users have files in the central repository,
but their state is not NEW.

7.5.4.7 Initial Password
The initial password for each user will be set with an environment variable that
can be set by editing the file ENVIRONMENT. All users will get the same initial
password.

The uglier the password, the more likely a user will actually change it upon first
login. Unfortunately, even if the option password not valid is given in the add
command line (-pnv flag), DCE won’t force the users to change the password the
first time they log in. DCE will simply display the message:

Password must be changed!

Chapter 7. Miscellaneous Tools and Technologies 291

It is a good practice for the cell administrator to check with a simple script if the
user has changed the password or keeps the initial one. The password
composition and management in DCE is minimal and does not comply with the
Green Book from the Department of Defense (DoD) nor with the Minimum
Security Requirements for Multi-User Operating Systems from the National
Institute of Standard and Technology (NIST). As a matter of fact, DCE warns you
if you enter a wrong user or a wrong password:

dce_login user_does_not_exist
Sorry.
User Identification Failure. - Registry object not found (dce / sec)
dce_login cell_admin
Enter Password:
Sorry.
Password Validation Failure. - Invalid password (dce / sec)

This provides hackers with valuable information for guessing users and
passwords in DCE. To solve this problem, AIX DCE 2.1 provides Extended
Registry Attributes (ERA). By using ERA, administrators can set a limit on the
number of invalid login attempts before the account is disabled. The
Understanding OSF DCE 1.1 for AIX and OS/2 redbook explains these ERAs in
detail.

7.5.5 Enabling Users for DCE Login: rgy_enable_users
The rgy_enable_users procedure enables users to log in to DCE. It applies all the
attributes defined for each user in their user definition file and enables the
account. The procedure basically works in the same way as add_users shown in
Figure 68 on page 288. The difference is that the state must be SUSPENDED
and the RGY_ENABLE_USER $repos $ulist is called.

7.5.5.1 Syntax
The command takes one of the following forms:

rgy_enable_users <username>
rgy_enable_users <filename>
rgy_enable_users all
rgy_enable_users -h

7.5.5.2 Arguments
username Single user name to be enabled, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users in state SUSPENDED

-h Displays more information on the purpose of the program

7.5.5.3 Description
The command requires exactly one argument. If it is not all, it checks whether
it is a file name. If not, it assumes it is a user name. If the argument is a file,
that file may only contain user names or comment lines that begin with #.

The first step is to evaluate a candidate list of potential users to be enabled.
Each user name derived from the input arguments is checked to see if it has a
user definition file and whether its state is SUSPENDED. If these conditions are
not met, an error message is created.

292 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

This command is also used for updates for already-enabled users. The users
who need to be updated have to be suspended. Then the user definition files
may be edited.

The next step is to call RGY_ENABLE_USER $repos $ulist, where $ulist is the list of
candidates to be enabled. This procedure gets all registry-relevant attributes
from the user definition file or assigns a default value if a certain attribute is not
defined. The default values can be specified in the ENVIRONMENT and the
READ_UDF procedures as described in 7.5.2.4, “General Structure and
Customization” on page 281. Then the DCE rgy_edit command is called to
update the account in the registry.

That command might fail for some or all of the users. If this happens, an error
message is displayed. Reasons can be:

• User does not exist
• Primary group does not exist
• Primary organization does not exist

Other minor errors may be discovered, for instance, if one of the other groups
the user is supposed to be a member of does not exist. In such cases a warning
is issued, but the account is enabled anyway. At last, the user definition file is
updated, if necessary. In this case the entry of the UDF is left in the file so that it
can be applied later on or deleted by the administrator.

7.5.5.4 Implementation Specifics
The rgy_enable_users script is a link to the umgt script, because the checks to
be performed are the same for all user management scripts.

The kernel of the RGY_ENABLE_USER command is the following rgy_edit command,
shown for a specific user usr2:

rgy_edit << EOF >/dev/null 2>&1
domain account
change usr2 -ng itso -no ibm -h /:/dfs_home/usr2 -d /bin/ksh \
-x ″one year from the current date″ -gsd ″current date″ -av
quit
EOF

7.5.5.5 Example
Let us assume we want to make the following changes for usr2:

• Change the primary group to security
• Add usr2 to group g8
• Delete usr2 from group fsc
• Delete an ACL entry that usr2 has on CDS object /.:/sec

The following entries have to be made at the end of the user definition file:

-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=000001b5-76ec-2e02-ad00-10005a4f4165
uid=437
groups=fsc, staff, security
--- Account info:
group=itso

.......

.......
state=SUSPENDED

Chapter 7. Miscellaneous Tools and Technologies 293

last_time_access=Mon Jun 20 10:55:03 CDT 1994 op=acl_enable_users
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):
#!! Edit below (values to be applied next time):
ADD_newgrp=security
ADD_groups=g8
DEL_groups=fsc
DEL_ACL=cds#/.:/sec#user:usr2

Let us further assume that group g8 does not exist. The directive to add usr2 to
group g8 is left in the file, whereas the other entries which were successfully
applied are removed or embedded into the information in the upper part of the
file. After running the rgy_enable_users, the UDF will look as follows:

-- !!!!!!!!!!!!!! Do NOT change manually the first part !!!!!!
--- Principal info:
uuid=000001b5-76ec-2e02-ad00-10005a4f4165
uid=437
groups=staff, security
--- Account info:
group=security

.......

.......
state=RGY_ENABLED
last_time_access=Mon Jun 20 10:55:03 CDT 1994 op=rgy_enable_users
#!!
#!!!!!!!!!!!!!!! Do NOT change manually above this line !!!!!!!!!!!!!
#!! Edit below (values that could not be applied):
ADD_groups=g8
DEL_ACL=cds#/.:/sec#user:usr2
#!! Edit below (values to be applied next time):

The ACL entry was not deleted because adding or deleting ACL entries are only
done when acl_enable_users is executed.

7.5.6 Enabling the Users Home Directory: dfs_enable_users
The dfs_enable_users procedure basically applies ACL definitions on the users’
DFS home directories, including the initial container creation and initial object
creation ACLs. It represents a way to administer individual ACL definitions for
each user’s home directory.

The home directories must exist prior to running this command. They must be
created separately. Also, basic file access permissions and ownership must be
set on these home directories. An example for these actions is given in 6.6.4.2,
“Creating and Mounting the Filesets for Home Directories” on page 223. The
tools could easily be extended to perform the creation of home directories and to
set the ownership and initial permissions.

If an administrator decides to first define all ACLs manually, no ACL_INI
definitions in the UDFs are needed. The ACL_INI definitions can also be
generated later from what is actually defined on the DFS directories by running
get_info_users. If the administrator wants to set user ACLs later on with
acl_enable_users, acl_enable_users must be run to set the state to
DFS_ENABLED, even if no ACL_INIs are defined.

294 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.5.6.1 Syntax
The command takes one of the following forms:

dfs_enable_users <username>
dfs_enable_users <filename>
dfs_enable_users all
dfs_enable_users -h

7.5.6.2 Arguments
username Single user name to be processed, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users in state RGY_ENABLED

-h Displays more information on the purpose of the program

7.5.6.3 Description
The command requires exactly one argument. It follows the same preparation
steps as rgy_enable_users except for the state, which has to be RGY_ENABLED.

The next step is to call DFS_ENABLE_USER $repos $ulist, where $ulist is the list of
candidates to be enabled. This procedure gets all ADD_ACL_INI and
DEL_ACL_INI attributes from the user definition file and tries to apply the values
to the specified DFS directories. The ones that cannot be applied remain in the
UDF. If they can be applied, a DONE_INI entry is created in the UDF for each
successfully added or deleted ACL entry. The existing ACL_INI entries are not
consolidated to reflect the new ACL entries. To achieve that, a get_info_users or
get_all_info command has to be executed, which deletes the DONE_INI entries
and reflects the currently valid ACL_INIs.

If no ACL_INI attributes are defined, it is assumed that the cell uses only default
values. The command then only checks whether the home directory is in DFS
and whether it is accessible. If both are true, the state is set to DFS_ENABLED;
otherwise the state remains unchanged.

If acl_edit fails for any reason, a message is issued, and the state is not
changed.

Note: This is primarily meant for the users’ home directories, but actually, any
DFS object (file or directory) for which the user is owner could be specified.
However, the GET_ACL_INI procedure only collects information from the home
directory. So, ACL_INIs specified for other DFS objects for the dfs_enable_users
command would never be updated or consolidated. If you wanted to extend this
concept to other DFS objects, you would need another UDF attribute such as
dfs_objects and extend the GET_ACL_INI procedure.

7.5.6.4 Implementation Specifics
The dfs_enable_users script is a link to the umgt script, because the checks to be
performed are the same for all user management scripts.

This step is separated from rgy_enable_users to allow for creation of all DCE
users before setting any ACLs. If you assign each user his own fileset, you must
create these filesets before you run this command. After this command, you
restore all files so that the initial ACLs take effect when the files are restored.

Chapter 7. Miscellaneous Tools and Technologies 295

This procedure was created with tasks like migration from an NFS environment
or splitting a cell in mind.

The kernel of the DFS_ENABLE_USER command is the following acl_edit command:

for acl_entry in $ADD_ACLs $DEL_ACLs
do

object=`echo $acl_entry | cut -f2 -d= | cut -f2 -d#`
perm=`echo $acl_entry | cut -f3 -d#`
acltype=`echo $acl_entry | cut -f1 -d#`

case $acltype in
ADD_ACL_INI=dfs)

parms=″ $object -m $perm″
;;

ADD_ACL_INI_OC=dfs)
parms=″ $object -io -m $perm″
;;

ADD_ACL_INI_CC=dfs)
parms=″ $object -ic -m $perm″
;;

DEL_ACL_INI=dfs)
parms=″ $object -d $perm″
;;

DEL_ACL_INI_OC=dfs)
parms=″ $object -io -d $perm″
;;

DEL_ACL_INI_CC=dfs)
parms=″ $object -ic -d $perm″
;;

*)
parms=″ -wrong″
BAD_ACLs=$BAD_ACLs″$acl_entry ″
continue

esac

acl_edit $parms
done

7.5.7 Enabling the ACLs in CDS and DFS: acl_enable_users
The acl_enable_users procedure applies user ACL entries of the type
user:sal::rwx--- to DFS or CDS objects that do not belong to that user.

This procedure can also be used to manage these types of ACL entries. To
extract all such ACLs defined for a certain user, call get_info_users. Then
suspend the user, and add instructions to either remove (DEL_ACL) or add new
ACLs (ADD_ACL) to the user’s UDF. After that, you must call rgy_enable_users,
dfs_enable_users and acl_enable_users.

7.5.7.1 Syntax
The command takes one of the following forms:

acl_enable_users <username>
acl_enable_users <filename>
acl_enable_users all
acl_enable_users -h

296 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.5.7.2 Arguments
username Single user name to be processed, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users in state DFS_ENABLED

-h Displays more information on the purpose of the program

7.5.7.3 Description
The command requires exactly one argument. It follows the same preparation
steps as rgy_enable_users except for the state, which has to be DFS_ENABLED.

Once a list of users to operate on is created, ACL_ENABLE_USER $repos $ulist is
called, where $ulist is the list of candidates to be enabled. This procedure gets
all ADD_ACL and DEL_ACL attributes from the user definition file and tries to
apply the values to the specified DFS or CDS objects.

The ones that cannot be applied remain in the UDF for the next trial or for
manual deletion by the administrator. If they can be applied, a DONE entry is
created in the UDF for each successfully added or deleted ACL entry. The
existing ACL entries are not consolidated to reflect the new ACL entries. To
achieve that, a get_info_users or get_all_info command has to be executed,
which deletes the DONE entries and reflects the currently valid ACLs.

The state is set to FULL_ENABLED if the command is successful.

If acl_edit fails for any reason, a message is issued, and the state is not
changed.

7.5.7.4 Implementation Specifics
The acl_enable_users script is a link to the umgt script, because the checks to be
performed are the same for all user management scripts.

This step is separated from dfs_enable_users to allow for creation or restoration
of all DFS directories and files between setting the initial ACLs and applying the
user type ACLs. Before you can apply the user type ACLs, all files or objects
must be there, but you probably want to restore the files after you have set the
initial ACLs so they take effect upon restoration.

This procedure was created with tasks like migration from an NFS environment
or splitting a cell in mind.

The kernel of the ACL_ENABLE_USER command is the following acl_edit command:

for acl_entry in $ADD_ACLs $DEL_ACLs
do

object=`echo $acl_entry | cut -f2 -d= | cut -f2 -d#`
perm=`echo $acl_entry | cut -f3 -d#`
acltype=`echo $acl_entry | cut -f1 -d#`

case $acltype in
ADD_ACL=dfs)

parms=″ $object -m $perm″
;;

ADD_ACL=cds)
parms=″ -e $object -m $perm″

Chapter 7. Miscellaneous Tools and Technologies 297

;;
DEL_ACL=dfs)

parms=″ $object -d $perm″
;;

DEL_ACL=cds)
parms=″ -e $object -d $perm″
;;

*)
parms=″ -wrong″
BAD_ACLs=$BAD_ACLs″$acl_entry ″
continue

esac

acl_edit $parms
done

7.5.8 Suspending Users: susp_users
The susp_users procedure invalidates the DCE account in the DCE registry (NOT
valid) so the users can no longer log in. Then it sets the state of the UDF to
SUSPENDED. This is a safe state for either deleting the user or changing some
attributes and re-enabling them again.

7.5.8.1 Syntax
The command takes one of the following forms:

susp_users <username>
susp_users <filename>
susp_users all
susp_users -h

7.5.8.2 Arguments
username Single user name to be suspended, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users in state *_ENABLED

-h Displays more information on the purpose of the program

7.5.8.3 Description
The whole description is in the introductory remarks.

7.5.9 Deleting Users: del_users
The del_users procedure is used to delete a user from the DCE registry. All user
type ACLs of the form user:sal::rwx--- are removed from the objects. The UDF is
moved to a cemetery directory from which it can be used to define the user with
the same characteristics in another cell.

7.5.9.1 Syntax
The command takes one of the following forms:

del_users <username>
del_users <filename>
del_users all
del_users -h

298 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.5.9.2 Arguments
username Single user name to be deleted, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users in state SUSPENDED

-h Displays more information on the purpose of the program

7.5.9.3 Description
Before the user can be deleted, all user type ACLs for that user should be
removed; otherwise the ACL entry will be orphaned. This means the username
that was defined for this ACL entry is replaced by its UUID, which is somewhat
ugly. First, it is difficult to figure out who the user was, and second, the entry
cannot be deleted before a new user adopts the UUID in the registry.

To remove all ACLs, run get_info_users to find all these entries first. This
procedure then operates on all user-type ACLs defined in the UDF of the form:

ACL=cds#/.:/sec#user:usr2:r----
ACL=dfs#/:/dev/dce#user:usr2:rw----

and removes the according entry from the object ACL.

If ACL entries have been created or deleted recently, the UDF contains DONE
attributes that reflect the update history for ACL entries managed via this UDF.
This also means that the ACL attributes in the UDF do not reflect the current
state as defined in DCE. To achieve a consolidation, you must either run
get_info_users or get_all_info.

As long as DONE attributes are in the file or if deletion of an ACL entry fails, the
user is not deleted, and an error message is displayed.

7.5.9.4 Implementation Specifics
The ACL removal part is implemented in the same way as in the
acl_enable_users command.

7.5.10 Getting Information for Users from DCE: get_info_users
The get_info_users procedure collects information from the DCE registry, CDS,
and DFS to update or create all attributes of the users’ UDFs. After execution of
this command, the upper part of the UDFs reflect exactly what is defined in the
cell.

Use this command before you delete a user so that all ACLs defined for that
user are found and can be deleted. See also 7.5.9, “Deleting Users: del_users”
on page 298, for a description of this issue.

7.5.10.1 Syntax
The command takes one of the following forms:

get_info_users <username>
get_info_users <filename>
get_info_users all
get_info_users -h

Chapter 7. Miscellaneous Tools and Technologies 299

7.5.10.2 Arguments
username Single user name to be processed, such as joe or austin%joe

filename File containing only user names

all Keyword that indicates that the central repository should be searched
for all users defined in the repository. You can also use get_all_info
instead, which searches for all users and groups as defined in the
DCE registry and creates new UDFs or GDFs as necessary.

-h Displays more information on the purpose of the program

7.5.10.3 Description
The whole functional description is in the introductory remarks.

If a user name specif ied as <username> or contained in the f i le <f i lename>
does not have a UDF, one will be created.

You can limit the search for ACLs to a specific subtree of DFS by specifying the
environment variable in the file ENVIRONMENT:

DFS_STARTDIR=/:/dfshome

The default is /:/*. It scans through the ACLs of all DFS files and leaves out
explicit read/write mount points like /:/.rw or /:/.usrbin, for instance.

7.5.10.4 Implementation Specifics
This routine is able to collect all ACLs for groups, too. You can define an
environment variable with certain group names for which ACLs need to be
extracted:

export GROUPFILES=″none staff group2″

The GDFs of these groups are then updated or created in the same run.

7.5.11 Getting Information for All Users from DCE: get_all_info
The get_all_info procedure does basically the same thing get_info_users all
does.

The only difference is: It will query all user names and group names from the
DCE registry and collect information for all of them.

7.5.11.1 Syntax
The command takes one of the following forms:

get_all_info <userdir> <groupdir>
get_all_info -h

7.5.11.2 Arguments
userdir Repository (directory) for user files

groupdir Repository (directory) for group files

-h Displays more information on the purpose of the program

300 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

7.5.11.3 Description
You may specify new directories to create new UDFs and GDFs. If you specify
the central repository name for users and groups, then existing UDFs and GDFs
will be updated. For users and groups that do not have a file, one is created.

This routine extracts all information from the registry to update or create user
and group definition files (UDFs and GDFs). It then gathers ACL information for
each user’s home directory. Finally, it scans all CDS and DFS objects to get
their user and group type ACL entries and adds them to each user’s or group’s
definition file.

This procedure can be used to perform an integrity check. Compare the
UDFs/GDFs generated in new directories, which reflect the state as actually
defined in DCE, with the UDFs/GDFs of the central repository, which might have
been corrupted through inadequate editing. However, integrity is automatically
achieved also by overwriting the existing files. The only difference is that you do
not know afterwards what was inconsistent.

You can limit the search for ACLs to a specific subtree of DFS by specifying the
environment variable in the file ENVIRONMENT:

DFS_STARTDIR=/:/dfshome

The default is /:/*. It scans through the ACLs of all DFS files and leaves out
explicit read/write mount points like /:/.rw or /:/.usrbin, for instance.

Chapter 7. Miscellaneous Tools and Technologies 301

302 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Appendix A. Installing the Tools

Along with this book, we deliver a diskette with several tools we developed
during this project. Install these tools in any separate directory, for instance in
/dce_tools:

cd dce_tools
tar -xvf/dev/fd0
x cleanif, 9746 bytes, 20 media blocks.
x cleanup_cache, 1313 bytes, 3 media blocks.
x cleanup_cds_cache, 1317 bytes, 3 media blocks.
x cleanup_ip, 2448 bytes, 5 media blocks.
x create_cds_entry, 662 bytes, 2 media blocks.
x copy_ch, 8519 bytes, 17 media blocks.
x list_ch, 2420 bytes, 5 media blocks.
x new_cell_adm, 1507 bytes, 3 media blocks.
x show_cds, 6179 bytes, 13 media blocks.
x show_hosts, 6181 bytes, 13 media blocks.
x batch
x batch/Makefile, 165 bytes, 1 media blocks.
x batch/README, 3583 bytes, 7 media blocks.
x batch/start_batch.c, 5042 bytes, 10 media blocks.
x start_batch, 9901 bytes, 20 media blocks.
x ugmgt.tar, 163840 bytes, 320 media blocks.

250KB of free space is needed in /dce_tools. You may want to copy the shell
scripts into /usr/local/bin or in any other directory available in your PATH
environment variable.

The ugmgt.tar file contains tools and configuration files needed for user
management. The concepts and structure of these tools as well as the details
about the commands are described in 7.5, “Mass User/Group (and ACL)
Management” on page 271.

We suggest creating a directory /ugmgt on a separate file system, which is to
hold the user information database. The size of the user and group definition
files (UDF/GDF) is about 1KB per user or group. Since 4KB disk space is
allocated for even a one-byte file, we have to reserve 4KB per user and per
group plus 200KB to hold the shell scripts.

Install the tools as follows:

cd /umgt
tar -xvf/dce_tools/umgt.tar
x ACL_ENABLE_GROUP, 4605 bytes, 9 media blocks.
x ACL_ENABLE_USER, 5095 bytes, 10 media blocks.
x ADD_GROUP, 4510 bytes, 9 media blocks.
x ADD_USER, 5400 bytes, 11 media blocks.
x CR_EMPTY_GDF, 163 bytes, 1 media blocks.
x CR_EMPTY_UDF, 158 bytes, 1 media blocks.
x DEL_GROUP, 7125 bytes, 14 media blocks.
x DEL_USER, 6245 bytes, 13 media blocks.
x DFS_ENABLE_USER, 6374 bytes, 13 media blocks.
x ENVIRONMENT, 3148 bytes, 7 media blocks.
x GET_ACCOUNT, 5843 bytes, 12 media blocks.
x GET_ACL, 10390 bytes, 21 media blocks.
x GET_ACL_INI, 6056 bytes, 12 media blocks.

 Copyright IBM Corp. 1996 303

x GET_GROUP, 5372 bytes, 11 media blocks.
x GET_PRINCIPAL, 5597 bytes, 11 media blocks.
x LOG, 113 bytes, 1 media blocks.
x READ_GDF, 3772 bytes, 8 media blocks.
x READ_UDF, 5801 bytes, 12 media blocks.
x RGY_ENABLE_USER, 7999 bytes, 16 media blocks.
x SUSP_USER, 3522 bytes, 7 media blocks.
x WRITE_GDF, 3009 bytes, 6 media blocks.
x WRITE_UDF, 3651 bytes, 8 media blocks.
x acl_enable_users is a symbolic link to umgt.
x add_groups is a symbolic link to gmgt.
x add_users is a symbolic link to umgt.
x del_groups is a symbolic link to gmgt.
x del_users is a symbolic link to umgt.
x dfs_enable_users is a symbolic link to umgt.
x get_all_info, 2596 bytes, 6 media blocks.
x get_info_groups is a symbolic link to gmgt.
x get_info_users is a symbolic link to umgt.
x umgt, 9775 bytes, 20 media blocks.
x gmgt, 8681 bytes, 17 media blocks.
x rgy_enable_users is a symbolic link to umgt.
x susp_users is a symbolic link to umgt.
x update_groups is a symbolic link to gmgt.
x nis2dce_groups, 742 bytes, 2 media blocks.
x nis2dce_users, 1337 bytes, 3 media blocks.
x grp2dce, 754 bytes, 2 media blocks.
x pwd2dce, 1346 bytes, 3 media blocks.

The user management tools have to be executed in the directory, into which they
are restored. Make sure the PATH environment variable contains the current
directory. Otherwise add the following command into your /etc/environment file:

PATH=$PATH::

304 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Appendix B. Special Notices

This publication is intended to help customers, system engineers, and, to a
certain extent, marketing representatives understand and find solutions for
planning, configuration, and administration issues in a DCE and DFS
environment. It is mainly focused on AIX DCE and DFS Release 2.1, as well as
DCE 2.1 for OS/2 Warp in a DCE/DFS client role. It also shows how DOS
Windows workstations or platforms without DCE are integrated. The information
in this publication is not intended as the specification of any programming
interfaces that are provided by AIX 4.1, OS/2 Warp, DOS Windows, IBM’s DCE
Version 2.1 product family for AIX Version 4.1, or the IBM DCE 2.1 for OS/2 Warp
Beta program. See the PUBLICATIONS section of the IBM Programming
Announcement for AIX 4.1, OS/2 Warp, DOS Windows, IBM’s DCE Version 2.1
product family for AIX Version 4.1, or the IBM DCE 2.1 for OS/2 Warp for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

 Copyright IBM Corp. 1996 305

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.
PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.
UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.
Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

306 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

C.1 International Technical Support Organization Publications
• IBM DCE Cross-Platform Guide, GG24-2543

• Understanding OSF DCE 1.1 for AIX and OS/2, SG24-4616

• The Distributed File System (DFS) for AIX/6000, GG24-4255

• Using and Administering AIX DCE 1.3, GG24-4348

• Developing DCE Applications for AIX, OS/2 and Windows, GG24-4090

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

C.2 Other Publications
These publications are also relevant as further information sources:

General DCE Books

• Networking Blueprint, Executive Overview, GC31-7057

• Understanding DCE Concepts, GC09-1478

• OSF DCE User’s Guide and Reference (Prentice Hall), SR28-4992

• OSF DCE Administration Reference (Prentice Hall), SR28-4993

• OSF DCE Application Development Reference (Prentice Hall), SR28-4995

• OSF DCE Application Development Reference (Prentice Hall), SR28-4995

• Understanding DCE (O’Reilly & Associates), SR28-4855

DCE Version 1.3 for AIX

• DCE V1.3 for AIX Release Notes, GC23-2434

• DCE V1.3 for AIX User’s Guide and Reference, SC23-2729

• DCE V1.3 for AIX Administration Guide -- Core Services, SC23-2730

• DCE V1.3 for AIX Administration Guide -- Extended Services, SC23-2731

• DCE V1.3 for AIX Administration Reference, SC23-2732

• DCE V1.3 for AIX Application Development Guide, SC23-2733

• DCE V1.3 for AIX Application Development Reference, SC23-2734

• DCE NFS to DFS Authenticating Gateway V1.3 for AIX, SC23-2735

• NetView for DCE and Encina Manager Guide V1.3, SC23-2736

• AIX HACMP for DCE and Encina Guide V1.3, SC23-2737

 Copyright IBM Corp. 1996 307

• AIX DCE Getting Started V1.3, SC23-2477

• AIX DCE and OS/2 DCE Message Reference, SC23-2583

DCE Version 2.1 for AIX

• Introduction to DCE V2.1 for AIX, SC23-2796

• DCE V2.1 for AIX: Getting Started, SC23-2797

These are the only printed manuals. The documentation basically comes with
the program components in softcopy form only. These manuals can be printed
from within the ASCII viewer in ASCII format or from within the IPF/X graphical
softcopy browser in PostScript format. The following softcopy books are
available:

• Introduction to DCE

• DCE for AIX Getting Started

• DCE for AIX Administration Guide

• DCE for AIX Administration Command Reference

• DCE for AIX Application Development Guide - Introduction

• DCE for AIX Application Development Guide - Core Services

• DCE for AIX Application Development Guide - Directory Services

• DCE for AIX Application Development Reference

• DCE for AIX DFS Administration Guide and Reference

• DCE for AIX NFS/DFS Authenticating Gateway Guide and Reference

C.3 DCE Information on the World Wide Web (WWW)
A lot of information on DCE is available via the Web. To access it, start with one
of the following URLs:

http://www.raleigh.ibm.com/dce/dcehome.html
http://www.osf.org/dce/index.html

308 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com/redbooks.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks/redbooks.html

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• ITSO4USA category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1996 309

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com/redbooks
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: bookshop at dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29554
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada (toll free) 1-800-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

310 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 311

312 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

List of Abbreviations

ACL Access Control List

ADSM ADSTAR Distributed Storage Manager

AFS Andrew File System

AS Authentication Service

ATM Asynchronous Transfer Mode

BDM Binary Distribution Machine

BOS Base Operating System, Basic Overseer
(server in DFS)

C/S Client/Server

CDE Common Desktop Environment

CDMF Common Data Masking Facility

CDS Cell Directory Service

CICS Customer Information Control System

CM Cache Manager

CMA Concert Multithread Architecture

CMIP Common Management Interface Protocol

CMVC Configuration Management and Version
Control

COSE Common Open Software Environment

CUT or UTC Universal Time Coordinated

DCE Distributed Computing Environment

DAP Directory Access Protocol

DES Data Encryption Standard

DFS Distributed File System

DME Distributed Management Environment

DNS Domain Name Service

DoD Department of Defense

DSOM Distributed System Object Model

DSS Directory and Security Service

EMS Event Management Service

EPAC Extended Privilege Attribute Certificate

EP Endpoint

ERA Extended Registry Attributes

FCS Fibre Channel Standard

FLDB Fileset Location Database

GDA Global Directory Agent

GDF Group Definition File

GDS Global Directory Service

GSS-API Generic Security Services Application
Programming Interface

HACMP High Availability Cluster Multi-Processing

HTTP Hypertext Transfer Protocol

IBM International Business Machines
Corporation

ICC Initial Container Creation (ACL)

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics
Engineers

IETF Internet Engineering Task Force

IHMP IBM NetView Hub Management Program

IOC Initial Object Creation (ACL)

IP Internet Protocol

ISO International Standardization Organization

IT Information Technology

ITSO International Technical Support
Organization

JFS Journaled File System

LAN Local Area Network

LFS Local File System

LF Login Facility

LRPC Local RPC

MAN Metropolitan Area Network

MIB Management Information Base

MOCL Managed Object Class Library

MQI Message Queuing Interface

MPTN Multi-Protocol Transport Networking

MPTS Multi-Protocol Transport Service

NCACN Network Computing Architecture
Connection Based Protocol

NCADG Network Computing Architecture Datagram
Protocol

NFS Network File System

NIS Network Information System

NIST National Institute of Standard and
Technology

NSI Name Service Interface

NTP Network Time Protocol

OLTP On-Line Transaction Processing

OMG Object Management Group

ONC Open Network Computing

OSF Open Software Foundation

PAC Privilege Attribute Certif icate

PM Presentation Manager

 Copyright IBM Corp. 1996 313

PS Privilege Service

PTX Performance Toolbox

RDBMS Relational Database Management System

RPC Remote Procedure Call

RS Registry Service

SCM System Control Machine

SMIT System Management Interface Tool

SNA System Network Architecture

SNMP Simple Network Management Protocol

SOM System Object Model

SQL Structured Query Language

TCP Transmission Control Protocol

Tcl Tool Command Language

TDF Time Differential Factor

TGS Ticket Granting Service

TGT Ticket Granting Ticket

TPI Time Provider Interface

TPS Transactions Per Second

TSR Token Status Recovery

TTL Time to Live

UDF User Definition File

UDP User Datagram Protocol

UID User Identif ier

UUID Universal Unique Identif ier

VFS Virtual File System

WAN Wide Area Network

XMP X/Open Management Protocol

314 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

Index

A
abbreviations 313
Access Control List (ACL) 9
Access Control Lists

deleting user related ACLs 299
DFS ACL inheritance 219
DFS initial ACL settings 83
DFS initial creation ACLs 219, 294
extracting all user/group related ACLs 299, 301
managing user related ACLs 296
preferring group ACLs over user ACLs 26
preserving ACLs on DFS data backup 178

ACL manager l ibrary 250
acl_edit 296
acl_enable_users 147, 200, 275, 294, 296
acronyms 313
add_groups 146, 217, 221, 279, 285
add_users 146, 192, 216, 217, 221, 274, 287
adding users, examples 192
administration tasks, overview 139
ADSM 178
advertisements (CDS servers) 181
AIX platform

security integration 265
aliases 202
Andrew File System (AFS) 11
APPC 246
application development

application architecture 29
scalabil ity 30
server replication 29
summary 34
usage of core services 30

application development tips 30, 34, 157
Asynchronous Transfer Mode (ATM) 105
attaching servers 234
audit 25
audit daemon 250
Audit Service 9
automatic binding 226
autostart ing server 234
availabil ity discussions

CDS design tips 32
in scenarios 112, 126, 130, 132
planning summary 33
redundant network connections 31, 34
service layout and application design 29

B
backup

backup by replication 166
CDS by disabling the service 171
CDS server database (clearinghouse) 170

backup (continued)
CDS with read-only access 172
dcecp cell backup 168
DFS data 177
DFS FLDB 174
security server database 168, 169

backup communication link 31, 130, 131
BIND_PE_SITE 23, 110, 128
binding handles

excluding interfaces 131
excluding WAN interfaces 34
RPC binding information or CDS towers 148
UNIX stream sockets 243

binding process 226
bridges 105, 117
broadcasts 131, 160

C
cache files 179
caches

cache files and sizes 179
managing the cache files 181

CDS
backing up a clearinghouse 170
CDS access via clerk-cache 181
cds-clerk cache 179
cdscp define cached server 131
Changing Tower information 162
configuration steps 45
copying a clearinghouse 111
defining a preferred server 129
defining the cached CDS server 184
design tips 27, 31, 33, 129
expiration age of CDS cache entries 181, 182
helpful CDS inquiry examples 160
introduction 10
managing the clerk-cache 181
moving a CDS server 144, 163
moving a clearinghouse 162
moving a master directory 161
namespace planning 26
replication capabilit ies 31
replication steps 65
replication, overview 22
restoring the database 173
searching for an IP address 152
server selection mechanism 23, 129
storing NIS maps in CDS objects 215

cdscp define cached server 160, 184
cell configuration information 71
cell layout

application design and implementation 29
frequency of calls from applications 30
general decision factors 19, 28, 105

 Copyright IBM Corp. 1996 315

cell layout (continued)
network speed and bandwidth 30
network topology and availabil ity 31
one cell or multiple cells 28, 33
summary 33
technical decision factors 29

cell name resolution 135
cell status information 71
cell_admin account, management of 207
cell_admin password lost 207
cellalias object 249
cemetery directory 200, 298
changing an IP address 148
chpesite command 242
CICS 4
cleanif 148, 150
cleanup_cache 148, 183
cleanup_cds_cache 148, 163, 173, 182
cleanup_ip 152
Clearinghouse, changing Tower information 162
clearinghouses 10
client/server introduction 1
client/server model 2
cm checkfilesets 95, 109, 185
cm flush 185
cm flushfileset 185
cm lsstores 185
cm resetstores 185
cm setpreferences 23, 129, 185
CMA 6
command-line interface (CLI) AIX 14
command-line interface (CLI) OS/2 15
compatibi l i ty 140
configuring DCE/DFS

changing an IP address 148
changing cell configurations 145
configuring a DFS Client 82
configuring a file server 80
configuring an SCM 77
configuring another fi leset 86
configuring CDS 45
configuring DFS 75
configuring DTS 46
configuring the FLDB 78
configuring the root fi leset 81
configuring the security service 44
DFS client on OS/2 88
home directory in DFS 98
installing the DCE code 42
moving services within a cell 157
network name resolution 39
network routing 40
order of network interfaces 41
OS/2 DCE 56
preparing for DCE configuration 38, 53
replicating a DFS file server 89
replicating CDS 65
replicating core servers on AIX 65

configuring DCE/DFS (continued)
split configuration 47, 242
splitting a cell 145
synchronizing the system clocks 42

controlling disk space 178
Coordinated Universal Time (CUT or UTC) 11
copy_ch 67, 144
CPI-C 246
CR_EMPTY_GDF 284
CR_EMPTY_UDF 195, 280, 289
create_cds_entry 148, 160, 184
credential fi les 179
crontab 180, 268

D
data encryption 245
databases of DCE services 178
DCE

Cell Directory Service (CDS) 10
configuration 37
DCE architecture 6
DCE overview 5
Distributed File System (DFS) 11
Distributed Time Service (DTS) 11
IBM provided administration tools 14
installation and configuration on OS/2 53
management services 13
mutual dependencies between DCE

components 13
new features of version 1.3 241
Remote Procedure Call (RPC) 7
security service 7
Threads 6

DCE_HOSTNAME 50
dcecp 14, 248
dcecp registry connect 136
dced 249
DCED daemon 228
dced objects 228
dceman command 43
dceunixd 206, 270
decode 247
defining a preferred server

CDS 129
DFS 129, 245
security server 128
when is it appropriate? 128

defining the cached CDS server 131, 160, 184
del_groups 146, 279, 285, 286
del_users 146, 275, 298
delegation 249
deleting users, examples 200
DES key 8
DFS

accessing DFS from NFS 264
ACL inheritance 219
ACL, initial settings 83, 84, 107
backing DFS data 177

316 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

DFS (continued)
backing up the FLDB 174
client configuration on OS/2 61
comparison with NFS 12
configuration on OS/2 88
configuring a file server 80
configuring an SCM 77
configuring another fi leset 86
configuring DFS Client 82
configuring the FLDB 78
configuring the root fi leset 81
defining a preferred server 129, 245
design tips 32, 33, 129
DFS access from NFS 222
dfs client cache 179
dfsiauth command 225
home directory in DFS 98, 294
introduction 11
managing the client cache 185
moving an fi le server 158
moving an FLDB server 158
moving an SCM machine 159
moving NFS files to DFS 218
NFS/DFS translator admin tasks 260
NFS/DFS translator configuration 222
NFS/DFS translator overview 257
path name resolution 129
replicating a DFS file server 89
replication capabilit ies 32, 33
replication of fileset data, details 252
replication of fi leset data, overview 22
replication of the FLDB, overview 22
replication steps 75
restoring DFS data 177
restoring the FLDB 175
server selection mechanism 23, 129
steps for moving NFS files to DFS 221

DFS junction 158
dfs_enable_users 147, 199, 275, 294
dfsiauth 225
dfsiauth command 225, 262
direct trust peer relationship 136
disabling a CDS server 171
disk space preparation 39
disk space requirements 38
domain name service (DNS) 133
DSS 17
DTS

configuration on OS/2 62
configuration steps 46
courier DTS servers 125, 127
global DTS servers 125, 127
introduction 11
local DTS servers 125
noncourier DTS servers 127

E
Encina 4
Encina, RQS 2
encode 247
Encoding Services 246
encryption of user data 245
endpoint map 227
endpoint mapper 44
Event Management 61
excluding RPC network interfaces 41, 131
explicit binding 226
Extended Privilege Attribute Certificate 9
Extended Privilege Attribute Certificate (EPAC) 248
Extended Registry Attribute (ERA) 9, 248

F
features with version 1.3 241
Fiber Channel Standard (FCS) 105
Fiber Distributed Data Interface (FDDI) 105
file system full 178
files growing over time 178
fileset location database 77
filespace planning 33, 129
flat user namespace 26
FLDB configuration 78
fts syncfldb 177
ftserver 80
full configuration method 48

G
GDA 10
GDF 285
get_all_info 274, 283, 284, 295, 297, 300
get_info_groups 146, 285
get_info_users 146, 274, 294, 296, 299
GIDs 272
global changes of file ownership 216
group management

central repository 285
command overview 284
fi le overview 286
group definition file (GDF) 285
introduction and overview 283
migration from other environments 287
states and transition 284

group_override 270
grp2dce 287
GSS-API 9, 247
GUI 191

H
home directory in DFS 98, 294
hostdata objects (dced) 235

Index 317

I
IDL 7
IDL compiler 17
IDL Encoding Services 246
integrated login 24, 206
integrated login, configuration 270
intercell login 137
intercell scenario configuration 133
inventory of the local DCE configuration 70
IP address change, workflow 152
IP broadcasts 131
IP forwarding 119
IP router 105
ISDN 132

J
joining cells 25, 33, 147, 201

K
Key Management Facil i ty 9
keytab object (dced) 236

L
leaf objects 149
LFS 12
list CDS information 160
list_ch 144
local RPC 180, 243
log-based file system (LFS) 12
Login Facility 9
login integration 24, 265
long-running server applications 238

M
master key 170
message-based communication 2
messages 251
migrating users 25, 33, 145, 147, 195
migrat ion 140
migration planning 27
mkdce.data 144
MOCL 191
modyfying users, examples 197
monitoring DCE with NetView 244
moving services within a cell 157
MPTS 54
MPTS (Multi-Protocol Transport Service) 54
MQSeries 2, 246
multi-protocol router network 130
mutual authentication surrogate 136
MX record (in DNS) 135

N
name resolution 39
name resolution on OS/2 55
Name Service Interface (NSI) 10
namespace planning 26, 33, 129
ncacn_nb_stream 53
ncadg_nb_dgram 53
NetBIOS 53
NetView for monitoring 244
NetView/6000 244
network interfaces 41
network routing 40
network routing on OS/2 55
network topologies

alternate communication l inks 117, 130
logically pure LAN topology 106
mixed LAN/WAN topology 117
scenario overview 105

NIS/NFS
accessing DFS from NFS 264
comparison with DCE/DFS 12
DFS access from NFS 222
global changes of file ownership 216
integrating NIS/NFS into DCE 212
migrating NIS maps into DCE 213
moving NFS files to DFS 218
moving NIS users to DCE 217
NFS/DFS translator admin tasks 260
NFS/DFS translator configuration 222
NFS/DFS translator overview 257
steps for moving NFS files to DFS 221
unifying UIDs/GIDs 216

nis2dce_groups 217, 221
nis2dce_users 216, 217
no command 119
number of users 203

O
OEC toolkit 4
Open Blueprint 8
OS/2

configuration steps and panels 56
configuring a secondary CDS server 69
IBM-added admin commands 15
installing the DCE code 53
name resolution 55
network routing 55
preparation steps 53
setting the time 56
show_cds Tcl script 72, 161
split configuration 63
tailored-path configuration 69

P
passwd_import, passwd_export 268

318 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

passwd_override 270
passwd_override ERA 271
Password Management Facility 9, 250
password of cell_admin lost 207
pe_site file 242
performance discussions

CDS design tips 32
in scenarios 111, 125, 128, 132
issues determining performance 29
planning summary 33
service layout and application design 29

planning
availability tips for WANs 34
CDS design tips 33
CDS namespace 26, 31, 129
decision factors for DCE design 19
DFS filespace 129
DFS FLDB and filesets 32, 33
security service 32
summary 33
user namespace 26, 33

POSIX
1003.4a Draft 4 6

POSIX 1003.4a Draft 7 7
preparing for AIX DCE configuration 38
product information 16
PTF 43
pwd2dce 217, 283

R
RACF 8
randomized password 238
RDBMS 4
read/write mount point 255
registering a cell 134
registry attr ibute 267
registry connect 137
regular mount point 255
release notes 39
release replication 94
reliable network 31, 34
relocating a CDS server 144, 160
relocating a security server 142, 165
renew_dir_entries 152
replicated servers in branches 132
replicating a DFS file server 89
replication

benefits 21
CDS and its database 22
configuring a secondary CDS server 65
configuring a secondary security server 67
DCE services vs. network link replication 31
DFS fileset server and data 252
fileset server and data 22
FLDB server and database 22
for DCE applications 29, 34
security server and its database 22
server selection mechanisms 23

response file 58
restarting the CDS server 171
restore

CDS database 173
DFS data 177
DFS FLDB 175
security server database 170

rgy_enable_users 147, 194, 198, 217, 275, 292
rmxcred 180
root fi leset 81
root fi leset configuration 81
router 105, 117, 130
routing 40

checking network routing 40
gated, routed 131
network links and dynamic routing 31, 34
redundant links and dynamic routing 126
relying on IP routing for DCE 131

RPC Endpoint Mapper 44
RPC group entries 23, 128
RPC overview 7
RPC_UNSUPPORTED_NETIFS 34, 41, 118, 131, 244
RPC, local sockets 180, 243

S
scheduled replication 96
SCM configuration 77
searching CDS for an IP address 152
sec_admin 170
security integration 270
security service

backing up the database 168, 169
configuration steps 44
credential fi les 179
defining a preferred server 128
design tips 32
extracting all DCE registry information 299, 301
introduction 7
locksmith mode 207, 208, 209, 210
pe_site, chpesite 242
replication capabilit ies 32
replication, overview 22, 242
restoring the database 170
server selection mechanism 23, 128

security threats 7
server databases of DCE services 178
server selection mechanisms 23
setclock 42
show_cds 72, 161
single login 206, 265
sizing

disk space required per client system 24, 179
disk space required per user 24, 178
dynamic sizing 25
memory space required per client system 24
memory space required per user 24
static sizing 24

Index 319

SLIP 117, 131
SLIP definitions 120
SNMP manager 61
split configuration 47, 242
split configuration method 49
split configuration on OS/2 63
splitting a cell 145, 201
srvrconf.db 232, 249
stub size 245
susp_users 146, 197, 201, 275, 281, 298
synchronized user 268
synchronizing clocks 42
synchronizing the clock on OS/2 56
SYSTEM attribute 266
system control machine 76

T
tailored-path configuration (OS/2) 69
test scenarios

(2) single LAN, two server machines 106, 133
(3) single LAN, multiple server machines 112
(4) small branch connected via X.25 118
(5) large branch connected via X.25 126
(6) redundant links (X.25/SLIP) 130
(7) intercell 132
LAN-type cells 105
LAN/WAN-type cells 117
scenario groups 105

threads 6
POSIX 1003.4a Draft 4 6

three-tier architecture 4, 29
t imeout 131
Tool Command Language 14
Tool Control Language (TCL) 249
tools on the diskette

acl_enable_users 147, 294, 296
add_groups 146, 217, 285
add_users 146, 192, 217, 287
cleanif 148, 150
cleanup_cache 148, 183
cleanup_cds_cache 182
cleanup_ip 152
copy_ch 67, 144
CR_EMPTY_GDF 284
CR_EMPTY_UDF 195, 289
create_cds_entry 148, 184
del_groups 146, 285
del_users 146, 298
dfs_enable_users 147, 294
get_all_info 283, 284, 295, 297, 300
get_info_groups 146, 285
get_info_users 146, 294, 296, 299
grp2dce 287
installing the tools 192, 303
list_ch 144, 161
nis2dce_groups 217
nis2dce_users 216
pwd2dce 217, 283

tools on the diskette (continued)
rgy_enable_users 147, 194, 217, 292
show_cds 72, 161
susp_users 146, 197, 201, 298
update_groups 285
user management tool overview 273

Tower information in CDS 162
towers, CDS 148
TPS 25
Transarc 11
trust peer 136
two-tier architecture 4

U
ubik 32, 175
udebug 155
UIDs 272
umask 220
unifying UIDs/GIDs 216
unique GIDs 216
unique UIDs 26, 216
unique user names 26
update_groups 284, 285
upserver/upcl ient 81
user management

adding users with predefined UIDs 195
adding users, examples 192
aliases 202
cemetery directory 200, 298
central repository 275
controll ing automatic UID assignment 290
customizing the umgt tools 282
defining default values for UDFs 282
deleting users, examples 200
extracting all user/group related ACLs 299, 301
fi le overview 281
initial user password 291
introduction and overview 271
managing the cell_admin account 207
migration from other environments 283
modifying users, examples 197
planning the user namespace 26
states and transition 280
tool structure and overview 273
top DFS directory for ACL search 300
UIDs, GIDs and access rights 272
user definition file (UDF) 277

user migration 195
user namespace planning 25, 33
user-level threads 6
UTC 11
UUID 7, 272

W
WAN interfaces 42
wandering DCE user 269

320 Administering DCE and DFS 2.1 for AIX (and OS/2 Clients)

X
X/Open Directory Service (XDS) 10
X.25 117, 131
xs0 41

Index 321

IBML

Printed in U.S.A.

SG24-4714-00

