
SG24-4541-01

RS/6000 Scalable POWERparallel System:
Scientific and Technical Computing Overview

October 1996

International Technical Support Organization

RS/6000 Scalable POWERparallel System:
Scientific and Technical Computing Overview

October 1996

SG24-4541-01

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 161.

Second Edition (October 1996)

This edition applies to:

IBM Parallel Environment Version 2 Release 1 for AIX
IBM PVMe Version 2 Release 1
IBM Parallel ESSL Version 1 Release 1 for AIX Version 4
IBM Parallel OSL Version 1 Release 1 for AIX
IBM XL High Performance Fortran Version 1 Release 1 for AIX

for use with IBM AIX Version 4 Release 1.3 and PSSP Version 2 Release 1.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface . v
How This Redbook Is Organized . v
The Team That Wrote This Redbook . vi
Comments Welcome . vi

Chapter 1. Introduction . 1
1.1 IBM Software for NIC Applications . 2
1.2 Amdahl ′s Law Theory . 4

1.2.1 First Case: k=constant . 5
1.2.2 Second Case: k Linear . 6

1.3 Remarks . 7

Chapter 2. Message Passing Interface . 9
2.1 Overview . 11

2.1.1 MCPI Definition . 13
2.1.2 MPI Definition . 14

2.2 Message Passing Layers . 15
2.3 MPI Enhancement vs MPL . 16

2.3.1 Blocking Communications . 18
2.3.2 Nonblocking Communications . 20
2.3.3 Persistent Communications . 23
2.3.4 Process Group Management . 25
2.3.5 Communicators . 27
2.3.6 Predefined Datatypes . 30
2.3.7 Derived Datatypes . 31

2.4 Collective Communications . 37
2.5 Reduction Operations . 39
2.6 Topologies . 40

2.6.1 Graph Topology . 40
2.6.2 Cartesian Topology . 43
2.6.3 Environmental Management . 45

2.7 IBM MPI Enhancement vs MPI Standard . 47

Chapter 3. PVMe V2 . 49
3.1 Covered Topics . 51
3.2 PVMe Overview . 52

3.2.1 PVMe and PVM . 54
3.2.2 PVMe versus PVM . 56
3.2.3 The PVMe Daemon . 58
3.2.4 PVMe Structure . 61
3.2.5 PVMe: New Features . 64

3.3 PVMe 2.1 Installation . 66
3.4 Writing a PVMe Program . 67

3.4.1 Managing Tasks and Hosts . 68
3.4.2 Packing and Unpacking Messages . 70
3.4.3 Exchanging Messages and Signals . 71
3.4.4 Groups and Collective Communications 72

3.5 Running a PVMe Program . 74
3.5.1 Examples . 75
3.5.2 Options to the PVMe Daemon . 78
3.5.3 PVMe Environment Variables . 79

 Copyright IBM Corp. 1996 iii

3.5.4 Running on RS/6000 and RS/6000 SP 80

Chapter 4. Parallel ESSL and Parallel OSL . 83
4.1 Parallel ESSL . 84

4.1.1 Announcement Summary . 85
4.1.2 Parallel ESSL Highlights . 86
4.1.3 PESSL Design Objectives . 87
4.1.4 PESSL Application Support . 91
4.1.5 PESSL Operating Environments . 92
4.1.6 Parallel ESSL - New Routines . 94
4.1.7 What is BLACS? . 103
4.1.8 Steps for Using PESSL . 105
4.1.9 PESSL/BLACS Call Examples . 107

4.2 Parallel OSL . 111
4.2.1 Why use OSLp? . 112
4.2.2 OSLp Operating Environment . 113
4.2.3 OSLp - New Routines . 114
4.2.4 Creating OSLp Code from Serial OSL Code 116

Chapter 5. High Performance Fortran . 121
5.1.1 Acknowledgements . 122

5.2 Topics Covered . 123
5.2.1 HPF Announcement (December 5, 1995) 124
5.2.2 HPF - Operating Environment . 126
5.2.3 HPF Restrictions . 127
5.2.4 HPF vs XLF . 128
5.2.5 New HPF Directives . 134
5.2.6 HPF Features - SUMMARY . 135
5.2.7 ALIGN Directive . 137
5.2.8 Distributing Data . 141
5.2.9 INDEPENDENT Directive . 146
5.2.10 SEQUENCE and Combined Directives 148
5.2.11 FORALL Statement . 150
5.2.12 PURE and Extrinsic Procedures . 153
5.2.13 Intrinsic Procedures . 154
5.2.14 HPF Compiler Options . 156

Appendix A. Special Notices . 161

Appendix B. Related Publications . 163
B.1 International Technical Support Organization Publications 163
B.2 Redbooks on CD-ROMs . 163
B.3 Other Publications . 163

How To Get ITSO Redbooks . 165
How IBM Employees Can Get ITSO Redbooks 165
How Customers Can Get ITSO Redbooks . 166
IBM Redbook Order Form . 167

List of Abbreviations . 169

Index . 171

iv RS/6000 SP: Scientific and Technical Overview

Preface

 This redbook provides detailed coverage of the scientific and
 technical software available on IBM RS/6000 Scalable
 POWERparallel systems for numeric intensive computing (NIC)
 applications.

 The redbook discusses the following software programs in depth.

 IBM Parallel Environment Version 2 Release 1 for AIX.
 The new Message Passing Interface (MPI) subroutines.
 IBM PVMe Version 2 Release 1 (which is now externally compatible
 with the public domain PVM 3.3.7).
 IBM Parallel ESSL Version 1 Release 1 for AIX Version 4.
 IBM Parallel OSL Version 1 Release 1 for AIX.
 IBM XL High Performance Fortran Version 1 Release 1 for AIX.

 This redbook is of value to IBM specialists and customer
 specialists who will be developing and administering end-user
 education. It is in technical presentation format, with foils and
 related notes to the speaker included, and can also be used as a
 student handout.

 Some knowledge of the AIX 4.1.3 operating system, RISC/6000 SP
 architecture, and parallel programming application is assumed.

How This Redbook Is Organized
This redbook contains 174 pages. It is organized as follows:

• Chapter 1, “Introduction”

This chapter provides some information about the parallel programs
designed to be executed on parallel machines.

• Chapter 2, “Message Passing Interface”

The message passing interface (MPI) is the new standard for message
passing libraries designed for parallel programs running on distributed
memory machines. MPI is now available in IBM Parallel Environment for AIX
Version 2. This chapter is an overview of MPI and presents examples of MPI
usage.

• Chapter 3, “PVMe V2”

This chapter describes IBM PVMe Version 2, which IBM developed to take
advantage of the RS/6000 SP distributed architecture together with the
performances offered by the high-performance switch, and to be externally
compatible with the Oak Ridge National Lab. Parallel Virtual Machine (PVM)
Version 3.3.7.

• Chapter 4, “Parallel ESSL and Parallel OSL”

This chapter is a presentation of numeric intensive computing (NIC) libraries
developed by IBM:

− IBM Parallel ESSL for AIX Version 4, which is a set of parallelized ESSL
subroutines

 Copyright IBM Corp. 1996 v

− IBM Parallel OSL for AIX Version 4, which includes a set of parallelized
OSL subroutines

• Chapter 5, “High Performance Fortran”

This chapter describes the new High Performance Fortran (HPF) standard
and gives information about the IBM XL HPF compiler.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

This project was designed and managed by:

The authors of this document are:

Thanks to the following people for their invaluable contributions to this project:

Endy Chiakpo ITSO, Poughkeepsie Center
Michel Perraud ITSO, Poughkeepsie Center

Giulia Caliari IBM Italy
Henry Altaras IBM Israel
Alexandre Blancke IBM France
Mario Bono IBM Australia
Franz Gerharter-Lueckl IBM Austria

Rob Clark IBM Poughkeepsie
Joanna Kubasta IBM Toronto Laboratory
John Martine IBM Poughkeepsie
Dave Reynolds IBM Poughkeepsie
George Wilson IBM Poughkeepsie
Henry Zongaro IBM Toronto Laboratory

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

vi RS/6000 SP: Scientific and Technical Overview

Chapter 1. Introduction

� �

� �
In June 1995, IBM announced a set of new versions for RS/6000 SP software:

• IBM Parallel System Support Programs (PSSP) Version 2

The new features included in PSSP Version 2 are presented in PSSP Version
2 Technical Presentation.

• IBM Parallel Environment Version 2 for AIX, which includes the new message
passing interface (MPI) library.

• IBM PVMe Version 2, on which message passing subroutines can use the IP
protocol on the HPS, and which allows users to run their parallel jobs on a
mix of RS/6000 SP nodes and clustered RS/6000 workstations.

• IBM Parallel ESSL for AIX Version 4

• IBM Parallel OSL for AIX

On December 5, 1995, IBM announced the IBM XL High Performance Fortran for
AIX.

This book is a technical presentation of this software available for scientific
users and NIC applications developers who are working on RS/6000 SP
machines. This book is primarily intended for specialists and SEs who have to
present the new IBM software and teach users and developers. It includes

 Copyright IBM Corp. 1996 1

mid-size foil pictures and the related technical information. This book can also
be used as student handout.

The introduction is organized as follows:

• Section 1.1, “IBM Software for NIC Applications” is an overview of IBM
software.

• Section 1.2, “Amdahl′s Law Theory” presents some information about
Amdahl ′s law, which is useful to explain how resources are consumed by a
parallel program and which rules determine the parallel program speedup.

1.1 IBM Software for NIC Applications
The IBM software catalog for scientific users and technical computing developers
includes the following new features:

Message Passing Interface (MPI)
IBM PE Version 2 provides this new message passing library, which is
becoming the de facto standard in scientific and technical computing centers.
With this set of message passing subroutines, scientific developers are
developing efficient code for complex applications. As it is developed, the
code is portable on every platform that provides a library consistent with the
MPI standard. On RS/6000 platforms, the MPI subroutines may coexist with
subroutines from the MPL library, the former message passing library
provided by IBM with PE. So, users may plan their migration to the MPI
standard without any break. MPI is presented in Chapter 2, “Message
Passing Interface” on page 9.

IBM PVMe Version 2 (PVMe)
IBM PVMe Version 2 is source compatible with the public domain PVM 3.3.7.
It allows users to port their PVM applications on RS/6000 SP systems and to
obtain better performance with the high performance switch. With PVMe
Version 2, users can include in the parallel program node list some RS/6000
SP nodes and complement them with clustered RS/6000 workstations. PVMe
Version 2 has been improved to create trace files readable by xpvm, the public
domain post morten monitor for PVM parallel programs. IBM PVMe Version 2
is described in Chapter 3, “PVMe V2” on page 49.

IBM Parallel ESSL for AIX version 4 (PESSL)
For users who used to use the ESSL subroutines either on mainframes with
ESSL/370 or RS/6000 workstations with ESSL/6000, Parallel ESSL for AIX
provides a way to migrate applications to parallel environments on RS/6000
SP systems and clustered RS/6000 workstations. A subset of most frequently
used ESSL/6000 subroutines have been parallelized. They are described in
Section 4.1, “Parallel ESSL” on page 84.

IBM Parallel OSL for AIX (OSLp)
OSLp is now available on RS/6000 SP systems running AIX 3.2.5 and PSSP
V1.2 (OSLp 1.2.0), and on RS/6000 SP systems running AIX 4.13 and PSSP
V2.1. OSLp provides users with a linear programming solver (LP), a
mixed-integer programming solver (MIP), and a solver for problems with a
quadratic optimize equation. Problem solving performance is improved when
such problems are executed on parallel machines. OSLp is presented in
Section 4.2, “Parallel OSL” on page 111.

2 RS/6000 SP: Scientific and Technical Overview

IBM XL High Performance Fortran for AIX (HPF)
On December 5, 1995, IBM announced the IBM XL HPF compiler. HPF is
designed to generate SPMD parallel programs. The compiler generates MPI
subroutines calls according to directives included in the source code. These
directives show which parts of the code must be parallelized and provide the
developer with the means to determine the way data is distributed between
the parallel program processes. Users developing their applications with HPF
create a portable source code because HPF is going to be available on most
parallel and distributed systems. IBM XL HPF is described in Chapter 5,
“High Performance Fortran” on page 121.

These products are supported on RS/6000 SP systems by AIX Version 4.1.3
together with PSSP Version 2. MPI, PESSL, OSLp, and HPF are supported on
RS/6000 clusters, but these libraries and the HPF compiler imply better
performance when the resulting executable runs on RS/6000 SP equipped with
the HPS. These software products are developed to take advantage of the
RS/6000 SP distributed architecture. This architecture is powerful for scientific
and numeric intensive computing (NIC) applications. In fact, according to
Amdahl ′s law, the speedup users can expect when they run their applications on
distributed parallel machines will depend on two factors:

The choice of parallelizable algorithms
The choice of parallelizable algorithms, which implies that you can distribute
the computation time to independent tasks that can run simultaneously on
different processors.

It generally means that the source code of existing applications must be
rewritten to assume the distribution of both data and execution time between
independent processors externally connected through a communication path,
which can be either a standard network or a specific high-speed connection,
such as the RS/6000 SP high-performance switch (HPS).

Parallel programs running on distributed parallel machines may be developed
using several models. The models preferred by developers are:

• The SPMD model (single program, multiple data)

In this model, there is only one executable and each process runs a copy
of this single executable. Of course, this executable may include logic
that tests the process range in the set of processes, and algorithms are
set up according to this range.

• The MPMD model (multiple programs, multiple data)

In this model, the developer designs the application as a set of different
processes generally specialized to execute a specific algorithm. One of
the processes, named the master process, is started first, manages the
slave process loading on distributed processors, distributes the data to
slaves, and gathers the results computed by slaves.

The IBM parallel environments support either SPMD programs or MPMD
programs.

Because each process is designed to be executed on different processors,
processes must generally exchange data when the parallel program is
executed. This is still true when parallel environments, such as the public
domain PVM, allow the user to load several processes per processor at
execution time.

Chapter 1. Introduction 3

Data exchange, together with other communications between processes is
made easy through ad hoc functions, available as callable subroutines that
are included in message passing libraries.

Three message passing libraries are provided by IBM software:

• The PVM library available with PVMe

• The MPL library, included in PE and developed for RS/6000 SP systems
before the MPI standard availability

• The MPI library, now available with PE Version 2

PE also includes tools that help developers debug and tune their parallel
application using MPL or MPI.

The availability of a fast communication path
The availability of a fast communication path between processes when
master and slave processes exchange data or when the master process
gathers the results.

On RS/6000 SP, this fast communication path has the HPS, which executes
data transfer between nodes, using either the IP protocol or a user space
protocol specifically developed to optimize the message passing
communication through the HPS.

Section 1.2, “Amdahl′s Law Theory” gives a simplified example of Amdahl′s law
when applied to a parallel program running on a parallel distributed system.

The speedup function is computed with respect to two variables:

• The number of processor nodes used to execute the parallel program
• The communication function, which represents the elapsed time consumed to

communicate between processes that compose the parallel program.

1.2 Amdahl ′s Law Theory
Let′s suppose there is no resource constraint except CPU time in a parallel
configuration. This hypothesis is realistic when parallel machines are built with
processors that can manage very large memories, which is the case of RS/6000
SP systems. Also, NIC programs are generally CPU-bound, with a low I/O rate,
which means we can ignore the I/O request interference in the first
approximation. So, the performance will only depend on the way the algorithm
uses the processor time. Let′s suppose a given serial program processor time
can be divided into three parts:

s represents the part of processor time that cannot be parallelized
p represents the part of processor time that can be parallelized
k(n) is the communication function. It represents the overhead related to

communications between the application program and other processes. As
a first approximation, let′s suppose it is a one-variable function with respect
to n, which is the number of nodes.

Let′s suppose the duration of the serial program is the unit of time. So, T1 and
Tn, that are respectively the duration of the serial program, and the duration of
the parallelized program executed on a pool of n processors, are as follows:

T1 = p + s + k(1) = 1

4 RS/6000 SP: Scientific and Technical Overview

Tn =
p
n + s + k(n) =

p + ns + nk(n)
n

So, the speedup S(n) is:

S(n) =
T1

Tn
= 1

Tn
= n

p + ns + nk(n)

The derivative function in respect of n is:

dS(n)
dn

=
p − n2k′(n)

(p + ns + nk(n))2

1.2.1 First Case: k=constant
If we suppose the k(n) function is constant, which generally occurs for NIC
programs with no need to transfer data between nodes (for instance, data is split
on local nodes for parallel execution), then the speedup function is:

S(n) = n
p + n(s + k)

Because p + s + k = 1⇒s + k = 1 − p, the speedup function becomes:

S(n) = n
p + n(1 − p)

and its derivative is:

dS(n)
dn

=
p

(p + (1 − p)n)2

For a given p value, this derivative is always positive, and the S(n) function is
always increasing with respect to n.

Figure 1 on page 6 presents the Speedup function in respect to the number of
processors used to run the parallel program and in respect to p, percent of code
that is parallelizable.

As you can observe, the speedup value you can expect is very sensitive to the p
value: in fact, for a given p value, the speedup upper limit is:

l im
n → ∞

S(n) = 1
1 − p

For instance, if p = 0.9, which means the program is parallelizable up to 90%,
then the maximum speedup you can expect is 9.343 with 128 processors nodes,
and the speedup limit for an infinite number of nodes is 10.

The case k = constant is certainly the most frequent for scientific and NIC
applications. In fact, except for the initial step that reads and distributes the
data, and the last step that gathers the results and stores them for further use,
such parallel programs are CPU-bound and processes are generally
independent.

Chapter 1. Introduction 5

Also, experienced techniques now available in message passing libraries, such
as nonblocking communications, buffered communications, and persistent
communications, improve the performance because the computation and the
communications are optimized and simultaneously dispatched on each node.
So, the s ratio becomes very low.

Figure 1. Speedup = f (p,n) for a Constant Communication Function

1.2.2 Second Case: k Linear
Now, let′s suppose that the communication function is linear. So, k(n) = βn and
k′(n) = β . Then, the speedup function and its derivative become respectively:

S(n) =
T1

Tn
= Tn = n

p + ns + βn2

dS(n)
dn

=
p − βn2

(p + ns + βn2)2

The speedup is increasing when p − βn2 > 0. So, βn2 < p. But p ≤ 1; therefore,

βn2 < 1, and β < 1
n2

.

Figure 2 is a set of curves that shows the impact of p over the speedup function,
when the communication function k(n) = βn is set up with the following values:

β = 1
642

p = 1 − β − s

s varies from 0 to 0.1 by 0.01

6 RS/6000 SP: Scientific and Technical Overview

Figure 2. Speedup = f (p,n) for a Linear Communication Function

As one can observe, the communication function is the primary deciding factor
for the expected speedup on parallel machines. As a first level approximation,
we can consider the serial part of the application is the data transmission time
between processes, which is related to the amount of data to be transmitted, and
β is related to the number of message passing commands, which is related to
the number of nodes.

1.3 Remarks
We can conclude this simplified presentation of Amdahl′s law with the following
remarks:

Performance Improvement

• We can expect a good speedup either when the data transmission time is
negligible compared to the processor time, or when each process
accesses its own data.

• The bandwidth and the latency of the communication path between nodes
are the primary deciding factors for the expected speedup.

In fact, we should also evaluate the communication function with respect to
the quantity of data to be transmitted. For a given processor configuration,
varying the size of data implies a variation of the communication time.
Several studies were published on this subject: they show that the chosen
algorithm determines the amount of data to be transmitted. These studies,
when evaluating the theoretical speedup for a given algorithm, make the point
that the communication speed is a keypoint for the speedup increase, which
confirms what is deduced with good sense.

However, one can immediately understand the improvement given by
nonblocking communications, as they are provided in message passing
subroutines, such as PVMe, MPL, or MPI, or the even more efficient buffered

Chapter 1. Introduction 7

communications, and persistent communications, as they are now provided
by MPI:

• When a blocking communication is running, the program is waiting and
this wait time is included in s, the non-parallelizable part of the program.
It has a strong effect on the speedup.

• When a nonblocking communication is running, the program is
simultaneously running, and the speedup is not affected by the
asynchronous communication.

Easy Development
But parallel programming needs knowledge, experience, and time. To help
users develop their parallel code, IBM provides them with parallelized
packages, such as Parallel OSL and Parallel ESSL. Furthermore, IBM
announced in December 1995, with general availability scheduled in April
1996, a new XL High Performance Fortran compiler, which includes the
Fortran 90 statements plus the subset HPF directives to (almost) implicitely
generate a Fortran parallel program.

The following chapters include the basics of new IBM products developed to take
advantage of RS/6000 SP systems for scientific and technical computing
applications.

8 RS/6000 SP: Scientific and Technical Overview

Chapter 2. Message Passing Interface

� �

� �

IBM Parallel Environment for AIX, Version 2 Release 1 includes the following
components:

Parallel Operating Environment (POE)
POE is designed to set up the parallel environment for parallel program
execution. You can initialize POE either with the poe command or by
exporting environment variables before the parallel program execution. POE
includes a partition manager which manages the node allocation, the
program loading, and the standard I/O distribution to nodes.

The parallel debuggers pdbx and xpdbx
The parallel debugger is based on the dbx debugger, and works as a server
on the user workstation, while connected to dbx processes running on
execution nodes. It gathers information from nodes and displays this data
either in line mode (pdbx) or through a X/MOTIF GUI (xpdbx).

Visualization Tool (vt)
VT is a AIXwindows application that displays performance data and graphs in
two modes:

Post mortem analysis
The POE can be set up with VT trace file initialization. Then, the parallel
program creates a trace file. This trace file is read by the post mortem VT
analysis. A set of icons displays windows and graphs that simulate the job

 Copyright IBM Corp. 1996 9

execution according to the trace file content. If the program was compiled
with the -g flag, VT is able to display the source code in a window and to
highlight the source statements when they are executed.

Performance monitoring
Also, VT can be started to display the performance data of running parallel
jobs.

The message passing library (MPL)
IBM was part of the consortium that designed the Message Passing Interface
destined to be the new standard of message passing library. When the
POWERparallel systems were released, MPI was not ready yet, and IBM
provided customers with MPL, which is an IBM set of message passing
subroutines. Now, MPI is well defined, and becomes the basic message
passing library available in IBM Parallel Environment for AIX, Version 2
Release 1.

IBM Parallel Environment for AIX, Version 2 Release 1 continues to provide
support for MPL (Message Passing Library), the IBM message passing API. MPL
and MPI subroutines can coexist in the same parallel program. The new library
includes several IBM extensions (MPE) subroutines. These extensions, though
not part of the MPI standard, provide powerful nonblocking collectives functions.
It is up to the developer to choose between the conformity of his code with the
MPI standard and the use of powerful IBM extensions.

The following presentation is devoted to the new MPI standard.

10 RS/6000 SP: Scientific and Technical Overview

2.1 Overview

� �

� �

This chapter describes the MPI function and environment used in the IBM
implementation using IBM Parallel Environment for AIX, Version 2.1.

It provides basic knowledge about the message passing mechanisms used in the
IBM Parallel Environment for scientific and technical computing, and how MPI
interfaces with MPCI and MPL.

It also contains usage examples for the most used MPI functions.

Some extensions of MPI are possible. Such subroutines are MPE prefixed for
the multiprocessing environment, but it could be message passing extension as
well. Using this facility, IBM adds collective nonblocking communication
subroutines to the MPI library. They are described in Section 2.7, “IBM MPI
Enhancement vs MPI Standard” on page 47.

Chapter 2. Message Passing Interface 11

� �

� �

This foil presents the documentation currently available about MPI.

MPI Programming and Subroutine Reference
This is the IBM MPI reference manual.

Hitchhiker ′s Guide
This book is an MPI primer, with explanations and examples of parallel
algorithms and the way you can develop them using MPI.

Using MPI: Portable Programming with Message Passing Interface
Published by MIT, written by William Gropp, Ewing Lusk, and Anthony
Skjellum, this book is available through PUBORDER.

The foil gives you the Internet address and the directory that contains the MPI:
A Message Passing Interface Standard, Version 1.1, as you can get it with
anonymous ftp. This server is maintained by the University of Tennessee, which
owns the MPI Language Specification together with the MIT Press.

Both organizations have dedicated the language definition to the public domain.

12 RS/6000 SP: Scientific and Technical Overview

2.1.1 MCPI Definition

� �

� �

When communicating on RS/6000 SP, parallel program occurrences can use
either the IP protocol or the IBM user space protocol, which was specifically
developed to take advantage of the high performance switch (HPS) architecture.
MPCI is the software layer that interfaces the message passing subroutines
called by the application program, and the IP or US protocol.

As a common message passing API, MPCI is used by:

• Aix Parallel Environment Version 2.1 MPI or MPL subroutines and functions

• PVMe Version 2.1 subroutines and functions

According to the run-time option, communications will use the IP protocol or
directly work in user space with HPS Adapter-2. The user space protocol offers
better performance because it bypasses most of the AIX kernel and TCP/IP
software path length (no system calls needed once initialized).

In the CSS component of PSSP Version 2, the libmpci.a replaces the CSS-CI
library (libcss.a).

MPCI no longer supports HPS Adapter-1 available on IBM 9076 SP1 systems.

MPCI also interfaces with IP for use over non-HPS networks.

Chapter 2. Message Passing Interface 13

2.1.2 MPI Definition

� �

� �

The MPI Standard, as it is copyrighted by the University of Tennessee, was
strongly influenced by:

• Work at the IBM T.J. Watson Research Center
• Intel NX/2
• Express
• nCUBE′s Vertex
• PARMACS
• Chimp
• PVM
• PICL

The MPI standard library provides functions for:

• Blocking, nonblocking and synchronized message passing between pairs of
processes

• Selectivity of messages by source process and message type

• Context control

• Ability to form and manipulate process groups

14 RS/6000 SP: Scientific and Technical Overview

2.2 Message Passing Layers

� �

� �

The MPCI layer supports both IP and user space protocols. The protocol to be
used can be specified at run time without having to link executables:

• To initialize the parallel operating environment (POE), you can either export
environment variables or use the corresponding poe command flags. So, the
communication protocol is set up with:

export MP_EUILIB={ip|us}
poe ... -euilib {ip|us}

• Using PVMe, the default communication protocol is user space. When you
want to use the IP communication protocol through the switch, you specify
the -ip option when starting the pvmd3e daemon.

In IBM Parallel Environment Version 2, several MPL subroutines and functions
are rewritten and implicitly use the corresponding MPI routines.

Chapter 2. Message Passing Interface 15

2.3 MPI Enhancement vs MPL

� �

� �

MPI subroutines are logically grouped this way:

Point-to-Point Communication
Point-to-point communication is basic in every message passing library.
Subroutines of this kind allow single communications between two processes,
such as a message send or a message receive.

Section 2.3.1, “Blocking Communications” on page 18 describes the
blocking communication subroutines, when the calling process is waiting
for an operation complete acknowledgement before being reactivated.

Section 2.3.2, “Nonblocking Communications” on page 20 presents the
nonblocking communication subroutines. MPI returns an immediate
acknowledgement when the request is queued. This request will be
executed in asynchroneous mode, which improves performances, but the
calling process cannot reuse the message area before request
completion verification.

Section 2.3.3, “Persistent Communications” on page 23 describes the
persistent communication. MPI subroutines are provided to describe
requests once and keep their description persistent. So, several identical
requests can be sent to MPI without the overhead for request
initialization.

16 RS/6000 SP: Scientific and Technical Overview

Process Group Management
In sophisticated parallel programs, generally using the MPMD model, groups
of processors are devoted to specific computing, while other processors
communicate with their neighbors, for exchanging data. Naturally, a smart
programmer can develop such a process relationship his way, but the result
will probably be unstable and difficult to maintain or improve.

MPI provides developers with a set of subroutines for node group
management. These subroutines are presented in Section 2.3.4, “Process
Group Management” on page 25.

Communicators
This set of subroutines creates the information needed by MPI to manage
communications inside a group of processes defined as a closed shop.
Section 2.3.5, “Communicators” on page 27 presents the communicator
management subroutines.

Derived Datatypes
Section 2.3.6, “Predefined Datatypes” on page 30 presents the predefined
datatypes available in MPI.

When you want to send a set of data discontinuous in memory and with
heterogeneous datatypes, you can use the derived datatypes to define your
own data structure. This data structure becomes the basic element to be
transmitted between processes. The derived datatypes are described in
Section 2.3.7, “Derived Datatypes” on page 31.

Collective communication
The set of MPI collective communication subroutines is described in Section
2.4, “Collective Communications” on page 37.

The IBM extension provides nonblocking collective communication
subroutines listed in Section 2.7, “IBM MPI Enhancement vs MPI Standard” on
page 47.

Topology
In MIMD sophisticated programs, several algorithms are based on the
knowledge of node neighbors. This management becomes painful with
respect to the number of nodes. The graph topology and the cartesian
topology subroutines help programmers design the node neighborhood and
easily manage communications in the neighborhood. More information and
examples are given in Section 2.6, “Topologies” on page 40.

Chapter 2. Message Passing Interface 17

2.3.1 Blocking Communications

� �

� �

Blocking communications are serialized, that is, a process that issues a such
request is in wait state up to the operation complete acknowledgement.

The following subroutines request a blocking operation:

MPI_Send Blocking standard mode send.

MPI_Rsend The blocking ready mode send, MPI_Rsend, is destined to a specific
receive request from a specific node. So, the sender is in wait state until the
receive request is posted. You can use this subroutine if you expect the
receiver node has already executed the receive request.

MPI_Ssend The blocking synchronous mode send, MPI_Ssend, can be started
any time. It will be complete when the matching receive is started. If the
receive request is a blocking operation, the communication is synchronous.

MPI_Sendrecv MPI_Sendrecv is a blocking send and receive operation using
different buffers, while MPI_Sendrecv_replace uses the same buffer for send
and receive operations.

MPI_Recv

MPI_Recv is the unique standard blocking mode receive.

Note: MPI_Sendrecv gives better performances than standard blocking mode
subroutines because of the simultaneity of both operations.

18 RS/6000 SP: Scientific and Technical Overview

� �

� �

MPI provides subroutines for blocking buffered communications:

MPI_Buffer_attach In the sending process involved in a buffered communication,
a work area is specified by the MPI_Buffer_attach subroutine. The application
puts the messages into the buffer using the MPI_Bsend subroutine. The
receiving process gets the message from the buffer with MPI_Recv.

MPI_Bsend The MPI_Bsend subroutine puts a message into the buffer. When the
message is copied, an acknowledgment is returned to the sending process.
The message is available for the MPI_Recv receive operation.

MPI_Buffer_detach When buffered messages have been received, the buffer can
be detached using the MPI_Buffer_detach subroutine.

Using blocking buffered communications means that you want to store your
messages in a buffer predefined with the MPI_Buffer_attach subroutine. You can
define a buffer for several messages. You define your own buffer management
according to the following rules:

• The buffer size must be large enough to contain all messages that can
potentially reside into the buffer at the same time.

• MPI adds its own information to each message. The actual size of a
message will be given by the MPI_Bsend_overhead.

• An error occurs when a send is executed on an already full buffer.
• The space that contains a buffered message is freed when the receive

request is complete. Before any buffer space reuse, you have to test the
receive completion.

• You can define only one buffer in a process at a time.

Chapter 2. Message Passing Interface 19

2.3.2 Nonblocking Communications

� �

� �

The nonblocking communication is more efficient in terms of performance
because communications between processes are executed asynchroneously.
So, each occurrence of the parallel program executes its own operations with a
certain level of multitasking. For instance, a process can be computing some
data, while sending preceding results and receiving the next data.

However, such programming is not so easy:

• You must not access the buffer where the data is stored before the operation
completes.

• Each operation returns a request number. This request number is
transmitted to MPI in the parameter list of the following subroutines when
you wait for the request completion, or when you ask MPI for the request
completion status:

MPI_Wait waits for the completion of a specific request.

MPI_Waitall refers to an array that contains the list of request numbers you
want to wait for.

MPI_Waitany This subroutine is waiting for any specified requests to
complete.

MPI_Waitsome This subroutine is waiting for some specified requests to
complete.

20 RS/6000 SP: Scientific and Technical Overview

MPI_Test returns the status of a specific request identified by its request
number.

MPI_Testall returns the status of a list requests identified by their request
numbers in an array.

MPI_Testany tests for completion of any previously initiated request.

MPI_Testsome tests for completion of some previously initiated request.

Your computing task will be waiting until the end of requests that reserve the
buffers you want to use. The communication between processes is assumed by
MPI in asynchronous mode.

You can use the following subroutines for nonblocking communications:

MPI_Isend MPI_Isend is the standard nonblocking send. A request value is set
up by MPI for each MPI_Isend. This request value is specified in the
MPI_Wait subroutine parameter list to indicate the operation you are waiting
for when the MPI_Wait request is sent to MPI. The wait state lasts until the
receive operation is complete.

MPI_Ibsend MPI_Ibsend is the nonblocking buffered send that puts the message
into the buffer defined by MPI_Buffer_attach.

MPI_Irsend MPI_Irsend is a nonblocking ready send. The destination task must
have posted a matching receive before you post the send request.

MPI_Issend MPI_Issend is a nonblocking synchronous send. It means that your
request completes only when a matching receive will be posted.

Each nonblocking function is assigned to a request number, so you can manage
them using an MPI_Waitxxx function or an MPI_Testxxx one.

In this foil, process 1 transmits a MPI_Isend request to MPI and continues its local
computing until it needs to use some resource reserved by MPI. Process 2
transmits a MPI_Irecv to MPI, which provides the message. Process 2 continues
its local processing until it needs resources held by MPI. Both processes test
the receive completion using one of MPI_Wait or MPI_Test subroutines. They
are in wait state until the receive completion.

Chapter 2. Message Passing Interface 21

� �

� �

A nonblocking buffered send request stores the message into a buffer previously
specified to MPI with MPI_Buffer_attach. Then, the local process can continue its
operations while the message is available for the receive operation. You can
use nonblocking buffered sends with the following restrictions:

• You cannot reuse the buffer used for a nonblocking communication while you
are not sure MPI has freed your buffer. You must manage the state of your
request using some MPI_Waitxxx or MPI_Testxxx routine (see Section 2.3.2,
“Nonblocking Communications” on page 20).

• You must define enough buffers to contain the maximum number of
nonblocking requests you need to manage.

• Using the same buffer space for different nonblocking communications
without being sure that it is free may produce unpredictable results.

The example shown in the foil presents a SPMD program using nonblocking
buffered communications. Process 0 uses MPI_Ibsend to put messages into the
buffer, and process 1 uses MPI_Irecv to get the messages from the buffer.

When the MPI_Ibsend or the MPI_Irecv operations have been started, each
process can continue its own operations except those using the buffer space
reserved for the current messages (not shown in this example).

In each process, MPI_Waitall indicates the processes will be waiting for request
completion and will be resumed when all current requests are complete.

22 RS/6000 SP: Scientific and Technical Overview

2.3.3 Persistent Communications

� �

� �

The concept of persistent communication can be summarized this way: in some
parallel programs, a process repetitively executes identical send and receive
operations (same senders and receivers, same messages, and so on). To avoid
the overhead due to each operation initialization, MPI provides a set of
subroutines that describe operations without execution, and these descriptions
are persistent.

So, it is not necessary to redo the communication setting for each identical
operation; and you start one operation with MPI_Start, or you start all currently
described operations with MPI_Startall. Then, you test the completion of
operations respectively with MPI_Wait or MPI_Waitall. This way, you define a
continous flow of data transfer through the so called pipe-line:

• In your program, the first paragraph describes persistent communication
with MPI_xxxx_init subroutines.

• A second paragraph is a loop including MPI_Startall and MPI_Waitall.

• The last paragraph includes the MPI_Request_free subroutine to unspecify
persistent communications.

The possible persistent communications you can define are as follows:

MPI_Send_init Specifies a persistent communication request for a standard
mode send.

Chapter 2. Message Passing Interface 23

MPI_Bsend_init Specifies a persistent communication request for a buffered
mode send.

MPI_Rsend_init Specifies a persistent communication request for a ready mode
send.

MPI_Ssend_init Specifies a persistent communication request for a synchronous
mode send.

MPI_Start (MPI_Startall) Starts one or several requests.

MPI_Wait (MPI_Waitall) Waits for one or several request completions.

MPI_Request_free Frees a persistent communication request.

24 RS/6000 SP: Scientific and Technical Overview

2.3.4 Process Group Management

� �

� �

When the number of processes involved in a parallel program, particularly when
the model MPMD model is chosen, the design and development of process
group management becomes a little bit difficult. To simplify this process group
management, MPI provides a set of subroutines that allow the developer to
create and manipulate the process groups needed by the application design.

Once a group is defined, each process is ordered in a list from zero to n − 1 (n
is the number of processes that belong to the group), and the process rank will
be used in place of the actual process number. The group definition will be used
to specify communicators as described in the next foil.

A process group is an ordered set of process identifiers. Each process in a
group is associated with a rank. Ranks are contiguous and start from zero.

The example will create the following groups:

MPI_Comm_group returns the group handle associated with the “WORLD”
communicator. It means that it will return a group containing all the tasks
started by the MPI_Init, here tasks zero to seven.

MPI_Group_incl The two MPI_Group_incl will create:

• grp_1 including process in the l_1 {0,1,2,3,4}
• grp_2 including process in the l_2 {3,4,5,6,7}

Chapter 2. Message Passing Interface 25

MPI_Group_difference The MPI_Group_difference will create the grp_diff, which
is the difference {0,1,2} between grp_1 and grp_2 (elements of the first group
that are not in the second group).

MPI_Group_excl The MPI_Group_excl will create the grp_excl, which will contain
tasks from grp_1 minus tasks {1,2,3}.

MPI_Group_intersection The MPI_Group_intersection will create the group
grp_inter that will contain the tasks {3,4} included in both grp_1 and grp_2.

MPI_Group_range_excl The MPI_Group_range_excl will create the group
grp_r_excl that will contain tasks from grp_1 excluded tasks from ranges 2 to
4.

MPI_Group_range_incl The MPI_Group_range_incl will create the group
group_r_incl that will contain tasks from grp_1 including only tasks from
ranges 0 to 4 that in that case is equal to the whole group_1.

MPI_Group_compare Compares the two groups specified in the parameter list.
The integer result is set up to one of the following symbolic values:

• MPI_IDENT when both groups include the same processes in the same
order

• MPI_SIMILAR when both groups include the same processes in a different
order

• MPI_UNEQUAL when group size or members are different

MPI_Group_union This subroutine creates a new group, grp_union in this
example, which includes all elements from both groups grp_1 and grp_2.

MPI_Group_free prepares the group deallocation:

• The group is marked for deallocation.

• Pending requests specifying the group in the parameter list will be
complete before deallocating the group.

• New requests specifying the group in the parameter list will be rejected.

26 RS/6000 SP: Scientific and Technical Overview

2.3.5 Communicators

� �

� �

The definition of a communicator could be a kind of “tube” that is associated
with a group to be used by the tasks in the group to communicate with other
tasks in the group. In the example, we can find the following MPI functions to
manipulate communicators:

MPI_Comm_group is used to retrieve the group handle associated with a
communicator.

MPI_Comm_create MPI_Comm_create will create comm_1 and comm_2
respectively associated with group_1 and group_2.

MPI_Comm_compare returns MPI_UNEQUAL in result_compare because, in this
example, the groups associated with comm_1 and comm_2 are different. The
other possible values returned by MPI_Comm_compare are:

• MPI_IDENT

• MPI_CONGRUENT

• MPI_SIMILAR

MPI_Comm_rank returns the rank of the process in the communicator. A
process can have multiple ranks, as it can use more than one communicator
that may not include the same group of processes.

MPI_Comm_dup will create the comm_dup_2 communicator, which will have the
same characteristics as the comm_2.

Chapter 2. Message Passing Interface 27

MPI_Comm_free will free the communicator handle so that it can be used to
define another one.

Table 1 gives the actual process number and the process ranks as specified in
the example shown in this foil.

Table 1. Tasks Relative Ranks

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rank_in_comm_1 0 1 2 3 4 5 6 7 8 9 10

rank_in_comm_2 0 1 2 3 4 5 6 7 8 9

28 RS/6000 SP: Scientific and Technical Overview

� �

� �

Customer applications may need to create separate groups and associated
communicators that will have different kinds of work to do. These are known as
intracommunicators.

Also, they may need to make two intracommunicators communicate with each
others. These are known as intercommunicators.

The example consists of:

• MPI_Comm_split that will split the dup_world communicator into two
separate intracommunicators. The split will be done by separate even and
odd ranks of processes in dup_world. The two intracommunicators will have
the same logical name comm_1 but not the same “physical” tasks.

• MPI_Intercomm_create will create the inter_comm intercommunicator that
will be used by tasks in comm_1 to talk with tasks in comm_2. So when a
task in comm_1 talks to the task of rank 2 in inter_comm, it will talk
effectively to tasks of rank 5 in comm_dup

Chapter 2. Message Passing Interface 29

2.3.6 Predefined Datatypes

� �

� �

Send and receive subroutines generally include a datatype specification in their
parameter list, which is used as unit for the buffer length determination.
Predefined datatypes, which cover traditional data types available in C and
Fortran, are included in mpif.h (Fortran version) or in mpi.h in C.

The predefined datatype names are self explanatory for Fortran and C
programmers.

30 RS/6000 SP: Scientific and Technical Overview

2.3.7 Derived Datatypes

� �

� �

The derived datatypes allow a user to define his own datatypes with the
following subroutines:

MPI_Type_contiguous
You can create a new datatype that represents the concatenation of a
specified count of oldtypes.

MPI_Type_hindexed
Elements are addressed by an array of displacements, which are measured in
bytes. The length of each element, put in the block length array, is evaluated
in terms of number of blocks.

This derived datatype is useful when the datatype elements have variable
length and are erratically distributed. You have to create the displacement
array and the length array first, and then specify these arrays in the
MPI_Type_hindexed parameter list.

MPI_Type_hvector
Elements are separated by a specified number of bytes.

The new datatype represents a specified count of oldtypes (fixed length
evaluated in number of blocks, fixed stride evaluated in bytes).

MPI_Type_indexed
Elements are separated by multiples of the input datatype extent.

Same as MPI_Type_hindexed, but the displacement unit is the oldtype extent.

Chapter 2. Message Passing Interface 31

MPI_Type_struct
This datatype is a structure of several datatypes specifying data of different
types scattered in the memory.

MPI_Type_vector
Same as MPI_Type_hvector, but the block length is a multiple of oldtype
extent.

The stride is a multiple of the input datatype extent.

A datatype is made available by the MPI_Type_commit subroutine, and disabled
by the MPI_Type_free subroutine.

When a datatype is defined, you can get information about it with the following
subroutines:

• MPI_Type_extent gets the actual size of the datatype including the space lost
due to alignment requirements.

• MPI_Type_lb gets the lower bound.

• MPI_Type_size gets the size of data in the datatype, excluding the padded
areas due to alignment requirments.

• MPI_Type_ub gets the upper bound.

32 RS/6000 SP: Scientific and Technical Overview

� �

� �

User Controlled Buffering
MPI_Pack and MPI_Unpack should not be confused with
compress/uncompress programs generally available everywhere. Because
the message passing performance is better when you send and receive large
messages, you can program the communication this way:

• On the sender process, you define a buffer and you use MPI_Pack to fill
out this work area with the messages you want to transmit.

Before the first MPI_Pack, the offset of the free space in the buffer is set
up to zero, and MPI updates this offset after each MPI_Pack.

Before each MPI_Pack, you have to use MPI_Pack_size that gives you the
space required to pack your data into the buffer.

When the buffer is full, you may send it with any MPI send subroutine,
with the MPI_Packed datatype.

• On the receiver process, the MPI receive subroutine receives the buffer,
and you may use MPI_Get_count to obtain the length of the transmitted
buffer.

You set up the position variable to zero, and each MPI_Unpack operation
updates this variable to the next message starting point.

Chapter 2. Message Passing Interface 33

� �

� �

As already described, MPI provides predefined datatypes that fit with data types
available in Fortran and C languages. Using these basic datatypes, you can
create derived datatypes with MPI_Type-xxx subroutines.

This foil presents an example of MPI_Type_struct use that describes a complex
structure of data spread in the memory, but referenced by a unique name in
every MPI operation after that derived datatype has been acitvated by MPI_Type
commit.

The following MPI routine calls are made to create a first datatype, named
newtype. Then this newtype is concatenated in bigtype to obtain a large
message.

• MPI_Type_struct creates a datatype containing four basic datatypes: So the
derived datatype newtype will be an array of datatypes and displacements in
memory to find these datatypes. So that when you need to send this kind of
datatype to another task, you just need to address it to get the contents of
different parts of the memory.

• MPI_Type contiguous will take the previously created newtype as a base to
create a bigtype of 1000 entries of type newtype.

• MPI_Type_commit will commit the defined datatype so that it can be used to
send and receive messages.

• MPI_type extent is able to find the total extent of the datatype in memory. In
the example extent will be equal to 250-80=170+padding.

• MPI_Type_lb will give the lower bound lb of the datatype that must always be
equal to 0.

• MPI_Type_up gives the upper bound ub of the datatype that will be here
250-80=170.

34 RS/6000 SP: Scientific and Technical Overview

• The MPI_Type_size will give the real size size of the datatype, here
5 0 + 5 0 + 2 5 + 4 = 1 2 9 .

Chapter 2. Message Passing Interface 35

� �

� �

The behavior of the MPI_Type_vector is somewhat the same as the
MPI_Type_contiguous except that the data in memory has to be equally spaced
blocks. The space between blocks is defined by a quantity of basic datatype
extents, here 1 so we will get all the entries of the array. For example we could
have chosen a different spacing to take for example only even blocks in the
basic datatype.

The MPI_Type_hvector can also be used if you need to define the spacing
between blocks in byte units.

36 RS/6000 SP: Scientific and Technical Overview

2.4 Collective Communications

� �

� �

Collective communications are useful when the programmer needs to spread
data from arrays over the network to one or more tasks.

The example shows the most common collective communication functions:

• MPI_Bcast will broadcast the first element of the array a from the root
process 0 to all others processes in the comm communicator.

• MPI_Gather will take each first element of the array a from process J to put
it in the Jth element of the array r of the root process 0.

• MPI_Scatter is the reverse function of the MPI_Gather. It means that it will
take the Jth element of the root process to put it in the first element of
process J.

• MPI_Allgather also has almost the same behavior as the MPI_Gather
function except that the data is sent to each process, not only to the root
process.

• MPI_Alltoall sends the Ith element of process P to the Pth element of
process I.

• MPI_Reduce not only sends the data from one task to another task but also
makes some reduction operation on the data before it is received on the
receiving process. See Section 2.5, “Reduction Operations” on page 39 for
a list of reduction operations and for information on how to create your own
reduction operation. In the example, we make the MPI_SUM of the first

Chapter 2. Message Passing Interface 37

elements of the array a from each process and put the result in the first
element of the array r in the root process 0

• MPI_Scan will have the same behavior as the MPI_Reduce function except
that intermediate results will be distributed to the process in the rank of the
result:
− On process 0 we will get in r [0] the value of a[0] of process 0.
− On process 1 we will get in r [0] the value of a[0] of process 0 plus a[0]

of process 1.
− On process 2 we will get in r [0] the value of a[0] of process 0 plus a[0]

of process 1 plus a[0] of process 2.
− On process 3 we will get in r [0] the value of a[0] of process 0 plus a[0]

of process 1 plus a[0] of process 2 plus a[0] of process 3.

38 RS/6000 SP: Scientific and Technical Overview

2.5 Reduction Operations

� �

� �

Common logical and arithmetical operations are available as operators for
collective communications in MPI. Users can define their own reduction
operation: they write a C function or a Fortran subroutine with four parameters.
For instance:

IN Scalar or vector (dimension in third parameter)

OUT Scalar or vector (same dimension)

LEN IN and OUT dimension

TYPE Datatype of IN and OUT

Chapter 2. Message Passing Interface 39

2.6 Topologies
In this chapter, we describe the processor topology. According to the application
design, some data may have to be sent or received by a node from its
neighbors. The developer must maintain the table of neighbors for each node
involved in the parallel program. Now, MPI provides the developer with
subroutines that create and maintain the node topology and the list of neighbors.
With these subroutines, you can define either a graphical topology or a cartesian
topology.

Section 2.6.1, “Graph Topology” presents the graphical topology.
Section 2.6.2, “Cartesian Topology” presents the cartesian topology.

2.6.1 Graph Topology

� �

� �

Topologies are used for ease in programming when constraints have to be
exchanged between neighbors in the field of computation.

Graphical computation is used when the field of computation cannot be
translated in a cartesian topology.

In the example, we first create two groups of nodes that will simulate two
separate fields of computation. The li_s and li_p are the list of tasks included in
co_s and co_p communicators.

40 RS/6000 SP: Scientific and Technical Overview

ind_s,ind_p,edges_s and edges_p will be used on the next page to construct the
cartesian topology. See the following example on how to find the neighbor
according to the indexes and the edges arrays.

neighbor[i]=edges[index[i-1]],...,edges[index[i]-1]
neighbor[5]=edges_s[ind_s[4],...,edges[index[5]-1]
neighbor[5]=edges_s[9],....edges[11-1]
neighbor[5]={4,6}

Chapter 2. Message Passing Interface 41

� �

� �

MPI_Graph_create creates the graphical topology from the communicator passed
as an argument assuming the edges constraint.

MPI_Graph_neighbors helps the programmer to find easily the neighbors of each
process in the topology so that he can send messages to them.

42 RS/6000 SP: Scientific and Technical Overview

2.6.2 Cartesian Topology

� �

� �

The cartesian topology is easier to manage than a graphical topology as you
don ′ t need to define all the neighbors of each task. It takes into account the
following parameters in the example:

• ndims is the number of dimensions that the topology will have to manage,
here 3.

• dims is the number of tasks that will be in each dimension. Here we define
them to 0 so that MPI_Dims_create will decide himself how many processes
he must put in each dimension.

• period if set to true means that a process at the edge of the topology will
have a neighbor in that dimension. His neighbor will be the process at the
other edge of the topology in that dimension.

In the example, we use the following functions to manage the topology:

• MPI_Dims_create will compute the number of tasks to put in each dimension
according to the number of dims you want, the number of processes you
gave him for some dimensions, and the total number of processes you have.
For example if you request 3 dimensions with 16 tasks and dims={2,0,0} , it
will give you two tasks for the first dimension, four for the second and two for
the last one.

• MPI_Cart_create will create the cartesian topology according to the
previously defined dims, ndims and period.

• The MPI_Cart_shift helps the programmer to find the neighbors of a process
in the specified dimension.

Chapter 2. Message Passing Interface 43

� �

� �

The cartesian topology can also easily split into sub-topologies of one or more
dimensions of the mother.

In the example, the MPI_Cart_sub will split the topology according to the
sub_dims specifications. Here sub_dims contains {0,1,1} which means that we
keep the two last dimensions to create each of the sub-topologies.

So the MPI_Bcast will use these two dimensions topologies to send the
broadcast.

44 RS/6000 SP: Scientific and Technical Overview

2.6.3 Environmental Management

� �

� �

By default, the behavior of MPI is to exit if any error occurs. It can be avoid by
setting the appropriate environment management.

In the example, we use the following functions to manage possible errors:

• MPI_Errhandler_create associates the my_fn error handling function with the
errhand handler.

• MPI_Errhandler_set makes the error handling to my_fn effective as soon as
this call exits.

• In my_fn we use MPI_Error_class to find the class of the error passed to
my_fn as the err argument.

We use the error_class given by MPI_Error_class in the MPI_Error_string
parameter list to get the error message associated with that error. Then, we
print the message

• In the main procedure we create an error condition: an MPI_send routine is
executed after the communicator is freed. So, the my_fn function will be
executed.

Valid error classes are:

MPI_SUCCESS No error

MPI_ERR_BUFFER Invalid buffer pointer

MPI_ERR_COUNT Invalid count argument

Chapter 2. Message Passing Interface 45

MPI_ERR_TYPE Invalid datatype

MPI_ERR_TAG Invalid tag argument

MPI_ERR_COMM Invalid communicator

MPI_ERR_RANK Invalid rank

MPI_ERR_REQUEST Invalid request handle

MPI_ERR_ROOT Invalid root

MPI_ERR_GROUP Invalid group

MPI_ERR_OP Invalid operation

MPI_ERR_TOPOLOGY Invalid topology

MPI_ERR_DIMS Invalid dimension argument

MPI_ERR_ARG Invalid argument

MPI_ERR_UNKNOWN Unknown error

MPI_ERR_TRUNCATE Message truncated on receive

MPI_ERR_OTHER Known error not provided

MPI_ERR_INTERM Internal MPI error

46 RS/6000 SP: Scientific and Technical Overview

2.7 IBM MPI Enhancement vs MPI Standard

� �

� �

IBM provides 14 more functions than the Standard MPI. It is the responsibility of
the customer to decide to use them or not to make their applications portable in
other MPI environments.

These functions are nonblocking collective functions. Their behavior is the same
as the blocking ones described in 2.4, “Collective Communications” on page 37,
except that they are nonblocking and must be managed using MPI_Waitxxx or
MPI_Testxxx functions.

Chapter 2. Message Passing Interface 47

48 RS/6000 SP: Scientific and Technical Overview

Chapter 3. PVMe V2

� �

� �

Parallel virtual machine (PVM) is currently the most wide-spread parallel
environment. Designed and developed by Oak Ridge National Laboratory, in
cooperation with Emory University, University of Tennessee, Carnegie Mellon
University and Pittsburgh SuperComputer Center, under Department of Energy,
National Science Foundation, and State of Tennessee Research grants. PVM is
available as free distribution copyrighted software. It provides a message
passing library that uses the IP protocol to communicate between the parallel
program processes. PVM also provides the functions needed to execute a
parallel program, and a post mortem monitor, xpvm, which uses the trace file
generated during the program execution.

The xpvm monitor simulates the program execution and helps developers debug
and tune their parallel program. PVM is available on many hardware platforms
under UNIX systems, and allows parallel program executions on heterogeneous
environments.

PVMe was developed by European Center for Scientific and Engineering
Computing (IBM ECSEC, Rome Italy) to be used on RS/6000 SP systems with two
objectives:

• External compatibility with the public domain PVM

 Copyright IBM Corp. 1996 49

• Written to optimize the performance of parallel programs when executed on
RS/6000 SP equipped with the HPS in user space mode

PVMe Version 1 Release 1 was externally compatible with PVM 2.3, and PVMe
Version 1 Release 2 and 3 were compatible with PVM 3.2. PVMe Version 2
Release 1 is compatible with PVM 3.3.7 and includes new facilities. This chapter
is a presentation of PVMe Version 2 Release 1, organized as follows:

• Section 3.2, “PVMe Overview” on page 52 presents an overview of PVMe
Version 2 features.

• Section 3.3, “PVMe 2.1 Installation” on page 66 provides information about
the PVMe installation.

• Section 3.4, “Writing a PVMe Program” on page 67 presents examples about
parallel program development.

• Section 3.4, “Writing a PVMe Program” on page 67 describes the way
parallel programs are executed in the PVMe environment.

50 RS/6000 SP: Scientific and Technical Overview

3.1 Covered Topics

� �

� �

This presentation provides an overview of the PVMe V2 product for the RS/6000
SP systems and a description of the new features available with this version, as
well as some guidelines to help users run parallel programs in this environment.
Also the differences and the common features with the public domain PVM will
be discussed, since many applications written to run on the PVM platform can be
ported to the PVMe platform with little effort and can experience improved
performance.

Chapter 3. PVMe V2 51

3.2 PVMe Overview

� �

� �

• PVMe provides a parallel programming interface (libraries of routines used
to write a parallel programs) and a support software that allows you to run a
parallel program on a set of hosts.

• PVMe is compatible with the public domain PVM 3.3.7. It offers the same
programming interface (same name of the routines, same syntax, and so on)
so that an existing PVM application only needs to be linked to the PVMe
libraries to be executed in the PVMe environment.

• PVM is a public domain software designed to allow processes running on
different machines (possibly running different operating systems) to
cooperate to solve a given problem: to break a program into logical parts (as
independent as possible) and run those parts simultaneously on multiple
processors. This reduces the time needed to run the program.
PVM is widely used, mainly in the academic environment, to the extent that it
can be considered a de facto standard for parallel and distributed
programming.

While PVM supports multiple architectures and operating systems, PVMe has
been specifically designed to run on an homogeneous environment and to
take advantage as much as possible of the AIX operating system features
and of the HPS communication hardware and software available for the SP
systems.

52 RS/6000 SP: Scientific and Technical Overview

Note: An implementation of PVMe is also available (although it is not a
licensed program product) for RS/6000 clusters connected through networks,
such as FDDI, SOCC, and Allnode Switch.

• It interfaces with the Resource Manager (RM), which is responsible for
resource (CPU and communication adapter) allocation on the SP.

• It also interfaces with LoadLeveler to allow batch submissions of parallel
jobs. In that case, LoadLeveler is responsible for requesting the resources
to the RM, and if they are available, for starting the parallel job. If the
needed resources are not available, LoadLeveler keeps the job in the queue
for later attempts.

Note: Given the current policy LoadLeveler uses to request/allocate
resources from the RM, it can be unsafe to configure general members
subpools within the RM pools; it is advisable, instead, to have subpools only
devoted to interactive activity and subpools only devoted to batch activity.

Chapter 3. PVMe V2 53

� �

� �

3.2.1 PVMe and PVM
The parallel programming interface is quite simple, but it allows almost any of
the actions commonly requested by parallel application programmers to be
executed.

• The programming paradigm is quite different from that used, for example, in
the Parallel Environment: you can manually start multiple processes (they
can be either instances of the same program or of different programs) and
make them to communicate through the PVMe routines, or you can start one
process, and then this process requests that new processes be started
remotely. You have routines that allow starting and stopping other tasks,
and also to verify, at any time during the program execution, the number and
the status of any other tasks.

• The basic communication routines allow you to exchange data among
processes. Auxiliary routines for packing/unpacking data to/from a single
buffer have been designed to minimize the number of calls to the data
exchange routines.

• Collective communication routines allow more sophisticated actions, such as
receiving data from multiple processes and combining all the data in one
process using a specific function.

• You also have the possibility of grouping a subset of processes, typically
processes that play the same role within the parallel program, so that the
collective communication routines will only involve processes within the
same group.

54 RS/6000 SP: Scientific and Technical Overview

• Additional routines for sending signals and managing error conditions.

Both PVM and PVMe allow asynchronous communication: one task can start to
send a message even though the recipient task is not ready to receive it; under
normal conditions, moreover, the sender is able to complete the call and to
continue with the processing in case the recipient doesn ′ t receive the message
(or before the recipient receives it). In this way, the tasks are loosely
synchronized, and they don′ t block unless they need data that someone else has
not yet sent to them.

PVM (and PVMe) was basically designed for the MPMD model, where different
programs are executed by different task; this model is really convenient when
the application is suited to a functional decomposition (possibly in addition to
data decomposition). The master-slave approach (one master program starts n
instances of slave programs, distributes initial data, subdomain boundaries, and
so forth, collects intermediate results, coordinates the slaves, waits for final
results, and saves them) is an example.

The design does not prevent the two packages from being used for the SPMD
programming (the manually started task is responsible for requesting that n-1
more processes be started, where n is the size of the parallel run).

Chapter 3. PVMe V2 55

3.2.2 PVMe versus PVM

� �

� �

• PVM is available on multiple platforms, and different tasks in a parallel
program can also run on machines with different architectures. This is
possible because the communication among tasks and among the service
processes (daemons) is based on the de facto standard protocols TCP and
UDP. The choice of implementing PVMe on an homogeneous environment
made possible a simpler and more efficient implementation, and on the other
hand, allowed using a specialized communication protocol tuned for the
specific platform.

• In PVM, the task-to-task communication can occur over two paths:

− From the sender process to the local daemon, then to the remote
daemon, and finally to the recipient task through UDP and TCP sockets

− Directly from the sender to receiver through a TCP socket

In both cases, the high level protocol can become a bottleneck for
communication, even though the underlying hardware connection is fast.
In PVMe, data communication among the tasks exploits, by default, the User
Space protocol over the HPS. The communication routines directly interface
with the MPCI software bypassing the IP, and the user tasks directly send the
message. Communication between the tasks and the service process
(daemon) still uses the IP protocol (over the SP Ethernet), but since that
traffic is expected to be occasional and the amount of transmitted data is
very small, it does not affect the performance of the parallel application.

56 RS/6000 SP: Scientific and Technical Overview

• In PVM, one service process runs on each host belonging to the virtual
machine.

Note: The term virtual machine is used to indicate the set of hosts where a
PVM session is running. User tasks can be started in this environment, and
multiple parallel applications can be executed at the same time.

An additional daemon, the group server, is started if the application uses the
group or the collective communication routines.

In PVMe, only one instance of the service process (PVMe daemon) runs
within the virtual machine. It also plays the role of group server if required.

Chapter 3. PVMe V2 57

3.2.3 The PVMe Daemon

� �

� �

The PVMe daemon:

• Maintains a database of all the processes currently active in the virtual
machine (their name, the host they are running on, task identifiers,
addresses over the network, status of tasks, and so on) and of all the hosts
participating in the virtual machine (host name, address, and so on)

• Starts or stops user′s tasks on the local or on the remote hosts. When a
process calls the routine to spawn a new process, a request is sent to the
daemon, which executes the command remotely and returns the result to the
task. Whenever a new process is started, or is registered to the daemon, the
daemon assigns to it a unique identifier that will be used later both for the
task-to-task and for the task-daemon communication.

• Provides information about host and processes on demand.

• Manages groups, which implies:

− Keeping a database for the group information (how many groups, which
process belongs to which group, the processes′ identifiers within groups,
and so on)

− Assigning unique group identifiers to processes when they join a group
− Performing global synchronization among processes belonging to the

same group (barrier)

58 RS/6000 SP: Scientific and Technical Overview

Since the all the information is kept by a single daemon, there is less
communication overhead, compared with PVM, and also, there is no need for
communication to keep information consistent on the different servers.

On the other side, the mechanism to start new processes is more complicated: a
remote execution is required whenever a new user task is started. In PVM a
remote execution is required only at the session startup (you start manually the
first daemon, which, in turn starts the daemons on all the remote hosts); once all
the daemons are active, the request to start a new task is sent to the daemon on
the selected machine, which starts the process locally.

Typically, when you start a parallel application, the daemon will be asked to start
all the other instances at the same time.

Chapter 3. PVMe V2 59

� �

� �

PVMe does not provide the group library, since it is included in the general
library, nor the group server software, because the PVMe daemon plays the role
of group server.

Both provide the console, which is an additional program the user can run to
monitor the virtual machine and the parallel program execution. The console
connects to the daemon (if it is already running) and gives a prompt to the user,
so that he can run several commands: query about the processes, about the
hosts, start of a new application, kill processes, send signals, and so on. The
console can then be stopped and started later during the session if desired.

PVMe also provides an additional software that is used to manage asynchronous
communication when IP is used for data communication. Note that the
underlying communication layer, MPCI, has both US and IP modes. References
to PMVe using IP involve bypassing MPCI, not switching MPCI mode. (see 3.2.4,
“PVMe Structure” on page 61).

60 RS/6000 SP: Scientific and Technical Overview

3.2.4 PVMe Structure

� �

� �

The picture shows the structure of a PVMe session:

• The daemon was started on one node (node 5 in the example), and controls
six nodes (from 5 to 10). A parallel application is running on the six nodes,
so that one instance of the parallel program is running on each node; the
application was manually started on node 5, where the first instance is
running.

• All the task-to-task communication (black dashed line) goes over the HPS,
using the US protocol (by default); each task talks to the daemon through an
IP connection (red dashed line) over the Ethernet.

• The daemon maintains information about the status of all processes and
provides it to the user′s tasks on demand.

Chapter 3. PVMe V2 61

� �

� �

• When communication goes through the daemons (not extensively used any
more), the daemons receive messages on behalf of the user′s tasks; when
the user′s task calls the receive routine, the daemon delivers the message.
The more efficient direct communication path uses a TCP connection
between sender and receiver, and an asynchronous send operation is
nonblocking as long as the buffering capabilities of the underlying protocol
are not exhausted.

• In PVMe, a special software plays the role of message reader: it is an
external process when you use the IP protocol directly; it is an internal
function to the user′s task if you are using the MPCI/US or the MPCI/IP
protocol. This function is awakened by a signal produced by the interrupt
handler of the adapter whenever new packets arrive. This mechanism
allows the sender process to complete the call although the recipient is not
receiving the message.

62 RS/6000 SP: Scientific and Technical Overview

� �

� �

• PVM daemons and processes allocate memory dynamically during the
application execution. Memory allocation is required:

− To prepare a message (packing data into a buffer)
− To receive a message

Memory is freed:

− When the send buffer is cleared
− When data is unpacked from a receiving buffer

If no memory is available from the system, the PVM routines return a
specific error code so that the program can take the proper action.

• In PVMe, an entire memory segment is allocated by the user′s program at
the startup, and memory for outgoing/incoming messages is taken from that
segment. The operating system makes a true memory allocation only when
a page from the segment is referenced, so that only the needed memory is
really allocated, and once it is allocated, it can be reused for multiple
messages. This method is efficient, since calls to allocate/deallocate
memory are quite time consuming. Moreover, there is no risk of memory
fragmentation.

The memory segment is divided into buffers of different size that are
commonly used for small, medium, and large size messages (they can be
re-combined if needed).

Chapter 3. PVMe V2 63

3.2.5 PVMe: New Features

� �

� �

The programming interface has been extended to reflect the updates of version
3.3.7 of public domain PVM. The extension includes:

• Collective communication routines (they are already provided by other
programming interfaces, such as MPL and MPI), which allow you to perform
more sophisticated operations without burden to the programmer.

• Routines that allow you to pack data into a buffer and send the buffer to
another task with a single call (and, on the other side, to receive a message
and extract data from the receiving buffer with a single call). This is
convenient when you send homogeneous data from a given memory region
(for example, elements from the same array).

• Routine to collect output from spawned tasks.

• A blocking receive with time-out has been added.

PVMe provides support for running programs on the RS/6000 SP over the
MPCI/IP protocol. When using the MPCI/US protocol, you get better
performance, but only one user task can access the device (HPS Adapter-2) in
user space mode at a time. During the development or testing phase when you
are not so much interested in performance results; you probably prefer to share
the resources with other users. In direct IP mode, you can run multiple parallel
tasks on one SP node or RS/6000 machine.

64 RS/6000 SP: Scientific and Technical Overview

Moreover you can set up the environment so that other RS/6000 machines
participate in the run. Communication with clustered RS/6000 workstations will
always be by direct IP no matter what mode is used within the SP.

You can enable the tracing facility so that different events are recorded to trace
files during the program execution. After the program completes, these files,
can be used by XPVM (public domain software available from the Oak Ridge
National Labs, used for run-time and post-mortem monitoring of PVM programs)
to play back the program execution. Load unbalancing among the tasks,
bottlenecks, and so on, can be discovered and further tuning of the application is
easier.

Chapter 3. PVMe V2 65

3.3 PVMe 2.1 Installation

� �

� �

When you install the product (login as root user), the PVMe directory tree is
created under /usr/lpp/pvme, and it contains the binaries for the daemon and
service processes, the libraries, a sample program and makefile, configuration
files (you only need to customize them if you want to override the default
settings), and a kernel extension. Symbolic links to /usr/ l ib are created for the
PVMe libraries for your convenience, as well as links to /usr/bin for the daemon
and service processes. The kernel extension will be loaded at each boot of the
SP node since during the installation, the rc.net is updated to do that.

66 RS/6000 SP: Scientific and Technical Overview

3.4 Writing a PVMe Program
This chapter presents the way you can design and develop a parallel program
using the PVMe subroutines. You develop your parallel program using either the
SPMD model or the MPMD model. The following graph describes a simple
MPMD program with a master and its slaves.

� �

� �

When the master process is started, it executes the following tasks:

• Spawning the slaves on nodes allocated by the resource manager

• Distributing the data to slaves

• Collecting the data from the slaves

• Ending the parallel program

The slave processes execute the following tasks:

• Receive data

• Execute the computation

• If needed, exchange data with other slaves

• Complete the computation

• Send the result to the master

Chapter 3. PVMe V2 67

3.4.1 Managing Tasks and Hosts

� �

� �

A detailed description of each routine can be found in IBM PVMe for AIX User′s
Guide and Subroutine Reference Version 2 Release 1, GC23-3884-00; we only give
here a short description of the new features and, where needed, highlight the
different behavior of PVMe compared to PVM.

• The pvm_catchout routine allows a PVMe process to catch the standard
output and the standard error of its children tasks (by default the stdout and
stderr of PVMe tasks are redirected to the stdout of the daemon). The stdout
and stderr from the children are collected by the parent task, which prefixes
each line with the task′s identifier. You can specify a file descriptor as target
for the collected outputs and errors.

• The pvm_hostsync has been implemented to maintain compatibility with the
public domain PVM. It returns the time-of-day of a remote host in the virtual
machine and the difference between the time-of-day on the local and remote
host. This routine actually relies on the assumption that all the hosts are
synchronized (it is mandatory on a RS/6000 SP system that all the nodes and
the control workstation be synchronized), so that the time-of-day is the same
on the remote and the local host, and the difference above is negligible. Be
careful because this assumption is not valid any more if one or more
workstations, external to the RS/6000 SP system, participate to the virtual
machine.

Note: In PVM, the pvm_addhosts is also available. It allows you to add hosts to
the virtual machine at any time. This routine is not available in PVMe, because

68 RS/6000 SP: Scientific and Technical Overview

the Resource Manager does not allow a set of nodes allocated for a given
parallel job to be extended dynamically.

Chapter 3. PVMe V2 69

3.4.2 Packing and Unpacking Messages

� �

� �

PVMe uses a sending buffer to store data that must be sent to another process.
Before sending a message, it must be packed into the sending buffer by using
the proper PVMe routines. Then, the correct sequence of operations is:

• Initialize the buffer
• Pack data into the buffer
• Send the message

Using the proper routines, you can pack multiple heterogeneous data into the
same buffer, and then call the send routine only once. A special option to the
pvm_initsend and pvm_mkbuf routine (also available in PVM) indicates that only
the pointer and the size, not the data, must be copied into the send buffer during
the packing operation. Data will be copied directly out of your memory only
when a send is performed. This option allows you to avoid one data copy, with a
substantial improvement in performance. Also, the same data can be sent
multiple times, with modifications intervening between the sends, without having
to pack it each time.

Once a message has been received, data must be unpacked from the receive
buffer in the same order it was packed into the sending buffer.

Multiple buffers can be managed within the same application, but only one of
them is active at any time. However, most applications do not need to manage
more than one send buffer. If you do not need to manage multiple buffers, you
are provided with transparent default send/receive buffers.

70 RS/6000 SP: Scientific and Technical Overview

3.4.3 Exchanging Messages and Signals

� �

� �

• The pvm_psend routine packs data (with the supplied datatype, starting from
the supplied pointer) into a message and sends the message to the tid task
with type msgtype. Data packing and send are performed within a single
call.

Similarly, the pvm_precv routine receives a message with the supplied
msgtype coming from the supplied tid, and also unpacks and copies the
message content to a memory region supplied by the user.

• The pvm_trecv routine receives a message with the supplied msgtype
coming from the process with the supplied tid, and places it in the current
receive buffer. If a message matching the supplied parameters has arrived,
it returns soon. If not, it blocks waiting for the proper message. However, if
the message does not arrive within a user supplied timeout, the routine
returns without a message.

Chapter 3. PVMe V2 71

3.4.4 Groups and Collective Communications

� �

� �

• The pvme_bcast routine broadcasts the message stored in the active send
buffer to all the other members of a given group. This routine is an
extension (is not available in PVM) and exploits a more efficient algorithm to
distribute data, when compared to the pvm_bcast.

• The pvm_scatter routine is used to distribute data from a specified root
member of a group to all members of the same group (including the root
task). Each member of the group must call the routine, and each of them
receives a portion of a given data array owned by the root member.

• The pvm_gather performs the opposite: it gathers data from each member of
a group to a single member of the same group. All group members call the
routine; each of them sends a portion of a given data array to the target
process. The target process concatenates incoming messages in order on
the basis of the group instance number of the sender task. At the end, data
from all group members will be stored in a single array on the target
process.

• The pvm_reduce routine performs a global operation over all the members of
a specified group. All group members call the routine, providing the local
data, while the final result will be computed and will be available only on the
(user supplied) root member. On the root member, the local data will be
overwritten with the global operation result.

72 RS/6000 SP: Scientific and Technical Overview

PVMe supplies a set of predefined global functions (PvmMin, PvmMax,
PvmSum, PvmProduct), but user written functions performing other tasks can
be used as well (they only have to obey a specific prototype).

Chapter 3. PVMe V2 73

3.5 Running a PVMe Program

� �

� �

• Prepare the .rhosts file in your home directory so that you can run remote
commands on the SP nodes (since you don′ t know which nodes will be
allocated for you, you should include in the file all the nodes belonging to the
partition or RM pool you are running on).

• To start the daemon, you have to start up the PVMe environment. You run
the daemon or the console from the node you are logged into, either
supplying the number of nodes you need (so that a request is made to the
RM) or supplying a hostlist file.

• Start the parallel program from any of the allocated nodes.

Note: The node you are logged into may be part of the set of nodes
allocated for the parallel job, or may not be. If the local node is not part of
the set, you need to login into another node, spawn the program using the
PVMe console, or start the program with an rsh.

• You can use the console to monitor the program execution.

• Once the application completes, the PVMe virtual machine is still active.
You can run other applications on the same set of nodes, but if you don′ t
want to run other applications, don′ t forget to halt the PVMe daemon to free
the resources. Otherwise they are reserved for you and will not be allocated
for other parallel jobs.

74 RS/6000 SP: Scientific and Technical Overview

3.5.1 Examples

� �

� �

In this example you:

 1. Run the daemon supplying the number of nodes you need. If nodes are
available from the RM, the PVMe daemon will print the list of nodes and a
message saying that it is ready.

 2. Start the application.

 3. Start the console and ask for information about all the processes running in
the virtual machine: one instance of the program is active on each node.

Chapter 3. PVMe V2 75

� �

� �

In this example you:

• Directly start the console, supplying a hostlist file. Since there is no PVMe
daemon running, the console also starts the daemon and passes the hostlist
file argument to the daemon. Then the console gives you the prompt.

• With the quit command, you stop the console, but the daemon is still
running. If you run the console later, it will connect to the running daemon.

• You start the parallel program.

• In the hostlist file, you specify the list of nodes you want to use. The RM
always verifies the availability of those nodes, and reserves them for you. If
nodes are not available, the daemon will print an error message.

For each host, you can specify a set of options. The most used is the ep
option, where you can specify the path to the executables of the parallel
program. The default value is the $HOME/pvm3/bin/RS6K directory; if you
are using another location, you have to inform the daemon, so that it can
fulfil requests for starting new processes in the future.

76 RS/6000 SP: Scientific and Technical Overview

� �

� �

• By default, PVMe uses the MPCI/US protocol over the HPS. This path gives
better performance, but poses the constraint that only one user process can
access the device (HPS Adapter-2). Nodes are requested with both CPU and
the HPS Adapter-2 adapter dedicated.

• To use the MPCI/IP protocol you have to link the proper library and run the
daemon with the -ip option. Still one process per node is allowed in a PVMe
virtual machine, but multiple users can run multiple sessions at the same
time.

• You can request nodes to be allocated with shared cpu by specifying -share
cpu. In this way, even if you program is running over the US, other
non-PVMe parallel applications (MPL programs, for example) can run on the
same set of nodes using another network adapter (the ethernet adapter, for
example).

Chapter 3. PVMe V2 77

3.5.2 Options to the PVMe Daemon

� �

� �

The -exec option causes the daemon to start up and run the user′s program, and
shut down when the program has finished. Specifying -ip and -share cpu allows
multiple sessions to run simultaneously on the same nodes. If the -trace option
is specified, any jobs that are run will produce trace data that will be stored in
the file /tmp/xpvm.trace.$USER on the node on which the daemon is running.
This data file can be read by XPVM, a freeware trace visualization tool, to
analyze program execution.

XPVM is available on the Internet through anonymous ftp from
(netlib2.cs.utk.edu).

78 RS/6000 SP: Scientific and Technical Overview

3.5.3 PVMe Environment Variables

� �

� �

By default, when spawning off copies of a program, PVMe looks for the
executable file in the directory $HOME/pvm3/bin/RS6K. If PVMEPATH is set in
the environment of the daemon, PVMe will use the value as the name of the
directory to search for the executable. PVMHFN specifies the name of a file that
is created in the user′s home directory that contains information necessary for
user programs to attach to the PVMe daemon. By default, the filename is
.pvmdname. To run more than one simultaneous session, it is necessary to set the
PVMHFN in the environment of the PVMe daemon and the user program to a
unique value for each session.

Enabling the special memory copy routine with PVMe_MEMCPY=power2
requires that all the nodes in the PVMe session be of the POWER2 architecture.
In MPCI mode, If PVMe_IP is set to yes before the PVMe daemon is started, the
ipproc daemon, which passes redirected output from slave to slave, will also be
started. Without this option turned on, the pvm_catchout routine will not function.

PVMe features an enhanced pvm_barrier routine that provides a much more
efficient synchronization than PVM. However, it requires that all
synchronizations involve every member of a group. If running a program that
synchronizes a fraction of a group, setting PVMe_BARRTYPE=CENTRAL before
running the program will disable the enhanced barrier algorithm and use a
simple algorithm that will work with partial groups.

Chapter 3. PVMe V2 79

3.5.4 Running on RS/6000 and RS/6000 SP

� �

� �

To run PVMe on a mixed group of hosts (SP nodes + external RS/6000s), you
have to run the daemon or the console supplying the hostlist file, with a special
syntax (described in the next foil).

Communication among the SP nodes exploits the MPCI/US or MPCI/IP protocol
over the HPS while communication with the external workstations occurs over
the IP on the external LAN. This feature is particularly helpful when you isolate
a task that doesn′ t need frequent data exchange with the other tasks, or that
doesn ′ t have to provide data to the computational nucleus. For example, you
may use a graphical workstation to display the progress of your application: the
task running on it receives intermediate results from the computational tasks
when they are available, and displays them graphically, but is not really part of
the execution.

80 RS/6000 SP: Scientific and Technical Overview

� �

� �

On this foil, there are two examples of host list files that include RS/6000 SP
nodes and clustered RS/6000 workstations:

• Generic request:

The statement #rm_nodes=5 requests five RS/6000 SP nodes that will be
allocated by the resource manager. Because the node hostnames are not
specified, the resource manager selects available nodes in the interactive or
general pool.

• Explicit request:

The statement #rm_nodes=sp2n01, sp2n02, sp2n03 requests specific RS/6000
SP nodes. So, the resource manager will allocate these nodes if they are
available.

Clustered RS/6000 hostnames are always specified, such as risc10 and risc11 in
these examples. The RS/6000 used in this way must be in the same IP domain
as the SP.

Chapter 3. PVMe V2 81

82 RS/6000 SP: Scientific and Technical Overview

Chapter 4. Parallel ESSL and Parallel OSL

� �

� �

Engineering and Scientific Subroutine Library (ESSL/370) was developed to
provide a set of mathematical subroutines optimized for the ES/3090 and ES/9000
vector facility feature. When mainframe scientific users migrated to RS/6000
workstations and AIX/6000 operating system, IBM provided them with ESSL/6000,
a new version of ESSL subroutines written for an optimized use of the POWER
and POWER2 processor architecture.

To allow users to develop portable codes, ESSL uses the de facto standards
available on the market, such as BLAS (Basic Linear Algebra Subroutines).

Parallel ESSL includes a new set of subroutines that allow the developer to
develop parallel program applications.

Optimization Subroutine Library (OSL) is a set of subroutines developed to solve
linear programs with real or integer variables. It is available on many platforms.
The parallel version of OSL takes advantage of the distributed parallel structure
of RS/6000 SP systems to solve very large linear programs.

This chapter is organized as follows:

• Parallel ESSL is described in Section 4.1, “Parallel ESSL” on page 84.

• Parallel OSL is presented in Section 4.2, “Parallel OSL” on page 111.

 Copyright IBM Corp. 1996 83

4.1 Parallel ESSL

� �

� �

The following topics will be covered in this section:

• The recent Parallel Engineering and Scientific Subroutine Library for AIX
Version 4.1 (Parallel ESSL) announcements and its operating environment

• The new routines that support parallelism and the high-level communications
subsystem (BLACS)

• Some examples of Parallel ESSL code

• Highlights of the Parallel Optimization subroutine Library (OSLp) product,
and its operating environment

• Some examples of OSLp code

84 RS/6000 SP: Scientific and Technical Overview

4.1.1 Announcement Summary

� �

� �

Parallel ESSL improves the performance of engineering and scientific
applications on RS/6000 Scalable POWERparallel Systems by using multiple
processors instead of single processors. Additional benefits include:

• Provides a parallel library tuned for performance on the SP with the High
Performance Switch Adapter-2

• Includes the ESSL/6000 product as part of Parallel ESSL
• Allows licensing on a subset of your RS/6000 SP system
• supports the SPMD programming model under the IBM Parallel Environment

(PE)
• Message Passing Interface (MPI) is used for communications through BLACS
• Fully compatible with de facto standard subroutine packages, for example,

ScaLAPACK and PBLAS
• Callable from Fortran, C, and C++

For RISC System/6000 Scalable POWERparallel Systems still using AIX Version
3.2.5 and PSSP Version 1.2, the Parallel ESSL PRPQ (5799-FQC) is still available.

Chapter 4. Parallel ESSL and Parallel OSL 85

4.1.2 Parallel ESSL Highlights

� �

� �

Parallel ESSL is a set of (distributed memory) parallel processing subroutines
that have been designed to provide high performance for numerically intensive
computing jobs running on the RISC System/6000 Scalable POWERparallel
System.

Parallel ESSL is built on the ESSL/6000 product, which is part of this offering.
When you license Parallel ESSL, you can take advantage of over 400 serial
subroutines available in ESSL/6000. Both Parallel ESSL and ESSL/6000
accelerate applications by replacing comparable subroutines and inline code
with high-performance, tuned subroutines. ESSL uses algorithms tailored to the
specific operational characteristics of the RISC System/6000 processors.

Parallel ESSL subroutines assume that your program uses the SPMD
programming model where tasks running your parallel tasks on each processor
are identical. The tasks, however work on different sets of data.

For interprocess communication, Parallel ESSL delivers the Basic Linear Algebra
Communications subprograms (BLACS), which, in turn, use the AIX Parallel
Environment (PE) Message Passing Interface (MPI).

For their own purposes, users can use either MPL, or MPI, or BLACS.

Note: The BLACS (de facto) standard was developed by the University of
Tennessee and the Oak Ridge National Laboratory.

86 RS/6000 SP: Scientific and Technical Overview

4.1.3 PESSL Design Objectives

� �

� �

Parallel ESSL was designed to exploit the strengths of IBM RISC System/6000
POWER and POWER2 processors, and the parallel subroutines exploit the high
performance provided by ESSL/6000 Version 2.2 for use on each processor of a
Parallel ESSL job. Most of the ESSL/6000 subroutines use the following
techniques to optimize performance.

• Manage the cache and TLB efficiently so the hit ratios are maximized — that
is, data is blocked so that it stays in the cache or TLB for its computation.
This reduces the cost of accessing data (when it is found in the cache, which
avoids a memory access), and the number of virtual to real memory
translations (TLB data).

• Access data that is stored contiguously; that is, use stride 1 computations.

• Exploit the large number of available floating point registers.

• On POWER processors:

− Use algorithms that balance floating operations with loads in the
innermost loop.

− Use algorithms that minimize stores in the innermost loop.

• On POWER2 processors:

− Use algorithms that fully use the dual fixed-point and floating-point units.
Two Multiply-Add instructions can be executed each cycle, neglecting

Chapter 4. Parallel ESSL and Parallel OSL 87

overhead. This allows execution of four floating-point operations per
cycle.

− Use algorithms that fully exercise the load and store floating-point
Quadword instructions. For example, in one cycle, two Load
Floating-Point Quadword instructions can be executed. Neglecting
overhead, this allows four doublewords to be loaded per cycle.

The Quadword load instructions move two double-precision storage
operands into two adjacent floating-point registers.

88 RS/6000 SP: Scientific and Technical Overview

� �

� �

Tuning to optimize the parallel algorithms further increases the actual
throughput capabilities of the Parallel ESSL library. These tuning design points
include the following:

• Minimizing the impact of communications by exchanging large blocks of data
when possible.

• Blocking data to match the processor cache size.

• Permitting programmer experimentation to obtain favorable block sizes for
the distribution of problem data.

• Permitting programmer experimentation to determine favorable processor
grid dimensions for a variety of problem sizes and types.

• Parallel ESSL can be installed on combinations of POWERparallel thin and
wide nodes.

Shape of the Process Grid:

• For most subroutines, programmers are urged to use a two-dimensional
(square or as close to square as possible) grid.

Number and Types of Processor Nodes:

• The optimal number of processors depends primarily on the program size.
• It is reasonable to increase the number of processors if the problem size

increases sufficiently to keep the amount of local data per process at a
reasonable size.

Chapter 4. Parallel ESSL and Parallel OSL 89

• When users increase the number of processors, they must keep in mind the
shape of the process grid. For example, using 17 processors instead of 16,
would most likely result in performance degradation.

Blocksize:

• The optimal blocksize depends on underlying node computations, load
balancing, communications, system buffering requirements, problem size,
and dimension and shape of the process grid.

• Blocksize specifications require experimentation to achieve optimal
performance.

The following values provide good performance in most cases:

− POWER nodes:

- 24 for Level 2 PBLAS, eigensystems and singular value analysis
- 40 for Level 3 PBLAS and linear algebraic equations

-
data_cache_size

2
for random numbers

− POWER2 nodes:

- 24 for Level 2 PBLAS, eigensystems and singular value analysis
- 70 for Level 3 PBLAS and linear algebraic equations

-
data_cache_size

2
 for random numbers

Note: The data cache size can be obtained with this command:
lsattr -E -H -l sys0

90 RS/6000 SP: Scientific and Technical Overview

4.1.4 PESSL Application Support

� �

� �

Parallel ESSL can provide solutions to problems in many scientific and technical
applications. A number of enhancements have been implemented that make
Parallel ESSL easy to use. These include:

• Comprehensive, high-quality documentation that is usable by a wide class of
programmers.

• Validity checks for parameters, when technically possible, and when the
impact to performance is not significant.

• Calling sequences compatible with existing ESSL conventions, conventions of
widely used subroutine libraries, and conventions familiar to typical users.
In the areas of Linear Algebraic Equations, Parallel BLAS, and Eigensystem
Analysis, the calling sequences match those of ScaLAPACK.

Note: ScaLAPACK extends the LAPACK library to run scalably on MIMD,
distributed memory, concurrent computers. The ScaLAPACK routines are based
on block-partitioned algorithms in order to minimize the frequency of data
movement between different levels of the memory hierarchy. The fundamental
building blocks of the ScaLAPACK library are distributed memory versions
(PBLAS) of the Level 1, 2 and 3 BLAS, and a set of Basic Linear Algebra
Communication subprograms (BLACS) for communication tasks that arise
frequently in parallel linear algebra computations. More information on
ScaLAPACK can be obtained from the netlib homepage on the World Wide Web
at http://www.netlib.org/scalapack/index.html.

Chapter 4. Parallel ESSL and Parallel OSL 91

4.1.5 PESSL Operating Environments

� �

� �

This is a summary of the software required to install and use Parallel ESSL on a
RISC System/6000 Scalable POWERparallel System in an AIX V4.1 environment.
These products must be on every node where it is intended to use Parallel ESSL.

Note: Only The XL Fortran libraries and messages are required by Parallel
ESSL. If applications are to be developed in Fortran, then the XL Fortran
compiler is also required. These libraries and messages can be shipped as a
separate feature of Parallel ESSL.

92 RS/6000 SP: Scientific and Technical Overview

� �

� �

This foil presents the information related to the Parallel ESSL version supported
by AIX 3.2.5 and PSSP 1.2.

Chapter 4. Parallel ESSL and Parallel OSL 93

4.1.6 Parallel ESSL - New Routines

� �

� �

Discussions with marketing and IBM customers resulted in the delivery of the
following parallel subroutines into the Parallel ESSL product:

• Level 2 Parallel BLAS Routines. These routines involve matrix-vector
operations.

• Level 3 Parallel BLAS Routines. These routines involve matrix-matrix
operations.

• Linear Algebraic Equations. These subroutines provide solutions to linear
systems of equations for real general matrices and real symmetric positive
definite matrices.

• Eigensystems and Singular Value Analysis. Parallel eigensystem analysis
subroutines provide solutions to the algebraic eigensystem analysis problem
for real symmetric matrices and the capability to reduce real symmetric and
real general matrices to condensed form.

• Fourier Transforms, Convolutions and Correlations. Parallel ESSL Fourier
transforms subroutines perform mixed-radix complex, complex-to-real, and
real-to-complex transforms in two and three dimensions.

• The Random number generation subroutine generates uniformly distributed
random numbers. Utility subroutines perform general service functions that
support Parallel ESSL rather than perform mathematical computations.

94 RS/6000 SP: Scientific and Technical Overview

4.1.6.1 PBLAS Level 2 Routines

� �

� �

PDGEMV: This subroutine performs one of the matrix-vector products:

y:=α*A*x+β*y
or

y:=α*A′ *x+β*y

where α and β are scalars, x and y are vectors and A is a general matrix.

PDSYMV: This subroutine performs the matrix-vector product:

y:=α*A*x+β*y

where α and β are scalars, x and y are vectors and A is a symmetric matrix.

PDGER: This subroutine performs the rank 1 update:

A:=α*x*y′+A

where α is a scalar, x and y are vectors and A is a general matrix.

PDSYR: This subroutine performs the rank 1 update:

A:=α*x*x′+A

where α is a scalar, x is a vector and A is a symmetric matrix.

PDSYR2: This subroutine performs the rank 2 update:

A:=α*x*y′+α*y*x′+A

where α is a scalar, x and y are vectors and A is a symmetric matrix.

Chapter 4. Parallel ESSL and Parallel OSL 95

PDTRMV: This subroutine performs one of the matrix-vector products:

x:=A*x
or
x:= A′ *x

where x is a vector and A is a unit, or non-unit, upper or lower triangular matrix.

PDTRSV: This subroutine performs one of the following solves for a triangular
system of equations with a single right-hand side:

A′ x=b
or

Ax=b

where x and b are vectors, and A is a unit, or non-unit, upper or lower triangular
matrix.

96 RS/6000 SP: Scientific and Technical Overview

4.1.6.2 Level 3 PBLAS Routines

� �

� �

PDGEMM: This subroutine performs one of the matrix-matrix products:

C:=α*A*B+β*C
or

C:=α*A*B′+β*C
or

C:=α*A′ *B+β*C
or

C:=α*A′ *B′+β*C

where α and β are scalars, and A, B, and C are general matrices.

PDSYMM: This subroutine performs one of the matrix-matrix products:

C:= α*A*B+β*C
or

C:= α*B*A+β*C

where α and β are scalars, A is a symmetric matrix and B and C are general
matrices.

PDTRMM: This subroutine performs one of the matrix-matrix products:

Chapter 4. Parallel ESSL and Parallel OSL 97

B:= α*A*B
or

B:= α*B*A
or

B:= α*A′ *B
or

B:= α*B*A′

where α is a scalar, B is a general matrix and A is a unit, or non-unit, upper or
lower triangular matrix.

PDTRSM: This subroutine performs one of the following solves for a triangular
system of equations with multiple right hand sides:

A*X = α*B
or

X*A = α*B
or

A′ *X = α*B
or

X*A′ = α*B

where α is a scalar, X and B are general matrices, and A is a unit or non-unit,
upper or lower triangular matrix.

PDSYRK: This subroutines performs one of the rank k updates:

C:=α*A*A′+β*C
or

C:=α*A′ *A+β*C

where α and β are scalars, C is a symmetric matrix and A is a general matrix.

PDSYR2K: This subroutine performs one of the rank 2-k updates:

C:= α*A*B′+α*B*A′+β*C
or

C:= α*A′ *B+α*B′ *A+β*C

where α and β are scalars, C is a symmetric matrix and A and B are general
matrices.

PDTRAN: This subroutine performs the following matrix computation:

C:= βC+αA′

where α and β are scalars and A and C are general matrices.

98 RS/6000 SP: Scientific and Technical Overview

4.1.6.3 Parallel Linear Algebraic Routines

� �

� �

Parallel Linear Algebra Equation subroutines provide solutions to linear systems
of equations for real general matrices and real symmetric positive definite
matrices.

PDGETRF and PDGETRS: PDGETRF computes an LU factorization of a general
matrix A using Gaussian elimination with partial pivoting. PDGETRS solves a
system of equations, AX=B or A ′X=B, with general matrices A and B using the
LU factorization computed by a prior call to PDGETRF.

PDPOTRF and PDPOTRS: PDPOTRF factors a real, positive definite, symmetric
matrix by the Cholesky factorization method. PDPOTRS solves a system of
equations, AX=B, where A is a positive definite, symmetric matrix using the
Cholesky factorization computed by a previous call to PDPOTRF.

Chapter 4. Parallel ESSL and Parallel OSL 99

4.1.6.4 Eigensystem/Singular Value Routines

� �

� �

PDSYEVX: This subroutine computes selected eigenvalues and, optionally, the
eigenvectors of a real symmetric matrix A:

Az = wz where A = A ′

PDSYTRD: This subroutine reduces a real symmetric matrix A to symmetric
tri-diagonal form T by an orthogonal similarity transformation:

T = Q′ * A * Q

PDGEHRD: This subroutine reduces a real general matrix A to upper
Hessenberg form H by an orthogonal similarity transformation:

H = Q′ * A * Q

Note: An upper matrix is one with non-zero elements in the upper triangle and
the first subdiagonal.

PDGEBRD: This subroutine reduces a real general matrix A to upper or lower
bi-diagonal form B by an orthogonal transformation:

B = Q′ * A * P

100 RS/6000 SP: Scientific and Technical Overview

4.1.6.5 Fourier Transform Routines

� �

� �

The following FFTs are available as parallel subroutines.

PDCFT2: This subroutine computes the two-dimensional discrete Fourier
transform of long precision complex data.

PDRCFT2: This subroutine computes the two-dimensional complex-conjugate
even discrete Fourier transform of real data. The output data has complex
conjugate even format.

PDCRFT2: This subroutine computes the two-dimensional real discrete Fourier
transform of long precision complex-conjugate even data. The input data is
stored in compact format, taking advantage of the symmetry of the input data.
The output data is long precision real.

PDCFT3: This subroutine computes the three-dimensional discrete Fourier
transform of long precision complex data.

PDRCFT3: This subroutine computes the three-dimensional complex-conjugate
even discrete Fourier transform of real data. The output data has
complex-conjugate even format.

PDCRFT3: This subroutine computes the three-dimensional real discrete Fourier
transform of long precision complex-conjugate even data. The input data is
stored in compact format, taking advantage of the symmetry of the input data.
The output data is long precision real.

Chapter 4. Parallel ESSL and Parallel OSL 101

4.1.6.6 General Routines

� �

� �

PDURNG: PDURNG generates a vector of uniform pseudo-random numbers in
the ranges [0,1] or [-1,1]. The random numbers are generated using the
multiplicative congruential method with a user-specified seed.

NUMROC: NUMROC computes the number of rows or columns of a block
cyclically distributed matrix contained in any one process.

Note: Block distribution breaks up a matrix into blocks of data, whereby each
processor participating in a parallel computation handles only one block of
matrix elements. This is appropriate if matrix element computations involve
neighboring elements. Cyclic distribution breaks up the matrix into strips, and
each processor participating in a parallel computation handles several strips of
data. This is commonly used to provide better load balancing.

IPESSL: IPESSL is a query utility which returns the Parallel ESSL version
number, release number, modification number, and fix number (for the last PTF
installed).

102 RS/6000 SP: Scientific and Technical Overview

4.1.7 What is BLACS?

� �

� �

The Basic Linear Algebra Communication subprograms (BLACS) package is a
linear algebra oriented message passing interface that is implemented efficiently
and uniformly across a large range of distributed memory platforms. The BLACS
makes linear algebra programs both easier to write and more portable. It was
developed jointly at the University of Tennessee and the Oak Ridge National
Laboratory as the communications layer for the ScaLAPACK project, which
involved implementing the LAPACK library on distributed memory MIMD
machines

The BLACS was written specifically for linear algebra programming. Many
communication packages (including IBM ′s MPL and the new MPI standard) can
be classified as having operations based on one dimensional arrays or vectors;
that is, they require an address and length to be sent. In programming linear
algebra problems, however, it is more natural to express all operations in terms
of matrices. Vectors and scalars are, of course, simply subclasses of matrices.
On computers, a linear algebra matrix is represented by a two-dimensional array
(2D array), and therefore the BLACS operates on 2D arrays.

One of the main strengths of the BLACS is that code that uses the BLACS for its
communication layer can run unchanged on any supported platform. The BLACS
has been written on top of the following message passing layers:

Message Passing Layer Machines
CMMD Thinking Machine ′s CM-5.

Chapter 4. Parallel ESSL and Parallel OSL 103

MPL/MPI IBM ′s RISC System/6000 series.
NX Intel′s supercomputer series (iPSC2, iPSC860,

DELTA and PARAGON).
PVM Anywhere PVM is supported, which includes most

UNIX systems.

Parallel ESSL includes both the BLACS and the ESSL/6000 BLAS, compatible
with the public domain interfaces; therefore, any applications that call these can
be used compatibly with Parallel ESSL.

More information on the BLACS can be obtained from the BLACS Web page at
http://www.netlib.org/blacs/Blacs.html, maintained by the Oak Ridge National
Laboratory.

104 RS/6000 SP: Scientific and Technical Overview

4.1.8 Steps for Using PESSL

� �

� �

• Call the BLACS initialization subroutines. These routines (BLACS_PINFO,
BLACS_GET, and BLACS_GRIDINIT or BLACS_GRIDMAP) define the following:

 1. The number of processes (nodes) available.
 2. The default system context; the context can be imagined to be a

“message passing universe,” in which all processes involved in a
particular parallel computation can communicate safely with each other.

 3. The size of the process grid, which is a mapping of the nodes
(processes) onto a “process grid,” which is a 1- or 2-dimensional
representation of the available nodes; the grid is defined to be as close
to square as possible.

• Distribute the data across the process grid. Since the Parallel ESSL
subroutines support the SPMD (single-program, multiple-data) programming
model, an application′s global data structures (for example, vectors,
matrices, or sequences) must be distributed across the processes that are
members of the process grid, before calling the Parallel ESSL subroutine.

Each Parallel ESSL subroutine specifies how the data is to be distributed to
the nodes that are part of a particular process grid. The size and shape of
the process grid and the way the global data structures are distributed over
the processes are important factors to be considered.

• Call the Parallel ESSL subroutine on each process defined on the process
grid.

Chapter 4. Parallel ESSL and Parallel OSL 105

• The solution data should then be processed according to the output
distribution specified by the Parallel ESSL subroutine.

106 RS/6000 SP: Scientific and Technical Overview

4.1.9 PESSL/BLACS Call Examples

� �

� �

The call to BLACS_PINFO uniquely identifies each process, and sets the number of
nodes available for BLACS use.

The process grid (or the mapping of processing nodes onto a 2-dimensional grid)
is defined to be as square as possible. For example, if six processors are
available, then the process grid would be defined to have 2 rows and 3 columns,
and a processor would be referenced by its coordinates in the grid, as shown in
the diagram below, rather than as a single number.

┌───────┬───────┬───────┐
│ (0,0) │ (0,1) │ (0,2) │
├───────┼───────┼───────┤
│ (1,0) │ (1,1) │ (1,2) │
└───────┴───────┴───────┘

Chapter 4. Parallel ESSL and Parallel OSL 107

� �

� �

BLACS_GET retrieves the default system context to be input into the following
initialization routines.

BLACS_GRIDINIT maps the available nodes (or processes) onto the BLACS process
grid, thus establishing how the BLACS coordinate system will map into the
native machine′s process numbering system. Each BLACS grid is contained in a
context (its own message passing universe) within which most computation
takes place). This means that a grid does not interfere with distributed
operations that occur within other (possibly overlapping) grids/contexts.

BLACS_GRIDINFO returns information about the process grid, specifically the row
and column index for a processing member of the process grid.

108 RS/6000 SP: Scientific and Technical Overview

� �

� �

Since the Parallel ESSL subroutines support the SPMD programming model, a
program ′s global data structures (vectors, matrices, or sequences) must be
distributed across the nodes that make up the process grid, before calling the
Parallel ESSL subroutines.

Block distribution breaks up a matrix into blocks of data, whereby each
processor participating in a parallel computation handles only one block of
matrix elements. This is appropriate if matrix element computations involve
neighboring elements.

Cyclic distribution breaks up the matrix into strips, and each processor
participating in a parallel computation handles several strips of data. This is
commonly used to provide better load balancing.

Block Cyclic distribution is a generalization of the block and cyclic distributions,
in which blocks of r consecutive data objects are distributed cyclically over p
nodes.

Methods for distributing data over one or two-dimensional process grids are
described in Parallel ESSL Guide and Reference.

Chapter 4. Parallel ESSL and Parallel OSL 109

� �

� �

BLACS_GRIDEXIT frees a context; that is, it releases the resources that have been
allocated to that particular context.

BLACS_EXIT is called when an application has finished all use of the BLACS. It
frees all the BLACS contexts and releases all the memory that the BLACS has
allocated.

110 RS/6000 SP: Scientific and Technical Overview

4.2 Parallel OSL

� �

� �

The Parallel Optimization subroutine Library (OSLp) can solve linear and
mixed-integer programming problems in a parallel mode on the IBM RISC
System/6000 Scalable POWERparallel SP System. This set of subroutines, which
permit the transformation of serial applications to parallel applications, was
originally announced in June 1994. Recent announcements have updated this
program product to support the AIX Version 4.1.3 operating system on both RISC
System/6000 SP systems and clusters.

Problems using AIX OSL/6000 are portable to OSLp because calling sequences
are identical. Making minor changes to existing serial OSL application programs
will enable them to run in a parallel environment.

Parallel OSL includes all of the functions of AIX OSL/6000, with the replacement
of two major subroutines, EKKMSLV and EKKBSLV. These subroutines solve
mixed integer programming (MIP) and linear programming (LP) problems,
respectively.

Parallel OSL runs in any of the three parallel environments: IBM AIX PE, PVM,
and IBM AIX PVMe.

Chapter 4. Parallel ESSL and Parallel OSL 111

4.2.1 Why use OSLp?

� �

� �

Mathematical optimization is concerned with the problem of finding an optimal
allocation of limited resources by choosing an alternative that maximizes payoff,
or minimizes cost, from among those alternatives that satisfy the given
constraints.

The range of problems that can be addressed using OSL include the following:

 1. Linear programming (LP) problems, where both the objective function and
the constraints are linear. An example of this type of problem would be
determining the optimum allocation of limited resources to meet objectives,
while minimizing costs:. Here, both the allocation and cost equations would
be described in linear equations.

 2. Mixed-integer programming (MIP) problems, which are LPs where some of
the variables are constrained to be integers. Some examples of this type of
problem include the fare allocation of airline seats on a particular flight, or
the number and type of aircraft on a particular route. Also decision
variables, whose values determine which of two alternatives are to be
implemented, are often modeled as [0,1] integer variables.

 3. Quadratic MIP problems where the objective function to be minimized is
quadratic, the constraints are linear, and some variables are constrained to
be integer. This type of problem arises naturally in financial applications.

OSLp routines achieve significant speedups on LP and MIP problems.

112 RS/6000 SP: Scientific and Technical Overview

4.2.2 OSLp Operating Environment

� �

� �

This is a summary of the software required to install and use Parallel OSL on a
RISC System/6000 Scalable POWERparallel System in an AIX V4.1.3 environment.
These products must be installed on every node where it is intended to use
Parallel OSL.

Note: OSLp must be installed on each node on which it is required to run OSLp
code. The minimum number of nodes that can be licensed is four.

Chapter 4. Parallel ESSL and Parallel OSL 113

4.2.3 OSLp - New Routines

� �

� �

All of the features and capabilities of the serial OSL product are available in
Parallel OSL. The OSLp calls are compatible with the serial OSL, making it
simple to adapt existing programs. Further, users do not need to know how to
write parallel code to use Parallel OSLp: adding minor changes to existing serial
programs allows these programs to be run in a parallel environment.

The new solver routines, EKKMSLV (for MIP problems) and EKKBSLV (for LP
problems), have been modified to share the work of solving their problems
among multiple processors.

The I/O routines EKKPTMD and EKKGTMD have been modified so that if the
FORTRAN unit number supplied to these routines is greater than 100, they
generate and receive messages passed between OSLp application processes. If
these unit numbers are 99 or less, the routines function exactly as the serial
versions do.

The integer control variable handling routines EKKIGET and EKKISET access and
modify, respectively, all OSLp integer control variables (which are a superset of
the OSL variables). The new OSLp control variables are:

• Inumcpu is used to initiate and terminate parallel processing. This control
variable can have different values in different OSLp processes. When the
master process resets Inumcpu from zero to some value other than minus

114 RS/6000 SP: Scientific and Technical Overview

one (-1), EKKISET initiates parallel processing. EKKISET terminates parallel
processing when the master and slave processes reset Inumcpu to zero.

• Iwhichcpu provides the mechanism for identifying the process number
associated with a particular instance of parallel code:

Iwhichcpu ═ 0 identifies the master process.
Iwhichcpu ═ [1,...,n] identifies the slave processes.

Chapter 4. Parallel ESSL and Parallel OSL 115

4.2.4 Creating OSLp Code from Serial OSL Code

� �

� �

To create an effective Parallel OSL application program, the components of the
program that will be called by the master process need to be separated from
those that will be called by the slave processes. This could be done by coding
distinct MASTER and SLAVE subroutines, or by separating the master and slave
components within the same routine. In either case, since all parallel OSL
processes run the same code, the code itself must detect which process is
running. This is done by checking the value of Iwhichcpu.

116 RS/6000 SP: Scientific and Technical Overview

� �

� �

In the initial part of the program, the size of the OSL work space is defined, and
the application is described to OSL.

Chapter 4. Parallel ESSL and Parallel OSL 117

� �

� �

Each process then determines if it is the master or a slave by retrieving the
Iwhichcpu control variable through a call to the EKKIGET routine. In the master
process, Iwhichcpu will be zero, and Inumcpu will be the number of slave
processes.

The master process reads the input data (call to EKKMPS) and sends the data out
to the slave processes (call to EKKPTMD; recall that unit numbers greater than 100
are used to communicate between OSLp processes running on different nodes).
The master process then calls EKKMSLV to solve its portion of this MIP problem.

When this is completed, the master process terminates parallel processing by
resetting Inumcpu to zero.

118 RS/6000 SP: Scientific and Technical Overview

� �

� �

In the slave processes, Iwhichcpu will be set to [1, ... ,n-1], and Inumcpu will be
set to -1 to indicate that this process is a slave processes. The slave processes
then read the input data sent to them by the master process (call to EKKGTMD;
recall that unit numbers greater than 100 are used to communicate between
OSLp processes running on different nodes). The slave processes then call
EKKMSLV to solve their portions of the MIP problem.

When these are completed, the slaves also close the parallel processing by
resetting Inumcpu to zero.

Chapter 4. Parallel ESSL and Parallel OSL 119

120 RS/6000 SP: Scientific and Technical Overview

Chapter 5. High Performance Fortran

� �

� �

On December 5, 1995, IBM announced its High Performance Fortran (HPF)
compiler to provide scientific customers with a HPF compiler supporting the HPF
standard defined by Fortran committees. The consortium that defined the HPF
standard also defined a subset of HPF features that must be supported in order
to be HPF branded. In fact, the IBM HPF includes the HPF subset and adds
several HPF features not included in the subset yet.

HPF was designed to help researchers and NIC application programmers
develop performing parallel applications without any message passing
programming. So, the message passing functions are implicitly generated by
the HPF compiler with respect to specific information given by the developer
about the data mapping, that is, the way data is logically stored in memory, and
the way it is distributed between the processors.

This chapter provides the following information:

• New HPF statements and constructs

• HPF directives

• Compile-time flags

 Copyright IBM Corp. 1996 121

5.1.1 Acknowledgements

� �

� �

Some of the material used in this presentation was obtained from the High
Performance Fortran Language Specification, Version 1.1, (C) 1994 Rice
University, Houston Texas, and it is used with permission. The HPF language
specification document is available on the World Wide Web at the High
Performance Fortran Forum (HPFF) home page located at the following URL:
http://www.erc.msstate.edu/hpff/home.html

Additional information could be obtain through the anonymous ftp site
titan.cs.rice.edu The directory is public/HPFF/draft and the PostScript file is
hpf-v11.ps.gz.

Some examples of HPF code were obtained from the High Performance Fortran
Applications (HPFA) home page on the World Wide Web at
http://www.npac.syr.edu/hpfa/index.html.

The IBM documentation was also used to provide input to this presentation and
its examples. See IBM XL High Performance Fortran User′s Guide and IBM XL
High Performance Language Reference for more information.

122 RS/6000 SP: Scientific and Technical Overview

5.2 Topics Covered

� �

� �

The following topics will be covered:

• IBM ′s Announcement for High Performance Fortran (December 5, 1995).

• Summary of the operating environment, and the description of some
restrictions in the HPF compiler.

• Summary of the new HPF directives with examples illustrating their use.

• Short Guide to new and/or changed compiler options.

Chapter 5. High Performance Fortran 123

5.2.1 HPF Announcement (December 5, 1995)

� �

� �

IBM announced in June 1995 that it intended to develop and deliver to the
marketplace, a High Performance Fortran (HPF) compiler based on the Subset
HPF, as defined by the High Performance Fortran Language Specification, Version
1.1, Rice University, 1994. The IBM HPF compiler was announced in December
1995 with these specifications, and the following extensions:

• PURE procedures

• FORALL construct

• Storage and sequence association, including the SEQUENCE directive (but not
supporting mapping of sequenced variables)

• HPF_LOCAL and HPF_SERIAL extrinsic kinds (on subroutines and functions only)

• The HPF_LOCAL_LIBRARY module

The IBM HPF compiler supports the following HPF_LOCAL_LIBRARY
subroutines:

− ABSTRACT_TO_PHYSICAL
− GLOBAL_ALIGNMENT
− GLOBAL_DISTRIBUTION
− GLOBAL_TEMPLATE
− GLOBAL_TO_LACAL
− LOCAL_TO_GLOBAL
− MY_PROCESSOR

124 RS/6000 SP: Scientific and Technical Overview

− PHYSICAL_TO_ABSTRACT

• The HPF_DISTRIBUTION, HPF_TEMPLATE, and HPF_ALIGNMENT inquiry subroutines of
the HPF_LIBRARY module

• The DIM argument of the MAXLOC and MINLOC intrinsic functions which is part of
the subset.

Chapter 5. High Performance Fortran 125

5.2.2 HPF - Operating Environment

� �

� �

The objective of the HPF standard is to help programmers decompose data
parallel problems for all parallel machines. High Performance Fortran will allow
programmers:

• To identify scalar and array variables that will be distributed across a
parallel machine

• To specify how the scalar and array data will be distributed: in strips, blocks,
or in another format

• To specify the alignment between these variables on each other

The required operating environment for the XL HPF product will be:

• RISC System/6000 Scalable POWERparallel (SP) Systems, or RISC
System/6000 clusters

• AIX Version 4.1 and IBM Parallel Environment for AIX Version 2.1.

IBM PE provides the MPI library that includes the MPI subroutines called by
the executable generated by HPF.

In support of HPF for AIX, IBM intends to provide the Parallel Engineering and
Scientific Subroutine Library for AIX (Parallel ESSL for AIX) in the second quarter
of 1996. This product will offer mathematical subroutines that can be easily
called by XL HPF for AIX programs.

126 RS/6000 SP: Scientific and Technical Overview

5.2.3 HPF Restrictions

� �

� �

• If the -qhpf option is used, then not all of the XL Fortran features are
supported.

• If the -qnohpf option is used, then only the XL Fortran functionality is
available.

• A number of features of Subset HPF as defined in the standard are not
supported. These include:

− CYCLIC(n) data distribution (CYCLIC(n) is treated as CYCLIC(1) unless it
appears in an HPF_LOCAL interface.

− The ENTRY statement

In FORTRAN 77, the ENTRY statement is put into functions and subroutines
when you want to access them different ways.

− Multiple processor arrangements

Chapter 5. High Performance Fortran 127

5.2.4 HPF vs XLF

� �

� �

This diagram summarizes the functional relationship between HPF and XL
Fortran.

IBM Extension to Fortran 90
IBM XL Fortran for AIX, Version 3 Release 2 conforms to the Fortran 90
standard. It includes several extensions, such as:

• Directives lines

IBM XL Fortran allows users to specify compile-time options directly in
the source file with the @PROCESS directive. SOURCEFORM is another directive
used to indicate which form the source is written in.

• Typeless literal constants

IBM XL Fortran supports several typeless constants, such as
hexadecimal, octal, binary, and Hollerith constants.

• Storage classes for variables

IBM XL Fortran assigns, implicitly or explicitly, a storage class to
variables, such as, automatic, static, common. So, several statements
have additional optional parameters to set up the storage class of
variables.

• BYTE

128 RS/6000 SP: Scientific and Technical Overview

This type declaration statement specifies the attributes of objects and
functions of type byte with length of 1.

• DOUBLE COMPLEX

Each component of this complex number is a REAL(16) number.

• Intrinsic Procedures

IBM XL Fortran includes several intrinsic procedures to the standard
Fortran 90 list, such as erf, erfc, gamma, lgamma, and so on.

• Service and Utility Procedures

IBM XL Fortran provides utility services, such as alarm_, date_, exit_,
flush_, getarg, getuid_, qsort_, and many others.

HPF Subset Not Supported by IBM XL HPF
IBM XL HPF supports the entire Subset HPF definition, with the exception of
the features listed in Section 5.2.3, “HPF Restrictions” on page 127.

Chapter 5. High Performance Fortran 129

� �

� �

IBM Extensions to HPF Subset
IBM XL HPF includes several HPF features not part of the Subset HPF:

• PURE procedure

• FORALL construct

Only the FORALL statement is part of the Subset HPF.

• SEQUENCE and NOSEQUENCE directives

• HPF_LOCAL and HPF_SERIAL extrinsic kinds

• Procedures from HPF_LOCAL_LIBRARY and HPF_LIBRARY

Full HPF Standard
The full HPF standard complements the Subset HPF with the following
features that are not supported by IBM XL HPF yet:

• REALIGN directive

• REDISTRIBUTE directive

• DYNAMIC directive

• INHERIT directive

Fortran 90 Not Supported by IBM XL HPF
IBM XL HPF supports neither Fortran 90 pointers nor integer pointers.

130 RS/6000 SP: Scientific and Technical Overview

� �

� �

IBM XL HPF provides programmers a set of AIX-based tools integrated with the
AIX common desktop environment (CDE), for the development of parallel
applications running on AIX under RS/6000 SP systems and clusters of RISC
System/6000 systems.

CDE
IBM XL HPF uses a new GUI based on the CDE in AIX Version 4.1.3, or later.
CDE integration consists of an HPF application folder that is integrated within
the CDE Application Manager. The XL HPF application folder contains icons
representing the HPF tools and applications.

CDE integration of the HPF tools allows programmers to invoke the tools in a
simple and consistent manner. The CDE desktop recognizes different types of
files using a data type database. A data type identifies the files of a
particular format and associates them with the appropriate applications.
These associations mean that programmers don′ t have to remember
command-line invocations of tools. In most cases when a programmer
double-clicks on a file, the CDE desktop will automatically launch the correct
application that interprets that file′s data.

The HPF application folder contains:

• Live Parsing Extensible (LPEX) editor

• Program Builder

• Debugger(xldb and pdbx)

• HPF online documentation

• Command-line builder (xxlhpf)

Chapter 5. High Performance Fortran 131

LPEX Editor
The LPEX Editor is a language-sensitive, fully programmable editor that
supports full F90 and some HPF functions. The LPEX Editor can be used to
create and edit many types of text files, including program source and
documentation. Using LPEX, developers can:

• Use multiple windows to display several documents or to display more
than one view of the same document

• Dynamically configure LPEX to be a multiple-window or single-window
tool

• Select a block of text and move or copy it between documents

• Cut and paste to a shell or another application

• Undo previous changes to a document

Developers can customize and extend virtually every aspect of this
programmable editor. LPEX is extended through dynamic link libraries.
There is no proprietary extension language to learn. With the LPEX API,
developers can write powerful extensions to the editor. Also, LPEX provides
a rich command language that developers can use to create or modify editor
functions. Developers can:

• Define their own fonts and colors

• Modify the editor action key layout

• Add menus to perform frequently used commands (menu definitions
 can be applied on a filename extension basis)

• Write their own editor commands

Program Builder
The Program Builder, a makefile generator that interprets XL HPF, manages
the repetitive tasks of compiling, linking, and correcting errors in program
source code. The Program Builder:

• Provides a GUI to simplify the process of setting and saving compile and
linker options.

• Supports error browsing from a list display. Selecting a compile error in
the list will position the programmer at the error in the source code in the
LPEX Editor.

• Creates a makefile that is used by the AIX make command to construct
and maintain programs and libraries. The Program Builder also
determines build dependencies by scanning the source code files for
dependency information.

Debugger (xldb and pdbx)
The xldb is a GUI-based, serial full F90 symbolic debugger. The intuitive GUI
allows programmers to control the execution of the program, examine and
modify data (variables, storage, and registers), and perform many other
useful functions.

The xldb debugger provides machine-level and source-level debugging. It is
built around a set of core functions that let developers quickly and efficiently
control execution and analyze data. With these core functions, developers
can:

• Display and change variables

• Display and change storage

132 RS/6000 SP: Scientific and Technical Overview

• Display and change the processor registers

• Display the call stack

• Add and delete simple and complex breakpoints

• Control the execution of multiple threads

• View source code as listing, disassembly, or mixed

The pdbx is a parallel dbx debugger provided by Parallel Environment for AIX
Version 2 and can be invoked through the HPF application folder under CDE.
The pdbx debugger provides debugging support for Parallel Environment jobs.

Command-Line Builder (xxlhpf)
The xxlhpf is a GUI-based command-line builder that interprets all options
available for XL HPF. It simplifies the process of selecting compiler options
and helps you to understand what each option does.

Chapter 5. High Performance Fortran 133

5.2.5 New HPF Directives

� �

� �

The new HPF directives provide data mapping facilities. The process of mapping
data to processors is made up of two steps:

 1. Aligning data objects relative to each other or onto templates — this
establishes relationships between data

 2. Distributing objects (or templates) onto abstract processors — this
determines how data is mapped to the machine ′s physical resources.

The mapping process is specified in directives. In the Fortran world, directives
contain information or instructions destined to the compiler, generally as
comments starting with a specific string of character set up at compile time
either with the -qdirective flag or with the DIR keyword in the @PROCESS
directive. If the -qdirective flag is not set up, the default option is -qnodirective,
and the comments are ignored by the compiler.

For instance, such directives were used for vectorizing FORTRAN 77 programs
on IBM mainframes equipped with the vector facility (VF). Though other triggers
could be inhibited by the -qnodirective, the HPF$ trigger for HPF directives is
uninhibitable. A typical HPF source code will include directives, such as:

|HPF$ TEMPLATE TMPLT(100,100)

134 RS/6000 SP: Scientific and Technical Overview

5.2.6 HPF Features - SUMMARY

� �

� �

The new HPF directives that are being made available in this product are:

• ALIGN, which is used to establish a mapping between data objects.
• DISTRIBUTE, which specifies a mapping of data objects to abstract processors

in a processor arrangement.
• PROCESSORS, which declares one or more rectilinear processor arrangements,

specifying for each name, its rank (number of dimensions), and the extent in
each dimension.

• INDEPENDENT, which a programmer uses to assert that no iteration in a DO loop
can affect any other iteration, either directly or indirectly.

• TEMPLATE, which defines an abstract space of indexed positions — it can be
considered an “array of nothings,” as compared to an array of integers, say.
Templates can be used as align-targets, which can then be distributed.

• SEQUENCE, which specifies that a set of data objects is to be treated as
sequential.

• Combined directives may be used to specify multiple HPF attributes for an
entity.

In addition, the following features are also available.

• FORALL statements, which are used to specify an array assignment in terms of
array elements or groups of array sections, possibly masked with a scalar
logical expression.

• PURE procedures, which are used to specify functions and/or subroutines that
produce no side effects. For example, the only effect of a pure function

Chapter 5. High Performance Fortran 135

reference on the state of a program is to return a result — it does not modify
the values, pointer associations, or data mapping of any of its arguments or
global data, and performs no I/O. A pure subroutine is one that produces no
side effects except for modifying the values and/or pointer associations of
INTENT(OUT) and INTENT(INOUT) arguments.

• XL HPF includes the Subset HPF Intrinsic procedures, and allows existing
non-HPF serial procedures to be called through EXTRINSIC(HPF_LOCAL) or
EXTRINSIC(HPF_SERIAL) calls. Also, existing SPMD procedures can be
converted to HPF_LOCAL. The HPF_LOCAL can be used to tune the hottest
spots.

136 RS/6000 SP: Scientific and Technical Overview

5.2.7 ALIGN Directive

� �

� �

The ALIGN directive is used to specify that certain data objects are to be mapped
in the same way as certain other data objects. Operations between aligned data
objects are likely to be more efficient than operations between data objects that
are not known to be aligned (because two objects that are aligned are intended
to be mapped to the same abstract processor). The ALIGN directive is designed
to make it particularly easy to specify explicit mappings for all the elements of
an array at once. While objects can be aligned in some cases through careful
use of matching DISTRIBUTE directives, ALIGN is more general and frequently
more convenient.

A template is simply an abstract space of indexed positions; it can be considered
as an “array of nothings” (as compared to an “array of integers,” say). A
template may be used as an abstract align-target that may then be distributed.

The diagram shows three overlapping data objects (A, B and C) that are aligned
with the template T.

More Detail on Data Alignment and Distribution

HPF adds directives to FORTRAN 90 to allow the user to advise the compiler on
the allocation of data objects to processor memories. So, there is a two-level
mapping of data objects to memory regions, referred to as abstract processors:

Chapter 5. High Performance Fortran 137

• Data objects (typically array elements) are first aligned relative to one
another;

• This group of arrays is then distributed onto a rectilinear arrangement of
abstract processors.

The implementation then uses the same number, or perhaps some smaller
number, of physical processors to implement these abstract processors. This
mapping of abstract processors to physical processors is
implementation-dependent.

The underlying assumptions are that an operation on two or more data objects is
likely to be carried out much faster if they all reside in the same processor, and
that it may be possible to carry out many such operations concurrently if they
can be performed on different processors.

The basic concept is that every array (indeed, every object) is created with some
alignment to an entity, which in turn has some distribution onto some
arrangement of abstract processors. If the specification statements contain
explicit specification directives specifying the alignment of an array A with
respect to another array B, then the distribution of A will be dictated by the
distribution of B; otherwise, the distribution of A itself may be specified explicitly.
In either case, any such explicit declarative information is used when the array
is created.

138 RS/6000 SP: Scientific and Technical Overview

� �

� �

The first example shows three ALIGN directives, which all perform the same
one-to-one alignment between arrays a1 and b1.

In the second example, both ALIGN directives again perform the same alignment;
however, the first statement uses dummy arguments, while the second uses
fixed values. Here, the four columns of array a1 are aligned with the third, fifth,
seventh, and ninth columns of array b1, respectively.

Chapter 5. High Performance Fortran 139

� �

� �

This example shows three arrays all aligned at various positions on a template
defined to be of size 20x35. The relationships between the arrays could have
been established by two ALIGN statements that aligned arrays a and b, and arrays
b and c, but in this case the ALIGN statements would have been more complex.

The template can be considered to be an array whose elements have no content,
and therefore occupy no storage; it is merely an abstract index space that can
be distributed, and with which arrays may be aligned.

140 RS/6000 SP: Scientific and Technical Overview

5.2.8 Distributing Data

� �

� �

The PROCESSORS and DISTRIBUTE directives are used to define a processor
arrangement, and then distribute data onto the defined arrangement.

Chapter 5. High Performance Fortran 141

� �

� �

This example shows:

• The use of the NUMBER_OF_PROCESSORS intrinsic function to determine the
number of available processors; this value is used to define a linear array of
processors p1.

• A two-dimensional template is defined, and an array a is aligned with it.
• The data in the array is then distributed onto the processor arrangement in a

column-BLOCK format; that is all array elements in a given column are
mapped to the same processor. For example, if the number of available
processors is four (p1(4) has been defined in the PROCESSORS directive), and
array a1 is of size 5x10, then,

Columns [1, 2, 3] are mapped to p1(1),
Columns [4, 5, 6] are mapped to p1(2),
Columns [7, 8, 9] are mapped to p1(3),
Column [10] is mapped to p1(4),

142 RS/6000 SP: Scientific and Technical Overview

� �

� �

This example shows a simple block distribution of the one-dimensional array a1
on the 4-processor arrangement p1. A BLOCK distribution of data implies that
each processor is assigned at most one block of data — no “wrap-around” data
distribution is allowed. In some cases, one or more processors may not be
distributed any data due to the defined blocking format.

Chapter 5. High Performance Fortran 143

� �

� �

The first example shows the elements of array a1 distributed in blocks of five
elements until all the data is distributed. Notice that no data is distributed to
processor p1(4). All the data must be distributed, but not wrapped around the
processor arrangement; therefore, a distribution format of BLOCK(2) would not be
valid, since only the first eight elements would be distributed.

The second example illustrates the CYCLIC method of data distribution. The
period of the data cycle is one, so the elements of the array are distributed in an
even round-robin fashion. If the distribution format was CYCLIC(2), then
successive pairs of the elements of a1 would be distributed onto the processor
arrangement, with p1(1) and p1(2) each having an additional pair.

Note: In the current Beta release of the XL HPF Compiler, CYCLIC(n) distribution
with n > 1 is only supported in HPF_LOCAL interface bodies.

144 RS/6000 SP: Scientific and Technical Overview

� �

� �

The first example shows the BLOCK distribution of data across both dimensions of
a processor array. In essence, each processor in arrangement p2 receives a 3x3
submatrix of array a2.

The second example illustrates the use of both data distribution methods in
distributing an array onto a processor arrangement. The rows are distributed
cyclically, and the columns are block distributed — the first three columns of a2
are distributed cyclically on processors p2(1,1) and p2(2,1), while the next three
columns of a2 are distributed cyclically on processors p2(1,2) and p2(2,2).

Chapter 5. High Performance Fortran 145

5.2.9 INDEPENDENT Directive

� �

� �

When parallelizing a program, one must understand that some algorithms are
not eligible for parallelization, such as recurrent algorithms or routines with a
side effect. In such cases, the result depends on the order of operation
execution, which is incompatible with the simultaneous execution of these
operations in parallel and independent processes.

To help the compiler determine whether DO constructs, and FORALL
construct/statements are eligible or not, the programmer must put an
INDEPENDENT directive before them.

The INDEPENDENT directive must precede a DO construct, FORALL construct, or
FORALL statement, and it specifies that each operation in these statements or
constructs can be executed in any order without affecting the semantics of the
program.

The INDEPENDENT directive provides an assertion that it is legal to parallelize a
specific loop, in those cases where the HPF compiler cannot determine whether
it is legal or not.

146 RS/6000 SP: Scientific and Technical Overview

� �

� �

The example shows two methods of adding the arrays B and C, with the results
stored in array A. Each iteration of the DO loop can be executed in any order
without affecting the semantics of this piece of code.

The second example, semantically equivalent to the first, does not need an
INDEPENDENT directive because there is no ambiguity in the Fortran 90
statement.

But the classic recurrent DO loop could not be considered as independent:

DO i=2,n
a(i) = i + a(i-1)

ENDDO

In cases such as this, where there are dependencies between the left and the
right sides of an assignment statement, an independent directive must not be
coded since the assertion of independent iterations is false.

Chapter 5. High Performance Fortran 147

5.2.10 SEQUENCE and Combined Directives

� �

� �

The SEQUENCE directive can be used to assert that full sequence and storage
association for affected variables must be maintained.

Note: A goal of HPF was to maintain compatibility with Fortran 90. Full support
of Fortran sequence and storage association, however, is not compatible with
the goal of high performance through distribution of data in HPF. Some forms of
associating subprogram dummy arguments with actual values make
assumptions about the sequence of values in physical memory, which may be
incompatible with data distribution. Certain forms of EQUIVALENCE statements are
recognized as requiring a modified storage association paradigm. In both cases,
the SEQUENCE directive directs the compiler to treat the declared variables as
sequential.

Combined directives can specify multiple HPF attributes for an entity, in the
same way that the Fortran 90 type declaration statement can specify multiple
attributes for an entity.

148 RS/6000 SP: Scientific and Technical Overview

� �

� �

The SEQUENCE directive example shows variables i and j. Members of the com
COMMON area are to be treated as sequential, while variables k and l are
treated normally.

The Combined directives example shows the DIMENSION and PROCESSORS directives
combined in the same statement.

Chapter 5. High Performance Fortran 149

5.2.11 FORALL Statement

� �

� �

The FORALL statement is used to specify an array assignment in terms of array
elements or groups of array sections, possibly masked with a scalar logical
expression. In functionality, it is similar to array assignment statements and
WHERE statements. The statement overcomes the several restrictions that Fortran
90 places on array assignments. In particular, Fortran 90 requires that operands
of the right side expressions be conformable with the left hand side array. Also,
FORALL permits you to select more irregular blocks for assignment, such as the
main diagonal of an array.

150 RS/6000 SP: Scientific and Technical Overview

� �

� �

The DO loop given in this foil introduces a side effect because the Fortran design
specifies that the statements in the loop are serially executed. So, as it is, this
DO loop could not be parallelized.

On the contrary, the FORALL design specifies that the instruction execution is
independent from the range in the loop. In fact, the ia vector coordinates from 2
to n are added to an implicit vector (2,3,...,n) into a work area. Then, the work
area is copied onto ia starting at ia(2).

Chapter 5. High Performance Fortran 151

� �

� �

This example code illustrates both the FORALL statement and FORALL construct. In
the construct example, the construct name is TEST, and the construct is
terminated by the END FORALL statement.

152 RS/6000 SP: Scientific and Technical Overview

5.2.12 PURE and Extrinsic Procedures

� �

� �

PURE procedures are used to specify functions and/or subroutines that produce
no side effects. For example, the only effect of a pure function reference on the
state of a program is to return a result — it does not modify the values, pointer
associations, or data mapping of any of its arguments or global data, and
performs no external I/O (READ from and WRITE to internal files is allowed).

A pure subroutine is one that produces no side effects except for modifying the
values and/or pointer associations of INTENT(OUT) and INTENT(INOUT) arguments.

Existing non-HPF serial procedures can be called through EXTRINSIC(HPF_LOCAL)
or EXTRINSIC(HPF_SERIAL) calls and including SPMD procedure.

• EXTRINSIC(HPF_LOCAL) indicates a local procedure that is targeted to a single
processor, with many copies executing on different processors. This
programming style is referred to as SPMD (single program, multiple data).

• EXTRINSIC(HPF_SERIAL) indicates a serial procedure that is targeted to a
single processor, with only one instance of the procedure executing on only
one processor. Serial procedures are useful for code written in other
languages that is not required or desirable to recode.

EXTRINSIC(HPF) procedures are HPF-conforming and are known as HPF
procedures. If a procedure does not specify the EXTRINSIC attribute, and is
compiled with the -qhpf option, then it is considered to be an HPF procedure; this
is the default.

Chapter 5. High Performance Fortran 153

5.2.13 Intrinsic Procedures

� �

� �

The Subset HPF Intrinsic procedures are also included with XL HPF; these
include: ILEN(I), NUMBER_OF_PROCESSORS() and PROCESSOR_SHAPE(). In addition, the
Fortran 90 intrinsic procedures MAXLOC and MINLOC have been extended to
provide a DIM (dimension) argument.

MAXLOC(array,dim,mask)
This Fortran 90 intrinsic procedure has been improved to select the
dimension in a n-dimension array. For instance, if you want to know the
maximum value per column in a matrix, you can use:

res = MAXLOC(mat,DIM=2)

MINLOC(array,dim,mask)
As MAXLOC, the HPF MINLOC intrinsic procedure includes the DIM argument.

NUMBER_OF_PROCESSORS(dim)
This intrinsic procedure returns the execution time number of processors set
up through the -procs flag of the poe command. If dim is present it must
equal 1.

PROCESSORS_SHAPE()
This intrinsic function returns an integer that is the rank of the processor
array.

154 RS/6000 SP: Scientific and Technical Overview

ILEN(i)

If i is greater than or equal to 0, ILEN(i) = CEILING(log2(I + 1)).
If i is negative, ILEN(i) = CEILING(log2(− i)).

Chapter 5. High Performance Fortran 155

5.2.14 HPF Compiler Options

� �

� �

The new HPF compiler options are set up through the following flags:

-qhpf | -qnohpf
With -qnohpf, the compiler works like xlf.

You can add some of the following suboptions:

{ sequence | nosequence } Forces either SEQUENCE or NOSEQUENCE as
default directive in every applicable scope. The default option is
NOSEQUENCE.

{ purecomm | nopurecomm } The purecomm suboption indicates that pure
procedures may require communication. The opposite option,
nopurecomm, specifies that all pure procedures in the program do
not require communication to access their data, which is already
locally available.

156 RS/6000 SP: Scientific and Technical Overview

� �

� �

IBM XL HPF has the following new flags:

-qassert={deps|nodeps|itercnt=n}
This suboption indicates the kind of information you need from the compiler.
The compiler is able to provide information about possible dependences. You
can also set up itercnt with the value to be used to evaluate the way DO
loops must be improved.

-qtbtable={none|small|full}
This flag sets up the amount of debugging traceback information in the object
file.

The following XL Fortran flags are not supported by XL HPF:

-qwait
This flag is related to NetLS/iFORLS, which is not used by the XL HPF
compiler.

-qpdf
This suboption, not supported with -qhpf, indicates to the compiler that it can
use profiling information to try to optimize the program.

Chapter 5. High Performance Fortran 157

� �

� �

In XL HPF, several features are improved to effectively support parallel programs
and provide information to the tools delivered with IBM Parallel Environment,
such as the parallel dbx (pdbx or xpdbx), and the parallel profiling. The flag
-qhot may be set up with the new suboptions { arraypad | noarraypad }, which
indicates to the compiler whether you want to use this ultimate optimization.

As a matter of fact, It was observed that it is better not to have arrays with a
dimension of 2n. With arraypad, when the compiler finds such an array, it
automatically increases its extent. See IBM XL High Performance Fortran for
AIX User′s Guide for more information.

158 RS/6000 SP: Scientific and Technical Overview

� �

� �

Some restrictions apply when you want to use these flags with -qhpf.

See IBM XL High Performance Fortran for AIX User ′s Guide for more information.

Chapter 5. High Performance Fortran 159

160 RS/6000 SP: Scientific and Technical Overview

Appendix A. Special Notices

This publication is intended to help customer specialists and IBM personnel
involved in the education process for scientific and technical computing
environments offered by IBM on RS/6000 Scalable POWERparallel systems
running AIX Version 4.1.3 and PSSP Version 2 Release 1.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by products described hereafter, such
as IBM Parallel Environment Version 2, IBM PVMe Version 2, IBM Parallel ESSL
for AIX Version 4, IBM Parallel OSL for AIX, and IBM XL HPF for AIX.

See the PUBLICATIONS section of the IBM Programming Announcement for
these licensed program products for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

You can reproduce a page in this document as a transparency, if that page has
the copyright notice on it. The copyright notice must appear on each page being
reproduced.

 Copyright IBM Corp. 1996 161

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other trademarks are trademarks of their respective companies.

AIX PVMe AIX
AIX/6000 AIXwindows
ES/9000 ES/9370
IBM LoadLeveler
OS/2 POWERparallel
RISC System/6000 RS/6000
Scalable POWERparallel Systems SP
TURBOWAYS WebExplorer
9076 SP1 9076 SP2

C + + American Telephone and Telegraph
Company, Incorporated

Express Parasoft Corporation
Intel Intel Corporation
PostScript Adobe Systems, Inc.
X Window System Massachusetts Institute of Technology
X/Open X/Open Company Limited

162 RS/6000 SP: Scientific and Technical Overview

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 165.

• RS/6000 Scalable POWERparallel Systems: PSSP V2 Technical Presentation,
SG24-4542

B.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection (available soon) SBOF-7250 SK2T-8042

B.3 Other Publications
These publications are also relevant as further information sources:

• IBM AIX Parallel Environment:

− IBM Parallel Environment for AIX: General Information, GC23-3906
− IBM Parallel Environment for AIX: Installation, Administration, and

Diagnosis, GC23-3892
− IBM Parallel Environment for AIX: Operation and Use, GC23-3891
− IBM Parallel Environment for AIX: MPL Programming and Subroutine

Reference, GC23-3893
− IBM Parallel Environment for AIX: MPI Programming and Subroutine

Reference, GC23-3894
− IBM Parallel Environment for AIX: Hitchiker′s Guide, GC23-3895

• IBM PVMe for AIX:

− IBM PVMe for AIX: User′s Guide and Reference, GC23-3884

• IBM Parallel ESSL for AIX Version 4

− Parallel ESSL Guide and Reference, GC23-3836

− ESSL Guide and Reference, SC23-0526

• IBM Parallel OSL for AIX

− Parallel OSL User′s Guide, SC23-3824

 Copyright IBM Corp. 1996 163

− OSL Guide and Reference, SC23-0519

• IBM XL High Performance Fortran for AIX

− IBM XL High Performance Fortran User′s Guide, SC09-2228

− IBM XL High Performance Fortran Language Reference, SC09-2226

164 RS/6000 SP: Scientific and Technical Overview

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• ITSO4USA category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1996 165

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

166 RS/6000 SP: Scientific and Technical Overview

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 167

168 RS/6000 SP: Scientific and Technical Overview

List of Abbreviations

AIX advanced interactive executive (IBM ′s
flavor of UNIX)

API application program interface

BLAS basic linear algebra sub-programs

C UNIX system-programming language

CD-ROM (optically read) compact disk - read only
memory

CDE Common Desktop Environment (form
X/Open)

CPU central processing unit

CSS communication subsystem (included in
PSSP to support the high performance
switch)

ESSL Engineering and Scientific Subroutine
Library

FORTRAN formula translation (programming
language): for FORTRAN 77 and before

Fortran formula translation (programming
language): Fortran 90 (case sensitive)

GUI graphical user interface

HPF high performance FORTRAN

HPS high performance switch

I/O input/output

IBM International Business Machines
Corporation

IP internet protocol (ISO)

ITSO International Technical Support
Organization

LAN local area network

LP l inear programming

LPEX l ive parsing editor

LU lower and upper triangulation

MIMD multiple instruction stream, multiple data
stream

MIP mixed integer programming

MPI Message Passing Interface

MPL Message Passing Library

NIC numerically intensive computing

OSL optimization subroutine l ibrary
(high-performance math programming
routines)

PC Personal Computer (IBM)

PE parallel environment

PESSL Parallel Engineering and Scientific
Subroutine Library

POWER performance optimization with enhanced
RISC (architecture)

PSSP AIX Parallel System Support Programs
(IBM program product for SP1 and SP2)

PTF program temporary f ix

PVM parallel virtual machine (developed by Oak
Ridge National Laboratory, USA)

QP quadratic programming

RISC reduced instruction set computer/cycles

RM resource manager

SP IBM RS/6000 Scalable POWERparallel
Systems (RS/6000 SP)

SPMD simple program multiple data

TCP transmission control protocol (USA, DoD)

TCP/IP Transmission Control Protocol/Internet
Protocol (USA, DoD, ARPANET)

TLB translation lookaside buffer

UDP user datagram protocol (TCPIP)

UNIX an operating system developed at Bell
Laboratories (trademark of UNIX System
Laboratories, licensed exclusively by
X/Open Company, Ltd.)

US user space (optimized communication
protocol for NIC parallel programs using
the high performance switch on RS/6000
SP systems)

VF vector facil i ty

VT visualization tool

X X Window System (trademark of MIT)

X/MOTIF Window System and Motif bindled
toghether (IBM)

 Copyright IBM Corp. 1996 169

170 RS/6000 SP: Scientific and Technical Overview

Index

Special Characters
-euilib 15
-exec (PVMe) 78
-ip (PVMe) 78
-qassert 157
-qdirective 134
-qhpf 127, 156, 159
-qnohpf 127, 156
-qpdf 157
-qtbtable 157
-qwait 157
-share (PVMe) 78
-trace (PVMe) 78
:MPI_Start 23
.PVMe Environment Variables 79

PVMEPATH 79
PVMHFN 79

A
abbreviations 169
acronyms 169
ALIGN 135, 137, 139
Amdahl ′s law 2, 3, 4, 7

B
basic l inear algebra communication subprograms

(BLACS) 103
basic l inear algebra communication subroutines

(BLACS) 84
bibliography 163
BLACS 84, 85, 86, 103, 107, 109
BLACS examples 109
BLACS subroutines 105

BLACS_EXIT 110
BLACS_GET 105, 108
BLACS_GRIDEXIT 110
BLACS_GRIDINFO 108
BLACS_GRIDINIT 105, 108
BLACS_GRIDMAP 105
BLACS_PINFO 105, 107

BLACS_EXIT 110
BLACS_GET 105, 108
BLACS_GRIDEXIT 110
BLACS_GRIDINFO 108
BLACS_GRIDINIT 105, 108
BLACS_GRIDMAP 105
BLACS_PINFO 105, 107
BLAS 91
BLOCK 142, 143, 144, 145
blocking buffered communication 19
blocking communication 16, 18

blocksize for ESSL 90

C
cartesian topology 17, 43
CDE 131
collective communication 17, 37
collective communication routine 64
collective nonblocking functions 47
command-line builder (xxlhpf) 131
common desktop environment (CDE) 131
communicator 17, 27
convolution 94
correlation 94
CYCLIC 127, 144

D
datatype 30
derived datatype 17, 31
DISTRIBUTE 135, 141

E
Eigensystem/Singular Value Routines 100

PDGEBRD 100
PDGEHRD 100
PDSYEVX 100
PDSYTRD 100

eigenvalues 94
eigenvectors 94
EKKBSLV 114
EKKGTMD 114, 119
EKKIGET 114
EKKISET 114
EKKMSLV 114, 119
EKKPTMD 114
engineering and scientific subroutine library

(ESSL) 83
environmental management 45
ESSL/370 83
ESSL/6000 83
EXTRINSIC 136, 153

F
fast Fourier transform (FFT) 94
Fast Fourier Transform routines 101
FFT 94
FORALL 135, 146, 150, 151
FORALL construct 130

 Copyright IBM Corp. 1996 171

G
graph topology 17, 40

H
High Performance Fortran (HPF) 121
HPF 121, 123
HPF Compiler Options 1
HPF constructs 121
HPF directives 121, 123, 134, 135

ALIGN 135
DISTRIBUTE 135
INDEPENDENT 135
PROCESSORS 135
SEQUENCE 135
TEMPLATE 135

HPF extensions 124
HPF flags 127

-qdirective 134
-qhpf 127
-qnohpf 127

HPF operating environment 126
HPF statements 121
HPF_LIBRARY 130
HPF_LOCAL 127, 130, 136, 144, 153
HPF_LOCAL_LIBRARY 130
HPF_SERIAL 130, 136, 153

I
IBM Parallel Environment 9, 11
ILEN 154
INDEPENDENT 135, 146, 147
INTENT 136, 153
intercommunicator 29
intracommunicator 29
intrinsic procedure 154
Inumcpu 119
IPESSL 102
Iwhichcpu 115, 119

L
LAPACK 91, 103
level 2 parallel BLAS routines 94
level 3 parallel BLAS routines 94
linear programming (LP) 111, 112
live parsing extensible (LPEX) editor 131
LoadLeveler 53
LPEX 131

M
MAXLOC 154
Message Passing Interface 9, 10
message passing library 10
MIMD 91

MINLOC 154
MIP 111, 112, 119
mixed integer programming (MIP) 111, 112
MP_EUILIB 15
MPCI 11, 15, 56
MPE 10
MPI 11, 16, 85, 86, 126
MPI_Bsend 19
MPI_Buffer_attach 19
MPI_Buffer_detach 19
MPI_Comm_compare 27
MPI_Comm_create 27
MPI_Comm_dup 27
MPI_Comm_free 27
MPI_Comm_group 25, 27
MPI_Comm_rank 27
MPI_Comm_split 29
MPI_Errhandler_create 45
MPI_Group_compare 26
MPI_Group_difference 26
MPI_Group_excl 26
MPI_Group_free 26
MPI_Group_incl 25
MPI_Group_intersection 26
MPI_Group_range_excl 26
MPI_Group_range_incl 26
MPI_Group_union 26
MPI_Ibsend 21
MPI_Irsend 21
MPI_Isend 21
MPI_Issend 21
MPI_Pack 33
MPI_Recv 18
MPI_Request_free 24
MPI_Rsend 18
MPI_Send 18
MPI_Send_init 23, 24
MPI_Sendrecv 18
MPI_Ssend 18
MPI_Startall 23
MPI_Test 20
MPI_Testall 21
MPI_Testany 21
MPI_Testsome 21
MPI_Type_commit 32
MPI_Type_contiguous 31
MPI_Type_extent 32
MPI_Type_free 32
MPI_Type_hindexed 31
MPI_Type_hvector 31
MPI_Type_indexed 31
MPI_Type_lb 32
MPI_Type_size 32
MPI_Type_struct 31
MPI_Type_ub 32
MPI_Type_vector 32
MPI_Unpack 33

172 RS/6000 SP: Scientific and Technical Overview

MPI_Wait 20, 23
MPI_Waitall 20, 23
MPI_Waitany 20
MPI_Waitsome 20
MPL 86
MPMD 55
multiple program multiple data (MPMD) 55

N
nonblocking buffered 22
nonblocking communication 11, 16, 20
NOSEQUENCE 130
NUMBER_OF_PROCESSORS 142, 154
NUMROC 102

O
optimization subroutine library (OSL) 83
OSL 83
OSL migration to OSLp 116
OSL/6000 111
OSLp 111
OSLp - New Routines 114

EKKBSLV 114
EKKGTMD 114, 119
EKKIGET 114
EKKISET 114
EKKMSLV 114, 119
EKKPTMD 114
Inumcpu 119
Iwhichcpu 115, 119

OSLp Operating Environment 113

P
parallel environment 54
Parallel ESSL 83, 84, 85, 86, 92, 104, 105, 107, 126
Parallel ESSL general routines 102

IPESSL 102
NUMROC 102
PDURNG 102

Parallel ESSL subroutines 95
PDGEMM 97
PDGEMV 95
PDGER 95
PDSYMM 97
PDSYMV 95
PDSYR 95
PDSYR2 95
PDSYR2K 98
PDTRAN 98
PDTRMM 97
PDTRMV 95
PDTRSM 98
PDTRSV 96

Parallel Linear Algebraic Routines 99
PDGETRF 99
PDGETRS 99

Parallel Linear Algebraic Routines (continued)
PDGOTRF 99
PDGOTRS 99

parallel operating environment 9, 15
parallel optimization subroutine library (OSLp) 84,

111
Parallel OSL 111
Parallel OSL (OSLp) 83
parallel virtual machine (PVM) 49
parti t ion manager 9
PBLAS 85, 90, 91, 94
pdbx 9, 131
PDCFT2 101
PDCFT3 101
PDCRFT2 101
PDCRFT3 101
PDGEBRD 100
PDGEHRD 100
PDGEMM 97
PDGEMV 95
PDGER 95
PDGETRF 99
PDGETRS 99
PDGOTRF 99
PDGOTRS 99
PDRCFT2 101
PDRCFT3 101
PDSYEVX 100
PDSYMM 97
PDSYMV 95
PDSYR 95
PDSYR2 95
PDSYR2K 98
PDSYTRD 100
PDTRAN 98
PDTRMM 97
PDTRMV 95
PDTRSM 98
PDTRSV 96
PDURNG 102
persistent communication 16, 23
PESSL Operating Environments 92
point-to-point communication 16
POWER 87
POWER2 87, 90
predefined datatype 30
process grid 89, 105
process group 25
process group management 17, 25
process identifier 25
PROCESSOR_SHAPE 154
PROCESSORS 135, 141, 142, 149
program builder 131
PURE 135, 153
PURE procedure 130
pvm_addhosts 68
pvm_bcast 72

Index 173

pvm_catchout 68
pvm_gather 72
pvm_hostsync 68
pvm_initsend 70
pvm_mkbuf 70
pvm_precv 71
pvm_psend 71
pvm_reduce 72
pvm_scatter 72
pvm_trecv 71
pvmd3e 58
PVMe 15, 49
PVMe collective communication 72
PVMe console 74
PVMe daemon 58
PVMe daemon options 78

-exec 78
-ip 78
-share 78
-trace 78

PVMe examples 75
supplying a hostlist file 76
Using PVMe 75
Using the IP protocol 77

PVMe group 72
PVMe host management 68
PVMe message exchange 71
PVMe message packing 70
PVMe message unpacking 70
PVMe nodelist generic request 81
PVMe nodelist specific request 81
PVMe session on mixed hostlist 80
PVMe signal exchange 71
PVMe task management 68
pvme_bcast 72

Q
quadratic problem (QMIP) 112

R
random number 94
reduction function 39
reduction operation 39
resource manager 53, 81
Running a PVMe Program 74

S
ScaLAPACK 85, 91, 103
SEQUENCE 130, 135, 148, 149, 156
shape of the process grid 89
single program multiple data 109
single program multiple data (SPMD) 55
SPMD 55, 85, 109
Subset HPF 124

T
TEMPLATE 135, 140
TLB 87
topology 40
translation lookaside buffer (TLB) 87

U
user controlled buffering 33
user defined reduction operation 39
user space protocol (US) 62, 64

V
virtual machine (PVM) 57
visualization tool 9

X
xldb 131
xpdbx 9
xpvm 49, 65, 78
xxlhpf 131

174 RS/6000 SP: Scientific and Technical Overview

IBML

Printed in U.S.A.

SG24-4541-01

