

International Technical Support Organization

IBM RISC System/6000 SMP Servers
Architecture and Implementation

November 1995

SG24-2583-00

IBM International Technical Support Organization

IBM RISC System/6000 SMP Servers
Architecture and Implementation

November 1995

SG24-2583-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on
page xvii.

First Edition (November 1995)

This edition applies to IBM RISC System/6000 SMP servers models G30, J30 and R30 and IBM AIX Version 4.1.3.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been removed,
comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This redbook describes the family of IBM RISC System/6000 Symmetric
Multiprocessor (SMP) servers that run IBM AIX V4.1. It covers multiprocessing
concepts, AIX V4.1 threads implementation, the SMP hardware architecture with a
specific focus on the memory subsystem, and the SystemGuard service processor.
It describes the SMP models G30, J30 and R30. It also highlights the Cluster
Power Controller (CPC) feature, AIX V4.1 specifics to SMP systems and
performance tools that are useful for using and tuning an SMP.

This document is intended for customers, system engineers and anyone who needs
to understand the IBM RISC System/6000 SMP servers in terms of design and for
those who plan to set up an SMP system.

A basic knowledge of AIX V4.1 is assumed.

(273 pages)

 Copyright IBM Corp. 1995 iii

iv RS/6000 SMP Servers

 Contents

Abstract . iii

Special Notices . xvii

Preface . xix
How This Document is Organized . xix
Related Publications . xx
International Technical Support Organization Publications xx
ITSO Redbooks on the World Wide Web (WWW) xxi
Acknowledgments . xxi

Chapter 1. Multiprocessing Concepts . 1
1.1.1 Multiprocessing versus Uniprocessing 1
1.1.2 Multiprocessing Issues . 2
1.1.3 Sharing Resources . 2
1.1.4 Multiprocessor Types . 3
1.1.5 Symmetric versus Asymmetric Shared-Memory Multiprocessors 7

1.2 SMP Hardware Characteristics . 7
1.3 SMP Software Characteristics . 14

1.3.1 SMP Synchronization Issue . 15
1.3.2 Locks . 15
1.3.3 Lock Types . 16
1.3.4 Waiting for Locks . 16
1.3.5 AIX Version 4.1 Kernel Locks . 16
1.3.6 UP Synchronization . 17
1.3.7 SMP Synchronization . 18
1.3.8 AIX V4.1 Kernel Locking Interface . 19
1.3.9 AIX V4.1 Lock Services Summary . 19
1.3.10 Lock Penalty . 20
1.3.11 Lock Granularity . 20
1.3.12 MP-safe versus MP-efficient . 21
1.3.13 Processor Affinity . 22
1.3.14 Binding . 23
1.3.15 Processor Numbering . 23
1.3.16 UP Application Compatibility . 24
1.3.17 UP Device Drivers Compatibility . 24
1.3.18 PowerPC Specifics . 25

1.4 SMP Scaling . 26
1.4.1 Scaling Metrics . 27
1.4.2 Two-Dimensional Scaling . 28

1.5 Using an SMP . 28
1.5.1 Parallelizing an Application . 28
1.5.2 Amdahl's Law . 28
1.5.3 Commercial versus Technical Applications 29

1.6 SMP Summary . 29

Chapter 2. Introduction to AIX V4.1 Threads 31
2.1 What is a Thread? . 31
2.2 Threads versus Processes . 31

2.2.1 Processes . 31

 Copyright IBM Corp. 1995 v

2.2.2 Multithreaded Processes . 32
2.2.3 The Initial Thread . 33
2.2.4 Process and Thread Properties . 33
2.2.5 Main Benefits of Threads over Processes 35

2.3 Threads Types . 36
2.3.1 User Threads . 36
2.3.2 Kernel Threads . 36
2.3.3 Kernel-only Threads . 36

2.4 Threads Implementation Models . 36
2.4.1 Model Descriptions . 36

2.5 Contention Scope . 39
2.6 AIX V4.1 Kernel Support of Threads . 40
2.7 AIX V4.1 Threads Library Implementation 40
2.8 Threads Scheduling . 41
2.9 Threads Programming Considerations . 42

2.9.1 Thread-Safe Libraries . 42
2.9.2 Threads Creation . 43
2.9.3 Thread Attributes . 43
2.9.4 Threads Synchronization . 43
2.9.5 Threads Termination . 44
2.9.6 Forking Considerations . 45
2.9.7 Threads Scheduling . 45
2.9.8 Signal Management . 45
2.9.9 Compiling Multithreaded Programs . 46
2.9.10 Debugger Threads Support . 46
2.9.11 A Multithreaded Program Sample . 47
2.9.12 AIX V4.1 Threads Programming Interface 47

Chapter 3. SMP Servers Architecture . 49
3.1 SMP Design Issues in a Commercial Environment 49

3.1.1 Memory Hierarchy . 49
3.1.2 Scientific vs. Commercial Environment 50
3.1.3 Typical Memory Cycles . 51
3.1.4 Miss-Rate Penalty . 52
3.1.5 Effect of L2 Cache . 53
3.1.6 Processor Speed Effect . 54

3.2 SMP Hardware Architecture . 55
3.2.1 SMP Design Rationale . 55
3.2.2 Why a Switch? . 56
3.2.3 SMP Architecture Description . 57
3.2.4 Memory Subsystem . 58
3.2.5 Memory Array Interleaving . 58
3.2.6 Crossbar Main Characteristics . 60
3.2.7 Crossbar Switch Interconnection . 60
3.2.8 Crossbar Architecture . 62
3.2.9 Crossbar Performance Characteristics 64
3.2.10 System Memory Controller . 64
3.2.11 Crossbar Operations . 64
3.2.12 Crossbar Advantages Summary . 66

3.3 Architecture Implementation . 66
3.4 Memory Array Characteristics . 68

Chapter 4. SMP Servers Hardware Features 71
4.1 IBM RISC System/6000 SMP Servers Family 71

vi RS/6000 SMP Servers

4.2 Model G30 Server . 71
4.2.1 Standard Configuration . 72
4.2.2 Hardware Features . 73
4.2.3 Additional Information on the G30 Server 74

4.3 Model G02 Expansion Cabinet . 77
4.3.1 Installation . 77

4.4 Model J30 Server . 78
4.4.1 Standard Configuration . 79
4.4.2 Hardware Features . 79
4.4.3 High Removability Feature . 81
4.4.4 Hot-Pluggable Disk Configuration Considerations 83
4.4.5 J30 SCSI Device Addresses . 85

4.5 Model J01 Expansion Cabinet . 86
4.5.1 J30 and J01 Interconnection . 88
4.5.2 Model J30/J01 Specifics . 89

4.6 Model R30 Rack Server . 90
4.6.1 Standard Configuration . 91
4.6.2 Hardware Features . 92
4.6.3 Additional Information on the R30 Server 93

4.7 Model Conversion from UP to SMP . 95
4.7.1 Model Conversion to G30 . 95
4.7.2 Model Conversion to J30 . 96
4.7.3 Model Conversion to R30 . 96

4.8 System Interface Board Functions . 96

Chapter 5. SystemGuard . 99
5.1 Introduction . 99
5.2 SystemGuard Power . 99
5.3 SystemGuard Components . 100
5.4 The Operator Panel . 101
5.5 SystemGuard Consoles . 102
5.6 SystemGuard Functions . 102
5.7 Physical and Electronic Key . 103
5.8 SystemGuard Phases . 103

5.8.1 Stand-By Phase . 103
5.8.2 Init Phase . 104
5.8.3 Run-Time Phase . 104
5.8.4 Phase Change (Stand-By to Init) . 105
5.8.5 Power-On Tests . 106
5.8.6 Phase Change (Init to AIX Load and Runtime) 108

5.9 SystemGuard Parameters and Flags . 109
5.10 Working with SystemGuard . 110
5.11 SystemGuard Menus . 112

5.11.1 Stand-By Menu . 112
5.11.2 Maintenance Menu . 114

5.12 SystemGuard and AIX . 115
5.13 Processor and Memory Failure . 116
5.14 Some Common SystemGuard Tasks . 117

5.14.1 How to Set the Electronic Key . 117
5.14.2 How to Display the System Configuration 118
5.14.3 How to Set Fast IPL . 120
5.14.4 How to Set the Service Line Speed 122
5.14.5 How to Authorize the Service Console 124
5.14.6 How to Set Up Console Mirroring 124

 Contents vii

5.14.7 How to Enable Surveillance . 127
5.14.8 How to Set Up the Dial-Out Feature 127
5.14.9 How to Reboot AIX from the Remote Service Console 129
5.14.10 How to Boot from an SCSI Device 131
5.14.11 How to Boot from the Network . 133
5.14.12 How to Disable and Enable Processors 137

Chapter 6. Cluster Power Controller . 143
6.1 CPC Features . 143

6.1.1 CPC Connectors . 144
6.1.2 CPC Port Connections . 145
6.1.3 CPC Cables . 147
6.1.4 CPC Configuration Rules . 149

6.2 CPC Installation . 149
6.2.1 Prerequisites . 150
6.2.2 General Installation Steps . 150
6.2.3 CPC Power-On . 151

6.3 System Customization . 151
6.3.1 Configure the CPC . 153
6.3.2 Configure a CPU . 155
6.3.3 Configure a Peripheral . 159
6.3.4 Installation of Poweroff User . 162

6.4 CPC Operations . 163
6.4.1 How to Connect and Log Into the CPUs 163
6.4.2 How to Power-Off/On Systems From the CPC 164
6.4.3 How to Enable SystemGuard Dial-Out 164
6.4.4 How to Enable the CPC Modem Connection 165
6.4.5 How to disable TTY Reboot . 165
6.4.6 Microcode Update . 165
6.4.7 Daisy Chaining CPCs . 166
6.4.8 How to Connect to a Secondary CPC 167

Chapter 7. Installing an SMP System with AIX V4.1 169
7.1 AIX V4.1 Packaging . 169

7.1.1 Packaging Terminology . 169
7.1.2 Packaging Impacts . 170
7.1.3 Bundles . 171
7.1.4 Fileset Names . 172
7.1.5 Standard Fileset Names . 172
7.1.6 Compatibility Filesets . 173
7.1.7 Device Driver Packaging . 174
7.1.8 Message Catalog Packaging . 174
7.1.9 Package Installation Database . 175

7.2 AIX Version 4.1 Installation Methods . 175
7.2.1 Installation Flow . 175
7.2.2 Default Installation . 176
7.2.3 New and Complete Overwrite Installation 177
7.2.4 Preservation Installation . 184
7.2.5 Migration Installation . 184
7.2.6 mksysb Installation . 185
7.2.7 Network Installation . 188

7.3 SMP Specifics . 189
7.3.1 AIX V4.1 Levels for SMPs . 189
7.3.2 MP Kernel . 189

viii RS/6000 SMP Servers

7.3.3 Platform Types . 190
7.3.4 Determining the Platform Type . 191
7.3.5 Creating an MP Boot Image . 192
7.3.6 SMP CPU-ID . 192
7.3.7 New SMP Devices . 193

7.4 UP to SMP Migration . 193
7.4.1 Migration Checklist . 194
7.4.2 Migration Procedure . 194
7.4.3 Migrating the UP System to AIX V4.1 195
7.4.4 Dump Device and Paging Space . 197
7.4.5 Installing Required Device Drivers 198
7.4.6 Creating MP Kernel Links . 198
7.4.7 Creating an MP Boot Image . 198
7.4.8 Restoring the Backup . 199

7.5 Example of an SMP Installation Using NIM 200
7.6 AIX V4.1 Software Maintenance . 203

7.6.1 Fileset VRMF Numbering . 204
7.6.2 oslevel Command . 205
7.6.3 instfix Command . 206
7.6.4 Applying Updates . 207

Chapter 8. SMP Performance Tools . 209
8.1 AIX V4.1 Performance Tools Considerations 209
8.2 Processes and Threads Status . 211
8.3 Binding a Process . 212
8.4 Binding a Thread . 215
8.5 Using the Standard Performance Tools on your SMP 215

8.5.1 Multiprocessing Effect . 216
8.5.2 SMP Scaling . 217
8.5.3 Threads-Related Information . 218
8.5.4 Measuring the Processors Load . 220
8.5.5 Global Memory and CPU Activity . 221

8.6 Sizing an SMP . 221
8.7 Lock Contention . 223
8.8 Tuning Guidelines . 225
8.9 Monitoring your SMP with Performance Toolbox 226

8.9.1 Performance Toolbox Introduction and Concepts 226
8.9.2 Creating an SMP Console . 228
8.9.3 Monitoring an SMP with 3dmon . 233

Appendix A. SystemGuard Remote Operation Configuration 237
A.1 Terminal Configuration . 237
A.2 Flags and Parameters Settings . 238
A.3 Modem Configuration Files . 239
A.4 Initializing a Modem . 243
A.5 Testing Dial-Out . 243

Appendix B. Sample Programs . 245
B.1 100unbound . 246
B.2 100bound . 248
B.3 100boundon1 . 250
B.4 100boundon2 . 252
B.5 cpubound . 254
B.6 4everunbound . 256

 Contents ix

B.7 3everunbound . 258
B.8 4everboundon4 . 260
B.9 4everboundon2 . 262
B.10 4everboundon1 . 264
B.11 big_copy . 266
B.12 pstat_disp . 266
B.13 Makefile . 266

List of Abbreviations . 267

Index . 269

x RS/6000 SMP Servers

 Figures

1. Uniprocessing versus Multiprocessing . 1
2. Shared-Nothing Multiprocessor . 3
3. Shared-Disks Multiprocessor . 4
4. Shared Memory Cluster . 5
5. Shared-Memory Multiprocessor . 6
6. Symmetric versus Asymmetric Shared-Memory Multiprocessors 7
7. Memory Hierarchy . 9
8. SMP Cache Coherency Problem . 10
9. MESI Protocol - Steps 1 and 2 . 11

10. MESI Protocol - Steps 3 and 4 . 12
11. MESI Protocol - Steps 5 and 6 . 13
12. False Sharing . 14
13. Synchronization Issue . 15
14. UP Synchronization . 17
15. SMP Synchronization . 18
16. Lock Penalty . 20
17. Lock Granularity . 21
18. Threads Dispatching . 22
19. Scaling . 26
20. Scaling is Workload Dependent . 27
21. Amdahl's Law . 29
22. Multithreaded Process . 33
23. Threads and Processes Properties . 35
24. M:1 Model . 37
25. 1:1 Model . 38
26. M:N Model . 39
27. AIX V4.1 Thread Architecture . 41
28. Multithreaded Program Sample . 47
29. Scientific vs. Commercial Environment . 50
30. Typical Memory Cycles . 51
31. Miss-Rate Penalty . 52
32. Effect of L2 Cache . 54
33. Processor Speed Effect . 55
34. Using a Switch for Data Transfer . 57
35. SMP Architecture . 58
36. Interleaving Optimization . 60
37. Crossbar Switch Interconnection . 61
38. Crossbar Switch Interconnection . 62
39. Crossbar Architecture . 63
40. Crossbar Operations . 66
41. SMP Architecture Implementation . 68
42. IBM RISC System/6000 Model G30 SMP Server 72
43. Model G30 SMP Server . 74
44. Internal View of the Model G30 Server . 75
45. Rear View of the Model G30 Server . 76
46. SCSI Device Address and Location for the G30 Server 77
47. IBM RISC System/6000 Model J30 SMP Server 79
48. Rear View of the System Interface Board on J30 Server 81
49. J30 Front Internal View . 82
50. J30 Rear Internal View . 82

 Copyright IBM Corp. 1995 xi

51. Front and Rear SCSI Devices Locations on the J30 Server 86
52. Front Internal View of the J01 Expansion Cabinet 86
53. Rear Internal View of the J01 Expansion Cabinet 87
54. J30 and J01 Interconnection . 88
55. J30 and J01 Interconnection . 89
56. J01 SCSI Device Location and Addresses 90
57. IBM RISC System/6000 Model R30 SMP Rack Server 91
58. Front Internal View of the R30 Server . 94
59. Rear View of the R30 Server . 95
60. SystemGuard Hardware Components . 101
61. Operator Panel . 102
62. SystemGuard Phases . 105
63. Phase Change from Stand-By to Init . 106
64. PON Tests Output with Fast IPL Flag On 107
65. PON Tests Output . 108
66. SystemGuard Phases . 109
67. SystemGuard Flowchart . 111
68. STAND-BY MENU . 113
69. MAINTENANCE MENU . 114
70. Display Configuration Screen . 118
71. DISPLAY CONFIGURATION Screen . 120
72. Set Flags Menu . 121
73. SET PARAMETERS Menu . 122
74. MISCELLANEOUS PARAMETERS Menu 123
75. Console Connection . 125
76. MISCELLANEOUS PARAMETERS Menu 131
77. SYSTEM BOOT Menu . 132
78. SCSI Boot Device Location Code . 132
79. SYSTEM BOOT Menu . 134
80. Network Boot MAIN MENU . 134
81. SELECT BOOT (STARTUP) DEVICE Menu 135
82. SET or CHANGE NETWORK ADDRESSES Menu 135
83. Network Boot MAIN MENU . 136
84. Network Boot Proceeding . 136
85. Set Configuration Menu . 137
86. CPU Status . 138
87. CPU Status . 139
88. SET PARAMETERS Menu . 140
89. SET CONFIGURATION Menu . 140
90. CPU CARD Status . 141
91. CPC Front Panel . 144
92. Typical CPC-to-CPU Connection . 146
93. Single CPU Connected to CPC . 148
94. Rack-Mounted CPC . 150
95. CPC Main Menu . 152
96. CPC Menu Options . 153
97. TTY Menu . 154
98. SET PARAMETERS Menu . 154
99. SET CONFIGURATION Menu . 156
100. CHANGE CONFIGURATION - SELECT UNIT Menu 156
101. CHANGE UNIT CONFIGURATION . 157
102. CHANGE UNIT CONFIGURATION . 158
103. CHANGE CONFIGURATION - SELECT UNIT Menu 158
104. SET CONFIGURATION Menu . 159

xii RS/6000 SMP Servers

105. CHANGE CONFIGURATION - SELECT UNIT Menu 160
106. CHANGE UNIT CONFIGURATION Menu 160
107. CHANGE UNIT CONFIGURATION Menu 161
108. CHANGE CONFIGURATION - SELECT UNIT Menu 162
109. CPC Program Menu . 163
110. Daisy Chaining CPCs . 167
111. CPC Connect Menu . 168
112. AIX V4.1 Installation Flow . 176
113. IBM License Agreement . 179
114. ASCII Installation Assistant . 180
115. GUI Installation Assistant . 181
116. Installation Flow for Migration . 184
117. Installation Flow for mksysb . 186
118. mksysb Backup Screen . 187
119. Migration Confirmation Screen . 196
120. NIM Setup . 201
121. Fileset Numbering Examples . 204
122. xmperf Initial Screen . 228
123. Creating a New Console . 228
124. Selecting Central Processor Statistics 229
125. Selecting Statistics . 230
126. Selecting Statistics for Processor 0 . 231
127. Changing Properties of a Value . 232
128. SMP Console Example . 233
129. Selecting Local Processors . 234
130. 3dmon Output on a Four-way SMP . 235

 Figures xiii

xiv RS/6000 SMP Servers

 Tables

1. Physical and Logical Processor Numbering 24
2. Hypothetical SMP Scaling Metrics . 27
3. Physical Key in Normal . 103
4. Physical Key In Secure . 103
5. Physical Key In Service . 103
6. CPC Port Connections . 147
7. CPC Connection Cables . 148
8. Cluster Power Control Light Status Indicator 151

 Copyright IBM Corp. 1995 xv

xvi RS/6000 SMP Servers

 Special Notices

This publication is intended to help customers and systems engineers to
understand the IBM RISC System/6000 SMP servers hardware, software design
and technology in order to plan for, install and use an SMP system running IBM
AIX Version 4. The information in this publication is not intended as the
specification for any programming interfaces that are provided by IBM AIX Version
4.1. See the PUBLICATIONS section of the IBM Programming Announcement for
IBM AIX Version 4.1.1 for more information about what publications are considered
to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program or service is not intended to state or
imply that only IBM's product, program or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the implementation
of any of these techniques is a customer responsibility and depends on the
customer's ability to evaluate and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative to
the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

ADSTAR AIX
AIXwindows AT

 Copyright IBM Corp. 1995 xvii

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

AXP, DEC Digital Equipment Corporation

Display Postscript Adobe Systems, Inc.

HP Hewlett-Packard Company

Intel Intel Corporation

NCR NCR Corporation

NFS Sun Microsystems, Inc.

OpenGL Silicon Graphics, Inc.

OSF/1, Motif Open Software Foundation, Inc.

Sequent Sequent Computer Systems, Inc.

Tandem Tandem Computers Incorporated

PEX Massachusetts Institute of Technology

POSIX Institute of Electrical and Electronic Engineers

Other trademarks are trademarks of their respective companies.

C Set ++ CICS/6000
DB2/6000 DirectTalk/6000
graPHIGS HACMP/6000
IBM InfoExplorer
Micro Channel POWER Architecture
PowerPC PowerPC Architecture
PowerPC 601 PowerPC 603
RETAIN RISC System/6000
RS/6000 SP1
SP2 Xstation Manager

xviii RS/6000 SMP Servers

 Preface

This document is intended to assist customers and systems engineers in
understanding and implementing the IBM RISC System/6000 SMP servers running
AIX Version 4.1.

It contains a wide range of topics to make the reader more comfortable with the
entire system, including its hardware and software.

How This Document is Organized
The document is organized as follows:

� Chapter 1, “Multiprocessing Concepts”

This chapter provides an overview of the concepts related to designing a
Symmetric Multiprocessor (SMP) system. It helps the reader to understand
what is different from a uniprocessor system.

� Chapter 2, “Introduction to AIX V4.1 Threads”

This chapter describes how threads are implemented in AIX V4 in order to
support SMP systems.

� Chapter 3, “SMP Servers Architecture”

This chapter describes the design rationale of the IBM RISC System/6000 SMP
servers for a commercial environment. It highlights the hardware architecture
of the memory subsystem including the Data Crossbar switch.

� Chapter 4, “SMP Servers Hardware Features”

This chapter describes the three IBM RISC System/6000 SMP servers (Models
G30, J30 and R30) based on the PowerPC 601 processor, and their related
hardware features. It also highlights some hardware specifics to these models.

 � Chapter 5, “SystemGuard”

This chapter describes the SystemGuard service processor that is available
with the IBM RISC System/6000 SMP servers. It gives details on how to use
some of its features.

� Chapter 6, “Cluster Power Controller”

This chapter describes the Cluster Power Controller which can be used to
control one or multiple SMP servers and associated peripherals.

� Chapter 7, “Installing an SMP System with AIX V4.1”

This chapter provides an overview of AIX V4.1, some of the features that are
useful in an SMP server environment. It also outlines how to install an SMP
system and how to upgrade a uniprocessor to an SMP.

� Chapter 8, “SMP Performance Tools”

This chapter shows how to use some of the performance tools to observe
some characteristics of an SMP server running AIX V4.1.

� Appendix A, “SystemGuard Remote Operation Configuration”

This appendix provides samples of modem files used for SystemGuard console
mirroring.

 Copyright IBM Corp. 1995 xix

� Appendix B, “Sample Programs”

This appendix provides multithreaded sample programs that can be used on an
SMP for testing or demonstration purposes.

 Related Publications
All AIX-related documentation is listed in the following IBM publication.

� AIX and Related Products Documentation Overview, SC23-2456

The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

� AIX Version 4.1 Quick Install Guide, SC23-2650

� AIX Version 4.1 Installation Guide, SC23-2550

� AIX Version 4.1 Files Reference, SC23-2512

� AIX Version 4.1 Network Installation Management Guide and Reference,
SC23-2627

� AIX Version 4.1 iFOR/LS System Management Guide, SC23-2665

� AIX Version 4.1 iFOR/LS Tips and Techniques, SC23-2666

� AIX Version 3.2 and 4.1 Performance and Tuning Guide, SC23-2365

� Performance Toolbox 1.2 and 2.1 for AIX Guide and Reference, SC23-2625

� AIX Version 4.1 Xstation Management Guide, SC23-2713

� AIX Version 4.1 AIXwindows Desktop Advanced Users and System
Administrators Guide, SC23-2671

� 7012 G Series Operator Guide, SA23-2740

� 7012 G Series Service Guide, SA23-2741

� 7013 J Series Operator Guide, SA23-2724

� 7013 J Series Service Guide, SA23-2725

� 7015 Model R30 CPU Enclosure Operator Guide, SA23-2742

� 7015 Model R30 CPU Enclosure Service Guide, SA23-2743

� 7015 Model R00 Rack Installation and Service Guide, SA23-2744

� Cluster Power Control Operator and Service Guide, SA23-2766

International Technical Support Organization Publications
� AIX Version 4 Desktop Handbook, GG24-4451

A complete list of International Technical Support Organization publications, with a
brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO technical publications (known as “redbooks”), VNET users
may type:

xx RS/6000 SMP Servers

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or
by faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their local IBM office. For guidance on
ordering, send a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized sets,
called BOFs, which relate to specific functions of interest. IBM employees and
customers may also order ITSO books in online format on CD-ROM collections,
which contain redbooks on a variety of products.

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS as
ITSOCAT TXT. This package is updated monthly.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser to the
following URL:

http://www.redbooks/ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal Redbook
home page may be found at the following URL:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

 Acknowledgments
This project was designed and managed by:

Bob Minns
International Technical Support Organization, Austin Center

Yves Bex
International Technical Support Organization, Austin Center

The authors of this document are:

Rob Hendry
IBM South Africa

Satish Sharma
IBM New Zealand

Colin Fearnley
IBM South Africa

 Preface xxi

Yves Bex
International Technical Support Organization, Austin Center

This publication is the result of a residency conducted at the International Technical
Support Organization, Austin Center.

Thanks to the following people for the invaluable advice and guidance provided in
the production of this document:

Jim Nicholson
IBM Austin

Mark Brown
IBM Austin

Dave Rittinger
IBM Austin

Kanti Shah
IBM Austin

Vijay Oak
IBM Austin

Marcus Brewer, Editor
ITSO, Austin Center

xxii RS/6000 SMP Servers

 Chapter 1. Multiprocessing Concepts

Multiprocessing is a relatively new concept for the IBM RISC System/6000
environment although it is not at all new for IBM. There are a lot of terms,
abbreviations and concepts that will be new to many readers. This chapter is an
attempt to introduce some of them.

1.1.1 Multiprocessing versus Uniprocessing
A uniprocessor (UP) can accomplish parallelism inside the processor itself. For
example, the fixed point unit and the floating point unit can run several instructions
within the same CPU (Central Processing Unit) cycle. POWER, POWER2 and
PowerPC architectures have a very high level of instruction parallelism. However,
only one task at a time can be processed.

Uniprocessor designs have built-in bottlenecks. The address and data buses restrict
data transfers to a one-at-a-time flow of traffic. The program counter forces
instructions to be run in strict sequence. Even if improvements in performance are
achieved by means of faster processors and more instruction parallelism,
operations are still run in strict sequence. However, in a uniprocessor, an increase
in processor speed is not the total answer because other factors, such as the
system bus and memory, come into play.

Adding more processors seems to be a good solution to increase the overall
performance of a system. Having more processors in the system speeds the
system throughput because the system can perform more than one task at a time.
However the increase in performance is not directly proportional to an increase in
the number of processors because there are a number of factors to be taken into
consideration, such as resource sharing.

Figure 1. Uniprocessing versus Multiprocessing

 Copyright IBM Corp. 1995 1

 1.1.2 Multiprocessing Issues
Multiprocessing involves using more than one CPU. Some of the more important
aspects to consider when designing a multiprocessor (MP) are:

� Are resources shared?

Do the processors have their own resources, or do the processors share them?
Resources to consider include the operating system, the memory subsystem,
the I/O subsystem, and devices.

� Are the processors equal?

Are all the processors equal, or are some of them specialized in specific tasks?
For instance, some processors might do integer arithmetic only, and others
might do floating point operations only.

� How are the processors connected?

They might be loosely coupled through a Local Area Network (Ethernet,
token-ring, FDDI, and so forth) or tightly coupled through a switch, a crossbar,
a bus, or a similar technology.

� How easily can the system be enhanced or upgraded at a later date?

Will it be easy to add another processor? How much performance can we
expect to get from a processor upgrade?

Usually, the addition of a new processor will not cause system throughput to
increase by the rated capacity of the new processor. This is because there is
additional operating system overhead, increased contention for system
resources and hardware delays in switching and routing transmissions between
an increased number of components.

� What happens if one of the processors fails?

If one processor fails, can the system continue operation on the remaining
processors? Is it necessary to reboot after a processor failure in order to
reconfigure the system?

 1.1.3 Sharing Resources
When resources are required to be shared, there are a number of aspects that
need to be taken into account when designing SMP systems. First, the bandwidth
between the processors and resources, such as memory and I/O subsystem, must
be as high as possible. The inherent latency (built in delay) in communication
between subsystems should be as short as possible; this is important. Some
latency examples are:

� For an SMP, the latency between CPU and memory is about 200
nanoseconds.

� For an SP2 with a high-speed switch, the hardware latency between CPUs is in
a range of 40 to 200 microseconds.

� On an Ethernet LAN with no collisions, the latency is one millisecond, as can
be shown by a ping.

Arbitration is needed when concurrent access to a resource occurs, such as a read
or write. Managing concurrent access to resources may limit scalability of the
system.

2 RS/6000 SMP Servers

 1.1.4 Multiprocessor Types
There are basically four different types of multiprocessors, and this section
introduces you to them briefly, for information only.

 1.1.4.1 Shared-Nothing MP
A shared-nothing MP has some of the following characteristics. Each processor is
a stand-alone machine. Processors share nothing; each one has its own caches,
memory and disks. Also, each processor runs a copy of the operating system.
Processors can be interconnected by a LAN if they are loosely coupled or
interconnected by a switch if they are tightly coupled. Communication between
processors is done via a message-passing library.

Figure 2. Shared-Nothing Multiprocessor

Examples of a shared-nothing MP are in the IBM SP1 and SP2 range, as well as
Tandem, Teradata and most of the massively parallel machines, including Thinking
Machines, Intel Touchstone, Ncube, and so on.

The advantages of a shared-nothing MP are:

� A very high scalability (up to 512 nodes on an SP2). Since processors don't
share any resources, there are no contentions for accessing these resources;
so scalability can be very high (typically several hundreds of processors).

� A very high availability. If one processor fails, the rest of the system can
continue running without the failed processor. The application running on that
processor will have to be rebooted on a different processor or a different set of
processors, but the overall system will keep running.

The disadvantages of a shared-nothing MP are:

� It is hard to present a single system image; so system administration can be
more difficult.

 Chapter 1. Multiprocessing Concepts 3

� If you want to take advantage of this parallel architecture, a specific
programming interface needs to be used, such as a message-passing library. It
is not a very familiar programming model; it requires specific skills.

 1.1.4.2 Shared-Disks MP
In a shared-disks MP, each processor has its own caches and memory, but disks
are shared. Also, each processor runs a copy of the operating system. Processors
are interconnected through a LAN or a switch. Communication between processors
may be done via message passing.

Figure 3. Shared-Disks Multiprocessor

Examples of shared-disks MPs are IBM RS/6000s with HACMP and DEC
VAX-clusters.

The advantages of a shared-disks MP are:

� Part of a familiar programming model is preserved; data on disk is addressable
and coherent, but memory is not.

� Availability is high since data on disk is still accessible by the other processors
in case of a processor failure.

The disadvantages of a shared-nothing MP are:

� Scalability is limited because of bottlenecks in the physical and logical access
to shared data on disks.

� The programming model is mixed. Data is shared on disks but not on memory.
Communication between the processors must be done through a specific API
(Application Programming Interface). The programming model is familiar for
data on disks, but is unfamiliar for data on memory.

4 RS/6000 SMP Servers

 1.1.4.3 Shared-Memory Cluster
Here are some of the characteristics of a shared-memory cluster:

� Each processor has its own caches, memory and I/O subsystem.

� Each processor runs a copy of the operating system.

� The processors are tightly coupled through a piece of shared memory.

� Communication between processors is done via this shared memory.

Figure 4. Shared Memory Cluster

This not a common MP implementation. IBM developed such an architecture and
built a system called the Power4.

 1.1.4.4 Shared-Memory Multiprocessor
In this type of MP, all of the processors are tightly coupled inside the same box
with a high-speed bus or a switch between the processors, the I/O subsystem and
the memory. Each processor has its own caches, but they share the same global
memory, disks and I/O devices. Only one copy of the operating system runs
across all of the processors. This means that the operating system itself has to be
designed to exploit this type of architecture.

 Chapter 1. Multiprocessing Concepts 5

Figure 5. Shared-Memory Multiprocessor

Shared-memory MP is one of the most common multiprocessing implementations.
Following are some examples of this implementation:

� IBM G30, J30, R30

� HP T500, x70 range, K series

� SUN SPARCserver 20 and 1000, SPARCcenter 2000

� DEC 2100 A500 and A600, DEC 7000 AXP

� NCR 3455 and 3525

 � Sequent Systems

� SGI Power Challenge

The advantages of a shared-memory MP are:

� Only one operating system is running on all of the processors. A
shared-memory MP has a Single System Image (SSI). Thus system
administration is easier.

� Programming model is familiar because UP programming model can still be
used.

The disadvantages of a shared-memory MP are:

� Scalability is limited due to the sharing of resources.

� In order to take advantage of multiprocessing, the use of a thread library is
required. This programming model requires specific skills.

6 RS/6000 SMP Servers

1.1.5 Symmetric versus Asymmetric Shared-Memory Multiprocessors
In an asymmetric, shared-memory MP, processors are not equal. One processor is
designed as the master processor, and the others are slave processors. The
master processor is a general purpose processor which can perform I/O operations
as well as computation. Slave processors can only perform computation. On a
slave processor, all I/O operations are routed to the master processor. Utilization
of the slave processor might be poor if the master processor does not service slave
processor requests efficiently. As an example, I/O bound jobs may not run
efficiently since only the master runs I/O operations. Also, failure of the master
processor is catastrophic; the system cannot continue to run.

In a symmetric shared-memory multiprocessor (SMP), all of the processors are
functionally equivalent; they all can perform I/O and computational operations. The
operating system manages a pool of identical processors, any one of which may be
used to control any I/O devices or refer to any storage unit. Since all processors
are equal, the system can be reconfigured in the event of a processor failure and,
following reboot, continue to run.

Figure 6. Symmetric versus Asymmetric Shared-Memory Multiprocessors

1.2 SMP Hardware Characteristics
Sharing resources is probably the main technical issue in the design of an SMP
system. In order to support symmetric multiprocessing, specific techniques must be
provided at the hardware level and at the software level. This section introduces the
memory hierarchy concept and some of the techniques used to solve
resource-sharing issues.

 Chapter 1. Multiprocessing Concepts 7

 1.2.1.1 Memory Hierarchy
In order to improve the hardware performance of a system (UP or SMP), different
levels of memory are used. These different levels of memory can be ordered
according to their access time and capacity.

If you look at the different types of memory available on a typical system, you will
find the CPU registers at one end. They are extremely fast but very small, and
they have a high cost per bit. At the other end, you will find the disks, which are
very slow, but have a very low cost per bit. This allows a very high disk storage
capacity.

In most UP or SMP implementations, you will find between these two ends a first
level of cache (L1) which is a fast memory with a small capacity. The number of
CPU cycles that are needed for the processor to load data from L1 depends on L1
implementation. In the PowerPC implementation, L1 is on the CPU chip itself; so it
takes only one cycle to load data from L1. When the L1 cache is outside the
processor chip, several cycles are required to load data from L1. On the other
hand, a typical L1 capacity is around 32 to 64 KB.

You might also find a second level of cache (L2) which is also a very fast memory,
faster than the main memory. It takes around seven to 10 cycles to load data from
L2. Its capacity is usually higher than L1 and around 1 to 4 MB.

The main memory is the third level of memory. Its access time is slow in
comparison to L1 but much faster than disks. The number of cycles needed to load
data from the memory is usually around 20 to 50 cycles, and the capacity can
reach several gigabytes.

A cache is, in fact, a high-speed memory that holds a small subset of the main
memory. Because of its short access time, it improves data locality (data is closer
to the processor) and significantly increases system performance for frequently
used instructions and data that is stored in the cache. When using caches, the
increase in performance depends on the workload. For example, an L2 cache can
be very beneficial with a commercial workload and not very beneficial with a
technical workload.

8 RS/6000 SMP Servers

Figure 7. Memory Hierarchy

1.2.1.2 Cache Hit versus Cache Miss
When a CPU fetches a memory address, if the data is found in the cache, it is a
cache hit; otherwise it is a cache miss. If a cache miss occurs, the data is loaded
from main memory to the CPU and stored in the cache to take advantage of the
higher speed of the cache for a future fetch of the same memory address.

The hit ratio is the percentage of cache hits. Logically, the higher the hit ratio, the
better the system performance.

1.2.1.3 Cache Coherency Problem
In an SMP, all of the processors have their own cache to improve data locality.
Only the main memory is shared. Since caches are not shared, it is necessary to
keep all the processor's caches coherent. Cache coherency is one of the most
important issues when designing an SMP system.

Consider an application that runs on two processors, processor 1 and processor 2,
as shown in Figure 8 on page 10.

 Chapter 1. Multiprocessing Concepts 9

Figure 8. SMP Cache Coherency Problem

Let's assume that processor 1 loads into its cache memory address 0123, which
happens to contain the character A. Then processor 2 writes B into address 0123.
If processor 1 wants to again load address 0123, what will happen? In a naive
implementation, processor 1 will see the value A in its cache and load that value
because it does not know that processor 2 has already changed the same memory
address in its cache. This is what we call the cache coherency problem.

 1.2.1.4 Snooping
One solution to the cache coherency problem is snooping. Snooping is hardware
logic that is added to the processor. Snooping is affiliated with normal memory
READs. While a memory operation is in process, the other caches in the system
are interrogated (snooped) to see if the data currently resides there. If one
processor needs to write into a cache, a message is broadcasted which causes
that entry to be invalidated in all other caches. This is called cross invalidate.
Cross invalidate reminds the processor that the value in the cache is not valid. In
this case, there is a cache miss. The processor must then look for the correct
value in another cache or in the main memory.

Since cross invalidate increases cache misses and the snooping protocol adds to
the bus traffic, solving the cache consistency problem reduces the performance and
scalability of all SMP systems.

All PowerPC processors, except the 603, have this extra logic. The POWER and
POWER2 processors do not have this logic either.

Bus snooping is used to drive a MESI four-state protocol as it is described in the
following section.

10 RS/6000 SMP Servers

 1.2.1.5 MESI Protocol
The unit of storage in the cache is the cache line. The size of the cache line is
implementation dependent. The PowerPC has a cache line size which is 64 bytes.
This cache line is divided into two 32-byte sectors.

The PowerPC maintains cache coherency on a cache sector basis by using the
four-state MESI protocol. Each sector has two state bits to put into effect the
four-state MESI protocol. The four states are:

� M (modified) - The addressed sector is valid in this cache only. The value in
this sector has been changed in the cache, but the change is not yet reflected
in memory.

� E (exclusive) - The addressed sector is valid in this cache only. The data is
consistent with system memory.

� S (shared) - The addressed sector is valid in this cache and at least one other
cache. It is still consistent with system memory.

� I (invalid) - The addressed sector is not valid in the cache.

This is best explained by means of an example. Let's assume we have two
processors, processor 1 and processor 2, sharing the same memory, and let's
describe different operations that can occur between these two processors.

Figure 9. MESI Protocol - Steps 1 and 2

Step 1 - Processor 1 reads value A from memory and loads it in its cache. The
corresponding cache sector is marked exclusive for processor 1 and invalid for
processor 2.

Step 2 - Processor 2 needs the same memory address. Value A is read from
memory, and the corresponding sector is marked shared in both processors.

 Chapter 1. Multiprocessing Concepts 11

Figure 10. MESI Protocol - Steps 3 and 4

Step 3 - Processor 1 updates the address with a new value B. The snooping logic
invalidates the processor 2 sector containing this address. The processor 1 cache
sector is marked modified modified, and the processor 2 cache sector is marked
invalid.

Step 4 - Processor 2 again reads the same memory address. Since processor 1
holds the modified value, processor 2 loads the value from processor 1. If the
operation is a RWNITM (Read With No Intent To Modify), the memory is updated
during the transaction. If the operation is RWITM (Read With Intent to Modify), the
memory is not updated. It makes sense not to update the memory since the
address value is going to be modified. For more information on the memory
subsystem, you can refer to Chapter 3, “SMP Servers Architecture” on page 49.

12 RS/6000 SMP Servers

Figure 11. MESI Protocol - Steps 5 and 6

Step 5 - Processor 2 updates the same address. The snooping logic invalidates the
cache sector on processor 1, and the memory address is marked invalid.

Step 6 - In this example, the memory is updated because the processor 2 cache is
full. In this case, the Least Recent Used (LRU) sector is the one written back to the
memory.

You can see in this memory operation example that snooping in conjunction with
the MESI protocol insures cache coherency. This solves one of the main SMP
design issues.

1.2.1.6 L1/L2 Caches and Store Policy
In the IBM SMP implementation, L1 has a 64-byte cache line divided into two
32-byte sectors. L2 cache has a 32-byte cache line.

The store policy defines the way L1, L2 and the memory are kept coherent or up to
date. The store policy between L1, L2 and the memory is implementation
dependent.

The store policy between L2 and the memory is write-back. This means that when
L2 is updated, the memory is not.

In fact, the memory is updated in several cases. It is updated in case of a cache
migration caused by a Read With No Intent To Modify (RWNITM) from another
processor. For example, when a processor loads data from another processor and
does not want to change that data. Logically, if the processor wants to change that
data, it is not necessary to update the memory since the fetched memory address
is going to be changed.

The memory is also updated when the processor needs room in its cache. When
this happens, the Least Recent Used (LRU) algorithm is used, and the LRU sector

 Chapter 1. Multiprocessing Concepts 13

is written back to the memory. The memory is also updated in case of a cache
flush.

 1.2.1.7 False Sharing
Figure 12 illustrates false sharing. In this figure, we represented a whole cache unit
of storage (a cache sector in the case of the IBM SMP system).

Figure 12. False Sharing

Let's suppose that processor 1 and processor 2 loaded the same memory address
in their cache. If processor 1 changes only a portion of the cache sector, d1 for
example, the cache consistency logic will invalidate all the sectors in the processor
2 cache. Then, if processor 2 tries to modify another portion of its cache sector, d2
for example, which is still valid since the whole sector is invalid, a cache miss will
occur. This is called false sharing.

Thus, false sharing increases cache misses and bus traffic, and this may cause the
SMP throughput to be reduced. The bigger the size of the cache line, the higher
the miss rate. Some implementations have a 256-byte cache line. The IBM SMP
works with a 32-byte cache sector, and the coherency mechanism is based on the
cache sector.

1.3 SMP Software Characteristics
Since most operating system activity is triggered by events, interrupts and system
calls, all processors are able to run any part of the kernel and access any kernel
data simultaneously. So, changes must be made to a UP operating system in order
to support an SMP. One of the main changes is the implementation of threads. A
thread is an independent flow of control within a process. All threads within a
process can run concurrently on different processors. Threads are well suited for
exploiting SMP architectures. Since a classical UNIX process is considered as a
single-threaded process, threads will be used in this section to illustrate some
concepts.

14 RS/6000 SMP Servers

1.3.1 SMP Synchronization Issue
There is a potential synchronization problem where two processors might be trying
to update the same piece of data at the same time, and incorrect results can be
obtained.

Consider an example where two threads are updating the same variable.

Figure 13. Synchronization Issue

In the top half of the diagram, threads t1 and t2 are both adding one to the same
shared variable, X, whose value is x. The final value must be x+2, but t2 is
incrementing the variable before t1 has finished. Therefore, the final value will be
x+1. In order to avoid this, both threads have to be serialized as is shown in the
bottom half of the diagram.

The section of code that changes shared data, and therefore must not be run by
more than one processor at a time, is called a critical section. In the above
example, the critical section is the code that changes the variable, X.

The problem of serializing access to shared data is generic to parallelized code. It
occurs at both the user and the kernel level. This problem is resolved by locks on
critical sections of code.

 1.3.2 Locks
Basically, a lock is a memory location that threads use to regulate their entry into
critical sections. If the location is zero, then the lock is free, and if the location is
non-zero, then the lock is busy. For a processor to take a lock, the simplest code
sequence is:

test the lock

if the lock is free

then

set it to busy

else

 Chapter 1. Multiprocessing Concepts 15

wait for it to become free

end if

Since taking a lock requires several operations (read, test and set the lock), this
operation is itself a critical section. Several threads can test the same lock
simultaneously and set the same lock bit. Therefore, multiprocessor hardware must
provide a way to perform this test-and-set operation atomically. The PowerPC
provides special instructions that allow atomic updates of a word in memory.

� lwarx - loads a word from memory and establishes a reservation

� stwcx - stores a word if the reservation is still present

This kind of atomic operation is the basic block on which all of the locking primitives
are based.

 1.3.3 Lock Types
There are two types of locks we need to consider:

� Mutual Exclusion (Mutex) Locks

This type of lock is an exclusive lock that allows one thread at a time in a
critical section. Other threads have to wait, even for read-only.

 � Read/Write Locks

If a piece of shared data is read mostly, it makes sense to distinguish between the
many threads that only want to read the data but not change it, and a few threads
that want to change/write data. This type of lock allows multiple readers to be in
the critical section at once, but guarantees mutual exclusion for writers. It allows
one writer to hold the lock and block any others, and it is also called a Read
Shared/Write Exclusive lock.

1.3.4 Waiting for Locks
When a thread wants a lock that is already owned by another thread, the thread is
blocked. It has to wait until the lock becomes free, and there are two ways of
waiting: spinning or sleeping.

� Spin locks - These allow the waiting thread to keep its processor by repeatedly
checking the lock bit in a tight loop (spin) until the lock becomes free. Spin
locks are suitable for locks that are held only for very short times.

� Sleeping locks - The thread sleeps until the lock is freed, and then it is put
back into the run queue. Sleeping locks are suitable for locks that may be held
for longer periods.

Waiting for locks always decreases system performance. If a spin lock is used, the
processor is busy but not doing useful work. If a sleeping lock is used, the
overhead of context switching and dispatching, and the consequent increase in
cache misses, is incurred.

1.3.5 AIX Version 4.1 Kernel Locks
The OSF/1 1.1 locking methodology is used as a model for the AIX Version 4
multiprocessor lock functions. The OSF/1 locking model has two types of locks,
simple locks and complex locks.

16 RS/6000 SMP Servers

In AIX Version 4.1, since the system is preemptive and pageable, some
characteristics have been added to the OSF/1 1.1 locking model. The AIX Version
4.1 simple locks and complex locks are preemptable. Also, a thread may sleep
when it tries to acquire a busy simple lock if the owner of the lock is not currently
running. In addition, a simple lock will transform when a processor has been
spinning on a lock for a certain amount of time; this amount of time is a systemwide
variable.

AIX Version 4.1 simple locks have the following characteristics:

� spin, exclusive, nonrecursive, preemptable

� two states: locked, unlocked

AIX Version 4.1 complex locks have the following characteristics:

� RW (Read-Shared, Write-Exclusive), sleeping, recursive on request,
preemptable

� Three-states: exclusive-write, shared-read, unlocked

It is the AIX developer's responsibility to define and carry out an appropriate locking
strategy to protect global data.

In order to maintain compatibility between AIX Version 3 and AIX Version 4, AIX
Version 3 locks are still available. These locks, lockl() and unlock(), are
exclusive, recursive and sleeping locks.

 1.3.6 UP Synchronization
AIX V3.2 is preemptable. A process can be preempted by a higher-priority process
or by an interrupt routine. The interrupt routine or higher-priority process may
access and change data that is already being changed by the original process.
Thus, in AIX Version 3.2, as shown in Figure 14, synchronization must be provided
between processes themselves and between processes and interrupt handlers.

Figure 14. UP Synchronization

 Chapter 1. Multiprocessing Concepts 17

In order to avoid data corruption between several processes, AIX V3.2 provides a
lock mechanism that allows serialized access to shared data, (lockl() and
unlockl()). These locks are used at the process level only.

Interrupt handlers are not allowed to acquire locks. When a process needs to
accomplish an atomic operation without being interrupted by an interrupt routine, it
must disable the interrupts by using the i_disable() primitive. The i_disable()
primitive is only effective on the processor on which the process is running. The
i_enable() primitive will again enable interrupts.

 1.3.7 SMP Synchronization
In an SMP, synchronization must be achieved between threads themselves,
between threads and interrupts or between interrupts themselves. Figure 15
illustrates this relationship.

Figure 15. SMP Synchronization

Masking interrupts to serialize with an interrupt handler no longer works in an SMP
environment. Since the I/O is symmetric and the interrupts can be routed to any of
the processors in the system, masking interrupts will not prevent the interrupt
routine from simultaneous operation on another processor. Therefore, AIX V4.1
provides new primitives to achieve serialization with an interrupt handler.
Serialization requires the use of locks in addition to the traditional masking of an
interrupt. New kernel services, disable_lock() and unlock_enable(), combine
disablement and locking in the correct order.

In summary, there are three types of critical sections that must be protected from
concurrent operation in order to serialize access to a resource in an SMP:

� thread-thread -> This critical section must be protected from concurrent
operation by multiple threads by using AIX V4.1 simple locks.

18 RS/6000 SMP Servers

� thread-interrupt -> This critical section must be protected from concurrent
operation by an interrupt handler and a thread by using the disable_lock() (to
lock) and unlock_enable() (to unlock) kernel services.

� interrupt-interrupt -> This critical section must be protected from concurrent
operation by multiple interrupt handlers using disable_lock() (to lock) and
unlock_enable() (to unlock) kernel services.

In order to minimize the impact on system performance due to SMP locking, all
interrupt-interrupt and thread-interrupt critical sections should never directly use the
simple lock primitives. They should instead use the new kernel services,
disable_lock() and unlock_enable(), primitives since, in this kind of critical
section, disabling is always needed. These two primitives have been optimized.

1.3.8 AIX V4.1 Kernel Locking Interface
Following is a subset of the kernel locking interface used by AIX developers or
device driver developers.

� Lock allocation services:

– lock_alloc: allocates system memory for a simple or complex lock
– lock_free: frees the system memory of a simple or complex lock
– lock_mine: checks whether a simple or complex lock is owned by the caller

� Simple locks services

– simple_lock_init: initializes a simple lock
– simple_lock: issues a simple lock
– simple_lock_try: issues the lock if the lock is free, do not block and return

immediately if the lock is busy
– simple_unlock: unlocks a simple lock
– disable_lock: raises the interrupt priority and locks a simple lock
– unlock_enable: unlocks a simple lock and restores the interrupt priority

 � Complex Locks

– lock_init: initializes a complex lock
– lock_islocked: tests whether a complex lock is locked
– lock_read_to_write: upgrades a complex lock from shared-read mode to

exclusive write mode
– lock_write: issues a complex lock in exclusive-write mode
– lock_write_to_read: downgrades a complex lock from exclusive-write mode

to shared-read mode
– lock_set_recursive: prepares a complex lock for recursive use
– lock_clear_recursive: prevents a complex lock from being acquired

recursively

1.3.9 AIX V4.1 Lock Services Summary
In the previous sections, we covered the locking mechanism that is required at the
kernel level between kernel threads. Serialization to shared resources is not only an
issue for kernel threads. It is also an issue for user threads or user processes.

For user threads and user processes, serialization to shared resources is also done
by means of locks. Different Application Programming Interfaces (APIs) are
provided by the system to lock shared resources.

 Chapter 1. Multiprocessing Concepts 19

Serialization between user threads can be done by using the pthread library
subroutines, pthread_mutex_lock() and pthread_mutex_unlock(). For more
information on threads, you can refer to Chapter 2, “Introduction to AIX V4.1
Threads” on page 31.

Serialization between user processes can be achieved by using the msem_lock()
and msem_unlock() subroutines that are part of the Base Operating System. These
subroutines allow you to lock or unlock a semaphore.

 1.3.10 Lock Penalty
There is no such thing as a free lunch, and locking is no exception to this rule.

Suppose that we know from tprof that when running a certain application, the
system spends ten percent of its time in a kernel component. Suppose that the
component is complex and touches a lot of data; so the developer decides to make
the whole component one big critical section. That is, there is only one mutex lock
for the whole component, and it is requested at all entry points in the component
and released at all exit points. On a four-way SMP, this mutex lock will be busy 4
x 10 percent = 40 percent of the time.

Figure 16. Lock Penalty

According to queueing theory: the busier a resource, the longer the average wait to
get it, and the relationship is nonlinear. If the use of the lock is doubled, the
average wait time for that lock more than doubles.

 1.3.11 Lock Granularity
The most effective way to reduce wait time for a lock is to reduce the size of what
the lock is protecting. In other words, reducing the lock protection time reduces the
waiting time.

20 RS/6000 SMP Servers

Figure 17 on page 21 illustrates lock granularity. Instead of locking the whole code
routine, it is better to lock only the portions of code within the routine that actually
modify shared data.

Figure 17. Lock Granularity

Here are some rules:

� The frequency with which any lock is requested should be reduced.

� Lock just the code that accesses the shared data, not all the code in a
component (this will reduce the lock holding time).

� Locks should always be associated with specific data items or structures, not
with routines.

� For large data structures, choose one lock for each element of the structure
rather than one lock for the whole structure.

On the other hand, with granularity too fine, the frequency of lock requests and lock
releases will increase. This will therefore add additional instructions. A balance
must be found between a too-fine and a too-coarse granularity. This is again the
developer's responsibility.

1.3.12 MP-safe versus MP-efficient
A program can be described as being MP-safe if:

� Each critical section is correctly protected with a lock.

� All acquired locks are released when done.

� Data is never changed while holding a read lock.

� Deadlocks are avoided.

The program can run on any processor without any data integrity problems, but it
doesn't mean that it has been optimized for running on an SMP.

An MP-efficient program is an MP-safe program that spends the minimum time
dealing with locks. That means that it has been specifically designed to run on an
MP.

 Chapter 1. Multiprocessing Concepts 21

High throughput device drivers, such as disks and communication drivers in AIX
V4.1, are MP-efficient.

 1.3.13 Processor Affinity
In AIX V4.1, the schedulable entity is the thread, and the thread with the highest
priority is the one that is dispatched. This means that a thread is bounced from one
processor to another. As a result, it suffers many cache misses when reloading
instructions and data on the processor where the thread is dispatched.

If we try to run the thread on the processor it last ran, some of the instructions and
data might still be in the processor cache. This technique may reduce the amount
of cache misses and improve performance.

Affinity with a processor is the amount of data that is already in the processor
cache. Processor affinity is the policy of trying to run a thread on the same
processor where it last ran. AIX V4.1 has been changed to enforce affinity with the
processors; so affinity is done implicitly by the operating system.

The way this is accomplished is as follows: As shown in Figure 18, run queues are
ordered according to their priority, with 127 being the lowest and zero being the
highest. When a thread is dispatched from a queue on a processor, the identity of
the processor is registered in the structure of the thread.

Figure 18. Threads Dispatching

22 RS/6000 SMP Servers

In this way, each time the dispatcher selects a thread, it knows the processor
number on which the thread last ran. When a processor asks to run a thread, the
dispatcher chooses the thread with the highest priority from the priority ordered run
queues. It then tests to see if this thread has affinity with the processor.

If it has affinity, the thread is dispatched to the processor. If it does not, the
dispatcher tries to find another thread which last ran on the processor; so it scans
the queues until it finds one. This scanning is not done indefinitely; it has some
limits.

1. If the priority difference between the thread with the highest priority and the
thread that last ran on the processor is greater than a threshold value, the
thread with the highest priority will be chosen. That threshold value is 0 by
default. This means that the search for a thread with affinity with the processor
is limited to the same queue.

2. Scanning is stopped when the number of scanned threads is higher than a
predefined value. By default, that value is three times the number of processors
(for example, 12 on a four-way SMP).

3. Scanning is also stopped when the dispatcher encounters a boosted thread
and if the parameter affinity_skipboosted is FALSE.

A boosted thread can be described as follows. When a thread with a low
priority holds a lock, and if a higher priority thread is waiting for the same lock,
the low-priority thread gets the priority of the higher-priority thread. This means
it is boosted. This priority inversion is automatically done by the system and is
a way to reduce lock contention.

 1.3.14 Binding
Binding is the strongest form of processor affinity, and it may be obtained by using
the bindprocessor command or the bindprocessor() system call.

The bindprocessor command allows a user to bind a process to a specific
processor. You cannot bind a process until the process is already running; so it
must exist to be able to bind it.

Once a process is bound to a specific processor, it cannot run on an idle processor
and take advantage of it. Therefore, binding a process may cause some
performance problems by letting some of the processors remain idle.

The bindprocessor() call allows a developer to bind a thread to a specific
processor at the programming level.

 1.3.15 Processor Numbering
If a processor has failed or is disabled, the software must be able to run on
available processors. Thus, the processor number that is used by the software
must not be tied to a physical processor. This is why processors on a system are
identified by using either physical numbers or logical numbers. The physical
numbers are in the Object Data Manager (ODM) and identify the actual processors
on the system regardless of their state. Numbering starts with zero. For example,
proc0, proc1 and so on.

 Chapter 1. Multiprocessing Concepts 23

Logical numbers identify only the enabled processors. Generally, the software uses
the logical numbers. Processor states are enabled, disabled or unavailable;
unavailable is indicated when a hardware failure is detected by the system.

The following table illustrates the naming schemes for a four-processor system with
different processors in different states.

Generally, all operating system commands and library subroutines use logical
numbers to identify processors. The cpu_state command is an exception because
it uses the physical processor numbers. This command can be used to list system
processors and their states, and it can also enable or disable processors (a reboot
is required for the change to take effect).

Table 1. Physical and Logical Processor Numbering

ODM Name Physical Number Logical Number Processor State

proc0 0 0 Enabled

proc1 2 Disabled

proc2 2 Unavailable

proc3 3 1 Enabled

1.3.16 UP Application Compatibility
A UP application which is a single-threaded process (more than 80 percent of UP
applications have been written this way) can run on an SMP if it already runs on
AIX Version 4. This application won't take advantage of the multiprocessing since
it will run on only one processor at a time. Also, the application will run slightly
slower than on the equivalent uniprocessor because of some overhead caused by
the MP kernel.

If the application is multiprocessed, the application must be ported to the SMP
environment to be at least MP-safe. Serialization is natural on a UP, but running
the same application on an SMP may cause some data integrity problems since
two processes running on two different processors may change the same data at
the same time. Locks must be used so that the application can run safely on the
SMP.

If the application is already multithreaded, a porting is necessary. That application
may use a different thread library or a different level of the thread library than the
one which is available on AIX Version 4. Also, all critical sections must be
identified and protected by locks.

Both the multiprocessed and the multithreaded application will take advantage of
the multiprocessing. But in general, a multithreaded application will perform better
than a multiprocessed application.

1.3.17 UP Device Drivers Compatibility
Uniprocessor device drivers must be ported to the SMP environment. In order to
run UP device drivers unchanged on an SMP, we introduced the notion of master
processor and funneling. These two notions are briefly explained below.

24 RS/6000 SMP Servers

 1.3.17.1 Master Processor
The concept of master processor does not have the same meaning here as in the
master/slave scheme used for an asymmetric multiprocessor. In order to run UP
device drivers unchanged on the SMP, UP device drivers must run on a specific
processor which is called the master processor. We say that their execution has to
be funneled to the master processor.

The master processor is defined by the value of MP_MASTER in the
/usr/include/sys/processor.h file and is 0 by default. The master processor is not
tied to a physical processor; therefore, the system can be started even if a
processor has failed. The MP_MASTER value is a processor logical number and is
assigned at boot time.

 1.3.17.2 Funneling
On a UP system, a device driver may disable interrupts using specific functions. On
an SMP system, since an interrupt can run on any of the processors, the UP way
of disabling interrupts is no longer sufficient. In order to run a UP device driver on
an SMP system, all interrupts for that device driver must be routed to the master
processor. Also, the device driver code itself must run on the master processor. It
must be funnelled.

Therefore, all device drivers that do not tell the kernel that they are MP-safe are
funnelled. For an MP-safe device driver, a specific flag (DEV_MPSAFE) must be
specified by the device driver in order to be considered as MP-safe by the kernel
and run on any processor.

Funneling is intended to support third-party device drivers and low throughput
device drivers, such as the diskette drive.

 1.3.18 PowerPC Specifics
The PowerPC processor defines a weakly ordered memory model which allows an
optimized use of the system memory bandwidth. Load and store operations are not
necessarily done in the order of the code. The hardware can reorder load and store
operations. While this allows optimization of the memory bandwidth for a UP
system, it might be an issue for the SMP. Because of its weakly ordered memory
model, the PowerPC can allow access to the application's critical data before
obtaining the lock and also release the lock before the changed data is visible to
the other processors. To keep memory consistent, load and store operations can
be forced to run in strict order. Specific functions are therefore provided in AIX
V4.1 in order to support the PowerPC weakly ordered memory; they are
_check_lock() and _clear_lock(). These functions must be used at the
user-process level instead of the cs() (compare and swap) function. People who
are porting UP applications to the SMP environment should be aware of that
difference.

Out-of-order Execution is part of the PowerPC architecture. It means that
instructions are not necessarily run in the order of the code. For instance, an
instruction that resides in the instruction cache can be sent to an idle execution unit
for execution even though it is not the next sequential instruction. This model allows
an optimized use of the instructions parallelism. The PowerPC architecture also
prevents out-of-order execution of instructions that depend on the result of previous
instructions.

 Chapter 1. Multiprocessing Concepts 25

 1.4 SMP Scaling
Scaling is one of the most important metrics of MP performance, and it relates to
how much the performance increases as processors are added.

In a perfect world, one would expect performance to increase linearly as processors
are added. However, this is not the case because of the overhead required to
maintain a consistent view of the memory and the other shared resources for each
of the processors in the system. As more processors are added, each additional
processor increases performance by slightly less than the previously added
processor. However, adding more processors ceases to boost performance after
some critical number, as the following diagram shows.

Figure 19. Scaling

There are many reasons why real workloads do not scale perfectly on an SMP
system, and some of them are listed below.

� Bus/Switch contention increases when the number of processors increases.

� Memory contention increases because all the memory is shared by all the
processors.

� Increased cache misses because of larger operating system and application
data structures.

� Cache cross-invalidates and lateral reads to maintain cache coherency.

� Increased cache misses because of higher dispatching rates.

� Increased cost of synchronization instructions.

� Increased operating system and application pathlengths for lock/unlock.

� Increased operating system and application pathlengths waiting for locks.

It can be seen from some of the above factors that scaling is workload dependent.
Some workloads may scale relatively well on an SMP while others scale poorly on
an SMP.

26 RS/6000 SMP Servers

For example, the SPECrate workload scales very well on an SMP because it is
made of several independent programs that do not interact each other. In this case,
contentions due to resource sharing are quite low.

On the other hand, a commercial workload, like the TPC-C, will scale worse than
the SPECrate. It is difficult to scale well on such a workload. These relationships
are shown in Figure 20.

Figure 20. Scaling is Workload Dependent

 1.4.1 Scaling Metrics
There is no universally accepted metric for scaling. In general, a one-way SMP will
run slower (about 10 to 15 percent) than an equivalent processor running a UP
version of the operating system. This occurs because of the MP overhead that is
inherent in the kernel of the MP operating system. So, as a result, most vendors
will show scaling starting from two processors.

The following table is a hypothetical representation of how scaling can be
represented. However, getting a ratio to one processor greater than 2.5 with four
processors on the TPC-C benchmark is an excellent result.

Table 2. Hypothetical SMP Scaling Metrics

Number of
Processors

Value of the
Performance Test
(Hypothetical)

Ratio to 1
Processor

Ratio to Number
of Processors

1 100

2 180 1.8 0.90

4 300 3.0 0.75

6 410 4.1 0.68

8 480 4.8 0.60

 Chapter 1. Multiprocessing Concepts 27

 1.4.2 Two-Dimensional Scaling
Most vendors can scale in one direction only, by adding more processors.

The IBM RISC System/6000 SMPs allow two-dimensional scaling by being able to
utilize higher performance processors as well as by increasing the number of
processors that can be added. These SMPs have been designed to allow for three
generations of PowerPC chip to be included in the system (601, 604 and 620) and
to support up to eight PowerPC processors. The memory subsystem has been
over-designed to cater for that growth.

1.5 Using an SMP
In order to effectively use an SMP, there are a number of things that need to be
considered, such as parallelizing the application, Amdahl's Law and assessing the
applicability of commercial applications against technical applications. These are
discussed in more detail in the following sections.

1.5.1 Parallelizing an Application
Parallelizing an application is one opportunity to effectively use an SMP. There are
two ways to achieve this:

1. The traditional way is to break the application into multiple processes. These
processes communicate using Inter-Process Communication (IPC), such as
pipes, semaphores or shared memory. The processes must be able to block
events, such as messages, from other processes, and they must coordinate
access to shared objects with something such as locks.

2. The other way is to use the POSIX threads. Threads have coordination
problems similar to those in processes and similar mechanisms to deal with
these problems. Thus, a single process can have any number of its threads
running simultaneously on different processors. Coordinating them and
serializing access to shared data is the developer's responsibility.

Threads and processes each have advantages and disadvantages to be considered
when determining which method to use for parallelizing an application. Threads
may be faster than processes, and memory sharing is easier, but a process
implementation will distribute more easily to multiple machines or clusters.

 1.5.2 Amdahl's Law
Amdahl's Law quantifies the fact that if only a part of the program speed is
increased, the part that was not increased still runs as slowly as before.

28 RS/6000 SMP Servers

Figure 21. Amdahl's Law

In the above diagram, making the main part of the program run 12 times faster
sounds good, but it only makes the program run 3.2 times faster. There is an upper
limit on the increased speed that can be achieved by parallelizing the compute
phase of this application.

1.5.3 Commercial versus Technical Applications
Commercial applications have a number of characteristics. They use a large
amount of data shared between many different users or programs. They have a
low data locality, which means that there is a high level of data traffic between
system memory and CPU caches, and there is a high level of I/O activity. There is
also a high level of data traffic between caches due to lateral process migration.
Therefore, a commercial application needs big L2 caches and very high bandwidth
between memory and CPU as well as between the CPUs themselves.

Technical applications are usually CPU bound, and so the processors speed is key.
Code is often made with short loops of instructions and may fit in the L1 cache.

 1.6 SMP Summary
SMPs have a number of benefits as follows:

� SMPs are a cost-effective way to increase throughput.

� SMPs offer a single system image since the operating system is shared
between the processors (administration is easy).

 Chapter 1. Multiprocessing Concepts 29

� You can apply multiple processors to a single large problem by using parallel
programming.

� Load balancing is done by the operating system.

� The same UP processing model can be used in an SMP.

� There is easy and transparent scalability in two dimensions within the
limitations of scalability.

� More and more applications and tools are available today, and most UP
applications can run on, or are being ported to, an SMP.

There are some limitations to using SMPs:

� They require MP-enabled processors. POWER2 or PowerPC 603 cannot be
used in an IBM SMP.

� Scaling is not linear, and there is a finite limitation in the number of processors.

� New skills are required because of new programming concepts (threads).

� Complex programming is required for device drivers since they have to manage
multiple interrupt occurrences at the same time.

30 RS/6000 SMP Servers

Chapter 2. Introduction to AIX V4.1 Threads

This chapter discusses the AIX V4.1 threads implementation. It also gives some
considerations on programming a multithreaded application using the standard
pthreads library.

2.1 What is a Thread?
A thread is an independent flow of control that operates within the same address
space as other independent flows of controls within a process. In previous versions
of AIX, and in most UNIX systems, processes could only have one flow of control
within the same address space. In AIX Version 4.1, one process can have multiple
threads, with each thread executing different code concurrently, while sharing data
and synchronizing each other. In such a multithreaded system, a regular process is
seen as a single-threaded process.

2.2 Threads versus Processes
This section discusses the differences between processes and threads.

 2.2.1 Processes
A process is a combination of a program (set of instructions and data needed to
perform a specific task) plus the current state of its execution, the values of all
variables, and the hardware state such as the program counter, registers, condition
codes, and the content of the address space. In summary, a process is a program
in execution.

A process address space consists of four main pieces: program instructions,
initialized data, uninitialized data, and the stack. In UNIX jargon, the instructions are
called the “text” segment (it is the code of the process). The initialized data is
simply called the “data.” The uninitialized data is called “bss,” which takes its name
from an old assembler mnemonic called “Block Started by Symbol.” The stack is
simply called the “stack.” The difference between the initialized data and the
uninitialized data is that the initialized data is the global and static program
variables that were declared to have an initial value when the program was
compiled. The uninitialized data is the program global and static variables that had
no explicit initial value. For these variables, the system simply allocates memory in
the address space that initially contains zeros. The advantage of this approach is
that the uninitialized data need not to take up space in the program file.

A conventional UNIX process has only one flow of control. In this model, since
there is only one thread in the process address space, no inner scheduling is
needed and no inner data communication is necessary. Also, whenever the process
runs, its unique thread runs. Any data communication in the memory between
processes must be done using the inter-process communication (IPC) mechanisms,
such as pipes, semaphores, message queues, and so on.

 Copyright IBM Corp. 1995 31

 2.2.2 Multithreaded Processes
A multithreaded process has several independent flows of control. All the threads
within a process run in the same process address space. Each thread holds the
state of a single flow of execution within the process. The state of a thread consists
of a minimum of the hardware state and a stack. Also, each thread has its own
kernel thread data. Since threads run in the same process address space, data
communication between these threads can easily be achieved through shared
variables within the process address space. Inter-threads communication does not
require the use of the IPC mechanisms.

A multithreaded process starts out with one stream of instructions called the initial
thread. Then the process may create other instruction streams (threads) to run
several tasks. At some point, it is very similar to one process forking another
process. But when a process forks, there is a hierarchical relationship between the
parent process and the child process. This is not the case with threads. All of the
threads created under a process through the initial thread are peers. There is no
hierarchy between threads within a process.

From a programming point of view, facilities are provided to the programmer to do
many of the same things you can do with processes. These facilities include calls
for threads creation, termination, synchronization, communication, error recovery,
and management. Thus, the programmer has control over how the threads behave
and what services they request of the system within the process. When a thread is
running in user space, it can make system calls just like a simple single-threaded
process. Figure 22 on page 33 illustrates the differences between a traditional
UNIX process and a multithreaded process.

32 RS/6000 SMP Servers

Figure 22. Multithreaded Process

2.2.3 The Initial Thread
We said previously that when a process is created, one thread is automatically
created. This thread is called the initial thread, and is the thread used for the
execution of an otherwise non-threaded (single-threaded) process. The initial
thread has some special properties that ensure binary compatibility between the
single-threaded process and the multithreaded operating system. The initial thread
is the one which executes the main subroutine of a multithreaded process.

2.2.4 Process and Thread Properties
In traditional single-threaded process systems, a process has a set of properties. In
systems that support multithreaded processes, these properties are divided
between processes and threads.

 2.2.4.1 Process Properties
A process in a multithreaded system must be considered as an execution frame. It
is the swappable entity. It has all traditional process attributes, such as:

� The process ID, the process group ID, the user ID
 � The environment
� The working directory

 Chapter 2. Introduction to AIX V4.1 Threads 33

A process also provides a common address space and common system resources,
such as:

 � File descriptors
 � Signal actions
 � Shared libraries
� Inter-process communication tools (such as message queues, pipes,

semaphores, or shared memory)

 2.2.4.2 Thread Properties
A thread is the schedulable entity. It has only those properties that are required to
ensure its independent flow of control. These include the following properties:

 � The stack
� Scheduling properties (such as policy or priority)
� Set of pending and blocked signals
� Some thread-specific data

An example of thread-specific data is the error indicator, errno. In multithreaded
systems, errno is no longer a global variable but usually a subroutine returning a
thread-specific errno value. Some other systems may provide other
implementations of errno.

Threads within a process must not be considered as a group of processes. All
threads share the same address space. This means that two pointers having the
same value in two threads refer to the same data. Also, if any thread changes one
of the shared system resources, all threads within the process are affected. For
example, if a thread closes a file, the file is closed for all threads.

2.2.4.3 What is Shared between Threads
All the threads within the same process share the following characteristics:

� The address space
� The session membership
� The current working directory

 � Files descriptors
� Filemode creation masks
� The process ID, parent process ID, process group ID
� The real and effective user ID
� The nice value

 � Signal handlers
 � Per-process timers

2.2.4.4 What is Not Shared between Threads
Here are some characteristics that are not shared between threads:

� The thread identifier,
 � The stack,
� The signal mask,

 � The priority,
� The scheduling policy,
� The errno variable.

Figure 23 on page 35 shows the structure of threads and processes.

34 RS/6000 SMP Servers

Figure 23. Threads and Processes Properties

2.2.5 Main Benefits of Threads over Processes
We have seen in Chapter 1, “Multiprocessing Concepts” on page 1 that there are
two main ways of writing a parallel application: by using multiple processes or by
using multiple threads within the same process.

For the following reasons, multithreaded programs can improve performance in
many ways compared to traditional parallel programs that use multiple processes.

Managing threads (creating and controlling their execution) requires fewer system
resources than managing processes. Creating a thread only requires a single call:
pthread_create. Creating a process is far more expensive since the entire parent
process addressing space is duplicated. The threads Application Programming
Interface (API) is also easier to use than the one for managing processes.

Inter-thread communication is also far more efficient and easier to use than
inter-process communication (IPC). Since all threads within a process share the
same address space, they can easily share data. Shared data should be protected
from concurrent access by using synchronization tools that are usually provided by
the threads library. These tools can easily replace traditional inter-process
communication facilities. Note that pipes can still be used as an inter-thread
communication path.

In summary, a multithreaded application will run faster than an application made
with several processes.

 Chapter 2. Introduction to AIX V4.1 Threads 35

 2.3 Threads Types
In AIX V4.1, you will find three types of threads: user threads, kernel threads and
kernel-only threads.

 2.3.1 User Threads
A user thread is an entity used by application programmers to handle multiple flows
of controls within a process. The Application Programming Interface for handling
user threads is provided by a library, the threads library. A user thread only exists
within a process; a user thread in process A cannot reference a user thread in
process B.

Note: Even though the library uses a proprietary interface to handle kernel threads
for executing user threads, the user threads API is part of a portable programming
model. As a result, a multithreaded program developed on an AIX V4.1 system can
easily be ported to another system.

 2.3.2 Kernel Threads
A kernel thread is a kernel entity handled by the system scheduler. A kernel thread
runs within a process, but can be referenced by any other thread in the system.
The application programmer has no direct control over these threads, unless writing
kernel extensions or device drivers.

 2.3.3 Kernel-only Threads
A kernel-only thread is a kernel thread that executes only in the kernel mode
environment. Kernel-only threads are controlled by the kernel programmer through
kernel services.

2.4 Threads Implementation Models
A multithreaded system (that is a system that supports threads) can have different
threads implementations. All implementations have a three-layer architecture with
user threads on top of virtual processors (VP) which are themselves on top of
kernel threads.

 2.4.1 Model Descriptions
User threads are mapped to kernel threads by the threads library. The mapping
depends on the model used for implementing threads. There are three possible
threads implementation models, corresponding to three different ways to map user
threads to kernel threads.

 � M:1 model

 � 1:1 model

 � M:N model

The mapping of user threads to kernel threads is done by using Virtual Processors
(VP). A Virtual Processor is a library entity. For a user thread, the Virtual
Processor behaves like a CPU for a kernel thread. In the library, the Virtual
Processor is a kernel thread or a structure bound to a kernel thread.

36 RS/6000 SMP Servers

 2.4.1.1 M:1 Model
In the M:1 model, all user threads are mapped to one kernel thread; all user
threads run on one VP. The scheduling of user threads on this unique VP is done
by the library itself. All user threads programming facilities are completely handled
by the library. This model can be used on any system, especially on traditional
systems which do not support threads. For example, the DCE (Distributed
Computing Environment) Threads used to have a M:1 implementation on AIX V3.2.
Figure 24 is an illustration of this model.

Figure 24. M:1 Model

 2.4.1.2 1:1 Model
The 1:1 model is the one which is currently implemented by AIX V4.1 threads
library. In this case, each user thread is mapped to one kernel thread through a VP.

In fact, the library provides user threads, which simply are a structure describing
the thread, a user stack and a link to the VP. When a user thread is created by the
user, a Virtual Processor is created, and from that time on, the user thread and the
Virtual Processor remain linked until the user thread is deleted. So, a user thread is
nothing more than a user abstraction of a Virtual Processor.

When a Virtual Processor is created by the library, a kernel thread is created, and
from that time on, the Virtual Processor and the kernel thread remain linked until
the Virtual Processor is deleted, which implies kernel thread deletion as well. So, a
Virtual Processor is nothing more than a library abstraction of a kernel thread.

However, unlike the binding between Virtual Processors and the kernel threads,
which implies simultaneous death, the binding between user threads and Virtual

 Chapter 2. Introduction to AIX V4.1 Threads 37

Processors does not imply simultaneous death. In order to be more efficient, when
a user thread is deleted, the virtual processor is not destroyed; it is just suspended.
It will be reused if a new user thread is created in lieu of a fresh Virtual Processor.

At the user level, each thread has its own stack and a pthread structure with a
saving area for its registers. errno is thread dependent and is stored at the top of
the user stack. Also, each thread has its own signal mask, but all threads within a
process will share the same signal handlers. Figure 25 illustrates the 1:1 model.

Figure 25. 1:1 Model

 2.4.1.3 M:N Model
In the M:N model, a user thread is not necessarily bound to a VP. Several threads
can share the same VP or the same pool of VPs. Each VP can be thought of as a
virtual CPU available for executing user code and system calls. A set of VPs can
be thought as a virtual multiprocessor.

A thread which is not bound to a VP is said to be a local scope because it is not
directly scheduled with all the other threads by the kernel scheduler.

A scheduler inside the library is responsible for dispatching the local scope threads
to the pool of VPs. Whenever it is possible, this scheduler does not enter the
kernel. In particular, the user thread context switch should be as fast as possible
and should not use any system call.

Threads in the kernel fall in two categories, those used only inside the kernel and
those representing a VP. All the kernel threads are scheduled by the kernel onto
the available CPU resources according to their class priority.

38 RS/6000 SMP Servers

When a thread needs a VP to execute a system call, it remains bound to this VP
until the system call is done, even if the thread has to wait for a resource inside the
kernel.

Figure 26 shows the M:N model implementation.

Figure 26. M:N Model

 2.5 Contention Scope
The contention scope of a user thread defines how it is mapped to a kernel thread.
There are two possible contention scopes: the system contention scope and the
process contention scope.

A system contention scope user thread is a user thread that is directly mapped to
one kernel thread. All user threads in a 1:1 thread model have system contention
scope.

A process contention scope user thread is a user thread that shares a kernel
thread with other (process contention scope) user threads in a process. All user
threads in a M:1 model have process contention scope, unless there is only one
user thread in the process.

In an M:N thread model, user threads can have either system or process contention
scope. In the previous figure, for example, the user thread on the left side has
system contention scope; the other ones all have process contention scope.
Therefore, an M:N model is often referred as a mixed-scope model.

 Chapter 2. Introduction to AIX V4.1 Threads 39

2.6 AIX V4.1 Kernel Support of Threads
AIX V4.1 has a multithreaded kernel. It supports a large number of threads
throughout the system (up to 256 K), and the maximum number of threads per
process is 1024.

In order to support the porting of code from OSF/1 1.1 and user level threads, new
functions have been added to AIX. The functions, which are said to be called from
the user environment, are System Calls. The functions that are said to be called
from the kernel environment are Kernel Services. This set of Kernel Services allows
developers of device drivers or kernel extensions to create and manage kernel
threads.

Locking services are also provided to assist the kernel developer working in the
multiprocessor environment.

2.7 AIX V4.1 Threads Library Implementation
The AIX V4.1 threads architecture was jointly developed by IBM and Bull. AIX
provides a threads library, called libpthreads.a. It implements a 1:1 model and
follows POSIX 1003.4a Draft 7 specifications. It is IBM's intent to implement an
M:N model later, and also to move to the official version of the POSIX standard
when it becomes approved.

Any program written for use with a POSIX thread library can easily be ported for
use with another POSIX threads library; only the performance and very few
subroutines of the threads library are implementation dependent. Figure 27 on
page 41 shows the AIX V4 Threads Implementation.

40 RS/6000 SMP Servers

Figure 27. AIX V4.1 Thread Architecture

 2.8 Threads Scheduling
In AIX Version 3.2, the scheduler dispatches processes. In AIX Version 4.1, the
scheduler dispatches threads (thread is the dispatchable unit for the scheduler).

Each thread created has its own priority, just like a process in AIX Version 3.2.
The priority is an integer value in the range from 0 to 127, where 0 is the most
favored priority and 127 the least favored. The priority of a thread can be reported
by the ps command. Priority level 0 cannot be used at the user level; it is reserved
for the system.

There are three scheduling algorithms that can be selected when creating a thread:

 1. SCHED_RR:

This is a round robin scheduling mechanism. The thread is scheduled for a
slice of time (10ms by default) with a fixed priority. It is put back in the run
queue of its priority after the end of its time slice. SCHED_RR policy is similar
to creating a fixed-priority, real-time process. The thread must have root
authority to be able to use this scheduling mechanism. SCHED_RR is a
preemptive mechanism.

 2. SCHED_FIFO:

This is a non-preemptive scheduling mechanism. A thread created with
SCHED_FIFO will run at a fixed priority and will not be timesliced. It will run to
completion unless it is blocked or unless it voluntarily yields control of the CPU.

 Chapter 2. Introduction to AIX V4.1 Threads 41

If several threads have the same priority, they will be dispatched in a FIFO
(First-In First-Out) order. A thread must also have root authority to use a
SCHED_FIFO scheduling policy.

Note: It is possible to create a thread with a SCHED_FIFO policy which has a
priority high enough that it could monopolize the processor.

 3. SCHED_OTHER:

This is the normal and default AIX scheduling policy. Thread execution is
timesliced, and the priority is dynamically modified by the scheduler according
to the time already spent on a CPU. The more CPU time consumed, the more
the priority is decreased.

In AIX, the time slice value (10ms by default) can be changed with the schedtune
command.

2.9 Threads Programming Considerations
Facilities are provided to the programmer to do many of the same things that can
be done with processes. These facilities include calls for thread creation,
termination, synchronization, communication, error recovery, and management.
When a thread is running in user space, it can make system calls just like in a
simple process. Thus, the programmer has the same level of control over how the
threads behave and what services they request of the system within the process
that they have always had for individual processes.

 2.9.1 Thread-Safe Libraries
In single-threaded processes there is only one flow of control. Therefore the code
executed by these processes do not need to be reentrant or thread-safe.
Reentrance and thread safety are two different concepts.

In a multithreaded process, two threads can call the same function at the same
time, or two threads can access the same resource at the same time.

To avoid data corruption when two threads call the same function at the same time,
functions must be reentrant. To avoid data corruption when two functions access
the same resource at the same time, functions must be thread-safe; that is, shared
resources must be protected by locks.

Therefore, a multithreaded program must use both reentrant and thread-safe
functions. Usually, a reentrant function is also thread-safe, and a non-reentrant
function is usually thread-unsafe.

We say that a library is thread-safe when multiple threads can be running a
function in that library without data corruption. All the functions within that library
must be both reentrant and thread-safe.

In the existing C library, most standard functions are reentrant, but some of them
are not. Equivalent reentrant functions are provided in a specific library. These
functions are characterized by the suffix _r and stored in the libc_r.a library.

These libraries are thread-safe in AIX V4.1:

 � libc_r.a
 � libC_r.a

42 RS/6000 SMP Servers

 � libnetsvc_r.a
 � libtli_r.a
 � libxti_r.a
 � libbsd.a
 � libpthreads.a

The library libc_r.a is needed by all multithreaded applications. This library,
besides being thread-safe, contains modifications to crt0 and fork to handle threads
creation. A variety of other calls were changed internally to handle threads
cancellation conditions.

 2.9.2 Threads Creation
Creating a thread is accomplished by calling the pthread_create subroutine. This
subroutine creates a new thread and makes it runnable.

When calling the pthread_create subroutine, you must specify an entry point
subroutine. This subroutine, provided by your program, is like the main subroutine
for the process. It is the first user subroutine executed by the new thread.

The pthread_create subroutine returns the thread ID of the new thread. The caller
can use this thread ID to perform various operations on the thread.

 2.9.3 Thread Attributes
When creating a thread, you can pass some attributes to the threads. These
attributes specify the characteristics of the thread. The attributes' default values fit
for most common cases.

The thread attributes are stored in an attribute object at the thread creation. This
object must be defined before creating the thread. An example of a thread attribute
is the scheduling policy of the thread (SHED_RR, SCHED_FIFO, SCHED_OTHER).

 2.9.4 Threads Synchronization
One main benefit of using threads is the ease for using synchronization facilities.
Three basic synchronization techniques are implemented in the threads library,
mutexes, condition variables, and joining.

Mutexes:

A mutex is a mutual exclusion lock. When a thread needs to access a shared
resource (a global variable for example), the thread must lock the mutex using the
pthread_mutex_lock subroutine. Since only one thread at a time can hold the lock,
if the lock is busy (hold by another thread), the thread will be blocked. To avoid
being blocked if the lock is busy and to continue running, the thread can issue a
pthread_mutex_trylock. If the lock is free, the lock is granted to the thread.
Unlocking the mutex is done through the pthread_mutex_unlock subroutine.

Condition Variables:

Condition variables allow threads to wait until some event or condition has
occurred.

 Chapter 2. Introduction to AIX V4.1 Threads 43

Condition variables use three objects: a Boolean variable (called a predicate)
indicating whether the condition is met, a mutex to serialize access to the Boolean
variable and a condition to wait for the condition.

Using condition variables requires some effort from the programmer. However,
condition variables allow the implementation of powerful and efficient
synchronization mechanisms.

The pthread_cond_wait subroutine causes a thread to wait until the condition
variable is signaled or broadcasted.

Joining:

Joining a thread means waiting for it to terminate. It can be seen as a specific
usage of condition variables.

The pthread_join subroutine provides a simple mechanism that allows a thread to
wait for another thread to terminate. In fact, the subroutine blocks the calling thread
until the specified thread terminates.

A thread cannot join itself. If a thread tries to join itself, a deadlock would occur and
would be detected by the library. However, two threads may try to join each other.
If this happens, the two threads will deadlock. This situation is not detected by the
library.

 2.9.5 Threads Termination
A thread automatically terminates when it returns from its entry point subroutine. A
thread can also explicitly terminate itself, or it can terminate any other thread in the
process.

A thread can exit by calling the pthread_exit subroutine. If a thread within the
process calls the exit subroutine, this will terminate the entire process, including all
its threads.

Therefore, in a multithreaded program, the exit subroutine should only be used
when the entire process needs to be terminated, as in the case of an
unrecoverable error, for example. The pthread_exit subroutine should be
preferred, even for exiting the initial thread.

Note that returning from the initial thread using the pthread_exit subroutine does
not terminate the process, only the initial thread. The process will be terminated
when all threads in the process terminate.

Also, a thread can terminate the execution of any other thread in the process in a
controlled manner by using the pthread_cancel subroutine. The target thread (that
is, the one that's being canceled) can hold cancellation requests pending in a
number of ways and perform application-specific clean-up processing when the
notice of cancellation is acted upon.

44 RS/6000 SMP Servers

 2.9.6 Forking Considerations
There are two reasons why traditional UNIX applications use the fork system call.

� One is to create a new thread of control within a same program. In a
multithreaded environment, this use can be replaced by the creation of a new
thread within the multithreaded process by using the pthread_create
subroutine.

� The other reason is to create a new process running a different program. In this
case, the fork system call is followed by an exec system call.

In a multithreaded system, the semantics of fork could be either to copy all of the
threads into the new process or to copy only the thread that calls the fork system
call. The POSIX 1003.4a Draft 7 specification, written as it was by the committee,
keeps both alternatives, making the first one optional.

In AIX Version 4.1, the child process is created with a single thread (the calling
thread). This new process contains a replica of the calling thread and its entire
address space at the time of the fork.

This means that the address space could contain mutexes held by threads that do
not exist in the child process. Likewise, the data protected by these locks might not
be in a consistent state. If the child process attempts to acquire one of these
mutexes, it could hang. If it attempts to use the data protected by such a mutex, it
could malfunction.

Therefore, any application using fork in a multithreaded application should only
execute safe operations between the call to fork and the call to exec to avoid
errors. Safe operations are those that either do not take locks or are known to be
safe by the application.

Simultaneous fork by different threads of the same process are serialized at the
kernel level.

 2.9.7 Threads Scheduling
The scheduling policy of a thread is a thread's attribute which must be stored in the
attribute object before the creation of the thread. This can be done by using the
pthread_attr_setschedpolicy subroutine.

As in AIX V3.2, the priority is process-based. The nice, setpriority and
getpriority subroutines work at the process level. If a multithreaded application
calls one of these subroutines which modifies the nice value for the process, this
change will affect all the threads in the process.

 2.9.8 Signal Management
Signals in a multithreaded environment is an extension of signals in a traditional
single-threaded environment. This allows compatibility with previous single-threaded
process. Programs handling signals and written for single-threaded systems will
behave as expected in AIX V4.1.

POSIX.4a Draft 7 defines the following model for signal handling in a multithreaded
program:

 Chapter 2. Introduction to AIX V4.1 Threads 45

� Signal handlers are per process: This means that when a thread installs a
signal handler, this handler is invoked when the signal occurs in any thread.

� Signal masks are per thread: This means that a thread can block a signal from
delivery, but this will not prevent other threads from receiving the signal.

� Single delivery of each signal: This means that a signal is delivered to one
thread. If more than one thread is interested in the same signal and this signal
occurs, then one thread will receive the signal.

There are two types of signals:

 � Synchronous signals:

In this case, the signal is the result of an event that occurs in the running
thread and is delivered synchronously with respect to that event.

 � Asynchronous signals:

The signal is the result of an event that may be external to the current thread
or process and is delivered at any point in the thread execution when such an
event occurs.

Signal handlers are installed using the sigaction function. This function is used to
establish actions to be taken upon receipt of a signal. The process maintains a list
of actions associated with each signal number. This list is shared by all the threads
in the process. If the action specifies termination, stop or continue, the entire
process is affected. The signals SIGSTOP and SIGKILL are never caught, ignored
or masked.

The pthread_kill function is used to send signals to a particular thread within the
process. If the receiving thread has blocked the signal, it remains pending on the
thread. Once a signal becomes pending for a thread, it will not become pending for,
or delivered to, another thread.

The sigwait function is used by the thread to wait synchronously for a set of
asynchronous signals. If more than one thread is using sigwait to wait for the
same signal, only one of these threads will return from sigwait with the signal
number.

2.9.9 Compiling Multithreaded Programs
In order to compile a multithreaded program, you must use the cc_r command
instead of the cc command or the xlc_r instead of the xlc command.

When compiling a multithreaded program, you must link at least the libc_r.a and
the libpthread.a libraries. You can look at the sample Makefile file which is
provided in Appendix B, “Sample Programs” on page 245.

2.9.10 Debugger Threads Support
The AIX V4.1 dbx debugger allows the developer to debug multithreaded
applications. The debugger has some new commands that allow to display
information on threads, condition variables, attributes and mutexes. These
commands are thread, mutex, condition, and attribute.

46 RS/6000 SMP Servers

2.9.11 A Multithreaded Program Sample
This multithreaded program is very short. It displays "Hello !" in both English and
French for five seconds. The initial thread (executing the main subroutine) creates
two threads. Both threads have the same entry point subroutine (the Thread
subroutine) but a different parameter. The parameter is a pointer to the string that
will be displayed. Some other multithreaded programs samples are provided in
Appendix B, “Sample Programs” on page 245.

Figure 28. Multithreaded Program Sample

2.9.12 AIX V4.1 Threads Programming Interface
Following are examples of subroutines provided by the threads library:

 � read_atfork
 � pthread_attr_destroy
 � pthread_attr_getdetachstate
 � pthread_attr_getinheritsched
 � pthread_attr_getschedparam
 � pthread_attr_getschedpolicy
 � pthread_attr_getscope
 � pthread_attr_getstackaddr
 � pthread_attr_getstacksize
 � pthread_attr_init
 � pthread_attr_setdetachstate

 Chapter 2. Introduction to AIX V4.1 Threads 47

 � pthread_attr_setinheritsched
 � pthread_attr_setschedparam
 � pthread_attr_setschedpolicy
 � pthread_attr_setscope
 � pthread_attr_setstackaddr
 � pthread_attr_setstacksize
 � pthread_cancel
 � pthread_cleanup_pop
 � pthread_cleanup_push
 � pthread_condattr_destroy
 � pthread_condattr_getpshared
 � pthread_condattr_init
 � pthread_condattr_setpshared
 � pthread_cond_broadcast
 � pthread_cond_destroy
 � pthread_cond_init
 � pthread_cond_signal
 � pthread_cond_timedwait
 � pthread_cond_wait
 � pthread_create
 � pthread_equal
 � pthread_exit
 � pthread_getschedparam
 � pthread_getspecific
 � pthread_join
 � pthread_key_create
 � pthread_key_delete
 � pthread_kill
 � pthread_mutexattr_destroy
 � pthread_mutexattr_getprioceiling
 � pthread_mutexattr_getprotocol
 � pthread_mutexattr_getpshared
 � pthread_mutexattr_init
 � pthread_mutexattr_setprioceiling
 � pthread_mutexattr_setprotocol
 � pthread_mutexattr_setpshared
 � pthread_mutex_destroy
 � pthread_mutex_getprioceiling
 � pthread_mutex_init
 � pthread_mutex_lock
 � pthread_mutex_setprioceiling
 � pthread_mutex_trylock
 � pthread_mutex_unlock
 � pthread_once
 � pthread_self
 � pthread_setcancelstate
 � pthread_setcanceltype
 � pthread_setschedparam
 � pthread_setspecific
 � pthread_testcancel
 � pthread_yield
 � sigthreadmask

48 RS/6000 SMP Servers

Chapter 3. SMP Servers Architecture

This chapter discusses the way the IBM SMP family of products are designed for
use in a commercial environment. It first highlights the technical issues in designing
an SMP system and then describes the actual IBM SMP hardware architecture.

3.1 SMP Design Issues in a Commercial Environment
There are many technical aspects you must look at when designing an SMP
system. You must have adequate input/output facilities, adequate memory size,
reliability, availability, serviceability, manufacturability, and so on. But a key
performance issue on which much attention must be lavished is the way that
processors perform memory communication, not just directly with memory but
among each other. That is the way processors communicate in an SMP.

The scalability of an SMP system (that is its ability to get much more performance
when adding a new processor) depends a lot on the way processors communicate
with each other and with the memory. Inter-processor communication is one of the
main performance and scalability factors of commercial symmetric multiprocessors.

 3.1.1 Memory Hierarchy
In Chapter 1, “Multiprocessing Concepts” on page 1, we introduced the memory
hierarchy. Since having caches improves data locality, most systems implement a
multilevel cache structure.

The memory hierarchy is composed of:

 � Processor's registers

� A first level of cache (L1), which is a very fast memory with a small capacity

� A second level of cache (L2), bigger than L1 but a bit slower

� The memory, slower than L2 but which can have a high capacity

 � Disks

Let us compare the different latencies of the different memory components in a
typical system equipped with a processor running at a clock rate in the range of 75
to 150 MHz. The latency is the time it takes to access data from the memory
component.

On a typical implementation, it will take one cycle to access data from L1 if there is
a cache hit in L1. It will take between 7 to 10 cycles to access data from L2 in case
of a cache miss in L1 and a cache hit in L2. It will take between 20 to 50 cycles to
get data from memory in case of a cache miss in L2. And finally, if you need to
access data from disk, it will take between 750 K to 1.5 M cycles to access data.

If we assume that one cycle is one second on a processor running at 150 MHz, it
will take 17 days, 8 hours and 40 minutes to access data from disk!

Clearly, in terms of performance, accessing data from disk must be avoided at all
costs. Thus, a commercial system will have to be designed in such a way that
misses to disks are avoided as much as possible. Since the memory latency is

 Copyright IBM Corp. 1995 49

much better than the disk's latency, the memory itself should be used as a huge
cache. So, there is a need for high memory capacity.

3.1.2 Scientific vs. Commercial Environment
When designing an SMP system it is important to understand the differences
between a commercial environment and a technical environment.

In an engineering/scientific environment, programs are often made of short loops
working with data organized by the compiler so they fit into the first level of cache
(L1). In such an environment, the hit ratio is very good and usually around 97%.
This means that 97 percent of the time, data will be found in L1 and 3 percent of
the time, the processor will have to fetch data out of L1, L2 (if there is an L2 cache)
or in the main memory. We will see later that the use of an L2 cache does not
increase the program speed by much.

In a transactional database environment, the hit ratio is not as good. Large
programs, frequent branches, widely dispersed data references, large numbers of
users, large number of processes, and high process switch rates all combine to
produce a high miss-rate for the L1 cache. Typically, in such an environment, the
hit ratio for L1 is around 85 percent. This means that 15 percent of the time, the
processor will have to fetch data from L2 (if L2 exists) or from the main memory.
We will see that in this case, an L2 cache helps to improve the performance of the
system because L2 cache latency is lower than the memory latency.

Figure 29 illustrates the memory hierarchy and the differences between a
commercial and a scientific environment in terms of hit ratios.

Figure 29. Scientific vs. Commercial Environment

50 RS/6000 SMP Servers

3.1.3 Typical Memory Cycles
In order to better understand the importance of the memory hierarchy's
performance, let us look in detail at the number of memory cycles required for a
typical processor to access data from the different memory components.

Note that in the rest of the document, data can be instructions (the code of the
program itself) or real data. In a commercial environment, you will mostly find
instructions in the cache because commercial applications' codes are big. In a
technical environment, you will find both instructions and data.

Figure 30. Typical Memory Cycles

In Figure 30, you can see that when there is a hit in L1, it takes only one cycle to
access the data.

� If the system does not have any L2 cache, it takes 14 cycles on a uniprocessor
to load data from the memory to the processor and 23 cycles for an SMP.

� If the system has an L2 cache, it takes 7 cycles to access data if it is already in
the L2 cache (cache hit in L2), but it takes 18 cycles for a UP and 27 cycles for
an SMP to access data if there is also a cache miss in L2. Note that there is a
two-cycle delay between the processor and L2 or the memory.

 Chapter 3. SMP Servers Architecture 51

Figure 30 shows the memory cycles required for getting data from the memory
subsystem on a typical system. A 3:2 clocking rate on the processor means that
when the processor runs at 100 MHz, the system bus runs at 66 MHz. The 3:2 is
the frequency ratio between the processor frequency and the system bus
frequency. A Phase Lock Loop (PPL) technology is used to match the bus and
processor operating frequencies.

 3.1.4 Miss-Rate Penalty
Since one of the main differences between a commercial environment and a
scientific environment is the higher miss rate, it is important to understand the effect
of a high miss rate on the performance of a system.

Let us take a 100 MHz processor without an L2 cache. Let us also assume that the
measured infinite cache CPI (Cycles Per Instruction) is 1.3 on that processor. The
infinite cache CPI is a gauge that gives the relative efficiency of the processor on a
specific workload. Its value depends on the workload as well as on the processor
itself. The main advantage of using Cycles Per Instruction (CPI) is that it is additive
with other CPI components. Depending on the miss rate, each component (L1, L2
and memory) will add its number of CPI. This helps in estimating the overall
number of CPI for a given workload and thus in estimating the power of the system
on that workload.

Figure 31. Miss-Rate Penalty

In an engineering and scientific environment, L1 miss rate is around three percent.
This means that three percent of the time you will need 14 cycles on a UP to
access your data from the memory. In this case, the total number of CPI will be:

1.3 + ð.ð3x14x1.3 = 1.3 + ð.55 = 1.85 CPI

52 RS/6000 SMP Servers

Note: The first 1.3 value is the infinite cache CPI, which can be measured, while
the second 1.3 value is the average number of memory requests per instruction.
This second value comes from typical instruction mixes where about 30 percent of
instructions are either LOADs or STOREs. Each instruction fetch consumes one
memory reference; adding in 0.3 memory references due to LOADs and STOREs
results in an average value of 1.3 for the average number of memory references
per instruction.

At 100 MHz, the machine will deliver 54 MIPS (millions of instructions per second).

In a commercial environment where the miss rate is usually around 15 percent, it
will take 14 cycles for a UP to access data from the memory. For an SMP, you will
need 23 cycles to access data from the memory.

Therefore, for a UP, the number of CPIs will be:

1.3 + ð.15x14x1.3 = 1.3 + 2.73 = 4.ð3 CPI

At 100 MHz, the UP system will deliver only 24.8 MIPS. The higher miss rate
lowers the performance of the system by 54 percent.

For an SMP, the number of CPIs will be:

1.3 + ð.15x23x1.3 = 1.3 + 4.485 = 5.785 CPI

At 100 MHz, the SMP system will deliver only 17.3 MIPS per processor. Therefore,
a high miss rate lowers the performance on both UP and SMP systems. SMPs
have a disadvantage due the higher number of cycles required to access data from
memory. Figure 31 on page 52 shows the miss-rate penalty for UP and SMP
systems which do not have an L2 cache.

3.1.5 Effect of L2 Cache
What happens if you add an L2 cache to a UP or to an SMP system. Adding an
L2 cache has a different effect according to the environment. Let us assume that
in case of an L1 cache miss, the probability of finding the data in L2 is 80 percent.
This means the miss rate is 20 percent in L2.

 3.1.5.1 Scientific Environment
On a UP system equipped with an L2 cache, it takes seven cycles to get data from
L2 and 18 cycles to get data from the memory. We can calculate the average
number of additional cycles per instruction needed in case of an L1 cache miss.

ð.ð3xð.8x7x1.3 + ð.ð3xð.2x18x1.3 = ð.22 + ð.14 = ð.36 CPI versus ð.55

Adding an L2 cache to a UP system only saves 0.19 CPI in a scientific
environment. An L2 cache does not significantly improve the performance of the
system in a scientific environment (60.2 MIPS instead of 54.0 MIPS).

 3.1.5.2 Commercial Environment
On an SMP equipped with an L2 cache, it takes seven cycles to access data from
L2 and 27 cycles from the memory. Thus, with a 15 percent L1 miss rate and a 20
percent L2 miss rate, the number of additional cycles per instruction due to the 15
percent L1 miss rate is:

ð.15xð.8x7x1.3 + ð.15xð.2x27x1.3 = 1.ð9 + 1.ð5 = 2.14 CPI versus 4.485

 Chapter 3. SMP Servers Architecture 53

In this case, the L2 cache has a great effect and can increase the performance of
the system up to 67 percent. Figure 32 on page 54 shows the L2 cache effect for
a UP in a scientific environment and the L2 cache effect of an SMP in a
commercial environment.

Figure 32. Effect of L2 Cache

3.1.6 Processor Speed Effect
What happens to the system if we double the processor speed? Within the
processor itself, with its L1 cache, the number of CPIs will be the same as
previously (note that this is true if L1 is embedded in the processor chip itself).
Thus, the running time will be divided by two if all data is found in L1. But in case
of a cache miss, because the L2 cache and the memory latencies are still the
same, L2 and the memory will add more CPI. As a matter of fact, L2 cache latency
and memory latency are technology dependent. It is very difficult, and very
expensive, to increase the speed of L2 and memory.

Therefore, for a defined L2 and memory technology, the overall time needed to run
a specific workload will not be divided by two if you double the processor speed.

Doubling the processor speed will only yield a 23 percent improvement in
performance. If the processor speed is multiplied by four, the improvement will be
38 percent. If the speed is multiplied by eight, the improvement will be 48 percent.
Figure 33 on page 55 illustrates the effect of doubling the processor speed.

54 RS/6000 SMP Servers

Figure 33. Processor Speed Effect

The conclusion is that, in a commercial environment where cache misses ratios are
very high, the performance of the memory subsystem is key . Performance and
scaling can be achieved by improving the memory subsystem performance.

3.2 SMP Hardware Architecture
This section introduces the hardware design of the SMP systems.

3.2.1 SMP Design Rationale
All the IBM SMP design rationale is based on the fact that the memory subsystem
is key to the performance and the scaling of the system.

IBM SMP design is the result of extensive research into the performance
characteristics of today's commercial applications. Typically, this includes
manipulating vast amount of data and sharing data between many users and/or
programs. At a programmatic level, this is known as a large data working set with
low data locality. If such an application is running on an SMP system, two
particular effects will be noticed.

� Due to the low probability of finding the appropriate data already in the cache,
there will be a high level of data traffic generated between system memory and
CPU caches.

� In an SMP system, the default behavior of the scheduler is to execute the next
runnable thread on the first processor to become free. This lateral process
migration causes a dynamic increase in the level of data traffic between CPU

 Chapter 3. SMP Servers Architecture 55

caches. The physical implementation of cache coherency therefore becomes a
key to global system performance.

Therefore, the memory subsystem will require high-speed caches, large caches, a
high bandwidth between processors and memory, a high bandwidth between the
processors themselves (for cache-to-cache transfers), and a high bandwidth
between the processors and the I/O subsystem.

Traditionally, in SMP architecture, the interconnection between the CPU cache and
global memory is met by means of a common memory bus shared among various
resources. This is typically the most stressed point of the architecture and tends to
become saturated as the number of processors in the system increases. This
situation occurs because the data traffic between caches and memory increases
along with cache-to-cache transfers, and they all compete for bandwidth on the
memory bus.

3.2.2 Why a Switch?
If all the processors are tied together using a bus, you will find different types of
activities on the bus: the snooping activity, the addressing and data transfer
between processors or between a processor and the memory, and the data transfer
between a processor and the I/O subsystem.

We have seen previously, in Chapter 1, “Multiprocessing Concepts” on page 1,
that snooping solves a major problem in SMP design, cache coherency. It keeps
caches consistent. Whenever a processor modifies data in its own cache, it
broadcasts that information to the other processors so they can invalidate the
corresponding memory address in their cache. Also, whenever a processor needs
data that is not in its local, fast-cache memory, it broadcasts that fact throughout
the system bus. The cache that has the data gives it to the requestor via the bus
and while doing so, notifies the memory (which has not found anything yet because
it is slower to quit trying). It is possible that megabytes of data are moved from one
cache to another cache.

In a snoopy-bus scenario, a bus must be used twice for each memory load request:
once to make the request and again to return the data. Both operations cannot
take place at the same time. When the number of processors increases, the
snooping activity increases as well. When the workload on the system increases,
the data traffic increases as well. Therefore, a bus can be a limiting factor in terms
of performance and scaling.

The IBM SMP is designed in a different way. There is still a bus for the snooping
activity and the addressing. But a new component has been added for data
transfers. That component is a switch called a Data Crossbar (DCB). The switch
allows point-to-point connections between a processor and another processor or
between a processor and the memory. It also allows several simultaneous
transfers.

With such a technology, once the data is found, a point-to-point transfer can be
done from the source to the requestor through the switch. While the switch is busy
doing the data transfer, the bus is free for another processor request for data.

A switch has the following advantages:

� It removes work from the snoopy bus.

56 RS/6000 SMP Servers

� It can transfer data among several units simultaneously.

� Connections are point-to-point, which allows a greater speed.

Figure 34 illustrates the use of the switch for data transfers.

Figure 34. Using a Switch for Data Transfer

3.2.3 SMP Architecture Description
Figure 36 on page 60 describes the SMP architecture. This figures shows an SMP
system with four CPU boards (each CPU board having two processors), the Data
Crossbar switch, the sixteen memory modules, the System Memory Controller
(SMC), and the I/O Controller.

The data path between a CPU board and the crossbar switch is 64 bits wide. The
data path between the crossbar and the memory is 256 bits wide. The I/O
Controller is able to drive two independent MCA buses, each operating at 160 MB/s
(160 MB/s is the peak rate; each MCA bus can sustain 112 MB/s). The memory is
totally shared by all of the processors. Each processor can access any memory
modules through the Data Crossbar switch.

 Chapter 3. SMP Servers Architecture 57

Figure 35. SMP Architecture

 3.2.4 Memory Subsystem
We said previously that the memory subsystem is key. The memory subsystem is
in fact composed of the System Memory Controller (SMC), the Data Crossbar
(DCB) and the memory array (or physical memory).

In order to improve the overall performance of the memory subsystem, each
component has to be improved. Let us see what kind of technique is used.

3.2.5 Memory Array Interleaving
One of the techniques used to improve the memory latency is to interleave the
memory. This is not specific to the IBM SMP, this technique is generally used by
the industry. But, the IBM SMP implements a very high level of interleaving.

Following is an explanation of memory interleaving:

Let us suppose that the system has four 256 MB memory modules. Without any
interleaving, each memory module would store a contiguous block of physical
address space. In our example, the first module would store data for physical
addresses 0x0 through 0xFFFFFFF; the second would store 0x10000000 through
0x1FFFFFFF, and so on.

While this is simple, the main disadvantage is that accesses to adjacent addresses,
which often happen within a short time due to spatial locality, will go to the same
memory module. The memory module will be busy and will not be able to handle
the request. Busy modules will increase the overall memory latency.

58 RS/6000 SMP Servers

To overlap the memory cycle times better, memory is interleaved such that address
space is striped across the modules. In this case, the amount of contiguous
memory stored in a module is usually equal to the cache line size or the cache
sector size. Since the cache sector is 32 bytes in our SMP implementation, the
data for physical addresses 0x0 through 0x1F would be stored in the first module,
addresses 0x20 to 0x3F in the second, addresses 0x40 to 0x5F in the third, and
addresses 0x60 to 0x7F on the fourth. Then, the addresses would wrap around to
the first module again for addresses 0x80 to 0x9F, and so on. The exact way in
which the physical address space is interleaved among the modules is invisible to
the software.

In summary, memory interleaving is a technique developed to allow simultaneous
access to adjacent areas of memory. When interleaving is done with four modules,
we say it is a four-way interleaving.

The IBM SMP system has a very high level of interleaving. According to the
memory configuration, interleaving can be a one-way, two-way, four-way, eight-way,
and sixteen-way.

The most important point here is that interleaving is automatically optimized by the
system at the boot time, according to the memory configuration. Interleaving is
done down to the cache sector level that is 32 bytes. This ensures minimum
contention within the memory subsystem between processors to guarantee
minimum latency.

In the IBM SMP, the memory array is divided into memory banks. A memory card
can have one, two or four memory banks. The interleaving level (one-way, two-way,
four-way, eight-way, sixteen-way) depends on the number and the size of banks
installed on the system, not on the number of memory cards. Since the IBM SMP
can have up to four memory cards, a system can reach up to sixteen banks. The
size of a bank can be 32 MB, 64 MB or 128 MB. Also, the architecture already
provides support for 256 MB and 512 MB banks that will use future 64 Mb memory
technology.

A system can also have banks with different sizes. In this case, the system will
automatically optimize the interleaving scheme.

Figure 36 on page 60 shows an example of a system having two 32 MB banks
and two 64 MB banks. In this case, the system will create different zones; one will
be four-way interleaved, the other one two-way interleaved. Note in this example
that two sets of memory chips participate in two different interleave zones.

 Chapter 3. SMP Servers Architecture 59

Figure 36. Interleaving Optimization

Again, the interleaving technique on the IBM SMP system is extremely advanced.

3.2.6 Crossbar Main Characteristics
The Non-blocking Data Crossbar switch provides four CPU ports in the J30 and
R30 and two CPU ports in the G30. One extra port is dedicated to the I/O
subsystem, allowing up to two I/O channels.

The crossbar has been designed to support three generations of PowerPC
processors (601, 604 and 620) with a scalability to eight 620 processors. This
means that the crossbar bandwidth can support up to eight PowerPC 620
processors.

3.2.7 Crossbar Switch Interconnection
The idea of a crossbar is to provide multiple buses that can be in use
simultaneously in order to reduce contention and to provide multiple memory banks
that can be operated in parallel, which increases overall memory bandwidth.

Each circle in the crossbar array represents a switch that can be turned on or off by
the hardware to connect the two intersecting buses temporarily. Normally, all
switches are off until a processor or I/O device needs to access the memory or
another processor.

For example, if processor card 1 needs to transfer data to memory, the switch is
turned on. When the access is complete, the switch is turned back off.

60 RS/6000 SMP Servers

If there are other processors that need to access the same memory bank at the
same time, then the crossbar hardware arbitrates this request in much the same
way as a standard bus, allowing one memory access at a time to the memory
bank.

Figure 37. Crossbar Switch Interconnection

Figure 38 on page 62 shows the interconnection between the I/O subsystem and
the memory, CPU cards 1 and 4 and CPU cards 2 and 3.

 Chapter 3. SMP Servers Architecture 61

Figure 38. Crossbar Switch Interconnection

 3.2.8 Crossbar Architecture
Figure 39 on page 63 shows the architecture of the crossbar in a configuration
with four CPU cards (eight processors).

62 RS/6000 SMP Servers

Figure 39. Crossbar Architecture

The crossbar data path width at the memory array level is 256 + 32 bits (32 bits
used for ECC), while the data path width for each CPU and I/O is 64 + 8 bits (eight
bits for parity).

At the memory level, the system can transfer 32 bytes every three cycles from the
memory to the crossbar and can sustain such a throughput.

At the CPU card level, the system can transfer eight bytes (64 bits) every cycle,
and can sustain that rate.

When a transfer from the memory to a CPU occurs, the crossbar establishes a
connection between the memory bank and the CPU card. Once 32 bytes are
transferred from the memory to the crossbar, it takes four cycles to transfer these
32 bytes to the processor card. A second transfer from the memory to another
CPU card can start while the first transfer is being accomplished. There is a one
cycle overlap between both memory to CPU transfers.

The fully overlapped, non-blocking Data Crossbar switch (DCB) provides each
processor card with its own direct path into memory. In an eight-way system, each
of the four processor cards can access memory concurrently.

The DCB operation is driven by a command bus provided by the SMC (System
Memory Controller) to establish the proper data path interconnections between data
clients.

 Chapter 3. SMP Servers Architecture 63

The non-blocking crossbar switch carries data between processor caches and
memory and between caches and caches. Its four-deep pipelined architecture is
used to provide the highest degree of concurrence in memory and cache
operations and operates in conjunction with the data crossbar.

3.2.9 Crossbar Performance Characteristics
The internal clock used throughout the system is 75 MHz (in the actual G30, J30
and R30 implementation).

Since the physical memory interface is 32 bytes wide, and since it is possible to
transfer 32 bytes every three clock cycles, the sustained transfer rate at the
memory level is 800 MB/s.

To be able to reach an 800 MB/s rate, you need at least four banks of memory
because each memory bank has a bandwidth of 267 MB/s. So, you will have to
populate your system with four banks to have the full capability. Two two-bank
cards or one four-bank card is required.

The 800 MB/s rate for memory is maintained by the use of buffers in the switch
which enable several operations to be pipelined.

Each CPU port is eight bytes wide and is capable of transferring eight bytes per
clock cycle; thus the sustainable rate at the CPU card level is 600 MB/s.

If the system is equipped with eight processors (four CPU cards), you can
simultaneously have two memory-CPU card transfers and one cache-to-cache
transfer (called intervention). See Figure 39 on page 63. Each memory-CPU card
transfer has a 600 MB/s rate. These two transfers overlap during one cycle. This
gives a 1200 MB/s peak rate for the memory-CPU card transfers. At the same time,
a cache to cache transfer can occur between processor card 3 and 4 at a 600
MB/s rate.

Therefore the crossbar peak rate is 1800 MB/s.

Note: This peak rate can be obtained when the system is equipped with four CPU
cards. It will not be reached on a G30, which is limited to four processors (two CPU
cards).

3.2.10 System Memory Controller
The System Memory Controller provides systemwide arbitration functions; it
orchestrates all bus and crossbar operations by issuing crossbar commands at
appropriate times so that data transfers occur synchronously with system bus
control operations. It issues simple commands, such as transfer port A to port B to
the crossbar. The crossbar blindly executes these commands with fixed latencies.

 3.2.11 Crossbar Operations
This is a description of the different crossbar operations. Figure 40 on page 66 is
an illustration of these operations. Note that in this description, each component
connected to a port of the crossbar is referred to as a node.

� (a) Memory mode:

64 RS/6000 SMP Servers

A processor or an I/O node is routed to the Memory Array (MA). This is the
interconnection used to support memory read or write operations between a
processor and the memory or between the I/O subsystem and the memory.

� (b) Intervention - RWNITM:

This operation happens when a processor wants to read data with no intent to
modify it (RWNITM: Read With No Intent to Modify) and gets a modified snoop
response. In other words, another processor has that data in its own cache and
has modified it. Since the operation is a RWNITM, the processor will take data
from the other processor cache, and the memory will be updated. Data sourced
from the cache-line owner is presented to the reading agent and written back to
the MA.

If the reading agent and intervening CPU are within the same node (same CPU
card), data is looped back at node level and written back to memory.

� (c) Intervention - RWITM:

A processor or an I/O node (reading node) is routed to another processor or
I/O node. This is the case in which a RWITM (Read With Intent To Modify)
operation gets a modified snooped response; data sourced from the cache-line
owner is presented only to the reading agent and is not written back to
memory. Since the reading node wants to modify the data, updating the
memory is not necessary.

� (d) Programmed I/O mode - PIO:

A processor node is routed with an I/O node. This is the case of PIO
operations; data is exchanged just between a processor and an I/O agent.

� Memory Mapped I/O mode:

A processor node is routed with I/O nodes (slave nodes) which are mapped
into the memory space. Examples include boot ROM (Read Only Memory),
NVRAM (Non-Volatile Random Access Memory), system registers, and so on.

Intervention is the action taken when the owner of modified cached data detects a
snoop request for that data. The intervention is signalled by the modified MESI
state response and followed by the data being sent to the requester and,
potentially, to memory.

 Chapter 3. SMP Servers Architecture 65

Figure 40. Crossbar Operations

3.2.12 Crossbar Advantages Summary
This is a summary of the crossbar advantages.

A crossbar allows point-to-point connections between its different ports (CPU cards,
I/O) and the memory array in two directions. Thus the bandwidth is not shared.
When a transfer occurs between one port and the memory array, all the bandwidth
is available. Several transfers occur at the same. For example, two CPU-to-memory
transfers can occur at the same time as two CPU-to-CPU transfers.

While several transfers occur at the same time, the crossbar provides a high
degree of overlap; this means that the instantaneous bandwidth can be very high
(1800 MB/s).

When transferring data through a bus, the latency depends on how much the bus is
loaded. With a crossbar, the latency is fixed, meaning that loading data from
memory takes a determined amount of time.

Since the bandwidth is very high and latency is fixed, the crossbar provides the
IBM SMP systems with a very high scalability factor.

 3.3 Architecture Implementation
Figure 41 on page 68 shows the physical implementation of the SMP architecture.
Following is a description of the different components:

� Multiprocessor Board (MPB):

66 RS/6000 SMP Servers

The base Multiprocessor mother Board (MPB) acts as a back-plane to host
CPU boards, to memory boards and to one I/O daughter board (IOD).

� Processor Daughter Board (CPU) Module:

Each PowerPC 601-based CPU module includes two microprocessors and their
associated caches. L1 cache is on the processor chip itself, while L2 is on the
board. There is physically one L2 cache per processor. Each L2 cache is
divided in two parts: the TAG which keeps track of the physical address of the
data stored in L2 and the L2 cache itself, containing data.

It will be possible to upgrade a system based on 601 processors to one based
on 604 processors by substituting the CPU boards.

Note: Mixed 601 and 604 configurations are not supported.

� Input/Output Daughter Board (IOD):

The IOD acts as the bridge between the MCA busses and the CPUs or the
memory array. Two MCA buses operating a 160 MB/s (peak rate) are
supported. Also the IOD hosts the SystemGuard service processor and native
I/O (serial ports, parallel ports and so on).

� System Memory Controller (SMC):

The SMC acts as the Multiprocessor Board System Bus (MPB-SysBus) arbiter
for four processor nodes and the two IONIAN address bus requests. It also
acts as the MPB-SysBus snoop Status/Request collator and dispatcher, as the
data path controller for the four Data Crossbar (DCB) chips and as a dynamic
RAM controller.

� Cache Controller Address (CCA):

The CCA (one chip) manages the entire address/control bus protocol, directly
interfacing the processor address/control bus and L2 address/control for both
processors on the same CPU board.

� Cache Controller for Data (CCD):

The CCD (four chips) allows the processor to access the L2-cache and drives
the 64-bit data bus to the Data Crossbar (DCB).

� L2 TAG

The L2 is a storage array which maps a cache directory tag (a tag is an entry
in a cache line) and its associated cache line.

� L2 Static Random Access Memory (SRAM):

The L2 SRAM is a Static Random Access Memory. The L2 SRAM contains the
actual data stored in L2. The L2 SRAM for the first processor is on one side of
the processor card, while the second L2 SRAM, for the second processor, is on
the other side of the card. The L2 SRAM is made with nine chips (64 K x 18 or
32 K x 18), depending on the size of the cache.

Note that the 620 chip will include an embedded L2 cache controller that
interfaces to the SRAM chips.

� Data Crossbar (DCB):

The DCB is integrated in multiple (4) ASICs (Application Specific Integrated
Circuits, 4 x 16 bit slice). It functionally interconnects th MPB_SysBus
(Multiprocessor Board System Bus) data path to the memory subsystem, to the
CPU boards and to the I/O board.

 Chapter 3. SMP Servers Architecture 67

Figure 41. SMP Architecture Implementation

3.4 Memory Array Characteristics
The memory array bandwidth is 288 bits wide (256 + 32 ECC). A system can have
up to 16 memory banks. Banks of memory use industry standard JEDEC (Joint
Electronic Device Engineering Council) 1M, 2M and 4M x 72 bit ECC SIMMs
(Single In-Line Memory Modules). These memory modules use 4 Mb or 16 Mb
memory chips.

Memory does not need to be in pairs . In the uniprocessor, where memory has
to be in pairs or quad, this provides a memory bandwidth of 160 or 320 bits.

The SIMMs memory used on the SMP systems are 72-bit SIMMs, whereas the
128/256MB SIMMs in the uniprocessor are 80-bit SIMMs. However, these
uniprocessor SIMMs can be used on SMP machines, but a new memory card is
required to be able to plug in these SIMMs modules.

When the old 128/256 MB SIMMs are used on a SMP, the last eight bits are
ignored.

The memory subsystem is able to perform four memory error corrections (ECC) at
the same time. The BUMP processor will wake up AIX if there is an
address/memory failure syndrome, and log the error and location.

The memory array consists of rows and banks of memory. A memory board is
considered as a row. Up to four boards are supported in the system, except on the
G30. Each board is considered as a row of the global memory array. Memory
boards are increments of one.

68 RS/6000 SMP Servers

A row is made with one, two or four banks of SIMM memory. Up to 16 banks (from
four memory boards) are supported in the system.

Different memory boards have a different number of memory banks:

In the G30:

� The 32 MB, 64 MB and 128 MB cards have one bank.

� The 256 MB card has two banks.

� The 512 MB card has four banks.

In the J30 and R30:

� The 64 MB, 128 MB and 256 MB cards have two banks.

� The 512 MB card has four banks.

Note: Different card sizes can be mixed in the same system (except on the G30
that has only one memory slot).

If a memory bank is failed (memory error that cannot be corrected), the memory
board can be degraded to run without that memory bank.

The interleaving scheme between banks and rows (low interleave and/or high
interleave) is determined by firmware and controlled by the SMC according to
memory board's configuration. The best interleaving scheme is adopted when there
are two, four, eight, or 16 banks of homogenous DRAMS.

 Chapter 3. SMP Servers Architecture 69

70 RS/6000 SMP Servers

Chapter 4. SMP Servers Hardware Features

This chapter introduces the main hardware features of the IBM family of SMP
servers. It will highlight some of the hardware specifics that might help you in
configuring or implementing these systems.

4.1 IBM RISC System/6000 SMP Servers Family
The IBM RISC System/6000 SMP servers family consists of three models: G30,
J30 and R30. The G30 is a mini-tower model, the J30 a deskside model and the
R30 a rack drawer. All these servers are based on the PowerPC technology. They
are supported by AIX V4.1.2 or later.

The three SMP models incorporate a technology which is new for the IBM RISC
System/6000 product line: the switch or Data Crossbar (DCB). This technology
provides a dedicated high-performance communication path between the
processors and the main memory. It also allows a very high bandwidth between the
processors and the main memory, and this results in a very high scalability factor.

The SMP family also introduces a service processor called SystemGuard. This
service processor has its own firmware. It is responsible for controlling the SMP
hardware at boot time or when AIX is running. It also allows local or remote
power-on/off, diagnostics, reconfiguration and maintenance of the system. For
more information on SystemGuard, refer to Chapter 5, “SystemGuard” on page 99
in this redbook.

Another feature offered with the SMP family is the Cluster Power Controller (CPC).
Even though the CPC has been introduced with the SMP models, this feature is not
specific to the SMPs. In the case of SMP systems, the CPC is a solution which
allows you to have one BUMP Console and one Service Console for several SMPs.
This allows the system administrator to centrally administrate several SMP systems
and centrally control their power.

The SMP systems are intended to be commercial servers. Only the G30 can
support a graphic display, a keyboard and a mouse. The J30 and the R30 do not
support keyboard, mouse and graphic displays. On these systems, graphical
applications can be displayed through the use of an Xstation.

All three models have three serial ports. One port can be dedicated to a modem
connection, allowing remote support. The G30, like the C10, has only two physical
ports; so the first port can be split into serial port S1 and S2 through a splitter
cable.

4.2 Model G30 Server
The IBM RISC System/6000 Model G30 is the smallest SMP system in the SMP
family. It comes in a mini-tower cabinet.

The G30 comes standard with two 32-bit PowerPC 601 processors and 32 MB of
memory. Despite its small size, the G30 can be made more powerful by adding two

 Copyright IBM Corp. 1995 71

more CPUs (one more processor card), for a total of four CPUs, and by increasing
the memory size, for a total of 512 MB of memory. The system has one memory
slot and two processor card slots (each processor card having two processors).

It has a total of six microchannel slots, five of which are available for optional
adapters.

Figure 42. IBM RISC System/6000 Model G30 SMP Server

Because of its small size and compactness, the G30 can be configured as a
stand-alone desktop system or as a high-performance server in a commercial
environment. The G30 model is a type 7012, which is the same type as the
desktop models, such as the 3xx series.

 4.2.1 Standard Configuration
The standard configuration for the IBM RISC System/6000 Model G30 is the
following:

� Two 75 MHz PowerPC 601 processors

� 0.5 MB L2 cache per processor

� 32 MB of memory, but a 64 MB card can be selected at no charge instead of
the 32 MB card

� One SCSI-2 Fast/Wide SE controller

� Five available microchannel slots

� 1.1 GB SCSI-2 disk, but a 2.2 GB disk can be selected at no charge instead of
the standard 1.1 GB

� Quad-speed SCSI-2 CD-ROM drive

� 1.44 MB, 3.5 inch diskette drive

72 RS/6000 SMP Servers

 4.2.2 Hardware Features
Following are the hardware features and expansion capabilities of the IBM RISC
System/6000 Model G30.

� Two or four 75 MHz PowerPC 601 processors

 � Caches:

– Level 1 cache (instructions/data): 32 KB per processor

– Level 2 cache (instructions/data): 0.5 MB per processor

 � Memory:

– One slot of memory

– Memory bus width: 256 bits

– 72-bit JEDEC SIMMs

– 32 MB, 64 MB, 128 MB, 256 MB and 512 MB cards available

– Up to 512 MB

� Standard SCSI-2 Fast/Wide controller

� Internal storage capacity: 1.1 GB to 17.9 GB

Note: This internal storage capacity can be reached when the second
processor card is replaced by a disk tray supporting two disks. A four-way G30
supports up to 13.5 GB internally.

 � Storage/media bays:

– Two full-height, 3.5 inch disk bays

– Two half-height, 5.25 inch media bays

� Disk drives available:

– 1.1 GB SCSI-2

– 2.2 GB SCSI-2

– 4.5 GB SCSI-2

 � Tape drives:

– 5 GB, 8 mm

– 4 GB, 4 mm

– 1.2 GB, 1/4-inch cartridge

� Internal diskette drive: 1.44 MB, 3.5 inch

� One microchannel bus at 80 MB/s with six slots

� Five available microchannel slots (the sixth slot is taken over by the standard
SCSI-2 F/W controller).

� One SCSI-2 F/W for external devices

� Three serial ports (S1/S2 are physically in one 25-pin port which is split by a
splitter cable, part number 31F4126). This splitter cable is normally shipped
with the system.

� One parallel port

� One power control port (RS-485 for connecting the G02 expansion unit)

 Chapter 4. SMP Servers Hardware Features 73

4.2.3 Additional Information on the G30 Server
Figure 43 is a picture of the G30.

Figure 43. Model G30 SMP Server

The Operator Panel is different from the uniprocessor systems. It has a 2 x 16-digit
display used for:

� Event indications and problems reporting during Power-On tests and
configuration methods

� Progress and command indication when loading diagnostics

� Problem reporting during diagnostics when a console is not available

� Checkstop when the machine cannot recover from a checkstop

� Power problem reporting

� Runtime problem reporting

The G30 has the following dimensions:

� Height: 450 mm (17.5 inches)

� Depth: 613 mm (28.2 inches)

� Width: 173 mm (6.9 inches)

Figure 44 on page 75 gives an internal view of the G30 once the covers have
been removed. The procedure for removing covers is the following:

� Remove the front cover.

� Remove the side cover by first removing the retaining screws located on the
front of the side cover.

74 RS/6000 SMP Servers

� Remove the rear cover by first loosening the retaining screws located inside the
unit in the rear.

Figure 44. Internal View of the Model G30 Server

You can see in this picture that the G30 has two physical locations for processor
cards (position Q and P). Note that an additional two-disk bay can be added in lieu
of the second processor card (card P) using FC #6510.

On top of the system are located two media bays. The upper media bay (position
A) can be used for an optional disk. It requires FC #6511. Note that this feature
code is added automatically when more then two disks are requested.

Thus, by using FC #6510 and #6511, you can have up to five disks installed on the
machine.

Figure 45 on page 76 shows the rear of the G30.

 Chapter 4. SMP Servers Hardware Features 75

Figure 45. Rear View of the Model G30 Server

You can see that the G30 has three ports located at the back:

� One 9-pin serial port

� One 25-pin serial port

� One parallel port

The 25-pin serial port can provide two EIA RS-232 ports by installing a splitter
cable. This splitter cable has the part numbers 31F4126 or 31F4590 (FC #3107).
Normally the S1 port is used to connect the BUMP (Bring Up Micro-Processor)
Console. The S2 port is used to connect a regular ASCII terminal or a remote
Service Console.

The BUMP Console, connected to the S1 port, is normally used as the system
console. This console can be a local terminal, a remote terminal or a terminal
emulator. It also allows the performance of offline maintenance.

The Service Console, connected to the S2 port, allows support personnel to
remotely perform diagnostics or maintenance from AIX or from the SystemGuard
utilities, such as the SystemGuard MAINTENANCE MENU or the SystemGuard
STAND-BY MENU. It also allows remote power control.

For more information on how to use the BUMP Console and the Service Console,
refer to Chapter 5, “SystemGuard” on page 99 in this redbook.

In the G30, all the internal media and disk devices have fixed SCSI addresses.
Following are the SCSI device locations and their addresses.

76 RS/6000 SMP Servers

Figure 46. SCSI Device Address and Location for the G30 Server

Note: Dummy blank plates should be used to protect the unit from dust and debris
if an adapter is removed from a slot.

4.3 Model G02 Expansion Cabinet
On the G30, the G02 expansion unit is used to increase the number of media
devices and/or hard disks in the G30.

All hardware components inside the disk expansion unit are accessible from the left
side after removing the expansion-unit covers.

The expansion unit is similar in design to the G30. A G30 can have up to four G02
expansion units. The G02 provides two disk/media bays and four disk bays. Each
disk unit must be connected to the base unit through a dedicated SCSI cable.

The G02 expansion unit has the following features:

� Four disk bays

� Two media/disk bays

� Up to six 1.1 GB and/or 2.2 GB disks (if the two media bays are used for disks
with FC #6511)

� Maximum four 4.5 GB disks

� Media bays only support half-height devices

 4.3.1 Installation
Looking at the unit from the front, the expansion units must be installed starting on
the left side of the base unit. Appropriate cables, according to the system
configuration, must be used to connect the expansion unit.

 Chapter 4. SMP Servers Hardware Features 77

The G02 expansion cabinet comes standard with a power interface cable and a
(single-ended) SCSI cable for attachment to the G30.

The 6-pin RS-485 port present in the rear of the G30 must be connected to the
G02 for power control.

The new expansion unit must then be recognized and configured by the operating
system through SMIT.

Please refer to the 7012 G Series Service Guide for detailed installation
instructions. Also refer to the 7012 G Series Operator Guide for configuration and
disk location information.

4.4 Model J30 Server
The IBM RISC System/6000 Model J30 is a deskside system which is more
expandable than the G30.

It features four slots for processor cards and four slots for memory cards. As a
result, the J30 is designed to support up to eight CPUs and 2048 MB of memory.

The system comes standard with two PowerPC 601 CPUs, 64 MB of memory, six
available microchannel slots, three media bays, and seven disk bays. An optional
expansion cabinet can be purchased to increase the total number of microchannel
slots to 15 and to provide additional disk storage.

The J30 has hot-pluggable disks. Disks in the base cabinet, as well as disks in the
expansion cabinet, are hot-pluggable. This means that if a disk were to fail, it can
be removed and replaced while the rest of the system continues operation.

The SystemGuard service processor is also a standard feature of this model. It
continuously monitors the hardware as well as the software.

The model J30 is well suited for enterprises that anticipate the need for scalable,
uninterrupted long-term growth. Starting with two processors, the system can be
upgraded to a four-way, six-way or an eight-way SMP.

For the existing 5xx IBM RISC System/6000 systems, an upgrade path is offered to
the model J30.

Figure 47 on page 79 is a picture of the J30 base unit. The J30 model is very
different from the existing 5xx models as far as the industrial design, packaging and
expansion capabilities are concerned. The J30 is a deskside model so it has the
type 7013, just like the 5xx models.

78 RS/6000 SMP Servers

Figure 47. IBM RISC System/6000 Model J30 SMP Server

 4.4.1 Standard Configuration
The standard configuration of the IBM RISC System/6000 Model J30 is the
following:

� Dual 75 MHz PowerPC 601

� 1 MB L2 cache per processor

� 64 MB of memory, but a 128 MB card can be selected instead at no additional
charge

� Six available microchannel slots

� SCSI-2 Differential Fast/Wide controller

� 2.2 GB SCSI-2 disk drive, but a 4.5 GB SCSI-2 disk can be selected instead at
no additional charge.

 � CD-ROM drive

� 1.44 MB, 3.5 inch diskette drive

 4.4.2 Hardware Features
Following are the hardware features and expansion capabilities of the J30:

� Four CPU slots

� Two, four, six, or eight-way 75 MHz PowerPC 601

 � Caches:

– Level 1 (instructions/data): 32 KB per processor

– Level 2 (instructions/data): 1 MB per processor

 � Memory:

 – Four slots

– Bus width: 256-bit

– 72-bit JEDEC SIMMs modules

– 64 MB, 128 MB, 256 MB and 512 MB cards available

 Chapter 4. SMP Servers Hardware Features 79

– Up to 2 GB of memory

� SCSI-2 Differential Fast/Wide controller

� Internal storage capacity: 2.2 GB to 40.5 GB

Note: This internal storage can be reached if two of the media bays are used
for installing disks.

 � Disk drives:

– 1.1 GB SCSI-2

– 2.2 GB SCSI-2

– 4.5 GB SCSI-2

 � Tape drives:

– 5 GB 8 mm

– 4 GB 4 mm

– 1.2 GB 1/4-inch cartridge

 � Storage/media bays:

– Seven half-height, 3.5 inch disk bays

– Three half-height, 5.25 inch media bays

� Internal diskette drive: 1.44 MB, 3.5 inches

� Six available microchannel slots (the seventh slot is taken over by the SCSI-2
Differential F/W controller)

� A System Interface Board (SIB) providing the following I/O ports:

– Two 68-pin SCSI-2 Differential F/W connectors marked A and B (A for
terminating bus A and B for terminating bus B)

– Two 6-pin mini-connectors for communication between the base unit and
the expansion units. They are marked IN and OUT and use the RS-485
interface asynchronous protocol.

– Three RS-232 serial ports (25-pin connectors). Their typical use is:

- S1 for the BUMP Console

- S2 for a remote Service Console

- S3 as an optional external Uninterruptible Power Supply (UPS)

– One parallel port

Figure 48 on page 81 shows the System Interface Board (SIB) which is located at
the rear of the J30. You can see the two Differential SCSI-2 F/W connectors that
terminate the internal SCSI-2 Differential F/W buses. These connectors must be
terminated by a terminator. You also can see the three serial port connectors and
the two RS-485 connectors used for daisy chaining the expansions units.

80 RS/6000 SMP Servers

Figure 48. Rear View of the System Interface Board on J30 Server

4.4.3 High Removability Feature
All disk drives can be removed from, or inserted into, the appropriate drive position
while the system is operating.

There are no restrictions relative to the drive position in which each disk drive can
be installed. But there is a difference between the three disk drive positions in the
front of the machine and the disk drive positions in the back. The three drives in
the lower front portion of the base and expansion units have a High Removability
feature. Each of these drive positions is equipped with a special lubricated
connector that makes it possible to often remove and insert the corresponding disk
drives.

A disk drive which has been previously installed in a normal slot can be installed in
a slot featuring the High Removability feature, and vice versa.

Disk drives that need to be removed frequently, such as disk drives that contain
confidential data that needs to be removed from the system and stored in a safe
place regularly, should be installed in these positions.

Figure 49 on page 82 is an internal front view of the J30. You can see the three
disk drives in the lower position and the three media bays. Two of the media bays
can be used for disk drives.

 Chapter 4. SMP Servers Hardware Features 81

Figure 49. J30 Front Internal View

There is a thermal sensor located at the bottom, front of the system. If the thermal
sensor senses the temperature inside the system to be above the operating limit
(+50 C), it will send a warning message and then shut down the system after a few
minutes. Figure 50 shows the rear of the J30. Four disks can be installed at the
rear of the system. You can also see the SIB located at the back of the system.

Figure 50. J30 Rear Internal View

82 RS/6000 SMP Servers

4.4.4 Hot-Pluggable Disk Configuration Considerations
 Attention

Prior to removing a disk, you must make sure that appropriate software
procedures have been carried out so that when the disk is removed, the ODM
database does not get corrupted.

The two LEDs located on the disk must be off before removing the disk.

The software procedure to remove a disk depends on the logical volume layout of
the system. All the procedures can be carried out through the SMIT System
Storage Management menu. You will find under this menu a new option which is
the Removable Disk Management. You must go through this option before
removing a disk.

à ð
System Storage Management (Physical & Logical Storage)

Move cursor to desired item and press Enter.

Logical Volume Manager

 File Systems

Files & Directories

Files & Directories

Removable Disk Management

System Backup Manager

F1=Help F2=Refresh F3=Cancel F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

If the disk you want to remove belongs to the rootvg volume group, you must do
the following:

� Go to the SMIT Removable Disk Management menu.

� Unmount all the filesystems located on the disk you want to remove by using
the Unmount File Systems on a Disk menu or by using the umount command.

� Move the content of the disk to another disk within the same volume group by
using the Move Contents of a Physical Volume menu. This assumes, of course,
that you have enough space on your system to move the whole content of your
disk to other disks. The Move Contents of a Physical Volume option can be
accessed as follows:

System Storage Management (Physical & Logical Storage)

--> Logical Volume Manager

--> Physical Volumes

--> Move Contents of a Physical Volume

 Chapter 4. SMP Servers Hardware Features 83

� Once data has been moved to another disk, you can go back to the Removable
Disk Management menu and proceed through the following path:

--> Removable Disk Management

--> Remove a Disk from the Operating System

--> Remove a Disk without Data

You will get the following screen:

à ð
Remove a Disk without Data

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

 DISK Name hdiskð

VOLUME GROUP Name rootvg

FORCE deallocation of all partitions on no

this physical volume?

KEEP definition in database? no

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

At this step, you can keep the definition of the disk in the ODM database. Also
you do not have to force deallocation of all the partitions on this physical
volume since there is no longer any data on the disk.

Note: If you did not move data to another disk, forcing deallocation of all
partitions on this physical volume will erase all data on the disk.

� Wait until the two LEDs on the disk are off. Then you can remove the disk
safely.

If the disk you want to remove belongs to a non-rootvg volume group, the
procedure is slightly different.

� Identify which disks belong to that non-rootvg volume group. Let's assume that
we have three disks on the system and that hdisk0 belongs to rootvg and
hdisk1 and hdisk2 belong to a non-rootvg volume group called nonrootvg.

� Unmount all the filesystems located on hdisk1 and hdisk2.

� Deactivate the nonrootvg volume group using the following path:

--> System Storage Management (Physical & Logical Storage)

--> Logical Volume Manager

--> Volume Groups

--> Deactivate a Volume Group

� Once the volume group is deactivated, you can proceed by exporting the
volume group by using the Export a Volume Group option.

� Then you can go back to the Removable Disk Management menu and remove
each disk using the Remove a Disk with Data option. We suggest that you
keep the definition of the disks in the ODM database.

84 RS/6000 SMP Servers

� When all the LEDs on the disks are off, you can remove the disks.

If you want to reconfigure the disks belonging to the nonrootvg volume group, you
need to configure them using the Configure a Defined Disk option. This option can
be accessed as follows:

--> System Management

 --> Devices

--> Fixed Disks

--> Configure a Defined Disk

Once the disks are configured, you can import the nonrootvg volume group.

 Note

It is easier and quicker to remove a disk from a non-rootvg volume group when
there is only one disk within the non-rootvg volume group. In this case, you just
need to go the Removable Disk Management menu, unmount the filesystems
located on this disk, and use the Remove a Disk with Data option. This will
deactivate the volume group, export it and remove the disk from the system.
We then recommend, if suitable, to create a volume group for each disk you
want to remove often.

4.4.5 J30 SCSI Device Addresses
As in the G30, SCSI devices addresses in the J30 are fixed. Both media and disk
drives do not have any jumpers or dials which allow you to change the SCSI
addresses of the drives. The connectors to the base unit backplane determine the
addresses of the SCSI devices.

All the devices located in the front of the system are connected to a first SCSI-2
Differential F/W bus, referred to as A on the backplane. The rear devices (if any)
are connected to a second SCSI-2 Differential F/W bus, referred to as B on the
backplane.

This means that if there are devices at the front as well as at the rear, a second
SCSI-2 DE F/W (FC #2416) and an SCSI internal cable (FC #2441) are required.

Following is an example of a disk address:

hdiskð Available Xð-ð7-ðð-3,ð 1.1 GB SCSI Disk Drive

In this example, 3 is the SCSI address and ð after the comma is the Logical Unit
Number (LUN). The 7 is the slot number on the microchannel bus.

Figure 51 on page 86 shows that devices on the front are connected to the first
SCSI-2 Differential F/W controller (A), and the disks on the back are connected to
the second SCSI-2 Differential F/W controller (B).

 Chapter 4. SMP Servers Hardware Features 85

Figure 51. Front and Rear SCSI Devices Locations on the J30 Server

4.5 Model J01 Expansion Cabinet
The J01 is an expansion unit for the J30 that expands the number of microchannel
slots. The J01 provides eight additional microchannel slots which allows the J30 to
reach a total of fifteen (15) microchannel slots. Thus, more microchannel adapters
and more devices can be supported on the J30.

Figure 52 is a front view of the J01. You can see in this picture that the J01 has
three disk bays and two media/disk bays on the front.

Figure 52. Front Internal View of the J01 Expansion Cabinet

86 RS/6000 SMP Servers

Figure 53 on page 87 shows that the J01 has nine disk bays at the back of the
unit.

Figure 53. Rear Internal View of the J01 Expansion Cabinet

In summary, the J01 expansion unit provides:

� Eight additional microchannel adapters

� Up to 14 disks (if the two media bays on the front are used for disks)

In the expansion unit, J01, if all 14 disk drives are used, you need:

� Two SCSI-2 DE F/W adapter (FC #2416)

� Two SCSI cable for internal devices (FC #2441)

� Two media-to-disk bay conversion kits (FC #6511) in order to use the two
media bays for disks

Note: Connecting external SCSI devices will require a separate SCSI adapter.

The J01 can have up to two SIBs. In fact, the SIB contains some hardware that
allows SystemGuard to control the power of the unit and its devices. One SIB can
control the power of up to 10 devices. Thus, when more then 10 devices are
installed in the expansion unit, a second SIB is required.

As in the J30 base unit, the J01 has the same High Removability feature. All
devices are hot-pluggable but the lower three disks on the front have the same
High Removability feature as seen in the base unit. These disks can be removed
frequently.

 Chapter 4. SMP Servers Hardware Features 87

 Attention

The system administrator must use the SMIT Removable Disk Management
menus before removing a disk. Also, the LEDs must be off before removing a
disk. Please, refer to 4.4.4, “Hot-Pluggable Disk Configuration Considerations”
on page 83 in this chapter.

As in the J30, the devices are connected to connectors located on the backplane.
These connectors must be driven by two SCSI-2 Differential F/W adapters.

A dedicated bulkhead, called BHS, allows to establish a connection between the
SCSI-2 Differential F/W controller located in one microchannel slot and the
backplane where are located the media or disk drives connectors. There is one
BHS per expansion cabinet.

The J01 has the same dimension as the J30, that is:

� 610 mm (H)

� 360 mm (W)

� 750 mm (D)

4.5.1 J30 and J01 Interconnection
Figure 54 shows a J30 base unit with a J01 expansion unit connected to it. Note
that the expansion unit must be connected on the left side of the base unit.

Figure 54. J30 and J01 Interconnection

To connect the J30 with the J01, follow this procedure:

� Connect the RS-485 cable between the J30 and the J01 (OUT port of J30 to IN
port of J01).

� Connect the terminators to the IN connector on the J30 and to the OUT
connector on the J01.

� Connect the FXE cable between the base and the expansion unit.

88 RS/6000 SMP Servers

� For each SCSI bus in the expansion unit backplane, a dedicated controller (FC
#2416) must be installed. This dedicated SCSI controller is only used to drive
internal disks. It cannot be used for external SCSI devices.

� On the expansion unit, the connection between the SCSI controller and the
SCSI bus on the backplane is made through the SCSI interface card (BHS
module) using FC #2441. This bulkhead has two labelled connectors: A and B.

� Terminate, on the SIB board, the differential SCSI A and B connectors in both
the base and the expansion units.

Note: The SCSI differential connectors located on the SIB board of the expansion
unit cannot be used for connecting external devices.

The serial and parallel ports on the first SIB can be used to attach a printer
or a terminal.

The second SIB board (if required) on the J01 expansion unit is used only
for power management.

Please refer to the 7013 J Series Service Guide for a detailed description, and see
the 7013 J Series Operator Guide , chapter 9, for detailed installation instructions.

Figure 55 shows how to connect the expansion unit to the base unit.

Figure 55. J30 and J01 Interconnection

4.5.2 Model J30/J01 Specifics
You will find below some specifics of the J30 and J01 units.

First, to be able to boot a J30 system, the top cover must be closed. The J30
cannot boot if the top cover is not in place. In fact, the top cover, when installed,
pushes a switch that allows you to power-on the system.

 Chapter 4. SMP Servers Hardware Features 89

The internal SCSI bus is a SCSI-2 Differential bus. The advantages of having this
are the following:

 � Longer cable

� Higher noise immunity

� Tolerance to the bus loading changes due to insertion and removal of
hot-pluggable devices during bus activity (living bus)

On the J01 expansion cabinet, the disks have fixed addresses (as in the J30). The
physical disk location determines the parent adapter and thus determines its SCSI
address.

Figure 56 shows on which SCSI bus (A or B) the devices are connected according
to their physical location. The way it works is different from the base unit. In the
base unit, all devices in the front are connected to SCSI A, and all devices in the
back are connected to SCSI B. On the J01, some devices in the front are
connected to the SCSI A, and some are connected to SCSI B.

Figure 56. J01 SCSI Device Location and Addresses

4.6 Model R30 Rack Server
The IBM RISC System/6000 Model R30 is a drawer unit that can be mounted in an
industry standard rack.

Like the J30, the R30 comes with four slots for processor cards and four slots for
memory cards.

However, the R30 comes standard with a total of sixteen microchannel slots, fifteen
of which are available for other adapters, making it an ideal system for customers
that need to attach a large number of peripherals.

The drawer itself has one disk bay and two media bays. Additional disk drawers
can be purchased separately and inserted into the same rack.

90 RS/6000 SMP Servers

The R30 is similar in design to the J30. The strong focus of the R30 is on high
availability. The R30 provides high-availability features, such as redundant power
supply and redundant fans. For increased availability, the rack can be equipped
with an optional redundant power supply or an Uninterruptible Power Supply (UPS).

The R30 drawer uses the same rack, R00, as the R10, the R20 or the R24. This
allows four R30 drawers to fit into the same rack, which is very suitable for an
HACMP cluster.

Existing IBM RISC System/6000 models, such as the 99X, R10, R20, and R24, can
be upgraded to the SMP server R30.

Figure 57 is a picture of the R30 drawer installed in a rack.

Figure 57. IBM RISC System/6000 Model R30 SMP Rack Server

 4.6.1 Standard Configuration
The standard configuration of the R30 is the following:

� Two 75 MHz PowerPC 601 processors

� 1 MB L2 cache per processor

� 64 MB of memory, but a 128 MB card can be selected instead at no additional
charge

� Fifteen microchannel slots available

� 1.1 GB SCSI-2 internal disk, but a 2.2 GB disk can be selected instead at no
charge

 � CD-ROM drive

� SCSI-2 Fast/Wide controller

� 1.44 MB, 3.5 inch diskette drive

 Chapter 4. SMP Servers Hardware Features 91

 4.6.2 Hardware Features
Following are the hardware features and expansion capabilities of the R30 drawer:

� Four CPU card slots

� Two, four, six, or eight 75 MHz PowerPC 601 processors

 � Caches:

– Level 1 (instructions/data): 32 KB per processor

– Level 2 (instructions/data): 1 MB per processor

 � Memory:

– Four slots (four cards)

– Bus width: 256-bit

– 72-bit JEDEC SIMMs

– 64 MB, 128 MB, 256 MB and 512 MB cards available

– Up to 2 GB of memory

� Standard SCSI-2 Fast/Wide SE controller

� Internal storage capacity: 1.1 GB to 2.2 GB

 � Disk drives:

– 1.1 GB SCSI-2

– 2.2 GB SCSI-2

 � Tape drives:

– 5 GB, 8 mm

– 4 GB, 4 mm

– 1.2 GB, 1/4-inch cartridge

 � CD-ROM drive

 � External storage

– Rewritable optical drives

 – CD-ROM drives

 – Disk drives:

- 1 GB SCSI-2

- 1.1 GB SCSI-2

- 2 GB SCSI-2

- 2.2 GB SCSI-2

 – Tape drives

- 5 GB, 8 mm

- 4 GB, 4 mm

- 1.2 GB, 1/4-inch cartridge

- 1/2-inch cartridge and tape reel

 � Storage/media Bays:

92 RS/6000 SMP Servers

– Two media bays

– One disk bay

� Fifteen available microchannel slots (the sixteenth slot is taken by the SCSI-2
F/W SE controller)

� Standard I/O Ports provided by the System Interface Board (SIB):

– Three serial ports

– Two RS-485 IN and OUT ports

– One parallel port

– One battery backup-unit connector

4.6.3 Additional Information on the R30 Server
This section provides some additional information on the R30 that might be useful
when configuring, installing or using it:

 � Redundant fans:

There are a number of fans in the R30: three media fans, three CPU fans and
four I/O module fans. If any one of these fans fail, the system will continue to
run. No error message will be displayed on the console as a result of this fan
failure. The exception is the rightmost fan in the I/O module. If this fan fails, a
message will be displayed. Under BUMP, a fan failure can identify the group of
fans (not right down to the fan that failed). Note that rebooting the system will
also identify the failed fan. If a second fan fails, the system will perform a
shutdown.

� Dual Power Supply Option:

This provides an option for a second AC power supply, or for a DC power
supply, for power redundancy.

� Uninterruptible Power Supply (UPS):

The UPS is intended to replace the battery backup on most systems. The
battery backup unit is still available, but should not be used for racks having:

– One or more SMP drawers

– Two or more UP drawers

The UPS is no longer an RPQ (Request for Price Quotation). It has now the
TM (Type Model) 9910-U33.

This UPS is called Exide Powerware Prestige 3000 Rackmount UPS for IBM
RISC System/6000. This UPS will protect hardware and software by detecting
electrical anomalies and providing power for a limited period of time. The UPS
full rated battery hold-up is seven minutes. It supports a maximum load of
3000 VA (2100 W).

The UPS is used in conjuction with a software called OnliNet Multi-Host
Support (MHS). This software allows control of up to four processor drawers.

The OnliNet software is running in the background as an application program
initiated during AIX system load. When the primary power is lost, the UPS
communicates with the OnliNet software. After determining the nature of the
failure (bad battery, over temperature, defective inverter or loss of the primary
power), the software can issue a shutdown to preserve data integrity. The delay

 Chapter 4. SMP Servers Hardware Features 93

between the loss of the primary power and the shutdown can easily be
customized.

� Cluster Power Controller:

A CPC option (FC 6175) is available on the R00 rack. Basically, the CPC
allows the user to connect several CPUs or disk drawers and to have a single
ASCII terminal as a console for all the CPUs. From this console, you can
power-off or power-on each of the CPU or disk units.

The console can be local or remote, through the use of a modem. Up to two
CPCs can be configured in a R00 rack. For more information on the CPC,
refer to Chapter 6, “Cluster Power Controller” on page 143 in this redbook.

 � Layout:

The layout of the R30 is similar to a R24 rack-mounted uniprocessor.

The operator panel display is located behind the front bezel door. To access
the operator panel, you need to rotate the top of the front bezel door
downward. The functions of this operator panel display are similar to the J30.

The R30 CPU enclosure is a rack-mounted CPU containing a CPU module, I/O
module, media module, and a power supply with a possible extra, optional
power supply.

The rear of the R30 provides 16 I/O slots (one is taken up by the standard
SCSI-2 F/W adapter) and the SIB board. The SIB is similar to the J30.

The power supply on the right can be replaced with a cooling unit or a DC
supply input.

There are two microchannel boards, providing 16 slots.

Figure 58 shows an internal view of the front of the R30 drawer.

Figure 58. Front Internal View of the R30 Server

Figure 59 on page 95 shows the rear of the R30 drawer with its SIB (on the right).

94 RS/6000 SMP Servers

Figure 59. Rear View of the R30 Server

4.7 Model Conversion from UP to SMP
Model conversion from various existing uniprocessor systems to the three SMP
servers is offered. The upgrade path for all the models requires chassis
replacement while retaining the current serial number. In some cases, I/O
adapters, memory SIMMs and disk drives can be reused.

4.7.1 Model Conversion to G30
These are the available upgrade paths to the SMP G30:

� Models 340, 34H, 350, 360, and 370 are converted to a two-way G30

� Models 380 and 390 are converted to a four-way G30

Note: For EMEA countries, only the 390 will be upgraded to a four-way G30.

New memory cards must be used for the G30. You should be aware of the
following:

� Only one memory slot is available on the G30.

� Memory exchange options are available. Since old memory cards are not
compatible with the G30, IBM exchanges currently installed memory cards for
an equal or greater capacity of memory card compatible for the G30.

� Old SIMMs from 128 MB and 256 MB memory cards can be reused. If the
machine to be upgraded has two 128 MB or two 256 MB memory cards
installed, then the SIMMs can be reused to create a single 256 MB card or a
single 512 MB card. This requires FC #4061 and FC #4062, respectively.

 Chapter 4. SMP Servers Hardware Features 95

The chassis gets replaced, but the serial number is retained. Installation
instructions are shipped with the upgrade.

4.7.2 Model Conversion to J30
Model conversions from deskside models 5xx to the J30 are also offered. For all
5xx, except 58H, 590 and 59H models, the upgrade will come with one dual 601 75
MHz processor card, while for the 58H, 590 and 59H, the upgrade to J30 requires
a second dual 601 processor.

The uniprocessor memory is not compatible with the existing J30 model, and a
minimum of 64 MB memory is required for the SMP model J30.

These are the available upgrade paths to the SMP J30:

� Models 520, 52H, 530, 53E, 53H, 540, 550, 55E, 55L, 53S, 560, 56F, and 580
are upgraded to a two-way J30.

� Models 58H, 58F, 590, and 59H are upgraded to a four-way J30.

The 3.5-inch disk drives can be reused, but they require the hot-pluggable disk
enclosure, also referred to as disk carrier.

The chassis gets replaced, but the serial number is retained.

4.7.3 Model Conversion to R30
These are the available upgrade paths to the R30:

� Models 930, 950, 950E, 970, 970B, 970E, 970F, 980, 980B, 980E, and 980F
are converted to a two-way R3U.

� Models R10 are converted to a two-way R30.

� Models 990, 990E, 990F, 99J, and 99K are converted to a four-way R3U.

� Models R20 and R24 are converted to a four-way R30.

New memory cards must be used in the R30. SIMMs from old 128 MB and 256 MB
cards can be reused.

The serial number of the machine is retained through the upgrade.

4.8 System Interface Board Functions
Each SMP model has an SIB which is slightly different from the others. The SIB
provides the following functions or features:

� A power microcontroller helps the BUMP to monitor each unit and its power
supply and also guarantees communication between units.

� A System Basic Lines Physical Interface checks the asynchronous line driver
and receiver.

� Three serial ports

� One parallel port

� An RS-485 interface for connecting expansion units

On the J30/J01, the SIB has some additional functions:

96 RS/6000 SMP Servers

� The Removable Disk Switch enables the removal of one or more SCSI devices
while the machine is still powered and operational.

� The SIB is also a bulkhead for the first (A) and second (B) SCSI buses. The
signals come from the SCSI controller through the unit backplane and reach
the dedicated connector on the SIB. The two SCSI-2 connectors are 68-pin
SCSI-2 Differential Fast/Wide connectors. Both SCSI buses must be
terminated with a SCSI Differential terminator.

Finally, in the G30, the SIB is part of the system planar, while in the J30 and R30,
it is in the form of pluggable modules.

 Chapter 4. SMP Servers Hardware Features 97

98 RS/6000 SMP Servers

 Chapter 5. SystemGuard

This chapter introduces the SystemGuard service processor which is included in
the IBM RISC System/6000 SMP servers models G30, J30 and R30.

 5.1 Introduction
IBM's Symmetric Multiprocessor (SMP) products are designed to be servers in
commercial environments. Commercial servers run applications shared by many
users. Availability of those applications is usually very important. Also, servers
often operate in unattended or remote locations. In this case, providing remote
diagnostics and service, while at the same time protecting access to sensitive data,
is also very important.

IBM's family of SMP servers includes a service processor, called SystemGuard, as
a standard feature.

SystemGuard continually monitors the hardware as well as the operating system. If,
for instance, a CPU were to fail, the system would detect this, reboot itself
automatically and run without the failed CPU. Likewise, if there was a memory
error that could not be corrected, the system would detect this, reboot itself
automatically and run without the bad memory component.

SystemGuard allows diagnostics and maintenance to be performed either locally or
remotely. This is especially important to customers with distributed systems who
may not have personnel with computer skills at the remote sites. The IBM
SystemGuard processor makes it possible for these remote systems to be
managed from a central location. The RISC/6000 SMP servers can even be set up
to automatically call an IBM Service Center if they fail to boot successfully.

In addition, this processor operates on its own power boundary, making it possible
to work on the system even if the system is powered off.

The main features of the SystemGuard are:

� Initialization process flow management

� Local as well as remote control of the system (power-on/off, diagnostics,
reconfiguration, maintenance)

� Console mirroring to make remote actions visible and controllable by the
customer

� Dial-out to a support center in case of system boot failure

 � Run-Time surveillance

 5.2 SystemGuard Power
SystemGuard has its own power boundary. This means that even if the system
power is off (power button of the system pushed out), SystemGuard is still powered
on. This allows control of the system even though the system is down. The only
way to power-off SystemGuard is to turn off a specific switch on the J30 and the
R30, or pull out the power cord on the G30. In order to power-on the entire

 Copyright IBM Corp. 1995 99

system, you must first power-on SystemGuard by turning on this switch or by
plugging the power cord in on the G30.

 5.3 SystemGuard Components
SystemGuard introduces new hardware and firmware components that you need to
understand before installing or booting an SMP system.

New hardware components are:

� A microprocessor called BUMP (Bring-Up MicroProcessor) with its EPROM and
its RAM

� A Flash EPROM

� A Backup EPROM

Part of the SystemGuard firmware is stored in the BUMP EPROM; part is in the
Flash EPROM. The Backup EPROM contains a subset of the Flash EPROM that
allows the system to boot in case of a Flash EPROM failure.

The BUMP has access through the I2C (Inter-Integrated Circuit) bus to existing
components, such as the System EEPROM, all the boards' EPROMs, the power
supply, and so on. The EEPROMs contain the Vital Product Data (VPD) of the
machine. There is one EEPROM per board.

The BUMP also interfaces with the Operator Panel, the NVRAM, the Flash
EPROM, the Backup EPROM, and the S1 and S2 serial ports.

Physically, the BUMP is located on the I/O board.

Figure 60 on page 101 shows the SystemGuard hardware components. The MPB
board stands for Multiprocessor Board. The COP is the Common On-chip
Processor which is used for testing the PowerPC chip (601). The IONANs are
components that handle the MCA buses.

100 RS/6000 SMP Servers

Figure 60. SystemGuard Hardware Components

5.4 The Operator Panel
The Operator Panel is the first level of user interface to SystemGuard. It houses
the Physical Key (Key Mode Switch), the power switch, the reset button, a green
LED (power indicator), and a 2x16 LCD (Liquid Crystal Display) display.

The Operator Panel card contains the NVRAM, the NVRAM battery and the TOD
(Time-Of-Day). It must be noted that pulling out the Operator Panel will result in a
reset of the TOD to 1969 which will affect applications protected by a license key
and cause a loss of configuration data in the NVRAM.

The Operator Panel has the following features:

� Power button: It should generally stay pushed in all the time if you want to be
able to power-on or off the system remotely.

� Reset button: It resets SystemGuard to the Init phase and, depending on the
key position, reboots the system to Maintenance or to AIX Multi-User.

� LCD display: It is made of two rows of sixteen characters. It displays the word
Stand-By in the Stand-By phase, or it displays the usual three-digit bootup
codes.

� Physical Key: It uses the international symbols for Normal, Secure and Service
modes. This key should generally stay in the Normal position since the modes
can be changed electronically when the Physical Key is in Normal position.

 Chapter 5. SystemGuard 101

Figure 61. Operator Panel

 5.5 SystemGuard Consoles
Apart from the Operator Panel, which can be considered as a small console and as
a minimum interface to SystemGuard, SystemGuard works with two types of
consoles:

� The BUMP Console is an ASCII terminal attached to the S1 serial port. This
console provides the normal input to the BUMP. It can be local or remote. The
line speed for the BUMP console must be set to 9600 bauds for either type of
connection.

� The Service Console is an ASCII terminal attached to the S2 serial port. This
console is usually remote and located in a Customer Support Center or an IBM
Service Support Center. Basically, this console allows the support center to
work with SystemGuard and/or AIX. Of course, the support center needs a
specific authorization from the customer to access SystemGuard.

 5.6 SystemGuard Functions
SystemGuard controls the system when:

� The system power is off. In this state, SystemGuard allows the system
administrator or the service personnel to run specific tests, set SystemGuard
parameters, reconfigure the system (CPU), or power-on the system.

� The system is booting. SystemGuard controls the hardware Power ON (PON)
tests and the loading of AIX.

� AIX is running through the surveillance function that implements a heartbeat
protocol between AIX and SystemGuard.

Access to SystemGuard can be done locally or remotely from the BUMP or from
the Service Console through specific SystemGuard menus before the AIX is up as
well as from AIX. These specific SystemGuard menus are the STAND-BY MENU
and the MAINTENANCE MENU.

102 RS/6000 SMP Servers

5.7 Physical and Electronic Key
The mode (Normal, Secure, Service) can be set physically by turning the Physical
Key or electronically by turning the Electronic Key. The Physical Key and the
Electronic Key together define a state called the System Key. The Electronic Key
can only be turned if the Physical Key is in Normal position.

Following are various Electronic and Physical Key combinations and the resultant
System Key position:

Table 3. Physical Key in Normal

Physical Key Electronic Key System Key

normal normal normal
normal secure secure
normal service service

Table 4. Physical Key In Secure

Physical Key Electronic Key System Key

secure not valid secure

Table 5. Physical Key In Service

Physical Key Electronic Key System Key

service not valid service

 5.8 SystemGuard Phases
Booting an SMP server is slightly different from the other IBM RISC System/6000
because of the control of SystemGuard. During bootup, SMP servers go through
three different phases: Stand-By, Init and Run-Time.

 5.8.1 Stand-By Phase
The Stand-By phase is present anytime the system power is off, and the BUMP is
still powered.

If the system is not yet connected, the Stand-By phase is entered by plugging the
unit into an electrical outlet that has power and by turning on a switch on the back
of the J30 and the R30. The G30 does not have this switch; plugging the power
cord in is sufficient.

At this phase, the AIX operating system is not yet loaded; the system power is not
on, and the word Stand-By is displayed on the Operator Panel display.

The BUMP is active, and it can receive commands from the BUMP Console or
Service Console (either local or remote). You can enter the SystemGuard
STAND-BY MENU from this phase.

The Stand-By phase ends when the power button on the Operator Panel is pressed
and the power command entered.

 Chapter 5. SystemGuard 103

 5.8.2 Init Phase
Init phase is entered when the power-on button on the Operator Panel is pressed
on or when the power command is entered on the BUMP Console or Service
Console.

If the System Key is in Normal mode, BUMP runs the Built-In or resident Power-ON
Self Tests, IPLs on the first available processor, runs the functional POST
(Power-On Self Tests) on the I/O subsystem to check the system and finally loads
the AIX operating system.

If the System Key is in Service mode, and if several conditions are met, the system
loads the SystemGuard MAINTENANCE MENU. These conditions are: the
Autoservice IPL flag disabled, the BUMP Console enabled and a Valid Service
Contract.

If the System Key is in Secure mode, the system enters the Stall state, and the
LCD displays the three-digit code 200. The initialization of the system stops until
the Physical Key or the Electronic Key is set to Normal or Service. The Stall state
is exited, and control of the system is passed to AIX.

 5.8.3 Run-Time Phase
This is the phase where the AIX operating system is in control of the system. The
Run-Time phase is entered once the AIX operating system gets loaded. The control
of consoles is handed over to AIX.

When AIX is stopped again, for example due to a shutdown, the system goes back
to the Stand-By phase.

Figure 62 on page 105 shows the SystemGuard phases.

104 RS/6000 SMP Servers

Figure 62. SystemGuard Phases

5.8.4 Phase Change (Stand-By to Init)
The phase change from Stand-By to Init is achieved by pushing the power button
on the Operator Panel and by typing the keyword power at the Stand-By prompt
(>). Note that if you type power while the power button is not pushed in, nothing
happens until you press the power button. In this case, your power command has
been taken into account by SystemGuard, and you don't have to reenter it.

power is the default power-on command sequence which can be changed by the
system administrator from the MAINTENANCE MENU or from the Diagnostics' AIX
SERVICE AIDS MENU.

SystemGuard checks its own code in the EPROM, checks for a special
downloadable floppy, checks the Flash EPROM, and then produces an output:

 Chapter 5. SystemGuard 105

à ð

BUMP FIRMWARE - February 16, 1995

ID ð7.ð1 - POWER_ON in EPROM

 #

FLOPPY NOT READY!

BUMP FIRMWARE - May 19, 1995

ID ð7.ð4 - POWER_ON in FLASH PROM

á ñ

Figure 63. Phase Change from Stand-By to Init

The message FLOPPY NOT READY! means that there is no specific downloadable
diskette in the diskette drive.

The special diskette could be:

� Code to be downloaded into Flash EPROM

� Code to change the VPD in the EEPROMs of the SMP system

 5.8.5 Power-On Tests
Power-On (PON) tests are run by SystemGuard whenever the system power
comes on. These tests come in two flavors:

� Tests on processors, caches, memory, and related hardware which cannot be
turned off.

� Tests on other system resources which can be turned off by setting the Fast
IPL flag on from the STAND-BY MENU.

Following is an example of PON tests output when the Fast IPL flag is on.

106 RS/6000 SMP Servers

à ð
BUMP FIRMWARE - February 16, 1995

ID ð7.ð1 - POWER_ON in EPROM

BUMP FIRMWARE - May 19, 1995

ID ð7.ð4 - POWER_ON in FLASH PROM

 - Low Interleaving -

Initial test on CPU ð - \ OK !

Initial test on CPU 1 - \ OK !

Initial test on CPU 2 - \ OK !

Initial test on CPU 3 - \ OK !

Init 1ð24kb L2 cache by processor ð - \ OK !

Init 1ð24kb L2 cache by processor 1 - \ OK !

Init 1ð24kb L2 cache by processor 2 - \ OK !

Init 1ð24kb L2 cache by processor 3 - \ OK !

Clearing 128 Mb by processor ð -> \\\\ OK !

CPU FIRMWARE - August 4, 1994

Processor ð on IPL INIT

{{ 216 }}

{{ 22ð }}

{{ 288 }}

{{ 278 }}

{{ 292 }}

{{ 286 }}

{{ 292 }}

Processor ð on IPL Start

{{223}}

{{299}}

á ñ

Figure 64. PON Tests Output with Fast IPL Flag On

A flashing 888 is displayed if PON tests cannot start. If PON tests hang, a
three-digit code corresponding to a failed component will be displayed.

Note: The system will IPL on the first available physical processor. If for any
reason processor 0 is not available, the system will IPL on processor 1. If all the
processors are disabled, PON tests will fail, and SystemGuard will treat this as a
hardware component failure and go into the MAINTENANCE MENU in Service
mode. In Normal mode, it will initiate dial-out, if possible, and go into the Stall state
afterwards. No IPL will proceed. Processors can be manually enabled again in
Service mode through the MAINTENANCE MENU. This can also be repaired locally
by:

� Turning the system power off

� Moving the Physical Key into Service position

� Enabling at least one processor from the STAND-BY MENU

There are other resident PON tests to check other system resources. These tests
are a subset of the SystemGuard maintenance offline tests. They are resident
within the Flash EPROM. These tests are divided into the following groups:

� BUMP Quick I/O Test Group: These tests check the accessibility and the
functions of the standard and direct I/O components from the BUMP: S1 to S3
lines, EEPROMs, NVRAM, Flash EPROM, and TOD (Time-Of-Day).

 Chapter 5. SystemGuard 107

� JTAG (Joint Tests Action Group) Test Group: These tests check the chip
connections using the JTAG features.

� Direct I/O Test Group: These tests check the accessibility of the Standard and
Direct I/O components from the CPUs: IONIAN, NVRAM access, EPROM
access, TOD, and the floppy disk.

� CPU Test Group: These tests, performed by all the processors, check the
status of the CPU cards: processor, address translation, L1 and L2 caches.

� DCB (Data Crossbar) and Memory Test Group: These tests check the status of
the system planar and memory cards, such as the data/address lines
accessibility, memory components, ECC, and memory refresh (CPU
checkstop).

� Interrupt Test Group: These tests collectively check the interrupt system:
BUMP-CPU, CPU-CPU (CPU checkstop).

� CPU Multiprocessor Test Group: These tests check the multiprocessor
mechanisms, atomic instructions, cache coherency, main memory sharing, and
multiresource sharing.

The following screen is an example of these PON tests output when running:

à ð

 \\\\\\\\\\\\\\\

 \ PON TESTS \

 \\\\\\\\\\\\\\\

.. Bump [ð1.ð1.ðð] DEBUG LINE TEST OK

.. Bump [ð1.ð2.ðð] S1 ASL (BUMP) TEST OK

.. Bump [ð1.ð3.ð1] S2 ASL (REM.) TEST OK

.. Bump [ð1.ð4.ðð] S3 ASL (SPE.) TEST OK

.. Bump [ð1.ð5.ðð] FLASH EP. CONTENT TEST OK

.. Bump [ð1.ð6.ðð] NVRAM CONTENT TEST OK

.. Bump [ð1.ð7.ðð] EPROM CONTENT TEST OK

.. Bump [ð1.ð8.ðð] TOD TEST OK

.. Bump [ð1.ð9.ðð] FLOPPY-D CNT. TEST OK

.. Bump [ð1.1ð.ðð] BPP REGISTERS TEST OK

.. Bump [ð1.11.ðð] MISC. REGS TEST OK

.. Bump [ð6.ð5.ðð] TOD-BUMP IT TEST OK

 ..

 ..

á ñ

Figure 65. PON Tests Output

Note that these PON tests can be suppressed if the Fast IPL flag is enabled
through SystemGuard.

5.8.6 Phase Change (Init to AIX Load and Runtime)
Similar to the entry into the Init phase, there is a very distinctive boundary when
entering into this phase. At this boundary, SystemGuard gives up control of the
system and passes it to the loaded code (AIX). This is indicated by the three-digit
code 299 on the consoles and Operator Panel.

Since SystemGuard is also giving up control of the two serial lines, nothing can be
displayed on the consoles. The usual three-digit boot indicators are still displayed
on the Operator Panel. Note that the code 57ð virtual SCSI devices being

108 RS/6000 SMP Servers

configured can take some time. It will say walking the SCSI and do several
passes for each of the SCSI cards in the microchannel. This may take up to five
minutes for each card in the SMP system.

When the boot indicators have reached c33, AIX has progressed enough to display
its own boot messages on the console on S1. However, this is no longer the
BUMP Console; it is the AIX console.

Figure 66. SystemGuard Phases

Please refer to the Service and Operator guides for the three-digit codes and test
groups.

5.9 SystemGuard Parameters and Flags
A certain number of SystemGuard parameters and flags can be changed through
different SystemGuard menus, from the Diagnostics interface and from AIX.
Basically, there are four different groups of flags:

� Service support flags: These flags enable Service Console usage, maintenance
usage and determine if dial-out messages will be sent to IBM or to a Customer
Service Center. These flags are stored in the SID (System Identification) field of
the System EEPROM.

� Diagnostics flags: These flags are used to control the service, diagnostics and
maintenance from a customer point of view. For example, the customer can
modify one of these flags to authorize setting the Electronic Key from the
Service Console or to authorize the dial-out.

 Chapter 5. SystemGuard 109

� Modem and Site Configuration flags: These flags allow the customer to
customize modem configuration for the Service Console.

� Phone numbers flags: These are the dial-in and dial-out phone numbers and
the operator voice number.

5.10 Working with SystemGuard
You can change SystemGuard parameters and flags from different locations. They
can be changed from the SystemGuard STAND-BY MENU, the SystemGuard
MAINTENANCE MENU, the Diagnostics interface, and also from AIX.

The STAND-BY MENU is stored in the BUMP EPROM. The MAINTENANCE
MENU is stored in the Flash EPROM.

Getting into these various menus or interfaces depends on the way some flags are
set before booting up the system.

It is important to understand the flowchart in Figure 67 on page 111.

110 RS/6000 SMP Servers

Figure 67. SystemGuard Flowchart

Basically, if the system is in Stand-By mode and the System Key (Physical or
Electronic Key) in Service mode, you will be able to access the STAND-BY MENU
and work with SystemGuard.

If you power-on the system from Stand-By mode with the System Key in Normal
position, the system will boot to AIX Multi-User.

If you power-on the system with the System Key in Service position, you can go to
the MAINTENANCE MENU or to Diagnostics, depending on the state of three flags:
BUMP Console Present, Autoservice IPL, and Service Contract Validity.

If you power-on the system with the System Key in Secure, the system will stall.

Here is some information on the meaning of the different flags:

� BUMP Console Present: When the BUMP Console is enabled, the LED codes
and BUMP messages are displayed on the console during the Init phase. If the
BUMP Console is not enabled, it is like a regular IBM RISC System/6000; no

 Chapter 5. SystemGuard 111

codes and no messages are displayed on the console during the Init phase.
Only AIX messages appear when the system starts loading AIX.

Note that if you are running the level 5 of the SystemGuard firmware, the
BUMP Console is disabled by default, and if you enable it, it will be disabled
after every shutdown. If your system is in Service mode, you might go to
Diagnostics instead of Maintenance due the BUMP Console being disabled by
default.

If you are running level 7 of the SystemGuard firmware, the BUMP Console is
enabled by default and stays enabled after a shutdown.

� The Autoservice IPL flag, if enabled, means that you want to go to Diagnostics
when booting with the System Key in Service mode.

� The Service Contract flag should be normally set when there is a contract
between the customer and IBM. When this flag is valid, the IBM Service Center
can access the system and do some maintenance. If there is no Valid Service
Contract, it is not possible to enter the MAINTENANCE MENU or enable
console mirroring. The Service Contract is set by default to an unlimited
number of days (exactly 32767 days). The Service Contract should always be
valid. On a pre-GA system, you might encounter a -1 value, which means that
the service contract is not valid, or a 0 value, which means that the contract is
valid for only one day (24 hours).

 5.11 SystemGuard Menus
Because little memory is available to store the SystemGuard firmware,
SystemGuard menus are low-level menus; they make extensive use of
abbreviations or acronyms. You should refer to 7013 J series Operator Guide page
x-1 for a full list of these acronyms and abbreviations.

SystemGuard is menu-driven, and menu choices are usually numbered. Letters
are sometimes used and can be entered in either lowercase or uppercase
(SystemGuard is case insensitive). The letter x is often used to exit the current
menu and return to the main menu (or leave SystemGuard, if given from the main
menu). Commands are only treated after you press the Enter key. Until you press
Enter, you can use the Backspace key to edit a command. If you enter a command
that does not match the available options, a beep signals that an invalid selection
has been made.

 5.11.1 Stand-By Menu
The STAND-BY MENU can only be entered when the system is in Stand-By mode
(the word Stand-By must be displayed on the LCD display). Make sure that the
system is plugged into an electrical outlet, and the main power switch in the rear of
the system is set to on.

In this mode, you will get the Stand-By prompt by pressing Enter on the BUMP
Console. The Stand-By prompt is the greater than (>) sign.

To enter into the STAND-BY MENU from here, you need to set the System Key
into Service mode, either by turning the Physical Key to Service or the Electronic
Key to Service.

To turn the Electronic Key to Service, follow the following steps:

112 RS/6000 SMP Servers

1. Get the prompt by pressing Enter on the BUMP Console.

2. Press Enter again to put the cursor on top of the prompt.

3. At this point, press the Escape key once, and then press the s key. This puts
the Electronic Key into the Service position even though the Physical Key is in
Normal position.

4. Press Enter again.

5. Enter the keyword sbb to display the STAND-BY MENU.

The STAND-BY MENU appears with several options, as shown below:

à ð

STAND-BY MENU : rev 16.ðð

ð Display Configuration

1 Set Flags

2 Set Unit Number

3 Set Configuration

4 SSbus Maintenance

5 I2C Maintenance

Select(x:exit): ð

á ñ

Figure 68. STAND-BY MENU

Note: It is also possible to enter the STAND-BY MENU from the Service Console
if the remote authorization flag is enabled. The Electronic Key can be set from the
Service Console with the same escape sequence.

For a detailed description of each option in the menu and the meanings of each
field, please refer to the following books:

� 7015 Model R30 CPU Enclosure Service Guide, SA23-2743, chapter two for
the R30 machine.

� 7013 J Series Operator Guide, SA23-2724, chapter three for the J30 machine.

� 7012 G Series Operator Guide, SA23-2740, Appendix B for the G30 machine.

The STAND-BY MENU allows the system administrator to display, in cryptic form,
the physical configuration of the system (CPUs, memory, I/O, and so on) and to set
flags, such as the Fast IPL flag to skip the second phase of PON tests and the
BUMP Console Present flag to enable or disable the BUMP Console during bootup.
This menu allows also the Customer Engineer to test the interconnection between
the BUMP and the different components through the I2C bus or the SSbus. For

 Chapter 5. SystemGuard 113

instance, it is possible to send a specific string of characters to the LCD and read
the result on the Operator Panel display. Or, it is possible to turn on the LED on
the Operator Panel or to turn the power supplies and fans on without letting the
system IPL.

 5.11.2 Maintenance Menu
The MAINTENANCE MENU also enables you to display the configuration of the
system in a non-cryptic, easily understandable way, to perform various tests, to
continue IPL either from network, a specific SCSI device or from the boot list, and
to set flags concerning various system operation.

The MAINTENANCE MENU can only be entered by:

1. Enabling the BUMP Console from the STAND-BY MENU.

2. Setting the Autoservice IPL flag to disabled (the default value for this flag is
disabled) from the STAND-BY MENU.

3. Having a Valid Service Contract (this is the case for current systems shipped).

4. Turning the System Key to the Service position.

5. Powering-on the system.

The MAINTENANCE MENU shown below should appear just after the 292 code is
displayed on both the console and the LCD.

à ð

MAINTENANCE MENU (Rev. ð4.ð3)

ð> DISPLAY CONFIGURATION

1> DISPLAY BUMP ERROR LOG

2> ENABLE SERVICE CONSOLE

3> DISABLE SERVICE CONSOLE

 4> RESET

5> POWER OFF

6> SYSTEM BOOT

7> OFF-LINE TESTS

8> SET PARAMETERS

9> SET NATIONAL LANGUAGE

SELECT:

á ñ

Figure 69. MAINTENANCE MENU

114 RS/6000 SMP Servers

5.12 SystemGuard and AIX
There are various commands available in AIX Version 4.1.2 for visualizing and
changing SystemGuard parameters. These commands allow the system
administrator to carry out various tasks, thereby eliminating the need for system
reboot or operator intervention. This is ideal for remote support. It also allows you
to perform tasks, such as enabling and disabling processors.

Let us look at these commands and examples of their output:

� cpu_state {-l | -d Number | -e Number}

This command allows you to list the processors status, disable or enable a
processor. The -l option lists processors. The -d option disables a specific
processor, and the -e option enables a processor. Number is the processor
number. Note that disabling and enabling processors only takes effect after the
next reboot. The following is an example of the -l option after a reboot.

Name Cpu Status Location

procð ð enabled ðð-ðP-ðð-ðð

proc1 1 enabled ðð-ðP-ðð-ð1

proc2 2 enabled ðð-ðQ-ðð-ðð

proc3 - disabled ðð-ðQ ðð-ð1

� mpcfg -d { -f -m -p -S} for displaying flags

mpcfg -c { -f | -m |-p -S -w} <index> <value> for changing flags

mpcfg { -r | -s } for restoring or saving flags in the NVRAM

-r Restores the parameters/flags to NVRAM from the file
/etc/lpp/diagnostics/data/bump

-s Saves parameters/flags from NVRAM into the file
/etc/lpp/diagnostics/data/bump

This is the meaning of some of the mpcfg command options:

-f Indicates that the action (display or change) will be applied to the
diagnostics flags.

-m Indicates that the action will be applied to the modem and site
configuration.

-p Indicates that the action will be applied to the remote support phone
numbers.

-S Indicates that the action will be applied to the service support flags.

-w Indicates that the change will be applied to a password.

� keycfg -d for displaying the status of the System, Physical and Electronic
Keys, respectively. These keys are also called the Mode Switch, Key Mode
Switch and the Electronic Mode Switch.

keycfg -c {service|secure|normal} used for changing the Electronic Key.

Here is an example of the keycfg -d output:

Mode Switch Key Mode Switch Electronic Mode Switch

normal normal normal

 Chapter 5. SystemGuard 115

Note: There are two things you should be aware of:

– The Physical Key overrides the Electronic Key; so the Physical Key must
be in Normal if you want to be able to set the Electronic Key.

– In AIX V4.1.2, the output of the command only works if LANG is set to C.
So, before running the command, do an export LANG=C.

 � mirrord

This daemon is used to implement the mirroring function between the BUMP
Console on S1 and the Service Console on S2. This daemon is automatically
started at the boot time if the Service Contract is valid. It is just sleeping until
the mirroring is activated.

 � survd

This daemon implements a heartbeat protocol between SystemGuard and AIX.
If SystemGuard has not received a message from AIX in a specified delay time,
SystemGuard assumes that AIX is hung and reboots the system. The survd
daemon is not started automatically; user root has the ability to start or stop it.

survd -d <number of seconds>

This sets the heartbeat delay time. The default delay time value is 60 seconds;
the minimum value is 10 seconds. In a real-life situation, the delay will have to
be long enough to avoid false reboots. If, for instance, the system is CPU
bound and all processors are very busy running processes, survd might not
even get to the run queue; therefore, SystemGuard activates a reboot.

survd -h

The flag -h issues a hardware reboot instead of a software reboot.

survd -r is the proper way to turn surveillance off.

 Attention

Issuing the following command:

kill -9 <survd_proc_id>

will result in a reboot of AIX since SystemGuard does not get any messages
from the daemon and assumes that AIX hung.

5.13 Processor and Memory Failure
As mentioned before, SystemGuard monitors the hardware and software, and in
case of failure, it responds to address the failure.

In case of a processor failure, a checkstop occurs. SystemGuard takes control of
the system and logs the event by saving the CPU registers image in NVRAM.

If a memory failure is unrecoverable, then a checkstop also occurs. AIX error
handler will log and report the failure:

� A dump is taken on the dedicated disk area.

� The error is logged in the NVRAM.

116 RS/6000 SMP Servers

SystemGuard then tries to recover the system. BUMP attempts to reboot the
system and runs the Power-On tests.

1. If the reboot succeeds because the failure was a transient failure, the system
will come back up. AIX copies logout data from the NVRAM to a file and logs
the event in the error log file.

2. If the PON tests fail because of a solid hardware failure, SystemGuard will
deconfigure the failed processor or the memory block and restart or reboot the
system.

3. If the boot fails, even in the reduced hardware configuration, the offline
Maintenance mode is entered, and the problem is reported via the code on the
Operator Panel display. In this case, if the dial-out function is set, the system
will dial-out to a service center.

5.14 Some Common SystemGuard Tasks
The following tasks will be done through the STAND-BY and MAINTENANCE
MENUs that are part of SystemGuard. Note that these tasks can also be carried
out from AIX diagnostics.

5.14.1 How to Set the Electronic Key
The key can be set electronically, making it easier to provide remote support
without physically touching the machine. You can do this from the Stand-By mode
or from AIX.

5.14.1.1 Setting the Electronic Key from Stand-By Mode
1. Go into Stand-By mode.

2. Press Enter to get the prompt displayed (>).

3. Press Enter again to position the cursor on the prompt. The cursor (in block
mode) is then superimposed on top of the prompt.

4. At this point, press the Escape key and then the s key. This turns the
Electronic Key to Service even though the Physical Key is still in Normal
position.

5. Press Enter again.

6. Enter the keyword, sbb (Stand-By BUMP). You should see the STAND-BY
MENU appear; this is a way to check that the System Key is in Service.

7. Exit from the STAND-BY MENU.

At this step, if you want to go back to Normal, press Enter again to put the cursor
on top of the prompt; then press the n key. This puts the Electronic Key to Normal
position.

5.14.1.2 Setting the Electronic Key from AIX
1. While AIX is running, log in as user root.

2. Type the following command to look at the current status of the Electronic Key:

keycfg -d

3. To change the key to Service, type the following command:

keycfg -c service

 Chapter 5. SystemGuard 117

4. To change the key to Secure, type the following command:

keycfg -c secure

5. To change the key back to Normal, type the following command:

keycfg -c normal

Note that, each time, you can run the keycfg -d command to verify the status of
the key.

5.14.2 How to Display the System Configuration
The system configuration can be displayed through the STAND-BY MENU or
through the MAINTENANCE MENU.

5.14.2.1 Displaying Configuration through the Stand-By Menu
This option will display the system configuration table. This configuration can be
viewed on the LCD of the Operator Panel if the console is not configured. This is
done by pressing the reset button with the mode switch in the Service position.

To display the configuration of the system, enter the STAND-BY MENU, and from
the Main menu, select Display Configuration (option 0). The first-level screen is
displayed with features and devices that can be configured.

Here is an example:

à ð

 Display Configuration

SID TM 7ð13J3ð 45ð67 SID Y2 ððð45ð67

SID Y3 7fffffðð39353ð373ð37ðððð UNIT PAAAAAAA 4ð

CPU conf CCCCAAAA MM conf CCAACCAAAAAAA

FLASH_FW ð7ð4 MM size ðð8ð OP_KEY NRM E_KEY SRV

OPP D7861ð 19Hð494

SP D786ð5 19Hð471 IOC E38ð3ð 96G44ðð

CPUð D786ð5 19H6472 CPU1 D786ð5 19H6472

CPU2 CPU3

MCð D786ð5 19Hð473 MC1 D786ð5 19Hð473

MC2 MC3

SIB1ð E38ð42 19Hð31ð PSð D29655 11H5114

SIB11 PS1

SIB21

SIB12 PS2

SIB22

SIB13 PS3

SIB23

Hit Return

á ñ

Figure 70. Display Configuration Screen

Useful information can be seen from this panel.

First, you can see in the SID TM field the type and model of the machine, 7013-J30,
in our example.

118 RS/6000 SMP Servers

The SID Y2 field contains a number which is used for building the uname of the
machine. For machines built in Austin, Texas, this number is the serial number of
the machine without the two first digits. The first two digits correspond to the plant
number (26 for Austin plant).

The UNIT field contains the number of units (base units and expansion units). P

stands for present while A stands for absent. In our case, we have only a base unit
and no extension unit.

The CPU conf field shows the status of the processors. In this field, C stands for
configured, D for disabled and A for absent. You can see in our example the system
has four processors that are configured.

The MM conf field shows the memory configuration. You can see that this field has
sixteen digits. Each digit gives the status of each memory bank. Refer to
Chapter 3, “SMP Servers Architecture” on page 49 in this book to get more
information on what constitutes a memory bank. There are sixteen digits
corresponding to the maximum number of banks that you can have in an SMP
system. As for the CPUs, C stands for configured, D for disabled and A for absent.
You can see in our example that we have four banks configured. Since the size of
a bank depends on the type of memory cards installed on the system, you have to
check the MM size field to get the amount of memory installed on the system, and
then deduct the size of one bank.

The MM size field gives you, in hexadecimal, the amount of memory installed on the
system. In this case, we have 128 MB of memory (80 in hexadecimal). Since we
have two 64 MB memory cards installed in the system, the size of each bank is 32
MB.

The OP_KEY and the E_KEY shows the status of the Physical Key (Operator Panel
Key) and the Electronic Key. In this example, the Physical Key is in Normal (NRM)
and the Electronic Key is in Service (SRV).

The FLASH_FW field shows the level of the SystemGuard firmware stored in the
Flash EPROM.

5.14.2.2 Displaying Configuration through the Maintenance
Menu
The system configuration can also be displayed through the MAINTENANCE
MENU. You will find the same kind of information displayed previously but in a
different and more readable way.

To get the system configuration from the MAINTENANCE MENU, do the following:

1. Enter the MAINTENANCE MENU.

2. Enter 0 to select DISPLAY CONFIGURATION .

The configuration display is a good picture of the SystemGuard configuration on
one screen. Here is an example:

 Chapter 5. SystemGuard 119

à ð

 DISPLAY CONFIGURATION

MACHINE TYPE/MODEL: 7ð13J3ð 45ð67

FIRMWARE RELEASE: Standby -> 16ðð

Backup eprom -> ð7ð1

Flash eprom -> ð7ð4

SERVICE CONTRACT: Last update (yymmdd) -> 95ð7ð7

Validity -> Unlimited contract

Remote service support -> Valid

Quick On Call service -> Not valid

AUTO DIAL: Disabled

CONSOLES: BUMP Consoles -> Present

Service Console -> Disabled - 24ðð Bauds

SYSTEM ID: ððð45ð67

NUMBER OF CPU: 4

MAIN MEMORY SIZE: 128 MByte

PRESENT UNITS: #ð

SELECT [Unit #(ð-7) or x:exit]:

á ñ

Figure 71. DISPLAY CONFIGURATION Screen

This screen is self explanatory. The interesting feature here is that you can see the
level of the firmware stored in the BUMP EPROM, the level of the firmware stored
in the Flash EPROM and the level stored in the Backup EPROM.

5.14.3 How to Set Fast IPL
If the Fast IPL flag is enabled, SystemGuard will skip the POST. By default, the
Fast IPL flag is disabled; enabling it will only last one reboot.

There are three ways to enable it: through the STAND-BY MENU in Stand-By
mode, through the MAINTENANCE MENU or by using AIX commands.

5.14.3.1 Setting Fast IPL from the Stand-By Menu
1. Set the System Key to the Service position.

2. Enter the STAND-BY MENU by entering sbb.

3. Enter 1 to select Set Flags .

4. Enter 6 to set the Fast IPL flag. You will then get the current status of the flag
and be prompted to change it. If it is disabled, enter y (yes) to enable it.

The Fast IPL flag is now enabled; the POST will not be run when the system boots.
This will save several minutes.

120 RS/6000 SMP Servers

à ð

 Set Flags

ð Remote Authorization

1 Bump Console Present

2 Autoservice IPL

3 Extended Tests

4 PowerOn Tests in Trace Mode

5 PowerOn Tests in Loop Mode

6 Fast IPL

7 Set Electronic Mode Switch to Normal

Select(x:exit):

á ñ

Figure 72. Set Flags Menu

5.14.3.2 Setting Fast IPL through the Maintenance Menu
1. Enter the MAINTENANCE MENU.

2. Enter 8 to select the SET PARAMETERS menu.

3. Enter 4 from the SET PARAMETERS menu to select the MISCELLANEOUS
PARAMETERS Menu.

4. Option 3 in this menu should show the current status of the Fast IPL flag. If it is
disabled, simply enter 3, and the flag will be changed to enabled.

Fast IPL is now enabled and will last one reboot.

5.14.3.3 Setting Fast IPL through AIX
1. Log into AIX as user root.

2. Type in the following command to find the index of the Fast IPL flag and also
the current flag value:

mpcfg -df

Following is the output of the command :

Index Name Value

1 Remote Authorization ð

2 Autoservice IPL ð

3 BUMP Console 1

4 Dial-Out Authorization ð

5 Set Mode to Normal When Booting ð

6 Electronic Mode Switch from Service Line ð

7 Boot Multi-User AIX in Service ð

8 Extended Tests 1

9 Power On Tests in Trace Mode ð

 Chapter 5. SystemGuard 121

1ð Power On Tests in Loop Mode ð

11 Fast IPL ð

3. The index is number 11, and, generally, the current value is zero (ð), which
means disabled.

4. Type the following command to change the status of the Fast IPL flag to
enabled:

mpcfg -cf 11 1

Where 11 is the index and 1 the value itself; c is for change and f for
diagnostics flags.

5. Type the following command just to verify the flag is changed :

mpcfg -df

5.14.4 How to Set the Service Line Speed
By default, the service line speed is 1200 bauds or 2400 bauds, depending on the
level of SystemGuard. This speed can be changed through the SystemGuard
MAINTENANCE MENU. In order to use the Service Console properly, the terminal
connected to S2 has to be set to the same speed. This speed is not necessarily
the same as the speed defined in AIX for tty1. To avoid changing the speed of the
terminal itself when AIX is running, it is more convenient to have the same speed
for the Service Console and tty1 defined in AIX.

5.14.4.1 Setting Line Speed through the Maintenance Menu
1. Enter the MAINTENANCE MENU.

2. Enter 8 in this menu to select the SET PARAMETERS menu.

à ð

 SET PARAMETERS

ð> POWER-ON COMMAND

1> VOLTAGE MARGINS

2> SET CONFIGURATION

3> PHONE NUMBERS

4> MISCELLANEOUS PARAMETERS

SELECT (x:exit):

á ñ

Figure 73. SET PARAMETERS Menu

3. Enter 4 in this menu to select the MISCELLANEOUS PARAMETERS menu.

122 RS/6000 SMP Servers

à ð

 MISCELLANEOUS PARAMETERS

ð> BUMP CONSOLE -> Present

1> AUTOSERVICE IPL -> Disabled

2> DIAL_OUT AUTHORIZATION -> Disabled

3> FAST IPL -> Enabled

4> SET MODE TO NORMAL WHEN BOOTING -> Disabled

5> BOOT MULTI-USER AIX IN SERVICE -> Disabled

6> SERVICE LINE SPEED -> 24ðð Bauds

7> MAINTENANCE PASSWORD

8> CUSTOMER MAINTENANCE PASSWORD

9> ELECTRONIC MODE SWITCH FROM SERVICE LINE -> Disabled

SELECT (x:exit):

á ñ

Figure 74. MISCELLANEOUS PARAMETERS Menu

4. Enter 6 to set this parameter. A menu showing possible line speeds is
displayed.

5. Select a baud rate, and enter the corresponding menu number.

6. Exit from the menu.

5.14.4.2 Setting Line Speed through AIX
1. With AIX up and running, log in as user root.

2. Type the following command to view current settings :

mpcfg -dm

The following is the output of the command :

Index Name Value

1 Modem Parameters File Name

2 Service Line Speed

3 Protocol Inter Data Block Delay

4 Protocol Time Out

5 Retry Number

6 Customer ID

7 Login ID

8 Password ID

3. Type the following command to change to desired baud rate:

mpcfg -cm 2 <line_speed>

where c stands for change, m for modem and site configuration, 2 for the
Service Line Speed index, and <line_speed> for your desired baud rate (9600
for example).

4. The line speed is changed, but will not be effective until a reboot of the system.

 Chapter 5. SystemGuard 123

5.14.5 How to Authorize the Service Console
The Service Console must be authorized in order to work with SystemGuard. This
allows remote support personnel to log in to SystemGuard. Service Console
Authorization must also be activated to enable mirroring. There are three ways to
do it:

5.14.5.1 Authorizing Service Console through the Stand-By
Menu

1. Enter the STAND-BY MENU.

2. Enter 1 from the STAND-BY MENU to select the SET FLAGS menu.

3. Enter 0 from the SET FLAGS menu to change the Remote Authorization flag.

4. If it is set to disabled, select y (yes) to change it to enabled.

5. Exit from the STAND-BY MENU.

5.14.5.2 Authorizing Service Console through the Maintenance
Menu

1. Enter the MAINTENANCE MENU.

2. Enter 2 to select ENABLE SERVICE CONSOLE .

3. Exit from the MAINTENANCE MENU.

5.14.5.3 Authorizing Service Console through AIX
1. With AIX running, log in as user root.

2. Type the following command to view the current setting:

mpcfg -df

3. Type the following command to change the flag:

mpcfg -cf 1 1

Where -cf is for change flag; 1 is for the index. The last number, 1, is the value
of the flag itself.

5.14.6 How to Set Up Console Mirroring
Let us first introduce console mirroring.

5.14.6.1 Console Mirroring Concepts
Console mirroring is a way to provide the customer a view of what the person
working remotely from the Service Console is doing on the system. When mirroring
is active, the Service Console and the BUMP Console are logically identical, and
both are tty0 (tty1 is disabled when the mirroring starts).

Mirroring only works on the two serial ports, S1 and S2, and their respective ASCII
consoles or terminal emulators. It does not work on graphical devices.

The BUMP Console can be either local (directly attached) or remote (through
modem connection). Remote console connection must be established via dial-in
(BUMP will not dial out).

124 RS/6000 SMP Servers

The Service Console is usually remote, connected via a Hayes compatible modem
on the S2 port. However, a local, directly attached Service Console at S2 port can
also be supported.

Figure 75. Console Connection

When mirroring is active, the customer on the BUMP Console and the support
personnel on the Service Console both see the same output on their screens, and
either one may enter characters. One person can even start typing and the other
finish it. For example, the support personnel may log in root on the Service
Console, and the customer may enter the root password on the BUMP Console.
Therefore, the remote support personnel will not need to know the root password.

Console mirroring is possible during the following SystemGuard phases: Stand-By,
Init and Run-Time (AIX running).

The prerequisites for console mirroring are:

� Remote Service Support 1

� Service Contract Validity 0 - 32767

� /usr/share/modems/mir_modem file present (for mirroring when AIX is up)

5.14.6.2 Setting Up Console Mirroring
In order to set up console mirroring, you need first to authorize the Service
Console, and set up the right line speed. Refer to previous chapters on how to set
up the service line speed and how to authorize the Service Console. Then do the
following:

1. While AIX is running, log in as user root.

2. Type the following command to make sure that the Service Contract Validity is
greater than or equal to 0:

mpcfg -dS

The command output is:

 Chapter 5. SystemGuard 125

Index Name Value

1 Remote Service Support 1

2 Quick On Call Service ð

3 Service Contract Validity 32767

4 Service Support Type

Note that mirrord cannot be started if the Service Contract Validity is -1 (No
Valid Service Contract).

3. Wake up the mirror daemon (mirrord) by either switching the Physical Key to
Service or by typing the following command:

keycfg -c service

4. If mirrord is awakened successfully, you should see the following messages:

mirrord: Wait connection...

mirrord: Remote user connected, mirroring active

5. Type the following command to verify that mirrord is running:

ps -ef|grep mir

The command output is the following:

root 23ð8 1 ð 12:ð8:21 - ð:ðð /usr/sbin/mirrord mir_modem

root 6212 4552 3 12:21:58 ð ð:ðð grep mir

6. Now, the support personnel should be able to work on the remote console, and
the customer should be able to watch on the BUMP Console what the service
personnel enter on the Service Console.

7. To turn mirroring off, either switch the Physical Key to Normal or type the
command:

keycfg -c normal

You should see the following message:

mirrord: mirroring is stopped

If the prerequisite conditions are met, the mirrord daemon is started at boot time,
but goes to sleep until the System Key is set to Service. When mirrord is
awakened, it kills all processes on S2 and pushes the streams mirror module onto
the S2 queue.

Since it is assumed that the Service Console is remote, mirrord requires a modem
file that specifies the type and characteristics of the modem. This modem file is
required even if the Service Console is connected locally without modem. Thus, a
file with no modem must be provided. The default name of the modem file is
mir_modem. Please refer to Appendix A, “SystemGuard Remote Operation
Configuration” on page 237 for supported modem files.

126 RS/6000 SMP Servers

5.14.7 How to Enable Surveillance
Surveillance is implemented by the survd daemon. This daemon, when started,
establishes a heartbeat between AIX and SystemGuard. In case of an AIX hang,
SystemGuard detects it and reboots the system.

To implement the surveillance, do the following:

 1. Enter:

survd -d {number of seconds}

This starts the survd daemon, thereby starting the surveillance. The number of

seconds determines the heartbeat delay time, where ten seconds is the
minimum, and the default is sixty seconds.

2. Carry out this step if you want a hardware reboot:

survd -h (-h flag sets hardware reboot)

3. To turn off the surveillance, type the following command:

survd -r

 Attention

If you issue the command kill -9 <survd_proc_id>, the system will reboot
because SystemGuard will think that AIX hung since it no longer receives a
heartbeat. Thus, use the command in step three to turn off SystemGuard.

5.14.8 How to Set Up the Dial-Out Feature
The dial-out feature can be implemented through SystemGuard or AIX.

5.14.8.1 Setting Up Dial-Out from SystemGuard
The dial-out feature is the automatic sending of certain errors to a service center.
The customer must set the Dial-Out Authorization flag. When the Physical Key is
in the Normal position, if a boot fails due to POST error or boot device not found, a
problem report is sent to the remote service center.

The prerequisites for the dial-out feature are:

� Remote Service Support flag enabled (1)

� Valid Service Contract 0 to 32767 days

� Remote authorization enabled (1)

� Dial-out authorization enabled (1)

The dial-out feature uses the dial-out phone numbers listed in SystemGuard
configuration. To add or change phone numbers, do the following:

1. Enter the SystemGuard MAINTENANCE MENU.

2. Enter 8 from this menu to select the SET PARAMETERS menu.

 Chapter 5. SystemGuard 127

3. Enter 3 from the SET PARAMETERS menu to select the PHONE NUMBERS
menu.

4. Select your option, and enter the dial-out number or numbers. There are two
service center and customer hub numbers. These relate to primary (1) and
secondary (2) numbers.

The message that gets sent to the Service Console is 256 bytes long and includes
the following fields:

PARAMETER SIZE

--------- ----

Magic Number 4

Routing Metric 4

Login-ID 12

CSS-ID 4

RETAIN Account #

or customer ID 12

Password general 16

Time stamp 8

Customer system phone 2ð

Customer operator phone 2ð

Machine serial # 1ð

Machine device type 13

Primary error code 4

Destination (service center) 1

SRN LCD Code 64

Text problem abstract 64

5.14.8.2 Setting Up Dial-Out from AIX
Problem reporting can also be implemented at the operating-system level.
Activating mirroring in case of a specific problem on the system is a way to report
the problem to the service support.

If errnotify is set up to set the Electronic Key to Service whenever there is an error
matching the selected criteria in errnotify (object class in the Object Data Manager),
the key in Service would start the mirrord daemon and console mirroring. Once
console mirroring is running, the script called by the errnotify object can send a
message to the S2 t send mail to the remote service personnel or run a customized
script.

Here is an example of a file, /tmp/sample.add, which is going to be used for
reporting tape drive errors to the Service Console.

errnotify:

en_pid = ð

en_name = "sample"

en_persistenceflg = 2

en_label = ""

en_crcid = ð

en_class = "H"

en_type = "PERM"

en_alertflg = ""

en_resource = ""

en_rtype = ""

en_rclass = "tape"

en_symptom = ""

en_method = "/u/errnotify.script"

128 RS/6000 SMP Servers

Create the above file, /tmp/sample.add. Add it to the ODM by typing the following
command:

odmadd /tmp/sample.add

Once this is added to the ODM, automatic error notification is running. The
errnotify.script is executed as soon the tape errors are logged twice (determined by
en_persistenceflg = 2).

To display the ODM object, or to delete the objects, the following commands can
be used:

� odmget -q"en_name='sample'" errnotify

� odmdelete -q"en_name='sample'" -o errnotify

The /u/errnotify.script would look something like this:

keycfg -c service

clear

echo "tape drive problems, look at /err.log for details > /dev/ttyð"

sleep 5

errpt -a -l $1 > /err.log

keycfg -c normal

where, console mirroring is set up; the message is echoed to the BUMP Console
which is displayed on the Service Console (due to console mirroring); the error log
entry for the tape drive is added to the err.log file, and then console mirroring is
turned off. This can be used as an example to customize individual customer
environments.

5.14.9 How to Reboot AIX from the Remote Service Console
It is possible for the remote personnel connected via the Service Console to reboot
AIX from the remote site.

 5.14.9.1 Prerequisites
The following procedure must be carried out from the BUMP Console in order to
allow AIX to boot remotely from the Service Console.

1. Get into the MAINTENANCE MENU (reboot the system with the key in Service
mode).

2. Enter 8 in the MAINTENANCE MENU to select the SET PARAMETERS menu.

3. Enter 0 in the SET PARAMETERS menu to select the POWER-ON COMMAND
menu.

4. Enter 3 and enable Service Console Power-On.

5. Enter 5 from the same menu, and enter the string power. This string will be
used for powering-on the system from the Service Console.

6. Now reboot the system in Normal mode, and log in as user root.

7. Type the following commands:

mpcfg -cf 1 1 to enable Remote Authorization

mpcfg -cf 2 1 to enable Autoservice IPL

mpcfg -cf 6 1 to enable Electronic Mode Switch from S2

 Chapter 5. SystemGuard 129

mpcfg -cf 7 1 to enable Boot Multi-User AIX in Service

mpcfg -cf 11 1 to enable Fast IPL

8. Type the following command to start console mirroring:

keycfg -c service

Now the system is set up so that the S2 port or the remote console can activate a
reboot. The system can be rebooted either in AIX Multi-User or in Diagnostics to
run diagnostics on the hardware.

5.14.9.2 Rebooting to AIX Multi-User
1. While AIX is running, log in as user root.

2. Type the command shutdown to shut down the system. You can use the -F
flag for a fast shutdown and/or a -t flag for a shutdown at a particular time.

3. Once the system has shut down, you should see the Stand-By prompt (>.

4. At this prompt, type sbb to get into the STAND-BY MENU.

5. Enter a 1 at the STAND-BY MENU to select the SET FLAGS menu.

6. Enter a 7 to select Set Electronic Mode Switch to Normal .

7. Once the Electronic mode switch is set to Normal, exit out of the STAND-BY
MENU until you have your prompt (>).

8. Type power at this prompt; the system should reboot.

9. You should get the AIX login prompt in about ten minutes.

5.14.9.3 Rebooting to Single-User and then to Multi-User
This allows the remote support personnel connected to the system via a modem to
the S2 port to shut down and reboot the system in Diagnostics mode for hardware
diagnostics purposes. After running diagnostics, the remote personnel can reboot
the system in AIX Multi-User without having a need to physically touch the
machine.

1. While AIX is running, type shutdown to shut down the system.

2. Once the system is shutdown, you should see the Stand-By mode prompt (>).
Remember, at this point the Electronic switch is in Service mode. Leave it in
Service mode.

3. At the Stand-By prompt, type the power-on keyword for S2 that we had set
earlier (power in our example).

4. The system will reboot in Diagnostics. From here, diagnostic tasks can be run.

5. Once completed, activate single-user boot from the Diagnostic's main menu.

6. You will be prompted for a password; enter the root password.

7. Type the following command to reboot in AIX Multi-User:

init 2

8. After about ten minutes, the system should have rebooted and loaded AIX.

9. If S2 was configured as a tty from AIX as well, an AIX login screen should
appear on this remote Service Console.

130 RS/6000 SMP Servers

5.14.10 How to Boot from an SCSI Device
The SMP server can be booted in Service mode from a desired SCSI device, either
from the MAINTENANCE MENU or through the bootlist.

5.14.10.1 Booting from an SCSI Device through the Maintenance
Menu
When the system is booted with the system key in Service position, it either boots
in the MAINTENANCE MENU, in Diagnostics or from an SCSI device, depending
upon the various flag settings.

Note: To be able to boot from an SCSI device other than the boot disk, such as a
tape drive, the flag BOOT MULTI-USER AIX IN SERVICE must be disabled. This can
be set through the MAINTENANCE MENU. To check or change this flag, do the
following:

1. Enter the MAINTENANCE MENU; refer to the MAINTENANCE MENU section
in this redbook for details.

2. From the MAINTENANCE MENU, enter 8 to select the SET PARAMETERS
menu.

3. From this menu, enter 4. to select the MISCELLANEOUS PARAMETERS
menu.

à ð

 MISCELLANEOUS PARAMETERS

ð> BUMP CONSOLE -> Present

1> AUTOSERVICE IPL -> Disabled

2> DIAL_OUT AUTHORIZATION -> Disabled

3> FAST IPL -> Enabled

4> SET MODE TO NORMAL WHEN BOOTING -> Disabled

5> BOOT MULTI-USER AIX IN SERVICE -> Disabled

6> SERVICE LINE SPEED -> 24ðð Bauds

7> MAINTENANCE PASSWORD

8> CUSTOMER MAINTENANCE PASSWORD

9> ELECTRONIC MODE SWITCH FROM SERVICE LINE -> Disabled

SELECT [x:exit]:

á ñ

Figure 76. MISCELLANEOUS PARAMETERS Menu

4. Check option 5 in this menu (BOOT MULTI-USER AIX IN SERVICE). If it is enabled,
enter 5, and the flag should be changed to disabled.

5. Have another look at the option to make sure it is disabled.

Now we are ready to boot off the SCSI device, off a tape drive for example.

6. Insert the bootable tape in the tape drive.

7. Exit back to the main MAINTENANCE MENU.

 Chapter 5. SystemGuard 131

8. Enter 6 in the MAINTENANCE MENU to select the SYSTEM BOOT menu.

à ð

 SYSTEM BOOT

ð> BOOT FROM LIST

1> BOOT FROM NETWORK

2> BOOT FROM SCSI DEVICE

SELECT [x:exit]: 2

á ñ

Figure 77. SYSTEM BOOT Menu

9. Enter 2 to boot from an SCSI device. The menu that appears enables you to
specify the SCSI device by using the location code.

10. At this point, a BOOT FROM SCSI DEVICE screen appears. This will display
the PRESENT DEVICE LOCATION CODE.

à ð

BOOT FROM SCSI DEVICE

PRESENT DEVICE LOCATION CODE:

(Drawer - Bus#/Slot# - Connector - SCSI ID/LUN) ððð1ðð6ð

COMMANDS: ð> CHANGE BUS#

1> CHANGE SLOT#

2> CHANGE SCSI ID

3> CHANGE LUN ID

4> CHANGE DEVICE LOCATION CODE

5> BOOT FROM SELECTED DEVICE

SELECT [x:exit]: 5

á ñ

Figure 78. SCSI Boot Device Location Code

132 RS/6000 SMP Servers

If it is not the device you want to boot from, go through each option, and
change it to the desired BUS, SLOT, SCSI ID, and LUN ID. Option 4 allows
you to change all these options at once, but we recommend that you go
through all the previous options.

Following is the description for each of these options:

� BUS: whether it is internal (0) or external (1).

� SLOT: actual physical slot number; internal bus can be 1 to 7, and external
can be 1 to 8.

� SCSI ID: the SCSI address of the SCSI device.

� LUN ID: logical unit number; for an 8-bit bus this can be 0 to F, and for a
16-bit bus, this can be 00 to 1F.

11. Once the desired device is selected, enter 5 to start booting. Then the system
leaves the MAINTENANCE MENU and boots from the specified SCSI device.

In Figure 78 on page 132, the selected device is connected to an internal SCSI
bus located in slot 1, and the device has the SCSI address 6 on that SCSI bus.

5.14.10.2 Booting from an SCSI Device through the Bootlist
The system can be booted from an SCSI device, such as a tape drive, without
going through the MAINTENANCE MENU. In this case, it uses the bootlist to
determine the boot device while in Service mode. The bootlist can be updated
through Service Aids in Diagnostics.

Following are the prerequisites for booting from an SCSI device (a tape drive for
example) in Service mode:

� The Autoservice IPL flag must be enabled.

� The Service mode bootlist must be updated (this can be done in AIX
Diagnostics by choosing Service Aids and Display/Alter Bootlist).

� A supported SCSI device, such as a tape drive.

� A bootable SCSI media, such as a bootable tape (install or mksysb).

To boot off this SCSI device, do the following:

1. Switch the System Key to Service.

2. Insert the bootable media in the SCSI device.

3. Turn on the system power.

The system will then boot up from this SCSI device. If the bootup is not
successful, verify that the tape is bootable, or clean the media device.

5.14.11 How to Boot from the Network
The system can be booted from the network through the MAINTENANCE MENU.
Network boot allows a system to be reinstalled via the network and also allows
various maintenance tasks to be carried out on the local machine. Use the
following procedure to boot from the network:

1. Enter the MAINTENANCE MENU.

2. From the MAINTENANCE MENU, enter 8 to select the SYSTEM BOOT menu.

 Chapter 5. SystemGuard 133

à ð

 SYSTEM BOOT

ð> BOOT FROM LIST

1> BOOT FROM NETWORK

2> BOOT FROM SCSI DEVICE

SELECT [x:exit]: 1

á ñ

Figure 79. SYSTEM BOOT Menu

3. From the SYSTEM BOOT menu, enter 1 to select BOOT FROM NETWORK .

à ð

MAIN MENU

1. Select BOOT (Startup) Device

2. Select Language for these Menus

3. Send Test Transmission (PING)

4. Exit Main Menu and Start System (BOOT)

Type the number for your selection, then press "ENTER"

(Use the "Backspace" key to correct errors)

á ñ

Figure 80. Network Boot MAIN MENU

4. From the NETWORK BOOT MAIN MENU, enter a 1 to select the Select BOOT
(Startup) Device option.

5. The SELECT BOOT (STARTUP) DEVICE menu appears.

134 RS/6000 SMP Servers

à ð

SELECT BOOT (STARTUP) DEVICE

Select the device to BOOT (Startup) this machine.

WARNING: If you are using Token-Ring, selection of an

incorrect data rate can result in total disruption of the

Token-Ring network.

"==>" Shows the selected BOOT (startup) device

==> 1. Use Default Boot (Startup) Device

2. Token-Ring: Slot 3, 4 Mb data rate

3. Token-Ring: Slot 3, 16 Mb data rate

4. Ethernet: Slot 4, 15-pin connector

Page 1 of 2

88. Next Page of Select BOOT (Startup) Device Menu

99. Return to Main Menu

Type the number for your selection, then press "ENTER"

(Use the "Backspace" key to correct errors)

á ñ

Figure 81. SELECT BOOT (STARTUP) DEVICE Menu

6. Select the device to boot from. For example, choose 3 to boot from
Token-Ring: slot 3, 16 Mb data rate.

The following screen appears:

à ð

SET OR CHANGE NETWORK ADDRESSES

Select an address to change

Currently selected BOOT (startup) device is:

Token-Ring: Slot 2, 16 Mb data rate

Hardware address 1ððð5AC97CF1

1. Client address ðð9.ðð3.ðð1.ð27

(address of this machine)

2. BOOTP server address ðð9.ðð3.ðð1.ðð8

(address of the remote machine you boot from)

3. Gateway address ððð.ððð.ððð.ððð

(Optional, required if gateway used)

97. Return to Select BOOT (Startup) Device Menu (SAVES addresses)

99. Return to Main Menu (SAVES addresses)

Type the number for your selection, then press "ENTER"

(Use the "Backspace" key to correct errors)

á ñ

Figure 82. SET or CHANGE NETWORK ADDRESSES Menu

7. Enter the appropriate IP addresses, and enter 99 to return to the MAIN MENU.

 Chapter 5. SystemGuard 135

à ð

MAIN MENU

1. Select BOOT (Startup) Device

2. Select Language for these Menus

3. Send Test Transmission (PING)

4. Exit Main Menu and Start System (BOOT)

Type the number for your selection, then press "ENTER"

(Use the "Backspace" key to correct errors)

á ñ

Figure 83. Network Boot MAIN MENU

8. Enter 4 to exit from the menu, and start system boot.

9. The following screen appears as the system boots off the network:

à ð
STARTING SYSTEM (BOOT)

Booting . . . Please wait.

Token-Ring: Slot 2, 16 Mb data rate

Hardware address .. 1ððð5AC97CF1

 Packets Sent Packets Received

BOOTP ððððð ððððð

á ñ

Figure 84. Network Boot Proceeding

To find out more information on NIM (Network Install Manager), refer to AIX
Version 4.1 Network Installation Management Guide and Reference, SC23-2627.

136 RS/6000 SMP Servers

5.14.12 How to Disable and Enable Processors
In the SMP servers, it is possible to disable/enable processors. A suspected faulty
processor can be disabled so that the system can run without it. The processors
can be disabled/enabled through the STAND-BY MENU, MAINTENANCE MENU,
Diagnostics, or through AIX commands.

5.14.12.1 Enabling/Disabling Processors through the Stand-By
Menu

1. Enter the STAND-BY MENU; refer to the STAND-BY MENU section in this
redbook.

2. From the STAND-BY MENU, enter 3 to select the Set Configuration menu. A
first-level screen similar to the one below appears:

à ð

 Set Configuration

ðð CPUð ð9 UNITð & dev

ð1 CPU1 1ð UNIT1 & dev

ð2 CPU2 11 UNIT2 & dev

ð3 CPU3 12 UNIT3 & dev

ð4 MCð 13 UNIT4 & dev

ð5 MC1 14 UNIT5 & dev

ð6 MC2 15 UNIT6 & dev

ð7 MC3 16 UNIT7 & dev

ð8 basic MCA 17 exp MCA

Select(x:exit): ð1

á ñ

Figure 85. Set Configuration Menu

The Set Configuration screen displays the units and devices that can be
configured, along with their menu index number. At this step, CPUð stands for
the CPU card ð, not processor 0.

3. Enter an index number for a CPU card to be looked at. We will select CPU1,
(ð1) in this example. The following screen appears:

 Chapter 5. SystemGuard 137

à ð

CPU1 Set | Status

ðð CPUð C C

ð1 CPUð D

ð2 CPUð T

ð3 CPU1 C C

ð4 CPU1 D

ð5 CPU1 T

Select(x:exit): ð4

á ñ

Figure 86. CPU Status

4. All the CPUs and their statuses are displayed where:

� C stands for configured

� D stands for disabled

� T stands for temporarily disabled. It means that at the next power-on or
reset, the device is automatically reconfigured.

5. Enter 04 to deconfigure CPU1. You should see the status changed to D,
disabled.

138 RS/6000 SMP Servers

à ð

CPU1 Set | Status

ðð CPUð C C

ð1 CPUð D

ð2 CPUð T

ð3 CPU1 C D

ð4 CPU1 D

ð5 CPU1 T

Select(x:exit):

á ñ

Figure 87. CPU Status

6. Now, once the system is rebooted, it will be running without processor 1.

7. To enable CPU1, follow the same procedure as above, except choose a status
C,(ð3 in above example).

8. Exit the STAND-BY MENU, and continue booting the machine.

5.14.12.2 Enabling/Disabling Processors through the
Maintenance Menu

1. Enter the MAINTENANCE MENU. Refer to the MAINTENANCE MENU section
of this redbook.

2. Enter 8 to select the SET PARAMETERS menu.

3. Enter 2 from the SET PARAMETERS menu to select the SET
CONFIGURATION menu.

 Chapter 5. SystemGuard 139

à ð

 SET PARAMETERS

ð> POWER-ON COMMAND

1> VOLTAGE MARGINS

2> SET CONFIGURATION

3> PHONE NUMBERS

4> MISCELLANEOUS PARAMETERS

SELECT [x:exit]: 2

á ñ

Figure 88. SET PARAMETERS Menu

à ð

 SET CONFIGURATION

ð> CPU CARD

1> MEMORY CARD

2> BASIC MCA ADAPTERS

SELECT [x:exit]: ð

CPU CARD [ð> CPUð| 1> CPU1 or x:exit]: 1

á ñ

Figure 89. SET CONFIGURATION Menu

4. Enter 0 from this menu to select the CPU CARD option.

5. The CPU CARD screen appears and looks similar to this:

140 RS/6000 SMP Servers

à ð

CPU CARD - (CPU1)

PRESENT CONDITIONS: PR #ð -> Valid & Enabled

PR #1 -> Valid & Enabled

COMMANDS: ð> ENABLE

 1> DISABLE

2> TEMPORARY DISABLE

SELECT [x:exit]:

á ñ

Figure 90. CPU CARD Status

6. From this screen, you can disable or enable a particular processor on the
selected CPU card. Option ð enables a CPU; option 1 disables a CPU, and
option 2 temporarily disables a CPU until the next reboot.

5.14.12.3 Enabling/Disabling Processors through AIX
The processors can be disabled/enabled through AIX as well. This is done through
the cpu_state command. Following is the command with various options:

� To list the processors and view their statuses, type the following command:
cpu_state -l

The output should look something like this:

 Name Cpu Status Location

 procð ð enabled ðð-ðP-ðð-ðð

 proc1 1 enabled ðð-ðP-ðð-ð1

 proc2 2 enabled ðð-ðQ-ðð-ðð

 proc3 3 enabled ðð-ðQ-ðð-ð1

� To disable a CPU, CPU1 for example, type the following command: cpu_state

-d 1

Look at the result with cpu_state -l:

 Name Cpu Status Location

 procð ð enabled ðð-ðP-ðð-ðð

 proc1 1 disabled ðð-ðP-ðð-ð1

 proc2 2 enabled ðð-ðQ-ðð-ðð

 proc3 3 enabled ðð-ðQ-ðð-ð1

Note: This change does not take effect until after a reboot. After a reboot, the
cpu_state -l command will show:

 Chapter 5. SystemGuard 141

 Name Cpu Status Location

 procð ð enabled ðð-ðP-ðð-ðð

 proc1 - disabled ðð-ðP-ðð-ð1

 proc2 1 enabled ðð-ðQ-ðð-ðð

 proc3 2 enabled ðð-ðQ-ðð-ð1

142 RS/6000 SMP Servers

Chapter 6. Cluster Power Controller

The Cluster Power Controller (CPC) is a device that allows connection of several
CPUs (possibly within a rack but not required) and peripheral drawers or
stand-alone units that support the power control interface. It has a feature code FC
6175.

It allows a single console to be used for several CPUs. The console can be an
ASCII terminal or a PC running DOS. With the CPC control program, a
DOS-based terminal emulator is provided so that you can use a desktop or a laptop
PC as a console. A CPC enhances the SMP power control architecture by
eliminating multiple IBM 3151 terminals and telephone line connections.

It is possible to daisy chain several CPC units. The CPC offers power control and
connectivity to the following RISC System/6000 models and peripherals:

 � 7012-G30

 � 7013-J30

� 7015-R10, R20, R21, R24, R30, 950, 970, 990

� 7013-570, 57F, 580, 58H, 590, 59H, 591 (Note)

� Disk units: 9333, 9334, 7134, 7135

Note: The power-on feature is not available on the 5XX deskside models. If the
5XX systems has been shutdown, someone must be physically present to turn the
power back on.

 6.1 CPC Features
The Cluster Power Controller (CPC) provides the following features and functions:

 1. Power Control

� Power-on/off rack-mounted UP/SMP systems and peripherals

� Power-on/off rack-mounted shared peripherals

� Power-on/off deskside UP/SMP systems and peripherals

 2. Single Console

� Connect a single console to multiple rack-mounted UP/SMP systems

� Connect a single console to multiple deskside UP/SMP systems

� Connect a single console to multiple daisy-chained CPCs

3. Single Modem Connection

� Share a single modem between multiple rack-mounted UP/SMP system
units that are connected to one or more CPCs

� Share a single modem between multiple deskside UP/SMP systems that
are connected to one or more CPCs

4. Update CPC Microcode

� Update the CPC microcode from an AIX system

� Update the CPC microcode from a PC system

 Copyright IBM Corp. 1995 143

5. Scheduled and remote power control

6. Mirroring between the TTY and the modem ports

7. Support for the SystemGuard dial-out feature using the single modem
connection on the CPC

 6.1.1 CPC Connectors
The following figure shows the connectors and features that are available on the
front panel of the Cluster Power Controller.

Figure 91. CPC Front Panel

 � Reset Button:

This is a recessed reset button that can be used to perform a hard reboot of
the CPC. This is useful for the rack-mounted CPC as the power cord is not
accessible after installation in the rack.

Note: The power status of the attached system unit and disk drawers is not
affected when recycling the CPC. The system units and disk drawers will not
be powered off.

 � Amber LED:

The amber LED is used to indicate an error condition.

 � Green LED:

144 RS/6000 SMP Servers

The green LED is used to indicate the CPC is ready.

� Disk Drive Connectors (PCI):

The six PCI connectors are used to control the power for the rack-mounted
uniprocessor system units (R10, R20 and R24) and/or the disk subsystems.
The ports are marked 4-1, 4-2, 4-3, 4-4, 4-5, and 4-6.

� Disk Drive Connectors (RS485):

These connectors are reserved for future use. The ports are marked 6-1 and
6-2. The J01 expansion cabinets will be connected to and controlled by the
J30. However, the J30 can be powered on from the CPC.

 � CPU Connectors:

These connectors are used to connect the S1 port of the system units to the
TTY device or console and to connect the S2 port of the system units to the
device attached to the modem port.

� CPC Expansion Connectors:

These connectors are used for connecting multiple CPCs in a daisy chain
fashion.

 � TTY Connector:

An ASCII terminal is attached to this port and can be switched to the S1 port of
each system unit connected to the CPU ports (A-1, B-1, C-1, D-1) on the CPC.
For the SMP systems, this device becomes the BUMP Console.

 � Modem Connector:

A modem (or another ASCII terminal) can be attached to this port and can be
switched to the S2 port of each system unit connected to the CPU ports (A-2,
B-2, C-2, D-2) on the CPC. For SMP systems, this port is used for the Service
Console.

Please refer to the 7015 Model R00 Rack Installation and Service Guide, page 1-8
or the Cluster Power Control Operator and Service Guide, page 1-2 for more
information.

6.1.2 CPC Port Connections
Following is a conceptual diagram of a typical CPC-to-CPU connection. Here, we
have two G30 servers and one J30 server connected to one BUMP and yp one
remote console through the CPC.

 Chapter 6. Cluster Power Controller 145

Figure 92. Typical CPC-to-CPU Connection

S1 and S2 of the first G30 are connected to CPU-A Port 1 and Port 2, respectively.
S1 and S2 of the second G30 are connected to CPU-B Port 1 and Port 2,
respectively. S1 and S2 of the J30 are connected to CPU-C Port 1 and Port 2.
The BUMP Console user can connect to any of the S1 ports on the three SMP
systems. The Service Console user can connect to any of the S2 ports on the
three systems (assuming that the CPC modem port has been enabled).

This example only shows SMP systems attached to the CPC. In reality, a
customer may want a combination of systems and devices attached to the CPC.

The following table shows the possible connections between the CPC ports and the
various devices.

146 RS/6000 SMP Servers

Table 6. CPC Port Connections

Qty Type CPC
A1

CPC
A2

CPC
B1

CPC
B2

CPC
C1

CPC
C2

CPC
D1

CPC
D2

4-1 4-2 4-3 4-4 4-5 4-6

1 SMP K K A A A A A A A A A A A A

2 SMP K K K K A A A A A A A A A A

3 SMP K K K K K K A A A A A A A A

4 SMP K K K K K K K K A A A A A A

1 UP K K A A A A A A B A A A A A

2 UP K K K K A A A A B B A A A A

3 UP K K K K K K A A B B B A A A

4 UP K K K K K K K K B B B B A A

6 933x A A A A A A A A B B B B B B

Note:

A Available or open connection
B Power control for UP (excluding 5XX) or Disk Subsystems
K Serial port cables
SMP R30, J30 or G30 (SMP) system units
UP 570, 580, 58H, 590, 59H, 591, R10, R20, R21, R24 (UP) system units
933x 9333, 9334 disk subsystems

The maximum number of devices that can be attached to a single CPC using a
combination of device types are:

� 4 x SMP + 6 x 933x

� 2 x UP + 2 x SMP + 4 x 933x

� 4 x UP + 2 x 933x

Other combinations are possible, but you get an idea of the mixture.

 6.1.3 CPC Cables
The following diagram illustrates the cables required to connect a CPC to a single
CPU (G30, J30 or 5XX) and a single disk unit.

 Chapter 6. Cluster Power Controller 147

Figure 93. Single CPU Connected to CPC

The following table gives a description of the cables that can be used to connect
the CPC to the various devices.

Table 7. CPC Connection Cables

Cable IBM P/N Description

A
B
C (Note 1)
D
E
F (Note 2)
G (Note 3)
K

6298963, FC 6176
58F2861
6450242(kit)
11H7336, FC 6177
11H7337, FC 6178
11H3834
42F6839
12H1605, FC 6180

CPC(9F) - TTY(25M) Null modem cable, 10ft
Null modem adaptor or terminal/printer interposer (25F) - (25M)
R30(9F) - CPC(25M) AT serial adaptor connector cable, 10in
CPC(9F) - CPC(9F) Null modem CPC-CPC interconnect cable, 25ft
CPC(9F) - System(25F) Null modem serial port cable, 10ft
S1/S2 G30(25F) - S1(25M) and S2(25M) 1 to 2 Y-cable, 1 ft
CPC(4P) - 933x(4P) Power control interface cable, 10ft
CPC(4P) - R10, R20, R24 (5P) Power control interface cable, 10ft

Note:

1. Supplied with R30 to convert 9F SIB ports to 25M
2. Supplied with G30 to convert S1/S2 25M SIB port to 2 x 25M
3. Supplied with peripherals

Legend
9F 9-pin female connector
25F 25-pin female connector
25M 25-pin male connector
4P 4-pin PCI connector
5P 5-pin PCI connector

148 RS/6000 SMP Servers

6.1.4 CPC Configuration Rules
The following rules should be followed when connecting to and configuring the
CPC.

� Connect and configure the UP system units first. For R10, R20 and R24
system units, connect the serial port 1 (S1) to the CPU (A-D) Port 1, and
connect the power control port (R10/R20-J1, R24-J220) to the first available
Disk Drive PCI connector (4-1, 4-2, 4-3, 4-4). For the deskside UP system
units, connect the serial port 1 (S1) to the CPU (A-D) Port 1. (Optional)
Connect the serial port 2 (S2) of the UP system unit to the corresponding CPU
(A-D) Port 2. This allows a (remote) terminal to connect to the modem port of
the CPC and be able to connect to the S2 port of the (UP) system unit.

� After connecting and configuring all the UP system units, connect and configure
the SMP systems - S1 to CPU (A-D) Port 1 and S2 to corresponding CPU
(A-D) Port 2.

� After configuring all the system units, connect the disk subsystems power
control port (Auxiliary Port J19 or J20) to the available Disk Drive PCI
connectors (4-1, 4-2, 4-3, 4-4, 4-5 or 4-6). There should not be anything
connected to the Main Ports (J17 or J18) on the disk subsystem units.

� When one or more disk subsystems are connected to multiple systems units,
group the shared disks as a separate system so that the power can be
controlled separate to the system units.

� The system unit key switch should be in the Normal position for remote
power-on.

 6.2 CPC Installation
CPC can be connected to the three servers G30, J30 and the R30 in different
ways. For example, one CPC to one CPU, one CPC to multiple CPUs or multiple
CPCs to multiple CPUs. CPC also allows connection of disk drawers or deskside
units. In the desktop (G30) and the deskside (J30) models, the CPC is physically a
separate unit, external to the servers. Rubber feet are placed on the bottom of the
CPC so that it can be placed on a shelf or rested on top of the G30 and J30.

For rack-mounted units, the CPC is physically installed in a 7015-R00 rack. Two
CPCs can be mounted in a single R00 rack if a customer requires dual power
supplies. One of the CPCs will connect to one of the power distribution units and
control half the devices in the rack. The other CPC will connect to other power
distribution unit and control the remainder of the devices in the rack.

 Chapter 6. Cluster Power Controller 149

Figure 94. Rack-Mounted CPC

 6.2.1 Prerequisites
Following are the prerequisites for CPC installation:

1. If installing the CPC (FC 6175) in a 7015/R00 rack, verify at least one of the
following features is installed in the rack: (FC 9171, 9173, 9174, 6171, 6173 or
6174)

2. An IBM 3151 ASCII terminal is available or a PC with terminal emulation. The
microcode diskette comes with cpcterm, which is an IBM 3151 terminal
emulation program.

3. Must have the microcode installation diskette and instructions. Available in
FBM 11H7663.

4. AIX V3.2.5 or later of operating system (AIX V4.1.2 for SMP).

6.2.2 General Installation Steps
Following are the basic installation steps.

1. Position the CPC near the system components or in a rack.

2. Connect the power and serial signal cables.

3. Attach a terminal to the tty port.

4. (Optional) Attach a modem to the modem port.

5. Power-on the CPC by plugging in the power cord.

6. Customize the CPC; that is, configure it and save the configuration.

150 RS/6000 SMP Servers

 6.2.3 CPC Power-On
The CPC does not have a power switch; so the power cord provides this function.
When the power cord is plugged in and the electric outlet power is on, the CPC is
powered on. Once powered on, the status of the CPC hardware is indicated by the
lights (Green and Amber lights). Following is the description of the light status
progress:

1. First ten seconds, the POST runs and the lights stay Off.

2. After twenty seconds, if the tests complete successfully, the Green light will
stay On. This indicates a console has been connected to the CPC.

3. If, after twenty seconds, both the lights start flashing, it means:

� There is no console plugged in the TTY port of the CPC.

or

� The Secondary CPC in a multiple CPC or daisy chained configuration is not
connected correctly to the Primary CPC (the CPC with a terminal attached).
See 6.4.7, “Daisy Chaining CPCs” on page 166 for more information.

4. If, after twenty seconds, the tests fail, only the Amber LED will stay On. The
Green LED will be Off. This indicates the CPC is defective; replace it.

Use the following table as a guide:

Table 8. Cluster Power Control Light Status Indicator

Green LED Amber LED Meaning

Off Off POST running or powered Off

On Off CPC OK! Code Running, Main Menu on TTY

Off On CPC faulty

On On CPC OK! and connected. This is a secondary
CPC

flashing flashing POST successful but no console connected,
or secondary CPCs not connected correctly,
or TTY - CPC or CPC - CPC cable failure

 6.3 System Customization
Once the CPC is connected and successfully powered on, some basic configuration
parameters need to be set. These parameters can be changed by accessing the
Main Menu of the CPC Program which runs within the CPC. The Main Menu
appears on the attached console whenever the CPC is powered on. Connections
to the various CPUs can be made using the menus in the CPC program. The Main
Menu can also be accessed while connected to a system unit by using the Hot-Key
sequence.

To bring up the CPC Main Menu:

1. The CPC should be powered on.

2. A terminal should be connected to the TTY port of the CPC.

 Chapter 6. Cluster Power Controller 151

3. The terminal setup parameters should be 9600 baud, 8 data bits, 1 stop bit with
no parity. These are the default settings. These values can be changed using
the Set Parameters Menu of the CPC Program.

4. Once the POST has run and the Green LED is on, the CPC Main Menu should
appear on the console.

The CPC Main Menu looks like:

à ð

CPC Microcode - Version 1.ð (ð3/14/95)

MAIN MENU - Console CPC:

=================================

[ð] TTY

[1] Modem

Select an Option: _

á ñ

Figure 95. CPC Main Menu

The following figure shows the various CPC Menu options and the paths required
to access these options:

152 RS/6000 SMP Servers

Figure 96. CPC Menu Options

After accessing the Main Menu, the following steps should be performed to use the
CPC.

1. Configure the CPC

2. Configure the CPUs

3. Configure the peripherals

4. Install the poweroff user

6.3.1 Configure the CPC
The following operations are performed to configure the CPC:

� Set the CPC Name

� Set a password for the CPC

� Set the date and the time for the CPC

From the Main Menu, perform the following steps to configure the CPC:

1. Enter ð to select the TTY option

The following screen will appear:

 Chapter 6. Cluster Power Controller 153

à ð

CPC Microcode - Version 1.ð (ð3/14/95)

TTY MENU - Console CPC:

================================

[ð] Connect CPU

[1] Connect CPC

[2] Power On/Off

[3] Set Configuration

[4] Set Parameters

Select an Option (x to exit): _

á ñ

Figure 97. TTY Menu

2. Enter 4 to select the Set Parameters option.

The following screen will appear:

à ð

SET PARAMETERS

[ð] Change Password

[1] Set CPC Name

[2] Set Clock

[3] Set Hot-key

[4] Set Power Command Names

[5] Update CPC Microcode

[6] Change Baud Rate

[7] Enable/Disable TTY Re-boot (Currently: ENABLED)

Select an Option (x to exit): _

á ñ

Figure 98. SET PARAMETERS Menu

3. Enter 1 to select Set CPC Name . The following line appears:

Enter this CPC's Name (up to 8 characters):

154 RS/6000 SMP Servers

Enter a unique name of the customer's choice. For example, cpc1. Once the
name is entered, it gets saved and the screen goes back to the Set Parameters
menu.

CPC NAME changed to: cpc1

Configuration saved - OK.

Note: For multiple CPCs daisy-chained together, it is important to give each
CPC a unique name. This will be the only way to differentiate the port
connections between the CPCs.

4. Enter ð to set the password. There is no password set on the CPC when it is
delivered to a customer.

This password allows usage of the CPC menus. The password is required
once to enter the CPC Main Menu. To be secure, the user should always exit
the CPC Main Menu and logout from any connected CPUs.

5. Enter 2 to select the Set Clock menu option.

6. Enter ð from this menu to set the time.

7. Enter 1 from this menu to set the date.

8. Exit back to the TTY menu using x.

CPC configuration is complete; now we are ready to configure the system units
(CPU).

6.3.2 Configure a CPU
Follow these steps to configure the CPU.

1. From the CPC Main Menu, enter ð to select the TTY menu.

2. Enter 3 to select the Set Configuration option.

The following menu will appear:

 Chapter 6. Cluster Power Controller 155

à ð

SET CONFIGURATION

[ð] Change Configuration

[1] Display Brief Configuration

[2] Set System Names

[3] Save CPC Configuration to FLASH

[4] Restore CPC Configuration from FLASH

Select an Option (x to exit): _

á ñ

Figure 99. SET CONFIGURATION Menu

3. Enter ð to select the Change Configuration option. After a few seconds, the
following screen will appear:

à ð

CHANGE CONFIGURATION - SELECT UNIT

Conn Unit Name Type Description PwrStat Sys System Name

----- ---------------- ---------------- ------- --- -----------

[ð] CPU A empty off ð

[1] CPU B empty off ð

[2] CPU C empty off ð

[3] CPU D empty off ð

[4] 4-1 empty off ð

[5] 4-2 empty off ð

[6] 4-3 empty off ð

[7] 4-4 empty off ð

[8] 4-5 empty off ð

[9] 4-6 empty off ð

Select an Option (x to exit): _

á ñ

Figure 100. CHANGE CONFIGURATION - SELECT UNIT Menu

4. Enter ð to select CPU A. The following screen will appear:

156 RS/6000 SMP Servers

à ð

CHANGE UNIT CONFIGURATION

CPU A:

[ð] Type: empty

[1] Unit Name: (optional)

[2] System: ð (none)

Select an Option (x to exit): _

á ñ

Figure 101. CHANGE UNIT CONFIGURATION

5. Enter ð to set the CPU Type. Enter your CPU type, and press Enter. The CPU
Type is R = RS/6000 CPU (UP), P = PowerPC CPU (SMP) or . = empty
(d = peripheral is used when configuring the 4-X ports).

Note: All rack-mounted UP system units require a power control cable
connection to the corresponding 4-x port to allow a remote power-on from the
CPC program. CPU A uses 4-1 port, CPU B uses port 4-2, CPU C uses port
4-3, and CPU D uses port 4-4. This is the reason why the UP system units
need to be connected and configured before the SMP system units and the
peripherals.

We configured a UP system on the CPU A ports so the CPU Type was set to
R.

6. Enter 1 in the Change Unit Configuration menu;, enter a Unit Name, and then
press Enter. This could be the serial number of CPU A or anything that the
customer can use to easily identify the system unit. For this example, we used
up1.

7. (Optional) Enter 2, enter the System Number and then press Enter. The
System Number is used to group system units and disk drawers for power
(on/off) operations. The System Number can be set to a value in the range of
1-39. For this example, we used 1 for the System Number.

8. (Optional) If a System Number was set in the previous step, an additional field
for the System Name will appear. If the System Number has already been
used for another system unit, the existing System Name will be displayed.
Enter 3; enter the System Name (if you wish to set the System Name or
change the existing one), and then press Enter. The System Name is used to
identify the new system group. For this example, we used Backup Server for
the System Name.

Here is an example of the screen output after the configuration:

 Chapter 6. Cluster Power Controller 157

à ð

CHANGE UNIT CONFIGURATION

CPU B: smp1

[ð] Type: RS/6ððð non-SMP

[1] Unit Name: up1 (optional)

[2] System: 1

[3] System Name: Backup Server (optional)

Select an Option (x to exit): _

á ñ

Figure 102. CHANGE UNIT CONFIGURATION

9. Enter x to exit back to the CHANGE CONFIGURATION - SELECT UNIT menu.

Repeat this procedure for configuring additional system units. We configured
an SMP system on the CPU B ports as System 2.

The CHANGE CONFIGURATION - SELECT UNIT menu now looks like:

à ð

CHANGE CONFIGURATION - SELECT UNIT

Conn Unit Name Type Description PwrStat Sys System Name

----- ---------------- ---------------- ------- --- -----------

[ð] CPU A up1 RS/6ððð non-SMP ON 1 Backup Server

[1] CPU B smp1 PowerPC-SMP ON 2 Primary Server

[2] CPU C empty off ð

[3] CPU D empty off ð

[\] 4-1 (power control for CPU A)

[5] 4-2 empty off ð

[6] 4-3 empty off ð

[7] 4-4 empty off ð

[8] 4-5 empty off ð

[9] 4-6 empty off ð

Select an Option (x to exit): _

á ñ

Figure 103. CHANGE CONFIGURATION - SELECT UNIT Menu

10. Enter x to exit back to the TTY menu.

158 RS/6000 SMP Servers

6.3.3 Configure a Peripheral
Use the following procedure after configuring all the system units to configure the
disk drawers or deskside units.

1. From the CPC Main Menu, enter ð to select the TTY menu.

2. Enter 3 to select the Set Configuration option.

The following screen will appear:

à ð

SET CONFIGURATION

[ð] Change Configuration

[1] Display Brief Configuration

[2] Set System Names

[3] Save CPC Configuration to FLASH

[4] Restore CPC Configuration from FLASH

Select an Option (x to exit): _

á ñ

Figure 104. SET CONFIGURATION Menu

3. Enter ð to select the Change Configuration option. After a few seconds, the
following screen will appear:

 Chapter 6. Cluster Power Controller 159

à ð

CHANGE CONFIGURATION - SELECT UNIT

Conn Unit Name Type Description PwrStat Sys System Name

----- ---------------- ---------------- ------- --- -----------

[ð] CPU A up1 RS/6ððð non-SMP ON 1 Backup Server

[1] CPU B smp1 PowerPC-SMP ON 2 Primary Server

[2] CPU C empty off ð

[3] CPU D empty off ð

[\] 4-1 (power control for CPU A)

[5] 4-2 empty off ð

[6] 4-3 empty off ð

[7] 4-4 empty off ð

[8] 4-5 empty off ð

[9] 4-6 empty off ð

Select an Option (x to exit): _

á ñ

Figure 105. CHANGE CONFIGURATION - SELECT UNIT Menu

4. Enter 5 to select the 4-2 port or the first available PCI port since the UP system
units may have used some of these ports. There will be an asterisk (*) in place
of the option number to select the port (4-x) if the PCI port is being reserved for
power control for a UP system unit.

The following screen will appear:

à ð

CHANGE UNIT CONFIGURATION

4-2:

[ð] Type: empty

[1] Unit Name: (optional)

[2] System: ð (none)

Select an Option (x to exit): _

á ñ

Figure 106. CHANGE UNIT CONFIGURATION Menu

5. Enter ð to select the Type option. The following line appears:

160 RS/6000 SMP Servers

Set Peripheral Type (d = peripheral, . = empty):

Enter d for the peripheral type.

6. (Optional) Enter 1 to select the Unit Name option. The Unit Name should be
something that the customer can use to uniquely identify that partcular disk
subsystem. For this example, we used diskunit1 for the Unit Name.

7. (Optional) Enter 2 to select the System option. This can be a new unique
system number, or it can be an existing system number that was created when
configuring the system units. The power for the disks and system units can
then be controlled as a group. If the disks are shared between system units,
they should be configured as a separate group or not configured in any group
(System - 0 for none, so that the power will only be controlled on a per unit
basis). For this example, we used 3 for the System Number.

Once the system number is entered, an additional field for the System Name
appears.

8. Enter 3 to select the System Name option. Enter a unique system name.
Once again, you need to enter something that is easily identified by the
customer. For this example, we used Shared 9334 for the System Name.

à ð

CHANGE UNIT CONFIGURATION

4-2: diskunit1

[ð] Type: Peripheral

[1] Unit Name: diskunit1 (optional)

[2] System: 3

[3] System Name: Shared 9334 (optional)

Select an Option (x to exit): _

á ñ

Figure 107. CHANGE UNIT CONFIGURATION Menu

9. Enter x to return to the Change Configuration menu, and configure the
remaining disk subsystems.

 Chapter 6. Cluster Power Controller 161

à ð

CHANGE CONFIGURATION - SELECT UNIT

Conn Unit Name Type Description PwrStat Sys System Name

----- ---------------- ---------------- ------- --- -----------

[ð] CPU A up1 RS/6ððð non-SMP ON 1 Backup Server

[1] CPU B smp1 PowerPC-SMP ON 2 Primary Server

[2] CPU C empty off ð

[3] CPU D empty off ð

[\] 4-1 (power control for CPU A)

[5] 4-2 diskunit1 Peripheral ON 3 Shared 9334

[6] 4-3 empty off ð

[7] 4-4 empty off ð

[8] 4-5 empty off ð

[9] 4-6 empty off ð

Select an Option (x to exit): _

á ñ

Figure 108. CHANGE CONFIGURATION - SELECT UNIT Menu

10. Enter x to exit to the Main Menu.

The configuration will be saved when exiting the menus; so if the system reboots, it
will be reconfigured using the existing parameters in the flash memory.

6.3.4 Installation of Poweroff User
For an orderly shutdown of the RISC System/6000, the CPC logs into the system
using a user ID called "poweroff" with a default password. This user ID issues the
shutdown -F command. The poweroff user can be installed using the script
supplied with the CPC microcode diskette or by manually entering all the
commands.

Note: The dosread command is required for this procedure; so check that the
bos.dosutil fileset is installed on each system unit.

Repeat the following procedure on each system unit.

1. Insert the CPC microcode diskette into the diskette drive on the RISC
System/6000.

2. Log in as root and enter the following:

dosread -a /aix/powinst.aix /tmp/powerpasswd.install

3. Run the installation script.

sh /tmp/powerpasswd.install

4. Check that the poweroff user ID has been appended to the end of the
/etc/passwd file.

grep poweroff /etc/passwd

162 RS/6000 SMP Servers

 6.4 CPC Operations
After the CPC has been installed and customized, a number of different operations
are now possible.

6.4.1 How to Connect and Log Into the CPUs
Before the terminal can be connected to the CPU, make sure the cables are
connected, CPC has powered up with no errors, CPC program is running with the
main menu displayed on the tty, and the CPC has been customized.

To connect to a CPU:

1. From the CPC Main Menu, enter ð to select the TTY option. The following
screen appears:

à ð

CPC Microcode - Version 1.ð (ð3/14/95)

[ð] Connect CPU

[1] Connect CPC

[2] Power On/Off

[3] Set Configuration

[4] Set Parameters

Select an Option (x to exit): _

á ñ

Figure 109. CPC Program Menu

2. From this menu, enter ð to select the Connect CPU option. A list of all the
CPU ports will appear.

CONNECT TO CPU

[ð] CPU A name: up1 system: 1 system name: Backup Server

[1] CPU B name: smp1 system: 2 system name: Primary Server

[2] CPU C name: system: ð system name:

[3] CPU D name: system: ð system name:

Select an Option (x to exit): _

3. Select the corresponding number for the CPU you want to connect to. For
example, enter 1 to connect to CPU B. The CPC connects to CPU B, and the
following message will appear:

 Chapter 6. Cluster Power Controller 163

Connecting to CPU B (name: smp1)...

Hit Ctrl-T to EXIT back to CPC menus

CONNECTED.

After this connecting message, the login prompt will appear. If there is no login
or command line prompt (if you were already logged on), press Enter. If there
is still no prompt, the tty port might not be configured or enabled.

6.4.2 How to Power-Off/On Systems From the CPC
The power off/on feature allows control of power of the systems and peripheral
drawer. This feature can be used through the CPC program menus.

To power-off or power-on a system:

1. From the CPC Main Menu, enter ð to select the TTY menu.

2. Enter 2 to select the Power-On/Off option.

a. Enter ð to select System Power-On/Off . The available systems are
displayed. Select the corresponding number of the system you would like
to perform the power-on/off function on.

b. The next menu will allow the power on/off operation. Following are input
commands in this menu:

System power (n = ON, f = OFF, x to exit):

OR

a. Enter 1 to select Unit Power-ON/OFF . A screen with all the CPUs and
peripheral units will appear. Enter the corresponding unit number to select
the unit you would like to power-on/off.

3. Once complete, exit to previous menus by entering x.

6.4.3 How to Enable SystemGuard Dial-Out
To be able to utilize the dial-out feature offered by SystemGuard, you need to
enable a parameter in the CPC program. This is done by:

1. From the CPC Main Menu, enter 1 to select the Modem option.

2. From the Modem menu, enter ð to select the Miscellaneous Parameters
menu.

3. Enter 2 to enable the Enter Multiple-CPU Dial-out Mode feature.

4. Enter x to exit back to the previous menu.

This allows the modem to be shared by multiple SMP systems. The assumption is
that only one system will be dialing out to report a hardware problem at any given
time.

164 RS/6000 SMP Servers

6.4.4 How to Enable the CPC Modem Connection
The CPC switches the TTY port and the modem between the various system units.
The TTY port will be connected to the S1 port while the modem port will be
connected to the S2 port of the same system. When either user (TTY or modem)
accesses the CPC menus, the output is displayed on both ports. Input is accepted
from both ports; so it is like mirroring at the CPC level. Once connected to a CPU,
the sessions are independent unless mirroring is activated on an SMP system unit
between the S1 and S2 ports.

To activate the modem connection:

1. From the CPC Main Menu, enter ð to select the Modem menu.

2. Enter ð to select the Miscellaneous Parameters menu.

3. Enter ð from this menu to Enable Modem Connection . The status is
displayed as part of the menu selection.

[ð] Enable/Disable Modem Connection (currently: ENABLED)

4. Enter x to exit from this menu.

6.4.5 How to disable TTY Reboot
The TTY Reboot capability is enabled when the CPC is shipped to the customer.
This feature reboots the CPC if the terminal is turned off. Some terminals do not
have a power-saving function, or the customer may want to turn the terminal off to
save power. They may want to disable this feature so that the CPC is not rebooted
every time the terminal is turned off.

To disable the TTY Reboot feature:

1. Enter ð to select the TTY menu from the CPC Main Menu.

2. Enter 4 to select the Set Parameters option

3. Enter 7 to toggle the TTY Reboot setting.

4. Exit back to the Main Menu by entering x.

 6.4.6 Microcode Update
The microcode for the CPC may have to be updated at some time to provide
additional features. The microcode can be updated using a PC attached to the tty
port or from one of the RISC System/6000s attached to one of the CPU ports. The
xmodem protocol is used to download the microcode to the CPC from either
source.

The following procedure copies the microcode to a RISC System/6000 and then
downloads the microcode to the CPC.

1. Insert the CPC Microcode diskette into the diskette drive on the RISC
System/6000.

2. Log in as root and enter the following:

dosread -a /aix/dos2aix.aix /tmp/dos2aix.aix

3. Run the script to copy all the diskette files to the /tmp directory.

sh /tmp/dos2aix.aix

 Chapter 6. Cluster Power Controller 165

4. Now, using the terminal attached to the TTY port on the CPC, enter ð to select
the TTY menu from the CPC Main Menu.

5. Enter 4 to select the Set Parameters option.

6. Enter 5 to select the Update CPC Microcode option.

7. Enter ð to select the Set Download Source option, and enter the number for
the port that is connected to the RISC System/6000 that has the updated CPC
flash code (for example, 1 for CPU-B).

8. Enter 1 to Connect to Download Source, and enter

/tmp/xmodem -sbKc /tmp/flash.bin

and then enter Ctrl-T or hot-key to the CPC menu.

9. Enter 2 to Start Download of New Microcode.

10. After a successful download of the microcode, enter 3 to Update FLASH with
Downloaded Microcode Image. Do not power-off the CPC until it has
completed the update.

11. Enter 4 to Re-boot CPC, and enter y in response to the question. The CPC will
reboot and the version number and the date of the updated microcode will
appear at the top the CPC Main Menu.

6.4.7 Daisy Chaining CPCs
The following diagram illustrates three CPCs in a daisy chained configuration.

166 RS/6000 SMP Servers

Figure 110. Daisy Chaining CPCs

In this diagram, there are three CPCs. The connection between the CPCs uses the
CPC left and CPC right connectors.

1. The CPC L-1 port of the first CPC (primary CPC) gets connected to the CPC
R-1 port of the second CPC (secondary 1 CPC), and the CPC L-2 port of the
first CPC (primary CPC) gets connected to the CPC R-2 port of the second
CPC (secondary 1 CPC)

2. The secondary 1 CPC gets connected to the secondary 2 CPC by connecting
CPC L-1 port of the second CPC to CPC R-1 port of the third CPC (secondary
2 CPC) and connecting the CPC L-2 port of the second CPC to the CPC R-2
port of the third CPC.

6.4.8 How to Connect to a Secondary CPC
In a multiple CPC configuration, for example in a daisy chained configuration, we
need to be able to connect through to the first, second and third CPCs, and so on.
This is done by:

1. From the main menu, select the TTY option or modem option if connecting via
the modem port.

 Chapter 6. Cluster Power Controller 167

2. Console CPC menu appears. From this menu, enter 1 to select the Connect
CPC option. The following screen appears:

à ð

CONNECT TO ANOTHER CPC

[ð] NEXT CPC

Select an Option (x to exit): _

á ñ

Figure 111. CPC Connect Menu

3. Enter a ð from this menu to connect to the next CPC.

4. Use the CPC menus to configure and use the Secondary CPC.

Note: Set the Hot-Key for the Secondary CPC(s) to something other than
Ctrl-T so that you can return to the Secondary CPC menus after connecting to
a CPU on the Secondary CPC.

5. Enter Ctrl-T to return to the Primary CPC menus.

168 RS/6000 SMP Servers

Chapter 7. Installing an SMP System with AIX V4.1

The objective of this chapter is to describe how to install an SMP system with AIX
V4.1. Installing an SMP system is not much different from installing a UP system.
However, there are some specifics to the SMP that we would like to highlight in this
chapter.

The intention of this chapter is not to cover all of the AIX V4.1 features and
enhancements but to at least make you more comfortable with the items that relate
to installing and managing your SMP system.

The areas that will be covered are:

� AIX V4.1 Packaging

� AIX V4.1 Installation Methods

 � SMP Specifics

� UP to SMP Migration

� SMP Network Installation Example

� AIX V4.1 Software Maintenance

AIX Version 4.1 represents the most significant enhancements to AIX since its
initial introduction. One of the main differences between AIX V3.2 and AIX V4.1 is
the way AIX V4.1 is packaged.

7.1 AIX V4.1 Packaging
AIX V4.1 is packaged in two ways:

� AIX Version 4.1 for Clients (1-2 users license)

� AIX Version 4.1 for Servers (multi-user system).

The actual contents of the two packages are slightly different, the client package
being a subset of the server. Although AIX V4.1 for Clients can be ordered on any
systems, most of the SMP systems will be used as multi-user servers; so AIX
Version 4.1 for Servers should be ordered for these systems.

One of the major goals for AIX Version 4.1 was to reduce the amount of disk space
and memory required. It was broken up to several smaller parts; so you only need
to install the parts that are required.

 7.1.1 Packaging Terminology
It is useful to understand the terminology as it relates to the packaging of AIX
Version 4.1 and associated products.

Fileset is the POSIX term for the smallest installable unit within a product. A fileset
is part of the package. For example, bos.net.tcp.client. is a fileset for the bos.net
package. This new packaging allows installation of only what is necessary (one or
several specific filesets) generally requiring less disk space than AIX Version 3.

 Copyright IBM Corp. 1995 169

A package is a collection of filesets that are built together to form one installable
image as a bff (backup file format) file. For example, bos.net is a package.

Licensed Program Products (LPPs) is a purchasable product. It can be a
collection of packages, or it can be a single package. For example, items such as
BOS, X11 and SNA are all LPPs. An LPP does not have to be contained in a
single backup file format (bff) image.

Fileset Update is an update that corrects or enhances function in a previously
installed fileset. Since each fileset can be serviced separately, fixes for AIX V4.1
(fileset updates) are smaller and more localized. These are equivalent to a
subsystem update on AIX V3.2.

Bundle is a file that contains a number of filesets for installation. They can be
thought of as an installation profile. A number of bundles are supplied with AIX
Version 4.1 for various environments, for example, client, server and application
development. A system administrator can create his own bundles if the default
bundles are not suitable.

Update Bundle is a collection of fixes and enhancements that updates the installed
software to the latest level available on the media.

Maintenance Bundle is a predetermined level of fixes and enhancements for the
Base Operating System (BOS). It is equivalent to the PMP (Preventive
Maintenance Package) levels on AIX V3.2.

Product Offering is a selected set of packages (or LPPs) which are shipped
together on the same physical media.

 7.1.2 Packaging Impacts
There are some significant changes to the packaging of AIX Version 4.1 over AIX
Version 3. Items that are now included in AIX Version 4.1 are:

� AIXwindows 2D + CDE

 � iFOR/LS Runtime

 � Xstation Manager

� All Device Support (Note)

Note: The client media has most of the device drivers except a few that were
determined to be for servers.

However, there are some options in AIX Version 3 that are now separate LPPs for
AIX Version 4.1, and these need to be ordered separately:

 � C Compiler

 � Display Postscript

 � InfoExplorer Databases

 � Performance Tools

 � X.25 Support

170 RS/6000 SMP Servers

 7.1.3 Bundles
The AIX V4.1 supplied bundle files are stored in the /usr/sys/inst.data/sys_bundles
directory, and the files are:

à ð
ls /usr/sys/inst.data/sys_bundles

ASCII.autoi Client.def Pers-Prod.bnd

App-Dev.bnd GOS.autoi Server.bnd

App-Dev.def Graphics-Startup.bnd Server.def

BOS.autoi Hdwr-Diag.bnd

Client.bnd Hdwr-Diag.def

á ñ

Additional bundles can be created by the system administrator using the Install and
Update Software Manager (Virtual Storage Manager), and these files are created in
the /usr/sys/inst.data/user_bundles directory.

Client

This bundle includes a set of BOS packages deemed to provide the most common
client functionality. This bundle has a base component (Client.bnd) and a graphical
component.

Server

This bundle installs packages and options that provide a more robust, full function
server. It essentially installs commonly used AIX server functionality as well as
enhanced RAS (Reliability, Availability, Serviceability) functionality. This bundle
also has a base component (Server.bnd) and a graphical component. The extended
RAS support and hardware diagnostics are included in this bundle.

Personal Productivity

This bundle, Pers-Prod.bnd, installs packages and options that provide an
enhanced Personal Productivity environment for AIX V4.1 users. It essentially
includes the same type of functionality as the client bundle with the addition of CDE
(COSE Desktop) and COSE applets. This environment is only available if the X11
runtime is installed.

Application Developer

This bundle, App-Dev.bnd, is essentially the same as the client with the addition of
the filesets for application development and debugging.

Hardware Diagnostics

This bundle, Hdwr-Diag.bnd, includes the bos.diag and devices.base packages plus
the diagnostics filesets for the devices that are discovered during BOS installation.
Once this bundle is installed, the diagnostics filesets for new devices will also be
installed when using cfgmgr -i.

Other

Update, Maintenance Level and All can be used as bundles for installation.

 Chapter 7. Installing an SMP System with AIX V4.1 171

All these bundles are available on the both types of packages - AIX Version 4.1 for
Clients and AIX Version 4.1 for Servers. There will be a difference to what is
installed as some of the filesets are not available on the Client media.

 7.1.4 Fileset Names
With the repackaging of AIX V4.1, the operating system was divided into a lot of
smaller components or filesets. All the of the filesets were renamed for AIX V4.1.

The following conventions were used when naming a software package and its
filesets for AIX V4.1:

� All the fileset names must be of the form Package_Name.Option where Option
is unique for the software product package, and Package_Name is the name of
the software product package or LPP name. For example, bos or X11.

� The packages for a given product should begin with the product name followed
by a dot (.).

� If a package has only one installable fileset, then the fileset name may be the
same as the product name.

� All package names must be unique. Two software packages with the same
name is not allowed.

� All fileset names must be made up of ASCII characters.

� Fileset names must be greater than one character in length and must begin
with a letter or an underscore (_). Subsequent characters must be a letter, a
digit, an underscore, or a dot (.).

� The maximum length for a fileset name is 144 bytes.

7.1.5 Standard Fileset Names
Standard fileset name extensions exist for certain types of filesets to help identify
their usage. There is no requirement that any of these names be used in the name
of a fileset.

.rte Runtime or minimum set of commands and libraries

.adt Application Development portion of a product

.data /usr/share portion of a product

.fnt Font portion of a product

.diag Diagnostics for a product

.ucode Microcode for a product

.smit SMIT tools and dialogues for a product

.mp SMP unique code

.up Uniprocessor unique code

.compat Compatibility code (to be removed in a future release)

.loc Locale files for a specific fileset

.msg.(lang) Message catalogues for a specific fileset

.info.(lang) InfoExplorer Databases for a specific fileset

.help.(lang) Help Dialogs for a specific fileset

172 RS/6000 SMP Servers

 7.1.6 Compatibility Filesets
Compatibility packages follow the same naming conventions as other packages,
except that the word compat appears somewhere in the name. This warns the
customer that this function will be removed in a future release of the product. For
example, bos.compat.links, AIX V3.2 to AIX V4.1 Compatibility Links.

The Base Compatibility Function package contains those commands, links and
tools that have been marked for removal from the Base Operating System. These
commands are generally not standard-compliant commands and should only be
applied as needed since the information and commands they contain will not be
available in a future release of AIX.

bos.compat.cmds This fileset contains commands that are being removed from
the AIX system. These commands are generally not standard-compliant commands.
For example, the copy and li commands are being removed.

bos.compat.imk This fileset provides input method keymaps and links which may
be necessary for those applications that depend on the input method conventions
used in AIX Version 3.1.

bos.compat.links This fileset provides backwards compatibility for those links that
were added in the AIX Version 3.2 release for Diskless Support, but have been
removed in the AIX Version 4.1 release.

bos.compat.lan Provides a COMIO interface for token-ring, Ethernet and FDDI
devices that are compatible with the COMIO interface present in AIX Version 3.2.5.
It supports usermode access only.

bos.compat.msg This fileset provides symbolic links for backwards compatibility
for message catalog packages that use the AIX Version 3.1 naming conventions for
language-territory.

bos.compat.net This fileset provides backwards compatibility for those links that
were added in the AIX Version 3.2 bosnet.obj product.

bos.compat.NetInstl This fileset provides the capability to serve Version 3.2 clients
with a Version 4.1 server.

bos.compat.termcap This fileset provides an older method of defining terminal
definitions. Most people use terminfo. The library provides terminfo interface
routines for curses applications. The same routines are provided by libcurses.a, as
well.

bos.compat.termcap.data This fileset provides the termcap tabset files for various
terminals.

There are also a number of compatibility filesets for X11R3, X11R4, Motif 1.0, Motif
1.1.4, and X11 fonts. If an application is not working on AIX V4.1, check the list of
installed compatibility filesets. All the compatibility filesets will be installed as part
of the Migration Installation.

 Chapter 7. Installing an SMP System with AIX V4.1 173

7.1.7 Device Driver Packaging
The AIX V4.1 Configuration Manager (cfgmgr) will automatically install software
support for detectable devices, where the naming convention for device driver
packaging is devices.bus_type.card_id and where the bus_type is:

mca for MicroChannel
pci for PCI Bus
isa for ISA Bus
sys for RSC Bus
buc for 601 Bus
sio for system planar
pcmcia for PCMCIA devices

card_id is the unique hexadecimal card identifier.

For example, the package name for FDDI device support is devices.mca.8ef4, and
the package name for parallel printer port support is devices.sio.ppa.

Each adapter to the system has three parts, the config method and device driver,
diagnostics and microcode. For example, the filesets for the FDDI adapter will be
called:

devices.mca.8ef4.rte Device driver code and config methods
devices.mca.8ef4.diag Diagnostic code for FDDI
devices.mca.8ef4.ucode Microcode for FDDI

sys is the RISC Single Chip (RSC) bus that is used to connect the graphic
adapters in the RISC System/6000 Models 220 and 230. buc is the PowerPC 601
bus that is used to connect the graphic adapters in the RISC System/6000 Models
25x and 41x. sio is used for the devices that are connected to the system planar,
such as diskette drives, serial and parallel ports, keyboard, and mouse.

Note: Install all the device drivers or a superset of the device support required for
all your systems, if you are cloning AIX V4.1 systems with mksysb. Turn on your
tape drive if you are installing from CDROM.

7.1.8 Message Catalog Packaging
The messages, locales, convertors, help, and info databases are all shipped by
language. The language in a fileset name is commonly indicated by the lang
wildcard since most language-dependent filesets are translated into more than one
language.

The naming convention for all message packages shipped in AIX V4.1 is:
LPP.msg.(LANG)(.Fileset_Name)

where LANG is any of the supported languages. Fileset_Name is optional since
there may be only one message fileset for the LPP.

Some examples :

� bos.net.nfs.client messages will be packaged in bos.msg.(lang).net.nfs.client.

� bos.msg.en_US.net.tcp.client is TCP/IP Client Support Messages for US
English.

AIX V4.1 will automatically install the message filesets for the Primary Language for
filesets that use this naming convention. The Primary Language can be specified

174 RS/6000 SMP Servers

during BOS installation. Additional language filesets can be installed after the
system has been installed.

This naming convention is also used for the other language-dependent filesets,
such as InfoExplorer databases, COSE help files and language converters.

7.1.9 Package Installation Database
A fileset called pkg_gd (Package Guide) is shipped on the installation media to
provide the current information on the various products available for AIX V4.1. It is
not installed automatically; so you have to manually install it from the installation
media. It contains information about:

� Package and Fileset Names for LPPs available on AIX V4.1

� Approximate Disk Space Required

 � Requisite Software

� Special Installation Notes

� Special Migration Notes

To view the database, you need to issue the command info -l lp_info.

7.2 AIX Version 4.1 Installation Methods
AIX V4.1 will now install a smaller, lighter system during the BOS installation than
we are used to with AIX V3.2. This is done to economize on disk space, to avoid
the redundancy of installed programs, and to reduce the BOS installation time. The
exception is Migration Installation which will attempt to install the equivalent function
of the original AIX V3.2 system.

Just as in AIX Version 3, there are a number of choices for installing AIX V4.1, and
these are as follows:

� New and Complete Overwrite installation from an AIX V4.1 product tape or
CD-ROM

 � Preservation Install

� Migration Install from AIX V3.2

 � mksysb Install

 � Network Install

 7.2.1 Installation Flow
In order to boot a system to get to the Installation and Maintenance menu, the
procedure is the same as for AIX V3. That is, turn the key to Service position, and
switch on with installation media in the appropriate device, which will be either tape
or CD-ROM.

Note: Remember that a diskette can no longer be used as boot media for AIX
V4.1. Only CD-ROM, tape and Network adapters can be used for BOS install.

The initial question that will be asked is to identify the console device. In addition,
we had to choose a language from a selection of the eight European languages,
which in our case was English. Bear in mind that this language selection is for the

 Chapter 7. Installing an SMP System with AIX V4.1 175

installation process only. The Primary Language (if you require it to be different)
will be offered later. At this point, the Installation and Maintenance menu appears,
and you can now choose the type of installation that you require.

You can choose the option Start Install Now with Default Settings , if you are
confident it will give you what you want. This varies between a Preservation Install
if you are coming from another Level of AIX V4.1 or AIX V3.1 or a Migration Install
if you are installing onto an existing AIX V3.2 system. We generally found it better
to choose the option Change/Show Installation Settings rather than the Install
Now with Default Setting because the default settings can vary as described above,
depending on the level of AIX you are coming from. Choosing Change/Show
Installation Settings removes the likelihood of any surprises.

The following diagram shows the steps for installing AIX V4.1.

Figure 112. AIX V4.1 Installation Flow

 7.2.2 Default Installation
AIX Runtime is the term used to describe the minimum disk utilization installation
available with AIX Version 4.1. It is the default environment if no additional
software is installed.

The packages and options included in this installation are automatically installed by
the BOS product installation, and they are listed in the BOS.autoi auto installation
file. This installation includes the bos.rte package, the appropriate bos.rte.up
(Uniprocessor) or bos.rte.mp (Multiprocessor) option, the required device driver
support (devices.xxx.xxxx), and the base packages/options. The BOS.autoi file will
install additional required support, such as a minimum set of terminal information
files, ASCII SMIT and ASCII install assistant.

176 RS/6000 SMP Servers

If the system has a graphics adapter (which can be the case with the G30 model),
an additional set of packages listed in the GOS.autoi file will be automatically
installed. This will install the minimum AIXwindows 2D environment along with
graphical SMIT, graphical install assistant and the visual system management
support. Otherwise, the filesets listed in the ASCII.autoi file will be installed. If a
non-C primary language and locale were specified, the message and locale
packages/options (for the primary language/locale) matching the installed filesets
will also be installed.

7.2.3 New and Complete Overwrite Installation
The New and Complete Overwrite Installation is done either on a new machine
which has nothing installed on it or on an existing machine where the data and
programs are no longer required or easily recreated.

Choose Change/Show Installation Settings if you are going to do a Complete
Overwrite Installation, and then you can change the System Settings to set the
target disk(s) for the installation. The Primary Language option allows you to select
a language which will take effect after the first boot. The language selection will be
based on the following locale data, and generally they will be the same, although
you have an option to choose your own combination.

Cultural Convention - to set date, time, money

Message Catalogue - to set primary language

 Keyboard

There is also an option to install the Trusted Computing Base (TCB) which will
install the trusted shell and trusted path and will enable system integrity checking,
should you require this. The TCB option is only supported for a Preservation or a
Complete Overwrite installation.

The system will install at this point. A status indicator will appear on the screen
that describes the progress of the installation process, and the indicator will display
the percentage of tasks completed and the elapsed time (in minutes).

à ð

 Approximate Elapsed time

% tasks complete (in minutes)

57 1ð < ... Status Message ... >

á ñ

The key should now be turned to the Normal position so that the system will reboot
without intervention when the BOS installation has completed. Changing the key to
Normal can take place at any time during the installation phase before the reboot,
but it makes sense to do it at this point.

The new LED codes displayed during BOS installation and the associated status
messages that are displayed on the screen are listed below:

c48 (initial menu)
c50 Preparing target disks
c46 Making paging logical volumes
c46 Making boot logical volume

 Chapter 7. Installing an SMP System with AIX V4.1 177

c46 Making logical volumes
c46 Forming the jfs log
c46 Making file systems
c46 Mounting file systems
c54 Restoring base operating system
c52 Initializing disk environment **
c54 Installing all packages **

< installp summary information > **
< copyright information for each package > **
< installp completion summary information > **

c46 Creating boot image
(rebooting ...)

The messages with ** next to them in the above list will not be displayed for a
mksysb installation.

7.2.3.1 Software License Agreement
After installing AIX V4.1, you are presented with the licensing agreement. At this
point in time, some countries are not required to sign the license agreement, but a
country option must be selected to be able to continue. If you use the exit option,
the system will continue to prompt you.

178 RS/6000 SMP Servers

Figure 113. IBM License Agreement

 7.2.3.2 Installation Assistant
The Installation Assistant will appear after you enter a name to acknowledge the
Software License, and it will appear for all types of AIX V4.1 installation (except
mksysb) unless you are using a customized bosinst.data file from diskette or with
NIM for network installation. The Installation Assistant can also be brought up after
installation, should you require it, by using either

smitty assist

for the ASCII version or

install_assist &

 Chapter 7. Installing an SMP System with AIX V4.1 179

for the GUI version, as shown in Figure 115 on page 181.

à ð
 Installation Assistant

Move cursor to desired item and press Enter.

Set Date and Time

Set root Password

Set Installation Device

Configure Network Communications

Manage System Storage and Paging Space (rootvg)

Manage Language Environment

 Create Users

 Define Printers

Import Existing Volume Groups

Install Software Applications

Back Up the System

Tasks Completed - Exit to AIX Login

F1=Help F2=Refresh F3=Cancel F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Figure 114. ASCII Installation Assistant

180 RS/6000 SMP Servers

Figure 115. GUI Installation Assistant

Note: After you have used the desired options, always select the Tasks
Completed - Exit to AIX Login so that the Installation Assistant entry is removed
from the /etc/inittab file. Otherwise, the Installation Assistant will appear every time
the system is booted.

 Chapter 7. Installing an SMP System with AIX V4.1 181

7.2.3.3 Paging and Dump Devices
During a New and Overwrite Installation, a paging space (/dev/hd6) of 32 MB will
be created, and this will be used for dumps as well. If you do not increase the size
of the paging space using the Installation Assistant, the paging space will be
increased in size according to the AIX V3.2 defaults (for systems less than 64 MB,
paging space = 2 x real memory; for systems with 64 MB or more, paging space =
real + 16 MB).

If the default dump device is used, the dump image is copied from the paging
space to the /var filesystem on reboot. If the system has a lot of memory, there
may not be enough space in this filesystem for the dump image. The copy will fail,
and the system will prompt the user/administrator to select a media device to copy
the dump image; or type 88 to exit and continue the reboot. This is obviously not
acceptable if the system is unattended or in a remote location. The system
administrator can choose to discard any dump images by setting:

sysdumpdev -d /var/adm/ras

and continue to use the paging space (/dev/hd6) as the dump device.

The best solution for a large, multi-user server is to use a dedicated dump device
so that the /var filesystem will not fill up with core files, and the dump image will be
stored in the dump device. The drawback to this is that it does require dedicated
disk space.

Check the estimated size of the dump image. This is given in bytes; so you need
to work out the number of 4 MB partitions required for the dump device.

sysdumpdev -e

Create the dedicated dump logical volume using the previous calculation for the
number of partitions (for this example, 3)

mklv -y hd7 -t sysdump rootvg 3

Set the primary dump device to the new dedicated dump device

sysdumpdev -P -p /dev/hd7

and ensure that the system will automatically reboot after a crash.

chdev -l sysð -a autorestart=true

If a dump occurs now, the dump image will be saved in the dump logical volume for
later analysis, and the system will reboot immediately so that it is available again
for the users.

 7.2.3.4 Installation Messages
During installation, a number of messages are displayed on the console and can be
viewed at a later time if the installation was unattended.

The BOS installation messages can be retrieved using:

alog -o -t bosinst

The fileset installation information can be retrieved using:

pg /var/adm/ras/devinst.log

Similarly, the messages that are displayed on the console while the system is
booting can also be retrieved using:

182 RS/6000 SMP Servers

alog -o -t boot

7.2.3.5 bosinst.data and image.data Files
You have the option of customizing subsequent installations once AIX is installed
and avoid having to answer prompts on your console in order to install the system.
In order to avoid prompts on your console, you need to follow the steps detailed
below after you have completed your first AIX V4.1 system installation.

1. Copy the file /var/adm/ras/bosinst.data to /bosinst.data

2. Edit the variables in that file as per the comments in the file itself. Another
reference is the AIX Version 4.1 Installation Guide.

3. Create a file called /signature that has a one-line entry with the word “data” in
it.

4. Back these files up to a diskette:

ls ./signature ./bosinst.data | backup -iqv

5. Put the install tape in the tape drive and the diskette in the diskette drive; put
the key in the Service position, and switch the system on. It will install with the
options that you have now specified in the bosinst.data file.

As an example, in order to install AIX V4.1 onto two disks in a system, the
bosinst.data file was used:

à ð
control_flow:

CONSOLE = /dev/lftð

INSTALL_METHOD = overwrite

PROMPT = no

EXISTING_SYSTEM_OVERWRITE = yes

INSTALL_X_IF_ADAPTER = yes

RUN_STARTUP = yes

RM_INST_ROOTS = no

 ERROR_EXIT =

 CUSTOMIZATION_FILE =

TCB = no

INSTALL_TYPE = full

 BUNDLES =

target_disk_data:

LOCATION = ðð-ð8-ðð-ð,ð

 SIZE_MB =

 HDISKNAME =

target_disk_data:

LOCATION = ðð-ð8-ðð-1,ð

 SIZE_MB =

 HDISKNAME =

locale:

BOSINST_LANG = en_US

CULTURAL_CONVENTION = en_US

MESSAGES = en_US

KEYBOARD = en_US

á ñ

These procedures are described in detail in the AIX Version 4.1 Installation Guide
in the chapter “Customizing the BOS Install Program.”

You can also modify the image.data file which contains information that describes
the image installed during the BOS installation process. This information includes

 Chapter 7. Installing an SMP System with AIX V4.1 183

the sizes, names, maps, and mount points of logical volumes and file systems in
the root volume group. The installation program takes information from the
image.data file regarding defaults for the machine being installed. See the AIX
Version 4.1 Files Reference for a description of the image.data file.

 7.2.4 Preservation Installation
The AIX V4.1 Preservation Install will perform the same functionality a s it did in in
3.2. This installation preserves the /etc/filesystems file and /home directory as well
as user-created volume groups and logical volumes. A Preservation Install will also
preserve the previous dump and page devices.

 7.2.5 Migration Installation
A Migration Installation is only offered as an option when booting from an AIX V3.2
system, and this option will not appear on the Installation Menu if the previous
version was AIX V3.1. When migrating from AIX V3.2 to AIX V4.1, AIX V3.2.5 is
the preferred version for production environments to be migrated from.

Figure 116. Installation Flow for Migration

A Migration Installation will preserve logical volumes (including dump and paging),
system configuration files, user data, and all file systems. It removes all the files in
the /tmp filesystem.

The Migration Installation will then remove the bos.obj files based on the 3.2
software VPD (Vital Program Data). It will then install bos.rte, and it will
automatically install the equivalent, non-chargeable 4.1 filesets (anything included in
the AIX V4.1 client/server package) in place of the AIX V3.2 filesets. The only
exception to fileset mapping is that only the Data Link Control devices that are
defined and configured on the system will be reinstalled. All the compatibility
filesets are installed. The device driver support is completely reinstalled with the

184 RS/6000 SMP Servers

new AIX V4.1 device drivers. The following products will be removed from the
system:

� AIXwindows Interface Composer
� BOS ADT xde

 � Display Postscript
� XL C Compiler
� OpenGL, PEX, PHIGs and X11 3D

 � PC Simulator

Any AIX V3.2 LPPs or vendor products that were installed on the system will be left
untouched. Finally, the migration routine will invoke a routine which will merge the
configuration files back to their previous state.

We would suggest that when you migrate to AIX V4.1, do not install the CDE
runtime environment straight away. Test your existing X11 environment on AIX
V4.1 first, and then when you have sufficient time and knowledge, move to CDE.

 7.2.5.1 Obsolete Entries
If a system has been migrated from AIX V3.2, you will see a number of obsolete
entries by using lslpp -l. These filesets (options) contain files that were not
completely replaced by the AIX V4.1 equivalent filesets. In some cases, the files or
programs (such as X.desktop) will still work, but are not shipped with AIX V4.1. Do
NOT try and deinstall these filesets because some of the files will also be part of
the AIX V4.1 equivalent filesets.

à ð
X11fnt.coreX.fnt 1.2.3.ð OBSOLETE AIXwindows Core X11 Fonts

X11fnt.oldX.fnt 1.2.3.ð OBSOLETE AIXwindows Miscellaneous X

X11rte.ext.obj 1.2.3.ð OBSOLETE AIXwindows Run Time

X11rte.motif1.2.obj 1.2.3.ð OBSOLETE AIXwindows Motif 1.2 Run Time

X11rte.obj 1.2.3.ð OBSOLETE AIXwindows Run Time

bos.obj 3.2.ð.ð OBSOLETE The Base Operating System

bosadt.lib.obj 3.2.ð.ð OBSOLETE Base Development Libraries &

bosext1.extcmds.obj 3.2.ð.ð OBSOLETE Extended Commands

bsl.en_US.aix.loc 3.2.ð.ð OBSOLETE AIX Locale - English (United

bsl.en_US.pc.loc 3.2.ð.ð OBSOLETE PC Locale - English (United

bsl.lat-1.fnt.loc 3.2.ð.ð OBSOLETE HFT Latin-1 Font Library

bos.obj 3.2.ð.ð OBSOLETE The Base Operating System

bosext1.extcmds.data 3.2.ð.ð OBSOLETE Extended Commands

á ñ

 7.2.6 mksysb Installation
A system can be installed by restoring a backup of a previously installed system.
Figure 117 on page 186 shows the installation flow from such a backup.

 Chapter 7. Installing an SMP System with AIX V4.1 185

Figure 117. Installation Flow for mksysb

In order to create a mksysb, you need to type in

smitty mksysb

or take the option

System Storage Management (Physical & Logical Storage)

from the initial SMIT screen, where you will see the option System Backup Manager.
The AIX V3.2 fastpath smitty startup and the option to Backup the System . on
the smitty fs menu are now excluded. The screen will look like this:

186 RS/6000 SMP Servers

à ð
Back Up the System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 (Entry Fields)

WARNING: Execution of the mksysb command will

result in the loss of all material

previously stored on the selected

output medium. This command backs

up only rootvg volume group.

\ Backup DEVICE or FILE (/dev/rmtð) +/

Create MAP files? no +

 EXCLUDE files? no +

Make BOOTABLE backup? yes +

(Applies only to tape)

EXPAND /tmp if needed? no +

(Applies only to bootable tape)

Number of BLOCKS to write in a single output () #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Figure 118. mksysb Backup Screen

When installing a mksysb tape, the image.data file will indicate that BOS install
should take the mksysb install path, and the user will not be prompted for
installation method.

If the installation tape will not boot because of a corrupted boot image, then there
will be a maintenance path provided with the product BOS install utilities which will
allow the installation of the mksysb image.

 Attention 1

Since we are now dealing with minimum install environments in AIX V4.1, it is
possible that a mksysb from one system will not install on another machine
because of differing requirements in device support.

If you intend to install multiple machines with a mksysb image, you must install
the required device support onto the original machine before the mksysb image
is created.

 Attention 2

If you are trying to install a mksysb that has been generated on a UP system
after using the upgrade option to migrate AIX V3.2.5 to AIX V4.1.x, you have to
boot off your installation media and then choose option 3 (Start Maintenance
Mode) from your Installation Menu. This is because the smit mksysb from the
UP system will not create an MP-bootable tape; it will create a UP-bootable
tape only.

 Chapter 7. Installing an SMP System with AIX V4.1 187

 7.2.7 Network Installation
The Diskless Workstation Manager (DWM) utilities in AIX V3.2 have been replaced
by the Network Installation Manager (NIM) in AIX V4.1. NIM can manage diskless
and dataless systems running AIX V4.1 as well as network install stand-alone
systems. Using NIM, you can set up an installation once for machines with
identical requirements or customize an installation for the specific requirements of a
given machine. More than one machine can be installed at the same time although
the number of machines installed simultaneously will depend on the throughput of
the network.

The NIM environment is comprised of server and client machines. A server
provides the resources (files and programs), and a machine that is dependent on a
server is the client.

Before using NIM, NFS and TCP/IP must be installed and configured, and the
networks that will be part of the installation must be configured. Also, gateways
must be initialized and name resolution must be set up so that all machines that will
be part of the network have a resolvable host name.

SMP systems can be installed via the network using NIM. There are some
differences when compared to the uniprocessor systems.

� The only supported configuration is as a stand-alone system. All the filesystems
and resources are located on the SMP system's local disks. Diskless or
dataless configurations are not supported on the SMP.

� Ethernet and token-ring are the only supported network interfaces for network
install. This is a limitation of the support in the Read-Only Storage (ROS) on
the SMP systems. The IPL ROM emulation diskette that is used on the RISC
System/6000 UP systems to provide the FDDI support does not work at all on
the SMP systems.

� The boot process at the hardware level is different for the SMP machines. The
SystemGuard Maintenance Menu that was discussed in Chapter 5,
“SystemGuard” on page 99 is used to select the network interface and boot
from a NIM server.

188 RS/6000 SMP Servers

 7.3 SMP Specifics
This section introduces some AIX V4.1 specifics to the SMP systems.

7.3.1 AIX V4.1 Levels for SMPs
A number of levels of AIX V4.1 are already available, and additional support will be
added over time. The following list shows what has been delivered, so far, and the
AIX V4.1 levels that are supported on the SMP systems.

AIX V4.1.0 US English only

AIX V4.1.1 Internationalization

AIX V4.1.2 SMP support (Up to four processors)

AIX V4.1.3 SMP support (Up to eight processors)

This section is a collection of SMP-specific items that relate to AIX V4.1.

 7.3.2 MP Kernel
AIX V4.1 is shipped with two kernels - an MP kernel and a UP kernel. The two
kernels share common code, but the locking required for an SMP environment is
eliminated for the UP kernel. There are three key filesets in this regard.

bos.rte This fileset is used to ship all files that are common to both the UP and
the MP.

bos.rte.up This fileset contains files specific to a UP (like the UP kernel).

bos.rte.mp This fileset contains files specifics to an SMP (like the MP kernel)

The BOS Runtime fileset, bos.rte. becomes a number of smaller filesets after
installation. These filesets are named bos.rte.* and are used for updates only.

When installing a system, the correct kernel will be installed, depending on the type
of system you are dealing with.

In fact, as part of the BOS installation, the command bootinfo -z determines
whether the system is MP capable or not. Then the BOS installation process
installs the appropriate fileset and link /unix to the correct kernel.

This link is only used by the bosboot command when rebuilding the boot image.

During bootup, the platform type is checked to see if it is a UP or an MP system,
and the appropriate kernel is loaded using the full pathname, /usr/lib/boot/unix_up
or /usr/lib/boot/unix_mp.

You can install both the UP and the MP filesets on the same system. This is used
when setting up a Network Install server for AIX V4.1.

Note that the MP kernel will work on a UP system . However, performance might
not be as good as it would be if the UP system was running a UP kernel. The
performance penalty is typically about 10 percent.

However, the UP kernel will not work on an MP system because there is some
MP hardware-specific support that is not included in the UP kernel. You will get an
LED code of 911 if you try to boot an SMP system with a UP boot image.

 Chapter 7. Installing an SMP System with AIX V4.1 189

Note: When booting from the product CD-ROM or tape, the MP Kernel is used.
This eliminates the need to build different versions of the installation media for the
two systems.

The bos.rte.mp fileset contains the following files:

à ð
lslpp -f bos.rte.mp

 Fileset File

Path: /usr/lib/objrepos

 bos.rte.mp 4.1.2.ð /usr/sbin/open_door

 /usr/sbin/cpu_state

 /usr/sbin/bindprocessor

 /usr/lib/boot/unix_mp

Path: /etc/objrepos

 bos.rte.mp 4.1.2.ð NONE

á ñ

The file /usr/lib/boot/unix_mp is the MP kernel. The /usr/sbin/cpu_state and
/usr/sbin/bindprocessor files are discussed in Chapter 8, “SMP Performance Tools”
on page 209.

 7.3.3 Platform Types
The system device type is an abstraction that allows machines to be grouped
according to fundamental configuration characteristics, such as number of
processors and I/O bus structure.

The system device, sys0, is the highest-level device in the system node, which
consists of all physical devices in the system.

Machines with different system device types have basic differences in the way their
devices are dynamically configured at boot time.

rs6k applies to all of the uniprocessor IBM RISC System/6000 that have a
Micro-Channel bus.

rs6ksmp applies to symmetric multiprocessor models.

rspc applies to the PReP-compliant systems that have an ISA bus, such as
the RISC System/6000 40P.

In AIX V3.2.5, the prototype files used by the bosboot command to build boot
images were dependent on the boot device. This is still true in AIX Version 4.1, but
in addition, the prototype files are dependent on the system device type (sys0) of
the machine for which the boot image is built.

This is reflected in the names of the prototype files:

 /usr/lib/boot/rs6k.cd.proto
 /usr/lib/boot/rs6k.disk.proto
 /usr/lib/boot/rs6k.tape.proto
 /usr/lib/boot/rs6ksmp.cd.proto
 /usr/lib/boot/rs6ksmp.disk.proto
 /usr/lib/boot/rs6ksmp.tape.proto
 /usr/lib/boot/rspc.disk.proto
 /usr/lib/boot/rspc.cd.proto
 /usr/lib/boot/network/rs6k.ent.fddi

190 RS/6000 SMP Servers

 /usr/lib/boot/network/rs6k.fddi.proto
 /usr/lib/boot/network/rs6k.tok.proto
 /usr/lib/boot/network/rs6ksmp.ent.proto
 /usr/lib/boot/network/rs6ksmp.tok.proto
 /usr/lib/boot/network/rspc.ent.proto
 /usr/lib/boot/network/rspc.tok.proto

These files, in addition to the configuration methods, are contained in the following
filesets:

 devices.base.*

 devices.rs6ksmp.base.*

 devices.rspc.base.*

7.3.4 Determining the Platform Type
The bootinfo command is used during the boot and BOS install phases to gather
and display information.

The bootinfo command can be used to determine the type of platform you are
using. Also this command can help you in determining the current boot device,
default install disk and a variety of other boot information.

These are some of the options that we found to be of most interest to the SMP
systems.

bootinfo -z will return a numeric:

ð The machine is not MP-capable
1 The machine is MP-capable

bootinfo -T will return one of the following:

rs6k which means RISC System/6000 UP
rs6ksmp which means RISC System/6000 SMP
rspc which means PowerPC PREP System

bootinfo -r will display the amount of real memory in kilobytes.

bootinfo -t will list the type of boot, and the following are the responses:

1 Disk boot
3 CD-ROM boot
4 Tape boot
5 Network boot

bootinfo -k will display the key position:

1 Secure position
2 Service position
3 Normal position

 Chapter 7. Installing an SMP System with AIX V4.1 191

7.3.5 Creating an MP Boot Image
The bosboot command is used to create a boot image, and this is the same as in
AIX V3.2. It uses the prototype files listed in the Platform Types section.

However, any boot image will only support a single platform type and a single boot
device type. The supported boot devices are token-ring, Ethernet, FDDI, CD-ROM,
Disk, or Tape.

The command you would use to create an MP boot image is:

bosboot -a -d hdiskð -k /usr/lib/boot/unix_mp -L

where

-a Creates a complete boot image and device.
-d Specifies the boot device. This flag is optional for the hard disk.
-L Enables lock instrumentation for MP systems for use with the lockstat

command. This flag has no effect on systems that are not using the MP
kernel, and it does create some overhead when used on a production SMP
system.

-k Specifies the full path to the kernel. This is optional since bosboot uses the
/unix link in order to build the correct boot image (UP or MP).

Two other flags could be of interest :

-T Specifies the platform for the boot image. This is optional since the platform
type is taken from the system where the bosboot command is run. But if you
want to create an MP boot image on a UP system, you need to specify the
type, rs6ksmp.

-U Creates an uncompressed boot image. The boot image is compressed by
default. If you wish to use this flag, ensure that the boot logical volume is
large enough for the uncompressed boot image.

 7.3.6 SMP CPU-ID
On traditional IBM RISC System/6000 UP systems, the output of the uname -m

command is tied to the serial number of the CPU card.

Since an SMP system has several processors, the CPU-ID used for product
licenses cannot be tied to a processor and must be unique.

Therefore, for SMP systems, a unique value for the CPU-ID will be created for each
chassis, and this value will be maintained through upgrades (that is adding new
processors or changing the processor technology).

The CPU-ID is part of the VPD (Vital Product Data) of the system. The SID Y2
field in the System EEPROM is used to build the CPU-ID of the system.

uname -m will give an output similar to xxyyyyyymmss (for example -
00645067A000) where:

xx and ss are always 00

yyyyyy is the CPU-ID

192 RS/6000 SMP Servers

mm is the Model ID (A0 for a 7013-J30, A6 for a 7012-G30, and A3 for a
7015-R30)

Note: For SMP systems built in Austin, the CPU-ID is the serial number of the
machine. This is not the case for machines built in EMEA.

7.3.7 New SMP Devices
If you issue the following command,

lsdev -C

you will see a number of new devices that were not present in the UP systems.

à ð
cabinetð Available ðð-ðð Cabinet

op_panelð Available ðð-ðð Operator Panel

mcaplanarð Available ðð-ðð MCA Planar

sifð Available ðð-ðð Power Supply Interface

power_supplyð Available ðð-ðð Power Supply

cpucardð Available ðð-ðP CPU card

L2cacheð Available ðð-ðP-ðð-ðL L2 Cache

procð Available ðð-ðP-ðð-ðð Processor

proc1 Available ðð-ðP-ðð-ð1 Processor

cpucard1 Available ðð-ðQ CPU card

L2cache1 Available ðð-ðQ-ðð-ðL L2 Cache

proc2 Available ðð-ðQ-ðð-ðð Processor

proc3 Available ðð-ðQ-ðð-ð1 Processor

á ñ

In this system, you can see two CPU cards (cpucard0 and cpucard1). There are
two processors on each card (proc0 and proc1 for cpucard0) with a single device
for the level 2 cache (L2cache0), even though each processor has its own
dedicated level 2 cache. The J30 and R30 will also show two Micro-Channel
busses (bus0 and bus1).

7.4 UP to SMP Migration
Upgrading a UP to an SMP system is different from upgrading a UP to another
faster UP because the SMP technology is different from the UP technology.
Therefore, migrating from a UP to an SMP system must be done carefully and with
some knowledge of the differences between a UP system and an SMP system.

The intent of this section is not to describe in detail how to migrate a UP system to
an SMP system but to outline the main steps and the main issues when performing
such an upgrade. A detailed procedure and utilities should come with the upgrade.

Most of the time the UP system to be upgraded will be running AIX V3.2. Since
the SMP requires at least AIX V4.1.2 to run, and AIX migration from AIX V3.2 to
AIX V4.1.2 or later will first be necessary on the UP system before migrating the
reusable hardware to the SMP system.

 Chapter 7. Installing an SMP System with AIX V4.1 193

 7.4.1 Migration Checklist
When migrating a UP system to an SMP system, there are a number of items that
need to be checked before the upgrade can take place.

These key items are:

� AIX V4.1 device support:

If you are running AIX V3.2.5 on your UP system, not all the existing adapters
are supported by AIX V4.1. This may mean that you wait for the device
support to be available, or replace the old hardware with supported hardware
(for example - replacing a 64-port card with a 128-port adapter).

� AIX V4.1 LPPs support:

You need to check that the installed LPPs are supported on AIX V4.1. If new
versions are required for AIX V4.1, they need to be ordered and available
before migrating the system to AIX V4.1.

You might have to wait for the availability of some LPPs before starting the
migration to AIX V4.1 on the UP system.

� Software that are no longer included in AIX V4.1:

You need to check that there is no software which is required, but not included,
in AIX V4.1. For example, the C compiler and InfoExplorer are required to be
ordered separately, but they were part of AIX V3.2.

� Custom-made application availability:

You need to identify all custom-made applications running on your system.
Then port them on AIX V4.1. Porting these applications on a UP system
running AIX V4.1 is not sufficient. The applications must be MP safe before
migrating them to the SMP system.

� Third-party applications availability:

If your environment is dependent on key applications from a software vendor,
you must first contact the software vendor to ensure that their application is
supported on AIX V4.1 and MP safe. In some cases, a new version might be
required so you must order an upgrade.

� Third-party hardware availability:

If you use third-party hardware (such as adapters, terminals, printers, modems)
in your environment, it is advisable to verify that this hardware is supported and
works with AIX V4.1.

 � Reusable hardware:

Before starting the upgrade, you need to check which hardware you can reuse
through the upgrade. Some adapters, disks, memory SIMMs are reusable.
Some hardware are not supported like the 64-port adapter.

 7.4.2 Migration Procedure
When upgrading a UP system to an SMP system, there are two cases. The UP is
at AIX V3.2.5, or the UP is already at AIX V4.1.3. Since the second case is a
subset of the first case, we are only going to cover the first case.

The main upgrade steps are the following:

� Back up the existing environment

194 RS/6000 SMP Servers

� Document your system (which hardware is installed at which location, which
LPPs are installed and so on)

� Migrate the UP system to AIX V4.1.x (4.1.2 or 4.1.3 or later)

� Test your environment at AIX V4.1.x

� Back up the system again

� Install all the required device drivers and filesets such as the MP kernel

� Create the MP kernel links

� Create an MP boot image

� Create a bootable tape (using mksysb)

� Migrate the reusable hardware

� Boot on the SMP with the bootable tape

� Reload the system backup

 Attention

The following sections are not a step-by-step procedure for upgrading a UP
system to an SMP. They just give an idea of the main steps in the upgrade
process. A detailed procedure provided with the upgrade kit should be followed
carefully.

7.4.3 Migrating the UP System to AIX V4.1
The third step is to migrate the environment to AIX V4.1 on the existing UP system.
This is where the above considerations regarding device support, LPPs, third party
applications, database, and hardware need to be taken into account to ensure that
there are no problems because this is the highest risk area.

Note: If you intend to migrate your system to AIX V4.1.2 instead of AIX V4.1.3 or
later, before you start to install AIX V4.1, you need to set your dump device to the
paging area because there are problems with AIX V4.1.2. If not, you will not be
able to create new logical volumes or change the size of /tmp after the migration to
AIX V4.1.2. This problem is fixed in AIX V4.1.3.

Use the following command to set the dump device to the paging space:

sysdumpdev -p /dev/hd6 -P

Also, you need to check that there is about 8 MB free in /tmp before starting the
migration. If you are short of disk space, you can remove the dump logical volume.
Use the following command to free-up the allocated PPs (2 PPs default):

rmlv -f hd7

Boot your system from your installation media, and take the option for Migration
Installation from the screen when it is presented. Be aware that the Migration
Install is slightly different from Complete Overwrite or Preservation Install as the
user will be presented with a migration confirmation menu as follows.

 Chapter 7. Installing an SMP System with AIX V4.1 195

à ð
migration menu preparation in progress

Please wait ...

 Approximate Elapsed time

% tasks complete (in minutes)

12 2 < ... Status Message ... >

á ñ

The point is not to walk away from the machine thinking that it will go ahead and
install; it won't. It will display a menu. It takes two to three minutes, waiting for
input, to display the following menu:

à ð
Either type ð and press Enter to continue the installation, or type the

number of your choice and press Enter.

1 List the saved Base System configuration files which will not be

merged into the system. These files are saved in /tmp/bos.

2 List the filesets which will be removed and not replaced.

3 List directories which will have all current contents removed.

4 Reboot without migrating.

>>> ð Continue with the migration.

88 Help

+--

WARNING: Selected files, directories, and filesets (installable

options) from the Base System will be removed. Choose 2 or 3 for more

information.

á ñ

Figure 119. Migration Confirmation Screen

After the migration has completed, a software license agreement that you need to
complete will come up, and a smaller version of the Installation Assistant (as per
the following figure) will appear. You can complete any of the tasks here that you
might want.

196 RS/6000 SMP Servers

à ð
 Installation Assistant

Move Cursor to desired item, and press Enter

Set Installation Device

Manage Language Environment

Install Software Applications

Backup the System

Task Completed - Exit to AIX login

F1=Help F2=Refresh F3=Cancel F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Some of the above options will also start up the Visual Systems Manager should
you have a graphics screen as a console on your UP system.

There are a number of files in the /tmp/bos directory that could be of interest. A list
of the removed filesets is stored in /tmp/bos/filesets.gone, and a list of directories
removed is stored in /tmp/bos/directories.gone.

7.4.4 Dump Device and Paging Space
If, before a migration to AIX V4.1.2, you forgot to point your dump device to the
paging area with the sysdumpdev command, you can perform the following
workaround. It fixes a discrepancy between the device information in the boot
image and the LVM data for /tmp.

su

putlvodm -L getlvodm -l hd3

lvrelminor hd3

synclvodm rootvg hd3

Check your system dump and paging. Since you are dealing with a server, it would
be best to have a dedicated dump device; so create an hd7 logical volume by
issuing:

mklv -y'hd7' -a'e' rootvg <number of PPs>

where <number of PPs> is the number of Physical Partitions that you require, which
you can get by using the command:

sysdumpdev -e

You would then point your dump device to your new logical volume. For example,

sysdumpdev -P -p /dev/hd7

It would also be beneficial to check your paging requirements and adjust as
necessary.

 Chapter 7. Installing an SMP System with AIX V4.1 197

7.4.5 Installing Required Device Drivers
Once your system is at AIX V4.1, it is essential that you add the MP-specific
device support (and device support for any new devices that are on the SMP
system) onto the UP system. Otherwise, these devices might not be enabled, or
you might not even be able to install the backup tape on the SMP. In order to do
this, enter the following SMIT fastpath:

smit install_selectable_all

Use PF4 to list what is on your installation media; use / to find the item and PF7 to
select the required items:

� bos.diag.rte - Hardware diagnostics for SystemGuard commands mpcfg and
keycfg

� bos.sysmgt.serv_aid - Software error logging and service aids for SystemGuard
daemons, survd and mirrord

� bos.rte.mp - MP Kernel

� devices.mca.8efc - 16-bit SCSI I/O controller

� devices.mca.fed9 - Standard I/O adapter

� devices.rs6ksmp.base - SMP Base System Device Support

This should be enough device support to install onto your SMP system. Additional
device support can always be added after the system has been installed by using
SMIT or by issuing:

cfgmgr -i /dev/rmtð

If you do not want to follow this route, you can add all the device support on your
installation media onto your UP system before you migrate, but this option uses
extra disk space and requires more resource for updating.

7.4.6 Creating MP Kernel Links
The next step is to create the link from /unix to /usr/lib/boot/unix_mp on the UP
system by issuing the command:

ln -fs /usr/lib/boot/unix_mp /unix

so that you can create the correct boot image on the UP system before performing
the mksysb.

7.4.7 Creating an MP Boot Image
You must create an MP boot image with the following command:

bosboot -a -d /dev/hdiskð -k /usr/lib/boot/unix_mp -T rs6ksmp

Once the MP boot image has been created, you must install an upgrade utility
which is provided on a diskette with the upgrade kit. You must run that upgrade
utility (shell script).

At this point you need to back up the system and create a bootable tape. Then
you can migrate the reusable hardware to the SMP.

198 RS/6000 SMP Servers

7.4.8 Restoring the Backup
Before booting the SMP system from your backup tape, you will need to reset the
NVRAM from the SystemGuard Stand-By menu. A specific procedure is provided
with the upgrade kit.

Then boot the SMP system from your backup tape. At your initial Installation
Menu,

à ð
Welcome to Base Operating System

Installation and Maintenance

Type the Number of your choice and press Enter. Choice is indicated by >>>.

>>> 1 Start Install now with Default Settings

2 Change/Show Installation Settings and Install

3 Start Maintenance Mode for System Recovery

 88 Help ?

99 Previous Menu

>>> Choice (1): _

á ñ

Choose option 3 to Start Maintenance Mode for System Recovery.

à ð
 Maintenance

 Type Number

>>> 1 Access a Root Volume Group

2 Copy a System Dump to Removable Media

3 Access Advanced Maintenance Functions

4 Install From a System Backup

 88 Help ?

99 Previous Menu

>>> Choice (1): _

á ñ

Choose the tape drive you want to install from on the next screen, and after one or
two minutes, you will be presented will a screen that will allow you to choose the
language that you will use for the install. This will then present you with the
following screen:

 Chapter 7. Installing an SMP System with AIX V4.1 199

à ð
System Backup and Installation settings

Either type ð and Press Enter to Install with the Current settings, or

type the number of the setting you want to change, and press Enter.

 Setting: Current Choice(s):

1 Disks where you want to install.........hdiskð

 Use maps........................No

2 Shrink Filesystems......................No

>>> ð Install with the settings listed above.

 88 Help ? +--

99 Previous Menu | WARNING-Base Operating System Installation

| will destroy or impair ALL data on the

| destination disk hdiskð.

>>> Choice (ð): _

á ñ

Choose option 1 to check that you are putting it on the correct disks, and you can
then start the install of your mksysb. This presents you with the following screen:

à ð
Installing Base Operating System

Turn the key to the NORMAL position any time before the

installation ends.

 Please wait...

 Approximate Elapsed time

% tasks complete (in minutes)

57 1ð < ... Status Message ... >

á ñ

7.5 Example of an SMP Installation Using NIM
In this example, we use an IBM RISC System/6000 Model 530 as a NIM Master
and Server to install a J30 SMP system over a token-ring network.

200 RS/6000 SMP Servers

Figure 120. NIM Setup

1. Install the NIM software on the NIM Master. Use the following SMIT fastpath to
load the NIM software, which is part of the bos.sysmgt package:

smitty install_latest

Install the following filesets:

bos.sysmgt.nim.client NIM client tools
bos.sysmgt.nim.master NIM master tools
bos.sysmgt.nim.spot SPOT creation tools

SPOT is the Shared Product Object Tree which provides the /usr filesystem for
diskless and dataless clients as well as the network boot resources for all client
configurations.

2. Then create the /export filesystem as follows:

crfs -v jfs -g rootvg -a size=8192 -m /export -A yes

mount /export

mkdir /export/nim

mkdir /export/nim/scripts

3. Use the nimconfig command to specify the name of the network (Network1 in
our example) and the default port (1058 in our example):

nimconfig -a netname=Network1 -a pif_name=trð \

-a master_port=1ð58 -a ring_speed=16

The SMIT fastpath is: smitty nimconfig

At this point, to see the objects within the NIM database, you can issue the
command:

lsnim

To see more information about the NIM master, you can issue the command:

lsnim -l master

Since the system is going to be a stand-alone system, in order to see what the
required and optional resources are, enter:

lsnim -q bos_inst -t standalone

This tells that you need a SPOT and an lpp_source resource.

 Chapter 7. Installing an SMP System with AIX V4.1 201

4. To create the lpp_source resource, create a separate filesystem into which to
load software images and mount it:

crfs -v jfs -g rootvg -a size=6144ðð -m /lpp_images -A yes

mount /lpp_images

Then load the tape in the tape drive and define and create the NIM lpp_source
resource (this can take up to an hour to complete):

nim -o define -t lpp_source -a location=/lpp_images \

-a server=master -a source=/dev/rmtð.1 images

The SMIT fastpath is: smitty nim_mkres

5. To create the SPOT, create a separate filesystem for the network boot images
and mount it as /tftpboot:

crfs -v jfs -g rootvg -a size=57334 -m /tftpboot -A yes

mount /tftpboot

Then define the /usr SPOT named spot1 in our example. Since we just want to
install AIX onto the SMP system, convert the /usr filesystem on your master
into a SPOT to save disk space (this can also take up to an hour to complete):

nim -o define -t spot -a location=/usr -a server=master \

-a source=images spot1

The SMIT fastpath is: smitty nim_mkres

The NIM master is now set up. Now you need to begin the definition of the
clients and the resources required to install them.

6. Define your client (SMP) system to NIM (in our example the SMP hostname is
smp1 and the NIM object name is nim_client):

nim -o define -t standalone -a platform=rs6ksmp \

-a if1='Network1 smp1 1ððð5AC97CF1' -a ring_speed=16 nim_client

The SMIT fastpath is: smitty nim_mkmac

7. Use the following command to allocate the lpp_source resource, images (which
points to /lpp_source) and the SPOT resource, spot1, to the NIM machine
object called nim_client.

nim -o allocate -a lpp_source=images -a spot=spot1 nim_client

The SMIT fastpath is: smitty nim_alloc

8. Initiate the installation of the client.

The NIM resources are exported to the client system. An attempt is made to
contact the client system to perform a reboot, but this just times out because
our SMP system is not running AIX V4.1 and is not yet configured as a NIM
client.

nim -o bos_inst -a source=rte nim_client

The SMIT fastpath is: smitty nim_mac_op

9. Manual intervention is required at the client to initiate the network boot. In order
to do this, you need to bring up the SystemGuard Maintenance Menu. For
information on how to get into the SystemGuard Maintenance Menu, refer to
Chapter 5, “SystemGuard” on page 99.

From the SystemGuard Maintenance Menu, take the following options:

a. Select System boot .

202 RS/6000 SMP Servers

b. Select Boot From Network .

c. Select the Select BOOT (Startup) Device option.

d. Select the network (in our case token-ring at 16 Mb).

e. Enter IP addresses for client and bootp server and then option 99 to return
to the Main Menu.

f. Test the connection by using the Send Test Transmission (PING) option.

g. Start the Network Install.

h. Answer the questions as per the Complete Overwrite Install to choose
languages. Refer to 7.2.3, “New and Complete Overwrite Installation” on
page 177 for more information.

The above example was used to pull a new installation from a server. Once the
system is installed with AIX V4.1 and a configured NIM client, it is possible to do a
push install of operating-system updates or even a reinstallation of the operating
system. The network installation can be totally automated using a modified
bosinst.data file and a customization script. For further information, please refer to
the AIX Version 4.1 Network Installation Management Guide and Reference.

7.6 AIX V4.1 Software Maintenance
In AIX V4.1, the software maintenance levels are now identified by Version Release
Modification Fix (VRMF) levels. The VRMF levels will be displayed by using the
lslpp command. You will no longer see any (PTF) Program Temporary Fix
(U4xxxxx) numbers. For example, the AIX V4.1.2 bos.rte.up fileset has a VRMF of
4.1.2.0, indicating Version 4, Release 1, Modification level 2 and fix level 0.

The Version number is incremented to indicate a new product or the repackaging
of an existing product. Versions include major functional enhancements and
typically come two or more years apart.

The Release number is incremented to indicate new enhancements or new
functions. Releases of AIX V4.1 will come approximately one year apart.

The Modification number is incremented whenever an accumulation of
maintenance is added to a fileset. A modification level can also include support for
new processors or devices where this support does not affect the behavior of the
product on existing systems. Whenever the modification level is adjusted, the fix
level is reset to zero. The modification levels for AIX V4.1 will come 3-6 months
apart.

The Fix level is incremented whenever a fix is added to the fileset. Fixes for AIX
V4.1 are created on customer demand.

Each fileset in AIX V4.1 can be serviced separately. Fixes will be delivered in
fileset packages. Changes to filesets are cumulative, meaning that each new level
of a fileset contains all the previous changes.

Maintenance and fixes should not change application programming interfaces so
that applications that are written to the documented programming interfaces will
function identically on different maintenance and fix levels. This is important for
software vendors or customers for certification of their applications on AIX V4.1.

 Chapter 7. Installing an SMP System with AIX V4.1 203

7.6.1 Fileset VRMF Numbering
The following diagram is used to show that the various filesets will show different
VRMF for a particular level of AIX V4.1. For AIX V4.1.2, only some of the filesets
will be at level 4.1.2.0.

Figure 121. Fileset Numbering Examples

If the fileset for the base operating system was shipped in 4.1.0 and if there were
absolutely no code changes to that fileset since 4.1.0, then, the VRMF is
unchanged. For example, the level of bos.dlc.com for AIX V4.1.2 is 4.1.0.0.

If the fileset for the base operating system was shipped in 4.1.0 and if there were
changes to the code for 4.1.1 or 4.1.2, the modification level for the VRMF will be
adjusted to be inline with the operating-system level. For example, the level of
bos.rte.up was 4.1.2.0 for AIX V4.1.2 and 4.1.1.0 for AIX V4.1.1. The content of
the fileset was modified for both levels of AIX V4.1.

If there is a new (additional) fileset for the base operating system or an LPP, the
VRMF will be the level of the operating system or the LPP that it ships with.

If the LPP is new for V4.1, the VRMF level can really be set to any version or
release value (but probably 1.1.0.0). If the LPP filesets shipped on AIX V3.2, the
version or release need only be bumped (+1), but the modification should be reset
to 0. For example, AIXlink/X.25 LPP was new for AIX V4.1.2, and the VRMF for all
the sx25 filesets was set to 1.1.0.0.

204 RS/6000 SMP Servers

 7.6.2 oslevel Command
The oslevel command has been retained from AIX V3.2.4. Its behavior is slightly
different due to the new VRMF format (and it is quicker!).

à ð
oslevel -?

Usage: oslevel (-l <level> | -g | -q)

-l : List filesets at levels earlier than maintenance level

specified by the <level> parameter

-g : List filesets at levels later than most recent

complete maintenance level

-q : List names of known maintenance levels which may be

specified with the -l flag

Output indicates that base system software is entirely at

or above a particular maintenance level. Corresponding output

would be 4.1.1.ð first AIX V4.1 maintenance level.

The additional options may be specified to determine which

filesets differ from the maintenance level

á ñ

To check the level of the operating system, enter:

à ð
oslevel

4.1.2.ð

á ñ

To list the names of the known Maintenance Levels, enter:

à ð
oslevel -q

Known Maintenance Levels

4.1.2.ð

4.1.1.ð

#

á ñ

The VRMF information that the oslevel command uses for all the base operating
system filesets is now stored in an ODM database. There is a specific entry in the
/usr/lib/objrepos/fix database for each Maintenance Level. It looks like this:

 Chapter 7. Installing an SMP System with AIX V4.1 205

à ð
ODMDIR=/usr/lib/objrepos odmget fix | pg

fix:

name = "4.1.1.ð_AIX_ML"

abstract = "AIX V4.1.1.ð Maintenance Level"

type = "p"

filesets = "bos.acct:4.1.1.ð\n\

bos.adt.base:4.1.1.ð\n\

bos.adt.debug:4.1.1.ð\n\

bos.adt.graphics:4.1.1.ð\n\

bos.adt.include:4.1.1.ð\n\

 ...

fix:

name = "4.1.2.ð_AIX_ML"

abstract = "AIX V4.1.2.ð Maintenance Level"

type = "p"

filesets = "bos.acct:4.1.2.ð\n\

bos.adt.base:4.1.2.ð\n\

bos.adt.debug:4.1.2.ð\n\

bos.adt.graphics:4.1.1.ð\n\

bos.adt.include:4.1.2.ð\n\

 ...

á ñ

 7.6.3 instfix Command
There is a new instfix command with AIX V4.1, and there are a number of
options to this command. It can be used to:

� List the contents of an update media

� Search for a fix number on a media

� Search in ODM for installed fixes

� Search for a key word

� Give fix abstracts

Following are some examples:

To list the entire fixes Table of Contents on the media, enter:

instfix -T -d/dev/rmtð.1

To install all filesets associated with fix, IX38794 from the tape mounted on
/dev/rmt0.1, enter:

instfix -k IX38794 -d /dev/rmtð.1

To install all fixes on the media in the tape drive, enter:

instfix -T -d /dev/rmtð.1 | instfix -d /dev/rmtð.1 -f

The first part of this command lists the fixes on the media, and the second part of
this command uses the list as input.

To list all entries on the tape using a keyword search string of SCSI, enter:

instfix -s SCSI -d /dev/rmtð.1

To inform the user on whether fixes IX38794 and IX48523 are installed, enter:

instfix -i -k "IX38794 IX48523"

206 RS/6000 SMP Servers

 7.6.4 Applying Updates
There are a number of SMIT fastpaths to enable you to install maintenance to your
AIX V4.1 system.

smitty update_all will install all the fixes that are available on the installation
media.

smitty install_maintenance allows the system administrator to install a later
maintenance level.

smitty install_fileset allows the system administrator to install individual fixes.
Use / to search for the fix and PF7 to select multiple filesets.

 Chapter 7. Installing an SMP System with AIX V4.1 207

208 RS/6000 SMP Servers

Chapter 8. SMP Performance Tools

Tuning is an integral requirement for any system. There are a variety of tools
included with AIX V4.1 or separately purchasable that can help you in monitoring
your SMP system. The objective of this chapter is to introduce the major
performance tools that are available to monitor an SMP system.

8.1 AIX V4.1 Performance Tools Considerations
The AIX V4.1 performance tools can be categorized as following: tools that are
totally new in AIX V4.1, tools that are SMP specific, standard tools or commands
that were available in AIX V3.2 and have been modified to support the SMP
environment, and tools that were included in AIX V3.2 but are now part of an LPP.

Following are tools that did not exist before in AIX V3.2 and a small description of
each of them:

� BigFoot: This tool collects the memory footprint of a running program. It reports
the virtual-memory pages touched by the process. BigFoot consists of two
commands:

– bf - collects information about pages touched during the execution of a
program. It generates the complete data from the run in a file named
_bfrpt.

– bfrpt - filters the _bfrpt file to extract the storage references made by a
given process.

� Performance Diagnostic Tool (PDT): This tool assesses the current state of a
system and tracks changes in workload and performance. It is located in the
bos.perf.diag_tool fileset. After this fileset has been installed, the configuration
script, pdt_config, must be run as root user. It attempts to identify incipient
problems and suggest solutions before the problems become critical. PDT is
available only on AIX Version 4.1. For the most part, PDT functions with no
required user input.

PDT data collection and reporting are easily enabled, and no further
administrator activity is required. Periodically, data is collected and recorded
for historical analysis, and a report is produced and mailed to the adm user ID.
Normally, only the most significant apparent problems are recorded on the
report.

� stem (scanning tunnelling encapsulation microscope): allows insertion of
instrumentation code at the entry and exit points of existing programs and
library subroutines.

Following are commands that are SMP specific:

� The cpu_state command shows the number of processors and the current
state of each processor within the system. A processor may be enabled,
disabled or unavailable. This command is part of the bos.rte.mp fileset.

� The bindprocessor command is used to distribute the workload on the system.
It enables the binding of individual processes to a processor within the SMP
system. This command is also part of the bos.rte.mp fileset.

 Copyright IBM Corp. 1995 209

� The lockstat command provides information on kernel locks caused by the
current contention between threads on the system.

The following tools were available on AIX V3.2, and their output and syntax has
been changed to provide related thread and SMP information. As much as
possible, the standard options of each tool have been manipulated in order to
support SMP and threads; new options have only been created where the existing
tools options do not fulfill the new needs.

� time: This command measures the real, user and system time of a program. It
takes into account multiple processors.

� ps: This command gives processes and threads status.

� pstat: This command displays related threads information.

� sar: This command shows the system activity and CPU activity for all the
processors or for a specific processor.

� vmstat: This command displays system activity (memory and CPU usage) for
all the processors.

Note: The vmstat, iostat and sar commands are part of the bos.acct fileset
in AIX V4.1.

The following AIX performance tools were available with AIX V3.2 and have not
changed in that they still show either global system performance or process
performance. However, these tools were previously included in AIX V3.2. They are
now part of the Performance Aide product which is a purchasable product (Program
Number 5696-899). In many cases, it would be beneficial to order this LPP since it
contains commands, such as filemon, fileplace, lvedit, netpmon, rmss,

stripnm, svmon, tprof, and lockstat. This LPP is required to use Performance
Toolbox which will be discussed in 8.9, “Monitoring your SMP with Performance
Toolbox” on page 226.

� filemon: Monitors the performance of the filesystem and reports the I/O activity
on behalf of logical files, virtual memory segments, logical volumes, and
physical volumes.

� fileplace: Displays the placement of a file's blocks within logical or physical
volumes.

� lvedit: The logical volume editor is used for interactive definition and
placement of logical volumes within a volume group.

� netpmon: Monitors activity and reports statistics on network I/O and
network-related CPU usage.

� rmss: Simulates a system with various sizes of memory for performance testing
of applications.

� stripnm: Displays the symbol information of a specified object file.

� svmon: Captures and analyzes a snapshot of virtual memory.

� tprof: Reports CPU usage for a specific program.

210 RS/6000 SMP Servers

8.2 Processes and Threads Status
The ps command is one of the most useful commands when dealing with
single-threaded or multithreaded processes on an SMP. The ps command writes to
standard output the current status of active processes and, if the -m flag is given,
the status of associated kernel threads.

Note: You must use the -o THREAD flag in conjunction with the -m flag to display
extra thread-related columns.

In the following example, the TID column shows the thread ID, while the BND column
shows processes and threads bound to a processor.

à ð
ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 1ð318 4684 - A 1 6ð 1 - 24ððð1 pts/ð - -ksh

- - - 1ð335 S 1 6ð 1 - 4ðð - - -

á ñ

The ps -m -o THREAD fields have the following meaning:

� USER: User name

� PID: Process ID

� PPID: Parent Process ID

� TID: Kernel Thread ID for threads

� ST: State of the process or kernel thread:

 – A: Active

 – R: Running

 – S: Sleeping

� PRI: Priority of the process or kernel thread

� SC: Suspend Count of the process or kernel thread

� WCHAN: Wait channel of the process or kernel thread. A value in this column
means that the thread is waiting. For a kernel thread, this field is blank if the
kernel thread is running.

� F: Flags of the process or kernel thread

� BND: The CPU to which the process or kernel thread is bound.

� COMMAND: The command being executed by the process.

Following are some output examples of the ps command:

 Chapter 8. SMP Performance Tools 211

à ð
4everunbound &

[1] 6416

ps -mo THREAD

 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 4114 7422 - A 12 66 1 - 2ðððð1 pts/ð - ps -mo TH

READ

- - - 11ð75 R 12 66 1 - ð - - -

root 6416 7422 - A 48ð 64 1 8bð6c 2ðððð1 pts/ð - 4everunbo

und

- - - 4929 R 12ð 124 ð - ð - - -

- - - 6975 R 12ð 124 ð - ð - - -

- - - 1ðð41 S ð 64 1 8bð6c 42ð - - -

- - - 11581 R 12ð 124 ð - ð - - -

- - - 11835 R 12ð 124 ð - ð - - -

root 7422 998ð - A 1 6ð 1 - 24ððð1 pts/ð - -ksh

- - - 1ð247 S 1 6ð 1 - 4ðð - - -

á ñ

You can see in this output that the 4everunbound process is active. You can see it
has four threads running and one sleeping. The sleeping thread is in fact the initial
thread corresponding to the main part of the process's code. The initial thread
starts the other threads and goes to sleep. The 4everunbound process is a
four-thread process.

Note that, in this example, no threads are bound to a specific processor (- in the
BND column).

Following is another example where the process and all the threads are bound to
processor 3 (see the BND column).

à ð
ps -mo THREAD

 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 4118 7422 - A 11 65 1 - 2ðððð1 pts/ð - ps -mo TH

 READ

- - - 11ð79 R 11 65 1 - ð - - -

root 6416 7422 - A 171 64 1 8bð6c 2ðððð1 pts/ð 3 4everunbo

 und

- - - 4929 R 43 85 ð - ð - 3 -

- - - 6975 R 43 85 ð - ð - 3 -

- - - 1ðð41 S ð 64 1 8bð6c 42ð - 3 -

- - - 11581 R 43 85 ð - ð - 3 -

- - - 11835 R 42 85 ð - ð - 3 -

root 7422 998ð - A 2 61 1 - 24ððð1 pts/ð - -ksh

- - - 1ð247 S 2 61 1 - 4ðð - - -

á ñ

Note: If you issue the ps -mo THREAD on a uniprocessor system you will see for all
of the processes the value 0 in the BND column instead of the -.

8.3 Binding a Process
AIX V4.1 allows a user to bind a process to a specific processor by using the
bindprocessor command. That process will run only on the designated processor. If
the process is multithreaded, all the related threads will be bound to the same
processor.

212 RS/6000 SMP Servers

From the command line, it is only possible to bind a process. The process to be
bound must be running.

Binding may have some implications in terms of system performance. Since
binding is the strongest form of processor affinity, binding a single-threaded process
on a specific processor will avoid context switching for that process. Most of its
data will already be in the processor's caches. Thus, binding might slightly
increase the performance of that process.

But binding does not prevent from other processes to be dispatched on the
processor on which you bound your process. Binding is different from partitioning.
It is not, for example, possible in AIX V4.1 to dedicate a set of processors to a
specific workload and another set of processors to another workload.

This means that a higher priority process might be dispatched on the processor
where you bound your process. In this case your process will not be dispatched on
other processors. So, you will not always increase the performance of the bound
process.

In fact, binding a single-threaded process will improve its performance on an idle
system. In this case, if the process is not bound, it will bounce around all the
processors and then might suffer a high cache miss rate.

Typically, if you bind a single-threaded program on an idle SMP, you will increase
its performance. On the other hand, if you bind the same process on a heavily
loaded system, you might decrease its performance because when a processor
becomes idle, the process will not be able to run on the idle processor if it is
different from the processor on which the process is bound.

If the process is multithreaded, binding the process will bind all its threads to the
same processor. This means that the process will not take advantage of the
multiprocessing. You will not improve the performance of the process by doing this.

 Attention

Process binding should be used with care because it disrupts the natural load
balancing provided by AIX V4.1, and the overall performance of the system
could degrade.

If the workload of the machine changes from that which is monitored when
making the initial binding, system performance may suffer. If you do use the
bindprocessor command, take care to monitor the machine regularly because
the environment may change, making the bound process adversely affect
system performance.

The procedure for binding a process to a processor is as follows. Determine which
CPU has the lowest workload by using :

sar -P ALL 1 <n>

where <n> is the number of seconds to run the sar command.

Bind the process to that processor using the following command:

bindprocessor <PID> <procnum>

 Chapter 8. SMP Performance Tools 213

where <PID> is the process ID and <procnum> is the logical processor number.

The following is an example where we bind the smitty process to logical processor
2.

à ð
ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 7296 958ð - A ð 6ð 1 - 2ðððð1 pts/ð - smitty

- - - 7817 S ð 6ð 1 - 4ðð - - -

root 958ð 1ð346 - A ð 6ð 1 - 24ððð1 pts/ð - -ksh

- - - 1ð1ð1 S ð 6ð 1 - 4ðð - - -

á ñ

The smitty process has the process ID 7296. We bind it to logical processor 2
using the bindprocessor command:

bindprocessor 7296 2

If we run the ps command again, we can see that process 7296 is bound to
processor 2. The BND column indicates on which processor the process is bound.

à ð
ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 7296 958ð - A ð 6ð 1 - 2ðððð1 pts/ð 2 smitty

- - - 7817 S ð 6ð 1 - 4ðð - 2 -

root 958ð 1ð346 - A ð 6ð 1 - 24ððð1 pts/ð - -ksh

- - - 1ð1ð1 S ð 6ð 1 - 4ðð - - -

á ñ

If we unbind the same process and issue the ps command again, you can see that
the process is unbound again.

à ð
bindprocessor -u 7296

ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 7296 958ð - A ð 6ð 1 - 2ðððð1 pts/ð - smitty

- - - 7817 S ð 6ð 1 - 4ðð - - -

root 958ð 1ð346 - A ð 6ð 1 - 24ððð1 pts/ð - -ksh

- - - 1ð1ð1 S ð 6ð 1 - 4ðð - - -

á ñ

Note: A process cannot be bound until it is already running; that is, it must exist in
order to be bound.

When using the bindprocessor command, if the process does not exist, you will get
the following message:

à ð
bindprocessor 13ð39 3

173ð-ðð2: Process 13ð39 does not match an existing process

á ñ

If the processor does not exist, you will get the following message:

214 RS/6000 SMP Servers

à ð
bindprocessor 13ð38 4

173ð-ðð1: Processor 4 is not available.

á ñ

The bindprocessor command can also be used to query available processors. It
uses the logical numbers. Following is the output of the bindprocessor command.

à ð
bindprocessor -q

The available processors are: ð 1 2 3

á ñ

8.4 Binding a Thread
It is not possible to bind a specific thread to a processor from the command line. In
other words, you cannot enter:

bindprocessor <TID> <procnum>

where <TID> is the thread ID and <procnum> is the logical processor number.

The bindprocessor command expects a process ID, not a thread ID.

But you can bind one or several threads within a process at the programming level
using the bindprocessor() call. The bindprocessor() call must be used in the
source code of your program.

If the bindprocessor() call is used within a piece of code to bind threads to
processors, the threads will stay with these processors and cannot be unbound
individually.

However, if the bindprocessor command is used on that process, all the threads
belonging to that process will then be bound to the same processor. That is, the
bind command will supersede the threads binding. If you then unbind the whole
process, the threads will all be unbound and will bounce around all the processors.
You will lose the original threads' binding.

8.5 Using the Standard Performance Tools on your SMP
This section describes how to use the standard performance tools, such as sar,
vmstat, pstat, and commands such as the time command which is useful for
measuring the throughput or scalability of a system.

This section will reference a number of test programs that have been written to
show what happens, for example, when threads are bound to processors or to test
loading of the CPUs in various ways.

These programs have their source listed in Appendix B, “Sample Programs” on
page 245. You can enter and compile them yourselves. If you are an IBM
employee, you can get them by entering the following command:

TOOLS SENDTO WTSCPOK TOOLS AIXDISK GET AIXV4SMP PACKAGE

Below is a short description of these sample programs:

 Chapter 8. SMP Performance Tools 215

� 1ððunbound: A four-thread process with threads not bound to any processor.

� 1ððboundon1: A four-thread process with all the threads bound on one
processor.

� 1ððboundon2: A four-thread process with threads bound on two processors.

� 4everunbound: An everlasting four-thread process with no threads bound.

� 4everboundon1: An everlasting four-thread process with all threads bound to
one processor.

� 4everboundon2: An everlasting four-thread process with threads bound to two
different processors.

� 4everboundon4: An everlasting four-thread process with threads bound to four
different processors.

� cpubound: A single-threaded process bound on one processor.

All these sample programs will help us to illustrate the use of the standard
performance tools on the SMP system.

 8.5.1 Multiprocessing Effect
The output of the time command takes a new meaning in an SMP although its
output did not change. When measuring the execution time for a process on an
SMP, the real or elapsed time can be smaller than the user time. This is quite
unusual on a UP.

In fact, on an SMP, the user time is the sum of all the user times spent by the
process's threads on all the processors.

In the following example, we measured the running time of the 1ððunbound program
which is a process with four threads.

Running it on a UP system (model 250: PowerPC 601, 67 MHz) shows the time
results where the real time is greater than the user time.

à ð
time ./1ððunbound

real ðm11.7ðs

user ðm11.ð9s

sys ðmð.ð8s

á ñ

Running it on a four-way SMP system (PowerPC 601, 75 MHz) shows that the real
time is only about a fourth of the previous real time.

à ð
time ./1ððunbound

real ðm2.59s

user ðm9.99s

sys ðmð.ð1s

á ñ

This shows that the multithreaded process takes advantage of the multiprocessor.
The user time on the four-way SMP is similar to the user time on the UP. But the

216 RS/6000 SMP Servers

real time (the time it takes to get the result) is about four times faster on the
four-way SMP.

Therefore, having several processors improves the performance of multithreaded
applications and improves the overall throughput of the system.

 8.5.2 SMP Scaling
Also the time command allows you to measure the scaling effect of the SMP. In
order to look at the scaling effect of the SMP, we ran different versions of the same
four-thread program.

If you run all the threads on one processor only, the real time and the user time of
the process are approximately equal (like on a UP system).

à ð
time ./1ððboundon1

real ðm1ð.ð4s

user ðm9.93s

sys ðmð.ð2s

á ñ

When you run the threads on two processors only, the user time is still the same,
but the real time is approximately half of the previous real time.

à ð
time ./1ððboundon2

real ðm5.ð8s

user ðm9.98s

sys ðmð.ð1s

á ñ

When you run the threads on four processors, the user time is still the same, but
the real time is about one fourth of the real time we got when running on one
processor only.

à ð
time ./1ððbound

real ðm2.56s

user ðm9.97s

sys ðmð.ð2s

á ñ

Note: All these examples were run on an SMP that had nothing else running on it.
If the system is doing work, results will differ. Also, the first time you run a test,
there might be different answers as a result of what is in memory.

 Chapter 8. SMP Performance Tools 217

 Attention

Binding all the process's threads to the same processor is not exactly equivalent
to running the same program on a uniprocessor or a one-way SMP. When you
bind all the threads to the same processor, system activity (like the scheduler)
can still run on the other processors. In a UP system or a one-way SMP
system, user activity and system activity have to compete for the same
processor resource (the unique CPU).

The best way to measure the scalability of an SMP system is to disable all the
processors except one and then enable processors one at a time.

 8.5.3 Threads-Related Information
The pstat command is the non-interactive form of the crash command. Because it
has a number of new options, pstat is useful for looking at threads.

� -A: shows all entries in the kernel thread table

� -P: shows runnable kernel threads only

� -U: shows thread slot user structure of kernel threads

� -S: shows processor status (which thread is running on which processor at the
time of the command)

Following is the output of the pstat -S command:

à ð
pstat -S

STATUS OF PROCESSORS:

CPU TID TSLOT PID PSLOT PROC_NAME

 ð 4ðe9 64 3da8 61 crash

 1 3be5 59 3ba6 59 4everunbound

 2 1be3 27 3ba6 59 4everunbound

 3 3ce7 6ð 3ba6 59 4everunbound

á ñ

In the above example, you can see which thread was running on which processor
when the pstat command was issued. The TID of the thread is in hexadecimal.

Following is the output of the pstat -P command:

218 RS/6000 SMP Servers

à ð
pstat -P

THREAD TABLE:

SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME FLAGS

 2 r 2ð5 2ð4 ð FIFO 7f 78 wait

 t_flags: sigslih kthread

 3 r 3ð7 3ð6 1 FIFO 7f 78 wait

 t_flags: sigslih kthread

 4 r 4ð9 4ð8 2 FIFO 7f 78 wait

 t_flags: sigslih kthread

 5 r 5ðb 5ða 3 FIFO 7f 78 wait

 t_flags: sigslih kthread

 19 r 13a7 1ð68 2 other 5a 34 4everboundon2

 t_flags:

 27 r 1ba5 1ð68 3 other 5a 34 4everboundon2

 t_flags:

 31 r 1fð5 26fc unbound other 3c 1 telnetd

 t_flags:

 sel

 39 r 27a9 1ð68 3 other 5a 35 4everboundon2

 t_flags:

 43 r 2bb3 1972 unbound other 57 36 pstat

 t_flags:

 46 r 2ea3 1ð68 2 other 5a 35 4everboundon2

 t_flags:

á ñ

The meaning of the different fields are the following:

� SLT: shows the slot number in the threads table.

� ST: shows the status of the thread as to whether it is running, sleeping or
otherwise.

� PID: is the process ID to which the thread belongs.

� CPUID: is the ID of the processor on which the process is bound. If the thread
is not bound, then the word unbound is displayed in this field.

� POLICY: is the thread's scheduling policy.

� PRI: is the priority in hexadecimal.

� CPU: shows the short-term CPU usage of the thread. The maximum value for
this field is 120 ticks.

� FLAGS: displays the signal that the process is currently waiting on if the thread is
waiting.

In AIX Version 4.1, there are three possible values for thread-scheduling policy:

� FIFO: Once a thread with this policy is scheduled, it runs to completion unless
it is blocked; it voluntarily yields control of the CPU or a higher-priority thread
becomes dispatchable. Only fixed-priority threads can have a FIFO scheduling
policy.

� RR: This is similar to the AIX Version 3 scheduler Round-Robin scheme based
on 10ms time slices. When an RR thread has control at the end of its time
slice, it moves to the tail of the queue of dispatchable threads of its priority.
Only fixed-priority threads can have an RR scheduling policy.

� OTHER: This policy is defined by POSIX1003.4a as implementation-defined. In
AIX V4.1, this policy is defined to be equivalent to RR, except that it applies to
threads with non-fixed priority. The recalculation of the running thread's priority

 Chapter 8. SMP Performance Tools 219

value at each clock interrupt means that a thread may lose control because its
priority value has risen above that of another dispatchable thread. This is the
AIX Version 3 behavior, and this is the default scheduling policy in AIX V4.1.

8.5.4 Measuring the Processors Load
The processors load can be measured with the sar command. The syntax of the
sar command is the following:

sar [-P <processor_id> [, ...] | ALL] <interval> <count>

Use of sar -A -P ALL <x> <y> where <x>=time interval in seconds and
<y>=number of iterations shows information about all the SMP-related counters,
such as forks, character read, write, per processor, and so on.

à ð
sar -P ALL 1 2

AIX smp1 1 4 ððððððððAððð ð4/ð4/95

18:37:57 cpu %usr %sys %wio %idle

18:37:58 ð ð ð ð 1ðð

1 ð 2 ð 98

2 1ðð ð ð ð

3 1ðð ð ð ð

- 5ð ð ð 5ð

18:37:59 ð ð 1 ð 99

1 ð ð ð 1ðð

2 1ðð ð ð ð

3 1ðð ð ð ð

- 5ð ð ð 5ð

Average ð ð ð ð 1ðð

1 ð 1 ð 99

2 1ðð ð ð ð

3 1ðð ð ð ð

- 5ð ð ð 5ð

á ñ

In the above example, processors 2 and 3 are 100 percent busy, while processors
0 and 1 are idle. For each sample interval, the fifth line is the average CPU
utilization for the entire system. At the end, the sar command reports the average
CPU usage for each processor. The last line gives the average of all averages.

The -P flag, when specified, is equivalent to -acmuw. When the -P flag is not
specified, this is equivalent to specifying -abckmqruvwy.

Using the -P <processor_id> reports per-processor statistics for the specified
processor or processors separated by a comma.

The ALL keyword reports statistics for each individual processor and globally for all
processors. Of the flags which specify the statistics to be reported, only the -a,

-c, -m,-u, and -w flags are meaningful with the -P flag, while meaningless flags
are silently ignored.

220 RS/6000 SMP Servers

8.5.5 Global Memory and CPU Activity
The vmstat command reports CPU and disk-I/O activity as well as memory
utilization data for the entire system.

The vmstat command syntax is unchanged from AIX V3.2.

vmstat <interval> <count>

However, the output has changed in that the leftmost column is now in terms of
threads, not processes.

In the following example, we run a program called cpubound that loads one
processor out of the four. The vmstat command shows a 25 percent user CPU
usage. In fact, vmstat shows the overall CPU usage (for the entire system). With
vmstat, you cannot see a per-processor CPU usage.

à ð
vmstat 2 5

kthr memory page faults cpu

----- ----------- ------------------------ ------------ -----------

r b avm fre re pi po fr sr cy in sy cs us sy id wa

3 1 2972 253ð8 ð ð ð ð ð ð 419 366 181 99 1 99 2

1 1 2972 253ð8 ð ð ð ð ð ð 421 237 42 25 ð 74 ð

1 1 2972 253ð8 ð ð ð ð ð ð 422 197 39 25 1 74 ð

1 1 2972 253ð8 ð ð ð ð ð ð 42ð 196 39 25 ð 75 ð

1 1 2972 253ð8 ð ð ð ð ð ð 42ð 2ð4 4ð 26 ð 74 ð

á ñ

The vmstat command has generally been used for an overall look at resource
utilization while running a multiuser workload.

The vmstat output yields the kthr column which reports the kernel thread state
changes per second over the sampling interval:

r: Number of kernel threads placed in run queue.

b: Number of kernel threads placed in wait queue (awaiting resource or
awaiting input/output).

Threads waiting for a lock to be released do not show up in either the run queue or
block queue column.

8.6 Sizing an SMP
It may be useful to disable or enable processors on an SMP system in order to
measure the scalability of the system on a specific workload. We saw previously
that an SMP system will scale if all components of the system scale well. The
hardware must scale, the operating system must scale and the application itself
must scale. From a user point of view, you cannot change the ability of the
hardware or the operating system to scale very well. IBM has done a lot of work on
the hardware side as well as the AIX side (optimization of AIX on four-way, six-way
and eight-way SMPs). But some work can be done at the application level to
improve the scalability of your SMP.

Thus, measuring the scalability of an SMP system on a specific workload may help
you in improving the scalability of your application. Measuring the scalability of a
system can be done by enabling or disabling processors.

 Chapter 8. SMP Performance Tools 221

Enabling or disabling processors can also be used to size a system for a specific
application and to determine the number of processors that are needed to run the
application with good performance.

In either case, the cpu_state command can be used to measure the scalability of a
system or size a system.

The cpu_state command lists and controls which processors on a multiprocessor
system will be active when the system is next started. It is the only command that
shows ALL physically present processors.

The -l flag displays a report that would look like the following for a J30 with four
processors.

à ð
cpu_state -l

 Name Cpu Status Location

 procð ð enabled ðð-ðP-ðð-ðð

 proc1 1 enabled ðð-ðP-ðð-ð1

 proc2 2 enabled ðð-ðQ-ðð-ðð

 proc3 3 enabled ðð-ðQ-ðð-ð1

á ñ

where:

� Name is the ODM processor name. It is shown in the form procx, where x is the
physical processor number.

� Cpu is the logical processor number. Only enabled processors have logical
numbers.

� Status is the processor state for the next boot.

� Location is the ODM processor location code. It is shown in the form
AA-BB-CC-DD, where:

– AA is the main unit, always 00.

– BB is the processor board number 0P, 0Q, 0R, or 0S, indicating,
respectively, the first, second, third or fourth processor card.

– CC is always 00.

– DD is the processor position on the CPU card.

The -d or -e flags, respectively, disable or enable the processor identified by the
processor number. An example of this follows :

à ð
cpu_state -d 2

cpu_state -l

 Name Cpu Status Location

 procð ð enabled ðð-ðP-ðð-ðð

 proc1 1 enabled ðð-ðP-ðð-ð1

 proc2 2 disabled ðð-ðQ-ðð-ðð

 proc3 3 enabled ðð-ðQ-ðð-ð1

á ñ

The system requires a reboot to actually disable the processor. The number of
logical processors numbering will change after the reboot.

222 RS/6000 SMP Servers

After reboot, the Cpu number allocated to the physical processor that has been
disabled becomes a -, indicating that the physical processor has now been fully
disabled.

For example :

à ð
cpu_state -l

 Name Cpu Status Location

 procð ð enabled ðð-ðP-ðð-ðð

 proc1 1 enabled ðð-ðP-ðð-ð1

 proc2 - disabled ðð-ðQ-ðð-ðð

 proc3 2 enabled ðð-ðQ-ðð-ð1

á ñ

 8.7 Lock Contention
In an SMP system, processes run across several processors to complete a specific
task. Some of these processes access memory addresses that are shared with
others; they must not update the same area of memory simultaneously because the
outcome cannot be predicted. Locks are used to serialize access to shared data.

Finding the right granularity when using locks is one of the big challenges in an MP
operating system.

AIX V4.1 was changed, and continues to be enhanced to make it more
MP-efficient. This means that the system is optimized to spend the minimum time
waiting for and dealing with locks. AIX V4.1 defines subsystems comprised of 256
lock classes in /usr/include/sys/lockname.h.

However, it is the developer's responsibility to define and implement an appropriate
locking strategy to protect the program's own data.

AIX developers can choose between two types of locks:

� Simple locks are exclusive and allow the process to spin (run a small loop)
while waiting for the lock to become available

� Complex locks are read/write locks (one writer at a time and several readers)
that block the process while waiting for the lock to be released.

Lock implementation in an application could make the application run faster or
slower depending on the locking granularity. Finding the right granularity for locks
implementation is a difficult task.

In AIX, one can use the lockstat command to see the use of locks. Only kernel
locks can be seen with the lockstat command.

To enable the use of lockstat, you must create a new boot image using the
bosboot command with the -L flag, which enables MP lock instrumentation.

Your command should look like this :

bosboot -a -d hdisk<n> -L

This is a sample output of the lockstat command:

 Chapter 8. SMP Performance Tools 223

à ð
lockstat -a

Subsys Name Ocn Ref/s %Ref %Block %Sleep

__

PROC TOD_LOCK_CLASS ð 1667 15.61 34.97 ð.ðð

PROC PROC_INT_CLASS -- 1161 1ð.87 1ð.ð8 ð.ðð

PROC U_TIMER_CLASS 48 367 3.44 51.77 ð.ðð

First 1ð largest reference rate locks :

Subsys Name Ocn Ref/s %Ref %Block %Sleep

__

VMM VMM_LOCK_VMKER -- 26ð2 24.36 ð.ð8 ð.ðð

PROC TOD_LOCK_CLASS ð 1667 15.61 34.97 ð.ðð

PROC PROC_INT_CLASS -- 1161 1ð.87 1ð.ð8 ð.ðð

VMM VMM_LOCK_PDT -- 963 9.ð2 ð.1ð ð.ðð

PFS ICACHE_LOCK_CLASS -- 527 4.93 ð.ðð ð.ðð

VMM VMM_LOCK_LV 23 513 4.8ð ð.ðð ð.ðð

PROC U_TIMER_CLASS 48 367 3.44 51.77 ð.ðð

VMM VMM_LOCK_LV -- 314 2.94 ð.ðð ð.ðð

XLVM LVM_LOCK_CLASS ð 248 2.32 ð.ðð ð.ðð

LOCKL LOCKL 45 243 2.28 ð.ðð ð.ðð

á ñ

The column headings in the lockstat command listing have the following meaning:

� Subsys: The subsystem to which the lock belongs to:

– PROC: scheduler, dispatcher, interrupt handler

– VMM: pages, segments, free list

– TCP: sockets, NFS

– PFS: inodes, icache

� Name: The symbolic name of the lock class which can be:

– TOD_LOCK_CLASS: all interrupts that need the Time Of Day (TOD) timer

– PROC_INT_CLASS: interrupts for processes

– U_TIMER_CLASS : per process timer lock

– VMM_LOCK_VMKER: free list

– VMM_LOCK_PDT: paging device table

– VMM_LOCK_LV: per paging space

– ICACHE_LOCK_CLASS: inode cache

In AIX V4.1.2, the TOD_LOCK_CLASS seems to have the highest Ref/s count.
This is because all the interrupt handlers need the TOD registers at the same
time.

The LOCKL subsystem and class is for AIX Version 3 locks. This type of lock is
still available in AIX V4.1 for running unchanged AIX V3.2 applications that use
the lockl subroutine.

� Ocn: occurrence number of the lock in its class

� Ref/s: reference rate, or number of lock requests per second

� %Ref: reference rate expressed as a percentage of all lock requests

224 RS/6000 SMP Servers

� %Block: ratio of blocking lock requests to total lock requests. Block occurs
whenever the lock cannot be taken immediately.

� %Sleep: percentage of lock requests which cause the calling thread to sleep

If vmstat indicates that there is a significant amount of CPU idle time when the
system seems subjectively to be running slowly, delays may be due to kernel locks
contention.

In AIX Version 4.1, this possibility can be investigated with the lockstat command;

Look for the following pointers:

� Check lockstat output for Ref/s > 10 000

� Identify subsystems and lock classes that have a high number of Ref/s

Application problems can only be seen indirectly. If there is locks contention, you
must check for bottlenecks due to the application.

For example, if your application has a high number of processes that read and
write in a unique message queue, you might have lock contention for the Virtual
Memory Manager (VMM) subsystem. Adding more message queues may reduce
the level of locks contention.

 8.8 Tuning Guidelines
This is not a detailed description on how to tune an SMP system. The intent here is
to give some outlines that may be useful when working with an SMP system to
improve the performance of the system or to at least identify the location of the
bottleneck.

As far as tuning is concerned, the main difference between an SMP and a UP is
the number of processors. Since processes and threads can run on any processor,
you might look at the CPU usage on all the processors and discover that one or
several processors are 100 percent busy, while others are not very loaded.

Since memory, disks and network adapters are shared between all the processors,
the tuning methodology is very similar to a UP system when the system is not CPU
bound. Load balancing between the processors is probably the main difference
between an SMP and a UP.

A method that can be employed for tuning your SMP system in case of a
performance problem is the following:

� Check the availability of the processors using the cpu_state command:

cpu_state -l

� Are all the processors available? One disabled processor can be the cause of
your performance problem. This is, of course, an obvious reason.

� Check the balance of workload between processors using the sar command.
See 8.5.4, “Measuring the Processors Load” on page 220 for more information
on the use and options of the sar command.

sar -P ALL 1 <n>

 Chapter 8. SMP Performance Tools 225

� Determine if some processes or threads are bound. This can hurt the
performance of your application, especially if your application is multithreaded
and bound to one processor. Refer to 8.2, “Processes and Threads Status” on
page 211 and to 8.5.3, “Threads-Related Information” on page 218 for more
information on the use of the ps command options and the pstat command.

ps -m -o THREAD

pstat -A

� Unbind any bound processes that hurt your system performance with the
bindprocessor command.

bindprocessor -u <pid>

� If your system is still CPU bound even with all processors available, there are
several solutions:

– Parallelize your application using mutiple threads or multiple processes.
This requires some programming skills and time.

– Add more processors. This will help if your application is already
parallelized.

– Change processor technology (use faster processors).

� If your system is not CPU bound and still has some performance problems, the
procedure is very similar to a UP. The bottleneck can be the memory, the I/O
subsystem or the network. In this case, use the regular performance tools to
determine the bottleneck's location.

� If you did not find any bottleneck, you might want to check is you have any lock
contention on your system.

8.9 Monitoring your SMP with Performance Toolbox
This section introduces how to use the Performance Toolbox graphical tool to
control and monitor the performance of your SMP system.

8.9.1 Performance Toolbox Introduction and Concepts
The Performance Toolbox (PTX) is a graphical tool to monitor the performance of
your system. Performance Toolbox 2.1 for AIX V4.1 supports the SMP
environment and can be used to monitor an SMP system.

Performance Toolbox is shipped as two LPPs:

� Performance Toolbox 2.1 for AIX V4.1 (program number 5696-900): This
product is the presentation program that displays the required output.

� Performance Aide 2.1 for AIX V4.1 (program number 5696-899): This product
must run on any system that is to be monitored.

The following terms are used to refer to PTX functions or components:

� A Console is a graphical window containing instruments that monitor the
system. A console can have one or many instruments.

� An Instrument is a graphical view of monitored values, and each instrument can
show one or more values that are monitored. The presentation of the values
can be in form of graphs, gauges and so on.

226 RS/6000 SMP Servers

� A Value is the unit to be monitored; it can be any piece of the system able to
be monitored. For example, CPU usage, memory, disk activity, and so on.

� Groups of statistics are a functional part of the system. The values are
grouped in relation to the functional part of the system they belong to.
However, an instrument can have values from several groups.

Another very useful graphical performance tool shipped with PTX is 3dmon. The
3dmon monitors the system(s) using 3D bars that dynamically change whenever any
value measured changes.

In order to monitor an SMP with PTX, you need a graphical display if the SMP is a
G30. If the SMP is a J30 or an R30, you need an Xstation. You can also monitor
any SMP system from a graphical workstation.

You need to install the following filesets:

 � perfagent.server

 � perfagent.tools

 � perfmgr

The fileset perfagent.server contains the xmservd daemon. This daemon must be
installed and running on all monitored systems. The fileset perfagent.tools contains
all the performance tools that were included in AIX V3.2, such as rmss, filemon,
netpmon, svmon, and so on. It also contains new AIX V4.1 tools, such as lockstat,
stem, bf, and fdpr.

The fileset perfmgr contains the graphical part of PTX. Therefore, xmperf and 3dmon
are part of this fileset.

If you monitor your SMP from an Xstation, all these filesets must be installed on the
SMP system. But if your monitor your SMP from another workstation, you only
need to install the perfagent filesets on the SMP and the perfmgr fileset on the
graphical workstation.

Note: When you install the perfagent filesets for the first time on your SMP, you
need to reboot the system or refresh the inetd daemon in order to start the
xmservd daemon.

To refresh the inetd daemon, use the following command:

refresh -s inetd

To start monitoring locally your SMP system, use the following command:

xmperf

If you want to monitor your SMP from a remote host (a graphical workstation), enter
the following command:

xmperf -h <hostname>

 Chapter 8. SMP Performance Tools 227

8.9.2 Creating an SMP Console
PTX provides a predefined console for monitoring an SMP system. But in this
example, we will create our own console to monitor CPU statistics on all of the
SMP processors (four-way SMP).

Start PTX by using xmperf from the command line. You will then be presented with
an intial window that looks like Figure 122.

Figure 122. xmperf Initial Screen

Use the Monitor pull-down menu to select Add New Console . You will then get a
sub-window inviting you to enter a console name. Give a meaningful name to your
console instead of using the unique, default name.

Figure 123. Creating a New Console

Note: In the Monitor pull-down menu, you could select the Instantiate Skeleton.
option. The Instantiate Skeleton option contains console skeletons of the most
common values used for performance monitoring, grouped by categories. The last
entry (MP) in the Instantiate Skeleton gives an SMP console with eight instruments.
Editing these instruments might be faster than building an SMP console from

228 RS/6000 SMP Servers

scratch since each of these predefined consoles can be modified. They provide an
easy and fast way to build a console.

Click on the Proceed button to continue; you will then get another blank window.
Use the Edit Console pull-down menu and select Add Local Instrument

Note: Using Add Remote Instrument means you want to monitor a remote host. If
so, the program will ask you to provide the hostname. This remote host must have
xmservd running. The remote host can be any UP or SMP system.

If you selected Add Local Instrument, you will get the following screen that will
invite you to select the statistics you want to monitor within your console.

Figure 124. Selecting Central Processor Statistics

 Chapter 8. SMP Performance Tools 229

For the sake of our example, we want to monitor CPU statistics for our SMP; so we
selected Central Processor Statistics

You will then get a new window which looks like Figure 125.

Figure 125. Selecting Statistics

At this point, you can choose global statistics or statistics for a specific processor.
You cannot do multiple selections at the same time. You can choose for example,
Statistics for processor # 0. You will then get the following screen:

230 RS/6000 SMP Servers

Figure 126. Selecting Statistics for Processor 0

You can then customize the properties of the values you have selected, such as
the color and the type of graph you want (line, area, bars). You will be able to set
upper and lower limits, set a threshold and set an alarm when this threshold is
reached. Once you are satisfied with the property values, select Ok. Figure 127 on
page 232 shows how to customize the properties of the values you want for your
instrument.

 Chapter 8. SMP Performance Tools 231

Figure 127. Changing Properties of a Value

Continue selecting values you want to monitor for Processor 0. When you have
finished with Processor 0, click on End of Selection . You can then edit your
console again and add a new local instrument for processor 1, and so on.

Note that you can save at any time your console by selecting the File pulldown
menu. This will present you with the option to Save Changes should you wish to
keep this console definition to refer to at a later time. Close Console will shut that
console down. You can open it again from the initial xmperf menu using the Monitor
pull-down menu.

Figure 128 on page 233 shows an example of a customized SMP console.

232 RS/6000 SMP Servers

Figure 128. SMP Console Example

8.9.3 Monitoring an SMP with 3dmon
3dmon provides a quick method of producing the same results in a
three-dimensional view for important performance values.

This monitor may be invoked by going to the utilities menu in the main xmperf

window. Inside this menu, you will find both the 3d Monitor Local and 3d Monitor

 Chapter 8. SMP Performance Tools 233

Remote sub-menus. Choosing the Local Processors (CPUs) option will give you a
screen where you can choose which CPUs you want to monitor, and when
complete, your screen is displayed. The performance values you will be monitoring
are : user, kern, wait, pswitch, syscall, read, write, fork, exec, readch,

writech, iget, namei and dirblk.

3dmon may also be invoked from the command line, by typing:

3dmon -h <hostname>

Once you have selected 3D-Monitor from the Utilities pull down menu, you will see
the following screen:

Figure 129. Selecting Local Processors

234 RS/6000 SMP Servers

At this step, you can select resources you want to monitor and change the
sampling interval. If you select Local Processors (CPUs) you will then see the
following screen:

Figure 130. 3dmon Output on a Four-way SMP

Note: If you cannot read the values behind the first towers corresponding to the
user activity, you can move any monitored value to the front by double clicking on
the name of that value. For example, if you want to read the kern values for all the
processors, you can double click on kern. It will then move to the first position.

 Chapter 8. SMP Performance Tools 235

236 RS/6000 SMP Servers

Appendix A. SystemGuard Remote Operation Configuration

In order to utilize the remote operation capabilities of SystemGuard and to also
allow console mirorring, you need to have flags, parameters and TTY configurations
properly enabled. Below, you will find tty0 and tty1 settings, sample modem files
and all the parameters that are necessary to allow remote operations.

 A.1 Terminal Configuration
This is the tty0 configuration for the S1 port.

à ð
[TOP] [Entry Fields]

 TTY ttyð

 TTY type tty

 TTY interface rs232

 Description Asynchronous Terminal

 Status Available

 Location ðð-ðð-S1-ðð

 Parent adapter sað

 PORT number [s1]

 Enable LOGIN disable

 BAUD rate [96ðð]

 PARITY [none]

BITS per character [8]

Number of STOP BITS [1]

TIME before advancing to next port setting [ð]

 TERMINAL type [dumb]

FLOW CONTROL to be used [xon]

OPEN DISCIPLINE to be used [dtropen]

STTY attributes for RUN time [hupcl,cread,brkint,

 icrnl,opost,tab3,

 onlcr,isig,icanon,

 echo,echoe,echok,

 echoctl,echoke,

 imaxbel,iexten]

STTY attributes for LOGIN [hupcl,cread,echoe,cs8,

 ixon,ixoff]

 LOGGER name []

STATUS of device at BOOT time [available]

TRANSMIT buffer count [16]

RECEIVE trigger level [3]

STREAMS modules to be pushed at OPEN time [ldterm,tioc]

INPUT map file [none]

OUTPUT map file [none]

CODESET map file [sbcs]

á ñ

This is the tty1 configuration for the S2 port.

 Copyright IBM Corp. 1995 237

à ð
[TOP] [Entry Fields]

 TTY tty1

 TTY type tty

 TTY interface rs232

 Description Asynchronous Terminal

 Status Available

 Location ðð-ðð-S2-ðð

 Parent adapter sa1

 PORT number [s2]

 Enable LOGIN disable

 BAUD rate [96ðð]

 PARITY [none]

BITS per character [8]

Number of STOP BITS [1]

TIME before advancing to next port setting [ð]

 TERMINAL type [dumb]

FLOW CONTROL to be used [rts]

OPEN DISCIPLINE to be used [dtropen]

STTY attributes for RUN time [hupcl,cread,brkint,

 icrnl,opost,tab3,

 onlcr,isig,icanon,

 echo,echoe,echok,

 echoctl,echoke,

 imaxbel,iexten]

STTY attributes for LOGIN [hupcl,cread,echoe,cs8,

 ixon,ixoff]

 LOGGER name []

STATUS of device at BOOT time [available]

TRANSMIT buffer count [16]

RECEIVE trigger level [3]

STREAMS modules to be pushed at OPEN time [ldterm,tioc]

INPUT map file [none]

OUTPUT map file [none]

CODESET map file [sbcs]

á ñ

A.2 Flags and Parameters Settings
These are the minimum SystemGuard parameters/flags settings required for remote
support. These parameters can be displayed and changed through AIX with the
mpcfg command.

 � Modem configuration:

à ð
mpcfg -dm

Index Name Value

1 Modem Parameters File Name /usr/share/modems/7851

2 Service Line Speed 96ðð

3 Protocol Inter Data Block Delay 5

4 Protocol Time Out 6ð

5 Retry Number 2

6 Customer ID

7 Login ID

8 Password ID

á ñ

The Modem Parameter File Name value should be set to the file name of your
modem configuration file. The service line speed should be set to your modem
and tty capabilities (9600 is recommended).

 � Service flags:

238 RS/6000 SMP Servers

à ð
mpcfg -dS

Index Name Value

1 Remote Service Support 1

2 Quick On Call Service ð

3 Service Contract Validity 32767

4 Service Support Type

á ñ

 � Diagnostics flags:

à ð
mpcfg -df

Index Name Value

1 Remote Authorization 1

2 Autoservice IPL ð

3 BUMP Console 1

4 Dial-Out Authorization 1

5 Set Mode to Normal When Booting ð

6 Electronic Mode Switch from Service Line ð

7 Boot Multi-user AIX in Service ð

8 Extended Tests ð

9 Power On Tests in Trace Mode ð

1ð Power On Tests in Loop Mode ð

11 Fast IPL ð

á ñ

 � Phone numbers:

à ð
mpcfg -dp

Index Name Value

1 Service Center Dial-Out (1) 18ðð83ð1ð41

2 Service Center Dial-Out (2)

3 Customer Hub Dial-Out (1)

4 Customer Hub Dial-Out (2)

5 System Dial-In

6 System Operator Voice

á ñ

The phone number in the Service Center Dial-Out field represents the U.S
IBM RETAIN number. It should be set as appropriate to the geography. Other
phone numbers should be provided based on account-related information.

A.3 Modem Configuration Files
If you want to attach a modem to the S2 port to allow automatic problem reporting
from SystemGuard or dial-in access from a remote location, you will have to
provide a configuration file for the modem you will be using. This file is also
necessary to utilize the mirroring capabilities supported by the AIX mirrord daemon.

Two modems have been tested, the IBM 7851 and the USRobotics Sportster 14.4.
Below, you will find the corresponding configuration files. You will see that these

 Appendix A. SystemGuard Remote Operation Configuration 239

files have a very specific format. You can use either of these files as a template to
build a configuration file for another model of modem. If you do not use any modem
for connecting the Service Console, you will need a modem file. An example of the
modem file without a modem is provided below.

This is a sample /usr/share/modems/mir_modem file for console mirroring without
using modems.

à ð
ICDelay 1

DefaultTO 1ð

condout: done

connect: done

retry: done

disconnect: done

condin: done

condwait: done

waitcall: done

page: done

á ñ

This is a sample /usr/share/modems/mir_modem file for console mirroring using an
IBM 7851 modem.

240 RS/6000 SMP Servers

à ð
Tested at 96ððbps.

ICDelay 5

DefaultTO 1ð

CallDelay 12ð

AT Attention Code Qð Enable result codes to screen

&F1 Set factory profile 1 Q1 Disable result codes to screen

Eð Turn echo off Sð=ð Automatic answer inhibit

Vð Use numeric responses Sð=2 Answer on second ring

+++ Escape to command mode &Wð Save configuration to profile ð

Hð Hang-up

17=38.4bps; 16=19.2bps; 12=96ððbps; 11=48ððbps; 1ð=24ððbps; 7=busy

condout: send "AT&F1EðVðQðSð=ð\r"

expect "ð\r" or "OK\r"

 done

connect: send "ATDT%N\r" # Tone dialing command

 expect "17\r" or "16\r" or "12\r" or "11\r" or "1ð\r" busy "7\r"

 timeout 6ð

 done

retry: send "A/" # Redo command

 expect "17\r" or "16\r" or "12\r" or "11\r" or "1ð\r" busy "7\r"

 timeout 6ð

 done

disconnect: send "+++ATHð\r"

 delay 2

 send "ATQ1VðEð\r"

 delay 2

 done

condin: send "AT&F1EðVðQðSð=2\r"

expect "ð\r" or "OK\r\n"

send "ATQ1&Wð\r" # (there can be no reply)

 done

condwait: send "AT&F1VðEðQðSð=2&Wð\r"

expect "ð\r" or "OK\r\n"

 done

waitcall: ignore "2\r" timeout none

expect "2\r" timeout 1ð

 expect "17\r" or "16\r" or "12\r" or "11\r" or "1ð\r" busy "7\r"

 timeout 6ð

 done

page: send "ATDT%N;\r" # ; = go back to command mode

expect "ð\r" or "OK\r\n" timeout 6ð

 delay 2

 send "ATHð\r"

expect "ð\r" or "OK\r\n"

 done

á ñ

This is a sample /usr/share/modems/mir_modem file for console mirroring using a
USRobotics Sportster 14.4 modem.

 Appendix A. SystemGuard Remote Operation Configuration 241

à ð
#Tested at 96ððbps.

Physical switch settings on modem should be: 1-2 up; 3 down; 4-7 up;

#8 down.

ICDelay 5

DefaultTO 1ð

CallDelay 12ð

AT Attention Code

&F1 Set factory profile 1 Qð Turn on responses

Eð Turn echo off Q1 Turn off responses

Vð Use numeric responses Sð=ð Automatic answer inhibit

+++ Escape to command mode Sð=1 Answer on first ring

Hð Hang-up &Wð Save configuration to profile ð

37=96ðð/ARQ/V32; 26=14.4ARQ; 25=14.4bps; 19=48ððARQ; 18=48ððbps;

17=96ððARQ; 13=96ððbps;7=busy

condout: send "AT&F1EðVðQðSð=ð\r"

 expect "ð\r"

 done

connect: send "ATDT%N\r" # Tone dialing command

 expect "37\r" or "17\r" or "13\r" or "19\r" or "18\r" busy "7\r"

 timeout 6ð

 done

retry: send "A/" # Redo command

 expect "37\r" or "17\r" or "13\r" or "19\r" or "18\r" busy "7\r"

 timeout 6ð

 done

disconnect:

 send "+++ATHð"

 delay 2

 send "ATQ1VðEð\r"

 delay 2

 done

condin: send "AT&F1EðVðQðSð=1\r"

expect "ð\r" or "OK\r\n"

send "ATQ1&Wð\r" # (there can be no reply)

 done

condwait: send "AT&F1EðVðQðSð=1&Wð\r"

expect "ð\r" or "OK\r\n"

 done

waitcall: ignore "2\r" timeout none

expect "2\r" timeout 1ð

expect "37\r" or "17\r" or "13\r" or "19\r" or "18\r" busy "7\r"

timeout 6ð

 done

page: send "ATDT%N;\r" # ; = go back to command mode

expect "ð\r" or "OK\r\n" timeout 6ð

 delay 2

 send "ATHð\r"

expect "ð\r" or "OK\r\n"

 done

á ñ

242 RS/6000 SMP Servers

A.4 Initializing a Modem
Once flags, parameters and configurations have been enabled, the modem can be
initialized to accept incoming calls. This can be done in the following manner:

� Place the System Key to Normal.

� Issue a ps -ef|grep mirrord command.

� Obtain mirrord process ID.

� Issue a kill -9 <mirrord_pid>.

 � Issue /usr/sbin/mirrord <modem_filename>.

� Place the System Key into the Service position.

This will initiate the mirrord process. The disconnect and condin parameters will be
read from the appropriate modem file, and the modem will be initialized for dial-in
activity. After the mirrord daemon is activated, the System Key should be placed in
the Normal position.

 A.5 Testing Dial-Out
Dial-out or automatic problem reporting can be tested from the SystemGuard
Maintenance Menu using the Offline Test for Dial-out. Successful connection and
transmission of data will result in an OK completion.

During the test, the modem configuration file will be read, the modem initialized
properly and data transmitted. Comparing the modem configuration file to line
activity will show disconnect, condout, connect, transmit of data, disconnect and
condin. Thus, the modem is initialized for dial-out, data is transmitted, and the
modem is initialized to allow dial-in.

 Appendix A. SystemGuard Remote Operation Configuration 243

244 RS/6000 SMP Servers

 Appendix B. Sample Programs

This appendix includes a number of sample programs that can be used for
becoming familiar with the performance tools in an SMP environment and for
observing multithreaded applications.

100unbound A process with four unbound threads.

100bound A process with four threads, each one bound to a processor.

100boundon1 A process with four threads all bound to the same processor.

100boundon2 A process with four threads bound to two processors.

big_copy An I/O intensive program.

cpubound A CPU intensive program bound to a single processor.

4everunbound A process with four unbound threads runnning forever.

3everunbound A process with three unbound threads running forever.

4everboundon4 A process with four threads running forever, each one bound to a
processor.

4everboundon2 A process with four threads running forever, bound to two
processors.

4everboundon1 A process with four threads running forever, bound to the same
processor.

pstat_disp A simple script to repeatedly execute the pstat command.

Makefile Required to build the sample programs.

For IBM employees, the source code of these samples can be obtained by entering
the following command on a VM system:

TOOLS SENDTO WTSCPOK TOOLS AIXDISK GET AIXV4SMP PACKAGE

 Copyright IBM Corp. 1995 245

 B.1 100unbound
/\ This process has 4 threads \/

/\ Threads are unbound \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

int loop;

pthread_mutex_t m;

void \Thread(void \string)

{

 int l;

 int r=ð;

 while (loop<1ðð)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) string, counter); \/

 loop++;

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 pthread_mutex_init(&m, NULL);

rc = pthread_create(&e_th, NULL, Thread, e_str);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

246 RS/6000 SMP Servers

 }

rc = pthread_create(&f_th, NULL, Thread, f_str);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

rc = pthread_create(&g_th, NULL, Thread, g_str);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

rc = pthread_create(&h_th, NULL, Thread, h_str);

 if (rc)

 {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 247

 B.2 100bound
/\ This process has 4 threads \/

/\ Each thread is bound to a processor \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

int loop;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD, thread_self(), ((arg_t\) x)->id);

/\ printf("Processor No = %d: Thread id= %d: Return value from bind=%d\n",

((arg_t\) x)->id, thread_self(), ret); \/

 if(ret==-1){

 perror("bind");

 pthread_exit((void\)-1);

 }

while (loop < 1ðð)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) x->string, counter); \/

 loop++;

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

248 RS/6000 SMP Servers

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

struct arg arg1, arg2, arg3, arg4;

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 printf("\n");

 pthread_mutex_init(&m, NULL);

arg1.string = e_str;

arg1.id = ð;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

arg2.string = f_str;

arg2.id = 1;

rc = pthread_create(&f_th, NULL, Thread, &arg2);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

arg3.string = g_str;

arg3.id = ð;

rc = pthread_create(&g_th, NULL, Thread, &arg3);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

arg4.string = h_str;

arg4.id = 1;

rc = pthread_create(&h_th, NULL, Thread, &arg4);

if (rc) {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 249

 B.3 100boundon1
/\ This process has 4 threads \/

/\ All threads are bound to the same processor \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

int loop;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD, thread_self(), ((arg_t \) x)->id);

/\ printf("Processor No = %d: Thread id= %d: Return value from bind=%d\n",

((arg_t \) x)->id, thread_self(), ret); \/

 if(ret==-1){

 perror("bind");

 pthread_exit((void\)-1);

 }

while (loop < 1ðð)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) x->string, counter); \/

 loop++;

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

250 RS/6000 SMP Servers

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

struct arg arg1, arg2, arg3, arg4;

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 printf("\n");

 pthread_mutex_init(&m, NULL);

arg1.string = e_str;

arg1.id = 2;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

arg2.string = f_str;

arg2.id = 2;

rc = pthread_create(&f_th, NULL, Thread, &arg2);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

arg3.string = g_str;

arg3.id = 2;

rc = pthread_create(&g_th, NULL, Thread, &arg3);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

arg4.string = h_str;

arg4.id = 2;

rc = pthread_create(&h_th, NULL, Thread, &arg4);

if (rc) {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 251

 B.4 100boundon2
/\ This process has 4 threads \/

/\ Threads are bound to 2 processors \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

int loop;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD, thread_self(), ((arg_t\) x)->id);

/\ printf("Processor No = %d: Thread id= %d: Return value from bind=%d\n",

((arg_t\) x)->id, thread_self(), ret); \/

 if(ret==-1){

 perror("bind");

 pthread_exit((void\)-1);

 }

while (loop < 1ðð)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) x->string, counter); \/

 loop++;

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

252 RS/6000 SMP Servers

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

struct arg arg1, arg2, arg3, arg4;

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 printf("\n");

 pthread_mutex_init(&m, NULL);

arg1.string = e_str;

arg1.id = ð;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

arg2.string = f_str;

arg2.id = 1;

rc = pthread_create(&f_th, NULL, Thread, &arg2);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

arg3.string = g_str;

arg3.id = ð;

rc = pthread_create(&g_th, NULL, Thread, &arg3);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

arg4.string = h_str;

arg4.id = 1;

rc = pthread_create(&h_th, NULL, Thread, &arg4);

if (rc) {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 253

 B.5 cpubound
/\ This process has one thread bound to one processor \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD, thread_self(), ((arg_t\)x)->id);

/\ printf("Processor ID = %d: Thread id= %d: Return value from bind=%d\n",

((arg_t\)x)->id, thread_self(), ret); \/

 if(ret==-1){

 perror("bind");

 pthread_exit((void \)-1);

 }

 while (1)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) x->string, counter); \/

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

char \e_str = "Thread One !";

struct arg arg1;

 pthread_t e_th;

 int rc;

 pthread_mutex_init(&m, NULL);

254 RS/6000 SMP Servers

arg1.string = e_str;

arg1.id = ð;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 255

 B.6 4everunbound
/\ This process has 4 threads running forever \/

/\ All threads are unbound \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

pthread_mutex_t m;

void \Thread(void \string)

{

 int l;

 int r=ð;

 while (1)

 {

 l=ð;

 while (l < 3ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) string, counter); \/

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 pthread_mutex_init(&m, NULL);

rc = pthread_create(&e_th, NULL, Thread, e_str);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

rc = pthread_create(&f_th, NULL, Thread, f_str);

if (rc) {

 printf("Error 2\n");

256 RS/6000 SMP Servers

 exit(-1);

 }

rc = pthread_create(&g_th, NULL, Thread, g_str);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

rc = pthread_create(&h_th, NULL, Thread, h_str);

 if (rc)

 {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 257

 B.7 3everunbound
/\ This process has 3 threads running forever \/

/\ All threads are unbound \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

pthread_mutex_t m;

void \Thread(void \string)

{

 int l;

 int r=ð;

 while (1)

 {

 l=ð;

 while (l < 3ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) string, counter); \/

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 int rc;

 pthread_mutex_init(&m, NULL);

rc = pthread_create(&e_th, NULL, Thread, e_str);

if (rc) {

 printf("Error 1\n");

 exit(-1);

 }

rc = pthread_create(&f_th, NULL, Thread, f_str);

if (rc) {

 printf("Error 2\n");

258 RS/6000 SMP Servers

 exit(-1);

 }

rc = pthread_create(&g_th, NULL, Thread, g_str);

 if (rc)

 {

 printf("Error 3\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 259

 B.8 4everboundon4
/\ This process has 4 threads running forever \/

/\ Each thread is bound to a processor \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD,thread_self(), ((arg_t\) x)->id);

/\ printf("Processor No = %d: Thread ID = %d: Return value from bind=%d \n"

,((arg_t\)x)->id, thread_self(), ret);\/

 if(ret==-1){

 perror("bind");

 pthread_exit((void\)-1);

 }

 while (1)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%d Thread ID = %d \n", counter, ((arg_t\)x)->id)

; \/

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

char \e_str = "Thread One !";

260 RS/6000 SMP Servers

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

struct arg arg1, arg2, arg3, arg4;

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 printf("\n");

 pthread_mutex_init(&m, NULL);

arg1.string = e_str;

arg1.id = ð;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

arg2.string = f_str;

arg2.id = 1;

rc = pthread_create(&f_th, NULL, Thread, &arg2);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

arg3.string = g_str;

arg3.id = 2;

rc = pthread_create(&g_th, NULL, Thread, &arg3);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

arg4.string = h_str;

arg4.id = 3;

rc = pthread_create(&h_th, NULL, Thread, &arg4);

if (rc) {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 261

 B.9 4everboundon2
/\ This process has 4 threads running forever \/

/\ Threads are bound to 2 processors \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD, thread_self(), ((arg_t\) x)->id);

/\ printf("Processor No = %d, Thread id = %d: Return value from bind=%d\n"

, ((arg_t\) x)->id, thread_self(), ret);\/

 if(ret==-1){

 perror("bind");

 pthread_exit((void\)-1);

 }

 while (1)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) x->string, counter); \/

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

262 RS/6000 SMP Servers

char \h_str = "Thread Four !";

struct arg arg1, arg2, arg3, arg4;

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 pthread_mutex_init(&m, NULL);

arg1.string = e_str;

arg1.id = 2;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

arg2.string = f_str;

arg2.id = 3;

rc = pthread_create(&f_th, NULL, Thread, &arg2);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

arg3.string = g_str;

arg3.id = 2;

rc = pthread_create(&g_th, NULL, Thread, &arg3);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

arg4.string = h_str;

arg4.id = 3;

rc = pthread_create(&h_th, NULL, Thread, &arg4);

if (rc) {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 263

 B.10 4everboundon1
/\ This process has four threads running forever \/

/\ Threads are bound to one processor \/

include <pthread.h>

include <stdio.h>

include <unistd.h>

int counter;

int loop;

pthread_mutex_t m;

struct arg {

 char \string;

 int id;

};

typedef struct arg arg_t;

void \Thread(void \x)

{

 int l;

 int r=ð;

 int ret;

ret =bindprocessor(BINDTHREAD, thread_self(), ((arg_t\) x)->id);

/\ printf("Processor No = %d: Thread id= %d: Return value from bind=%d\n",

((arg_t\) x)->id, thread_self(), ret); \/

 if(ret==-1){

 perror("bind");

 pthread_exit((void\)-1);

 }

 while (1)

 {

 l=ð;

 while (l < 1ðððððð)

 l++;

 pthread_mutex_lock(&m);

 counter++;

/\ printf("%s %d\n", (char\) x->string, counter); \/

 loop++;

 pthread_mutex_unlock(&m);

 }

pthread_exit((void \)1);

}

int main()

{

264 RS/6000 SMP Servers

char \e_str = "Thread One !";

char \f_str = "Thread Two !";

char \g_str = "Thread Three !";

char \h_str = "Thread Four !";

struct arg arg1, arg2, arg3, arg4;

 pthread_t e_th;

 pthread_t f_th;

 pthread_t g_th;

 pthread_t h_th;

 int rc;

 printf("\n");

 pthread_mutex_init(&m, NULL);

arg1.string = e_str;

arg1.id = 2;

rc = pthread_create(&e_th, NULL, Thread, &arg1);

 if (rc)

 {

 printf("Error 1\n");

 exit(-1);

 }

arg2.string = f_str;

arg2.id = 2;

rc = pthread_create(&f_th, NULL, Thread, &arg2);

if (rc) {

 printf("Error 2\n");

 exit(-1);

 }

arg3.string = g_str;

arg3.id = 2;

rc = pthread_create(&g_th, NULL, Thread, &arg3);

if (rc) {

 printf("Error 3\n");

 exit(-1);

 }

arg4.string = h_str;

arg4.id = 2;

rc = pthread_create(&h_th, NULL, Thread, &arg4);

if (rc) {

 printf("Error 4\n");

 exit(-1);

 }

 pthread_exit(ð);

}

 Appendix B. Sample Programs 265

 B.11 big_copy

à ð
/\ This process creates intensive I/O activity \/

main ()

{

while (1)

{

system ("cp /unix /perf/bigfile");

system ("cp /perf/bigfile /perf/bigfile1");

system ("rm /perf/bigfile1");

system ("rm /perf/bigfile");

sleep (1);

}

}

á ñ

 B.12 pstat_disp

à ð
#! /bin/ksh

while true

do

 pstat -S

 sleep 1

done

á ñ

 B.13 Makefile

à ð
Macros

CC = cc_r # call to C compiler

CFLAGS =

LIBS = -lc_r -lpthreads -lm -lXm -lXt -lX11

Targets

LabProgs : 1ððbound 1ððboundon1 1ððboundon2 1ððunbound 3everunbound \

4everboundon1 4everboundon2 4everboundon4 4everunbound big_copy cpubound

á ñ

266 RS/6000 SMP Servers

List of Abbreviations

APAR Authorized Program Analysis
Report

API Application Programming
Interface

ASCII American Standard Code for
Information Interchange

BIST Built-In Self Test

BOS Base Operating System

CCA Cache Controller Address

CCD Cache Controller for Data

CDE Common Desktop Environment

CD-ROM Compact Disk - Read Only
Memory

COSE Common Open Software
Environment

COP Common On-Chip Processor

CPC Cluster Power Controller

CPU Central Processing Unit

CSU Customer Setup Unit

CPI Cycles Per Instruction

DCB Data Crossbar (switch)

DCE Distributed Computing
Environment

DOS Disk Operating System

EEPROM Electrically Erasable
Programmable Read Only
Memory

EPROM Erasable Programmable Read
Only Memory

FDDI Fiber Distributed Data Interface

FRU Field Replaceable Unit

I2C Inter-Integrated Circuit

IBM International Business
Machines Corporation

iFOR/LS Information For Operation
Retrieval/License System

IOD Input/Output Daughter

ITSO International Technical Support
Organization

IPC Inter-Process Communication

JEDEC Joint Electronic Device
Engineering Council

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LED Light Emitting Diode

LPP Licensed Program Product

LRU Least Recent Used

LUN Logical Unit Number

MA Memory Array

MESI Modified, Exclusive, Shared,
Invalid

MIPS Millions of Instructions Per
Second

MP Multiprocessor

MPB Multiprocessor Board

MPB-SysBus Multiprocessor Board System
Bus

NIM Network Installation Manager

NVRAM Non Volatile Random Access
Memory

ODM Object Data Manager

PCI Power Control Interface

PDT Performance Diagnostic Tool

PIO Programmed Input/Output

PMR Program Modification Request

PON Power On (tests)

POSIX Portable Operating System
Interface for Computer
Environments

POST Power On Self Test

POWER Performance Optimized With
Enhanced RISC

PReP PowerPC Reference Platform

PLL Phase Lock Loop

PTF Program Temporary Fix

PTX Performance Toolbox

RAM Random Access Memory

RAS Reliability Availability
Serviceability

RISC Reduced Instruction Set
Computer/Cycles

ROS Read-Only Storage

RPQ Request for Price Quotation

 Copyright IBM Corp. 1995 267

RWNITM Read With No Intent to Modify

RWITM Read With Intent to Modify

SCSI Small Computer System
Interface

SIB System Interface Board

SID System Identification

SIMM Single Inline Memory Module

SMIT System Management Interface
Tool

SMP Symmetrical Multiprocessor

SPOT Shared Product Object Tree

SRAM Static Random Access Memory

SSI Single System Image

SMC System Memory Controller

TCB Trusted Computing Base

TOD Time of Day

UP Uniprocessor

UPS Uninterruptable Power Supply

VP Virtual Processor

VPD Vital Product Data

VRMF Version Release Modification
Fix

268 RS/6000 SMP Servers

 Index

A
abbreviations 267
acronyms 267
addressing 56
affinity, processor 22
AIX V4.1

AIX V4 levels for SMP 189
Amdahl's law 28
applying updates 207

B
banks 59
banks of memory 69
binding

binding a process 212
binding a thread 215
bindprocessor command 23
bindprocessor() system call 23

boosted thread 23
boot image 192

bosboot command 192
creating an MP boot image 192

bootinfo command 191
bosboot command 192
bosinst.data file 183
BUMP (Bring-Up Microprocessor) 100
bundle 170
bus 56

C
cache coherency 9
cache hit 9
cache miss 9
characteristics, software 14
Cluster Power Controller (CPC)

cables 147
configuration rules 149
connectors 144
CPC configuration 153
features 143
front panel 144
general installation steps 150
installation 149
installation of a poweroff user 162
installation prerequisites 150
operations 163

daisy chaining CPCs 166
how to connect and log into the CPUs 163
how to connect to a secondary CPC 167
how to disable tty reboot 165
how to enable SystemGuard dial-out 164

Cluster Power Controller (CPC) (continued)
operations (continued)

how to enable the CPC modem connection 165
how to power-off/on systems from the CPC 164
microcode update 165

port connections 145
power control 143
power-on 151
single console 143
single modem connection 143
system customization 151

CPU configuration 155
peripheral configuration 159

update CPC microcode 143
coherency, cache 9
commercial application 55
commercial versus technical applications 29
compatibility

funneled device driver 25
funneling 25
UP application compatibility 24
UP device drivers compatibility 24

compiling multithreaded programs 46
complete overwrite installation 177
console mirroring 124
contention 223
contention scope 39
conversion from UP to SMP 95
CPI (Cycles Per Instruction) 52
CPU-ID 192
cpu_state command 115, 141
critical section 18

interrupt-interrupt 19
thread-interrupt 18
thread-thread 18

cross invalidate 10
crossbar

advantages summary 66
architecture 62
data path 63
intervention 65
main characteristics 60
operations 64

intervention - RWITM 65
intervention - RWNITM 65
memory mapped I/O mode 65
memory mode 64
programmed I/O mode - PIO 65

peak rate 64
performance characteristics 64
sustained rate 64
switch interconnection 60

 Copyright IBM Corp. 1995 269

D
data crossbar (DCB) 56, 57
data transfer 56
DCB (Data Crossbar) 56
debugger threads support 46
device drivers 24
devices, new SMP 193
dial-out feature

enabling SystemGuard with the CPC 164
setting up 127
setting up from AIX 128
setting up from SystemGuard 127

dispatching threads 22

E
effect of L2 cache 53
effect of processor speed 54
electronic key 103, 117
engineering/scientific environment 50
errno value 34

F
failure, processor and memory 116
false sharing 14
fast IPL

how to set fast IPL 120
from the Maintenance Menu 121
from the Stand-By Menu 120
through AIX 121

fileset 169
fileset update 170
funneling 25

G
granularity, lock 20

H
high removability feature 81
hit ratio 9, 50
hot-pluggable disk configuration 83

I
IBM RISC System/6000 SMP Servers Family 71

high removability feature 81
hot-pluggable disk configuration considerations 83
J01 expansion cabinet 86
J30 and J01 interconnection 88
J30/J01 specifics 89
model G02 expansion cabinet 77

installation 77
model G30 server 71

additional information 74

IBM RISC System/6000 SMP Servers Family
(continued)

model G30 server (continued)
hardware features 73
standard configuration 72

model J30 server 78
hardware features 79
standard configuration 79

model R30 rack server 90
additional information 93
CPC 94
hardware features 92
standard configuration 91
UPS 93

SCSI device addresses 85
initial thread 32, 33
installing an SMP with AIX V4.1

AIX V4.1 levels for SMP 189
bosinst.data and image.data files 183
CPU-ID 192
default installation 176
installation assistant 179
installation flow 175
installation messages 182
methods 175
migration installation 184
mksysb installation 185
MP kernel 189
network installation 188
new and complete overwrite installation 177
obsolete entries 185
paging and dump devices 182
preservation installation 184
SMP specifics 189
software license agreement 178
using NIM 200

instfix command 206
Inter-Process Communication (IPC) 28
interconnection 56
interleaving 58

interleaving scheme 69
interleaving, level of 59
memory array interleaving 58, 59
memory banks 59
optimization 59, 60

intervention 65
IPC 28, 34

K
kernel

creating an MP boot image 192
kernel locks 16
locking interface 19
MP kernel 189

270 RS/6000 SMP Servers

keycfg command 115

L
L1/L2 caches and store policy 13

LRU (Least Recent Used) 14
RWNITM 13

L2 cache effect 53
commercial environment 53
scientific environment 53

latency 49
libpthreads.a library 40
Licensed Program Product (LPP) 170
lock services 19
locks 15

AIX V3 locks 17, 18
atomic instructions 16
complex locks 17
kernel locking interface 19
kernel locks 16
lock granularity 20
lock penalty 20
lock services summary 19
lock types 16
mutex 16
mutual exclusion locks 16
pthread_mutex_lock() 20
pthread_mutex_unlock() 20
read/write locks 16
simple locks 17
sleeping locks 16
spin locks 16
test and set 16
waiting for locks 16

LRU (Least Recent Used) 14

M
maintenance 203

applying updates 207
instfix command 206
oslevel command 205
software maintenance 203
VRMF numbering 204

maintenance bundle 170
maintenance menu 114
master processor 25
memory array characterictics 68
memory array interleaving 58
memory banks 59, 69
memory cycles 51
memory hierarchy 8
memory interleaving 59
memory subsystem 55, 56, 58
MESI protocol 11

migration installation 184
migration, UP to SMP

creating an MP boot image 198
creating MP kernel links 198
dump device and paging space 197
installing required device drivers 198
migration checklist 194
migration procedure 194
restoring the backup 199
UP system to AIX V4.1 195
UP to SMP migration 193

mirrord daemon 116
mirroring concepts 124
mirroring, console 124
miss-rate penalty 52
mksysb installation 185
model conversion from UP to SMP 95

conversion to G30 95
conversion to J30 96
conversion to R30 96

models, threads implementation 36
monitoring an SMP

monitoring with 3dmon 233
monitoring with Performance Toolbox 226

MP-efficient 21
MP-safe 21
mpcfg command 115
multiprocessing concepts

binding 23
cache coherency 56
cache coherency problem 9
cache hit versus cache miss 9
critical section 15, 18
cross invalidate 10
false sharing 14
funneling 25
hardware characteristics 7
L1/L2 caches and store policy 13
latency 2
lock services summary 19
lock, what is a 15
master processor 7, 25
memory hierarchy 8
MESI protocol 11
MP-safe versus MP-efficient 21
multiprocessing issues 2
multiprocessing versus uniprocessing 1
multiprocessor types 3
PowerPC specifics 25
processor affinity 22
processor numbering 23
scalability 49
scaling 26
sharing resources 2, 7
slave processor 7
SMP benefits 29

 Index 271

multiprocessing concepts (continued)
SMP limitations 30
snooping 10
software characteristics 14
symmetric versus asymmetric 7
synchronization issue 15
using an SMP 28

multiprocessor types 3
shared-disks MP 4
shared-memory cluster 5
shared-memory multiprocessor 5
shared-nothing MP 3
symmetric versus asymmetric 7

multithreaded program sample 47

N
network

how to boot from 133
network installation 188
new installation 177
NIM 188, 200

O
oslevel command 205

P
package 170
packaging, AIX V4.1 packaging 169

application developer bundle 171
bundles 171
client bundle 171
compatibility filesets 173
device driver packaging 174
fileset names 172
hardware diagnostics bundle 171
message catalog packaging 174
package installation database 175
packaging impacts 170
packaging terminology 169

bundle 170
fileset 169
fileset update 170
Licenced Program Product (LPP) 170
maintenance bundle 170
package 170
product offering 170
update bundle 170

personal productivity bundle 171
server bundle 171
standard fileset names 172

parallelizing an application 28
Amdahl's law 28

Performance Toolbox
creating an SMP console 228

performance tools
bindprocessor 209
considerations 209
cpu_state 209, 222
lockstat 210, 223
multiprocessing effect 216
processes status 211
processors load 220
ps 210
pstat 210, 218
sar 210, 220
standard performance tools 215
threads status 211
time 210, 216, 217
vmstat 210, 221

physical key 103
PIO (Programmed I/O) 65
platform types 190

bootinfo 191
determining the platform type 191

power-on (PON) tests 106
PowerPC specifics 25

out-of-order execution 25
weakly ordered memory 25

preservation installation 184
processes 31

main benefits of threads over processes 35
multithreaded processes 32
process address space 31
process and thread properties 33
process properties 33

processor affinity 22
binding 23
boosted thread 23

processor numbering 23
logical number 24
physical number 23

processor speed effect 54
processors

disabling and enabling 137
through AIX 141
through the Maintenance menu 139
through the Stand-By menu 137

product offering 170
program sample multithreaded 47
programming interface for threads 47
programming threads 42
pthread_create subroutine 43
pthread_exit subroutine 44
pthread_join subroutine 44

272 RS/6000 SMP Servers

R
remote service console

rebooting AIX from 129
rebooting to AIX multi-user 130
rebooting to single-user, then to multi-user 130

RWITM (Read With Intent To Modify) 65
RWNITM (Read With No Intent to Modify) 13, 65

S
scalability 49
scaling 26, 217
scaling metrics 27
schedtune command 42
scheduling, threads 41
scope, contention 39
SCSI device

booting through the bootlist 133
booting through the Maintenance menu 131
how to boot from an 131

service console
authorizing the 124
authorizing through AIX 124
authorizing through the Maintenance menu 124
authorizing through the Stand-By menu 124
console mirroring prerequisites 125
mirroring concepts 124
setting up console mirroring 124, 125

service line speed
how to set 122
setting through AIX 123
setting through Maintenance menu 122

service processor 99
SIB (System Interface Board) functions 96
signal management 45

asynchronous signals 46
synchronous signals 46

sizing an SMP 221
SMC (System Memory Controller) 57
SMP architecture

addressing 56
architecture description 57
bus 56
cache coherency 56
CPI (Cycles Per Instruction) 52
data crossbar (DCB) 56
data locality 49
data transfer 56
design issues in a commercial environment 49
design rationale 55
effect of L2 cache 53
engineering/scientific environment 50
implementation 66
interconnection 56
latency 49

SMP architecture (continued)
memory array characteristics 68
memory banks 69
memory boards 69
memory hierarchy 49
memory subsystem 55, 56, 58
miss-rate penalty 52
processor speed effect 54
scientific vs. commercial environment 50
snooping 56
switch 56
switch advantages 56
system memory controller 64
transactional environment 50
typical memory cycles 51
why a switch? 56

SMP architecture description 57
SMP architecture implementation 66

cache controller address (CCA) 67
cache controller for data (CCD) 67
data crossbar (DCB) 67
input/output daughter board (IOD) 67
L2 SRAM 67
L2 tag 67
multiprocessor board 66
processor daughter board (CPU) module 67
system memory controller 67

SMP benefits 29
SMP hardware architecture 55
SMP limitations 30
SMP scaling 26

metrics 27
two-dimensional scaling 28

SMP specifics 189
snooping 10, 56
software characteristics 14
Stand-By menu 112
store policy, L1/L2 caches and store policy 13
survd command 127
survd daemon 116
surveillance 127
switch 56

advantages summary 66
architecture 62
data path 63
interconnection 60
intervention 65
main characteristics 60
operations 64

intervention - RWITM 65
intervention - RWNITM 65
memory mapped I/O mode 65
memory mode 64
programmed I/O mode - PIO 65

peak rate 64
performance characteristics 64

 Index 273

switch (continued)
sustained rate 64

switch advantages 56
switch, why a 56
synchronization 17

disable_lock() 18
enable_lock() 18
i_disable() 18
i_enable() 18
SMP synchronization 18
UP synchronization 17

synchronization issue 15
system configuration

how to display 118
system interface board (SIB) functions 96
system memory controller (SMC) 57
SystemGuard

and AIX 115
cpu_state 115
keycfg 115
mirrord 116
mpcfg 115
survd 116

authorizing the service console 124
BUMP (Bring-Up Microprocessor) 100

backup EPROM 100
flash EPROM 100

BUMP console 102
common tasks 117

booting from an SCSI device 131
booting from the network 133
disabling and enabling processors 137
displaying system configuration 118, 119
enabling surveillance 127
setting fast IPL 120
setting up console mirroring 124, 125
setting up dial-out 127
setting up the electronic key from AIX 117
setting up the electronic key from Stand-By

mode 117
components 100
console mirroring concepts 124
consoles 102
flowchart 110
functions 102
introduction 99
menus 112

maintenance menu 114
Stand-By menu 112

operator panel 101
NVRAM 101

parameters and flags 109
autoservice IPL 112
BUMP console present 111
diagnostics 109
modem and site configuration flags 110
phone numbers 110

SystemGuard (continued)
parameters and flags (continued)

service contract 112
service support 109

phases 103
init phase 104
phase change (init to AIX load and runtime) 108
phase change (stand-by to init) 105
run-time phase 104
stand-by phase 103

physical and electronic key 103
PON tests groups 107
power 99
power-on (PON) tests 106
processor and memory failure 116
rebooting AIX from the remote service console 129
service console 102
setting the service line speed 122
setting up console mirroring 125
working with 110

T
threads

AIX V4.1 kernel support of 40
boosted thread 23
compiling multithreaded programs 46
condition variables 43
debugger threads support 46
errno 34
forking considerations 45
initial thread 32, 33
joining 44
libpthreads.a 40
library implementation 40
main benefits of threads over processes 35
multithreaded processes 32
multithreaded program sample 47
mutexes 43
process address space 31
process and thread properties 33
processes 31
programming considerations 42
programming interface 47
pthread_create 43
pthread_exit 44
pthread_join 44
signal management 45
single-threaded process 31
thread properties 34
thread-safe libraries 42
threads attributes 43
threads creation 43
threads dispatching 22
threads implementation models 36
threads scheduling 41, 45

274 RS/6000 SMP Servers

threads (continued)
threads synchronization 43
threads termination 44
threads types 36
threads versus processes 31
threads-related information 218
what is a thread? 31
what is not shared between threads 34
what is shared between threads 34

threads implementation models 36
1:1 model 37
contention scope 39
M:1 model 37
M:N model 38
model descriptions 36
process contention scope 39
system contention scope 39

threads library implementation 40
threads programming interface 47
threads types 36

kernel threads 36
kernel-only threads 36
user threads 36

transactional environment 50
tuning

global memory and CPU activity 221
tuning guidelines 225

two-dimensional scaling 28

U
Uninterruptible Power Supply (UPS) 93
UP to SMP conversion 95
update bundle 170
using an SMP 28

commercial versus technical applications 29
parallelizing an application 28

V
virtual processor 36
VRMF 203
VRMF numbering 204

 Index 275

ITSO Technical Bulletin Evaluation
RED000

International Technical Support Organization
IBM RISC System/6000 SMP Servers
Architecture and Implementation
November 1995

Publication No. SG24-2583-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

� Mail it to the address on the back (postage paid in U.S. only)
� Give it to an IBM marketing representative for mailing
� Fax it to: Your International Access Code + 1 914 432 8246
� Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-2583-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 948, Building 821
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

SG24-2583-00

IBM

Printed in U.S.A.

SG24-2583-ðð

