
SG24-2514-01

DB2 Parallel Edition for AIX: Concepts and Facilities

December 1996

International Technical Support Organization

DB2 Parallel Edition for AIX: Concepts and Facilities

December 1996

SG24-2514-01

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 255.

Second Edition (December 1996)

This edition applies to DB2 Parallel Edition for AIX Version 1.2 of DB2 Parallel Edition for AIX, Program Number
5765-328, for use with the AIX operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xii i
How This Redbook Is Organized . xiii
DB2 Parallel Edition V 1.2 Enhancements . xiii

Performance . xiv
Function . xiv
Systems Management Enhancements . xiv
Ease of Use Enhancements . xv

The Team That Wrote This Redbook . xv
Comments Welcome . xvi

Chapter 1. Overview . 1
1.1 The Need for Parallelism . 1
1.2 Concepts and Definitions in Parallel Database Architecture 3

1.2.1 Parallel Architecture . 4
1.2.2 Parallel Processing . 8
1.2.3 Parallel Process Flow . 10

Chapter 2. Hardware Configurations . 15
2.1 Networks . 15
2.2 Disks . 16

2.2.1 Internal Storage . 17
2.2.2 External Disks . 17

2.3 RISC System/6000 Scalable Power Parallel System 18
2.3.1 Processors . 18
2.3.2 Networks . 23
2.3.3 Switch Network . 24
2.3.4 Control Workstation . 26

2.4 High-Availability Support . 27
2.4.1 Concurrency . 27
2.4.2 Points of Failure . 27
2.4.3 Networked Systems . 30
2.4.4 RS/6000 SP Configuration . 33

Chapter 3. Concepts and Data Placement . 35
3.1 Parallel Database . 35
3.2 DB2 Parallel Edition Architecture . 36

3.2.1 Major Components . 36
3.2.2 Parallel Edition Process Model . 37

3.3 Parallel Database Nodes . 45
3.4 Database Instance . 47

3.4.1 Instance Owner . 48
3.5 Database Creation . 49
3.6 Database Management and AIX . 51

3.6.1 Mapping Tables to AIX Files . 52
3.6.2 Segment Manager Tool . 52
3.6.3 Multi-Page File Allocation . 53
3.6.4 Default Database Settings . 55

 Copyright IBM Corp. 1996 iii

3.6.5 Storage of Objects in Segment Directories 55
3.6.6 Determining the Values for NUMSEGS and SEGPAGES 57
3.6.7 Maximum Size for Tables and Databases 58
3.6.8 Performance and Resource Considerations 59
3.6.9 Changing the Maximum Size of a Database 59

3.7 Nodegroups and Data Partitioning . 59
3.7.1 Nodegroups . 60
3.7.2 Creating a Nodegroup . 61
3.7.3 Considerations for Nodegroups . 62
3.7.4 Data Partitioning . 64
3.7.5 Partitioning Key . 65
3.7.6 Partitioning Map . 67
3.7.7 Row Partitioning . 69

Chapter 4. Parallel Processing . 71
4.1 SQL Statements and Database Commands 71

4.1.1 Create/Drop Database . 71
4.1.2 Data Definition Language (DDL) . 73
4.1.3 Data Manipulation Language (DML) . 75

4.2 Not Initially Logged Tables . 75
4.2.1 Considerations for Using Not Logged Initially 76
4.2.2 Example . 77

4.3 Buffered Inserts . 78
4.3.1 Enabling the Buffered Insert Option . 80
4.3.2 Considerations for Using Buffered Insert 80
4.3.3 Restrictions . 80

4.4 SQL Operations . 80
4.4.1 Set Operations . 81
4.4.2 Group By Operations . 81
4.4.3 CASE Expressions . 81
4.4.4 Outer Join . 82
4.4.5 DIGITS Scalar Function . 86
4.4.6 SQL Functions . 87
4.4.7 Column Functions . 88

4.5 SQL Optimization . 88
4.6 Explain Tools . 89

4.6.1 Example of Explain Report . 90
4.6.2 Description of Explain Report . 91

4.7 Table Queues . 100
4.7.1 Single-Receiver, Single-Sender Table Queues 100
4.7.2 Single-Receiver, Multiple-Sender Table Queues 101
4.7.3 Multiple-Receiver, Single-Sender Table Queues 102

4.8 Join Operations . 102
4.8.1 Join Methods . 102
4.8.2 Parallel and Join Strategies . 104
4.8.3 Collocated Join Strategy . 105
4.8.4 Directed Outer-Table Join Strategy 110
4.8.5 Directed Inner-Table and Outer-Table Join Strategy 116
4.8.6 Broadcast Outer-Table Join Strategy 122

4.9 Database Locking . 126
4.9.1 Lock Modes . 127
4.9.2 Lock Mode Compatibility . 130
4.9.3 Lock Duration . 131
4.9.4 Lock Conversion . 135
4.9.5 Lock Escalation . 135

iv DB2 PE for AIX: Concepts and Facilities

4.9.6 Deadlock . 135
4.9.7 Distributed Deadlock Detection . 137
4.9.8 Locking Configuration Parameters . 139

Chapter 5. Parallel Utilities . 141
5.1 Executing Commands on Multiple Nodes 141
5.2 Segment Manager Tool . 142

5.2.1 Segment Directory File System Information 143
5.2.2 Mounting Segment Directory to File System 144
5.2.3 Increase Segment Directory File System Size 147
5.2.4 Cleanup Database Directory After Dropping Database 148

5.3 Data Splitting and Loading . 149
5.3.1 Populate a Table without Logging . 149
5.3.2 Partitioning Data with db2split . 150
5.3.3 db2split Example . 151
5.3.4 Sending Partition Files to Appropriate Nodes 156
5.3.5 Load Utility . 157
5.3.6 Examples Using the Load Utility . 161
5.3.7 Errors During the Load Utility . 164

5.4 Autoloader Utility . 164
5.4.1 Considerations for the Autoloader Utility 165
5.4.2 Customize the Autoloader Specification File 167
5.4.3 Load Script File . 167
5.4.4 Using AUTOLOADER . 168
5.4.5 Autoloader Process . 169
5.4.6 Performance Considerations . 170
5.4.7 Example Using Autoloader Utility . 170

5.5 Import/Export Utilities . 175
5.5.1 Using the Import Utility . 175
5.5.2 Using the Export Utility . 175
5.5.3 Executing the Export Utility in Parallel 175
5.5.4 File Formats for Import/Export . 176

5.6 Adding Nodes . 177
5.6.1 Adding a Node When the Database Manager is Active 178
5.6.2 Adding a Node When the Database Manager is Inactive 178
5.6.3 Add Node Example . 179

5.7 Dropping Nodes . 179
5.7.1 Dropping a Node When the Database Manager is Active 180
5.7.2 Drop Node Example . 180
5.7.3 Data Redistribution . 181
5.7.4 Redistribution Process . 182
5.7.5 Redistributing Data on Each Table . 183
5.7.6 Redistribute Utility . 184
5.7.7 Node Redistribution . 184
5.7.8 Adding Nodes to a Nodegroup . 186
5.7.9 Dropping Nodes from a Nodegroup 188
5.7.10 Failure Recovery . 190

5.8 Runstats Utility . 192
5.8.1 Using Runstats . 193

5.9 Reorgchk Utility . 194
5.9.1 Using Reorgchk . 194

5.10 Reorganize Table Utility . 195
5.10.1 Using Reorganize Table . 195

5.11 Backup and Restore . 196
5.11.1 Backup and Restore Scenario . 197

Contents v

5.11.2 Backup Operation . 198
5.11.3 Restore . 200
5.11.4 Restrictions . 200

5.12 Recovery . 201
5.12.1 Database Logs . 201
5.12.2 Virtual Timestamps . 202
5.12.3 Point-In-Time Recovery . 203

5.13 Governor Utility . 203
5.13.1 Governor Front-End Utility . 204
5.13.2 The Governor Daemon . 205
5.13.3 Customizing the Governor Configuration File 205
5.13.4 Governor Log Files . 207
5.13.5 Governor Log Query Utility . 208
5.13.6 Considerations for the Governor Utility 209
5.13.7 Examples Using Governor Utility . 209

5.14 db2batch Tool . 212
5.14.1 Using db2batch Tool . 213
5.14.2 Example Using db2batch Tool . 214

5.15 DB2 Parallel Edition Database Director 216
5.15.1 Using the Database Director . 216

Chapter 6. Installation and Configuration . 227
6.1 Installation Procedure . 227

6.1.1 Hardware Environment . 227
6.1.2 Pre-Installation Tasks . 228
6.1.3 Create Group for DB2 PE Instance Owner 229
6.1.4 Create Instance Owner for DB2 PE . 230
6.1.5 Home Directory for the Instance Owner 231
6.1.6 Decide on the Distribution of the DB2 PE Software 232
6.1.7 Increase the Number of Processes Per User 232
6.1.8 Provide Sufficient Paging Space . 232
6.1.9 Configure syslog . 233
6.1.10 Tuning TCP/IP Network Parameters 233
6.1.11 Create File System for Database . 234
6.1.12 Change Ownership of Database File System 235
6.1.13 Installation Tasks . 235
6.1.14 Software Installation . 235
6.1.15 Software Distribution . 236

6.2 Configuration . 236
6.2.1 Create an Instance . 236
6.2.2 Create the db2nodes.cfg File . 236
6.2.3 Reserve the Service Ports . 237
6.2.4 Modify Login Environment for the Instance Owner 237
6.2.5 Allow Remote Commands . 237
6.2.6 Start the Database Director Daemon 238

6.3 Database Management . 239
6.3.1 Starting a DB2 PE Instance . 239
6.3.2 Creating a Database . 239
6.3.3 Creating a Nodegroup . 239
6.3.4 Creating a Table . 239
6.3.5 Stopping a DB2 PE Instance . 240

6.4 HACMP Configurations . 240
6.4.1 HACMP Idle Standby . 241
6.4.2 HACMP Rotating Standby . 243

6.5 DRDA Application Server Feature . 246

vi DB2 PE for AIX: Concepts and Facilities

6.5.1 Supported DRDA Application Requesters 246
6.5.2 SNA Server/6000 Customization . 247
6.5.3 Configuring the Database Manager 252
6.5.4 Using DRDA Trace . 253

Appendix A. Special Notices . 255

Appendix B. Related Publications . 259
B.1 International Technical Support Organization Publications 259
B.2 Redbooks on CD-ROMs . 259
B.3 Other Publications . 259

How To Get ITSO Redbooks . 261
How IBM Employees Can Get ITSO Redbooks 261
How Customers Can Get ITSO Redbooks . 262
IBM Redbook Order Form . 263

List of Abbreviations . 265

Index . 267

Contents vii

viii DB2 PE for AIX: Concepts and Facilities

Figures

 1. Parallel Transactions . 2
 2. Parallel Query . 3
 3. Shared Nothing Architecture . 4
 4. Shared Disk Architecture . 6
 5. Shared Memory Architecture . 7
 6. Inter-Transaction Parallelism . 8
 7. Intra-Query Partition Parallelism . 9
 8. Intra-Query Pipelined Parallelism . 10
 9. Function Shipping . 11
10. I/O Shipping Parallelism . 12
11. Network Speeds . 16
12. RS/6000 SP Hardware Configuration - Thin Nodes 21
13. RS/6000 SP Hardware Configuration - Wide Nodes 22
14. RS/6000 SP Hardware Configuration - Mixed Nodes 23
15. The RS/6000 SP Switch Network . 24
16. Switch Network - 64-Way . 25
17. HACMP Mutual Takeover Cluster Example 31
18. HACMP Standby Cluster Example . 32
19. RS/6000 SP Configuration with HACMP . 34
20. Parent-Child Processes Relationship During Startup 38
21. Parent-Child Processes Relationship During Database Connect 40
22. Parent-Child Processes Relationship During Select 42
23. Parent-Child Processes Relationship During Database Connect Reset . 43
24. Control Flow in the Parallel Edition Process Model 45
25. Node Configuration File, db2nodes.cfg . 46
26. Four Physical Nodes Using the SP Switch 46
27. Four Logical Nodes in an SMP Configuration 47
28. DB2 Parallel Edition Instance . 48
29. Physical Storage of Parallel Edition Objects 49
30. AIX File System Limitation . 51
31. Database Spread Across File Systems . 52
32. Relationship Between DB2 and AIX . 53
33. Segmented Tables Example . 57
34. Nodes and Nodegroups . 60
35. Partitioning Map . 67
36. Default Partitioning Map . 68
37. Non-Buffered Row Insertion . 78
38. NODENUMBER Syntax . 87
39. PARTITION Syntax . 88
40. Explain Example . 90
41. Single-Sender, Single-Receiver Table Queue 100
42. Non-Deterministic Interleaf Table Queue 101
43. Deterministic Interleaf Table Queue . 101
44. Single-Sender, Multiple-Receiver Table Queue 102
45. Collocated Join Process Flow . 109
46. Collocated Join Data Flow . 110
47. Directed Outer-Table Join Process Flow 114
48. Directed Outer-Table Join Data Flow . 115
49. Directed Inner and Outer Join Process Flow 120
50. Directed Inner and Outer Join Data Flow 121
51. Broadcast Join Process Flow . 125

 Copyright IBM Corp. 1996 ix

52. Broadcast Join Data Flow . 126
53. Isolation Levels Within DB2 PE . 132
54. Temporary Tables and Impact on Isolation Level 133
55. Deadlock on a Node . 136
56. Distributed Global Deadlock . 137
57. Wait-For Graph . 138
58. Display Segment Directory File System Information 144
59. Mount Segment Directory File Systems 145
60. Display Segment Directory File System Information 146
61. Segmented Directories Example . 147
62. Increase Segment Directory File System Size 148
63. Cleanup Database Directory After Dropping a Database 149
64. Backup, Restore and Roll-Forward Operations 197
65. Virtual Time Stamp . 202
66. Database Director - Database Manager Instances 217
67. Error Message from Database Manager Instances 217
68. Database Director - Database Manager Instances 218
69. View Database Manager Instance . 218
70. View Database Manager Instance in Detail 218
71. Start Database Manager Instance . 219
72. Starting Database Manager Instance . 219
73. Database Manager Instance is Started 220
74. Open the Database Manager Instance 220
75. Open Database Manager Instance for Settings 221
76. Database Manager Instance Settings . 221
77. Database Director Alert Message . 222
78. Database Manager Nodes for Database Manager Instance 222
79. Open Database Manager Nodes for Instance 223
80. Performance Details for Instance on Database Manager Node 223
81. Change Thresholds for Instance on Database Manager Node 224
82. Maximum Coordinating Agents - Change Thresholds 224
83. Set Actions for Snapshot Monitor . 225
84. Snapshot Monitor Settings . 225
85. Alert Message from Snapshot Monitor 226
86. Hardware Environment . 228
87. HACMP Test Setup . 241
88. SNA Node Profile . 247
89. SNA Control Point Profile . 248
90. SNA Token Ring Data Link Control Profile 249
91. SNA LU 6.2 Local LU Profile . 250
92. SNA LU 6.2 Mode Profile . 251
93. SNA LU 6.2 TPN Profile . 252

x DB2 PE for AIX: Concepts and Facilities

Tables

 1. Maximum Internal Storage Capacities . 17
 2. RS/6000 SP Processors Summary . 19
 3. Partition Compatibilit ies . 67
 4. Lock Modes for DB2 PE - Table Level . 128
 5. Lock Modes for DB2 PE - Row Level . 129
 6. Lock Mode Compatibility - Table Locks 130
 7. Lock Mode Compatibility - Row Locks 130
 8. SYSIBM.SYSPARTITIONMAPS Catalog Table 181
 9. SYSIBM.SYSNODEGROUPS Catalog Table 181
10. SYSIBM.SYSNODEGROUPDEF Catalog Table 182

 Copyright IBM Corp. 1996 xi

xii DB2 PE for AIX: Concepts and Facilities

Preface

DB2 Parallel Edition for AIX is one of IBM′s products for high-demand database
uses, such as data warehousing and decision support. It is a full-function
relational database management system that parallelizes SQL operations.

This redbook includes all the features and functions that are found in Version 1.2
of the product. Database administrators and users from the novice to the expert
will find this book to be a valuable resource. Examples are given throughout to
illustrate the easy-to-use features and performance enhancements found in
Version 1.2.

How This Redbook Is Organized
This redbook contains 272 pages. It is organized as follows:

• Chapter 1, “Overview”

This chapter provides an introduction to the parallel database environment.
Concepts discussed are parallel architecture, parallel processing and
parallel process flow.

• Chapter 2, “Hardware Configurations”

This chapter provides an overview of some of the possible hardware on
which DB2 PE can be installed and used. High Availability Cluster
Multi-Processing (HACMP) is also discussed.

• Chapter 3, “Concepts and Data Placement”

This chapter describes parallel database concepts as they relate to DB2
Parallel Edition for AIX. The concepts that are covered are instance,
nodegroup, data partitioning, and the partitioning map.

• Chapter 4, “Parallel Processing”

This chapter discusses the parallel processing for all types of SQL
operations. Covered in this chapter are SQL calls, operations and
optimization, buffered inserts, join strategies, table queues, and locking.

• Chapter 5, “Parallel Util it ies”

Some of the utilities found in DB2 PE are discussed here, such as data
loading, redistribution, backup and restore, and recovery.

• Chapter 6, “Installation and Configuration”

This chapter looks at the installation and configuration of the DB2 PE
product, including HACMP configurations.

DB2 Parallel Edition V 1.2 Enhancements
DB2 Parallel Edition Version 1.2 adds additional functions and features. Some of
these enhancements are:

 Copyright IBM Corp. 1996 xiii

Performance

Parallel Optimizer
• Additional optimization techniques are employed by the Parallel Edition

cost-based optimizer to reduce the elapsed time of complex queries. In
addition, system catalog concurrency has been increased by improved lock
management techniques.

Not Initially Logged Tables
• Logging can be disabled for SQL operations occurring against a newly

created table. This feature is especially useful for customers who populate
tables by selecting from existing tables.

Function

DRDA Application Server
• DB2 Parallel Edition now allows host applications, such as Query

Management Facility (QMF), access to DB2 Parallel Edition. A section about
Distributed Relational Database Architecture (DRDA) Application Server
including SNA Server/6000 configuration can be found in 6.5, “DRDA
Application Server Feature” on page 246.

Outer Join
• An Outer Join operation allows unmatched rows of a join operation to be

returned to the client application. This is especially useful in data
warehouse applications. For example, a banking application using an outer
join can create a report that shows customers that don′ t have accounts or
accounts that are not related to any customers. In this example, the use of
outer join allows for data consistency problems to be highlighted.

CASE expression and DIGITS scalar function
• The CASE expression allows a result expression to be selected on the

evaluation of one or more search conditions. This reduces coding effort for
your 3GL applications, and improves performance by reducing SQL calls.
The DIGITS scalar function can be used to return a character-string
representation of a number.

Join operations, including examples of outer joins, the CASE expression, and the
DIGITS scalar function can be found in Chapter 4, “Parallel Processing” on
page 71.

Systems Management Enhancements

Database Director
• The Database Director delivers an graphical user interface to manage the

DB2 Parallel Edition environment. It serves as a control center for database
system administration and simplifies administration by providing a
single-system image of the parallel environment. An example of using the
Database Director can be found in 5.15, “DB2 Parallel Edition Database
Director” on page 216.

xiv DB2 PE for AIX: Concepts and Facilities

Query Governor
• Using rules set by the database administrator, the DB2 Parallel Edition Query

Governor can control resource usage of individual users and applications.
This is accomplished by adjusting the application′s priority level. Resource
usage can be controlled by factors such as CPU seconds, rows selected,
elapsed time and locks held. For more detail on the Query Governor, see
5.13, “Governor Utility” on page 203.

Ease of Use Enhancements

AutoLoader Utility
• The AutoLoader Utility is a sample tool that can transfer data from one

system to the AIX system, partition that data and finally load the data on the
corresponding nodes. It consists of a set of shell scripts. Autoloader uses
pipes between the ftp, db2split, and db2load utilities, removing the need for
having temporary space for your load files. Detailed information about the
Autoloader Utility, including examples of usage can be found in 5.4,
“Autoloader Util ity” on page 164.

db2batch
• A benchmark tool (db2batch) is provided. This tool reads SQL statements

from either a flat file or standard input, dynamically describes and prepares
the statements, and returns an answer set. It also provides the added
flexibility of allowing you to control the size of the answer set, as well as the
number of rows that should be sent from this answer set to an output device.
Examples using the db2batch utility can be found in 5.14, “db2batch Tool” on
page 212.

The Team That Wrote This Redbook
This second edition was produced by a team of specialists from around the
world working at the International Technical Support Organization Austin Center.

IBM USA:
Gus Branish
Quan Cung
Dan Gibson
Randy Holmes

IBM France
Jean-Christophe Brun

IBM Germany
Michael Mueller

The advisor for the first edition of this redbook was:

Calene Janacek
International Technical Support Organization, Austin Center

The authors of the first edition of this redbook were:

IBM Taiwan
Annie Pan

Preface xv

IBM Italy
Giovanni Punzo

IBM UK
Kevin Robson

IBM Japan
Kayoko Sugahara

Thanks to the following people for their invaluable contributions to this project:

IBM Toronto Laboratory:
George Chan
Ken Chen
Chris Eator
Alex Lui
John Lumby
Barbara Wong

IBM Toronto
Frankie Wong

IBM Education
Melanie Stopfer

IBM ITSO, San Jose Center:
Silvio Podcameni

ITSO Austin Center Editors
Rebeca Rodriguez
Marcus Brewer

A special thanks is extended to the management and team members
of the SP Benchmark Center in Poughkeepsie for their superb support.
In particular:

IBM USA
Joyce Mak

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

xvi DB2 PE for AIX: Concepts and Facilities

Chapter 1. Overview

This book is intended to be a general introduction to the parallel database world
and to IBM′s parallel database offering for AIX, DB2 Parallel Edition for AIX/6000,
(referred to as DB2 Parallel Edition). In this chapter, we will review the concepts
behind parallel databases and the reasons for pursuing this type of database.
The chapter then discusses some of the advantages and disadvantages of the
different types of parallel architected solutions that exist today and the
architecture that DB2 Parallel Edition has chosen as its model.

The chapter is organized as follows:

• Why parallel databases were developed

• Concepts and definitions used in the parallel database architecture and
processing

1.1 The Need for Parallelism
The development of parallel database systems has come from an increase in the
use of Relational Database Management Systems (RDBMS). There is also the
expectation that responses should be received faster than ever before. Users
may want their queries answered either by directly entering input from a
terminal screen or through an application program. High-level query languages,
such as SQL (Structured Query Language), were developed to access an
RDBMS. Queries are structured to generate complex reports, searching
gigabytes or more of data. These queries have grown not only in the amount of
data searched, but also in complexity.

Based on the current rate of increase in the complexity of queries and volumes
of data, it is not expected that the processing capacity of any single processor,
or even a closely-coupled multiprocessor, will be sufficient to provide acceptable
response times. It may be more cost effective to have more machines with less
individual CPU power accessing data than to have one large CPU. Consider the
example of scanning a table in a serial RDBMS. At present, a table is scanned
at a rate of 2.25 MB/second. If the table size is 10 GB, it would take one
processor over an hour to scan a table. If that processing could be distributed
evenly among 128 processors, the time required to scan that same table would
drop to 35 seconds. There are also architectural limits in terms of the number of
disks that can be attached to a single processor. This limits the size of a
database held on a single processor.

The amount of data and access time must also be considered. Market studies
have been collected that show a need for companies to be able to store
terabytes of data in the next two years. Companies want to maintain more
customer records, with more detailed information about customers, for a longer
period of time. For example, one of the television video-rental companies
maintains a database of more than 36 million records with daily transactions of
over two million. Another example is that of new database structures that
involve large amounts of storage, such as multimedia data types.

The other factor to support the argument for multiprocessors is increased
computational power. Decision support algorithms are getting more
sophisticated, and more complex queries are being done over databases. The

 Copyright IBM Corp. 1996 1

database has become a potent new tool for selling. An example of this usage is
in the area of target marketing. Instead of doing broadcast advertising, a
company will perform more sophisticated selections and will send mailings to
only a subset of, hopefully, more interested customers. This results in enormous
savings for the company and less junk mail for the customer. In order to do this
type of processing, more complex queries must be issued against the database,
and much more information about the customer must be maintained.

An RDBMS can provide two types of parallel support in terms of multiprocessing
systems:

• Parallel Transactions

• Parallel Queries

Figure 1. Parallel Transactions

Figure 1 shows a parallel transaction. Multiple queries are processed in
parallel. Each query is on a different CPU.

2 DB2 PE for AIX: Concepts and Facilities

Figure 2. Parallel Query

Figure 2 shows a parallel query being broken into smaller steps. Each step, or
subquery, can be executed on a different processor. These subqueries are
executed in parallel.

An RDBMS is well suited for designing parallel queries. The result of a query
can also be used by a further query with another operator. In this way,
relational operators, as well as the input to and output from the results of
operations, can be parallelized.

There are many benefits that can be obtained from using a parallel database
implementation:

• Increased transaction throughput

• Better price/performance

• Reduced processing time for queries

• Flexible scalability

• Ability to store more data

1.2 Concepts and Definitions in Parallel Database Architecture
This section will cover the following areas with respect to parallel database
architecture:

• Different types of parallel architecture

• Process flow

Parallel architecture involves hardware and system software and their influence
over an RDBMS. Process flow is how the RDBMS handles operations. The
process flow is closely linked to the architectural implementation.

Chapter 1. Overview 3

1.2.1 Parallel Architecture
There are three hardware elements that characterize parallel architecture:

• Memory

• Disk

• Network types

A parallel database running on a machine uses memory and disk and
communicates to other machines on a network. There are three different
hardware architectures for a parallel database:

• Shared Nothing

• Shared Disk

• Shared Memory

1.2.1.1 Shared Nothing
Shared nothing architecture is realized when loosely coupled processors are
linked by some high-speed interconnection. Each processor has its own memory
and accesses its own disks. This can be seen in Figure 3. The network is one
that supports Internet Protocol (IP) connections. There are performance
differences between network types, and these are discussed in Chapter 2,
“Hardware Configurations” on page 15.

Figure 3. Shared Nothing Architecture

Examples of machines that implement this architecture are:

• IBM RISC System/6000 Scalable Power Parallel Systems (RS/6000 SP)

• Clusters of workstations

• nCube

• Teradata

The advantages of this type of architecture are the following:

4 DB2 PE for AIX: Concepts and Facilities

• Scalability in terms of database size and number of processors

• Performance gains from not sharing resources across a network

Total memory is a fixed capacity. By increasing the number of machines, you
can exceed that fixed amount because the memory is shared among machines.
The same is true for total disk capacity. The other advantage that could be
gained is in the number of operations that are performed. Each machine only
needs to do part of the work.

This is the best suited architecture for parallel queries. The query is divided
among processors. The advantages are:

• Processing is more distributed

• The database can manage a larger amount of data

The performance gains can be almost linear if an even distribution of data is
obtained. For more information on data distribution, refer to Chapter 3,
“Concepts and Data Placement” on page 35.

Performance gains are assisted by the concept of function shipping (see 1.2.3.1,
“Function Shipping” on page 10). Function shipping assists in the reduction of
network traffic since functions are shipped instead of data.

While machines, such as the RS/6000 SP, have their own fast communication
network, clusters of RS/6000s may need to be interconnected by a high-speed
network to achieve good performance when processing parallel operations.

The disadvantages of this architectures are:

• Dependence on the optimizer for the access strategy to data

• Load balancing

• Availability

• Homogeneous environment

If the design of the optimizer is good, this does not have to be a disadvantage.

The even distribution of data is another factor that can affect performance. DB2
Parallel Edition provides utilities that allow the database administrator to
redistribute the data among machines.

Availability may be a concern in the parallel database environment. With “n”
machines, a failure of one of them is “n” times more likely to occur.

The last consideration is one of similarity in environment. It is possible to have
different processor types. For maximum performance from the optimizer, a
homogeneous environment with a single network and similar processors is
desired.

1.2.1.2 Shared Disk
With shared disk architecture, several distributed memory processors are
capable of accessing all the same data stored on disk. This means that every
processor has its own memory, but it has a global view of all the data. This can
be implemented either by hardware or software. Figure 4 on page 6 is an
example of shared disk architecture.

Chapter 1. Overview 5

Figure 4. Shared Disk Architecture

Examples of machines that implement this architecture are:

• Clusters of RISC/6000s using HACMP Concurrent Logical Volume Manager

• RS/6000 SPs using Virtual Shared Disk (VSD)

• Digital Equipment Corporation (DEC) Virtual Address eXtension (VAX)
mini-computers

The natural architecture for an RS/6000 SP is shared nothing, but using a
component of the system management software called Virtual Shared Disk
(VSD), it is possible to simulate shared disk behavior. For further information
about VSD, refer to the SP2 Administration Guide .

Possible advantages of this architecture are:

• Availability

• A heterogeneous environment

A possible advantage of this architecture is with an HACMP Concurrent Logical
Volume Manager environment. So, even if one machine fails, access to the
database will not be affected since other machines are still able to access that
data.

Using the VSD architecture allows you to operate in a heterogeneous
environment. For example, you could designate your machines dedicated to
parallel database in two categories:

• Data storage machines

• Processing machines

The disadvantages of this architecture are:

• Limited scalability

• Increased data traffic across the network

• Data integrity

6 DB2 PE for AIX: Concepts and Facilities

With shared disk architecture, scalability is limited. Since the storage is
external, a global data-sharing mechanism must also be provided. There are
two possibilities to consider. If global data sharing is realized by hardware, then
only limited scalability is possible due to hardware constraints. For example, the
current implementation of the HACMP Concurrent Logical Volume Manager
allows eight nodes to share IBM 7133 SSA Disk Subsystems, but only four nodes
can share IBM 7135 RAIDiant Array subsystems due to hardware limitations. If
global sharing is done by software, data consistency and integrity must be
guaranteed. This can affect performance.

Shared disk architecture is more I/O shipping oriented. (See 1.2.3.2, “I/O
Shipping” on page 11.) I/O shipping provides more movement of data because
the data is transferred before any operations are performed.

A third problem is data integrity. This problem arises when two or more
processors try to update the same data. A global locking mechanism is needed.
The lock can be at table level or at row level. The locking mechanism can be
done by either hardware or by software. If it is done by hardware, then
scalability and database size are limited. If locking mechanisms are
implemented by software, performance may decrease since the work done by
each CPU increases with the number of machines.

1.2.1.3 Shared Memory
With shared memory or shared all architecture, multiple processors access the
same memory and disks. An optional local processor may be used as a buffer
cache. Normally, with shared all implementations, there is only global memory
and one set of disks, as shown in Figure 5.

Figure 5. Shared Memory Architecture

Examples of machines that implement this architecture are:

• ES/9000 multiprocessor

• PowerPC SMP machines

• Other SMP machines

Chapter 1. Overview 7

The main advantage of this architecture is performance. Since data is accessed
locally by all the processors and memory is shared, the best performance
results can be achieved in comparison to the other types of architectures.

The disadvantages of this architecture are the following:

• Limited scalability

• Limited memory

The advantage in performance is negated by the hardware limitations in the
number of processors. Currently, the maximum number of processors available
on the PowerPC Symmetric MultiProcessor (SMP) machines is eight.

Also, memory is limited in size and by the addressability of the software. This
has a direct impact on database sizes. Performance is improved if more of the
active database can reside in memory.

1.2.2 Parallel Processing
Transaction parallelism in database management is the way in which parallel
processing is accomplished.

Transaction parallelism may be divided into two types:

• Inter-transaction parallelism
• Intra-query parallelism

1.2.2.1 Inter-Transaction Parallelism
Inter-transaction parallelism is achieved when different multiple transactions are
executed simultaneously against one database. This is accomplished by having
each available processor perform a different transaction. Consideration must be
taken for the type of architecture that is implemented: shared nothing, shared
disk, or shared memory.

Figure 6 illustrates inter-transaction parallelism.

Figure 6. Inter-Transaction Parallel ism

This type of parallelism is beneficial when there are many different concurrent
transactions, none of which are heavily computational. Good results may also
be gained if the size of the database is small but frequently accessed. Global

8 DB2 PE for AIX: Concepts and Facilities

elapsed process time is reduced. The hardware architecture that fits best in
inter-transaction parallelism is shared memory.

1.2.2.2 Intra-Query Parallelism
With intra-query parallelism, a single query is split across many processors. The
benefit of intra-query parallelism is a speed-up in processing time. The elapsed
time for performing a query may be reduced. This type of parallelism enables
more complicated and/or more computational-intensive operations to be
performed in a reasonable time span. This architecture is well suited to very
large databases.

Intra-query parallelism can be achieved in two forms:

• Partition parallelism

• Pipelined parallelism

Figure 7 is a representation of partition parallelism.

Figure 7. Intra-Query Partition Parallel ism

Partition parallelism is also referred to as query decomposition. A single query
is subdivided into several subqueries each of which processes a subset of the
data.

Pipelined parallelism involves dividing the query into a series of operators.
Figure 8 on page 10 is a representation of pipelined parallelism

Chapter 1. Overview 9

Figure 8. Intra-Query Pipelined Parallel ism

These operators may be scanning and then sorting data. The output from one is
used as input to the other.

1.2.3 Parallel Process Flow
Depending on the hardware architecture type, a parallel database can perform
an operation in two ways:

• Function shipping

• I/O shipping

Function shipping splits the operations among the machines. I/O shipping ships
the data to the machines for processing.

1.2.3.1 Function Shipping
Function shipping means that relational operators are executed on the processor
containing the data whenever possible. So, the operation (or the SQL) is moved
to where the data resides. Function shipping is well suited to the shared nothing
architecture. Figure 9 on page 11 illustrates function shipping.

10 DB2 PE for AIX: Concepts and Facilities

Figure 9. Function Shipping

The numbers in the figure are explained as follows:

 1. A relational operator is invoked. In Figure 9, an SQL select is issued.
Every processor receives the operation from one processor which works as
a dispatcher. In DB2 Parallel Edition, this is called the coordinator node.

 2. Every processor executes the operation on its own set of data.

 3. An exchange of information among the nodes may occur.

 4. The result from the operation is sent back to the coordinator node. The
coordinator node assembles the data and returns it to the requestor.

This flow-control architecture has two advantages:

• It minimizes data communication.

• No central lock manager is needed.

Data transmission is minimized. Data is transmitted only if the operation
requires it. There is no need for a central lock manager because every
processor accesses only its own data. Only a global deadlock detector,
checking at regular intervals, is needed.

This environment is well suited to a shared nothing architecture, possibly
implemented on RS/6000 SP machines, either with or without HACMP Concurrent
Resource Manager.

1.2.3.2 I/O Shipping
I/O shipping is implemented by data shipping to one or more processors and
then executing the database operation. I/O shipping is particularly suited to a
shared disk architecture.

Chapter 1. Overview 11

Figure 10. I/O Shipping Parallel ism

Figure 10 illustrates the steps in I/O shipping:

 1. A relational operator is invoked; for example, an SQL select is issued.

 2. A processor is selected to run the operation. Figure 10 only shows one
processor as being selected.

 3. Every processor owning data involved in the operation sends it to the
executing processor.

 4. The executing processor performs the operation and returns the result to the
requestor.

This flow-control architecture fits well in a heterogeneous environment.
However, there are two disadvantages:

• Data movement is increased.

• Central lock manager is required.

The advantage of I/O shipping is that a system may be configured with
specialized machines:

• I/O machines - These are machines that maintain a large number of disks.

• Compute machines - These are machines that have very limited I/O capacity.

While this type of configuration may fit specific needs, data communication is
increased, and a global locking mechanism is necessary. In many cases, data is
sent across the network that is not required for the operation. Moreover, since a
piece of data can be requested at the same time by different processors, a
central lock manager is needed. This limits the scalability of the system. If the
system grows by adding a new processor, the work done by the central lock
manager increases dramatically. This solution can be manageable if the
database is not very big, and only a few I/O server nodes are necessary to keep
all the data. However, with the increase of the database dimensions, the
intrinsic limits of this architecture may soon be reached. Both an RS/6000 SP

12 DB2 PE for AIX: Concepts and Facilities

using VSD and a cluster of RISC/6000 machines using the HACMP Concurrent
Logical Volume Manager can fit into this environment by using I/O shipping.

DB2 Parallel Edition is an extension of Version 1 of the DB2/6000 database
manager product. DB2 Parallel Edition implements a shared nothing
architecture. The process flow architecture used is function shipping. Neither a
central lock manager nor cross-system buffer invalidation mechanisms are
necessary since data is only handled locally. These facts imply the following:

• The best performance is achieved in a distributed environment.

• Total scalability is permitted. There are no intrinsic limitations in hardware
or software components.

Shared memory architecture may have faster data access than shared nothing
architecture, but scalability is limited. Shared disk architecture has strong
limitations both in performance and in scalability.

Chapter 1. Overview 13

14 DB2 PE for AIX: Concepts and Facilities

Chapter 2. Hardware Configurations

This chapter outlines the hardware configurations which DB2 PE supports, and
suggests configurations which may be advantageous in various scenarios. The
chapter is structured as follows:

• Network support

• Disk support

• RISC System Scalable Power Parallel System (RS/6000 SP)

• High-Availabilty support

2.1 Networks
RISC System/6000 machines can be interconnected via many types of networks.
DB2 PE will run over any network which supports TCP/IP. This includes the
following:

• Ethernet. This is a 10 Mb/sec network.

• Token-Ring. A token-ring can be configured to run at either 4 Mb/sec or 16
Mb/sec.

• Fiber Distributed Data Interface (FDDI). FDDI is an industry standard
fiber-optic technology that provides high-speed (100 Mb/sec) communication
among cluster members. FDDI provides built-in fault tolerance.

• Fibre Channel Standard (FCS). FCS is an industry standard fiber-optic
switching network. It provides very high speed (266 MB/sec) connections
between processors.

• IBM Serial Optical Channel Converter (SOCC). SOCC is a serial optical link
that provides high-speed communication between two nodes. SOCC is still
supported though no longer available for order.

• Asynchronous Transfer Mode (ATM). This is a type of packet switching that
transfers fixed-length units of data.

• High-Performance Parallel Interface (HiPPI). HiPPI is an 800 Mb/sec
interface to supercomputer networks, formerly known as high speed channel.

• High Performance Switch (HPS). HPS is a fast switching network that is
available only in the RS/6000 SP machine. The High Performance Switch is
available for MES upgrade orders only.

• Scalable POWERparallel Switch (SP Switch). The SP Switch is the next
generation switch for the RS/6000 SP systems. Building on the same
architecture as the High Performance Switch, it introduces improved
reliability, availability, serviceability, and performance.

The current speeds of the various networks are given below:

Network Speed

Ethernet 10 Mb/sec

Token-Ring 4 or 16 Mb/sec

FDDI 100 Mb/sec

 Copyright IBM Corp. 1996 15

Network Speed

FCS 266 Mb/sec

SOCC 100 Mb/sec

ATM 155 Mb/sec

HiPPI 800 Mb/sec

HPS 35 MB/sec

SP Switch 70 MB/sec

Figure 11 shows the speeds of the different types of networks and how this
speed is increasing over time.

Figure 11. Network Speeds

Because DB2 PE is very dependent on the links between the machines, it is
recommended that a private network be provided linking only the machines
containing the DB2 PE database. For optimum performance, on any but very
small clusters, this network is recommended to be FCS or FDDI. An Ethernet or
token-ring network is likely to become a bottleneck to a DB2 PE cluster.

A network is also required between the clients and at least one machine within
the DB2 PE cluster. The speed of this network may not be as critical as the
private network, unless fetches containing a large number of lines are frequently
required.

2.2 Disks
Data from DB2 PE is stored within a file system. This file system can reside on
any type of RISC System/6000 disk. The choice of disk can be first split into two
parts, internal disks and external disks.

16 DB2 PE for AIX: Concepts and Facilities

2.2.1 Internal Storage
Internal disks are most often SCSI attached. There is always a limitation on the
number of disks which can be attached internally. Table 1 shows the maximum
capacities for each of the currently available systems.

Table 1. Maximum Internal Storage Capacities

RS/6000 System Maximum Number of Drives Maximum Drive Capacity (GB) Maximum Total Capacity (GB)

Models 250/25T 1 2 2

Models 390/39H 1 + 2 4.5 + 9.1 22.7

Model G40 3 4.5 13.5

Models 3AT/3BT/3CT 1 + 3 4.5 + 9.1 31.8

Models 41T/41W 1 + 1 1 + 2 3

Models 42T/42W 2 2.2 4.4

Models C10/C20 3 2.2 6.6

Model 590/595 6 9.1 54.6

Model 591 1 + 5 4.5 + 9.1 50

Model 59H 2 + 4 4.5 + 9.1 45.4

Model J40 9 4.5 40.5

Model R20 1 + 1 2 + 2 .2 4.2

Model R24 4 9.1 36.4

Model R40 1 2.2 2.2

Model H10 12 + 1 2.2 + 2.2 28.6

The current maximum size of an internal SCSI disk is 9.1 GB; so, for example,
the maximum amount of internal disk which can be attached to a 590 machine is
54.6 GB. Space will probably be required on these disks to hold the AIX system
and to contain paging space. This will reduce the amount of space available to
store any data. In addition, you may choose to mirror file systems to improve
resiliency, but this will further reduce the disk space available for data.

If more disk space is required on a machine, then external disks must be
attached. External disks may also be chosen for reasons of speed. Serial disks
are much faster than SCSI disks, but performance improvements may also be
gained by using more than one SCSI adapter.

2.2.2 External Disks
External disks may be chosen either to improve disk access speed, to increase
the amount of disk space attached to a machine, or for possibly both of these
reasons.

Speed advantages may be gained in three ways.

 1. Serial disks may be used. Data transmission to and from serial disks is
much quicker than over SCSI.

 2. A larger number of smaller disks may be used. This reduces the disk
access time for an item of data. More than one disk may also return
different parts of the same unit of data at the same time, which introduces
parallelism.

 3. More than one adapter may be used. Two SCSI adapters with disks attached
provide two paths to data. This allows up to twice as much data per second
to be accessed.

Chapter 2. Hardware Configurations 17

Three types of external disks can be attached to a RISC System/6000:

 1. SCSI disks

 2. Serial disks

 3. Disk arrays

SCSI disks include a number of types of disk systems, including The 7204
External Disk Drive. These systems are relatively slow, but newer technologies,
such as the SCSI-2 Fast/Wide, improves this.

Serial disks, such as the 7133 SSA Disk Subsystem, are much faster than SCSI
disks, but they are more expensive. If speed is a priority, then these should be
considered. Some serial disk adapters support RAID 5 to deliver data
availability even in the unlikely event of a drive failure.

Disk arrays, such as the 7135 RAIDiant Array, consist of a number of small disks
and a controller or controllers. Disk access is quite fast, but they are still limited
by their SCSI attachment. Some models have two controllers and may be
attached to more than one adapter. These can be active at the same time,
potentially doubling the data transfer rate. Disk arrays can also provide data
redundancy, which gives greater resiliency if a failure occurs.

2.3 RISC System/6000 Scalable Power Parallel System
The RISC System/6000 Scalable Power Parallel System (RS/6000 SP) is a family
of scalable, parallel machines based on POWER, POWER2, and PowerPC 604
RISC architecture processors.

The components of the RS/6000 SP machine are:

• Processor nodes

• Internal networks

• Switch Network (optional)

• Control Workstation

2.3.1 Processors
The number of processor nodes in a standard RS/6000 SP configuration ranges
from 2 to 128, which may be contained in multiple frames. Special bids allow up
to 512 processors. Processors are contained in drawers that are packaged in
frames. A single frame can contain from two to 16 processors.

Processors, or nodes, are available in three different types: thin nodes, wide
nodes, and high (SMP) nodes. A processor drawer contains either one wide or
two thin processor nodes. A high node occupies two full processor drawers.
The RS/6000 SP thin node is typically configured as a compute node. It is
functionally equivalent to a RISC System/6000 desktop system. It has half the
width of a wide node, and can be packaged 16 to a frame.

The RS/6000 SP wide node is more often used as a server because it provides
high bandwidth data access. It is functionally equivalent to a RISC System/6000
deskside system. It can be packaged up to eight per frame.

The RS/6000 high node is a symmetric multiprocessor (SMP) that contains a
2-way, 4-way, 6-way, or 8-way PowerPC 604 processor configuration. An RS/6000

18 DB2 PE for AIX: Concepts and Facilities

high node is appropriate for customers requiring database and commercial
processing capability. It can be packaged up to four per frame, and as few as
one and as many as 16 PowerPC 604 processor node drawers can be installed in
an SP system.

The RS/6000 SP system has seven processor node types. These are:

• Feature 2002— This drawer contains two POWER2 Thin Nodes running at 66
MHz. Each processor can hold up to 512 MB of memory, up to 9 GB of disk
space, and has four Micro Channel slots. An optional 1 MB of Level 2 (L2)
cache is offered.

• Feature 2003— This drawer contains one POWER2 Wide Node running at 66
MHz. It can hold up to 2 GB of memory, up to 18 GB of disk space, and has
six available Micro Channel slots.

• Feature 2004— This drawer contains two POWER2 Thin 2 Nodes running at 66
MHz. Each processor can hold up to 512 MB of memory, up to 9 GB of disk
space, and has four Micro Channel slots. An optional 2 MB of Level 2 (L2)
cache is offered.

• Feature 2005— This drawer contains one POWER2 Wide Node running at 77
MHz. It can hold up to 2 GB of memory, up to 18 GB of disk space, and has
six available Micro Channel slots.

• Feature 2006— This double drawer contains one PowerPC 604 High Node
with a 2-way, 4-way, 6-way, or 8-way SMP running at 112 MHz. It can hold up
to 2 GB of memory, up to 6.6 GB of disk space, and has 14 available Micro
Channel slots.

• Feature 2007— This drawer contains one POWER2 Super Chip (P2SC) Wide
Node running at 135 MHz. Each processor can hold up to 2 GB of memory,
up to 18 GB of disk space, and has seven available Micro Channel slots.

• Feature 2008— This drawer contains two POWER2 Super Chip (P2SC) Thin
Nodes running at 120 MHz. Each processor can hold up to 1 GB of memory,
up to 9 GB of disk space, and has four Micro Channel slots.

This information is summarized in Table 2.

Table 2 (Page 1 of 2). RS/6000 SP Processors Summary

Feature
Code

Clock
Speed
(MHz)

Memory
(MB)
std/max

Level 1
(L1)
Cache
instr/data

Level 2
(L2)
Cache
std/max

Internal
Disk (GB)
std/max

Micro
Channel
Slots

2002 66 64
MB/512
M B

32 KB/64
KB

0 MB/1
M B

1 GB/9
GB

4

2003 66 64 MB/2
GB

32
KB/256
KB

0 MB/0
M B

1 GB/18
GB

6

2004 66 64
MB/512
M B

32
KB/128
KB

0 MB/2
M B

1 GB/9
GB

4

2005 77 64 MB/2
GB

32
KB/256
KB

0 MB/0
M B

1 GB/18
GB

6

2006 112 64 MB/2
GB

16 KB/16
KB

1 MB/1
M B

2.2
GB/6.6
GB

14

Chapter 2. Hardware Configurations 19

A frame can hold up to 16 thin nodes, 8 wide nodes, or 4 high nodes. See
Figure 12 on page 21 for an example of a frame containing 16 thin nodes with an
Ethernet environment. See Figure 13 on page 22 for an example of a frame
containing 8 wide nodes connected with Ethernet and token-ring. See Figure 14
on page 23 for an example of a frame containing a mixture of thin, wide, and
high nodes.

Table 2 (Page 2 of 2). RS/6000 SP Processors Summary

Feature
Code

Clock
Speed
(MHz)

Memory
(MB)
std/max

Level 1
(L1)
Cache
instr/data

Level 2
(L2)
Cache
std/max

Internal
Disk (GB)
std/max

Micro
Channel
Slots

2007 135 64 MB/2
GB

32
KB/128
KB

0 MB/0
M B

2 GB/18
GB

7

2008 120 64 MB/1
GB

32
KB/128
KB

0 MB/0
M B

2 GB/9
GB

4

Note:

• One Micro Channel expansion slot is used by the standard SCSI-2 High-Performance
Internal Controller in the 66 MHz and 77 MHz Wide Nodes, and the 112 MHz High Node.
One Micro Channel expansion slot is used by the required Ethernet High-Performance LAN
Adapter in the 66 MHz, 77 MHz, and 135 MHz Wide Nodes, and the 112 MHz High Node.

20 DB2 PE for AIX: Concepts and Facilities

Figure 12. RS/6000 SP Hardware Configuration - Thin Nodes

Chapter 2. Hardware Configurations 21

Figure 13. RS/6000 SP Hardware Configuration - Wide Nodes

22 DB2 PE for AIX: Concepts and Facilities

Figure 14. RS/6000 SP Hardware Configuration - Mixed Nodes

2.3.2 Networks
All RS/6000 SP processor nodes must have Ethernet and RS232 connections.
The Ethernet network connects all nodes together and is used by the
system-management software. This software controls installation, update and
propagation of applications on the RS/6000 SP. The RS232 serial link connects
each node to a control workstation. This link is used to monitor and manage the
nodes in the machine.

Additional networks can also be added to an RS/6000 SP to improve
performance, or to provide links to clients. The following networks are currently
supported:

• Ethernet
• Token-Ring
• Fiber Distributed Data Interface (FDDI)
• Fiber Channel Standard (FCS)
• Serial Optical Channel Converter (SOCC)
• Asynchronous Transfer Mode (ATM)
• High-Performance Parallel Interface (HiPPI)
• Enterprise System Connection (ESCON)
• Block Multiplexor Adapter Card (BMCA)
• High Performance Switch (HPS)
• Scalable POWERparallel Switch (SP Switch)

Chapter 2. Hardware Configurations 23

2.3.3 Switch Network
The Switch Network is unique to an RS/6000 SP machine. It helps differentiate
an RS/6000 SP from a networked group of RISC System/6000 workstations. The
switch provides the message-passing network that connects all of the processors
together in a way that allows them to send and receive messages
simultaneously. The Switch Network is made up of two components, a central
switch board and, in each node, a communications adapter. Figure 15 shows
the RS/6000 SP Switch Network.

Figure 15. The RS/6000 SP Switch Network

The adapter has an on-board processor to handle network operations. This
frees the node CPU from having to manage the transmission of data.

The switch board is a separate unit situated in the base of an RS/6000 rack. It is
connected to each of the adapter cards and provides switches to link any pair of
cards together. The formal definition of the switch is that it is an any-to-any,
packet-switched, multi-stage, omega-type switch which has multiple paths
between any pair of nodes. One switch board can connect up to 16 nodes. To
connect more than 16 nodes, a switch cascade is used.

Figure 16 on page 25 shows four switch boards that are connected to 64 nodes
across four RS/6000 SP frames.

24 DB2 PE for AIX: Concepts and Facilities

Figure 16. Switch Network - 64-Way

The switch is made up of one or more switch boards. A switch board provides
two-stage 16X16 connectivity. Multiple boards are used to increase the
connectivity by increasing the stages between any pair of communicating nodes.
For systems with up to 80 processors, there is one switch per 16 processors. A
frame can accommodate one switch board, besides the nodes in the frame. For
systems with greater than 80 processors, extra switch boards are housed in a
switch frame.

Each node connects to the switch board via a Micro Channel adapter and a
cable to the switch board in the base of each frame. Wide-node-only frames
have one switch per two frames since there is a maximum of eight wide nodes
per frame. In a 604 High-Node-only configuration, up to four frames can share
one switch.

Node outages are handled so that the switch continues to function, even when a
node loses power or is disconnected. When a node is replaced or repaired, the
switch can be reinitialized to include the new node without affecting jobs on
other nodes. Transmission errors are monitored so that routes with excessive
errors can be removed and replaced with working routes.

The advantages of the switch network are the following:

• Reliability

For every node-to-node connection, a number of independent paths are
available. This gives higher reliability and helps to avoid hot-spots.

• Communication Independence

Communication independence means that any pair of nodes can
communicate without interference from communications occurring between
other nodes. Moreover, for every node-to-node connection, multiple

Chapter 2. Hardware Configurations 25

independent paths are available. This permits higher reliability and avoids
hot spots.

• Flat Topology

Flat topology means that the communication delay between any two nodes is
the same. For example, the time required to communicate between nodes 1
and 2 or between nodes 1 and 123 takes the same amount of time.

Flat topology offers two main advantages: node independence and
scalability.

− Node Independence

The connection time between machines is almost identical. This means
that a user could be moved from one set of nodes to another set without
affecting his application performance. This allows workloads to be
balanced easily. Also, the system manager does not have to select
machines to be grouped according to the communication speed between
them. This makes the management of the machine easier.

− Scalability

Scalability is also an advantage of flat topology. Adding nodes to the
machine does affect the speed of interconnections and allows the
machine to be upgraded easily.

For users who choose not to use a switch network, either Ethernet or FDDI may
be selected for the communication between processors running parallel
applications. However, this will affect the performance of the application.

2.3.4 Control Workstation
The Control Workstation is an external workstation that is connected to the
RS/6000 SP machine by, at a minimum, Ethernet and serial RS232 lines. The
Control Workstation is not required by the nodes except when software
modifications are being done. It has two main functions, which are described
below.

2.3.4.1 System Management Supervisor
The System Management Supervisor allows the Control Workstation to
guarantee that the operating system installed on all the nodes is at the same
level and that the same products are installed on all of them. In other words, it
ensures that the environment is homogeneous.

The main idea behind the RS/6000 SP is to have the power of a parallel machine,
with the usability of a single machine. To accomplish this goal, a number of
generally available software products are utilized. These include Network File
System (NFS), Andrew File System (AFS), Network Information Service (NIS),
Network Time Protocol (NTP), timed and amd. In addition, extra software allows
a system manager to install an application or do system maintenance once and
automatically replicate the modifications to all of the nodes.

26 DB2 PE for AIX: Concepts and Facilities

2.3.4.2 System Monitor Manager
The System Monitor Manager gives users a view of the state of the machine and
its network status. It also allows an authorized user to control an RS/6000 SP
machine. The state of the machine can be changed. For example, a node can
be shut down very easily.

2.4 High-Availability Support
The High-Availability Cluster MultiProcessing/6000 (HACMP/6000) and
High-Availability Cluster MultiProcessing for AIX (HACMP) products are used to
provide high-availability services on the RISC System/6000. A set of
system-wide, shared resources are utilized which cooperate to guarantee
essential services.

HACMP/6000 Version 3 for AIX 3.2.5 and HACMP Version 4 for AIX Version 4 both
support up to eight processors in a cluster. DB2 PE configurations can exceed
these limits by spanning multiple high-availability clusters.

Processors are defined as cluster nodes to HACMP.

2.4.1 Concurrency
Data can be accessed concurrently or non-concurrently under HACMP .
Under concurrent access, more than one machine accesses the same disk at the
same time. Concurrent access is not used by DB2/6000 or by DB2 PE.

2.4.2 Points of Failure
For an HACMP cluster to be effective, single points of failure should be
eliminated. A single point of failure exists when a critical cluster function is
provided by a single component. If that component fails, the function can no
longer be provided, and an essential service becomes unavailable.

Examples of cluster components which are potential single points of failure
include:

• Processors

• Power sources

• Network adapters and networks

• Disk adapters and media

• Control workstations

2.4.2.1 Processors
Processors can be eliminated as a single point of failure by having standby
processors ready to take over their workloads should they fail. These standby
processors can be configured with HACMP to behave in three different ways:

 1. Idle Standby—A standby processor can be provided that wil l take over the
work of a failed processor. When the failed processor is fixed and
reintegrated into the cluster, it will reclaim its resources. The standby
processor must have access to all resources required for the provision of the
essential services — disks, networks, and so on. This method results in a
cluster which will not lose performance after a failure, provided the standby
processor has the same capacity. The disadvantage is the cost since the
standby processor is not used except after a processor failure.

Chapter 2. Hardware Configurations 27

 2. Rotating Standby—A standby processor is provided to take over of a failed
processor, as in the idle standby scenario. However, when the failed
processor is reintegrated, it does not reclaim its resources, but becomes
new standby machine. This configuration has the same cost characteristics
as idle standby. Its advantage is that it avoids the impact of the originally
failed processor reclaiming its resources when it rejoins the cluster.

 3. Mutual Takeover—There are no standby processors; all processors are
utilized in a normal state. After a processor failure, the failed processor′s
resources and essential services are taken over by one of the surviving
processors in addition to its normal services. This method uses hardware
resources more efficiently because redundant processors are not used. The
disadvantage is that there may be performance degradation after a
processor failure.

2.4.2.2 Power Sources
Either uninterruptable power supplies, dual power sources, or both should be
used.

2.4.2.3 Networks
Secondary networks should be available to cope with the failure of the primary
network.

Standby network adapters are used to cope with a processor failure in a mutual
takeover or hot standby cluster. After a processor failure, the processor which
takes over the failed nodes services will be required to have two network
addresses: its own network address and the address of the failed processor. To
do this, two adapters are required for each machine. The standby network
adapter can also take over the machine′s primary address if the primary adapter
fails.

The following TCP/IP networks are supported in an HACMP environment:

• Ethernet

• Token-Ring

• Fiber Distributed Data Interchange (FDDI)

• Fiber Channel Adapter

• Asynchronous Transfer Mode (ATM)

• High-Performance Switch (HPS)

• Scalable POWERParallel Switch (SP Switch)

It is strongly recommended that all nodes sharing an external disk have
point-to-point, non-TCP/IP connections. Should TCP/IP fail, HACMP will still be
able to communicate via the non-TCP/IP connection to prevent spurious disk
takeovers. The following options are available:

• Raw RS-232 link

• SCSI-2 Differential bus

28 DB2 PE for AIX: Concepts and Facilities

2.4.2.4 Disks
Disks can be attached to more than one processor. This allows a disk to be
accessed by a takeover processor. Data held on disks other than RAID disks
should be mirrored to prevent loss of data after a disk failure. To ensure no
single point of failure, these mirrors should be accessed via different adapters.

Disks which are supported include external SCSI disks and enclosures, Serial
disk subsystems, and various RAID subsystems.

• SCSI — SCSI-2 Differential disk subsystems should be used. A chain of SCSI
disks can connect to up to four nodes. Each disk is only “owned” by one
node at a time. This ownership can be transferred after a failure. This
solution has the benefit of lower cost, but access is relatively slow. Because
access time is important, these disks will probably not be appropriate.

• 9333 Serial Disk Subsystems — These provide increased system throughput,
disk capacity and performance. Models 9333-010 and 9333-500 can connect
to two processors. Models 9333-011 and 9333-501 can connect to eight
processors.

• 7133 SSA Disk Subsystem — IBM 7133 Serial Storage Architecture Disk
Subsystem Models 020 and 600 are second-generation, leading-edge serial
storage subsystems that implement industry-standard Serial Storage
Architecture (SSA) to deliver outstanding performance, capacity, and
availability in a low cost, scalable package. Combined with IBM′s family of
SSA adapters, the 7133 Models 020 and 600 can be configured for high
performance, multihost attachments, or economical RAID 5 data protected
storage.

• 7135 RAIDiant Array — This is a disk array controller with an SCSI-2
differential fast/wide host interface and multiple SCSI busses which have
attached disk drives. The array supports RAID levels 0, 1, 3, and 5. RAID
levels 1, 3 and 5 offer data redundancy, so mirroring is not necessary.

Under level 0, each group of disks is used without any form of data
redundancy. This provides the most storage, but does not offer high
availability.

With level 1, all disks are mirrored on a one-for-one basis within a group.
This provides the fastest read access, and the best performance in case
of a failure, but it is costly.

For level 3, one disk within the group is used for parity, and the other
disks hold the data. The parity disk contains sufficient information about
all the other disks in the group to be able to rebuild any data after the
loss of any single disk. After a disk failure, no data is lost, but the time
taken to access the data increases considerably.

Level 5 is similar to level 3, except the parity data is striped across all
disks within the group. This provides faster access than level 3. Level 5
provides fast write access, but read access is slower than level 1. It has
very good price/performance characteristics.

Level 1 and level 5 are the two RAID levels which should be considered for
DB2 PE. If cost is an issue, then level 5 is recommended. If optimum
performance is needed, and this must be maintained after a failure, then
level 1 should be considered.

7137 High Availability External Disk Array — This provides functionally similar
to the 7135 RAIDiant Array. It only contains one controller, but allows hot

Chapter 2. Hardware Configurations 29

standby disks to be configured. After a disk failure, the data from the failed
disk will be recreated onto the standby disk. If a second disk failure occurs,
then the parity disk can be used to provide continuous service.

3514 Disk Array Subsystem. This is a cheaper option. It provides RAID
levels 1 and 5, and only has one controller.

2.4.2.5 Control Workstation
An optional High Availability Control Workstation (HACWS) connectivity feature
allows a backup control workstation to be connected to an SP system. The
backup control workstation is utilized when the primary control workstation is
unavailable due to scheduled software upgrades or unscheduled outages during
normal operation.

2.4.3 Networked Systems
Networked systems are groups of RISC System/6000 machines loosely
connected via at least one network.

There are numerous possible configurations which are possible with HACMP and
DB2 PE. Any implementation will have specific requirements which may well
dictate the properties of the implemented HACMP cluster. Two examples of
networked clusters that will provide good solutions in many cases are given in
this section. The first should provide excellent price performance, but would
suffer degradation after a failure. The second is a more costly solution, but
performance after a failure should have little degradation.

2.4.3.1 Example 1 — Mutual Takeover Scenario
The first example is of a mutual takeover scenario.

30 DB2 PE for AIX: Concepts and Facilities

Figure 17. HACMP Mutual Takeover Cluster Example

Figure 17 shows an example which uses RAIDiant arrays as the storage method
for the database. The systems are connected via a primary 16 Mb token-ring
and a secondary Ethernet network. The primary network has standby adapters
to allow for takeover.

The connections to the RAIDiant arrays should be duplicated in each machine to
protect against a SCSI adapter failure or SCSI cable failure. RAID level 5 would
be implemented in the disk groups.

The cluster consists of two mutual takeover pairs of machines. Each pair has
access to a shared set of RAIDiant arrays. In a normal situation, some of the
disks will be used by one of the nodes and some by the other. If a node fails, its
partner will take over the rest of the RAIDiant array disks and the hardware IP
address, and will start up the failed node ′s instance of DB2 PE. For example,
after a failure of Host 0, Host 1 will take over the resources from Host 0 and start
the instance of DB2 PE from Host 0.

After a node failure, the database will be running on three nodes instead of four.
This will probably result in a severe degradation in performance.

After a disk failure, the RAIDiant arrays will continue to provide uninterrupted
access to data; however, access time will increase significantly since the data
will have to be extracted using the parity information.

Chapter 2. Hardware Configurations 31

After a network failure, the machines will use the backup Ethernet network.

This configuration provides a system which is very cost-effective. During normal
operation, it should provide an optimum database system for the number of
nodes. However, after a failure, although the database will continue to be
available, the performance is likely to degrade significantly.

2.4.3.2 Example 2 — Rotating Standby Scenario
The second example is of a rotating standby scenario.

Figure 18. HACMP Standby Cluster Example

32 DB2 PE for AIX: Concepts and Facilities

Figure 18 shows an example where a cluster uses a 7133 SSA disk subsystem
as the storage method. The nodes are connected via a primary FDDI network
and a secondary 16 Mb token-ring.

Three IP addresses and three database partitions are defined for the cluster.
The first three nodes to be started will control these resources, and the last node
will be a standby node. All the nodes are connected to all the 7133 subsystems
to allow them to access the disks for the database partition they are running.

The data held on the 7133 subsystems should be mirrored to protect against
failure. These mirrors should be across different 7133 subsystems and different
adapters, and therefore on different SSA loops, to ensure no single point of
failure.

Raw RS232 null modem connections could be provided between all nodes. This
would be used to prevent a node from attempting to take over the disks after a
TCP/IP failure.

After an FDDI adapter failure, the cluster would be configured to run a node
down script to allow the instance to move to a standby node.

The secondary, token-ring network is used in the event of a failure of the primary
network.

This example illustrates a system that should provide a high level of
performance. It should also provide a system that has little or no degradation of
performance after a failure.

2.4.4 RS/6000 SP Configuration
This section provides an example configuration with four nodes.

Chapter 2. Hardware Configurations 33

Figure 19. RS/6000 SP Configuration with HACMP

Each of the four high nodes contains:

1 SP Switch adapter

1 Ethernet adapter

2 Disk adapters

2 SSA adapters

All the nodes run DB2 PE. The nodes use the SP Switch as their primary
network and Ethernet as the secondary network. The data is held on 7133 SSA
disks. The data can be mirrored across adapters, or can be protected by SSA
RAID adapters, depending upon requirements.

The nodes are set up as four clusters of two nodes. Each cluster is a mutual
takeover cluster. After a failure, the backup node may vary on the volume
groups of the failed node and start the failed DB2 PE partition.

34 DB2 PE for AIX: Concepts and Facilities

Chapter 3. Concepts and Data Placement

This chapter discusses the placement of data within a DB2 Parallel Edition
database with regard to the setup and configuration of the parallel database
environment. Some new terminology will be introduced in this chapter as well.
This chapter is outlined as follows:

• Parallel Database

• DB2 Parallel Edition Architecture

• DB2 Parallel Edition Process Model

• Parallel Database Nodes

• Database Instance

• Database Management and AIX

• Segmented Tables

• Multi-Page File Allocation

• Nodegroups and Data Partitioning

3.1 Parallel Database
A database is simply a collection of data. The data is managed by a database
manager. The database manager controls CPU, memory, disk, and
communications resources. The database manager also provides users with the
ability to store and access the data. The collection of data and system
resources that is managed by a single database manager, together with its
database manager software, is referred to collectively as a node. The node
resides on a processor, and one or more nodes can be assigned to each
processor. For a serial database, a single node is assigned to a single
processor. In DB2 Parallel Edition, a node is called a Parallel Database Node or
PDB node.

A parallel database is one that contains several nodes assigned to one or more
processors. In a shared-nothing parallel database system, like DB2 Parallel
Edition, nodes are assigned to several processors. The processors share
neither disk nor memory, but they communicate with each other via messages.
The end users are not aware that the database may be split across processors.

The database manager at each node of the parallel database system is
responsible for its part of the database′s total data. The data is not duplicated
across the nodes, instead each node owns a part of the database. This structure
is known as a database partition.

Data is usually distributed across nodes in such a way as to ensure that each
node has approximately the same amount of data. By dividing the database
across many nodes, the power of multiple processors can be exploited to satisfy
complex requests for information. Suppose you have 100 million records on a
serial database. To scan all the records would require a single node to look at
all 100 million records. Now suppose the same records were spread across
twenty nodes. Each node would only need to scan around 5 million records, and
if all processors performed their scans at the same time, the result would be
available sooner.

 Copyright IBM Corp. 1996 35

Applications connect to the database via an application coordinator node. With
DB2 Parallel Edition, any node can act as an application coordinator node. You
may wish to consider spreading out users across nodes to distribute the
coordinator function.

3.2 DB2 Parallel Edition Architecture
DB2 Parallel Edition, an extension of the DB2/6000 Version 1 product, is a
parallel database product that operates on AIX-based parallel processing
systems, such as the IBM RS/6000 SP. DB2 Parallel Edition supports a
shared-nothing architecture. In the shared-nothing architecture, each processor
has its own memory and a pool of disks. For more information about the
shared-nothing architecture, see 1.2.1.1, “Shared Nothing” on page 4. DB2 PE
uses the function-shipping execution model for its parallel process flow. In
function shipping, database operations can be executed on the processor where
the data resides. For more information about function shipping, see 1.2.3.1,
“Function Shipping” on page 10. The architecture and implementation of DB2
Parallel Edition provides scalability and capacity. It can support and maintain
very large databases from hundreds of gigabytes to terabytes of data.

3.2.1 Major Components
The system architecture of a parallel database node consists of the basic
components of DB2/6000 V1, plus extensions to support parallel execution. The
following provides a high-level description of these extensions:

• Data definition language (DDL)

The DDL is extended to support concepts such as nodegroups and table
partitions. New DDL, create nodegroup, is introduced to support partial
declustering, overlapped assignment and hash partitioning of data tables.
The create table DDL is extended to support partitioning keys and
nodegroups.

• Utilities

The utilities and tools are extended to manage the parallel database system.
There are a variety of new utilities, such as data loading, adding and
deleting nodes, and data redistribution.

• SQL compiler

The SQL compiler is extended to support a parallel plan. A parallel plan is
one that determines the best parallel query execution strategies and
produces the best parallel access plans for different types of SQL queries.
During the compilation process of each SQL request, the SQL optimizer
makes use of the data distribution and partitioning information of the base
tables from the system catalog to assist in selection of parallel execution
strategies. The choice of the optimal plan is based on least cost estimation.

• Control services

This component is extended to handle and manage the interprocess control
message flow, such as start and stop processes, error reporting, and
interruptions.

• Table queue services

This component handles the exchange of rows between DB2 Parallel Edition
agents across or within a node.

36 DB2 PE for AIX: Concepts and Facilities

• Communication services

This component provides the internodal communication via a fast
communication manager (FCM) process. It is also responsible for the
distribution of the parallel requests.

• Data protection services (DPS)

This component is extended to support global deadlock detection, two-phase
commit, and recovery between nodes.

3.2.2 Parallel Edition Process Model
The following major processes are created on a parallel database node during
the startup of the database manager with the default database manager
configuration parameters:

• System controller (db2sysc)

This process handles system initialization during db2start, agent initialization
and system shutdown.

• Watch dog (db2wdog)

This process monitors the other database processes in the system and
cleans up resources during abnormal termination.

• Parallel system controller (db2pdbc)

This process manages the parallel agent pool and handles parallel requests.

• Fast communication manager (db2fcmdm)

This process handles messages between agents on the same or different
nodes.

• Master database logger (db2loggr)

This process manages the logging of the database to maintain data integrity.
During the first connection to a database, this process spawns a child logger
process (db2lwrt).

• Master database deadlock detector (db2dlock)

This is the master deadlock detector. During the first connection to a
database, this process spawns a global deadlock detector process for the
coordinator node and a local deadlock detector for each node.

Figure 20 on page 38 illustrates the parent-child processes relationship which is
created during the startup of the database manager using default database
manager configuration parameters on a multi-node system.

Chapter 3. Concepts and Data Placement 37

Figure 20. Parent-Child Processes Relationship During Startup

After the database manager is started, and the database is created on the
system, the system is ready to accept database connection requests. During the
first database connection, the following major processes are created on the
catalog and coordinator nodes:

• Coordinating agent (db2agent)

This process is only created at the coordinator node. It handles the SQL
process from a user request. The maximum number of coordinating agents
which can exist at one time on a node is controlled by the
MAX_COORDAGENTS parameter in the database manager configuration.

• Global deadlock detector (db2glock)

38 DB2 PE for AIX: Concepts and Facilities

This process is only created on the catalog node. It collects locking
information from the local deadlock detector processes and handles global
deadlock detection for the parallel database system.

• Local deadlock detector (db2llock)

This process handles the deadlock detection for the local node.

• Child database logger (db2lwrt)

This process handles the logging I/O.

Figure 21 on page 40 illustrates the parent-child processes relationship which is
created during the first database connection. In this example, the create
database command is executed on node 0, and the user request is connected to
node 0. This makes node 0 both the catalog node and the coordinator node.
The firewall shown in Figure 21 on page 40 is used to protect the database and
database manager from errant database applications.

Chapter 3. Concepts and Data Placement 39

Figure 21. Parent-Child Processes Relationship During Database Connect

After the database manager is started, the database is created, and the
database connection is established, the system is ready to process SQL
requests. The following major process are created on the catalog node, on the
coordinating node, and on other parallel database nodes which are needed to
process the parallel requests:

• Parallel agent (db2agntp)

40 DB2 PE for AIX: Concepts and Facilities

This process handles all the parallel database requests from the coordinator
agent (db2agent) or other parallel agents. A pool of the parallel agents can
be created during the startup of the database manager. The number of
initial parallel agents in the agent pool is controlled by the NUM_INITAGENTS
database manager configuration parameter. The maximum size of the pool
is controlled by the NUM_POOLAGENTS database manager configuration
parameter.

• Local deadlock detector (db2llock)

This process handles deadlock detection for the local node.

• Child database logger (db2lwrt)

This process handles logging I/O.

Figure 22 on page 42 illustrates the parent-child processes relationship which is
created during a select request. In this example, node 0 is the catalog node and
the coordinator node. The select command is processed on node 0 and node 1.

Chapter 3. Concepts and Data Placement 41

Figure 22. Parent-Child Processes Relationship During Select

After all SQL requests are completed, and the user issues the connect reset
command, the following major processes are released or removed:

• Local deadlock detector (db2llock)

This process handles deadlock detection for the local node.

42 DB2 PE for AIX: Concepts and Facilities

• Child database logger (db2lwrt)

This process handles logging I/O.

Figure 23 illustrates the parent-child processes relationship which are released
or removed during a database connect reset.

Figure 23. Parent-Child Processes Relationship During Database Connect Reset

3.2.2.1 Control Flow in the Parallel Process Model
The following shows the control flow in the parallel process model during a
database request made by an application:

 1. At database connect, a coordinating agent (db2agent) is forked by the DB2
system controller (db2sysc) to coordinate the distribution of parallel requests

Chapter 3. Concepts and Data Placement 43

to other nodes. The node to which the application connects is referred to as
the coordinating node.

 2. The coordinating agent (db2agent) sends the request from the application to
the fast communication manager (db2fcmdm).

 3. The fast communication manager (db2fcmdm) forwards the request either to
the parallel request queue or directly to the parallel agent request queue for
the local node. For a request requiring parallel processing, db2fcmdm
communicates with another db2fcmdm across nodes to distribute the parallel
requests.

 4. If the request is forwarded to the parallel request queue, the parallel system
controller (db2pdbc) needs to determine whether to wake up a parallel agent
(db2agntp) from the pool or to fork a new one.

 5. After the request is completed, the parallel agents (db2agntp) from each
node send their replies to their fast communication manager (db2fcmdm).
The db2fcmdm of each node sends the replies to the coordinating agent
(db2agent).

 6. The coordinating agent (db2agent) processes the result and sends it back to
the user.

Figure 24 on page 45 illustrates the control flow.

44 DB2 PE for AIX: Concepts and Facilities

Figure 24. Control Flow in the Parallel Edition Process Model

3.3 Parallel Database Nodes
The mapping of logical database nodes to physical machines is accomplished by
the node configuration file, db2nodes.cfg. You must create the db2nodes.cfg file in
the $HOME/sqllib directory of the instance. The file contains one entry for each
database node that belongs to the DB2 Parallel Edition instance. The file is
shared by all database nodes for that instance. Each entry in the file has the
format shown in Figure 25 on page 46.

Chapter 3. Concepts and Data Placement 45

node-number hostname logical-port netname

Figure 25. Node Configuration File, db2nodes.cfg

To enable inter-nodal communication, you must reserve a port number in the
/etc/services file. The service name must be DB2_instance. (Substitute the
instance owner′s AIX login name for instance.) You may also reserve a range of
port numbers in the /etc/services file. If reserving a range of numbers, two
service names, DB2_instance, and DB2_instance_END, are used to mark the
beginning and the end of that range. If reserving a range, you must ensure that
all the ports in between are available for the DB2 Parallel Edition fast
communication manager. The range of ports is recommended to start above
5000.

During database initialization, the fast communication manager (FCM) daemon
reads the node configuration file. The logical-port is used as an offset from the
start of the range of port numbers in the /etc/services file for the instance. The
(hostname, logical-port) pair is used as a well-known address, so it must be
unique among all applications.

Figure 26. Four Physical Nodes Using the SP Switch

Figure 26 shows an example configuration with four parallel database nodes
each of which is mapped to a separate physical machine on a multi-homed host,
such as an RS/6000 SP.

Assuming the instance name is sales, the /etc/services for the example of
Figure 26 is as follows:

DB2_sales 5500/tcp

The $HOME/sqllib/db2nodes.cfg file for Figure 26 is as follows:

 0 host0 0 switch0
 1 host1 0 switch1
 2 host2 0 switch2
 3 host3 0 switch3

46 DB2 PE for AIX: Concepts and Facilities

It is possible to have multiple logical parallel database nodes on one physical
machine.

Figure 27. Four Logical Nodes in an SMP Configuration

In Figure 27, four nodes reside on one physical machine. This type of
configuration could be used on an SMP machine. An SMP machine has a
cluster of individual processors interconnected by shared memory.

Assuming the instance name is sales, the /etc/services file for Figure 27 is as
follows:

DB2_sales 5500/tcp
DB2_sales_END 5503/tcp

The $HOME/sqllib/db2nodes.cfg file for Figure 27 is as follows:

 0 host0 0
 1 host0 1
 2 host0 2
 3 host0 3

3.4 Database Instance
A DB2 Parallel Edition instance is defined as a logical database manager
environment. Every DB2 Parallel Edition instance is owned by an instance
owner, and is distinct from other instances. The AIX login name of the instance
owner is also the name of the DB2 Parallel Edition instance. The instance owner
must be unique for each DB2 Parallel Edition instance. Each instance can
manage multiple databases; however, a single database can only belong to one
instance. It is possible to have multiple DB2 Parallel Edition instances on the
same group of machines. There are several reasons why you may wish to
generate more than one instance on a group of machines.

• To maintain distinct test and production environments

• To use different software levels

• To keep separate SYSADM access on different databases

Chapter 3. Concepts and Data Placement 47

• To keep separate sets of database manager configuration parameters for
performance considerations

Each instance is related to an AIX user, the instance owner. The instance owner
owns the files of the instance and has SYSADM authority over the databases
belonging to that instance.

3.4.1 Instance Owner
The instance owner has complete control over the instance. The instance owner
can start or stop the database manager, modify the database manager
configuration, or modify parameters specific to a database.

There is a one-to-one correspondence between an instance and the ownership of
the instance. An AIX user cannot be the owner of more than one instance, and
an instance must be owned by one AIX user. Any user placed in the same AIX
group as the instance owner′s primary group will have SYSADM authority over
the databases belonging to that instance. There will more than likely be a
one-to-one correspondence between the instance owner and SYSADM group.

Figure 28. DB2 Parallel Edition Instance

Figure 28 shows two instances, Instance A and Instance B, held on the same
PDB nodes or systems. The DB2 Parallel Edition Licensed Program Product
(LPP) is installed in the /usr/lpp/db2pe_01_02 directory. The LPP may be
installed either on every node or NFS-mounted to all nodes. The letters vv
represent the version of DB2 Parallel Edition; rr is the release. For example,
/usr/lpp/db2pe_01_02 is DB2 Parallel Edition Version 1.2.

Figure 28 also shows the relationship between databases, nodegroups and
tables belonging to the same DB2 Parallel Edition instance.

48 DB2 PE for AIX: Concepts and Facilities

3.5 Database Creation
After the DB2 Parallel Edition instance is created, and the DB2 database
manager for all the nodes configured in the instance is active, a database can be
created. The database can be created from any node that is configured in the
DB2 Parallel Edition instance. The database will be created across all the nodes
in the instance. The node on which the create database command is invoked
becomes the catalog node. All DB2 system catalog tables are stored on the
catalog node. Figure 29 illustrates the files generated after the creation of a
database.

Figure 29. Physical Storage of Parallel Edition Objects

An example of the installation and configuration procedure is found in Chapter 6,
“Installation and Configuration” on page 227. The dotted line represented in
Figure 29 shows those items that are created on every node and those that are
shared between nodes. The numbers in Figure 29 show the physical placement
of files and directories when an instance and database are created:

 1. The LPP is either installed on all the nodes or shared between nodes.

 2. The instance is created on all nodes. The command to create an instance is
executed from one of the PDB nodes. It creates the sqllib directory of the
instance owner.

When the instance is created, the directory $HOME/sqllib is created. The
home directory of the instance owner is $HOME. This directory must be
NFS-mounted to all nodes within the PDB instance. Binary executables, shell

Chapter 3. Concepts and Data Placement 49

scripts and include files are located in the $HOME/sqllib directory. No other
files or directories, other than those created by the DB2 Parallel Edition
products, should be placed here in order to avoid the potential loss of data if
an instance is deleted.

 3. A file system is created, for example /database. We recommend that each
node have a file system with the same name and ownership to hold the
database. Planning should be done ahead of time to determine such issues
as size, potential growth on every node, placement, and file system
mirroring. The directories under this file system should be owned by the
instance owner and SYSADM group.

 4. When the create database command is issued from the node corresponding
to node number 1 in the node configuration file, a subdirectory,
$DB2INSTANCE/NODE00001, is created in the /database directory. $DB2INSTANCE is
the instance owner. Node number 1, in this case, becomes the catalog node
of the database. In our example, the following command was issued:

db2 create database dss on /database

This created the subdirectories, $DB2INSTANCE/NODE00001/SQL00001. SQL00001
is the internal representation of our database, dss. It also places the local
database directory or volume directory in the $DB2INSTANCE/NODE00001
directory. In the SQL00001 directory, a number of subdirectories are created:

• SQLS0000 through SQLS0015 are the 16 default segment directories created.
A different number can be created by specifying a different value for the
NUMSEGS parameter in the create database command. This value cannot
be easily changed after the database is created. For more discussion on
NUMSEGS, refer to 3.6, “Database Management and AIX” on page 51.

• SQLDBCON is the database configuration file. This file cannot be edited
directly. To make changes to the database configuration, use the update
database configuration command or API.

• SQLINSLK, and SQLTMPLK are lock files used to ensure that a database is
only used by one instance.

• SQLOGDIR holds the log files for the database. This should be kept in a
separate file system on a disk(s) other than where the database is stored
to protect against loss of data. It is highly recommended that the logical
volume for the log files be mirrored.

Also shown is the system database directory, sqldbdir. All information about
cataloged databases is stored in the system database directory which
resides in the $HOME/sqllib directory of the instance owner. Each system
database directory entry contains the database name, the database type,
whether the database is local or remote, where it is stored (if local), the
node name (if remote), and other system information.

If a remote database is cataloged, there will be a node directory, sqlnodir.
The node directory contains entries for all nodes that a client node can
access. A DB2 Parallel Edition client can also connect to a remote DB2
Parallel Edition or DB2/6000 database.

The DCS directory, sqlgwdir is only created if the Distributed Database
Connection Services/6000 (DDCS/6000) product is installed, and an entry is
made into it. It stores information used by the database manager to access
remote databases on host computers. It contains items such as the
database name, database alias and the application that prepares requests
before sending them to the host.

50 DB2 PE for AIX: Concepts and Facilities

The db2systm file is the database manager configuration file for the instance.
This file is mounted on a shared file system so that all nodes have access to
the same file.

The db2nodes.cfg file contains the node configuration for the instance. It
maps the parallel database nodes to the physical machines and logical
ports. For more information on node configuration file see 3.3, “Parallel
Database Nodes” on page 45.

3.6 Database Management and AIX
When DB2 Parallel Edition creates a database, all of the files associated with the
database, which are data files, log files and so on, are stored under a directory
structure which is, in turn, mounted on a file system. This file system may be
configured to be stored on one or more disks. Here, we will discuss the various
options the user has for storing data and log files, and the reasons for doing so.

It is advisable to place the log files of a database onto a physical volume which
does not contain the data of the database. If a physical volume which is being
used to store both data and log files fails, the database would have to be
restored from the last offline backup. Because the log files are not available,
any changes made since the last offline backup would be lost.

Since the log files are crucial to the recovery of the database, it is advisable to
store them on a mirrored logical volume apart from the database data. AIX
provides the facility to have up to two mirrored copies of a logical volume.

Data should be distributed across multiple disks. This will enable concurrent
access across many disk heads and can improve the overall performance of the
system.

There is a maximum file system size restriction of 2 GB in AIX versions up to,
and including, Version 3.2.5. For AIX Version 4.1, the maximum size of a file
system is 64 GB. However, any individual file in AIX Version 4.1 still has a 2 GB
size limitation. Without spreading the physical data of the database over
different file systems, the maximum size of a database would be restricted to
either 2 GB or 64 GB per node, depending on the level of the AIX operating
system. However, DB2 PE allows you to split the database across many file
systems over many nodes. The result is that the maximum size of the database
becomes the maximum file system size multiplied by the number of file systems
over which the database is split, multiplied by the number of nodes.

Figure 30. AIX File System Limitation

Chapter 3. Concepts and Data Placement 51

3.6.1 Mapping Tables to AIX Files
Each table in DB2 PE is given a corresponding AIX file name, for example,
SQL00019.DAT. The AIX files are stored in directories. Thus, you have the ability
to spread the contents of one table, for example SQL00019.DAT, over many
directories. These directories can then be mounted on different AIX file systems.

Mounting is an AIX term referring to connecting a directory mount point to a file
system. A file system is a hierarchical structure (file tree) of files and
directories.

It is important to make the distinction here between:

• A segment directory, which holds segments (or parts) of a table

• A segment, which is a part of a table

Figure 31. Database Spread Across File Systems

3.6.2 Segment Manager Tool
It is important to understand:

• The database manager is responsible for data in tables and databases.

• The segment manager is a tool that helps you create and manage file
systems for database segments.

• The AIX logical volume manager is responsible for the storage of files in the
AIX operating system.

Figure 32 on page 53 shows the relationship between the database manager,
Segment Manager Tool and the AIX Logical Volume Manager.

52 DB2 PE for AIX: Concepts and Facilities

Figure 32. Relationship Between DB2 and AIX

The database manager will only spread the database across multiple directories.
If nothing else were done, these directories would still be in one file system,
restricted to the AIX file system limit; therefore, the database would be restricted
to the same limit.

There is a process to mount file systems over these segment directories. There
is a tool provided to do this: the DB2 Segment Manager Tool. The Segment
Manager Tool is described in more detail in 5.2, “Segment Manager Tool” on
page 142.

3.6.3 Multi-Page File Allocation
In DB2 Parallel Edition V1.1, the page allocation for database files such as .DAT,
.INX, .LF, and .TDA is by one 4 KB page at a time when a new page is needed.

In V1.2, the page allocation has been enhanced to reduce the overhead so the
performance for data insertion and index creation can be improved. When a new
page is needed, the database manager will expand the database files by N
pages at a time, where N is the SEGPAGES value defined during database creation.

Note: This multi-page file allocation only applies to .DAT, and .INX files, not .LF,
or .TDA files. Also it does not apply to the first N pages of .DAT and .INX files.
This is done to ensure that over allocation will not happen for small tables.

DB2 Parallel Edition V1.2 supports both ways of expanding the database files.

• Databases created before V1.2 will continue using the page allocation logic
in DB2 Parallel Edition V1.1, meaning that the database file will be expanded
one page at a time. A tool is provided to enable the multi-page file
allocation logic. It is described in more detail in 3.6.3.1, “Enabling
Multi-Page File Allocation Logic” on page 54.

Chapter 3. Concepts and Data Placement 53

• Databases created in V1.2 will use the multi-page file allocation logic for
.DAT and .INX files. The page allocation for .LF and .TDA files, and the first
SEGPAGES pages of .DAT and .INX files will still be one page at a time.

3.6.3.1 Enabling Multi-Page File Allocation Logic
A new parameter, multi_page_alloc, in the database configuration is introduced
in V1.2 to indicate if the multi-page file allocation logic is enabled. The value can
be:

• YES to indicate the method for expanding a file is by SEGPAGES pages.
Remember the SEGPAGES pages will still be allocated one at a time.

• NO to indicate the method for allocating a file is by one page.

Note: The multi_page_alloc parameter cannot be modified by the update
database configuration command.

The tool db2empfa is used to change the value for multi_page_alloc to YES. It
resides in the instance owner′s home directory, $HOME/sqllib/bin.

The syntax for this tool is as follows:

� �
db2empfa database-alias

� �

The following considerations apply when running db2emfa:

• db2empfa has to be executed on all the nodes where the database is
partitioned.

• It requires an exclusive database connection.

• It cannot be executed concurrently on a catalog node and a non-catalog
node. You must execute the db2empfa utility on a catalog node by itself, and
then execute it on the non-catalog nodes.

Once the db2empfa has been executed on the catalog node the following
command can be used to executed the db2empfa utility on all other nodes in
parallel:

� �
db2_all ″;<<-3< db2empfa database-alias″

� �

For the number three (3) you would substitute the appropiate node that contains
the system catalog.

Note: Once the value for multi_page_alloc parameter is set to YES, it is not
possible to disable the multi-page file allocation logic without restoring from a
database backup taken before the multi_page_alloc was set.

54 DB2 PE for AIX: Concepts and Facilities

3.6.4 Default Database Settings
The default settings for creating a database are:

• There are 16 segment directories.

• When a table reaches 32 pages in size, it will overflow into the next segment
directory.

Given these default values, the maximum size of a database in AIX 3.2.5 would
be:

Maximum database size = (default(NUMSEGS) * max(file system size)
= (16 * 2) GB
= 32 GB (AIX 3.2.5)

� �
 Using the defaults, the maximum size of a database in AIX 3.2.5
 is 32 GB per node.� �

Given these default values, the maximum size of a database in AIX 4.1 would be:

Maximum database size = (default(NUMSEGS) * max(file system size)
= (16 * 64) GB
= 1024 GB (AIX 4.1)

� �
 Using the defaults, the maximum size of a database in AIX 4.1
 is 1024 GB per node.� �

There are two parameters which control the segmentation of databases:

• NUMSEGS, which is the number of segment directories over which the database
is spread

• SEGPAGES, which is the number of 4 KB pages in a segment

These parameters are set at database creation and can only be changed by
dropping, and recreating, the database.

Use the Command Line Processor (CLP) or the command line to specify these
values. For example, from the command line, the syntax would be:

db2 create database asample NUMSEGS 10 SEGPAGES 64

3.6.5 Storage of Objects in Segment Directories
The following formula defines the segment directory which stores the first page
of a database file.

Segment Directory Number = MODULO(FID/NUMSEGS)

where FID (File ID) can be found by:

db2 ″ select name,creator,fid from sysibm.systables where type = ′ T′ ″

FID is a unique identifier for a table used by the database manager. When a new
table is created, it is allocated the next free FID.

For example:

Chapter 3. Concepts and Data Placement 55

NAME CREATOR FID
------------------ -------- ------
SYSTABLES SYSIBM 2
SYSCOLUMNS SYSIBM 3
SYSINDEXES SYSIBM 4
SYSVIEWS SYSIBM 5
SYSVIEWDEP SYSIBM 6
SYSPLAN SYSIBM 7
SYSPLANDEP SYSIBM 8
SYSSECTION SYSIBM 9
SYSSTMT SYSIBM 10
SYSDBAUTH SYSIBM 11
SYSPLANAUTH SYSIBM 12
SYSTABAUTH SYSIBM 13
SYSINDEXAUTH SYSIBM 14
SYSRELS SYSIBM 15
SYSNODEGROUPS SYSIBM 16
SYSPARTITIONMAPS SYSIBM 17

 SYSNODEGROUPDEF SYSIBM 18

17 record(s) selected.

So, for a user table whose FID = 19 and, given the default, NUMSEGS = 16:

Segment Directory Number = MODULO(FID/NUMSEGS)
Segment Directory number = 19 modulus 16
Segment Directory number = 3 which is SQLS0003

The MODULO 16 part of the equation is the remainder after dividing by 16. FIDs of
0 and 1 are reserved in DB2 Parallel Edition. If FID=19, the segment directory is
SQLS0003. When FID=20, the segment directory is SQLS0004. For example:

FIDs Seg Dir #
--- ---------
N/A 16 0
N/A 17 1
2 18 2
3 19 3
4 20 4
5 21 5
6 22 6
7 23 7
8 24 8
9 and so on. 9
10 10
11 11
12 12
13 13
14 14
15 15

Given an initial segment directory number of 3, the first .DAT file for the user
table data will be stored in a directory called SQLS0003 under the database
directory. Should the size of this AIX file exceed 32 pages, another .DAT file with
the same name will be created in the SQLS0004 directory, and subsequent inserts
will be written to this second file. As the table grows, the .DAT files will be
placed in subsequent segment directories in order. If the last directory written

56 DB2 PE for AIX: Concepts and Facilities

into is SQLS000n, with n being the upper limit, writing will continue in the SQLS0000
directory.

3.6.6 Determining the Values for NUMSEGS and SEGPAGES
Care should be taken in determining the values of NUMSEGS and SEGPAGES because
once a database is created, these values cannot be easily changed. You must
back up the database, drop it and then re-create it with different values for
NUMSEGS and SEGPAGES. Since changing the segmentation of your database is not
a trivial task after the database is created, it is important to accurately plan for
your particular requirements.

Fortunately, in most cases, the default value for SEGPAGES is adequate to give
you:

• Flexibility in case your database grows

• Small performance overhead (except in actual database creation time) in
having more segment directories than is necessary at database creation

Begin by estimating the size of your tables, databases and temporary tables.
For more information, see the DB2/6000 Administration Guide. After determining
your table and database size, you should be able to estimate the value of
NUMSEGS to allow for future growth.

When determining SEGPAGES, keep in mind that this is the number of 4 KB pages
that will be placed in every segment directory. In DB2 Parallel Edition V1.2,
when multi-page file allocation logic is enabled, files will be allocated SEGPAGES
pages at a time, except for the first SEGPAGES pages. To avoid having
unnecessary amounts of space allocated in the segment directories, selecting a
large value for SEGPAGES is not advisable. The default of 32 pages should work
for most environments. Figure 33 shows a potential problem when
underestimating the value of NUMSEGS and/or selecting too large a value for
SEGPAGES.

Figure 33. Segmented Tables Example

Chapter 3. Concepts and Data Placement 57

Figure 33 is a database that has NUMSEGS=6. A data table, indicated by segment
A, has an FID of 32. This segment A is represented in DB2 PE as a .DAT file, for
example, SQL00032.DAT. The first segment is placed in segment directory 0. The
second in segment directory 1, and so on. The problem is that when the table
has placed a segment in every segment directory, the database manager will try
to allocate more space in segment directory 0. If segment directory 0, does not
have enough free space, you will not be able to write into that segment
directory. Even if space were to remain in other segment directories associated
with the database, you would receive an SQL error code (SQL0968C) indicating
that the file system was full.

3.6.7 Maximum Size for Tables and Databases
The maximum size of a database is dependent on the maximum values NUMSEGS,
and SEGPAGES may take and the number of nodes in your configuration. A page is
4096 bytes or 4 KB.

SEGPAGES may take the following values:

Minimum 4 pages

Default 32 pages

Maximum 524288 pages (2 GB)

Notice that the size of any one file or segment is 2 GB on both AIX 3.2.5 or AIX
4.1.

NUMSEGS may take the following values:

Minimum 1

Default 16

Maximum 256

Maximum table capacity is an architectural limit that is defined by:

� �
Maximum Table Size = 64 GB Per Node� �

Maximum database capacity for AIX 3.2.5 is defined by:

Max database size = (max(NUMSEGS) * max(file system size))
= (256 * 2) GB (AIX 3.2.5)
= 512 GB Per Node

� �
Maximum Database Size = 512 GB Per Node� �

Maximum database capacity for AIX 4.1 is defined by:

Max database size = (max(NUMSEGS) * max(file system size))
= (256 * 64) GB (AIX 4.1)
= 16384 GB or 16 TB Per Node

� �
Maximum Database Size = 16 TB Per Node� �

DB2 PE can support extremely large databases. However, the management and
maintenance of databases of large proportions needs careful consideration.

58 DB2 PE for AIX: Concepts and Facilities

3.6.8 Performance and Resource Considerations
The following are factors that you may want to consider for your environment:

• Setting SEGPAGES small would help distribute data among different segment
directories, hence, different file systems. This would help balance the writing
of data among the file systems. One consideration for selecting too small a
size for SEGPAGES is how it might affect the MAXFILOP database parameter.
The database parameter, MAXFILOP, allows you to limit the number of
database files open at any one time for one database manager agent. If
opening a file causes this limit to be exceeded, a database file that is open
and in use by this application is closed. If MAXFILOP is too small, the
overhead of opening and closing files so as not to exceed this value may
degrade performance. This information can be retrieved using the Database
System Monitor:

db2 get snapshot for database on asample | grep closed

Database files closed = 0

However, setting this value large to balance a small SEGPAGES size will affect
system resources, such as memory. The recommendation is to leave
SEGPAGES at either 32 or 64 pages. There would be no benefit to setting
SEGPAGES larger than 256.

Note: Setting the SEGPAGES database parameter to large values is not
advisable when the multi-page file allocation logic is enabled, to avoid
overallocation of space in the segment directories.

• The larger the database will be, the higher NUMSEGS must be. The higher
NUMSEGS, the more segment file systems to manage.

• A guideline for NUMSEGS is to set it to the number of disks attached to any one
node. If there are different numbers of disks attached to each node, select
the smallest number in the configuration.

3.6.9 Changing the Maximum Size of a Database
The value of NUMSEGS, or SEGPAGES cannot be changed after creating a database.
The only way to change these values and retain your data is to:

• Back up (or export) the database

• Drop the database

• Create the database with different NUMSEGS/SEGPAGES values

• Restore (or import/load) the data into this new database

Obviously, for large databases on the gigabyte or even terabyte scale, this is a
time-consuming process.

3.7 Nodegroups and Data Partitioning
In DB2 Parallel Edition, data placement is one of the more challenging tasks. It
determines the best placement strategy for all tables defined in a parallel
database system. The rows of a table can be distributed across all the nodes
(fully declustered), or a subset of the nodes (partially declustered). Tables can
be assigned to a particular set of nodes. Two tables in a parallel database

Chapter 3. Concepts and Data Placement 59

system can share exactly the same set of nodes (fully overlapped), at least one
node (partially overlapped), or no common nodes (nonoverlapped). Parallel
Edition supports the hash partitioning technique to assign a row of a table to a
table partition.

3.7.1 Nodegroups
Nodegroups in DB2 Parallel Edition are used to support declustering (full or
partial), overlapped assignment and hash partitioning of tables in the parallel
database system. A nodegroup is a named subset of one or more of the nodes
defined in the node configuration file, $HOME/sqllib/db2nodes.cfg, of DB2 Parallel
Edition. It is used to manage the distribution of table partitions. In DB2 Parallel
Edition, there are system-defined and user-defined nodegroups. Tables must be
created within a nodegroup.

Figure 34 shows a DB2 Parallel Edition instance consisting of four physical
machines. The default nodegroup, IBMDEFAULTGROUP, spans all of the nodes in the
instance. The catalog nodegroup, IBMCATGROUP, is created only on the node
where the create database command was issued. The catalog node is on host0
in this example. Also shown is a user-defined group that spans host2 and host3.

Figure 34. Nodes and Nodegroups

Two system-defined nodegroups are automatically generated by the Parallel
Edition database manager at database creation time. They are:

 1. IBMCATGROUP is a single-node nodegroup which contains only the catalog
node. The catalog node is any node where the create database command
was issued. It cannot be altered by using the redistribute nodegroup
command operation and is protected from the drop nodegroup SQL statement.

 2. IBMDEFAULTGROUP contains all the nodes defined in the node configuration file
($HOME/sqllib/db2nodes.cfg) of DB2 Parallel Edition at database creation
time. It is the default nodegroup for the create table SQL statement. It can

60 DB2 PE for AIX: Concepts and Facilities

be altered by using the redistribute nodegroup command to add or remove a
node. It is protected from the drop nodegroup SQL statement.

A user-defined nodegroup can be created by using create nodegroup SQL
statement. You can specify the set of nodes for your table partition. This
nodegroup can be altered by using the redistribute nodegroup command to add
and remove nodes. It can be dropped by using the drop nodegroup SQL
statement.

3.7.2 Creating a Nodegroup
When the create nodegroup SQL statement executes, the DB2 Parallel Edition
database manager:

• Creates a partitioning map for the nodegroup

• Generates a partitioning map ID

• Inserts records into SYSIBM.SYSNODEGROUPS,
SYSIBM.SYSPARTITIONMAPS, and SYSIBM.SYSNODEGROUPDEF

The following example illustrates what happens before and after the execution of
the create nodegroup SQL statement. The name of the nodegroup used in this
example is called groupa. Nodegroup groupa is defined on a two-node (0 and 1)
system. Before the execution of the SQL statement, the parallel database
system only has the two system-defined nodegroups, IBMCATGROUP, and
IBMDEFAULTGROUP. After the execution of the SQL statement, the user-defined
nodegroup, GROUPA, is created, and the entry is inserted into the catalog tables.
You can issue the list nodegroups command to display the information about the
nodegroups defined to the system.

• The list nodegroups output before execution of the create nodegroup SQL
statement:

db2 list nodegroups show detail

NAME PMAP_ID NODENUM IN_USE
------------------- ------------ ------------ ----------
IBMCATGROUP 0 0 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y

• To create the nodegroup for groupa:

db2 create nodegroup groupa on nodes(0,1)

• The list nodegroups output after the execution of the create nodegroup SQL
statement:

db2 list nodegroups show detail

NAME PMAP_ID NODENUM IN_USE
------------------- ------------ ------------ ----------
IBMCATGROUP 0 0 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
GROUPA 2 0 Y
GROUPA 2 1 Y

Chapter 3. Concepts and Data Placement 61

3.7.3 Considerations for Nodegroups
If you want to split the data across all nodes defined in the node configuration
file, $HOME/sqllib/db2nodes.cfg, you can create your tables in the default
nodegroup, IBMDEFAULTGROUP. In some cases, you may want to create your own
single-node or multi-node nodegroups to improve performance or to gain faster
recoverability.

3.7.3.1 Table Collocation
By far the most important consideration for nodegroups is providing for table
collocation. Because the collocated join strategy does not require internodal
communication, it provides the best possible query performance.

To have table collocation, you must:

• Place the tables in the same nodegroup.

• Ensure that their respective partitioning keys have the same number of
columns, and the corresponding columns are partition compatible.

Until you know exactly what you are doing, put all of your tables in the
IBMDEFAULTGROUP nodegroup.

3.7.3.2 Table sizes
Avoid extending medium-sized tables across too many nodes. For example, a
100 MB table may perform better on a 16-node nodegroup than on a 32-node
nodegroup. The degree of parallelism achieved by the larger number of nodes
needs to be offset by the increased costs with their management. These costs
include broadcasting access plan subsections to entire nodegroups,
broadcasting table queues to multiple nodes, and receiving sorted table queues
from multiple nodes.

For performance reasons, you should keep the volume of raw data per node
below 20 GB.

3.7.3.3 Single-Node Nodegroups
If the size of the tables is small, they can be placed in single-node nodegroups.
However, if you want to have collocation with a larger table, the small table
should be spread across the same set of nodes as the larger table.

In a single-node nodegroup, tables do not require a partitioning key. By default,
a table in a single-node nodegroup is created without a partitioning key.

Tables consisting of only long-field (LONG VARCHAR or LONG VARGRAPHIC)
columns must be placed in single-node nodegroups because there are no
columns on which to define a partitioning key.

If a single-node nodegroup will ever be changed (redistributed) into a multi-node
nodegroup, all of the tables in the nodegroup must have a partitioning key. This
may dictate separate single-node nodegroups for tables which have, and which
do not have, partitioning keys.

62 DB2 PE for AIX: Concepts and Facilities

3.7.3.4 Fast Recovery
If you require fast recoverability, place user tables in nodegroups that exclude
the catalog node. The RESTORE and OFFLINE BACKUP utilities connect to the
database in exclusive mode at the node where the utility is running and in share
mode at the catalog node. This means that when the utilities are running on the
catalog node, the exclusive lock will prevent any other concurrent activity on any
of the database nodes. By default the IBMDEFAULTGROUP nodegroup includes
the node containing the system catalog tables. The REDISTRIBUTE NODEGROUP
command can be used to drop the catalog node from the nodegroup.

3.7.3.5 Dedicated Processor for Catalog Node
If the database will be processing large numbers of dynamic SQL statements, as
is typical of decision-support applications, it is recommended to have a
dedicated processor to the catalog node in large-system configurations. If this is
not possible, the REDISTRIBUTE NODEGROUP command can be used to reduce the
number of data partitions that hash to the catalog node.

The access plans for static SQL statements are normally cached at the
coordinator nodes, so a dedicated processor is less useful in this environment.

Some access plans require a subsection to execute on a single-node nodegroup.
These subsections are used in some forms of view materialization. Because the
only single-node nodegroup that exists in all configurations is IBMCATGROUP,
the optimizer will use this nodegroup as needed. If this type of access plan is
typical in your installation, a dedicated processor for the catalog node may be
desirable.

3.7.3.6 Dedicated Coordinator Nodes
In some cases it may be desirable to have a set of nodes that are dedicated to
performing coordinator functions.

For example, the large number of Micro Channel slots in RS/6000 SP wide nodes
may make them desirable for providing network connectivity to client machines.

The software licensing costs associated with end-user query tools may dictate
their installation be restricted to a subset of the nodes. Query tools that do
significant amounts of processing may perform best with SMP nodes for
coordinators.

Sometimes significant query processing is performed by the coordinator
subsection of the parallel access plans. These include global aggregation
predicates and ordering columns different from grouping columns.

3.7.3.7 Directed Inner-Table and Outer-Table Joins
Small tables that are used as the inner table of a directed inner-table and
outer-table join should be defined on at least as many tables as the outer table.
This is because the join will be processed on the nodes composing the
nodegroup of the inner table.

Directed inner- and outer-table joins are processed on the nodes composing the
nodegroup of the inner table. The inner tables should be defined on sufficient
nodes to handle the expected data volumes of both tables. The directed inner
table and outer table join strategy is often selected to implement non-collocated
outer joins. In this case the optimizer has no choice over the inner table,
because right outer joins are rewritten by the optimizer as left outer joins.

Chapter 3. Concepts and Data Placement 63

Performance would suffer greatly if the inner table were defined in a single-node
nodegroup.

3.7.3.8 Miscellaneous Considerations
If two tables are not to be collocated, it may be better to put them in separate
nodegroups because the nodegroups can be tuned independently. This will
provide for better correction of data skew or different growth rates via
customized partitioning maps.

Some end-user query tools that tolerate (as opposed to exploit) DB2 Parallel
Edition might not specify a target nodegroup when defining temporary tables.
These tables would then be created in the IBMDEFAULTGROUP nodegroup and
have a default partitioning key. The IBMDEFAULTGROUP nodegroup must have
sufficient disk space and processor nodes to handle the expected volume. It
may also be possible to design your nodegroup and partitioning key strategies
so these temporary tables are collocated with larger permanent tables.

The REDISTRIBUTE NODEGROUP command can be used to tailor data volumes and
processing loads to non-symmetric hardware configurations. Keep in mind,
however, that the optimizer uses the database configuration parameters of the
coordinator node when compiling access plans.

Data access patterns may also be a factor in nodegroup design. Medium-sized
tables that are accessed concurrently may perform better in different,
non-intersecting nodegroups.

If you have a parallel database system that supports both decision support
system (DSS) and online transaction processing (OLTP) users, consider the
following:

• If DSS and OLTP users go after different sets of data, place OLTP and DSS
data in different nodegroups or even in different databases.

• If DSS and OLTP users go after the same sets of data, try to focus on DSS
since OLTP applications are normally static SQL, and access plans are
cached at the coordinator nodes.

3.7.4 Data Partitioning
DB2 Parallel Edition supports the hash partitioning technique to assign each row
of a table to the node to which the row is hashed. You need to define a
partitioning key before applying the hashing algorithm. The hashing algorithm
uses the partitioning key as an input to generate a partition number. The
partition number then is used as an index into the partitioning map. The
partitioning map contains the node number(s) of the nodegroup. There are three
major steps to perform the data partitioning:

 1. Partitioning key selection

 2. Partitioning map creation

 3. Partitioning rows

64 DB2 PE for AIX: Concepts and Facilities

3.7.5 Partitioning Key
A partitioning key is a set of one or more columns of a given table. It is used by
the hashing algorithm to determine on which node the row is placed.

The partitioning key is defined by using the create table or alter table SQL
statement. Any columns with a data type other than long field (that is, not LONG
VARCHAR or LONG VARGRAPHIC) can be used to form a partitioning key. If the
partitioning key is not specified at table creation time, DB2 Parallel Edition will
use the following rules to define a default partitioning key:

• First column of a primary key

• First non-LONG field column

Note: The DB2/6000 create table SQL statement will work in DB2 Parallel
Edition without modification, providing there is at least one non-LONG field
column. In this case, the default partitioning key and nodegroup will be used.
Tables without a partitioning key are only allowed in single-node nodegroups.

The following is an example of creating a partitioning key while creating a table:

CREATE TABLE order (o_orderkey integer not null,
o_custkey integer not null,
o_orderstatus char(1) not null,
o_totalprice float not null,
o_orderdate date not null,
o_orderpriority char(15) not null,
o_clerk char(15) not null,
o_shippriority integer not null,
o_comment char(49) not null)

IN four
PARTITIONING KEY (o_orderkey) USING HASHING

In the example, the partitioning key is defined as the o_orderkey column, which
will be used to distribute the rows of table order across nodegroup four.

3.7.5.1 Partitioning Key Selection and Considerations
A partitioning key has direct impact on performance; therefore, choosing a good
partitioning key is important. In order to choose a good partitioning key, you
must understand the nature of the queries and join strategies used in your
system. For more detail on join strategies, refer to 4.8, “Join Operations” on
page 102.

The following are recommendations for choosing a partitioning key:

• The partitioning key for each table in a nodegroup determines if the tables
are collocated. The collocation of tables has a significant impact on
performance.

• If collocation is not a major consideration, a good partitioning key for a table
is one that spreads the data evenly on all nodes in the nodegroup.

• The cost of applying the partitioning function is proportional to the size of the
partitioning key. Unnecessary columns should not be included in the
partitioning key.

• The partitioning key should be formed with a minimum number of columns,
typically from one to three columns. The fewer partitioning key columns that
need to be specified, the more likely the parallel optimizer is able to use
collocated or directed join strategies.

Chapter 3. Concepts and Data Placement 65

• The partitioning key should include the most frequently joined columns.

• The partitioning key should include columns that often participate in a
GROUP BY clause.

• Columns with skewed data and columns with a small domain should not be
chosen for use as a partitioning key. Columns with a large domain and
skewed data, however, can be effective partitioning key if you can correct the
skew. The partitioning key should have enough distinct values to ensure an
even data distribution, and a scalable configuration.

• The partitioning key should not be frequently updated. Any updates must be
done as deletion and insertion operations.

• An integer partitioning key is more efficient than a character key, which is
more efficient than a decimal key.

The following restrictions apply to the partitioning key:

• Long-field (LONG VARCHAR or LONG VARGRAPHIC) columns are not
allowed to be used as part of the partitioning key.

• Any unique index or primary key must be a superset of the partitioning key.

• Alteration of the partitioning key definition is not allowed for tables in
multinode nodegroups.

• The db2split sample program does not support float or graphic partitioning
key columns.

3.7.5.2 Partition Compatibility
It is possible to have different column types in a table with the same value. For
example, the number 8 can be represented with INTEGER, DECIMAL, and FLOAT
data types. Some data types with the same value will map to the same
partitioning map number by using the hashing algorithm. These data types are
called partition compatible.

In DB2 Parallel Edition, partition compatibility is shown in Table 3 on page 67
with the following comments:

• Partition compatibility is not affected by columns with NOT NULL or FOR BIT
DATA definitions.

• NULL values of compatible data types are treated identically. Different
results might be produced for NULL values of non-compatible data types.

• Decimals of the same value in the partitioning key are treated identically,
even if their scale and precision differ.

• Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the system-provided hashing function.

• CHAR or VARCHAR of different lengths are compatible data types.

Table 3 on page 67 shows the summary of the compatibility of data types in
partitions.

66 DB2 PE for AIX: Concepts and Facilities

Table 3. Partition Compatibil it ies

sm
al

lin
t

in
te

g
e

r

d
e

ci
m

a
l

flo
at

ch
ar

va
rc

h
a

r

gr
ap

hi
c

va
rg

ra
p

h
ic

d
a

te

ti
m

e

ti
m

e
st

a
m

p

smallint Yes Yes No No No No No No No No No

integer Yes Yes No No No No No No No No No

decimal No No Yes No No No No No No No No

float No No No Yes No No No No No No No

char No No No No Yes Yes No No No No No

varchar No No No No Yes Yes No No No No No

graphic No No No No No No Yes Yes No No No

vargraphic No No No No No No Yes Yes No No No

date No No No No No No No No Yes No No

time No No No No No No No No No Yes No

timestamp No No No No No No No No No No Yes

3.7.6 Partitioning Map
In DB2 Parallel Edition, a partitioning map is an array of 4096 node numbers.
Each nodegroup has a partitioning map. The content of the partitioning map
consists of the node numbers which are defined for that nodegroup. The
hashing algorithm uses the partitioning key on input to generate a partition
number. The partition number has a value between 0 and 4095. It is then used
as an index into the partitioning map for the nodegroup. The node number in
the partitioning map is used to indicate to which node the operation should be
sent.

Figure 35. Partitioning Map

Chapter 3. Concepts and Data Placement 67

Figure 35 shows how a row with partitioning key (o_orderkey) value 101 is
mapped to partition number 8.

3.7.6.1 Default Partition Map
The default partitioning map is created when a nodegroup is created. The map
is stored in the SYSIBM.SYSPARTITIONMAPS catalog table.

The default partitioning map contains the node numbers of the nodegroup
assigned in a round-robin fashion. Figure 36 illustrates the map for a nodegroup
which contains four nodes numbered 0, 1, 2, and 3.

Figure 36. Default Partit ioning Map

DB2 Parallel Edition provides a utility, db2gpmap, to extract the partitioning map of
a table or nodegroup from the SYSIBM.SYSPARTITIONMAPS catalog table.

If the runtime module, db2gpmap, does not exist in the $HOME/sqllib/bin directory,
you need to compile db2gpmap.sqc by:

• Copying the source materials from the $HOME/sqllib/samples/splitter
directory to a work directory.

• Editing the db2split.make file to specify the database against which you want
to preprocess the db2gpmap.sqc file.

• Executing the db2split.make file by issuing the following:

make -f db2split.make db2gpmap

You can issue the following command to show the syntax of db2gpmap:

db2gpmap -h

The following is an example of executing db2gpmap to get the partitioning map of
the nodegroup, groupa, on the database dss, and to place the output map in the
file groupa.pmap.

db2gpmap -d dss -m groupa.pmap -g groupa

3.7.6.2 Customized Partitioning Map
You may want to generate a customized map before loading data when
populating a table in a new nodegroup. DB2 Parallel Edition provides a sample
utility called db2split to analyze, and to partition the data file.

The db2split utility with the parameter (RunType=analyze) specified in the
configuration file will generate a customized partitioning map based on the input
nodes specified in the configuration file, and the input data file. It is
recommended that you specify the input data file for the largest table in that
nodegroup. The customized partitioning map is optimized to have an even data
distribution over the nodes specified in the configuration file. After the
customized partitioning map is generated, you may modify it using any editor.
Be extremely cautious when you modify the customized partitioning map as it

68 DB2 PE for AIX: Concepts and Facilities

may cause your data to be skewed. Skewing of data can adversely affect your
system performance. When the customized partitioning map is ready, you will
use the redistribute nodegroup command to catalog the map to the database
before it can be used by the parallel database system. For more information on
db2split and redistribute nodegroup, see Chapter 5, “Parallel Utilities” on
page 141.

The following illustrates the steps used to generate and catalog a customized
partitioning map:

• Modify the db2split configuration file for the input file, nodes, output mapfile,
runtype, column delimiter, string delimiter, and partitioning key parameters.

• Run db2split in RunType=analyze mode to generate the customized partitioning
map.

• Issue the redistribute nodegroup command to store the customized
partitioning map in the SYSIBM.SYSPARTITIONMAPS catalog table.

3.7.6.3 Indirect Hashing
Figure 35 on page 67 shows the method that DB2 PE uses to determine the
partition number. This is called the indirect hashing function. The hashing
function ensures that the index value that is stored in the partitioning map will
always evaluate to numbers between 0 and 4095. Further, it ensures that the
data will be evenly spread among all nodes if the partitioning key is correctly
defined. The hashing function takes the partitioning key as an input and applies
the hashing algorithm to produce an index into the partitioning map that points
to the correct node.

3.7.7 Row Partitioning
The steps for row partitioning consist of splitting and inserting the data across
the target nodes.. DB2 Parallel Edition provides tools to partition the data and
then load the data to the system via a fast-load utility or import. Data can also
be inserted into the database via an application that uses buffered inserts.

Assuming the nodegroup and table are already defined to the database, the
following illustrates the steps needed to partition and insert the data in the
database:

• Get the partitioning map of the nodegroup or table by using the db2gpmap
utility.

• Modify the db2split configuration file for the following parameters:

− Infile for the input data file

− RecLen for the record length of the input data file

− MapFili for the input partitioning map from db2gpmap

− RunType=partition for partition mode

− OutFile for the prefix of the output file

− Partition for partitioning key column

• Run db2split with the db2split configuration file to split or partition the data.
For more information on db2split, see Chapter 5, “Parallel Utilities” on
page 141.

• Insert the data to the database using the DB2 Parallel Edition load or import
utility or a user application with buffered inserts. For more information on

Chapter 3. Concepts and Data Placement 69

the DB2 Parallel Edition utilities, see Chapter 5, “Parallel Utilities” on
page 141.

70 DB2 PE for AIX: Concepts and Facilities

Chapter 4. Parallel Processing

This chapter discusses the extensions of the major components in DB2 Parallel
Edition to support parallel processing for all types of SQL operations. The major
components discussed in this chapter are:

• SQL statements

• Not Initially Logged Tables

• Buffered inserts

• SQL operations

• CASE expressions

• OUTER JOIN operations

• DIGITS scalar function

• SQL optimization

• Explain tools

• Table queues

• Join strategies

• Locking

4.1 SQL Statements and Database Commands
There are two types of SQL statements:

• Data definition language (DDL)

• Data manipulation language (DML)

In addition, there are commands specific to DB2 that allow you to create or
manage a database. For the complete syntax of all SQL statements covered in
this chapter, refer to DB2 Parallel Edition for AIX Administration Guide and
Reference.

4.1.1 Create/Drop Database
The create database command is used to create databases within DB2 Parallel
Edition. A database can be created or dropped from any node that is configured
in your parallel database system. The node on which the create database
command is issued becomes the catalog node of the database.

Before you create your database, the database manager must be started on all
the nodes of your parallel database system. After database creation, the system
and local database directory can be listed using the list database directory
command. For more information about the process of database creation and the
database structure, refer to 3.5, “Database Creation” on page 49.

The following commands show how to create a database, dss, in the /database
file system and display information about the database that is found in the
system database directory and local database directory.

• Create a database called dss on /database directory.

create database dss on /database

 Copyright IBM Corp. 1996 71

• List the system database directory.

list database directory

Output:

System Database Directory

Number of entries in the directory = 1

 Database 1 entry:

Database alias = DSS
Database name = DSS
Local database directory = /database
Database directory =
Node name =
Database release level = 7.00
Comment =
Directory entry type = Indirect
Authentication = SERVER
Catalog node number = 0

The output from the system database directory indicates that node 0 is the
catalog node. The catalog node is the node on which the create database
command was issued.

• List the local database directory.

list database directory on /database

Output:

Local Database Directory on /database

Number of entries in the directory = 1

 Database 1 entry:

Database alias = DSS
Database name = DSS
Local database directory =
Database directory = SQL00001
Node name =
Database release level = 7.00
Comment =
Directory entry type = Home
Authentication =
Catalog node number = 0
Node number = 0

The node number from the local database directory output indicates that the
list local database directory command was issued from node 0.

Before you drop a database, the database manager must be started on all the
nodes configured in the parallel database system and the database must exist
on the system.

To drop an existing database, such as dss:

drop database dss

72 DB2 PE for AIX: Concepts and Facilities

4.1.2 Data Definition Language (DDL)
Data Definition Language (DDL) is used to define and manipulate the structure of
the database. The major DDL in Parallel Edition discussed in this section is:

• Create/drop nodegroup

• Create/drop and alter table

• Create/drop index

4.1.2.1 Create/Drop Nodegroup
The concept of a nodegroup is introduced in DB2 Parallel Edition to support table
partitions. A nodegroup can be created and dropped from any configured node
in the parallel database system. The maximum number of nodegroups currently
supported in a database is 32,768. For more information about nodegroups, refer
to 3.7.1, “Nodegroups” on page 60.

Before creating a nodegroup, the database manager must be started on all the
nodes of your parallel database system and you must be connected to the
database where the nodegroup will be created.

Consider a four node parallel database system with the following hostnames:
HOST0, HOST1, HOST2, HOST3. Their corresponding node numbers are 0, 1, 2,
and 3, respectively. The following examples will create nodegroups on the pdb
system:

• Create a nodegroup ALLNODE on all four nodes.

db2 create nodegroup ALLNODE on all nodes

• Create a nodegroup NG3 on nodes 0, 1, and 3.

db2 create nodegroup NG3 on nodes (0 to 1, 3)

• Create a nodegroup NG1 on node 2.

db2 create nodegroup NG1 on node (2)

Before you drop a nodegroup, the database manager must be started on all the
nodes of your parallel database system and you must connect to the database
where you want the nodegroup to be dropped. The nodegroup must exist in the
database.

For example, to drop an existing nodegroup, NG1:

db2 drop nodegroup NG1

Note: Tables in the nodegroup will be dropped without warning.

4.1.2.2 Create, Drop, or Alter Table
Tables can be created, dropped, and altered from any configured node that is in
your parallel database system. The drop table SQL statement is the same as in
DB2/6000.

The create table DDL is extended to support the concepts of partitioning keys
and nodegroups. A primary key must be a superset of the partitioning key, if the
table has a partitioning key. Before issuing the create table command, the
nodegroup must already exist. The nodegroup can be either system-defined
(IBMDEFAULTGROUP) or user-defined. The maximum size of a table at a node
is 64 GB, or the available disk space, whichever is smaller.

Note: DB2 Parallel Edition currently does not support Referential Integrity (RI).

Chapter 4. Parallel Processing 73

The following examples will create tables:

• Create a table called TAB in nodegroup NG4 with DATA_INT as the
partitioning key.

create table TAB (DATA_CHAR char(20) not null,
DATA_INT integer not null,
DATA_DATE date not null)
in NG4
partitioning key(DATA_INT) using hashing

• Create a table called TAB_1 in the default nodegroup IBMDEFAULTGROUP
and using the default partitioning key. In this example, the partitioning key
will be the first non-long column, which is COL1.

create table TAB_1 (COL1 char(5) not null,
COL2 integer not null,
COL3 date)

The alter table SQL statement is extended to support partitioning keys. In DB2
Parallel Edition, you can use the alter table SQL statement to add or drop a
partitioning key if the table resides in a single-node nodegroup. When adding a
partitioning key, also ensure that:

• A partitioning key does not exist in the table

• All the rules for adding partitioning keys are followed

Note: Foreign keys are not supported. You will receive an error code of
SQLCODE -270 if attempting to specify a foreign key.

The following are examples using the alter table SQL statement:

• Alter the table TAB_1 to add a partitioning key using column COL1. The
table TAB_1 was created in a single-node nodegroup.

alter table TAB_1 add partitioning key(COL1)

• Alter the table BRANCH to drop its partitioning key. The table BRANCH was
created in a multinode nodegroup NG.

alter table BRANCH drop partitioning key

The following SQL error occurs:

 SQL0264N Partitioning key cannot be added or dropped because table
resides in the multinode nodegroup ″NG″ . SQLSTATE=55037

4.1.2.3 Create/Drop Index
The commands to create and drop indices are the same as DB2/6000 with the
following restriction:

• Definition of primary key or unique index

A unique index or primary key must be a superset of the partitioning key, if
any.

The indices are partitioned based on the partitioning key of the table.

74 DB2 PE for AIX: Concepts and Facilities

4.1.3 Data Manipulation Language (DML)
Data Manipulation Language (DML) is used to query, populate, and modify the
data in the database. The major DML statements are:

• Select

• Insert

• Update

• Delete

The DML used in DB2 Parallel Edition is the same as in DB2/6000 with the
following restriction:

• Update of partitioning columns

If a table resides in a multinode nodegroup, none of the partitioning columns
can be specified for update by the UPDATE statement.

To update the partitioning key value (or values), delete the old row and
insert a new one.

A new option, called buffered insert, is introduced in DB2 Parallel Edition to
improve the speed of the data insertion process. The buffered insert option will
be discussed in 4.3, “Buffered Inserts” on page 78.

4.2 Not Initially Logged Tables
When large operations such as Insert, Delete, Update, and Create Index are
done on tables, database logging might pose a problem because of:

• Log space requirements and limitations

• The time taken by logging

Because some tables are created and populated from master tables, the
recoverability of these tables is not crucial. In the event of any errors, the tables
can be recreated from the master tables.

In DB2 Parallel Edition V1.2, a clause ″NOT LOGGED INITIALLY″ is added to the
create table SQL statement. For the table created with this clause, no logging is
done for any changes made on the table (including Insert, Delete, Update, or
Create Index operations) in the same unit of work where the table was created.
This not only reduces the amount of database logging, but also may improve
performance for your application. For the syntax of create table, see DB2
Parallel Edition Administration Guide and Reference.

Notes:

 1. Changes to catalog tables made for creating a table with ″NOT LOGGED
INITIALLY″ are still logged.

 2. Any operations on the table in other units of work wil l be logged as usual.

 3. A NOT LOGGED INITIALLY table is locked with a Superexclusive (Z) lock for
the duration of the unit of work that creates it. This prevents concurrent
access by an Uncommitted Read application.

 4. The commit statement for a unit of work that creates a NOT LOGGED
INITIALLY table waits until all of the buffer pool pages for the table have

Chapter 4. Parallel Processing 75

been written to disk. For small tables, these synchronous writes may take
longer than logging operations would have taken.

4.2.1 Considerations for Using Not Logged Initially
Because changes to the table are not logged, you should consider the following
when creating a table with the ″NOT LOGGED INITIALLY″ clause:

• Since all the tables used in a static SQL application have to exist before an
application can be bound, the NOT INITIALLY LOGGED feature can only be
used with dynamic SQL.

• When a table is created with ″NOT LOGGED INITIALLY,″ a special record is
written to the database log. When this log record is encountered during
forward recovery, all the log records for this table will be ignored until a log
record to drop this table is found. If such a record is not found, the table is
marked as unavailable. After the database is recovered, any attempt to
access the table will receive the following message:

SQL1477N Table with id<id> cannot be accessed

To solve the problem, user has to drop the table.

• Forward recovery cannot recover the table created with ″NOT LOGGED
INITIALLY″ if the most recent database backup was taken before the creation
of such table.

• If a statement that changes the table which was created with ″NOT LOGGED
INITIALLY″ encounters an error, user may receive the following message and
the unit of work will be rolled back.

SQL1476N The current transaction was rolled back because of
error<error code> on the table with id<id>

The following illustrates the effect of errors on the statements in the scenario
where two logical unit of works execute one after another.

******** First unit of work begin **********
(1) Create table t1
(2) Create table t2 with not logged initially
(3) Insert into t2 select from s2
(4) Insert into t1 select from s1
(5) Create table t3 with not logged initially
(6) Create index on t2
(7) Commit

******** First unit of work end **********
******** Second unit of work begin **********

(8) Create table t4 with not logged initially
(9) Insert into t4 select from s4
(10) Insert into t3 select from t4
(11) Commit

******** Second unit of work end **********

• When an error occurs on the statement in line �3�, a UNIT OF WORK
ROLLBACK will be done. The following works will be affected:

− The creation of table t1 in line �1�.

− The creation of table t2 in line �2�.

− The insert operation into t2 in line �3�.

76 DB2 PE for AIX: Concepts and Facilities

• When an error occurs on the statement in line �4�, a STATEMENT
ROLLBACK will be done. Only the insert operation into t1 in line �4� will be
rolled back.

• When an error occurs on the statement in line �6�, a UNIT OF WORK
ROLLBACK will be done. The following work will be affected:

− The creation of table t1 in line �1�.

− The creation of table t2 in line �2�.

− The insert operation into t2 in line �3�.

− The insert operation into t1 in line �4�.

− The creation of table t3 in line �5�.

− The index creation for table t2 in line �6�.

• When an error occurs on the statement in line �9�, a UNIT OF WORK
ROLLBACK will be done. Since this statement is executed in the second unit
of work, only the creation of table t4 in line �8� will be rolled back.

• When an error occurs on the statement in line �10�, a STATEMENT
ROLLBACK will be done. Only the insert operation into t3 in line �10� will be
rolled back.

4.2.2 Example
The following example shows that an error occurred within a logical unit of work
during index creation on a table created with the ″NOT LOGGED INITIALLY″
clause.

 1. Place the following commands into a file called nologi.test.

CONNECT TO dss;
CREATE TABLE t2 (col1 INTEGER) NOT LOGGED INITIALLY;
INSERT INTO t2 SELECT * FROM t1;
CREATE UNIQUE INDEX i2 ON t2 (col1);
COMMIT;

 2. Execute the previous commands using DB2 command line with autocommit
off and send the output message to the file nologi.test.out.

db2 +c -tvf nologi.test > nologi.test.out

 3. The message SQL1476 indicates the UNIT OF WORK ROLLBACK has
occurred during index creation on table with FID 24. The error ″-603″
indicates a unique index cannot be created due to duplicate rows. The
following shows the content of nologi.test.out file.

Chapter 4. Parallel Processing 77

� �
connect to dss

Database Connection Information

 Database product = DB2/6000 PE 1.2.0
 SQL authorization ID = DB2PE
 Local database alias = DSS

create table t2 (col1 integer) not logged initially
DB20000I The SQL command completed successfully.

insert into t2 select * from t1
DB20000I The SQL command completed successfully.

create unique index i2 on t2 (col1)
DB21034E The command was processed as an SQL statement and returned:
SQL1476N The current transaction was rolled back because of error ″-603″ on
the table with id ″24″. SQLSTATE=40506

commit
DB20000I The SQL command completed successfully.

� �

4.3 Buffered Inserts
In DB2 Parallel Edition, rows can be inserted using a buffered or non-buffered
option. The new buffered insert option utilizes table queue services to achieve
parallelism for performance. For more information about table queues, refer to
4.7, “Table Queues” on page 100.

For non-buffered insertion, DB2 Parallel Edition inserts one row at a time to the
database. This is the default option for row insertion in DB2 Parallel Edition.
See Figure 37 for an illustration of this mechanism.

Figure 37. Non-Buffered Row Insertion

The steps as defined in Figure 37 are as follows:

 1. (Application) Sends the row across the firewall to the database manager on
the same node.

78 DB2 PE for AIX: Concepts and Facilities

 2. (Coordinator node) Database manager uses the partitioning key of that row
and applies the hashing algorithm to determine what node is the target
node. The database manager then sends the row to the target node.

 3. (Target node) Receives and inserts the row, then sends response to the
coordinator.

 4. (Coordinator node) Receives response from the target node, and presents
the response to the application.

Note: The insertion is committed only when the application issues a commit.

For buffered insertion, DB2 Parallel Edition packs the rows into a buffer before
insertion. As a result, the following performance advantages are achieved:

• For each buffer received by the target node, there is only one message sent
from the target node to the coordinator node.

• If the size of the row is small, a buffer can contain a large number of rows.

• The target nodes performing insertions are processed in parallel with the
coordinator node receiving new rows.

Assuming the application is executing locally at one of the nodes, the following
illustrates how DB2 Parallel Edition handles the buffered insertion:

 1. (Application) Sends the row across the firewall to the database manager on
the same node.

 2. (Coordinator node) Database manager opens one 4 KB table queue buffer for
each node of the target table. The database manager uses the row ′s
partitioning key as an input for the hashing algorithm to determine on which
node the row should be placed. It places the row into the buffer of the
appropriate node. It then returns control to the application.

The table queue buffers are closed and the rows in the buffers are sent to
the nodes when one of the following condition occurs:

• The buffer becomes full

• The application issues an implicit or explicit commit

• An updating statement is invoked while a buffered INSERT statement is
open. The following statements are updating statements:

− INSERT

− UPDATE

− DELETE

− DDL

− GRANT

− REVOKE

− REORG

− RUNSTATS

− REDISTRIBUTE NODEGROUP

− SELECT INTO

− BEGIN COMPOUND SQL

− END COMPOUND SQL

− EXECUTE IMMEDIATE

Chapter 4. Parallel Processing 79

• A PREPARE statement is issued

 3. (Target node) Receives the table queue buffer, takes the rows from the
buffer, and inserts them into the target table. Sends a message for the
received buffer to the coordinator.

(Coordinator node) Continues to receive new rows from the application.

Note: The coordinator node waits until the table queue buffers are received and
the rows are inserted successfully by every node before completing a commit or
before executing an updating statement.

4.3.1 Enabling the Buffered Insert Option
By default, INSERT with VALUES inserts one row at a time. To enable buffered
insertion, you must PREP or BIND your application with INSERT BUF option. The
option can be set using:

• Command Line Processor

• Application Programming Interface

4.3.2 Considerations for Using Buffered Insert
In order to use buffered inserts for parallelism and performance advantages,
consider designing your application so that the same INSERT with VALUES
statement can be iterated repeatedly before any of the following commands are
issued:

• A COMMIT

• An EXEC IMMED

• A different EXEC

You must ensure that you have enough space in the log files for the insertion.
Otherwise, issue periodic commits to prevent the log files from filling up from the
insertion process.

4.3.3 Restrictions
The following restrictions apply:

• Buffered inserts can be used only in user applications, not from the
Command Line Processor.

• The buffered insert option is ignored when one of the following is
encountered:

− INSERT with VALUES including any long fields in the explicit or implicit
column list.

− INSERT with full-select.

4.4 SQL Operations
This section describes other parallel operations running under DB2 Parallel
Edition.

80 DB2 PE for AIX: Concepts and Facilities

4.4.1 Set Operations
The set operations UNION, EXCEPT, and INTERSECT will be performed locally in
parallel if possible, or at the coordinator node if not. The following are
requirements for the set operations to work in parallel:

Operation Conditions

UNION ALL Tables on both sides of the UNION ALL command must be in the same node
group.

UNION

EXCEPT

EXCEPT ALL

INTERSECT

INTERSECT ALL

The following are all requirements for parallelism to work:

• Tables on both sides of the command must be collocated.

• All partitioning columns must be directly selected on both sides of the
operation.

• All partitioning key columns of the left hand side table must appear in the
same position as the corresponding partitioning key columns on the right
hand side of the operation.

4.4.2 Group By Operations
The GROUP BY operation is performed locally if all partitioning columns
participate in the GROUP BY list. If not, then the GROUP BY is done partially at
the local node and merged at the coordinator node. The DISTINCT operator may
disallow even the partial local grouping.

4.4.3 CASE Expressions
CASE expressions are supported in DB2 Parallel Edition V1.2. They allow an
expression to be selected based on the evaluation of one or more conditions.

The syntax is as follows:

case-expression:
┌ ┐─ELSE NULL───────────────

├──CASE─ ──┬ ┬─searched-when-clause─ ──┼ ┼───────────────────────── ─END─────────────────────────┤
└ ┘─simple-when-clause─── └ ┘─ELSE──result-expression─

searched-when-clause:
┌ ┐───

├─ ───� ┴─WHEN──search-condition──THEN─ ──┬ ┬─result-expression─ ─────────────────────────────────┤
└ ┘─NULL──────────────

simple-when-clause:
┌ ┐───

├──expression─ ───� ┴─WHEN──expression──THEN─ ──┬ ┬─result-expression─ ───────────────────────────┤
└ ┘─NULL──────────────

Note: All keywords of both simple- and searched-CASE expressions (i.e., CASE,
WHEN, THEN, ELSE, and END) are reserved.

The value of the CASE expression is determined by:

• The value of the result-expression following the first (leftmost) case that
evaluates to true.

Chapter 4. Parallel Processing 81

• If no search condition evaluates to true and the ELSE clause is present, the
result is the value of the ELSE clause.

• If no search condition evaluates to true and the ELSE clause is not present,
the result is NULL.

4.4.3.1 Restrictions
• The search-condition in a searched-when-clause cannot be a predicate that

includes a subquery. If violated, the following SQL error with SQLCODE -582
and SQLSTATE 42625 will occur:

SQL0582N: A CASE expression cannot include a predicate which
contains a subquery.

• All result-expressions must have (SQL) compatible data types. Otherwise,
the following SQL error with SQLCODE -581 and SQLSTATE 42804 will occur:

SQL0581N: The data types of the result-expressions of a CASE
expression are not compatible.

• At least one non-NULL result-expression must exist in the CASE expression.
Otherwise, the following SQL error with SQLCODE -580 and SQLSTATE 42625
will occur:

SQL0580N: The result-expression of a CASE expression cannot all be
NULL.

Example: The following example shows a CASE expression can be used to
translate cryptic codes into meaningful labels. Select the employee number, last
name, and a descriptive work-department name based on the first letter of the
work-department (WORKDEPT).

SELECT emp, lastname,
CASE SUBSTR(workdept, 1, 1)

WHEN ′ A′ THEN ′ Accounting′
WHEN ′ H′ THEN ′ Human Resources′
WHEN ′ D′ THEN ′ Development′

END
FROM employee

4.4.4 Outer Join
DB2 Parallel Edition V1.1 only supported join operations from two tables where
the matching values in the join columns have the same value. If a row of a table
is unmatched, that row is omitted from the result table. This join operation is
called INNER JOIN . To retain the unmatched row, the user would need to
rewrite the query.

To understand the shortcomings of INNER JOIN , consider the following tables,
′department,′ and ′employee ′:

Department: Employee:

DEPT DEPTNAME EMP FNAME WDEPT
 ------ --------- ---- --------------- -----
 A01 Acc 10 Frank B01
 B01 Plan 20 Randy C01
 C01 Dev 30 Gus C01
 D01 Info 40 Jean-Christophe C01

82 DB2 PE for AIX: Concepts and Facilities

50 Michael C01

The join (INNER JOIN) of these two tables:

SELECT dept, deptname, fname
 FROM department, employee
WHERE dept = wdept

or

SELECT dept, deptname, fname
 FROM department INNER JOIN employee
ON dept = wdept

The join (INNER JOIN) of tables ′department ′ and ′employee ′ produces the
following result table:

DEPT DEPTNAME FNAME
 ------ ------- ----------------
B01 Plan Frank
C01 Dev Randy
C01 Dev Gus
C01 Dev Jean-Christophe
C01 Dev Michael

Note: There are no rows corresponding to the departments with DEPT values of
A01, or D01 in the result table.

OUTER JOINs are a set of join operators in which the join condition specifies a
paring that is not also a restriction. There are three types of outer join:

• LEFT OUTER JOIN which includes the matched rows and preserves the
unmatched rows of the left operand table.

• RIGHT OUTER JOIN which includes the matched rows and preserves the
unmatched rows of the right operand table.

• FULL OUTER JOIN which includes the matched rows and preserves the
unmatched rows of both tables.

DB2 Parallel Edition in V1.2 only supports two types of outer join: LEFT OUTER
JOIN and RIGHT OUTER JOIN . The existing FROM clause of the subselect is
enhanced as depicted below:

Chapter 4. Parallel Processing 83

from-clause:
┌ ┐─,───────────────

├──FROM─ ───� ┴─table-reference─ ───┤

table-reference:
├─ ──┬ ┬──┬ ┬─table-name─ ──┬ ┬────────────────────────── ──┤

│ │└ ┘─view-name── │ │┌ ┐─AS─
│ │└ ┘──┴ ┴──── ─correlation-name─
└ ┘─joined-table─────────────────────────────────

joined-table:
 ┌ ┐─INNER────────────────
├─ ──┬ ┬─table-reference─ ──┼ ┼────────────────────── ─JOIN──table-reference──join-condition─ ────┤

│ │└ ┘──┬ ┬─LEFT── ──┬ ┬───────
│ │└ ┘─RIGHT─ └ ┘─OUTER─
└ ┘─(──joined-table──)───

join-condition:
┌ ┐─AND─────────────────────────

├──ON─ ───� ┴─column-name──=──column-name─ ───┤

4.4.4.1 Considerations for Using OUTER JOIN
The following should be considered when using OUTER JOIN:

• There may be more rows returned as a result of the OUTER JOIN.

• If a join-operator is not specified, INNER JOIN will be used implicitly.

• Both LEFT OUTER JOIN and RIGHT OUTER JOIN are not associative. This
means that the order in which LEFT OUTER JOIN or RIGHT OUTER JOIN
operations are performed is important and it may affect the result of the join
operation.

• When OUTER JOIN is used, the outer table is determined by:

− The left operand of LEFT OUTER JOIN

− The right operand of RIGHT OUTER JOIN

The SQL optimizer does not switch the inner and outer tables when choosing
the best execution plan. This must be taken into consideration when
choosing the partitioning key of the tables involved in the OUTER JOIN
operations.

4.4.4.2 Restrictions
The following restrictions apply:

• FULL OUTER JOIN is NOT supported in DB2 Parallel Edition V1.2.

• Only column names of the joined tables can be referenced as the predicates
in the join condition. Each basic predicate must be in the form column1 =
column2 where column1 refers to a column in one of the operand joined
tables and column2 refers to a column in the other operand joined table.

• Only the ′ = ′ operator is allowed in the predicates of the join-condition and
only the AND operator can be used to combine them.

84 DB2 PE for AIX: Concepts and Facilities

Example: The following example joins tables ′department ′ and ′employee ′ using
LEFT OUTER JOIN to list the department and employee that are in the same
working department along with any unmatched department.

Department: Employee:

DEPT DEPTNAME EMP FNAME WDEPT
 ------ --------- ---- --------------- -----
 A01 Acc 10 Frank B01
 B01 Plan 20 Randy C01
 C01 Dev 30 Gus C01
 D01 Info 40 Jean-Christophe C01

50 Michael C01

The join (LEFT OUTER JOIN) of these two tables:

SELECT dept, deptname, fname
 FROM department LEFT OUTER JOIN employee
ON dept = wdept

The join (LEFT OUTER JOIN) of tables ′department ′ and ′employee ′ produces the
following result table:

DEPT DEPTNAME FNAME
 ------ ------- ----------------
 A01 Acc -
 C01 Dev Randy
 C01 Dev Gus
 C01 Dev Jean-Christophe
 C01 Dev Michael
B01 Plan Frank
D01 Info -

Note: The rows for the table ′department ′ with DEPT values of (A01, D01) in the
result table indicates there is no employee in those departments because the
value for FNAME is NULL.

The SQL optimizer will convert an outer join to an inner join if the predicates in
the where clause disallow NULL values in the results:

SELECT dept, deptname, fname
 FROM department LEFT OUTER JOIN employee
ON dept = wdept
Where fname between ′ Adam′ and ′ Zelda′

is treated the same as:

SELECT dept, deptname, fname
 FROM department INNER JOIN employee
ON dept = wdept
Where fname between ′ Adam′ and ′ Zelda′

Chapter 4. Parallel Processing 85

and produces the following output:

DEPT DEPTNAME FNAME
 ------ ------- ----------------
 C01 Dev Randy
 C01 Dev Gus
 C01 Dev Jean-Christophe
 C01 Dev Michael
B01 Plan Frank

4.4.5 DIGITS Scalar Function
The DIGITS function is supported in DB2 Parallel Edition V1.2. It transforms the
numeric value of an argument into a character-string representation of that
number without regard to its scale or sign. The results is a character-string
which only consists of digits and does not include a sign or a decimal character.
The length of the string is:

• 5 if the argument is a small integer

• 10 if the argument is a large integer

• p if the argument is a decimal number with a precision of p

The syntax is as follows:

��──DIGITS──(──expression──)──��

Note: The argument of the DIGITS function must be an expression that returns a
value of type SMALLINT, INTEGER, or DECIMAL.

Example

• The following is the create table definition of table tab1:

CREATE TABLE tab1 (colint INTEGER, coldec DEC(6,2))

• Select the rows from table tab1 and display the result:

SELECT * FROM tab1

RESULT:

COLINT COLDEC
----------- --------

- 2.00
1 10.50
2 -10.00

• Select the rows from table tab1 using DIGITS function:

86 DB2 PE for AIX: Concepts and Facilities

SELECT DIGITS(colint), DIGITS(coldec), DIGITS(colint+1) FROM tab1

RESULT:

1 2 3
---------- ------ ----------
0000000001 001050 0000000002
- 000200 -
0000000002 001000 0000000003

Note: The above example shows:

− The result of the DIGITS function does not include a sign or a decimal
character.

− If the value of the argument is null, the result is the null value.

4.4.6 SQL Functions
There are two other SQL functions and one special register specific to DB2
Parallel Edition:

• NODENUMBER

• PARTITION

• CURRENT NODE

The NODENUMBER function takes the column name as input to get information
about the node number of the row. The column name used in the argument
must be an actual column name of the table and must not refer to a view. The
column name in the argument of this function must not be from the inner (null
supplying) table of an outer join, otherwise SQLCODE -270 is issued. The result
of the NODENUMBER function is an integer.

Figure 38. NODENUMBER Syntax

Example

SELECT L_ORDERKEY, NODENUMBER(L_ORDERKEY)
FROM LINEITEM

The PARTITION function takes the column name as input to get the information
about the partition number of the row. The column name used in the argument
must be an actual column name of the table and must not refer to a view. The
column name in the argument of this function must not be from the inner (null
supplying) table of an outer join, otherwise SQLCODE -270 is issued. The result
of the PARTITION function is an integer in the range of 0 to 4095.

Chapter 4. Parallel Processing 87

Figure 39. PARTITION Syntax

Example

SELECT L_ORDERKEY, PARTITION(L_ORDERKEY)
FROM LINEITEM

The CURRENT NODE special register specifies an integer that identifies the
coordinator node. This value can be used in expressions exactly as other
special registers.

4.4.7 Column Functions
The column functions MAX, MIN, SUM, AVG, and COUNT are performed locally,
or locally and globally. Completely local processing is done if all partitioning
columns are also grouping columns. Otherwise partial results are formed
locally, and then shipped to the consumer or coordinator node for collation.

The column functions SUM, AVG, and COUNT with DISTINCT are performed
locally, globally, or locally and globally. Completely local processing is done if
all partitioning columns are also grouping columns. Completely global
processing is done if the DISTINCT operator is applied to a column that is not the
single-column partitioning key, and the grouping columns do not include all
columns of the partitioning key. Otherwise partial results are formed locally, and
then shipped to the consumer or coordinator node for collation.

The specification of DISTINCT has not effect on the result of the MIN or MAX
column functions, and therefore, is not recommended. It is included for
compatibility with other relational systems.

4.5 SQL Optimization
The SQL Optimizer in DB2 Parallel Edition is extended to generate parallel
plans. DB2 Parallel Edition uses a cost-based query optimizer, which chooses
the lowest-cost execution plan of a query. The information used by the optimizer
to calculate the lowest-cost execution plans is:

• Table partitioning

The optimizer uses the information about how the base tables are partitioned
across nodes to determine the best execution strategies. The table partition
is also important for the optimizer to determine the best join strategy. The
join strategies include collocated, directed, and broadcast joins.

• Table statistics

The optimizer uses the information in the catalog tables to calculate the
lowest-cost access path.

• Index statistics

The optimizer uses the information to determine if an index scan is more
efficient than a table scan in terms of cost.

88 DB2 PE for AIX: Concepts and Facilities

• Database configuration parameters

The optimizer uses the database configuration parameters of the coordinator
node to determine the cost of sorting and whether a page will remain in the
buffer.

• SQL query

The optimizer evaluates each query differently depending on the structure of
the query.

4.6 Explain Tools
DB2 Parallel Edition provides two tools to analyze the access paths of the SQL
statements:

• The db2expln command is used to explain static SQL statements. The
following is the syntax:

db2expln -d dbname -c creator -p package-name -s section-number

• The dynexpln command is used to explain dynamic SQL statements. The
following is the syntax:

dynexpln dbname ″query″

or

dynexpln dbname ″query″ > query.expln.out

The output of the dynamic explain can be sent to the standard output device
or redirected to a file. If you have a long query, you should create a script to
contain the query. For example, the following query is in a file called
query.input

select t1.c1, t.c2, sum(t2.c3)
from t1, t2
where t1.c1 = t2.c1 and t2.c3 < 100
group by t1.c1, t1.c2

You would execute the dynexpln in the following way to get the explain
output.

dynexpln dbname ″cat query.input″ > query.expln.out

The dynexpln shell script treats any SQL statement with SELECT as the first token
on a line as a SELECT statement. This can cause unexpected failures during the
″C″ precompiler step on INSERT, DELETE, and UPDATE statements with
subqueries, because the shell script declares a cursor:

prep dynexpln.sqc PACKAGE

LINE MESSAGES FOR dynexpln.sqc
------ ---

SQL0060W The ″C″ precompiler is in progress.
2 SQL0199N The use of the reserved word ″insert″ following

″FOR″ is not valid. Expected tokens may include:
″ACQUIRE″ .

SQL0092N No package was created because of previous
errors.

SQL0091W Precompilation or binding was ended with ″2″
errors and ″0″ warnings.

Chapter 4. Parallel Processing 89

These SQL statements can be explained after joining the line containing the
SELECT with the line above it.

4.6.1 Example of Explain Report
The following query performs a select to retrieve all order keys from the
ORDERS table where the order date is after the first of July 1993.

SELECT O_ORDERKEY FROM ORDERS
WHERE O_ORDERDATE > DATE(′1993-07-01′)
ORDER BY O_ORDERKEY

The explain for this query is given in Figure 40.

Figure 40. Explain Example

There are two subsections in the example. The part labelled 1 is the coordinator
subsection, and always exists. The following is an explanation of the parts of
this section:

• The first part of this subsection labeled 3 shows that subsection #1 will be
executed on all nodes of the specified nodegroup. A broadcast routing
method has been chosen by DB2 Parallel Edition which means that
subsection #1 will go to all nodes in the nodegroup. The nodegroup is

90 DB2 PE for AIX: Concepts and Facilities

specified as IBMDEFAULTGROUP, and the number of nodes in this
nodegroup is 4.

• The second part, labeled 4, of this subsection specifies how the coordinator
will process returned values. In this example the output is read from a table
queue, q1. These values have been sorted on the first column. This column
is O_ORDERKEY.

The second subsection is labeled 2, and will run on all nodes in the
IBMDEFAULTGROUP nodegroup, as indicated in the coordinator subsection. The
different parts of this subsection are described below.

• The first part, labeled 5, specifies that the DB2PE.ORDERS table will be
accessed, and two of its columns retrieved. The table has an internal file
identifier of 25. There will be a forward relational scan. The table will be
locked in Intent Share mode.

• The second part, labeled 6, specifies that the predicates in the WHERE
clause will be evaluated by the database manager as soon as the row is
read by the relation scan. As part of the predicate processing, each row that
meets the criteria of the predicates is added to a sorted temporary table, t1.
The column to be sorted is considered a predicate, thus #predicates = 2.

• In the final part, labeled 7, the temporary table t1 is scanned in a forward
direction. Rows will be added to a table queue q1 which are then sent to the
coordinator node.

4.6.2 Description of Explain Report
This section describes the report generated by the explain tool. The report
shows the parallel plan chosen by the DB2 Parallel Edition optimizer to execute
the SQL statement.

When reading the explain report, you should start with the subsections which
have the ″base″ tables. ″Base″ table means the table being referenced in the
SQL statement, not the temporary table names, or table queue names.

4.6.2.1 Subsection Statements
In DB2 Parallel Edition, each parallel plan consists of at least two subsections:

• Coordinator subsection which does the process control. This subsection is
executed on the coordinator node by the coordinating agent (db2agent).

• Subsections which are started by the coordinating agent and communicate
with the coordinator subsection and other subsections via table queues.

Coordinator Subsection: This is the heading for subsection 0, which always
exists. It gets control when an SQL request is issued from an application. This
subsection is executed on the coordinator node. It distributes the request to
other subsections, and returns results to the application.

Subsection #n: This text is the heading provided for each parallel subsection,
which are uniquely numbered. These subsections are distributed and invoked by
the coordinator subsection to perform various tasks in the execution of an SQL
request. Each parallel subsection on each node is executed by a parallel agent
process, db2agntp (unless locally bypassable). There may be more than one
parallel agent at a given node working on behalf of an SQL request because
multiple subsections may be required.

Chapter 4. Parallel Processing 91

Distribute Subsection #n: This text shows if a subsection is to be executed at
one or all nodes of a nodegroup. The sub-text of the following distribution
information can accompany the subsection text:

• Information that indicates if the subsection is locally bypassable. This
enhancement in DB2 Parallel Edition V1.2 has been implemented to improve
performance for a subsection which is executed locally on the coordinator
node. The improvement is to have the coordinating agent (db2agent) execute
the query rather than sending the subsection to the PDB system controller
and acquiring a parallel agent (db2agntp) to do the work.

Locally bypassable

• Routing method:

Broadcast to Nodegroup
(to all nodes of a nodegroup)

Directed to Single Node
(to a single node)

Directed by Hash #Columns = n
(to one node of a nodegroup based on a value)

Directed by Position
(to the node that provided a cursor′ s current row)

• Partitioning information that applies to all routing methods except Directed
by Position:

Partitioning Map ID = n

• Nodegroup Name:

Nodegroup = xxxxxx

• Number of nodes:

#Nodes = n

4.6.2.2 Table Access Statements
This text description is the same as that found in DB2/6000. This statement tells
the name and type of table being accessed. It has two formats that are used:

 1. Regular tables:

Access Table Name = qualifier.tbname ID = xx #Columns = yy

where:

• qualifier.tbname is the fully-qualified name of the table being accessed
• ID is the corresponding FID column in the SYSIBM.SYSTABLES catalog

table
• #Columns indicates the number of columns being used from each row of

the table

 2. Temporary tables:

Access Temp Table ID = xx #Columns = yy

where:

• ID is the corresponding identifier assigned by db2expln
• #Columns indicates the number of columns in each row of the table

Following the table access statement, additional statements will be provided to
further describe the access. These statements will be indented under the table
access statement. The possible statements are:

• Scan Direction

92 DB2 PE for AIX: Concepts and Facilities

• Row Access Method
• Locking Mode
• Predicates

Scan Direction: The scan direction can either be forward or reverse. Note that
an index scan can only read data in forward order. The format is:

Scan Direction = xxxxxx

Row Access Method: In DB2 Parallel Edition, scan operations can be executed
in parallel across nodes. In the explain report, one of the following statements
indicate how the qualifying rows in the table will be accessed:

• Relation Scan indicates that the table is being sequentially scanned to find
the qualifying rows.

• Index Scan indicates that the qualifying rows are being identified and
accessed through an index:

Index Scan: Name = qualifier.idxname ID = xx #Key Columns = yy

where:

− qualifier.idxname is the fully-qualified name of the index being scanned.
− ID is the corresponding ID column in the SYSIBM.SYSINDEXES catalog

table.
− #Key Columns indicates the number of range-delimiting predicates, that is,

the number of columns in the index key (from left to right) being used to
delimit the index scan range. If #Key Columns = 0, a full scan of the index
is being performed.

If all the needed columns can be obtained from the index key,

Index-only Access

will appear and no table data will be accessed.

If there are predicates that can be passed to the Index Manager to help
qualify the index entries, the following statement is used to show the
number of such predicates:

Sargable Index Predicate(s)
#Predicates = n

• The Fetch Direct statement indicates that the qualifying rows are being
accessed by using row IDs (RIDs) that were prepared earlier in the access
plan.

• The Table-in-Memory statement indicates that the qualifying rows are being
identified and accessed through a binary search of a sorted temporary table
that is resident in memory.

Lock Mode: For each table access, the type of lock that will be acquired is
shown with one of the following statements:

• Lock Exclusive
• Lock Intent Exclusive
• Lock Intent Exclusive Immediate
• Lock Intent Exclusive with U row locks
• Lock Intent None
• Lock Intent Share
• Lock Share
• Lock Share Intent Exclusive

Chapter 4. Parallel Processing 93

• Lock Super Exclusive
• Lock U (Update) For more information about lock modes, see 4.9, “Database

Locking” on page 126.

Predicates: There are three statements that provide information about the
predicates used in an access plan:

 1. The following statement indicates the number of predicates that wil l be
evaluated once the data has been returned:

Residual Predicate(s)
#Predicates = n

 2. The following statement indicates the number of predicates that wil l be
evaluated while the data is being accessed:

Sargable Predicate(s)
#Predicates = n

 3. Since predicates concerning the inner table in the outer join may be
correctly applied only after the join is performed, the following statement
may appear in the explain output:

Outer Join Residual Predicate(s)
#Predicates = n

The number of predicates shown in the above statements may not reflect the
number of predicates provided in the SQL statement because predicates can:

• Be applied more than once within the same query

• Be transformed and extended with the addition of implicit predicates during
the query optimization process

• Be transformed and condensed into fewer predicates during the query
optimization process

• Include push-down operations such as aggregation or sort

4.6.2.3 Temporary Tables
A temporary table is used by an access plan to store data during its execution in
a transient or temporary work table. The table only exists while the access plan
is being executed. Generally, temporary tables are used when subqueries need
to be evaluated early in the access plan, or when intermediate results will not fit
in the available memory.

If a temporary table needs to be created, then one of two possible statements
may appear. These statements indicate that a temporary table is to be created
and rows inserted into it. The ID is an identifier assigned by db2expln for
convenience when referring to the temporary table. This ID is prefixed with the
letter ′ t′ to indicate that the table is a temporary table.

 1. The following statement indicates an ordinary temporary table wil l be
created: Create/Insert Into Temp Table ID = tn

 2. The following statement indicates a sorted temporary table wil l be created:
Create/Insert Into Sorted Temp Table ID = tn

A sorted temporary table is created through the use of the Sort Services. Sorts
can result from such operations as:

• ORDER BY
• DISTINCT

94 DB2 PE for AIX: Concepts and Facilities

• GROUP BY
• Merge Join
• ′ = ANY′ subquery
• ′ < > ALL ′ subquery
• INTERSECT or EXCEPT
• UNION (without the ALL keyword)

A number of additional statements may follow the original creation statement for
a sorted temporary table:

• The following statement indicates the number of key columns used in the
sort:

Sort #Columns = n

• The following statements indicate whether or not the results from the sort
can be left in the sort heap:

Piped

and

Not Piped

A sort cannot be piped if the result from the sort will be used as the inner
table of a join. Inner tables of joins need to allow for possible re-scanning,
which would not be possible with piped sort output.

At execution time a request for a piped sort may or may not be granted
based on the currently allocated sortheap, the sheapthres database manager
parameter, and the setting of the DB2_SORT_CUSHION_FOR_PIPE environment
variable. See the $HOME/sqllib/Readme/$LANG/README file for details.

The Database System Monitor can be used to determine whether or not
piped sort requests have been accepted at execution time:

db2 get snapshot for database manager | grep -i sort

This output shows that all of the piped sort requests were accepted by the
database manager:

Sort heap allocated = 0
Post threshold sorts = Not Collected
Piped sorts requested = 3
Piped sorts accepted = 3

• The following statement indicates that duplicate values will be removed
during the sort:

Duplicate Elimination

• The following statement indicates that one or more aggregation predicates
will be partially applied during the sort:

Aggregation in Sort

It is possible that more than one row for the same aggregation key (for
example, grouping columns) is output, and therefore, there will always be a
subsequent aggregation completion. This method is not used if there are
any column functions which contain the DISTINCT keyword.

Chapter 4. Parallel Processing 95

• Once a temporary table is created and rows inserted into it, it is possible
that more rows will be inserted into it. If this is the case, one of the following
statements will appear:

Insert Into Temp Table ID = tn

or

Insert Into Sorted Temp Table ID = tn

• After a table access that contains a push-down operation to create a
temporary table (that is, a create temporary table that occurs within the
scope of a table access), there will be a ″completion″ statement, which
handles end-of-file by getting the temporary table ready to provide rows to
subsequent temporary table access. One of the following will be displayed:

Temp Table Completion ID = tn

or

Sorted Temp Table Completion ID = tn

4.6.2.4 Access Table Queues
Table queues are used to communicate between subsections. A table queue is
created only once. Repetitive insertions can occur on the same table queue. If
a table queue is needed, the following statement is displayed in the explain
report.

Access Table Queue: The text shows the table queue identifier and the number
of columns in the table queue. The format is:

Access Table Queue ID = qn #Columns = n

Access Table Queue Substatements: The following text can accompany the
access table queue text in the explain report:

• Output Sorted #Columns = n
• Output Sorted and Unique #Columns = n
• Sargable Predicate(s)
• Residual Predicate(s)

The access table queue statement shows whether or not the rows of the table
queue were sorted, and if so, how many columns of the table queue were used
as the ordering key.

Create/Insert into Table Queue: This statement shows that rows will be inserted
into a table queue and the table queue will be used to communicate between
subsections. The text indicates the table queue number and the routing method
used for the communication. The following are the possible routing methods:

• Broadcast
• Directed
• Returned to sending node
• Directed to Selected node

The format is:

Create/Insert Into Table Queue ID = qn, xxxxxx

96 DB2 PE for AIX: Concepts and Facilities

4.6.2.5 Joins
Four join strategies are implemented:

• Left Outer Merge Join
• Left Outer Nested Loop Join
• Merge join
• Nested loop join

Note: The query optimizer converts right outer joins into left outer joins
by interchanging the left and right tables.

The outer table of the join will be the table referenced in the previous
access statement shown in the output. The inner table of the join will be
the table referenced in the access statement that is contained within the
scope of the join statement. If a join involves more than two tables, the
access statements should be read from top to bottom.

Join Substatements: The following text accompanies the join statement
in the explain report to indicate the parallel join strategy chosen by the
DB2 Parallel Edition optimizer. The possible join strategies are:

• Broadcast Outer Table

The rows of the outer-table are transmitted to all nodes of the
inner-table, where the join takes place.

• Directed Outer Table

Each row of the outer-table is hashed based on the join columns
corresponding to the inner-table partitioning attributes and sent to
the appropriate nodes of the inner-table, where the join takes place.

• Directed Inner and Outer Tables

The rows of the outer and inner-table are hashed based on their join
columns and directed to common nodes, where the join takes place.

• Collocated

The rows of the outer and inner-table are joined locally on each
node.

4.6.2.6 Insert, Update, and Delete
The explain text for these SQL statements is self-explanatory. Possible
statement text for these SQL operations can be:

• Insert With Values Clause: Table Name = qualifier.tbname ID = xx

• Insert With Select: Table Name = qualifier.tbname ID = xx

• Update: Table Name = qualifier.tbname ID = xx

• Update Current of Cursor: Table Name = qualifier.tbname ID = xx

• Delete: Table Name = qualifier.tbname ID = xx

• Delete Current of Cursor: Table Name = qualifier.tbname ID = xx

Chapter 4. Parallel Processing 97

4.6.2.7 Index OR Filter
For some access plans, it is more efficient if the qualifying row
identifiers (RIDs) are sorted and duplicates removed before the
actual table access is performed:

Index OR Filter

Index ORing refers to the technique of making more than one index
access and combining the results. The optimizer will consider index
ORing when predicates are connected by OR keywords or there is an
IN predicate. The index accesses can be on the same index or
different indices.

4.6.2.8 Aggregation
Aggregation is performed on those rows meeting the specified
criteria, if any, provided by the SQL statement predicates. If an
aggregation function is to be done, one of the following statement
appears:

Predicate Aggregation
Aggregation

Predicate aggregation states that the aggregation operation has been
pushed-down to be processed as a predicate when the data is
actually accessed.

Beneath the aggregation statement will be an indication of the type
of aggregation function being performed:

Group By
Column Function(s)
Having
Single-fetch

The specific column function can be derived from the original SQL
statement. A single record may be fetched from an index to satisfy a
MIN or MAX operation.

If predicate aggregation is used, then subsequent to the table access
statement in which the aggregation appeared, there will be an
aggregation ″completion,″ which carries out any needed processing
upon completion of each group or on end-of-file. The following line is
displayed:

Aggregation Completion

The database manager does as much aggregation as it can as close
to the source of data as possible. Completely local aggregation is
possible if all partitioning columns are also grouping columns. If
complete local aggregation is not possible, the database manager
tries to create local partial groups, then merges the groups
generated on the different nodes. Merging of the partial groups can
occur at the consumer node or at the coordinator node. In either
situation, during global aggregation the number of contributing rows
to a single resulting row is less than or equal to the number of nodes
where the local groups are produced, because each node can
contribute, at most, one partial group for each grouping value. There
are some cases where the DISTINCT clause may disallow even

98 DB2 PE for AIX: Concepts and Facilities

partial local aggregation. These occur when the DISTINCT operator
is applied to a column that is not the single-column partitioning key,
and the grouping columns do not include all columns of the
partit ioning key.

4.6.2.9 Miscellaneous Statements
• Sections for data definition language statements will be indicated

in the output with the following:

DDL Statement

No additional explain output is provided for DDL statements.

• Sections for LOCK TABLE statements will be indicated in the
output with the following

Lock Table

No additional explain output is provided for LOCK TABLE
statements.

• Sections for GRANT or REVOKE statements will be indicated in
the output with one of the following:

Authorization (Grant)
Authorization (Revoke)

No additional explain output is provided for GRANT or REVOKE
statements.

• If the SQL statements contains the DISTINCT clause, the following
text may appear in the output:

Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct
rows. To retrieve distinct row values, the rows must be ordered
so that duplicates can be skipped. This statement will not appear
if the database manager does not have to explicitly eliminate
duplicates, as in the following cases:

− A unique index exists and all the columns in the index key
are part of the DISTINCT operation

− Duplicates that can be eliminated during sorting

• One of the following statements will appear if there is a set
operator in the SQL statement:

UNION
UNION ALL
EXCEPT
EXCEPT ALL
INTERSECT
INTERSECT ALL

• One of the following statements will appear if an ALL, ANY, or
EXISTS subquery is being processed in the access plan:

ALL
ANY

Note that the some IN predicates may be converted to equivalent
quantified predicates:

• An IN predicate of the form:

Chapter 4. Parallel Processing 99

expression IN (fullselect)

is equivalent to a quantified predicate of the form:

expression = ANY (fullselect)

• An IN predicate of the form:

expression NOT IN (fullselect)

is equivalent to a quantified predicate of the form:

expression <> ALL (fullselect)

4.7 Table Queues
Table queues are a mechanism used to communicate between
processes which are cooperating in executing a query. They are
implemented as data buffers, but to the database process the
communication looks like a table access.

During communication there are always senders and receivers.
Multiple different types of table queues exist where the number of
senders and receivers differ. These are:

• Single receiver, single sender

• Single receiver, multiple sender

− Non-deterministic interleaf

− Deterministic interleaf (Merged table queue)

• Multiple receiver, single sender (Routed or Broadcast table
queue)

4.7.1 Single-Receiver, Single-Sender Table Queues
This is the simplest case where one node transmits data to only one
other node. Figure 41 illustrates this process.

Figure 41. Single-Sender, Single-Receiver Table Queue

100 DB2 PE for AIX: Concepts and Facilities

4.7.2 Single-Receiver, Multiple-Sender Table Queues
In this case multiple processes need to send data to one process.
This may happen, for example, at the end of a select, where all the
nodes involved in the query return their data to the coordinator node.
This node would then return the collected output back to the
application.

It may or may not be important to have a specific order in the
received rows. If the order is not important then the table queue
type will be a non-deterministic interleaf. This is illustrated in
Figure 42.

Figure 42. Non-Deterministic Interleaf Table Queue

If the order is important, then the merge of the data-streams must be
controlled. This type of queue is called a deterministic interleaf. A
deterministic interleaf is illustrated in Figure 43.

Figure 43. Deterministic Interleaf Table Queue

Chapter 4. Parallel Processing 101

4.7.3 Multiple-Receiver, Single-Sender Table Queues
In this case one node sends a message to many of the nodes in the
nodegroup. This case applies when, for example, the coordinator
node splits a select and sends it to all nodes in the nodegroup. Two
different kind of transmissions may occur:

Routed When column values are used to determine which
receiver will receive which record

Broadcast When every record is sent to every receiver.

Figure 44 illustrates this type of queue.

Figure 44. Single-Sender, Mult iple-Receiver Table Queue

4.8 Join Operations
Join operations in DB2 Parallel Edition can be executed in parallel
across many nodes. When generating a plan, the Parallel Edition
optimizer considers different joining methods based on the
partitioning keys and statistics information. Partitioning keys have a
strong influence as to the type of join operations that the DB2
Parallel Edition optimizer will choose. Section 3.7.4, “Data
Partitioning” on page 64 describes how to choose a good partitioning
key.

4.8.1 Join Methods
DB2 Parallel Edition implements two join methods: Nested loop, and
Merge scan.

4.8.1.1 Nested Loop Join Method
The Nested loop join repetitively scans the inner table. That is, DB2
scans the outer table once, and scans the inner table as many times
as the number of qualifying rows in the outer table. Hence, the
nested loop join is usually the most efficient join method when the
values of the join column passed to the inner table are in sequence
and the index on the join column of the inner table is clustered, or
the number of rows retrieved in the inner table through the index is
small.

102 DB2 PE for AIX: Concepts and Facilities

The Nested loop join is often used if:

• The outer table is small.

• Predicates with small filter factors reduce the number of
qualifying rows in the outer table.

• An efficient, highly clustered index exists on the join columns of
the inner table.

• The number of data pages accessed in the inner table is small.

4.8.1.2 Merge Scan Join Method
For the Merge scan join DB2 scans both tables in the order of the
join columns. If no efficient indices on the join columns provide the
order, DB2 might sort the outer table, the inner table, or both. The
inner table is always put into a work file; the outer table is put into a
work file only if it must be sorted. When a row of the outer table
matches a row of the inner table, DB2 returns the combined rows.

DB2 then reads another row of the inner table that might match the
same row of the outer table and continues reading rows of the inner
table as long as there is a match. When there is no longer a match,
DB2 reads another row of the outer table.

• If that row has the same value in the join column, DB2 reads
again the matching group of records from the inner table. Thus,
a group of duplicate records in the inner table is scanned as
many times as there are matching records in the outer table.

• If the outer row has a new value in the join column, DB2
searches ahead in the inner table. It can find:

− Unmatched rows in the inner table, with lower values in the
join column.

− A new matching inner row. DB2 then starts the process
again.

− An inner row with a higher value of the join column. Now the
row of the outer table is unmatched. DB2 searches ahead in
the outer table, and can find:

- Unmatched rows in the outer table.

- A new matching outer row. DB2 then starts the process
again.

- An outer row with a higher value of the join column. Now
the row of the inner table is unmatched, and DB2
resumes searching the inner table.

The Merge scan join is often used if:

• The qualifying rows of the inner and outer table are large, and
the join predicate does not provide much filtering; that is, in a
many-to-many join.

• The tables are large and have no indexes with matching
columns.

Chapter 4. Parallel Processing 103

• Few columns are selected on inner tables. This is the case when
a DB2 sort is used. The fewer the columns to be sorted, the
more efficient the sort.

For both merge-scan, and nested-loop join methods, there are four
parallel join strategies available to Parallel Edition:

• Collocated Joins

• Directed Outer-Table Joins

• Directed Inner-Table and Outer-Table Joins

• Broadcast Outer-Table Joins

4.8.2 Parallel and Join Strategies
This section uses the same SQL query throughout on the same
tables to demonstrate four types of join strategies based on the
choice of partitioning keys defined on the tables and the size of the
tables.

The example queries use:

SELECT O_ORDERPRIORITY, COUNT(DISTINCT O_ORDERKEY)
FROM ORDERS, LINEITEM
WHERE L_ORDERKEY = O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERPRIORITY

The table definition for table ORDERS:

The table definition for table LINEITEM:

Column Name Data Type

O_ORDERKEY INTEGER

O_CUSTKEY INTEGER

O_ORDERSTATUS CHAR(1)

O_TOTALPRICE FLOAT

O_ORDERDATE DATE

O_ORDERPRIORITY CHAR(15)

O_CLERK CHAR(15)

O_SHIPPRIORITY INTEGER

O_COMMENT CHAR(49)

Column Name Data Type

L_ORDERKEY INTEGER

L_PARTKEY INTEGER

L_SUPPKEY INTEGER

L_LINENUMBER INTEGER

L_QUANTITY INTEGER

L_EXTENDEDPRICE FLOAT

L_DISCOUNT INTEGER

L_TAX INTEGER

104 DB2 PE for AIX: Concepts and Facilities

Column Name Data Type

L_RETURNFLAG CHAR(1)

L_LINESTATUS CHAR(1)

L_SHIPDATE DATE

L_COMMITDATE DATE

L_RECEIPTDATE DATE

4.8.3 Collocated Join Strategy
A collocated join is a join strategy which is performed locally on
each node which contains relevant data. Communication is not
required between the nodes except to return the answer set to the
coordinator node. This join strategy will be chosen by the DB2
Parallel Edition optimizer if the following conditions are met:

• For tables residing in a single-node nodegroup

− All tables residing in single-node nodegroups are collocated
if the nodegroups are located on the same node.

• For tables residing in multinode nodegroups

− The joined tables must reside in the same nodegroup.

− The partitioning key for the joined tables must have the same
number of columns.

− Corresponding partitioning key columns must be partition
compatible.

− There must be equijoin predicates on all corresponding
partitioning key columns of the joined tables.

For the example query (See 4.8.2, “Parallel and Join Strategies” on
page 104), the following are the partitioning keys defined to illustrate
the collocated join.

Table Name Partitioning Key

ORDERS O_ORDERKEY

LINEITEM L_ORDERKEY

4.8.3.1 Explain Statement from the Collocated Join
The following is the SQL statement that was executed and the
explain output it generated:

SQL Statement:

SELECT O_ORDERPRIORITY, COUNT(DISTINCT O_ORDERKEY)
FROM ORDERS, LINEITEM
WHERE L_ORDERKEY=O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERPRIORITY

(1) Coordinator Subsection:
(2) Distribute Subsection #1
(3) Broadcast to Nodegroup
(4) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4

Chapter 4. Parallel Processing 105

(5) Access Table Queue ID = q1 #Columns = 2
(6) Output Sorted #Columns: 2
(7) Residual Predicate(s)
(8) #Predicates = 1
(9) Predicate Aggregation
(10) Group By
(11) Column Function(s)
(12) Aggregation Completion
(13) Group By
(14) Column Function(s)

(15) Subsection #1:
(16) Access Table Name = DB2PE.LINEITEM ID = 24 #Columns = 3
(17) Scan Direction = Forward
(18) Relation Scan
(19) Lock Intent Share
(20) Sargable Predicate(s)
(21) #Predicates = 2
(22) Create/Insert Into Sorted Temp Table ID = t1
(23) Sort #Columns = 1
(24) Not Piped
(25) Sorted Temp Table Completion ID = t1
(26) Access Table Name = DB2PE.ORDERS ID = 23 #Columns = 2
(27) Scan Direction = Forward
(28) Relation Scan
(29) Lock Intent Share
(30) Sargable Predicate(s)
(31) #Predicates = 1
(32) Create/Insert Into Sorted Temp Table ID = t2
(33) Sort #Columns = 1
(34) Piped
(35) Sorted Temp Table Completion ID = t2
(36) Access Temp Table ID = t2 #Columns = 2
(37) Scan Direction = Forward
(38) Relation Scan
(39) Merge Join
(40) Join Strategy: Collocated
(41) Access Temp Table ID = t1 #Columns = 1
(42) Scan Direction = Forward
(43) Relation Scan
(44) Residual Predicate(s)
(45) #Predicates = 1
(46) Create/Insert Into Sorted Temp Table ID = t3
(47) Sort #Columns = 2
(48) Not Piped
(49) Duplicate Reduction
(50) Sorted Temp Table Completion ID = t3
(51) Access Temp Table ID = t3 #Columns = 2
(52) Scan Direction = Forward
(53) Relation Scan
(54) Residual Predicate(s)
(55) #Predicates = 1
(56) Predicate Aggregation
(57) Group By
(58) Column Function(s)
(59) Aggregation Completion
(60) Group By
(61) Column Function(s)
(62) Create/Insert Into Table Queue ID = q1, Broadcast

106 DB2 PE for AIX: Concepts and Facilities

The following serves as an explanation of the explain statement that
was shown in 4.8.3.1, “Explain Statement from the Collocated Join”
on page 105 performing a collocated join.

• Coordinator subsection

This subsection will be executed on the coordinator node where
the application issues the CONNECT SQL statement.

− In line �2� thru �4�

- The coordinator subsection broadcasts subsection #1 to
the 4 nodes of nodegroup FOUR.

− In line �5� thru �14�

- Access 2 columns (O_ORDERPRIORITY, and
O_ORDERKEY) from table queue q1 which is created in
line Line �51� thru �54�.

 - Finish applying the predicate for the GROUP BY and
COUNT function.

- Complete the aggregation and send the results back to
user application.

• Subsection #1

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �16� thru �25�

 - Read 3 columns (L_ORDERKEY, L_COMMITDATE, and
L_RECEIPTDATE) from table with FID = 24. The table
name is DB2PE.LINEITEM.

- Fetch the rows by scanning the table sequentially.

- Apply 2 predicates. This creates a temporary table, t1,
and inserts the rows which meet the criteria of the
predicates to it. The temporary table t1 is sorted on
L_ORDERKEY.

Note: Because this temporary table will later be used as
the inner table of a join, the sort cannot be piped.

 - Indicate the completion of sorted temporary table t1
creation.

− Line �26� thru �35�

- Read 2 columns (O_ORDERKEY, O_ORDERPRIORITY)
from table with FID = 23. The table name is
DB2PE.ORDERS.

- Fetch the rows by scanning the table sequentially.

- Apply 1 predicate. Create the temporary table t2 and
insert the rows which meet the criteria of the predicate to
it. Sort on O_ORDERKEY then pipe the sorted rows into
the temporary table t2.

Note: In a piped temporary table, the rows are sorted in
memory and without creating a temporary table on disk,
the sort pipes the rows out to join with the other table.

Chapter 4. Parallel Processing 107

 - Indicate the completion of sorted temporary table t4
creation.

− Line �36� thru �50�

- Outer-table (line �36� thru �38�)

• Access the temporary table t2 thru the pipe which is
created in line �32�.

• Fetch the rows by scanning t2 sequentially.

- The join method is merge join where the outer-table t4
and inner-table t1 are collocated. The join operation will
be performed locally on each node.

- Inner-table (line �41� thru �45�)

• Access the temporary table t1 created in line �22�.

• Fetch the rows by scanning t1 sequentially and apply
1 predicate.

- Create the temporary table t3 and insert the rows which
meet the criteria of the predicates to it. Sort the
temporary table t3 in the order of O_ORDERPRIORITY,
and O_ORDERKEY. Duplicate rows for the sorted
temporary table are removed.

- Indicate the completion of sorted temporary table t3
creation.

− Line �51� thru �62�

- Access the temporary table t3 sequentially.

 - Begin applying the predicate for the GROUP BY and
COUNT function. Because the ORDERS table is
partitioned on the O_ORDERKEY, the DISTINCT
processing can be performed locally. The output from
the aggregation will be a single row for each
O_ORDERPRIORITY value.

- Create and insert the rows from t3 to table queue q1.
Broadcast the table queue q1.

4.8.3.2 Process Flow of a Collocated Join
Figure 45 on page 109 shows the processing and data transmission
which will take place between two nodes, the coordinator node and
another node.

108 DB2 PE for AIX: Concepts and Facilities

Figure 45. Collocated Join Process Flow

In Figure 45 the following process is illustrated:

 1. The coordinator node receives a request from the application and
sends it to all nodes containing relevant data.

 2. The nodes scan the outer-table and may apply predicates to it.

 3. The nodes scan the inner-table and may apply predicates to it.

 4. The nodes perform the join operation between the two result
sets.

 5. The nodes send the results of the join to the coordinator node via
table queue q1.

 6. The coordinator node collects the results from table queue q1,
processes them, and returns the final result to the user.

4.8.3.3 Data Flow of a Collocated Join
Figure 46 on page 110 shows the data transmission which occurs
during the collocated join operation. Here the data is spread across
four nodes and the coordinator node is shown as a separate node for
clarity.

Chapter 4. Parallel Processing 109

Figure 46. Collocated Join Data Flow

In Figure 46 the data flow is the following:

 1. The application sends a request to the coordinator node. The
coordinator node then splits the operation across all nodes
containing relevant data (this is step 1 of the process flow).

 2. The nodes send back their own results (this is step 5 of the
process flow).

 3. The coordinator node returns the final result to the application
(this is step 6 of the process flow).

Step 1 requires little data transmission, while steps 2 and 3 may
require the transmission of large amounts of data. This will depend
on the answer set.

4.8.4 Directed Outer-Table Join Strategy
A directed outer join strategy may be chosen when the following
conditions are satisfied:

• There must be equijoin predicates on all partitioning key columns
of the inner table.

For the example query (See 4.8.2, “Parallel and Join Strategies” on
page 104.), the following are the partitioning keys defined to illustrate
the directed outer-table join:

Table Name Partitioning Key

ORDERS O_CUSTKEY

LINEITEM L_ORDERKEY

110 DB2 PE for AIX: Concepts and Facilities

4.8.4.1 Explain Statement for Directed Outer-Table Join
The following is the SQL statement that was executed and the
explain output it generated:

SQL Statement:

SELECT O_ORDERPRIORITY, COUNT(DISTINCT O_ORDERKEY)
FROM ORDERS, LINEITEM
WHERE L_ORDERKEY=O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERPRIORITY

(1) Coordinator Subsection:
(2) Distribute Subsection #2
(3) Broadcast to Nodegroup
(4) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(5) Distribute Subsection #1
(6) Broadcast to Nodegroup
(7) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(8) Access Table Queue ID = q1 #Columns = 2
(9) Output Sorted #Columns: 2
(10) Residual Predicate(s)
(11) #Predicates = 1
(12) Predicate Aggregation
(13) Group By
(14) Column Function(s)
(15) Aggregation Completion
(16) Group By
(17) Column Function(s)

(18) Subsection #1:
(19) Access Table Name = DB2PE.LINEITEM ID = 24 #Columns = 3
(20) Scan Direction = Forward
(21) Relation Scan
(22) Lock Intent Share
(23) Sargable Predicate(s)
(24) #Predicates = 2
(25) Create/Insert Into Sorted Temp Table ID = t1
(26) Sort #Columns = 1
(27) Not Piped
(28) Sorted Temp Table Completion ID = t1
(29) Access Table Queue ID = q2 #Columns = 2
(30) Output Sorted #Columns: 1
(31) Merge Join
(32) Join Strategy: Directed Outer Table
(33) Access Temp Table ID = t1 #Columns = 1
(34) Scan Direction = Forward
(35) Relation Scan
(36) Residual Predicate(s)
(37) #Predicates = 1
(38) Create/Insert Into Sorted Temp Table ID = t2
(39) Sort #Columns = 2
(40) Not Piped
(41) Duplicate Reduction
(42) Aggregation in Sort
(43) Sorted Temp Table Completion ID = t2
(44) Access Temp Table ID = t2 #Columns = 2
(45) Scan Direction = Forward

Chapter 4. Parallel Processing 111

(46) Relation Scan
(47) Create/Insert Into Table Queue ID = q1, Broadcast

(48) Subsection #2:
(49) Access Table Name = DB2PE.ORDERS ID = 23 #Columns = 2
(50) Scan Direction = Forward
(51) Relation Scan
(52) Lock Intent Share
(53) Sargable Predicate(s)
(54) #Predicates = 1
(55) Create/Insert Into Sorted Temp Table ID = t3
(56) Sort #Columns = 1
(57) Not Piped
(58) Sorted Temp Table Completion ID = t3
(59) Access Temp Table ID = t3 #Columns = 2
(60) Scan Direction = Forward
(61) Relation Scan
(62) Create/Insert Into Table Queue ID = q2, Directed

The following serves as an explanation of the explain statement that
was shown in 4.8.4.1, “Explain Statement for Directed Outer-Table
Join” on page 111.

• Coordinator subsection

This subsection will be executed on the coordinator node where
the application issues the CONNECT SQL statement.

− In line �2� thru �7�

- The coordinator subsection broadcasts the subsection #1
and #2 to the 4 nodes of nodegroup FOUR.

− In line �8� thru �17�

- Access 2 columns (O_ORDERPRIORITY, and
O_ORDERKEY) from table queue q1 which is created in
line �47�.

- Apply predicates for the GROUP BY and COUNT
functions.

- Complete the aggregation and send the results back to
user application.

• Subsection #1

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �19� thru �28�

 - Read 3 columns (L_ORDERKEY, L_COMMITDATE, and
L_RECEIPTDATE) from table with FID 24. The table name
is DB2PE.LINEITEM.

- Fetch the rows by scanning the table sequentially.

- Apply 2 predicates. Create the temporary table t1 and
insert the rows which meet the criteria of the predicates
to it. Sort the temporary table t1 on 1 column.

 - Indicate the completion of sorted temporary table t1
creation.

112 DB2 PE for AIX: Concepts and Facilities

− Line �29� thru �43�

- Outer-table (line �29� thru �30�)

• Access 2 columns from table queue q2 which is
created in line �62�. Table queue q2 is hashed and
directed to 4 nodes defined in nodegroup FOUR. To
make sure the received data from q2 remains sorted,
table queue q2 performs deterministic interleaf to
merge the rows.

- The join method is merge join where the outer-table is
directed.

- Inner-table (line �33� thru �37�)

• Access 1 column from temporary table t1 which is
created in line �25�

• Scan the temporary table t1 sequentially and apply 1
predicate.

- Create the temporary table t2 and insert the rows which
meet the criteria of the predicates to it. Sort the
temporary table t2 in the order of O_ORDERPRIORITY,
and O_ORDERKEY. Duplicate rows are removed, and the
data is aggregated.

- Indicate the completion of sorted temporary table t2
creation.

− Line �44� thru �47�

- Access 2 columns from temporary table t2 sequentially. t2
is created in line �38�

- Create and insert the rows from t2 to table queue q1.
Broadcast the table queue q1.

• Subsection #2

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �49� thru �58�

- Read 2 columns (O_ORDERKEY, and O_ORDERPRIORITY)
from table with FID 23. The table name is
DB2PE.ORDERS.

- Fetch the rows by scanning the table sequentially.

 - Apply 1 predicate. Create the temporary table t3 and
insert the rows which meet the criteria of the predicates.
Sort the temporary table t3 on O_ORDERKEY.

- Indicate the completion of sorted temporary table t3
creation.

− Line �59� thru �62�

- Access the temporary table t3 sequentially created in line
�49� thru �58�.

- Create and insert the rows from t3 to table queue q2.
Hash and direct the rows to the appropriate nodes via q2.

Chapter 4. Parallel Processing 113

4.8.4.2 Process Flow for Directed Outer-Table Join
Figure 47 shows the processing and data transmission which will
take place between two nodes: the coordinator node and another
node. The operation is performed by hashing the rows of outer-table
on the columns corresponding to the inner-table ′s partitioning key.
Each outer table row is then directed to the target node generated
from this, and a join operation performed on the target node.

Figure 47. Directed Outer-Table Join Process Flow

In Figure 47 the following process is illustrated:

 1. The coordinator node receives a request from the application and
dispatches it to all nodes containing relevant data.

 2. The nodes scan the outer-table and may apply predicates to it.

 3. The nodes hash the outer-table using the join columns
corresponding to the inner-table partitioning key.

 4. The nodes send each outer-table row to the appropriate nodes
determined from the hashing.

 5. The nodes receive the outer-table rows.

 6. The nodes scan the inner-table and may apply predicates to it.

 7. The nodes perform the join operation between the inner-table
and the received outer-table rows.

 8. The nodes send the results of the join to the coordinator node.

114 DB2 PE for AIX: Concepts and Facilities

 9. The coordinator node collates these results, processes them and
returns the final result to the application.

4.8.4.3 Data Flow for Directed Outer-Table Join
Figure 48 shows the data transmission which occurs during the
directed outer table join operation. In this figure the data is spread
across four nodes, and the coordinator node is shown as a separate
node for clarity.

Figure 48. Directed Outer-Table Join Data Flow

In Figure 48 the data flow is the following:

 1. The user send a request to the coordinator node which then
splits this operation across nodes containing relevant data. (this
is step 1 of the process flow).

 2. The nodes direct the outer-table rows to the nodes containing the
inner-table (this is steps 4 and 5 of the process flow).

 3. The nodes send back their own results (this is step 8 of the
process flow).

 4. The coordinator node returns the final result to the application
(this is step 9 of the process flow).

Step 1 involves little data transmission, while steps 2, 3, and 4 may
require the transmission of a large amount of data. This is
dependant on the operation requested.

Chapter 4. Parallel Processing 115

4.8.5 Directed Inner-Table and Outer-Table Join Strategy
A directed inner-table and outer-table join strategy may be selected
by DB2 Parallel Edition when both the inner table and the outer table
join columns differ from their partitioning keys, but there is at least
one equijoin predicate between the joined tables in the query.

For the sample query, the following is the partitioning keys defined to
illustrate the directed inner-table and outer-table join:

Note: The size of the ORDERS table is relatively large compared to
LINEITEM table.

Table Name Partitioning Key

ORDERS O_CUSTKEY

LINEITEM L_PARTKEY

4.8.5.1 Explain Statement for Inner-Table and Outer-Table Join
The following is the SQL statement that was executed and the
explain output it generated:

SQL Statement:

SELECT O_ORDERPRIORITY, COUNT(DISTINCT O_ORDERKEY)
FROM ORDERS, LINEITEM
WHERE L_ORDERKEY=O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERPRIORITY

(1) Coordinator Subsection:
(2) Distribute Subsection #3
(3) Broadcast to Nodegroup
(4) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(5) Distribute Subsection #2
(6) Broadcast to Nodegroup
(7) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(8) Distribute Subsection #1
(9) Broadcast to Nodegroup
(10) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(11) Access Table Queue ID = q1 #Columns = 2
(12) Output Sorted #Columns = 2
(13) Residual Predicate(s)
(14) #Predicates = 1
(15) Predicate Aggregation
(16) Group By
(17) Column Function(s)
(18) Aggregation Completion
(19) Group By
(20) Column Function(s)

(21) Subsection #1:
(22) Access Table Queue ID = q3 #Columns = 1
(23) Output Sorted #Columns = 1
(24) Residual Predicate(s)
(25) #Predicates = 1
(26) Create/Insert Into Sorted Temp Table ID = t1
(27) Temp Table Completion ID = t1
(28) Access Table Queue ID = q2 #Columns = 2

116 DB2 PE for AIX: Concepts and Facilities

(29) Output Sorted #Columns = 1
(30) Merge Join
(31) Join Strategy: Directed Inner and Outer Table
(32) Access Temp Table ID = t1 #Columns = 1
(33) Scan Direction = Forward
(34) Relation Scan
(35) Residual Predicate(s)
(36) #Predicates = 1
(37) Create/Insert Into Sorted Temp Table ID = t2
(38) Sort #Columns = 2
(39) Piped
(40) Duplicate Reduction
(41) Sorted Temp Table Completion ID = t2
(42) Access Temp Table ID = t2 #Columns = 2
(43) Scan Direction = Forward
(44) Relation Scan
(45) Residual Predicate(s)
(46) #Predicates = 1
(47) Predicate Aggregation
(48) Group By
(49) Column Function(s)
(50) Aggregation Completion
(51) Group By
(52) Column Function(s)
(53) Create/Insert Into Table Queue ID = q1, Broadcast

(54) Subsection #2:
(55) Access Table Name = DB2PE.ORDERS ID = 23 #Columns = 2
(56) Scan Direction = Forward
(57) Relation Scan
(58) Lock Intent Share
(59) Sargable Predicate(s)
(60) #Predicates = 1
(61) Create/Insert Into Sorted Temp Table ID = t3
(62) Sort #Columns = 1
(63) Not Piped
(64) Sorted Temp Table Completion ID = t3
(65) Access Temp Table ID = t3 #Columns = 1
(66) Scan Direction = Forward
(67) Relation Scan
(68) Create/Insert Into Table Queue ID = q2, Directed

(69) Subsection #3:
(70) Access Table Name = DB2PE.LINEITEM ID = 24 #Columns = 3
(71) Scan Direction = Forward
(72) Relation Scan
(73) Lock Intent Share
(74) Sargable Predicate(s)
(75) #Predicates = 2
(76) Create/Insert Into Sorted Temp Table ID = t4
(77) Sort #Columns = 1
(78) Not Piped
(79) Sorted Temp Table Completion ID = t4
(80) Access Temp Table ID = t4 #Columns = 1
(81) Scan Direction = Forward
(82) Relation Scan
(83) Create/Insert Into Table Queue ID = q3, Directed

Chapter 4. Parallel Processing 117

The following serves as an explanation of the explain statement that
was shown in 4.8.5.1, “Explain Statement for Inner-Table and
Outer-Table Join” on page 116.

• Coordinator subsection

This subsection will be executed on the coordinator node where
the application issues the CONNECT SQL statement.

− In line �2� thru �10�

- The coordinator subsection broadcasts subsections #1,
#2, and #3 to the 4 nodes of nodegroup FOUR.

− In line �11� thru �20�

- Access 2 columns (O_ORDERPRIORITY, and
O_ORDERKEY) from table queue q1 which is created in
Line �53�.

- Apply predicate for the GROUP BY and COUNT function.

- Complete the aggregation and send the results back to
user application.

• Subsection #1

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �22� thru �27�

- Access 1 column from table queue q3 which is created in
line �83� Table queue q3 is hashed and directed to 4
nodes defined in nodegroup FOUR.

 - Apply predicates. Creates the temporary table t1 and
inserts the rows which meet the criteria of the predicates
to it.

- Complete inserting rows to the temporary table t1.

− Line �28� thru �41�

- Outer-table

• Access 2 columns from table queue q2 which is
created in line �68� Table queue q2 is hashed and
directed to 4 nodes defined in nodegroup FOUR. To
make sure the received data from q2 remains sorted,
table queue q2 performs deterministic interleaf to
merge the rows.

- The join method is merge join where both the inner and
outer-tables are directed.

- Inner-table

• Access 1 column from temporary table t1 which is
created in line �26�

• Scan the temporary table t1 sequentially and apply 1
predicate.

- Create the temporary table t2 and insert the rows which
meet the criteria of the predicates to it. Sort the
temporary table t2. Remove duplicates for the rows in t2.

118 DB2 PE for AIX: Concepts and Facilities

- Indicate the completion of sorted temporary table t2
creation.

− Line �42� thru �53�

- Access 2 columns from temporary table t2 sequentially. t2
is created in line �37�

- Apply predicate for the GROUP BY and COUNT function

- Complete the aggregation, create and insert the rows
from t2 to table queue q1. Broadcast the table queue q1.

• Subsection #2

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �55� thru �64�

- Read 2 columns (O_ORDERKEY, and O_ORDERPRIORITY)
from table with FID 23. The table name is
DB2PE.ORDERS.

- Fetch the rows by scanning the table sequentially.

- Apply 1 predicates. Create the temporary table t3 and
insert the rows which meet the criteria of the predicates
to it. Sort the temporary table t3 on 1 column.

 - Indicate the completion of sorted temporary table t3
creation.

− Line �65� thru �68�

- Access the temporary table t3 sequentially created in line
�61� thru �64�.

- Create and insert the rows from t3 to table queue q2.
Hash and direct the rows to the appropriate nodes via q2.

• Subsection #3

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �70� thru �79�

 - Read 3 columns (L_ORDERKEY, L_COMMITDATE, and
L_RECEIPTDATE) from table with FID 24. The table name
is DB2PE.LINEITEM.

- Fetch the rows by scanning the table sequentially.

- Apply 2 predicates. Create the temporary table t4 and
insert the rows which meet the criteria of the predicates
to it. Sort the temporary table t4 on 1 column.

 - Indicate the completion of sorted temporary table t4
creation.

− Line �80� thru �83�

- Access the temporary table t4 sequentially created in line
�76� thru �79�.

Chapter 4. Parallel Processing 119

- Create and insert the rows from t4 to table queue q3.
Hash and direct the rows to the appropriated nodes via
q3.

4.8.5.2 Process Flow for Inner-Table and Outer-Table Join
Figure 49 shows the processing and data transmission which will
take place between two nodes, the coordinator node and another
node. During a directed inner and outer table join, each qualifying
row in either table is hashed on some join columns and then sent to
the node specified by the partitioning map for the inner table of the
join. Any predicates which can be applied before this transmission
will be done to reduce the transmission volumes. The transmitted
rows from the tables will then be joined locally on each of the nodes.

Figure 49. Directed Inner and Outer Join Process Flow

In Figure 49, the following process is illustrated:

 1. The coordinator node receives the request from the application
and dispatches it to all nodes.

 2. Nodes containing the outer-table scan the outer-table and may
apply predicates to it.

 3. Nodes containing the inner-table scan the inner-table and may
apply predicates to it.

 4. Nodes containing the outer-table hash each row in the
outer-table using the join columns.

120 DB2 PE for AIX: Concepts and Facilities

 5. Nodes containing the inner-table hash each row in the inner-table
using the join columns.

 6. The nodes direct these rows to the selected node.

 7. Nodes receive the outer-table rows.

 8. Nodes receive the inner-table rows.

 9. Nodes perform the join operation between the received rows.

10. Nodes send the result of the join to the coordinator node.

11. The coordinator node collates these results, processes them and
returns the final result to the application.

4.8.5.3 Data Flow for Inner-Table and Outer-Table Join
Figure 50 shows the data transmission which occurs during a
directed inner and outer table join operation. In this figure the data
is spread across four nodes, and the coordinator node is shown as a
separate node for clarity.

Figure 50. Directed Inner and Outer Join Data Flow

In Figure 50 the data flow is the following:

 1. The application sends a request to the coordinator node. The
coordinator node splits this operation across all nodes (this is
step 1 of the process flow).

 2. The nodes transmit rows of the outer-table to a node selected by
hashing the join columns (this is steps 2, 4, and 6 of the process
flow).

 3. The nodes transmit rows of the inner-table to a node selected by
hashing the join columns (this is steps 3, 5, and 6 of the process
flow).

Chapter 4. Parallel Processing 121

 4. The nodes send back their own results (this is step 10 of the
process flow).

 5. The coordinator node returns the final result to the application
(this is step 11 of the process flow).

More data transmission will be required for a directed inner and
outer join than for the previous two types of joins. Step 1 will require
little transmission of data, but now steps 2, 3, 4, and 5 may require
the transmission of large amounts of data.

4.8.6 Broadcast Outer-Table Join Strategy
A broadcast outer-table join operation is always available to the
optimizer. It will be chosen when none of the other join types is
available, or sometimes if one of the tables is very small.

For the sample query, the following is the partitioning keys defined to
illustrate the broadcast join:

Table Name Partitioning Key

ORDERS O_CUSTKEY

LINEITEM L_PARTKEY

4.8.6.1 Explain Statement for Broadcast Outer-Table Join
The following is the SQL statement that was executed and the
explain output it generated:

SQL Statement:

SELECT O_ORDERPRIORITY, COUNT(DISTINCT O_ORDERKEY)
FROM ORDERS, LINEITEM
WHERE L_ORDERKEY=O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERPRIORITY

(1) Coordinator Subsection:
(2) Distribute Subsection #2
(3) Broadcast to Nodegroup
(4) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(5) Distribute Subsection #1
(6) Broadcast to Nodegroup
(7) Partition Map ID = 4, Nodegroup = FOUR, #Nodes = 4
(8) Access Table Queue ID = q1 #Columns = 2
(9) Output Sorted #Columns: 2
(10) Residual Predicate(s)
(11) #Predicates = 1
(12) Predicate Aggregation
(13) Group By
(14) Column Function(s)
(15) Aggregation Completion
(16) Group By
(17) Column Function(s)

(18) Subsection #1:
(19) Access Table Queue ID = q2 #Columns = 2
(20) Output Sorted #Columns = 2
(21) Nested Loop Join

122 DB2 PE for AIX: Concepts and Facilities

(22) Join Strategy: Broadcast Outer Table
(23) Access Table Name = DB2PE.LINEITEM ID = 24 #Columns = 3
(24) Scan Direction = Forward
(25) Relation Scan
(26) Lock Intent Share
(27) Sargable Predicate(s)
(28) #Predicates = 3
(29) Create/Insert Into Temp Table ID = t1
(30) Temp Table Completion ID = t1
(31) Access Temp Table ID = t1 #Columns = 2
(32) Scan Direction = Forward
(33) Relation Scan
(34) Create/Insert Into Table Queue ID = q1, Broadcast

(35) Subsection #2:
(36) Access Table Name = DB2PE.ORDERS ID = 23 #Columns = 2
(37) Scan Direction = Forward
(38) Relation Scan
(39) Lock Intent Share
(40) Sargable Predicate(s)
(41) #Predicates = 1
(42) Create/Insert Into Sorted Temp Table ID = t2
(43) Sort #Columns = 2
(44) Not Piped
(45) Duplicate Reduction
(46) Sorted Temp Table Completion ID = t2
(47) Access Temp Table ID = t2 #Columns = 2
(48) Scan Direction = Forward
(49) Relation Scan
(50) Create/Insert Into Table Queue ID = q2, Broadcast

The following serves as an explanation of the explain statement that
was shown in 4.8.6.1, “Explain Statement for Broadcast Outer-Table
Join” on page 122.

• Coordinator subsection

This subsection will be executed on the coordinator node where
the application issues the CONNECT SQL statement.

− In line �2� thru �7�

- The coordinator subsection broadcasts the subsection #1
and #2 to a nodegroup FOUR with 4 nodes defined.

− In line �8� thru �17�

- Access 2 columns (O_ORDERPRIORITY, and
O_ORDERKEY) from table queue q1 which is created in
line �29�.

- Apply predicates for the GROUP BY and COUNT
functions.

- Complete the aggregation and send the results back to
user application.

• Subsection #1

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �19� thru �34�

Chapter 4. Parallel Processing 123

- Outer-table

• Access 2 columns from table queue q2 which is
created in line �50�. Table queue q2 is broadcast to
4 nodes defined in nodegroup FOUR. To make sure
the received data from q2 remains sorted, table
queue q2 performs a deterministic merge.

- The join method is a nested loop join where the
outer-table is broadcast.

- Inner-table

• Read three columns (L_ORDERKEY, L_COMMITDATE,
and L_RECEIPTDATE) from table with FID = 24. The
table name is DB2PE.LINEITEM.

• Fetch the rows by scanning the table sequentially.

• Apply 2 predicates. Create the table queue q1 and
inserts the rows which meet the criteria of the
predicates to it.

• Broadcast the table queue q1.

• Subsection #2

This subsection will be executed on the 4 nodes defined in
nodegroup FOUR.

− Line �36� thru �46�

- Read two columns (O_ORDERKEY, and
O_ORDERPRIORITY) from table with FID = 23. The table
name is DB2PE.ORDERS.

- Fetch the rows by scanning the table sequentially.

- Apply one predicate. Create the temporary table t2 and
insert the rows which meet the criteria of the predicates
to it. Sort the temporary table t1. Remove duplicate
rows in t2.

 - Indicate the completion of sorted temporary table t2
creation.

− Line �47� thru �50�

- Access the temporary table t2 sequentially created in line
�42�.

- Create and insert the rows from t2 to table queue q2.
Broadcast the data to 4 nodes defined in nodegroup
FOUR via q2.

4.8.6.2 Process Flow for Broadcast Outer-Table Join
Figure 51 on page 125 shows the processing and data transmission
which will take place between two nodes, the coordinator node and
another node.

124 DB2 PE for AIX: Concepts and Facilities

Figure 51. Broadcast Join Process Flow

In Figure 51, the following process is illustrated:

 1. The coordinator node receives the request from the user and
dispatches it to all nodes containing relevant data.

 2. The nodes scan the outer-table and may apply predicates to it.

 3. The nodes transmit the full resultant outer-table to all the nodes.

 4. The nodes receive the outer-table.

 5. The nodes scan the inner-table and may apply predicates to it.

 6. The nodes perform the join operation between the local
inner-table and the received outer-table.

 7. The nodes send the results of the join to the coordinator node.

 8. The coordinator node collects the results, process them and
returns the final result to the application.

Chapter 4. Parallel Processing 125

4.8.6.3 Data Flow for Broadcast Outer-Table Join
Figure 52 shows the data transmission which occurs during a
broadcast join operation. In this figure the data is spread across four
nodes, and the coordinator node is shown as a separate node for
clarity.

Figure 52. Broadcast Join Data Flow

In Figure 52, the data flow is the following:

 1. The application sends a request to the coordinator node. The
coordinator node then splits this operation across all nodes
containing relevant data (this is step 1 of the process flow).

 2. The nodes transmit the outer-table to all nodes (this is steps 3
and 4 of the process flow).

 3. The nodes send back their own results (this is step 7 of the
process flow).

 4. The coordinator node returns the final result to the application
(this is step 8 of the process flow).

Step 1 requires little data transmission, while steps 2, 3, and 4 may
require the transmission of large amounts of data.

4.9 Database Locking
This section talks about the concept of locking in a database
environment. The section is outlined as follows:

• Lock Modes

• Lock Mode Compatibility

• Lock Duration

126 DB2 PE for AIX: Concepts and Facilities

• The lock table SQL statement

• Lock Conversion

• Lock Escalation

• Deadlock

• Distributed Deadlock Detection

• Concurrency Configuration Parameters

Locking is a database mechanism used to regulate concurrent
processing of data. Concurrent processing means that multiple
processes or applications can access the same database at the
same time. Locking is used in DB2 Parallel Edition as in DB2/6000
Version 1 to maintain data integrity during concurrent processing.
Locking ensures that a transaction maintains control over a database
row until it has finished, and prevents another application from
changing a row before the change in progress completes. Locks are
used in DB2 PE to:

• Prevent loss of data that could occur in a simultaneous update.

• Prevent access to data whose status is in-doubt.

• Allow data that has been read by an application to be protected
from change if so desired.

4.9.1 Lock Modes
In general, there are two basic types or modes of locks:

• Exclusive or X locks - These allow no other applications to
change the resource they are locking. The one exception is an
uncommitted read. The type of statements that will take these
locks are update, insert and delete.

• Shared or S locks - These allow other applications to read the
resource they are locking. They do not allow other application to
change that resource. The SQL select statement will take these
locks.

DB2 PE provides locks on both the table level and the row level.
The default is row level locking. Row level locking provides more
control and concurrency over objects. However, row level
locking requires more overhead. Indices also are subject to
locks. Indices are locked through the use of row level locks that
correspond to the index entry. Sometimes, internal locks are
placed on indices. The database manager will choose which
level of lock to take, unless the lock table SQL statement is
issued. (See 4.9.3.2, “Strict Table Locking” on page 134 for more
information.) Table 4 on page 128 and Table 5 on page 129
show the different lock modes available at the table and row
levels.

Chapter 4. Parallel Processing 127

4.9.1.1 Table-Level Locks
In addition to the basic types of locks, shared and exclusive, a
number of other types of locks known as intention or intent locks are
available. They offer more granularity to objects being locked. If an
object is locked in an intention lock, it implies that explicit locking is
being done at some lower level or at a finer granularity. Table 4
shows the locks that are permitted at the table level, including the
intent locks.

The lock modes outlined in Table 4 are defined below. The modes
are listed in order of their increasing control over resources:

• IN - Intent None

The lock owner can read any data in the table, including
uncommitted data, but cannot change any of it. No row locks are
acquired by the lock owner. Other concurrent applications can
read or update the table.

• IS - Intent Share

The lock owner can read data in the locked table, but not change
this data. When an application holds the IS table lock, the
application acquires an S lock on each row read. In either case,
other applications can read or update the table.

• Share - Share

The lock owner can read, but not change data in the table. No
row locks are acquired by the lock owner. Other concurrent
applications can read the table.

• IX - Intent Exclusive

The lock owner can read or change data in the table. When the
owner reads data, it acquires an S, U, or X lock on each row. It
also acquires an X lock on each row that it updates. and a U or
S lock can be obtained on rows to be read. Other concurrent
applications can both read and update the table.

• U - Update

Table 4. Lock Modes for DB2 PE - Table Level

Lock Modes Definitions

IN Intent None

IS• Intent Share

S• Share

IX• Intent eXclusive

U• Update

S•IX• Share with Intent eXclusive

X• eXclusive

Z• Superexclusive

Note:

 1. Row locking is also used.

 2. Strict table locking.

128 DB2 PE for AIX: Concepts and Facilities

The lock owner can change data in the table and acquires X
locks on the rows prior to updates. Other applications can read
the data, but cannot attempt to update it.

• SIX - Share with Intent Exclusive

The lock owner can read or change data in the table. The lock
owner acquires X locks on the rows it updates, but does not
acquire locks on rows that it reads. Other concurrent
applications can read the table.

• X - Exclusive

The lock owner can read and change. No row locks are acquired
by the lock owner. Only uncommitted read applications can
access the locked table.

• Z - Super Exclusive

The lock owner is supporting a create table, drop table, alter
table, create index, or drop index statement on the table. No
other applications can access the table, including uncommitted
read applications.

4.9.1.2 Row-Level Locks
Table 4 on page 128 shows the locks available at the table level.
Row locks are only requested by applications that have supporting
locks at the table level. These supporting locks are the intent locks:
IS, IX and SIX.

Table 5 shows the locks that are permitted at the row level.

The definitions for row locks are similar to the definitions for
corresponding table locks, except that the object of the lock is a row.
The modes are listed in order of their increasing control over
resources:

• NS - Next key Share

The lock owner and any concurrent applications can read, but not
change the locked row. This lock is acquired only on rows of the
system catalog tables, instead of an S lock, by internal system
catalog table scans.

Table 5. Lock Modes for DB2 PE - Row Level

Row Lock Minimum• Supporting Table Lock

NS Next key Share IS

S Share IS

NX Next key eXclusive IX

U Update IX

X eXclusive IX

Note:

 1. This denotes the least restr ict ive lock necessary. However, this does not imply
that the table lock listed is the only table lock that supports the row lock listed.
For example, an application that possesses an IX table lock could possess S, U or
X locks on rows. Likewise, an application that possesses an SIX table lock could
possess X locks on rows.

Chapter 4. Parallel Processing 129

• NX - Next key eXclusive

The lock owner can read, but not change the locked row. This
lock is acquired only on the next index key during insert or delete
operations. Uncommitted read applications, and internal system
catalog table scans usings NS row locks can read the locked row.

• S - Share

The lock owner and any concurrent applications can read, but not
change the locked row.

• U - Update

The lock owner can change data in the locked row and acquires
X locks on the rows prior to updates. Other applications can
read the row, but cannot attempt to update it. The major
difference between the U lock and the S lock is the intent to
update. Only one application can possess a U lock on a row.

• X - Exclusive

The lock owner can read and change data in the locked row.
Only uncommitted read applications can read the locked row.

4.9.2 Lock Mode Compatibility
Compatibility between lock types and row locks also depends on the
objects trying to access the data. Once an intent lock is obtained on
a table, the corresponding row lock that goes with the table lock is
automatically allowed. For example, a table with an intent lock of IS
will allow row locks of S, but not X. Tables Table 6 and Table 7
assumes two applications exist, Application 1 (Lock 1) and
Application 2 (Lock 2). The tables can be used to determine if the
two applications can run concurrently if they are requesting access
to the same table with a given lock mode.

Table 6. Lock Mode Compatibil i ty - Table Locks

MODE OF
LOCK 1

MODE OF LOCK 2

IN IS S IX SIX U X Z

IN YES YES YES YES YES YES YES NO

IS YES YES YES YES YES YES NO NO

S YES YES YES NO NO YES NO NO

IX YES YES NO YES NO NO NO NO

SIX YES YES NO NO NO NO NO NO

U YES YES YES NO NO NO NO NO

X YES NO NO NO NO NO NO NO

Z NO NO NO NO NO NO NO NO

Table 7 (Page 1 of 2). Lock Mode Compatibil i ty - Row Locks

MODE OF LOCK 1 MODE OF LOCK 2

NS S U NX X

NS YES YES YES YES NO

S YES YES YES NO NO

130 DB2 PE for AIX: Concepts and Facilities

For example, consider the case when Application 1 obtains an IS lock
against a given table. Application 2 could obtain an IN, IS, S, IX, SIX
or U lock against the same table at the same time. However, an X or
Z lock would not be allowed.

Many different applications could have compatible locks on the same
object. For example, ten transactions may have IS locks on a table
and five different transactions may have IX locks on the same table.
There is no concurrency problem at the table level in such a
scenario. However, there may be lock contention at the row level:

• The basic concept of Table 7 on page 130 is that rows being
read by an application can be read by other applications and that
rows being changed by an application are not available to other
applications that use row locking.

• U level row locks are not compatible with other U level row locks.
Only one application can read a row with the intent to update.
The U lock reduces the number of deadlocks that occur when
applications perform updates and deletes using cursors. When a
row is fetched using a cursor declared FOR UPDATE OF, the U
row lock is used.

Table 7 (Page 2 of 2). Lock Mode Compatibil i ty - Row Locks

U YES YES NO NO NO

NX YES NO NO NO NO

X NO NO NO NO NO

4.9.3 Lock Duration
Concurrent access to the database is allowed via three different
isolation levels that ensure data integrity through locking. The
isolation level selected for an application can impact both the lock
strategy and the duration of row locks. The isolation level can be
specified during program preparation or bind. The default level is
cursor stability. The three levels of isolation are:

• Repeatable Read (RR)

• Cursor Stability (CS)

• Uncommitted Read (UR)

Figure 53 on page 132 shows a table, Table 1, and the difference
between the isolation levels.

Chapter 4. Parallel Processing 131

Figure 53. Isolation Levels Within DB2 PE

Figure 53 details the impact of isolation levels on row lock duration.
There are other factors that influence lock strategy, such as
temporary tables and access path. For Table 1 in Figure 53, assume
that row locks are being obtained. The isolation levels are defined
with respect to the diagram:

• Repeatable Read (RR)

S row or table locks are held until the next commit or rollback
occurs. If a row is read multiple times within a unit of work, the
value for the row will not change.

This isolation level may reduce concurrency at the row level, but
may be useful for applications that require examination of
multiple rows before a processing decision can be made.

• Cursor Stability (CS)

S row locks are held only while the cursor is positioned on the
row. Rows that have been previously examined within a unit of
work are not locked.

This isolation level increases concurrency at the row level, and is
normally preferred for most application requirements.

132 DB2 PE for AIX: Concepts and Facilities

However, Repeatable Read applications with table locks may out
perform Cursor Stability applications due to reduced lock
manager overhead.

• Uncommitted Read (UR)

S row locks are not obtained.

This isolation level may improve concurrency of applications
since having to wait for S row locks is eliminated. However, the
application programmer must be aware of any data integrity risks
associated with this isolation level. There may also be
performance improvements associated with the elimination of the
lock manager overhead.

4.9.3.1 Impact of Temporary Tables on Lock Duration
DB2 PE may create a temporary table on a node to satisfy an
application′s requirements. For example, an order by clause
specification that is not satisfied using an index access will cause the
database manager to create a temporary table. Figure 54 shows a
fetch from the temporary table rows of a base table are not locked if
the isolation level is cursor stability (CS) or uncommitted read (UR).

Figure 54. Temporary Tables and Impact on Isolation Level

Figure 54 shows what happens if the temporary table accesses long
field data. Here, the isolation level on the base table will be changed
from cursor stability (CS) or uncommitted read (UR) to repeatable
read (RR). A corresponding decrease in concurrency may be
experienced.

If the temporary table is created and long field data is not accessed,
the prior isolation level on the base table is maintained. However,
the S row locks for Cursor Stability applications are obtained and
released during the OPEN of the cursor. The FETCH from the

Chapter 4. Parallel Processing 133

temporary table may therefore present a row to the application that
has since been changed in the underlying base table.

4.9.3.2 Strict Table Locking
Unless specifically requested by the application, the database
manager will usually use both table and row lock strategies.
However, there are cases when the database manager determines
that such strategies would not be appropriate. A list of such
strategies is as follows:

• Update/Delete that does not specify the WHERE clause

• Repeatable Read with a table scan

• Repeatable read with an index scan and no WHERE clause

• Create, alter or drop of index or table

• Lock Escalation

• The lock table SQL statement

The database manager will use table and row locking to satisfy an
application′s request to update or delete data through the use of an
index. However, if the update or delete does not specify the WHERE
clause, the database manager will use strict table locking.

If the situations involving Repeatable Read lead to unacceptable
concurrency problems, the application should be examined to
determine if a different access strategy can be used or if the isolation
level can be changed. Repeatable Read can be logically simulated,
although the application code required to do so may carry a high
development and/or maintenance cost.

Strict table locking cannot be avoided when issuing DDL against a
table or index. When possible, the database administrator should
restrict these type of statements to periods of low user activity. Lock
escalation occurs when there are too many row level locks. Lock
escalation is covered in 4.9.5, “Lock Escalation” on page 135. Strict
table locking can be requested by an application through the use of
the lock table SQL statement.

The lock table SQL statement provides the application programmer
with the flexibility to lock a table at a more restrictive mode than
requested by the database manager. For example:

• lock table tablename IN SHARE MODE

This allows other applications to read but not change any rows in
the table

• lock table tablename IN EXCLUSIVE MODE

This allows no other application to read or change any rows in
the table unless they are uncommitted reads.

Locks obtained with the lock table SQL statement are acquired when
the statement is executed. These locks are released by a commit or
rollback. For the complete syntax of the lock table statement, see
the SQL Reference.

134 DB2 PE for AIX: Concepts and Facilities

4.9.4 Lock Conversion
Lock conversion occurs when an application requires a more
restrictive lock on a resource than the one(s) it already holds as SQL
statements are processed within a unit of work. For example, an
application could convert from a shared lock to an exclusive lock.

The SIX table lock is a special case. It is obtained if an application
possesses an IX lock on a table and requests an S lock, or vice
versa. The result of lock conversion in these cases is the SIX lock.

4.9.5 Lock Escalation
Lock escalation occurs when there are too many row level locks.
When this limit is reached, row locks are replaced by a table lock.
Two database configuration parameters have direct impact on the
process of lock escalation:

• LOCKLIST - This is the number of 4 KB pages allocated in the
database global memory for lock storage per node.

• MAXLOCKS - The percentage of the total lock list allowed for
each application.

Lock escalation can occur in two different situations:

 1. A single application requests a lock that wil l cause the
application to exceed the percentage of the total lock list as
defined by MAXLOCKS. The database manager will attempt
to free memory space by obtaining a table lock and releasing
row locks for the requesting application.

 2. An application triggers lock escalation because the total lock
list is full. The database manager will attempt to free
memory space by obtaining a table lock and releasing row
locks for the requesting application. Note that the application
being escalated may or may not have a significant number of
locks. The total lock volume may be reaching a threshold
because of high system activity where no individual
application has reached the limit established by MAXLOCKS.

A lock escalation attempt can fail. If a failure occurs, the application
that has caused the escalation attempt will receive a -912 SQLCODE.
The application should be coded to handle the failure.

4.9.6 Deadlock
Deadlock occurs when two applications are waiting on a resource
that the other one holds. The applications cannot complete their
units of work due to conflicting lock requirements that cannot be
resolved until the one of the units of work is complete.

Chapter 4. Parallel Processing 135

Figure 55. Deadlock on a Node

Figure 55 illustrates the concept of deadlocks in DB2 PE at the node
level. Both Application A and Application B need to access Row 1
and Row 2 of Table 1. To explain further:

 1. Application A obtains an X lock on Row 1 of Table 1.

 2. Application B on the same node obtains an X lock on Row 2 of
Table 1.

 3. Application A wants an X lock on Row 2, but cannot obtain it until
Application B commits.

 4. Application B wants an X lock on Row 1 but cannot obtain it until
Application A commits.

Neither Application A nor Application B can proceed.

This type of deadlock, caused by accessing objects in reverse order,
can be reduced by establishing rules of access at an installation for
highly used or highly accessed objects. In Figure 55, if both
applications access Row 1 first, followed by Row 2, the first
application to process would obtain an X lock on Row 1 and prevent
the other from continuing at that point. The application possessing
the X lock on Row 1 could proceed to get the X lock on Row 2 and
complete the unit of work.

Deadlocks are handled by a background process. DB2 PE at the
node level does not check for deadlocks. When waiting for a
resource, the local deadlock detector will fill in a wait-for graph. The
wait-for graph is described in 4.9.7, “Distributed Deadlock Detection”
on page 137.

136 DB2 PE for AIX: Concepts and Facilities

4.9.7 Distributed Deadlock Detection
The deadlock detector daemon that is provided in DB2/6000 Version
1 is not capable of detecting deadlock in a parallel environment.
Figure 57 on page 138 shows a case where two transactions on
different nodes, Node 1 and Node 2 are waiting for the same
resources. Suppose there are two transactions, T1 and T2, each of
which has two subsections, S1 and S2 as shown in Figure 56.

Figure 56. Distributed Global Deadlock

 1. Transaction 1 updated row 1 of table 1 on node 1, and is trying to
update row 10 of table 1 on node. This results in a lock wait
state.

 2. Transaction 2 updated row 10 of table 1 on node 2 and is trying to
update row 1 of table 1 on node 1. This also results in a lock
wait state.

 3. No deadlock loop can be detected locally on either node.

To resolve this situation, a combined wait-for graph containing
information on all the nodes is needed. Each local deadlock detector
fills in information about the wait status on the respective node. This
information is merged into a wait-for graph on the catalog node. The
distributed deadlock detector that exists on the catalog node builds
this merged graph. Figure 57 on page 138 illustrates a wait-for
graph that could be built for Figure 56.

Chapter 4. Parallel Processing 137

Figure 57. Wait-For Graph

The wait-for graph contains a row containing what transaction is
waiting for what resource. The local deadlock detector waits for the
second interval (DLCHKTIME) to complete before sending the local
graph to the distributed deadlock detector. This reduces the chances
of a phantom deadlock. A waiting process only becomes a candidate
for termination if a deadlock cycle is detected in the same lock state
at the next iteration of the detectors. A victim is selected arbitrarily.
The victim is automatically rolled back and returned a -911
SQLCODE. Rolling back the victim releases locks and allows the
other process to continue.

4.9.7.1 Causes of Deadlocks
Although some deadlocks will occur in systems that provide both
data integrity and the capability to change multiple items within a
unit of work, there are certain conditions that are more prone to
causing deadlocks.

• Repeatable Read

• Lock Escalation

• Lock Conversion

• Index Key Maintenance

• Catalog Modification

4.9.7.2 Lock Wait
Applications that request a lock that is not compatible with existing
locks on the object will be queued for service. The database
manager will not suspend the waiting application, unless a deadlock
is the cause of the wait. This architecture emphasizes the
importance of properly coding applications to issue commit or
rollback statements within reasonable amounts of time. Because
large applications that require massive amounts of data or require
extensive time to complete a unit of work will be found in the parallel
database environment, special concern should be shown to isolation
levels and locking configuration parameters.

138 DB2 PE for AIX: Concepts and Facilities

4.9.8 Locking Configuration Parameters
There are three parameters that directly influence your locking
strategy:

• MAXLOCKS

• LOCKLIST

• DLCHKTIME

4.9.8.1 Number of Locks Per Node
The default locking method in a parallel database is row level
locking. Each node in a nodegroup does the locking for the rows at
that node. The database configuration parameter, MAXLOCKS,
specifies the number of locks allowed per application. When this
limit is reached, lock escalation occurs and locking is done at the
table level. Lock escalation occurs on the table partition on a node.
The default value for MAXLOCKS is 10% of the LOCKLIST. The
range for MAXLOCKS is between 1 - 100. Lock escalation may affect
performance, as applications wait for the table lock to be released.

When determining the size of MAXLOCKS, consider the size of the
lock list as determined in the parameter, LOCKLIST. The following
may be used as an example to help determine the size of
MAXLOCKS:

� �
MAXLOCKS = 100 *

(512 locks per application * 44 bytes per lock * 2)
/ (LOCKLIST * 4096 bytes)

� �

The above example allows any application to hold twice the average
number of locks. You can increase MAXLOCKS if there are few
applications run concurrently since the contention for the lock list
space will be reduced. The MAXLOCKS parameter must be updated
on all of the nodes in a nodegroup.

4.9.8.2 Storage for Lock Lists
The amount of storage allocated in 4 KB pages is determined by the
database configuration parameter LOCKLIST. The default value is 64
4 KB pages with a range from 4 - 10,000. The lock list contains the
locks held by all the applications that are currently connected to the
database. This includes both row locks and table locks.

Each lock needs 44 bytes of space in the lock list. The size of
LOCKLIST may be estimated by the following formula:

� �
LOCKLIST = (average number of locks per application

* 44 * MAXAPPLS)
/ 4096

Note: In the formula, 512 may be substituted as an average number
of locks per application.� �

The database configuration parameter, MAXAPPLS, is the number of
applications that can concurrently connect to the database. This
provides control over the amount of private memory used for

Chapter 4. Parallel Processing 139

database applications. This parameter limits the number of active
applications against the database on a node, whether that node is
the coordinator node for the application or not.

When the percentage of the lock list used by one application reaches
MAXLOCKS, the database manager does a lock escalation. The
escalation process does not require much time, but table locking
may affect concurrency. This can reduce overall database
performance when subsequent access is attempted against the
locked tables. To reduce the number of locks held, you can:

• Do frequent commits to release locks.

• Lock the entire table when performing updates via the lock table
SQL statement. This only requires one lock and prevents other
users from interfering with the updates. However, concurrency to
the data will be reduced.

• Use Cursor Stability or Uncommitted Read as the isolation level
when possible to decrease the number of locks obtained.

When the lock list is full, performance may decrease since lock
escalation produces more table locks and fewer row locks. This can
reduce concurrency on shared objects in the database. Also, there
can be more deadlocks between applications because they are all
waiting on a small number of table locks. This can cause
transactions being rolled back. An application will receive a -912
SQLCODE when the maximum number of lock requests has been
reached for the database. Coding your application to handle the
error situation is recommended.

4.9.8.3 Checking for Deadlocks
The database configuration parameter, DLCHKTIME, tells the
database manager how often to check for deadlocks among the
applications that are connected to a database. This parameter
applies only to the catalog node. However, make sure that all the
nodes in the nodegroup have the same value for DLCHKTIME. If a
smaller value is found on the catalog node than on some of the other
nodes, phantom deadlocks may occur. If the catalog node has a
larger value than the other nodes, it may appear that more than two
intervals pass before a deadlock is detected.

The default value for DLCHKTIME is 10 seconds. If you increase this
parameter, you decrease the frequency of deadlock detection. If your
application is read only, this may be sufficient. If your application
changes data, an increase in DLCHKTIME may result in an increase
in the time that an application program must wait for deadlock to be
resolved.

If you decrease DLCHKTIME, you increase the frequency of deadlock
detection. This can result in a decrease in the amount of time an
application waits for deadlock resolution. It does increase the
amount of time the database manager spends checking for
deadlocks. If this interval is too small, performance can be affected
because the database manager is consuming resources to check for
deadlock. If you increase DLCHKTIME, you may have to increase
MAXLOCKS and LOCKLIST to avoid unnecessary lock escalation.

140 DB2 PE for AIX: Concepts and Facilities

Chapter 5. Parallel Utilities

DB2 Parallel Edition provides a number of tools and utilities to assist
a database administrator in managing and monitoring databases The
following will be discussed in this chapter:

• Executing Commands on Multiple Nodes

• Segment Manager Tool

• Data Splitting and Loading

• Autoloader Utility

• Import/Export Utility

• Adding Nodes

• Dropping Nodes

• Data Redistribution

• Runstats Utility

• Reorgchk Utility

• Reorganization

• Backup and Restore

• Recovery

• Governor Utility

• db2batch Tool

• Database Director Utility

5.1 Executing Commands on Multiple Nodes
DB2 Parallel Edition provides a utility so that commands can be
issued at one node to execute on all or on multiple nodes. The utility
is invoked by one of the following:

• The rah command

• The db2_all command.

While the db2_all, and rah commands both use the same executable,
the utilities differ in the following ways:

 1. The db2_all command causes a command to execute at all
physical and logical nodes specified in the
$HOME/sqllib/db2nodes.cfg file.

 2. The rah causes a command to execute at all physical hosts.

For more information about these commands:

• Type rah ″?″ at the command line and press ENTER.

• See the README file in the $HOME/sqllib/misc directory. The file
name is rahREADME.

 Copyright IBM Corp. 1996 141

The following example illustrates the difference between using rah
and db2_all. Here, the $HOME/sqllib/db2nodes.cfg file consists of
four logical nodes on three physical hosts.

0 HOST0 0
1 HOST1 0
2 HOST2 0
3 HOST2 1

We will execute the date command in our parallel environment using
rah:

rah ″date″

The following output is returned:

� �
rah: HOST0
Wed Nov 15 21:48:33 EST 1995
HOST0: date completed ok

rah: HOST1
Wed Nov 15 21:48:33 EST 1995
HOST1: date completed ok

rah: HOST2
Wed Nov 15 21:48:33 EST 1995
HOST2: date completed ok

� �

Next, we will issue the same date command using db2_all:

db2_all ″date″

The following output is returned:

� �
rah: HOST0
rah: HOST1
rah: HOST2
rah: HOST2

HOST1: Wed Nov 15 21:51:51 EST 1995
HOST1: date completed ok

HOST2: Wed Nov 15 21:51:52 EST 1995
HOST2: date completed ok

HOST2: Wed Nov 15 21:51:57 EST 1995
HOST2: date completed ok

HOST0: Wed Nov 15 21:51:50 EST 1995
HOST0: date completed ok

� �

Note: Both rah and db2_all require double quotes surrounding the
command(s) to be executed.

5.2 Segment Manager Tool
The Segment Manager Tool is a front-end utility that DB2 PE system
administrators can use to extend the database size beyond the
operating system limits imposed by AIX. This tool can only be run
against local databases which are cataloged in the system database
directory. The Segment Manager Tool can only be executed from
server nodes.

142 DB2 PE for AIX: Concepts and Facilities

This tool and all of its options may be accessed from the AIX
command line by entering db2sgmgr -? You must have SYSADM
authority to execute the Segment Manager Tool.

This tool is also accessible through the SMIT interface by selecting
the Applications entry on the SMIT main menu. However, accessing
the Segment Manager Tool through the SMIT utility must be done on
all nodes individually in DB2 PE. This section shows the Segment
Manager Tool issued from the command line for all nodes.

The full syntax for db2sgmgr is as follows:

db2sgmgr - Segment Manager Tool

��─ ──┬ ┬────── ─db2sgmgr─ ──┬ ┬─-lsdb── ────────────��
└ ┘─path─ ├ ┤─-lsmnt──dbalias────────────────────────────────────

├ ┤─-clndb──dbdirectory────────────────────────────────
├ ┤─-chmnt──dbalias──start_range──end_range──increment─
└ ┘─┤ Mount command ├─ ──┬ ┬─CONNECT─── ──────────────────

└ ┘─NOCONNECT─

├──-mnt──dbalias──start_range──end_range──vgname──fssize────────────────────────────────────┤

We will follow through an example of allocating the segment
directories of an existing database onto separate file systems. For
this example, a database has been created with the following
command:

db2 create database asample on /db2 NUMSEGS 10 SEGPAGES 64

This database will be loaded with 800 MB of data on each node.
There are 8 nodes defined in the nodegroup. There will be 10
segment directories created on each node defined in the nodegroup
of the database. The segment size will be set to 64 4 KB pages.
After the data has been loaded, we will check the initial allocation of
segment directories to file systems for our given database (in this
case, asample).

5.2.1 Segment Directory File System Information
This option provides the mount status information for each segment
directory of a particular database. The syntax for the command to
display the mount status information for each segment directory of a
database is as follows:

-lsmnt - List Mount

��──db2sgmgr──-lsmnt──dbalias──────────────────────────────��

For our example (the database is asample), the command is:

db2_all ″db2sgmgr -lsmnt asample″

Chapter 5. Parallel Uti l i t ies 143

� �
rah: host0

Database: ASAMPLE
Path : /db2/db2puser/NODE00000/SQL00002

Segment Directory: 0
File System Mount Point: /db2
Size (KB) : 819200
Free (KB) : 14720
Percent used : 98

Segment Directory: 1
File System Mount Point: /db2
Size (KB) : 819200
Free (KB) : 14720
Percent used : 98

[Segments 2-8 omitted - they are identical in detail]
[Output for node 0 - the other nodes are identical in detail]

Segment Directory: 9
File System Mount Point: /db2
Size (KB) : 819200
Free (KB) : 14720
Percent used : 98

SEG0000I The command completed successfully.

� �
Figure 58. Display Segment Directory File System Information

This shows:

• This database is split over 10 segment directories (0 to 9).

• All the segment directories are mounted on the same filesystem
/db2.

• This one filesystem (/db2) is 800 MB in size and is 98 percent
used.

This would be a good time to move these individual segment
directories into different file systems.

5.2.2 Mounting Segment Directory to File System
The mount option allocates and mounts Journaled File Systems (JFS)
over database segment directories.

You can use this command to mount all ten segment directories onto
10 file systems on all 8 nodes in the nodegroup, one segment
directory per file system. The syntax is as follows:

-mnt - Mount

��──db2sgmgr──┤ Mount command ├─ ──┬ ┬─CONNECT─── ────────────��
└ ┘─NOCONNECT─

├──-mnt──dbalias──start_range──end_range──vgname──fssize────┤

144 DB2 PE for AIX: Concepts and Facilities

For our example, the command would be:

db2_all ″db2sgmgr -mnt asample 0 9 db2vg 204800 CONNECT″

Note that the segment directory range starts from 0, so the 10
segment directories are referenced as 0 to 9.

The size of the file systems to be created is set to 204800 4 KB
pages, which is 800 MB. It would be possible to have many differently
sized file systems simply by specifying each segment directory
individually rather than entering a range.

For this command to work successfully, there must be 800 MB of free
space in the db2vg volume group on each node.

The CONNECT option of the command will perform an exclusive
connect to the database. This means that no other connection is
allowed to the database for the duration of this command. Normally,
you would set this to NOCONNECT when a connection to the
database is not possible, for instance, a corrupt database. If you
want the db2sgmgr with mount option to be executed on all nodes in
parallel, set the option to NOCONNECT. You must, however, ensure
that there are no other connections to the database on those nodes
until the command has completed.

The output of the command is similar to the following:

� �
rah: host0
SEG0019I Allocating a file system for database segment directory
/db2/db2puser/NODE00000/SQL00002/SQLS0000.

SEG0019I Allocating a file system for database segment directory
/db2/db2puser/NODE00000/SQL00002/SQLS0001.

[Segments 2-8 omitted - they are identical in detail]
[Only node 0 is displayed]

SEG0019I Allocating a file system for database segment directory
/db2/db2puser/NODE00000/SQL00002/SQLS0009.

SEG0000I The command completed successfully.

� �
Figure 59. Mount Segment Directory File Systems

To display the segment directory file system information again, enter:

db2_all ″db2sgmgr -lsmnt asample″

The output is as follows:

Chapter 5. Parallel Uti l i t ies 145

� �
rah: host0

Database: ASAMPLE
Path : /db2/db2puser/NODE00000/SQL00002

Segment Directory: 0
File System Mount Point: /db2/db2puser/NODE00000/SQL00002/SQLS0000
Device : /dev/lv02
Size (KB) : 819200
Free (KB) : 744200
Percent used : 9

Segment Directory: 1
File System Mount Point: /db2/db2puser/NODE00000/SQL00002/SQLS0001
Device : /dev/lv03
Size (KB) : 819200
Free (KB) : 734200
Percent used : 10

[Segments 2-8 omitted - they are similar in detail]
[Only output for node 0 is shown.]

Segment Directory: 9
File System Mount Point: /db2/db2puser/NODE00000/SQL00002/SQLS0009
Device : /dev/lv11
Size (KB) : 819200
Free (KB) : 744100
Percent used : 9

SEG0000I The command completed successfully.

� �
Figure 60. Display Segment Directory File System Information

Each segment directory (SQLS0000 to SQLS0009) is now mounted on
its own file system, each with 800 MB of allocated space. So now,
each file system is approximately 9 to 10 percent utilized, compared
with 98 percent utilization before.

This database is now set up to accommodate a data volume of up to
800 MB per node. The exact capacity depends on how evenly the
data files are spread across the segment directories, but it will be a
figure slightly less than 800 MB.

146 DB2 PE for AIX: Concepts and Facilities

Figure 61. Segmented Directories Example

5.2.3 Increase Segment Directory File System Size
If one of the file systems becomes close to filling up, you will need to
increase the size of that file system.

It is important to know that a file system can be easily extended
(increased) but to decrease its size is a much longer procedure
which entails:

• Copying the data to another location

• Deleting the original file system

• Creating a new smaller file system

• Copying the original data to this new file system

To increase the size of a segment directory file system, the change
mount option will be used. The change mount option increases the
size of mounted database segment file systems by an increment
specified in blocks of 4 KB for the database. The range of the file
systems to be increased is specified by the start_range and the
stop_range values. The complete syntax is as follows:

Chapter 5. Parallel Uti l i t ies 147

-chmnt - Change Mount

��──db2sgmgr──-chmnt──dbalias──start_range──end_range──increment───────────────────────────��

In our example, we will increase the segment directory file system
for SQLS0003. The command is as follows:

db2_all ″db2sgmgr -chmnt asample 3 3 25600″

In this example, the file system for segment directory SQLS0003 will
be increased by 25600 4 KB pages, or 100 MB. The output of the
command is as follows:

� �
rah: host0

SEG0020I Increasing the File System Size for the database segment
directory /db2/db2puser/NODE00000/SQL00002/SQLS0003.
Filesystem size changed to 921600

[Only output for node 0 is shown.]

SEG0000I The command completed successfully.

� �
Figure 62. Increase Segment Directory File System Size

Now the file system is 921600 KB or 900 MB.

5.2.4 Cleanup Database Directory After Dropping Database
This command deallocates the segment directories that were
mounted on different file systems and removes the database
directory (after the database has been dropped). This command is
necessary to clean up the segment file systems after dropping a
database.

When the database is dropped, the following message is generated:

db2 => drop database asample
SQL1137W The database manager was unable to remove the database path when
dropping database ″asample″ . Cleanup is required.

This deletes all the data files (.DAT, .IDX, .LF) for the database, but
leaves the file systems intact. The complete syntax to clean up the
database directory is as follows:

-clndb - Cleanup Database Directory

��──db2sgmgr──-clndb──dbdirectory──────────────────────────��

The parameter, dbdirectory, specifies the full database directory
path. Cleanup will not proceed unless the directory specified

148 DB2 PE for AIX: Concepts and Facilities

contains no files other than the database segment subdirectories.
The following example will clean up the directory on NODE1:

db2sgmgr -clndb /db2/db2puser/NODE00001/SQL00002

The output for node 1 is as follows:

� �
Before command completion, additional instructions may appear below.

Database directory path: /db2/db2puser/NODE00001/SQL00002

SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0000.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0001.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0002.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0003.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0004.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0005.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0006.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0007.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0008.
SEG0017I Deallocating /db2/db2puser/node00001/SQL00002/SQLS0009.

SEG0018I Removing database directory /db2/db2puser/NODE00001/SQL00002/.

� �
Figure 63. Cleanup Database Directory After Dropping a Database

So, all of the file systems allocated to the segment directories
SQLS0000 to SQLS0009 are removed, and the database directory
itself is deleted.

If there were any other (non-database) files in the database directory,
(in our example, SQLS00002) the command would fail with the
following message:

SEG0036N The database directory /db2/db2puser/NODE00001/SQL00002
is not empty.

5.3 Data Splitting and Loading
In DB2 Parallel Edition, there are different methods to move data
from and to the database. This section provides detail on the DB2
Parallel Edition utilities that allow you to populate a table without
logging.

5.3.1 Populate a Table without Logging
This method will load data without logging. For tables larger than 50
MB and spread over multiple nodes, this method can provide
considerable performance gains over the import utility. To populate
a table without logging on a multi-node system, you can:

 1. Partition the data for each node using db2split.

 2. Send the output files which are split using db2split to the
appropriate node by the file transfer program (FTP).

 3. Load the data from the split output files to the multi-node table.

Chapter 5. Parallel Uti l i t ies 149

For tables in single-node nodegroups, the data does not have to be
split using db2split, even if the table is defined with a partitioning
key. In this case, specify the noheader option of the load utility to
load the single-node table.

5.3.2 Partitioning Data with db2split
DB2 Parallel Edition provides the db2split tool to partition data for
each node. This data splitting tool can be executed on MVS, VM or
AIX platforms. Typically, it is executed on the platform where the
source file resides. It is highly recommended that the input data be
sorted based on the partitioning key columns or the most-used index
columns to achieve a high cluster ratio.

The db2split program requires a configuration file. Refer to the DB2
Parallel Edition Administration Guide for the list of parameters you
can specify in the configuration file.

To display the list of options for db2split, issue:

db2split -h

There are two ways you can use db2split:

• Produce a customized partitioning map that balances the data
across nodes for the table.

Typically, this method is used to populate a table in a new
nodegroup which does not yet contain data. The steps are as
follows:

 1. Execute d2split in analyze mode to create a partit ioning map.
It is recommended to specify the data file for the largest table
that will be in the same nodegroup as the input file.

 2. Execute db2split again to partition the data using the
partitioning map that was just created.

 3. Issue the redistribute nodegroup command to catalog the
partitioning map that was just created for the nodegroup in
the database.

 4. Create the table in the nodegroup with the create table SQL
statement.

• Use the partitioning map of an existing nodegroup.

Typically, this method is used to populate a table in an existing
nodegroup. The steps are as follows:

 1. Create the table in the existing nodegroup with the create
table SQL statement.

 2. Execute db2gpmap to obtain the partitioning map of the
nodegroup from the catalog node.

 3. Execute db2split to partition the data using the partitioning
map that was just obtained.

150 DB2 PE for AIX: Concepts and Facilities

5.3.3 db2split Example
This section provides an example of a data file and the table into
which data is to be loaded. The following example illustrates the
different results you may get when using a customized partitioning
map versus using a default partitioning map.

Assume that you have a delimited data file called mydata with
320,000 records, as follows:

0,0,0,″xxxxxxxxxx″ , ″xxxxxxxxxx″
1,0,0,″xxxxxxxxxx″ , ″xxxxxxxxxx″

......

......
319998,3199,0,″xxxxxxxxxx″ , ″xxxxxxxxxx″
319999,3199,0,″xxxxxxxxxx″ , ″xxxxxxxxxx″

Also, assume that you want the table to be distributed on 4 nodes
(0,1,2,3). The following is an example of the nodegroup and table
definition:

CREATE NODEGROUP ng4 ON NODES (0,1,2,3);

CREATE TABLE test1 (col1 INTEGER,
col2 INTEGER,
col3 INTEGER,
col4 VARCHAR(40),
col5 VARCHAR(40))

IN ng4
PARTITIONING KEY (col2) USING HASHING;

5.3.3.1 Partitioning Data Using a Customized Map
The following shows the configuration file, analyze.cfg, for db2split
that will generate a customized partitioning map on an AIX system:

 (1) Description=test1
 (2) RecLen=200
 (3) InFile=/data1/mydata
 (4) Nodes=(0,1,2,3)
 (5) Mapfilo=/home/db2puser/split/OutMap
 (6) LogFile=/home/db2puser/split/Log.a,w
 (7) CDelimiter=,
 (8) RunType=ANALYZE
 (9) Msg_Level=WARN
 (10) Check_Level=NOCHECK
 (11) Partition=col2,2,,,N,INTEGER
 (12) Trace=0

Note:

 1. You can provide any text in the Description field. In this case,
the table name, test1, is used.

 2. Since the input data is delimited, the RecLen field is optional. If
this field is not specified, db2split reserves 32700 bytes for each
record, which can impact performance.

 3. In this example, the nodegroup for the test1 table is defined on
nodes 0-3; the Nodes field must be consistent with the table
nodegroup.

Chapter 5. Parallel Uti l i t ies 151

 4. The Mapfilo field indicates where the output partitioning map wil l
be stored.

 5. The LogFile field indicates where the output messages from
db2split will be written.

 6. The CDelimiter field indicates the data in the input file is
delimited with a comma (,).

 7. The RunType field indicates db2split wil l analyze the data using
the node information from the Nodes field to produce a
customized partitioning map that achieves an even data
distribution on the nodes.

 8. The Msg_Level field indicates db2split stops at every warning
message.

 9. The Check_Level field indicates db2split does not check for the
truncation of records at I/O.

10. The Partition field indicates the information of the partitioning
key. The detail is as follows:

• The col2 is the column name of the table used as the
partit ioning key.

• The 2 is the cardinal value of the partitioning field in the
record of the input file.

• The N indicates the data is nullable.

• The last fields in the argument indicate the data type of the
column in the partitioning key. In this case, the data is
converted to a 4-byte integer for hashing into the partition
index.

To execute db2split with the configuration file, analyze.cfg, issue the
following:

db2split -c analyze.cfg

Note: This will generate the customized partitioning map. The map
will be written to the directory /home/db2puser/split with the
filename of OutMap.

The following shows the configuration file, sample1.cfg, using the
customized partitioning map, /home/db2puser/split/OutMap,
generated from the previous steps to partition the data:

 (1) Description=test1
 (2) RecLen=200
 (3) InFile=/data1/mydata
 (4) Mapfili=/home/db2puser/split/OutMap
 (5) LogFile=/home/db2puser/split/Log.sample1,w
 (6) OutFile=/data1/output
 (7) CDelimiter=,
 (8) RunType=PARTITION
 (9) Msg_Level=WARN
 (10) Check_Level=NOCHECK
 (11) Partition=col2,2,,,N,INTEGER
 (12) Trace=1

Note:

152 DB2 PE for AIX: Concepts and Facilities

• The Mapfili field in line 4 indicates the input partitioning map is
/home/db2puser/split/OutMap.

• The OutFile field in line 6 indicates db2split will write the results
of the split data for nodes 0-3 to the /data1 directory. The output
file name is prefixed with the word “output” and suffixed with
00000-00003. In this example, the output files are:

− output.00000

− output.00001

− output.00002

− output.00003

• The RunType field indicates db2split will partition the data.

To execute db2split with the configuration file sample1.cfg:

db2split -c sample1.cfg

This produces the following messages in the log file,
/home/db2puser/split/Log.sample1:

� �
test1 >Log file opened successfully
test1 > Start time: Fri Oct 6 15:31:50 1995
test1 > Input file /data1/mydata opened successfully
test1 > Input maximum record length :200
test1 > Program is running with NOCHECK level
test1 > The string delimiter is :<″>
test1 > Tracing 0 delimited (delimiter <,>) record(s)
test1 > Input map file /home/db2puser/split/OutMap opened successfully
test1 > for reading
test1 > Getting partitioning map...done
test1 > The Run Type is PARTITION
test1 > Output partitioning map file not used
test1 > The message level is WARN
test1 > Distribution file name: DISTFILE
test1 > Distribution file DISTFILE opened successfully for writing
test1 > Working on 1 keys.
test1 > COL2 Start: 0 Len: 0 Position: 2 Type: N INTEGER �1�
test1 > Output files will be /data1/output.00xxx
test1 > All output files opened successfully
test1 > Processed 50000
test1 > Processed 100000
test1 > Processed 150000
test1 > Processed 200000
test1 > Processed 250000
test1 > Processed 300000
test1 > Writing distribution map to DISTFILE
test1 > Total record count: 320000 �2�
test1 > Total record discarded: 0 �3�
test1 > Stop time: Fri Oct 6 15:32:36 1995
test1 > Elapsed time: 0 hours, 0 minutes, 46 seconds
test1 > Throughput: 6956 records/sec
test1 > Record counts for output nodes: �4�
Node: 0: Record count: 80000
Node: 2: Record count: 80000
Node: 1: Record count: 80000
Node: 3: Record count: 80000
test1 > Complete.
Program ran successfully with 0 warning message(s) and 0
discarding record(s)� �

�1� Indicates the information of the partitioning column.

�2� Indicates 320,000 records were processed.

Chapter 5. Parallel Uti l i t ies 153

�3� Indicates 0 records were discarded.

�4� Indicates the total record counts for each output nodes. You can
see the data is split evenly among 4 output files. Each of the output
files contains 80,000 records.

5.3.3.2 Partitioning Data Using Nodes
The db2split tool uses the node number specified in the Nodes field
in the configuration file to generate a partitioning map and partitions
the data based on that partitioning map. The following shows the
configuration file, sample2.cfg, that is used to partition data on AIX:

 (1) Description=test1
 (2) RecLen=200
 (3) InFile=/data1/mydata
 (4) Nodes=(0,1,2,3)
 (5) LogFile=/home/db2puser/split/Log.sample2,w
 (6) OutFile=/data1/output2
 (7) CDelimiter=,
 (8) RunType=PARTITION
 (9) Msg_Level=WARN
 (10) Check_Level=NOCHECK
 (11) Partition=col2,2,,,N,INTEGER
 (12) Trace=0

To execute db2split with the configuration file, sample2.cfg, issue the
command:

db2split -c sample2.cfg

This produces the following messages in the log file,
/home/db2puser/split/Log.sample2:

154 DB2 PE for AIX: Concepts and Facilities

� �
test1 >Log file opened successfully
test1 > Start time: Fri Oct 6 16:12:05 1995
test1 > Input file /data1/mydata opened successfully
test1 > Input maximum record length :200
test1 > Program is running with NOCHECK level
test1 > The string delimiter is :<″>
test1 > Tracing 0 delimited (delimiter <,>) record(s)
test1 > Getting partitioning map...done
test1 > The Run Type is PARTITION
test1 > Output partitioning map file not used
test1 > The message level is WARN
test1 > Distribution file name: DISTFILE
test1 > Distribution file DISTFILE opened successfully for writing
test1 > Working on 1 keys.
test1 > COL2 Start: 0 Len: 0 Position: 2 Type: N INTEGER �1�
test1 > Output files will be /data1/output2.00xxx
test1 > All output files opened successfully
test1 > Processed 50000
test1 > Processed 100000
test1 > Processed 150000
test1 > Processed 200000
test1 > Processed 250000
test1 > Processed 300000
test1 > Writing distribution map to DISTFILE
test1 > Total record count: 320000 �2�
test1 > Total record discarded: 0 �3�
test1 > Stop time: Fri Oct 6 16:12:53 1995
test1 > Elapsed time: 0 hours, 0 minutes, 48 seconds
test1 > Throughput: 6666 records/sec
test1 > Record counts for output nodes: �4�
Node: 3: Record count: 79800
Node: 2: Record count: 80000
Node: 1: Record count: 77400
Node: 0: Record count: 82800
test1 > Complete.
Program ran successfully with 0 warning message(s) and 0 discarding record(s)� �

�1� Indicates the information of the partitioning column.

�2� Indicates 320,000 records were processed.

�3� Indicates 0 records were discarded.

�4� Indicates the total record counts for each node′s output. You can
see the data is not split as evenly as it was in the example using the
customized partitioning map.

5.3.3.3 Header Information from the Output File
The data partitioning program, db2split, writes header information to
each data output file that it creates. The header information
contains:

 1. The node number - this is found in the first l ine of the file.

 2. Beginning at the second line of the file is the block of 4096
integers of the partitioning map in free format.

 3. The ===PDB=== line indicates the end of the block entries of the
partit ioning map.

 4. The fourth line has the entry for the number of partit ioning
columns.

 5. The fifth line is the block of partitioning columns that forms the
partitioning key. Each line indicates:

a. The name of the column

Chapter 5. Parallel Uti l i t ies 155

b. The data type

 c. The data length

d. The position of the column

Note: The header information for each file will be used by the load
utility to ensure that data goes to the correct location.

The following shows the header information of the output files,
/data1/output.00000, partitioned by using the customized map
described in 5.3.3.1, “Partitioning Data Using a Customized Map” on
page 151:

� �
0 �1�
3 3 1 2 0 3 3 3 2 0 1 1 3 1 0 3 3 3 0 0 �2�
........
..............3 0 1 2 3 0 1 2 3
===PDB=== �3�
1 �4�
Key: COL2 497 4 2 0 �5�
===PDB=== �6�
0,0,0,″xxxxxxxxxx″ , ″xxxxxxxxxx″ �7�

........

........
319899,3198,0,″xxxxxxxxxx″ , ″xxxxxxxxxx″� �

�1� Shows the node number of 0. It indicates that this file should be
loaded to the table partition on node 0.

�2� Shows the block of 4096 entries for the partitioning map. You can
see the node numbers in the map are (0,1,2,3).

�3� Indicates the ending of the block of partitioning map entries and
the beginning of the header for the partitioning columns.

�4� Shows the partitioning key has only one column.

�5� Shows the following:

• The COL2 indicates the name of the partitioning column.

• The 497 indicates the data type is integer with NULL.

• The 4 indicates the data length of an integer field.

• The 2 indicates COL2 is the second item in the file.

�6� Shows the end of the block of entries for the partitioning column.

�7� This is the beginning of the data to be loaded.

5.3.4 Sending Partition Files to Appropriate Nodes
After you create the partition files, use FTP to send each individual
file to the appropriate node. The following shows the steps to send
the output files, /data1/output.00001, to the host with the hostname of
host1 on AIX:

 1. To connect to the host where the file is to be sent, issue:

ftp host1

156 DB2 PE for AIX: Concepts and Facilities

 2. Supply the username and password.

 3. Change directory to the one where the file wil l be stored by
issuing:

cd /data1

 4. Store the file to the directory, /data1, by issuing:

put output.00001

 5. To disconnect from the host, issue:

quit

Note: FTP does EBCDIC to ASCII translation if needed.

5.3.5 Load Utility
The Load utility is used to load data into a table from a file without
logging. You must be connected to the node that has the database
partition into which you want to load the data.

For tables defined in single-node nodegroups, the input file does not
have to be created and split using db2split.

For tables defined in multi-node nodegroups, the input file for the
load must be created and split using db2split. You must have
SYSADM or DBADM authority to use the Load utility.

5.3.5.1 Considerations for the Load Utility
There are a number of steps to consider before beginning the load
operation and after completion of the load operation. Before
beginning the load operation, it is recommended that the following
steps be performed:

 1. Know the format of your data in the input files for the load utility.
The format must be either ASC or DEL. (IXF and WSF are not
supported)

 2. Sort the input data before splitting, if necessary.

 3. For tables in single-node nodegroups, it is not required to split
the input data using db2split.

 4. For tables in multi-node nodegroups, you must split the input
data using db2split and ensure the following:

• The node number in the header of the split file is the same
as the node number where the file is being loaded.

• The partitioning map in the header of the split file is the
same as the partitioning map used by the table being loaded.

• The name of the column, and the type and length of the
partitioning key specified in the header of the split file is the
same as the definition of the table being loaded.

 5. If you are loading a table that already contains data, you should
have a backup copy of your database.

 6. If the table currently has indices defined (primary key or
otherwise), you must first drop them.

Chapter 5. Parallel Uti l i t ies 157

 7. If you are loading into a new table, make sure the target table is
created.

 8. Place the load command in a file that can be edited and then
executed from the command line.

After completion of the load operation, it is recommended the
following steps be performed:

 1. Check the message file from the load to make sure there are no
errors.

 2. Count the records in the table by issuing the query select
count(*) against the table.

 3. If all the load operations have completed and the row-count of
the tables is correct, back up the database before using.

5.3.5.2 Syntax of the Load Command
The full syntax of the load command is:

Load Command/API

┌ ┐─,────────
��──LOAD FROM─ ───� ┴─filename─ ─OF─ ──┬ ┬─ASC─ ──┬ ┬─────────────────────────────── ────────────────�

└ ┘─DEL─ │ │┌ ┐────────────────
└ ┘─MODIFIED BY─ ───� ┴─filetype-mod─

�─ ──┬ ┬─── ───────�
│ │┌ ┐─,──────────────────
└ ┘─METHOD─ ──┬ ┬─L──(─ ───� ┴─col-start──col-end─ ─)─ ──┬ ┬──────────────────────────────

│ ││ │┌ ┐─,─
│ │└ ┘─NULL INDICATORS──(─ ───� ┴─n─ ─)─
│ │┌ ┐─,────────────
└ ┘─P──(─ ───� ┴─col-position─ ─)───

�─ ──┬ ┬────────────── ──┬ ┬───────────────── ──┬ ┬───────────── ──┬ ┬───────────────── ─────────────�
└ ┘─SAVECOUNT──n─ └ ┘─RESTARTCOUNT──n─ └ ┘─ROWCOUNT──n─ └ ┘─WARNINGCOUNT──n─

�─ ──┬ ┬──────────────────────── ──┬ ┬─INSERT──── ─INTO──table-name──────────────────────────────�
└ ┘─MESSAGES──message-file─ ├ ┤─REPLACE───

├ ┤─RESTART───
└ ┘─TERMINATE─

�─ ──┬ ┬───────────────────────── ──��
│ │┌ ┐─,─────────────
└ ┘─(─ ───� ┴─insert-column─ ─)─

For a description of all of the parameters, see the DB2 Parallel
Edition for AIX Administration Guide and Reference. The following
parameters are described in detail:

filename This parameter identifies the source of the data
being loaded. The file or device must be on
the same node as the table being loaded. If
several data sources are identified, they will be
loaded in sequence.

158 DB2 PE for AIX: Concepts and Facilities

ASC Non-delimited ASCII requires the data to be
aligned in columns. An example of an ASC
format is:

Smith, John 1235 400.50
Clark, Bob 2356 500.50
Williams, Jones 351 5000.50

DEL Delimited ASCII data values are separated by a
special delimited character. This character
must only be used for this purpose within the
file. An example of a DEL format is:

′ Smith, John′;1235;400.50
′ Clark, Bob′;2356;500.50
′ Williams, Jones′;351;5000.50

where the single straight quote mark (′) is a
character string delimiter; the semicolon (;) is a
column delimiter, and the dot (.) is a decimal
point.

MODIFIED BY Specifies additional information unique to the
DEL and ASC file format specified in the
filetype parameter.

• For the ASC file format:

− A T in the filetype-mod string indicates
that trailing blanks spaces are
truncated. If the filetype-mod
parameter is not specified in the
command string, trailing blank spaces
are kept.

− You can specify the RECLEN=xxx option
as the filetype-mod. The xxx integer
can be no larger than 32,767. Instead
of using the new-line character to
indicate the end of a row, xxx
characters are read in for each row.

− If you specify NULIND, or NULLIND, the
character that immediately follows is
the null indicator. You cannot specify
an equal sign (=), blank space (), or
comma (,) as the null indicator.

− You can specify the
DUMPFILE=fully-qualified-filename option,
and any rejected row will be written to
this file. The row that is written to the
file will not exactly match the row in the
source data.

• For the DEL (delimited ASCII) file format,
filetype-mod selects characters to override
the following options:

− Column delimiters, which are commas
(,) by default. Specifying COLDEL
followed by one character causes the

Chapter 5. Parallel Uti l i t ies 159

specified character to be used to signal
the end of a column.

− Character string delimiters, which are
double quotation marks (″) by default.
Specifying CHARDEL followed by one
character causes the specified
character to be used to enclose a
character string.

− Decimal point characters, which are
periods (.) by default. Specifying DECPT
followed by one character causes the
specified character to be used as a
decimal point.

METHOD L If the source data is an ASC file, use the L
parameter to identify the first and last byte of
each column of data to be loaded.

METHOD P If the source data is a DEL file, use the P
parameter to identify the numbered order of
the columns to be loaded.

SAVECOUNT n This parameter is used to establish consistency
points during a load after every n rows. A
message is issued for each consistency point.
The consistency messages are written to the
message file. If the value for n is small, there
will be processing overhead and I/O will be
impacted. The default value is 0, which means
no consistency points are established. When
you specify SAVECOUNT, ensure that the
minimum number of pages represented by n is
500.

RESTARTCOUNT n Skips n rows and restarts the load at n+1.

ROWCOUNT n Loads n rows.

WARNINGCOUNT n Stops the load after n warnings.

message-file Specifies the location for warning and error
messages that occur during the load. If the
message file is omitted, the messages are
written to standard output. If the complete path
to the file is not specified, load uses the
current directory as the destination. If the
name of a file that already exists is specified,
load appends the information to it.

INSERT Adds the loaded data to the table without
changing the existing table data.

REPLACE Deletes all existing data in the table and
inserts the loaded data.

RESTART This parameter is used to restart the load
operation if an error occurs. The load
continues from the last valid consistency check
that the utility could establish. Restart is
designed to be used if the message file

160 DB2 PE for AIX: Concepts and Facilities

contains a pair of consistency check messages.
If you find the pair of messages, you can issue
this parameter together with the
RESTARTCOUNT parameter to continue loading
the table.

TERMINATE This parameter is used to clean up data if an
error occurs. It is designed to be used if the
message file does not contain a pair of
consistency check messages. After you run
load terminate, check the message file for the
last pair of consistency check messages.
When you determine how many rows were
successfully loaded from the message file, you
can continue the load with either a load
RESTARTCOUNT restart operation or a load
insert operation.

table-name Specifies the target table within the database
in which the data is to be loaded. The table
cannot be a system table.

insert-column Specifies the name of a column in the table
into which the data is to be inserted.

5.3.6 Examples Using the Load Utility
The following will serve as examples for this section. The first
example will load a DEL file into a table defined in a single-node
nodegroup. Suppose you have a table defined in a single-node
nodegroup as follows:

CREATE NODEGROUP ng1 on NODE(1);

CREATE TABLE branch (Branch_ID integer not null,
Branch_Balance integer not null,
Branch_pad_0 char(40),
Branch_pad_1 char(40)) in ng1;

Since the table Branch is defined in a single nodegroup, the input file,
branch.input, does not need to be split using db2split. To load the
delimited input file, branch.input, you need to use the noheader
option. The syntax is:

LOAD FROM /data1/branch.input OF DEL MODIFIED BY NOHEADER \
INSERT INTO branch

The second example will load ASC files with null indicators into a
table defined in a single-node nodegroup. Suppose you have a table
defined in a single-node nodegroup as follows:

CREATE NODEGROUP ng1 on NODE(1);

CREATE TABLE fax (dept smallint,
deptname varchar(14),
manager smallint,
division varchar(10),
location varchar(13)) in ng1;

Chapter 5. Parallel Uti l i t ies 161

The file fax.asc contains the following data:

� �
COL = |...+...1....+....2....+....3....+....4....+....5....+ �1�

10 Head Office 160 Corporate New York NYNNN
15 New England 50 Eastern Boston NNNyN
20 Mid Atlantic 10 Eastern Washington NNyNN
38 South Atlantic 30 Eastern Atlanta N?NNN
42 Great Lakes 100 Midwest Chicago NNNQN
51 Plains 140 Midwest Dallas NNYNN
66 Pacific 270 Western San FranciscoNYNNn
84 Mountain 290 Western Denver NNyNN� �

�1� This is not part of the data and is used to show the position of the
columns.

The command is as follows:

 db2 ″LOAD FROM fax.asc OF asc MODIFIED BY NOHEADER
METHOD L(1 2, 4 17, 19 21, 23 31, 33 45)
NULL INDICATORS (46,47,48,49,50) REPLACE INTO fax″

After the load completes, the fax table contains the following:

� �

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- -------------- ------- ------------ ---------------

10 - 160 Corporate New York
15 New England 50 - Boston
20 Mid Atlantic - Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains - Midwest Dallas
66 - 270 Western San Francisco
84 Mountain - Western Denver

� �

The next example will load DEL files which are split using db2split
into a multi-node table. Suppose you have a nodegroup and table
defined as follows:

CREATE NODEGROUP ng4 on NODES(0,1,2,3);
CREATE TABLE test1 (col1 integer,

col2 integer,
col3 integer,
col4 varchar(40),
col5 varchar(40))

in ng4
PARTITIONING KEY (col2) using HASHING;

Before loading, you need to send the split files to their corresponding
hosts by using FTP. For more information on FTP, refer to 5.3.4,
“Sending Partition Files to Appropriate Nodes” on page 156. In our
example:

• output.00001 to directory /data1 of host1

162 DB2 PE for AIX: Concepts and Facilities

• output.00002 to directory /data1 of host2

• output.00003 to directory /data1 of host3

The following example shows how you can load the files in parallel to
the table, test1, that resides in nodegroup ng4. Nodegroup ng4 is
defined on four nodes, 0-3: The steps are as follows

 1. Place the load command in a file, load.test1.

db2 ″LOAD FROM /data1/output.0000* of DEL INSERT INTO test1″

 2. Execute the file, load.test1, in parallel using db2_all. The db2_all
command is a shell script that comes with the DB2 Parallel
Edition product. It executes a specified command at all DB2
logical/physical nodes specified in db2nodes.cfg.

db2_all ″ ; / $HOME/load.test1″ | tee load.test1.out

 3. The above command sends the request to all the nodes specified
in db2nodes.cfg. Each node executes the request in parallel.
The semicolon (;) prefix inside the double quotes is required if
you want the request to be executed in parallel. The messages
from the load command will be sent back to the node where the
db2_all is issued. The output messages will be piped to an
output file, load.test1.out. The following shows the content of
load.test1.out:

� �
rah: host0 �1�
rah: host1
rah: host2
rah: host3

host0: SQL3500W The utility is beginning the ″LOAD″ phase
host0: at time ″10-05-1995 16:04:46.844354″ . �2�
host0:
host0: SQL3109N The utility is beginning to load the data from file
host0: ″ / data1/output.00000″ . �3�
host0:
host0: SQL3110N The utility has completed processing.
host0: ″80000″ rows were read from the input file. �4�
host0:
host0: SQL3519W Begin Load Consistency Point. Input record
host0: count = ″80000″. �5�
host0:
host0: SQL3520W Load Consistency Point was successful. �6�
host0:
host0: SQL3515W The utility has finished the ″LOAD″ phase
host0: at time ″10-05-1995 16:05:57.486842″ . �7�
host0:
host0: load.test1 completed ok �8�

[host1 - host3 omitted - they are identical in detail]

� �

The output from the file, load.test1.out, can be explained as follows:

�1� This message indicates the command was sent to host0, host1,
host2, and host3 to be executed in parallel.

�2�This is an informational message indicating that the load phase is
about to execute at a certain timestamp.

Chapter 5. Parallel Uti l i t ies 163

�3�This is the normal beginning message from load. This message
shows the input file for the load operation.

�4�This message indicates the number of records read, and it is the
normal load phase ending message.

�5�The Load utility is about to perform a consistency point for the
load phase.

�6�The consistency point performed by load was successful.

�7�This is an informational message indicating that the load phase
has finished at a certain timestamp.

�8�This message indicates the script, load.test1, completed execution
without any errors at host0.

5.3.6.1 Considerations for Loading Data
When using load, be aware of the following:

• You cannot load into a system catalog table or a view.

• You cannot invoke load from a remote client.

• You cannot load data into a host database through DDCS.

• You cannot load into a table that has indexes. Before loading
any data to a table, you must drop its indexes.

• Applications calling load must have the same code page as the
database so that no data conversions will be performed.

• Load cannot process files in IXF and WSF formats.

• If there is no value in the row of the input files for a NOT NULL or
NOT NULL WITH DEFAULT column, the row will be rejected since
load will try to load a null value for that column if no value is
given.

• Load performs best in replace mode. If you are loading into an
empty table, insert will be marginally faster than replace.

5.3.7 Errors During the Load Utility
If an error occurs during the load, you can:

• Restart the load; do a load terminate followed by a load restart.

• Use load to reload the table partition on the node.

• If you are appending data to a populated table, restore the
database at that node before reloading.

5.4 Autoloader Utility
A sample Autoloader Utility is provided with DB2 Parallel Edition
V1.2. The Autoloader utility consists of a program and a set of shell
scripts. It is used to:

• Transfer data from one local or remote source system (MVS, VM,
or RS/6000) to AIX system (RS/6000, SP) using FTP.

• Partition that data using db2split.

164 DB2 PE for AIX: Concepts and Facilities

• Load the split data to the corresponding nodes using the load
utility.

Autoloader uses pipes between the FTP, db2split, and load so the
data movement from the source to target systems is automated. This
eliminates the need for temporary spaces to hold staging data for
FTP and db2split.

For more information about Autoloader, refer to the README file in
/usr/lpp/db2pe_01_02/samples/autoloader or Migrating and Managing
Data on RS/6000 SP with DB2 Parallel Edition, SG24-4658.

5.4.1 Considerations for the Autoloader Utility
There are a number of steps to consider before running Autoloader.

 1. Create a directory on a file system which is shared across nodes
via NFS. Copy the contents of $HOME/sqllib/samples/autoloader
into this directory.

 2. The Autoloader script uses three programs: db2, db2split and
mknod. Check what directory these programs reside in on your
machine using the following commands:

whence -v db2

whence -v db2split

whence -v mknod

Modify the Autoloader script to ensure that the shell variables
DB2_DIR, DB2SPLIT_DIR and MKNOD_DIR point to the directories
that you found using the above whence commands.

 3. Make sure that the script rksh is in this directory.

 4. If the module channel is not there, compile the channel.c
program using the C compile.

cc -o channel channel.c

 5. You will need to add the userid and password information in the
following file if your source file resides on a remote system. Put
in $HOME/.netrc the following information:

machine <machine_name> login <login_name> password <password>

machine_name hostname of the source system where the source
file resides

login_name login name of your userid on the source system

password password of your userid on the source system

 6. Ensure that the permission of .netrc files are -rw-------. If not, use
the following command to change the permission:

chmod 600 .netrc

 7. Customize your Autoloader specification file. For more
information, see 5.4.2, “Customize the Autoloader Specification
File” on page 167.

 8. Edit the db2split configuration files and modify according to your
configuration. In the case of non-delimited data make sure that
the field RecLen is exactly equal to the number of columns in the

Chapter 5. Parallel Uti l i t ies 165

data file (excluding end of line character). Modify the parameter
Nodes according to your database configuration. Specify every
node in the OutputNodes parameter. Otherwise, AutoLoader
takes all the nodes as default value. If you want the table to span
all the nodes, you need not specify OutputNodes. If you are using
local files, place the appropriate file name in the InFile
parameter. For non-local files, the directory name for the input
files is read from the spec_file.

 9. Customize your db2split configuration file. Refer to the DB2
Parallel Edition Administration Guide and Reference for the list of
parameters you can specify in the configuration file. The
following shows the steps to consider when customizing your
db2split configuration file for Autoloader:

a. If the input data is non-delimited, you must make sure that
the parameter RecLen is exactly equal to the number of
columns in the data file (excluding end of line character).

b. Modify the parameter Nodes according to your database
configuration. Instead of using the Nodes parameter, you can
use Mapfili to specify an input partitioning map.

 c. Specify every node in the OutputNodes parameter where the
data is going to be populated. Otherwise, Autoloader will
takes the nodes from the db2nodes.cfg file as default.

10. If the input data is non-delimited, you must create a load script.
For more information, see 5.4.3, “Load Script File” on page 167.

11. Make sure the database and tables where the data is split and
loaded by Autoloader already exist.

12. Make sure you have enough maximum number of concurrent
applications. (MAXAPPLS). You can change MAXAPPLS by
updating the database configuration. The following shows an
example of how to change the MAXAPPLS for DSS database to
100:

db2_all ″ ;db2 update database configuration for DSS \
using maxappls 100″

After running the Autoloader, the following steps are recommended:

 1. Check the file autoloader.log, which contains messages from the
nodes that have completed the load process. If you are loading M
tables on N nodes, you will find M * N entries in autoloader.log
file.

 2. Check the file < tab le_name> . l og which contains messages from
the split process in Autoloader.

 3. After Autoloader completes successfully, check the row-count of
the tables by issuing the command select count(*) against the
table.

 4. Run the cleanup program to clean up all the temporary files and
named pipes (FIFOs).

 5. If the Autoloader operations have completed and the row-count of
the tables is correct, back up the database before using.

166 DB2 PE for AIX: Concepts and Facilities

Note: After running Autoloader, if the process is hanging without any
CPU and I/O usage, you should check the autoloader.log and
< tab le .name> . l og for any error. You may also have to cancel the
Autoloader process by entering Cntrl c and then run cleanup to kill
all the Autoloader processes, and clean up all the temporary files
and named pipes (FIFOs).

5.4.2 Customize the Autoloader Specification File
The Autoloader specification file is used to provide Autoloader with
the information needed to transfer, split, and load the input data from
a local or remote system to the database on AIX. The specification
file contains the following format:

<directory_name on source_system>
<file_name 1> <tab_name> <db2split cfg file> <load script>
<file_name 2> <tab_name> <db2split cfg file> <load script>

: : : :
<file_name n> <tab_name> <db2split cfg file> <load script>

<directory_name on source_system> The directory where the file
to be loaded exists. If the
source system is MVS or
VM, then leave the first line
blank.

<file_name x > The source file that you
want to split and load.

<tab le_name> The table name in the
database where the data is
loaded into.

<cfg file used by db2split> The name of the
configuration file to be used
by db2split.

 <load script> The name of the load script
file. This is used only if
you are using
non-delimited ASCII input
data. For the format of the
load script file, refer to
5.4.3, “Load Script File.”

5.4.3 Load Script File
When your input data is a non-delimited file, you must create a load
script file to specify the starting and ending columns of the input
using METHOD L parameter of the load command. A sample load
script ″sample.load″ has been provided for you and can be found in
the directory /usr/lpp/db2pe_01_02/samples/autoloader. You only
need to modify the column positions in the METHOD L parameter of
the load command. Autoloader will automatically update the values
for mydatabase, inputfile, and mytable.

The following is the content of the ″sample.load″ file:

Chapter 5. Parallel Uti l i t ies 167

db2 connect to mydatabase
db2 ″load from inputfile of asc method l (1 4,6 10,12 12,14 18) replace

into mytable″
db2 connect reset

For more information about the load command, refer to 5.3.5, “Load
Utility” on page 157 or DB2 Parallel Edition for AIX Administration
Guide and Reference

5.4.4 Using AUTOLOADER
All the shell scripts and program for Autoloader can be found in the
directory /usr/lpp/db2pe_01_02/samples/autoloader. It consists of the
following:

README The Autoloader README file

autoloader The main Autoloader driver

cleanup The shell script file to clean up the temporary files and
named pipes (FIFOs) and processes created during the
execution of Autoloader

channel.c The C source file to read the data from stdin and write to
a named pipe (FIFO)

channel The module of channel.c. If it is not in the directory, you
will need to compile the channel.c program using the C
compiler in your system

rksh A shell script file used to simulate the semantics of rsh

sample.spec A sample Autoloader specification file

sample.load A sample load script file for non-delimited input data

The following is the syntax:

autoloader [-d] [-c coldel] [-h host_name]
[-s spec_file] database_name

where the options are:

-d Indicates delimited data will be used. The default is
non-delimited data.

-c Indicates a column delimiter other than the default
delimiter ′ | ′ will be used.

-h Indicates the input files are from a remote system with the
specified ″host_name″. Omit this option if the input files
are from local system.

-s Indicates the specification file name will be used. The
default is ″sample.spec″.

Note: Make sure to execute the cleanup program when the
Autoloader operation completes either with or without error. This
wil l clean up all the temporary files and named pipes (FIFOs) which
were created during the Autoloader operation.

168 DB2 PE for AIX: Concepts and Facilities

5.4.5 Autoloader Process
The following describes the steps involved in the Autoloader
operation:

 1. Process the autoloader command line options.

 2. Log the input options in a file called ′ input.log′.

 3. If the ′-h′ option is specified, call the function generate_transfer
in the Autoloader script to prepare the FTP scripts for each file in
the Autoloader specification file.

 4. On each node specified in db2nodes.cfg, create a directory called
/tmp/$whoami.autoloader. The $whoami will be the userid used
to execute autoloader.

 5. Create the named pipes (FIFOs) for each file specified in the
Autoloader specification file.

 6. Obtain the table name, the name of the db2split configuration file,
and the name of the load script file from Autoloader specification
file.

 7. Call function modify_cfg in the Autoloader script to set the
following parameters in the db2split configuration file:

• Description to the database name

• InFile to the named pipe (FIFO) created in previous step if the
′-h′ option is specified.

• LogFile to table_name.log,w

• OutFile to table_name

• CDelimiter to the column delimiter

 8. Call function start_load in Autoloader script to:

 a. Generate the named pipes (FIFOs) for data being transferred
via FTP and for data being split.

b. If the input data is non-delimited, call function
create_dbload_file to modify the load script specified in the
Autoloader specification file to replace:

 1) The value of mydatabase with the name of the database
where the split data will be loaded.

2) The value of inputfile with the split named pipes (FIFOs).

3) The value of mytable with the name of the table where
split data will be loaded to.

4) The value of msgfile with table_name.msg.

 c. Initiate the splitting (db2split) and loading (db2load)
processes.

When the parameter OutputNodes in the splitter configuration file
is specified, Autoloader executes the steps above for each node
in OutputNodes. Otherwise, each node in the db2nodes.cfg will
be used.

 9. If the ′-h′ option is specified, start FTPing the input file from
remote system.

Chapter 5. Parallel Uti l i t ies 169

5.4.6 Performance Considerations
Since the Autoloader combines the split and load processes, the
speed that can be achieved by Autoloader is limited to the slowest
component in the process. The following shows the rate of the load
and split:

• load rate : about 1.5 to 1.8G/hour/node

• split rate : 1 G/hour

Generally, when the input data is on a disk, the split process usually
creates the bottleneck. Even though the load process can achieve a
rate of 1.5 GB to 1.8 GB/hour/node, it will be blocked on the named
pipes (FIFOs) for most of the time. To resolve the bottleneck problem,
you will have to find a way to split faster so that all the load
processes are busy. One way of addressing this issue is to have a
node dedicated to splitting the data.

5.4.7 Example Using Autoloader Utility
The following will serve as examples for this section. The first
example will autoload a delimited input file into a table defined in a
multi-node nodegroup. Suppose you have a nodegroup and table
defined as follows:

CREATE NODEGROUP order_line on NODES(0,1,2,3);
CREATE TABLE dss.orders(O_ORDERKEY INTEGER NOT NULL,

O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE decimal(10,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMENT VARCHAR(79) NOT NULL)

IN order_line
PARTITIONING KEY (O_ORDERKEY);

The following shows the steps to load the data from input file
order.tbl residing in the directory /data to dss.orders table in the
database dss using Autoloader.

 1. Customize the splitter configuration file orders.cfg. The following
shows its content:

Description=orders
InFile=/data/order.tbl
RecLen=32000
Nodes=(0,1,2,3)
OutputNodes=(0,1,2,3)
LogFile=Log,w
OutFile=orders
CDelimiter=|
RunType= PARTITION
Partition=o_orderkey,1,,,NN,INTEGER
Trace=0

170 DB2 PE for AIX: Concepts and Facilities

 2. Customize the Autoloader specification file orders.spec. The
following shows its content:

/data
order.tbl dss.orders /u/db2pe/autoloader/orders.cfg

 3. Execute the Autoloader using the following command:

autoloader -d -s orders.spec dss

 4. After running Autoloader, perform the following steps:

a. Check the contents of the following files:

1) autoloader.log

The following messages were produced in the log:

Loading dss.orders.00000 in dss.orders on db2pe
Over with Messages

SQL authorization ID = DB2PE
SQL3500W The utility is beginning the

″LOAD″ phase at time ″09-02-1996
SQL3109N The utility is beginning to load the data from file
SQL3110N The utility has completed processing.

″37632″ rows were read from
SQL3519W Begin Load Consistency Point.

Input record count = ″37632″.
SQL3520W Load Consistency Point was successful.
SQL3515W The utility has finished the

″LOAD″ phase at time ″09-02-1996
DB20000I The SQL command completed successfully.

[Messages for dss.orders.00001 - dss.orders.00003 omitted -
they are identical in detail]

 2) dss.orders.log

The following messages were produced in the log:

dss>Log file opened successfully
dss> Start time: Mon Sep 02 15:56:09 1996
dss> Input file /data/order.tbl opened successfully
dss> Input maximum record length :32000
dss> Program is running with CHECK level
dss> The string delimiter is :<″>
dss> Tracing 0 delimited (delimiter <|>) record(s)
dss> Getting partitioning map...done
dss> The Run Type is PARTITION
dss> Output partitioning map file not used
dss> The message level is NOWARN
dss> Distribution file name: DISTFILE
dss> Distribution file DISTFILE opened successfully

for writing
dss> Working on 1 keys.
dss> o_orderkey Start: 0 Len: 0 Position: 1

Chapter 5. Parallel Uti l i t ies 171

Type: NN INTEGER
dss> Output files will be dss.orders.00xxx
dss> All output files opened successfully
dss> Processed 50000
dss> Processed 100000
dss> Processed 150000
dss> Writing distribution map to DISTFILE
dss> Total record count: 150000
dss> Total record discarded: 0
dss> Stop time: Mon Sep 02 16:00:48 1996
dss> Elapsed time: 0 hours, 4 minutes, 39 seconds
dss> Throughput: 537 records/sec
dss> Record counts for output nodes:
Node: 3: Record count: 37193
Node: 2: Record count: 37569
Node: 1: Record count: 37606
Node: 0: Record count: 37632
dss> Complete.
Program ran successfully with 0 warning message(s) and 0
discarding record(s)

 b. Clean up all the temporary files and named pipes by issuing
the following command:

cleanup

 5. After Autoloader completes successfully, check the row count of
dss.orders table by issuing:

db2 connect to dss
db2 ″select count(*) from dss.orders″
db2 connect reset

The next example will autoload a non-delimited input file into a table
defined in a multi-node nodegroup. Suppose you have a nodegroup
and table defined as follows:

CREATE NODEGROUP part_partsupp on NODES(0,1,2,3);
CREATE TABLE dss.part (P_PARTKEY INTEGER NOT NULL,

P_NAME VARCHAR (55) NOT NULL,
P_MFGR CHAR (25) NOT NULL,
P_BRAND CHAR (10) NOT NULL,
P_TYPE VARCHAR (25) NOT NULL,
P_SIZE INTEGER NOT NULL,
P_CONTAINER CHAR (10) NOT NULL,
P_RETAILPRICE decimal(10,2) NOT NULL,
P_COMMENT VARCHAR (23) NOT NULL)
IN part_partsupp

PARTITIONING KEY (P_PARTKEY);

The following shows the steps to load the non-delimited data from
input file part.tbl residing in the directory /data to dss.part table in
the database dss using Autoloader.

 1. Obtain the partitioning map of the nodegroup part_partsupp by
issuing:

172 DB2 PE for AIX: Concepts and Facilities

db2gpmap -d dss -m part_partsupp.pmap -g part_partsupp

 2. Customize the splitter configuration file part.cfg. The following
shows its content:

Description=part
InFile=/data/part.tbl
RecLen=170
OutputNodes=(0,1,2,3)
mapfili=part_partsupp.pmap
LogFile=Log,w
OutFile=part
RunType= PARTITION
Partition=p_partkey,1,1,4,NN,INTEGER
Trace=0

 3. Customize the load script part.load. The following shows its
content:

$HOME/sqllib/bin/db2 connect to mydatabase
$HOME/sqllib/bin/db2 ″load from inputfile of asc method l
(1 4, 6 60, 62 86, 88 97, 99 123, 125 126, 128 137, 139 146, 148 170)
replace into mytable″
$HOME/sqllib/bin/db2 connect reset

 4. Customize the Autoloader specification file part.spec. The
following shows its content:

/data
part.tbl dss.part part.cfg part.load

 5. After running Autoloader, perform the following steps:

a. Check the contents of the following files:

1) autoloader.log

The following messages were produced in the log:

Loading dss.part.00000 in dss.part on db2pe Over with Messages
SQL authorization ID = DB2PE

SQL3500W The utility is beginning the
″LOAD″ phase at time ″09-02-1996

SQL3519W Begin Load Consistency Point.
Input record count = ″0″.

SQL3520W Load Consistency Point was successful.
SQL3109N The utility is beginning to load the data from file
SQL3110N The utility has completed processing.

″20″ rows were read from the
SQL3519W Begin Load Consistency Point.

Input record count = ″20″.
SQL3520W Load Consistency Point was successful.
SQL3515W The utility has finished the

″LOAD″ phase at time ″09-02-1996
DB20000I The SQL command completed successfully.

Chapter 5. Parallel Uti l i t ies 173

[Messages for dss.part.00001 - dss.part.00003 omitted -
they are identical in detail]

 2) dss.part.log

The following messages were produced in the log:

dss>Log file opened successfully
dss> Start time: Mon Sep 02 17:46:38 1996
dss> Input file /data/part.tbl opened successfully
dss> Input maximum record length :170
dss> Program is running with CHECK level
dss> Tracing 0 non-delimited record(s)
dss> Input map file part_partsupp.pmap opened

successfully for reading
dss> Getting partitioning map...done
dss> The Run Type is PARTITION
dss> Output partitioning map file not used
dss> The message level is NOWARN
dss> Distribution file name: DISTFILE
dss> Distribution file DISTFILE opened successfully

for writing
dss> Working on 1 keys.
dss> p_partkey Start: 1 Len: 4 Position: 1

Type: NN INTEGER
dss> Output files will be dss.part.00xxx
dss> All output files opened successfully
dss> Writing distribution map to DISTFILE
dss> Total record count: 80
dss> Total record discarded: 0
dss> Stop time: Mon Sep 02 17:46:46 1996
dss> Elapsed time: 0 hours, 0 minutes, 8 seconds
dss> Throughput: 10 records/sec
dss> Record counts for output nodes:
Node: 3: Record count: 20
Node: 2: Record count: 20
Node: 1: Record count: 20
Node: 0: Record count: 20
dss> Complete.
Program ran successfully with 0 warning message(s) and 0
discarding record(s)

b. Clean up all the temporary files and named pipes by issuing:

cleanup

 6. After autoloader completed successfully, check the row count of
dss.part by issuing:

db2 connect to dss
db2 ″select count(*) from dss.part″
db2 connect reset

Note: There is an error in the autoloader script to handle logical
nodes when autoloading from a non-delimited input file to a table

174 DB2 PE for AIX: Concepts and Facilities

spread on multiple logical nodes. Make sure the export
DB2NODE=$nodenum statement exists in the assignment of stmt3 variable
in the Autoloader script.

5.5 Import/Export Utilities
The import/export utilities are used to move data between databases.
The Import utility is used to insert data from an input file into a table
or view. The authorization for Import in DB2 Parallel Edition is the
same as it is in DB2/6000 Version 1.

5.5.1 Using the Import Utility
The syntax of the Import utility in DB2 Parallel Edition is the same as
it is in DB2/6000 Version 1. For more information about the Import
utility, see the DB2/6000 Command Reference.

The following are considerations for the Import utility:

• The Import utility does not use the buffered insert feature.

• If the table is defined in a multi-node nodegroup, the replace
option will delete all existing data in the table partition at each
node in parallel.

• To delete all rows from a large table, the import utility with an
empty input file can be used to perform the delete process faster
than using the delete SQL statement:

db2 ″IMPORT FROM /dev/null OF DEL MODIFIED BY COLDEL \
REPLACE INTO test2″

5.5.2 Using the Export Utility
The Export utility is used to export data from a table or view into a
file. The authorization and syntax for the Export utility are the same
as they are in DB2/6000 Version 1. For more information about the
Export utility, see the DB2/6000 Command Reference.

In Parallel Edition, you can run the Export utility to have each node
perform an export locally by using the NODENUMBER and CURRENT
NODE as predicates of the selection condition. For more information
about NODENUMBER and CURRENT NODE, see 4.4.6, “SQL
Functions” on page 87.

5.5.3 Executing the Export Utility in Parallel
The following example shows how to export in parallel from the
table, test1, defined in a four-node nodegroup to a file called
test1.exp.o using a delimited format.

 1. Place the export command in a file called export.test1.

db2 ″EXPORT to /data1/test1.exp.o of DEL
SELECT * FROM test1 WHERE NODENUMBER(col1) = CURRENT NODE″

Chapter 5. Parallel Uti l i t ies 175

 2. Propagate the export command in the export.test1 file to all
nodes by using db2_all.

db2_all ″ ;$HOME/export.test1″ | tee export.test1.out

 3. The messages from the export command wil l be sent back to the
node where the db2_all is issued. The output messages will be
piped to the file called export.test1.out. The following shows the
content of the export.test1.out file:

rah: host0 �1�
rah: host1
rah: host2
rah: host3

host0: SQL3104N The Export utility is beginning to
host0: export data to file ″ /data1/test1.exp.o″ . �2�
host0:
host0: SQL3105N The Export utility has finished
host0: exporting ″80000″ rows. �3�
host0:
host0: export.test1 completed ok �4�

[host1 - host3 omitted - they are identical in detail]

�1� This message indicates the command was sent to host0,
host1, host2, and host3 to execute in parallel.

�2� This is an informational message indicating the export utility
has begun exporting data to the file. In this example, test1.exp.o
is the output file, and it resides in the /data1 directory.

�3� This message indicates the number of rows that have been
exported.

�4� This message indicates the script, export.test1, completed the
execution on host0 without encountering any errors.

5.5.4 File Formats for Import/Export
The following are valid file formats for the import and export utilities:

DEL With delimited ASCII, data values are separated by a special
delimiting character. This character must only be used for this
purpose within the file. Each line of the file contains the data
for a row of the table.

ASC Non-delimited ASCII requires the data to be aligned to columns.
If the file contains data for a row of the table, and specific
columns within a line are associated with each field, ASC may
not be used with the export utility.

WSF Work-Sheet Format is used when transferring data to or from
work-sheet products.

IXF This is the PC version of the Integrated Exchange Format.

176 DB2 PE for AIX: Concepts and Facilities

5.6 Adding Nodes
DB2 Parallel Edition provides tools to scale your configuration by
adding a new node to your parallel database system. You can add
nodes to the system either when the DB2 Parallel Edition database
manager is running or when it is stopped. This section will describe
the process of adding a node to a parallel database system with the
assumption that the node to be added has been installed and
configured to both the parallel database and to the operating system.
In our examples, we will show only adding the node to the parallel
database system. To perform the add node operation, you must
have SYSADM authority.

There are two methods used to add a node to a system. The first
method uses the db2start command with the addnode option. The
syntax is as follows:

DB2START ADDNODE Command

��──DB2START──NODENUM──nodenum──ADDNODE─ ──┬ ┬───────────────────── ───────────────��
└ ┘─┤ addnode options ├─

addnode options:
├──HOSTNAME──hostname──PORT──logical port─ ──┬ ┬────────────────── ─────────────────┤

└ ┘─NETNAME──netname─

The following parameters are described in detail:

nodenum This parameter is the node number assigned to the
new node.

hostname This parameter is the host name to be added to the
$HOME/sqllib/db2nodes.cfg file.

logical port This parameter is the logical port to be added to the
$HOME/sqllib/db2nodes.cfg file. Valid values are
from 0 to 999.

netname This parameter is optional and is used to support a
host that has more than one active TCP/IP interface,
each with its own hostname. If a switch network is
installed in a RS/6000 SP machines, the switch name
will be used. If you do not specify a value, this
parameter defaults to the value specified for
hostname.

For a description of all of the parameters, see the DB2 Parallel
Edition for AIX Administration Guide and Reference.

Using the db2start command with the addnode option will:

• Add the new node to $HOME/sqllib/db2nodes.cfg file.

• Export the DB2NODE environment variable using the specified
nodenum.

• Create the database partition on the new node for every
database that already exists in the system. (The partition remains
empty until you move data to it using redistribute nodegroup).

Chapter 5. Parallel Uti l i t ies 177

The second method to adding a node to a parallel database system
is by using the add node command. The syntax is as follows:

��──ADD NODE───��

The add node command must be issued from the node being added to
the parallel system. The add node command will:

• Create the database partition on the new node for every
database that already exists in the system. (The partition remains
empty until you move data to it using redistribute nodegroup).

The following are considerations when adding nodes to your parallel
database system:

• You must ensure the processor on which the new node is being
added has enough disk space so that segment directories can be
created for all existing databases on the system.

• You should not attempt to create/drop a database while the add
node operation is in progress.

• Data will not be moved to the newly added node until you
perform the redistribute nodegroup command.

• It is recommended that you back up all of the databases on the
new node.

5.6.1 Adding a Node When the Database Manager is Active
The following are the steps to add a node to a parallel database
system while the database manager is running. The newly added
node does not become available to databases until the database
manager is shut down and restarted. Before proceeding, you must
ensure that the node to be added has been installed and configured
to the system.

 1. Issue the db2start command with the addnode option from any
node.

 2. When the system is ready to shutdown, stop the database
manager by issuing the db2stop command. After all the nodes in
the system are stopped, the $HOME/sqllib/db2nodes.cfg file will
be updated to include the new node.

 3. Restart the system by issuing a db2start command.

5.6.2 Adding a Node When the Database Manager is Inactive
The following steps are necessary to add a node to a parallel
database system in which the database manager has been stopped.
Before proceeding, you must ensure that the node to be added has
been installed and configured to the system.

 1. Edit the $HOME/sqllib/db2nodes.cfg file to include the new node.

 2. Issue the following command to start the database manager on
the new node:

db2start NODENUM nodenum

178 DB2 PE for AIX: Concepts and Facilities

 3. If the new node is a logical node, export the DB2NODE
environment variable with the node number to be added.

export DB2NODE=nodenum
#where nodenum is the number of the added node

 4. Run the Add Node utility on the new node:

db2 add node

 5. Start the database manager on other nodes by issuing the
db2start command.

5.6.3 Add Node Example
This example shows how to add a logical node to a parallel database
system which already has three physical nodes. There is one
database distributed across the three nodes. The entries in the
$HOME/sqllib/db2nodes.cfg file before adding the node are:

 0 HOST0 0
 1 HOST1 0
 2 HOST2 0

The following are the steps to add a logical node to the system in
which the database manager is already stopped:

 1. Edit the $HOME/sqllib/db2nodes.cfg file to add the entry

 3 HOST2 1

 2. Log onto HOST2, and issue the following command to start the
database manager for node number 3.

db2start nodenum 3

 3. Execute a shell script containing the following:

export DB2NODE=3
db2 ADD NODE

 4. Issue db2start to start the remaining the nodes in the system.

5.7 Dropping Nodes
DB2 Parallel Edition provides tools to scale your configuration by
dropping a node from your parallel database system. This section
will describe that process. To perform the drop node operation, you
must have SYSADM authority.

You can use the drop node verify command to check whether the
node to be dropped is being used by any database. The syntax is as
follows:

��──DROP NODE VERIFY───────────────────────────────────────��

Note: Do not forget to REDISTRIBUTE all data on the node that you
want to drop.

To drop the node, issue the db2stop command with the drop
nodenum option. The syntax is as follows:

Chapter 5. Parallel Uti l i t ies 179

DB2STOP DROP NODENUM Command

��──DB2STOP──DROP──NODENUM──nodenum───��

Issuing db2stop with the drop nodenum option will:

• Stop all the nodes in the $HOME/sqllib/db2nodes.cfg file.

• Clean up the segment subdirectories for the node being dropped.

• Remove the entry in the $HOME/sqllib/db2nodes.cfg file for the
node being dropped.

5.7.1 Dropping a Node When the Database Manager is Active
The following steps are necessary to drop a node from a parallel
database system where the database manager is active. Before
proceeding, if data exists on the node being dropped, you must
redistribute the data that resides on this node for every database to
ensure the partitioning map is kept current.

 1. Issue the drop node verify command on the node to be dropped
to to verify that the node is not in use.

• If message SQL6034W is received, you can proceed with the
drop node process.

• If message SQL6035W is received, you must use the
redistribute nodegroup command to move the data from the
node being dropped to other nodes of the database. You
cannot drop the node until this is completed.

 2. Issue the db2stop command with the drop nodenum option to
drop the node.

 3. Restart the database manager by issuing the db2start command.

5.7.2 Drop Node Example
This example shows how to drop a logical node from a parallel
database system. The entries in the $HOME/sqllib/db2nodes.cfg file
before dropping the node are:

 0 HOST0 0
 1 HOST1 0
 2 HOST2 0
 3 HOST2 1

The following steps will drop a node (number 3) from the system:

 1. Issue the following shell script to verify if node 3 is in use:

export DB2NODE=3
db2 drop node verify

The following message is returned:

SQL6034W NODE ″3″ is not being used by any databases

 2. Issue the following command to drop the node number 3 from the
system:

DB2STOP DROP NODENUM 3

 3. Issue db2start to restart the database manager.

180 DB2 PE for AIX: Concepts and Facilities

5.7.3 Data Redistribution
The Redistribute Nodegroup utility is used to redistribute data among
the nodes in an existing nodegroup. This section provides detail
about the data redistribution process and how you can use the
redistribution utility to perform the following tasks:

• Node redistributing

• Adding nodes to a nodegroup

• Dropping nodes from a nodegroup

Data redistribution is done at the nodegroup level rather than at the
table level. The set of tables in the specified nodegroup of a
database will be affected when a redistribution operation is done on
that nodegroup. The following three system catalog tables are used
and modified during the redistribution processes:

• SYSIBM.SYSPARTITIONMAPS

This catalog table contains information for each partitioning map
that is created.

Table 8 contains a description of the columns in
SYSIBM.SYSPARTITIONMAPS.

Table 8. SYSIBM.SYSPARTITIONMAPS Catalog Table

Column Name Data Type Description

PMAP_ID SMALLINT Internal partitioning map ID.

PARTITIONMAP LONG
VARCHAR

Partit ioning map.

Partitioning maps are described in 3.7.6, “Partitioning
Map” on page 67. This contains 4096 values for a
multi-node nodegroup and one value for a single-node
nodegroup.

• SYSIBM.SYSNODEGROUPS

This catalog table contains information for each nodegroup that
is created. At database creation time, two system nodegroups
(IBMCATGROUP and IBMDEFAULTGROUP) are created.

Table 9 contains a description of the columns in
SYSIBM.SYSNODEGROUPS.

Table 9 (Page 1 of 2). SYSIBM.SYSNODEGROUPS Catalog Table

Column Name Data Type Description

NAME VARCHAR(18) Name of the nodegroup.

DEFINER CHAR(8) Authorization ID of the user that defined the nodegroup.

PMAP_ID SMALLINT Internal partitioning map ID. This references an existing
partit ioning map record in the
SYSIBM.SYSPARTITIONMAPS catalog table.

Chapter 5. Parallel Uti l i t ies 181

Table 9 (Page 2 of 2). SYSIBM.SYSNODEGROUPS Catalog Table

Column Name Data Type Description

REBALANCE_PMAP_ID SMALLINT Internal partitioning map ID created during data
redistribution.

If REBALANCE_PMAP_ID is -1, data redistribution is
not taking place.

If it contains any other value, REBALANCE_PMAP_ID
references an existing partitioning map record in the
SYSIBM.SYSPARTITIONMAPS catalog table.

After data redistribution, the content of
REBALANCE_PMAP_ID will be copied to PMAP_ID, and the
value will then be set to -1.

CTIME TIMESTAMP Creation timestamp.

REMARKS VARCHAR(254) User-provided comment. Reserved for future
implementation.

• SYSIBM.SYSNODEGROUPDEF

This catalog table contains information for the many-to-many
relationship between nodes and nodegroups. A record is inserted
for each node that a nodegroup is defined on.

Table 10 contains a description of the columns in
SYSIBM.SYSNODEGROUPDEF.

Table 10. SYSIBM.SYSNODEGROUPDEF Catalog Table

Column Name Data Type Description

NGNAME VARCHAR(18) Name of the nodegroup. NGNAME references an existing
nodegroup in SYSNODEGROUPS.

NODENUM SMALLINT The corresponding node number of the node. The node
number is declared in the node configuration file,
db2nodes.cfg. See 3.3, “Parallel Database Nodes” on
page 45 for more details. The node number must be in
the range 0 to 999.

NODENAME VARCHAR(18) A node name created by concatenating the string ″NODE″
and the node number. For example, ″NODE00000″.

IN_USE CHAR(1) Whether the node number is in the partitioning map of the
nodegroup:

Y = node is in the partit ioning map.

D = node to be dropped from partit ioning map after
current data redistribution operation completes
successfully.

5.7.4 Redistribution Process
The following describes the steps done on the nodegroup by the data
redistribution operation in DB2 Parallel Edition:

 1. Obtain a new partitioning map ID (PMAP_ID) for the target
partitioning map and insert into SYSPARTITIONMAPS catalog
table.

182 DB2 PE for AIX: Concepts and Facilities

 2. Update the REBALANCE_PMAP_ID column of the record in
SYSIBM.SYSNODEGROUPS for the nodegroup being processed
using the newly obtained PMAP_ID.

 3. Add lines for new nodes in the nodegroup, if any, to
SYSNODEGROUPDEF.

 4. Adds any new nodes in the nodegroup, if any, to
SYSNODEGROUPDEF.

 5. Set the IN_USE column in SYSNODEGROUPDEF to ′D′ for any
node that is to be dropped.

 6. COMMIT the catalog table updates.

 7. For all new nodes being added, create database files.

 8. For each table in the nodegroup, redistribute the data in table,
committing after each one.

 9. For nodes being explicitly or implicitly dropped, delete database
files, and delete entries in SYSIBM.SYSNODEGROUPDEF.

10. Update the nodegroup record in SYSIBM.SYSNODEGROUPS to
set PMAP_ID = REBALANCE_PMAP_ID, and
REBLANCE_PMAP_ID = -1.

11. Delete the old partitioning map from
SYSIBM.SYSPARTITIONMAPS.

12. COMMIT the catalog table updates.

5.7.5 Redistributing Data on Each Table
The redistribution executes on each table successively for all the
tables in the specific nodegroup. For each table, the following steps
are executed:

 1. Lock the table in exclusive mode.

 2. Invalidate all plans involving this table. The PMAP_ID associated
with the table will change since the table is being redistributed.
Invalidating plans will force the compiler to obtain the new
partitioning information for the table and to generate plans
accordingly.

 3. Perform data redistribution of the table.

 4. If the redistribution operation was successful, then:

a. Issue a commit for the table.

b. Release the table lock.

 c. Continue with next table in the nodegroup

 5. If the operation failed before the table was fully redistributed,
then:

a. Rollback updates to the table.

b. Release the table lock.

 c. Terminate the entire redistribution operation and return with
an error.

Chapter 5. Parallel Uti l i t ies 183

5.7.6 Redistribute Utility
The syntax for the Redistribute Nodegroup utility is as follows:

Redistribute Nodegroup Command/API

��──REDISTRIBUTE──NODEGROUP──nodegroup───�

┌ ┐─UNIFORM───────────────
�─ ──┬ ┬──┼ ┼─────────────────────── ──┬ ┬────────────── ──┬ ┬─────────────── ──────────��

│ │└ ┘─USING──DISTFILE──path─ └ ┘─┤ Add node ├─ └ ┘─┤ Drop node ├─
├ ┤─USING──TARGETMAP──path───
├ ┤─CONTINUE───
└ ┘─ROLLBACK───

Add node clause:
┌ ┐─,──────────────────────────────────

├──ADD─ ──┬ ┬─NODE── ─(─ ───� ┴─node-number1─ ──┬ ┬────────────────── ─)──────────────────┤
└ ┘─NODES─ └ ┘─TO──node-number2─

Drop node clause:
┌ ┐─,──────────────────────────────────

├──DROP─ ──┬ ┬─NODE── ─(─ ───� ┴─node-number1─ ──┬ ┬────────────────── ─)─────────────────┤
└ ┘─NODES─ └ ┘─TO──node-number2─

Note:

• Tables in the system nodegroup, IBMCATGROUP, cannot be
redistributed.

• The utility must be executed on the catalog node.

• The nodegroup specified must exist.

• Multiple copies of the Redistribute Nodegroup utility cannot be
executed concurrently against the same nodegroup.

• Make sure your log file size is large enough for the insert and
delete operations done at each node during the redistribution
process.

• The utility may execute faster and use less log space if indices
are dropped first. Index maintenance can require large amounts
of log space as leaf pages are split during insertions. If indices
are not dropped before redistribution, table reorganization may
be required for optimal performance.

• Make sure the nodes to be added are defined in the parallel
database system. The nodes listed must be unique and cannot
appear in the drop clause.

• Make sure the nodes to be dropped are the members of the
nodegroup specified. The nodes listed must be unique and
cannot appear in the add clause.

5.7.7 Node Redistribution
There are different ways to perform node redistribution using the
Redistribute Nodegroup utility. You can:

 1. Distribute the data uniformly across all the nodes of the
nodegroup.

 2. Distribute the data using a target partitioning map.

 3. Distribute the data using a distribution file.

184 DB2 PE for AIX: Concepts and Facilities

5.7.7.1 Uniform Data Distribution
By default, the redistribute nodegroup utility assumes that each of
the 4096 hash partitions represents the same weight or the same
amount of data, and the hash partitions are uniformly distributed
across all nodes in the nodegroup.

This can be useful if you know that your tables in the nodegroup
have approximately the same number of rows that will hash to each
hash partition.

5.7.7.2 Data Distribution Using a Target Partitioning Map
The redistribute nodegroup utility uses a target partitioning map to
do the data redistribution. You provide a target map as an input to
the utility with the using targetmap option. The partitioning map you
provide can be created by db2split program using analyze mode
based on the data distribution of a particular table in the nodegroup,
or it can be created by the user. For more information about
db2split, see 5.3.2, “Partitioning Data with db2split” on page 150.
The user-defined partitioning map can be derived using the partition
and nodenumber SQL functions. For more information about SQL
functions, see 4.4.6, “SQL Functions” on page 87.

The target partitioning map must contain:

• 4096 entries if the resultant nodegroup is a multi-node
nodegroup.

• 1 entry if the resultant nodegroup is a single-node nodegroup.

5.7.7.3 Redistribution Example Using a Target Partitioning Map
The following example shows how to redistribute the data in a 4-node
nodegroup, ng4, using a target partitioning map, ng4.pmap, which is
created by db2split using analyze mode:

REDISTRIBUTE NODEGROUP ng4 USING TARGETMAP $HOME/split/ng4.pmap

5.7.7.4 Data Distribution Using a Distribution File
If your data is skewed, you can provide a distribution file as an input
to the redistribution utility with the USING DISTFILE option to achieve
even data redistribution across all nodes in the nodegroup.

The distribution file contains an integer value for each of the 4096
hash partitions. The distribution file is created whenever the db2split
program splits a table. You can use the partition and nodenumber
SQL functions to find out the current data distribution across
partitions and nodes. Then use this information to derive a
distribution file. For more information about SQL functions, see 4.4.6,
“SQL Functions” on page 87.

5.7.7.5 Example of Data Distribution Using a Distribution File
The following example shows how to redistribute the data in a 4-node
nodegroup, ng4, using a distribution file, ng4.distfile, which is created
by db2split:

REDISTRIBUTE NODEGROUP ng4 USING DISTFILE $HOME/split/ng4.distfile

Chapter 5. Parallel Uti l i t ies 185

5.7.8 Adding Nodes to a Nodegroup
You can use the redistribute nodegroup utility to explicitly or
implicitly add nodes to a nodegroup. The nodes added must already
be defined in the parallel database system. Therefore, entries for the
nodes will be added in db2nodes.cfg. To add nodes implicitly, you
use a target partitioning map which includes the node number you
want to add.

When you add nodes to a nodegroup, the utility will:

• Redistribute the data from other nodes in the nodegroup to the
nodes which are being added to the nodegroup.

• Update the SYSIBM.SYSNODEGROUPDEF catalog table.

• Generate a new partitioning map for the nodegroup if nodes are
added explicitly.

• Catalog the target partitioning map as the new partitioning map
for the nodegroup if nodes are added implicitly.

5.7.8.1 Examples of Adding a Node
The section will show examples of adding a node either explicitly or
implicitly to a nodegroup.

The following example shows how to use the redistribute nodegroup
utility to add one node (node 1) explicitly in the nodegroup, NG,
which is created on nodes 0 and 2. The table, ORDERS is defined on
the NG nodegroup; so the data for table ORDERS will be spread
across nodes 0, 1 and 2. To add node 1 to nodegroup NG, the utility
will:

 1. Add and redistribute data for table ORDERS on nodes 0 and 2 in
nodegroup NG to node 1 which is added to nodegroup NG.

 2. Insert entry for node 1 to the SYSIBM.SYSNODEGROUPDEF
catalog table.

 3. Generate a new partit ioning map for nodegroup NG.

List the output of the nodegroups before adding node 1 by issuing:

db2 list nodegroups show detail

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 4 0 Y
NG 4 2 Y

Connect to the database from the catalog node and issue:

db2 ″redistribute nodegroup NG uniform add node(1)″

186 DB2 PE for AIX: Concepts and Facilities

List the output of the nodegroups after adding node 1 by issuing:

db2 list nodegroups show detail

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 2 0 Y
NG 2 1 Y
NG 2 2 Y

This example shows how to use the redistribute nodegroup utility to
add node 3 implicitly in the nodegroup, NG, which is defined on
nodes 0, 1 and 2. The table, ORDERS, is defined on the nodegroup
NG so that the data for table ORDERS will be spread across nodes
0-3. To add node 3 to NG implicitly, a target partitioning map which
has nodes 0-3 specified is used. The utility will:

 1. Add and redistribute data for table ORDERS on nodes 0-2 in
nodegroup NG to node 3, which is added to nodegroup NG.

 2. Insert an entry for node 3 to the SYSIBM.SYSNODEGROUPDEF
catalog table.

 3. Catalog the target partit ioning map for nodegroup NG.

List the output of the nodegroups before adding node 3 by issuing:

db2 list nodegroups show detail

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 2 0 Y
NG 2 1 Y
NG 2 2 Y

Connect to the database from the catalog node and issue:

db2 ″redistribute nodegroup NG using TARGETMAP $HOME/anodes.pmap″

List the output of the nodegroups after adding node 3 by issuing:

db2 list nodegroups show detail

Chapter 5. Parallel Uti l i t ies 187

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 3 0 Y
NG 3 1 Y
NG 3 2 Y
NG 3 3 Y

5.7.9 Dropping Nodes from a Nodegroup
You can use the redistribute nodegroup utility to explicitly or
implicitly drop existing nodes from a nodegroup. To drop nodes
implicitly, you use a target partitioning map which does not contain
the nodes to be dropped.

When you drop nodes from a nodegroup, the utility will:

 1. Move the data on the nodes to be dropped to other nodes in the
nodegroup.

 2. Update the SYSIBM.SYSNODEGROUPDEF catalog table.

 3. Generate a new partitioning map for the nodegroup if you drop
nodes explicitly.

 4. Catalog the target partitioning map as the new partitioning map
for the nodegroup if you drop nodes implicitly.

5.7.9.1 Examples of Dropping Nodes from a Nodegroup
The following are examples of explicitly and implicitly dropping
nodes from a nodegroup.

This example shows how to use the redistribute nodegroup utility to
drop node 4 explicitly in the nodegroup, NG, which is created on
nodes 0, 1, 2, 3, and 4. The table, ORDERS, is defined on the
nodegroup, NG, so that the data for table ORDERS is spread across
nodes 0-4. To drop node 4 from nodegroup NG, the utility will:

 1. Remove the data for table on node 4, and redistribute the data
across nodes 0-3.

 2. Delete node 4 from the SYSIBM.SYSNODEGROUPDEF catalog
table.

 3. Generate a new partit ioning map for nodegroup NG.

List the output of the nodegroups before dropping node 4 by issuing:

db2 list nodegroups show detail

The output:

188 DB2 PE for AIX: Concepts and Facilities

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 3 0 Y
NG 3 1 Y
NG 3 2 Y
NG 3 3 Y
NG 3 4 Y

Connect to the database from the catalog node and issue:

db2 ″redistribute nodegroup NG uniform drop node(4)″

List the output of the nodegroups after dropping node 4 by issuing:

db2 list nodegroups show detail

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 2 0 Y
NG 2 1 Y
NG 2 2 Y
NG 2 3 Y

This example shows how to use redistribute nodegroup utility to drop
nodes 1 and 3 implicitly in the nodegroup, NG, which is created on
nodes 0, 1, 2, and 3. The table, ORDERS, is defined on the
nodegroup, NG, so that the data for table ORDERS is spread across
nodes 0-3. To drop nodes 1 and 3 from NG implicitly, a target
partitioning map is used which has only nodes 0 and 2 specified.
The utility will:

 1. Move the data for the table on nodes 1 and 3 to nodes 0 and 2
according to the target map specified.

 2. Delete nodes 1 and 3 from the SYSIBM.SYSNODEGROUPDEF
catalog table.

 3. Catalog the target partit ioning map for nodegroup NG.

List the output of the nodegroups before dropping nodes 1 and 3 by
issuing:

db2 list nodegroups show detail

Chapter 5. Parallel Uti l i t ies 189

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 3 0 Y
NG 3 1 Y
NG 3 2 Y
NG 3 3 Y

Connect to the database from the catalog node and issue:

db2 ″redistribute nodegroup NG using TARGETMAP /$HOME/rnodes.pmap″

List the output of the nodegroups after dropping nodes 1 and 3 by
issuing:

db2 list nodegroups show detail

The output:

NAME PMAP_ID NODENUM IN_USER
------------------ ------- ------- -------
IBMCATGROUP 0 2 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
IBMDEFAULTGROUP 1 4 Y
NG 4 0 Y
NG 4 2 Y

5.7.10 Failure Recovery
The data redistribution operation might fail at an intermediate point.
This may be caused by lack of space for logs and data files or by
network/system problems. Data redistribution is performed one table
at a time, and if a failure occurs, some tables may have been
redistributed while others were not. There are two recovery methods
to take if a failure occurs:

Continue option Continue to redistribute all remaining tables. If
the cause of the problem has been found and
fixed, this may be the easiest method to
complete the operation.

Rollback option Undo the redistribution, and revert
redistributed tables back to their original state.

During the execution of the redistribute nodegroup operation, a
message file is written to the $HOME/sqllib/redist directory. The
filename has the following format:

190 DB2 PE for AIX: Concepts and Facilities

database-name.nodegroup-name.timestamp

Note: The timestamp value is the time when the command is issued.

5.7.10.1 Example of a Failed Redistribution
The example given indicates the failed redistribution process and the
steps taken after the failure.

The following message file was produced when a user, using the
redistribute nodegroup command, tried to add nodes 4 and 5 to the
nodegroup, NG, that resided in database DSS. The command issued
was:

db2 ″redistribute nodegroup NG uniform add node(4 to 5)″

The message file DSS.NG.19951022133222:

� �

Data Redistribution Utility

 The following options have been specified:
 Nodegroup name : NG
 Operator : U �1�
 Redistribute Nodegroup : uniformly
 No. of nodes to be added : 2
 List of nodes to be added : �2�
4
5

 No. of nodes to be deleted : 0
 List of nodes to be deleted :

 The execution of the Data Redistribution operation on:

Table begun at ended at
_____ ________ ________

DB2PUSER.ORDERS 13.32.25 �3�

 --Data Redistribution cannot be continued.--

 Error: Redistribution failed with SQLCODE=-1031 (save_rc=-2200). �4�

� �

The description of the output is as follows:

�1� Indicates the data redistribution in this example was done to
achieve a balanced distribution. This shows the type of data
redistribution to be done. Possible values are:

U To uniformly redistribute the nodegroup to achieve a balanced
distribution.

T To redistribute the nodegroup using targetmap.

C To continue a redistribution operation that failed.

R To roll back a redistribution operation that failed.

�2� Indicates that the list of nodes to be added in this example are
nodes 4 and 5.

�3� Indicates the list of tables in the nodegroup.

Chapter 5. Parallel Uti l i t ies 191

�4� Indicates the redistributed operation failed with SQLCODE -1031.
The error code means:

The database directory cannot be found on the
indicated file system.

The failure occurred because the database partition was not created
on node 5. To resolve this failure, the following steps can be taken:

 1. Log onto the host for node 5.

 2. Set the DB2NODE environment variable to 5 if using a logical
node

 3. Issue the add node command to create the database partition on
node 5.

After the add node command completes successfully, issue the
following command to continue:

db2 ″redistribute nodegroup NG continue″

The following message file is generated when the previous data
redistribution continues after the failure.

� �

Data Redistribution Utility

 The following options have been specified:
 Nodegroup name : NG
 Operator : C
 No. of nodes to be added : 0
 List of nodes to be added :
 No. of nodes to be deleted : 0
 List of nodes to be deleted :

 The execution of the Data Redistribution operation on:

Table begun at ended at
_____ ________ ________

DB2PUSER.ORDERS 15.08.42
15.08.55

 --All tables in the nodegroup have been successfully redistributed.--

� �

This message file indicates the continuation of the data redistribution
that failed has been successfully completed.

5.8 Runstats Utility
The runstats utility is used to collect the statistics of the table and its
associated indices. The statistics consist of information such as the
number of records, the number of pages and the average record
length.

192 DB2 PE for AIX: Concepts and Facilities

5.8.1 Using Runstats
The syntax of the Runstats utility and the authorization to use the
utility in DB2 Parallel Edition are the same as they are in DB2/6000
Version 1. For more information, see the DB2/6000 Command
Reference.

In DB2 Parallel Edition, the runstats operation:

• Collects statistics about the table and its indicies by executing
the RUNSTATS utility at a single node. The node at which the
RUNSTATS utility is determined by the following:

− If the node where the RUNSTATS is issued contains a partition
for the table, the utility executes at this node.

− If the node where the RUNSTATS is issued does not contain a
table partition, the utility sends the request to the first node
in the nodegroup that holds the table partition. The statistics
related to the table and its indicies will be collected at that
node.

• Derives the global table and index statistics by multiplying the
collected statistics by the number of nodes over which the table
is partitioned.

• Stores the global statistics in the system catalog table.

The parallel optimizer uses these statistics to determine the optimal
access path to the data.

The following items need to be considered when using the runstats
utility:

• You must be connected to the database to execute this
command.

• To create new access paths to the table after its statistics are
updated, make sure to rebind the packages.

• If the RUNSTATS operation is run on a node that is not a member of
the nodegroup in which the table is created, the request will be
sent to the first node of the nodegroup that holds the table
partition. The RUNSTATS utility then executes at that node.

• The DB2 Parallel Edition SQL optimizer assumes that data are
uniformly distributed across the nodes of the system. If the
distribution is not uniform, it is recommended that you run the
RUNSTATS utility on a node that has a representative data
distribution.

The following example collects statistics for both the table (ORDERS)
and its indexes:

db2 CONNECT TO dss
db2 RUNSTATS ON TABLE db2puser.orders AND INDEXES ALL
db2 CONNECT RESET

Chapter 5. Parallel Uti l i t ies 193

5.9 Reorgchk Utility
The reorgchk utility runs statistics on the tables in a database to
determine if they need to be reorganized.

5.9.1 Using Reorgchk
The syntax of the reorgchk utility and the authorization required to
use the utility in DB2 Parallel Edition are the same as they are in
DB2/6000 Version 1. For more information, see the IBM DATABASE2
Parallel Edition for AIX Administration Guide and Reference.

The reorgchk operation:

• Calls runstats to gather statistics on the table you specify.

• Uses the statistics to calculate the six formulas to determine if
reorganization is required.

• Generates the report.

The following are considerations when using the Reorgchk utility:

• Each (*) under the REORG column of the report indicates the
results of the calculations exceed the bounds set by the formula,
and table reorganization is suggested.

The following example runs statistics on table PORDER to determine
if it needs to be reorganized.

db2 CONNECT TO dss
db2 REORGCHK UPDATE STATISTICS ON TABLE db2puser.porder
db2 CONNECT RESET

The following output is generated from the previous reorgchk
command.

194 DB2 PE for AIX: Concepts and Facilities

� �
Doing RUNSTATS

Table statistics:

F1: 100*OVERFLOW/CARD < 5
F2: 100*TSIZE / ((FPAGES-1) * 4020) > 70
F3: 100*NPAGES/FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG

DB2PUSER PORDER 1098 0 24 24 83448 0 90 100 ---

Index statistics:

F4: CLUSTERRATIO > 80
F5: 100*(KEYS*(ISIZE+10)+(CARD-KEYS)*4) / (NLEAF*4096) > 50
F6: 90*(4000/(ISIZE+10)**(NLEVELS-2))*4096/ (KEYS*(ISIZE+10)+(CARD-KEYS)*4)<100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

Table: DB2PUSER.PORDER
DB2PUSER DATE_INDX 1098 3 1 4 24 100 37 - -*-
SYSIBM SQL951113152800640 1098 6 2 10 1098 100 89 16 ---

CLUSTERRATIO (F4) will indicate REORG is necessary for indexes that are not in
the same sequence as the base table. When multiple indexes are defined on a
table, one or more indexes may be flagged as needing REORG. Specify the most
important index for REORG sequencing.

� �

5.10 Reorganize Table Utility
The Reorganize Table utility reorganizes a specified table and it ′s
associated indices by reconstructing the rows to eliminate
fragmented data as in serial DB2. The only difference for DB2
Parallel Edition for this operation is that the reorganization of the
table executes in parallel at each node of the nodegroup in which the
table is defined. Even if the reorganize operation fails on one or
more nodes, the rest of nodes, which successfully completed, will not
be rolled back.

An index on a table under DB2 PE is made of the local indices in that
table on each node in the nodegroup.

5.10.1 Using Reorganize Table
The syntax of the Reorganize Table utility and the authorization to
use the utility in DB2 Parallel Edition are the same as they are in
DB2/6000 Version 1. For more information, see the IBM DATABASE2
Parallel Edition for AIX Administration Guide and Reference.

The Reorganize Table utility operates at each node in the following
way:

 1. Create a temporary table.

 2. Open a cursor on the reorganized table partit ion with one of the
following SQL statements:

Chapter 5. Parallel Uti l i t ies 195

• SELECT * FROM creator.tablename (if no index is specified in
the reorg table).

• SELECT * FROM creator.tablename ORDER BY colname1, ...,
colnameN
(if index is specified in the reorg table command; the

columns in the ORDER BY are the columns that make up the
index.)

 3. Fetch a row using the cursor.

 4. Insert the row into the table.

 5. Replace the original table with the reorganized table.

 6. Recreate all the indices (if any exist).

The following items need to be considered when using the
Reorganize Table utility:

• You must be connected to the database to execute the command.

• Ensure there is enough space to do the reorganization.

• For a table that is larger than 2 GB, you must ensure the file
systems are mounted at the directories where the temporary
tables are created before proceeding with the table
reorganization.

• After successfully reorganizing a table, you should update the
table statistics using RUNSTATS and then rebind the packages that
use the reorganized table.

5.11 Backup and Restore
The concepts of backup and restore on a parallel database system
are similar to those on a serial database system. Some of the
concerns that are different are the following:

• Managing many nodes, each of which may hold gigabytes of data

• Allowing for sufficient resources to perform backup and restore
on large databases

• Planning a backup strategy that will be able to provide a
recovery plan in the shortest amount of time

• Keeping track of, and allowing for, the storage of backups

This section will give only an overview and highlight some of the
differences in a parallel database environment. More information
can be found in the DB2 Parallel Edition for AIX Administration Guide
and Reference.

The DB2 PE backup/restore utility has the same syntax that it has in
serial DB2/6000. The backup and restore commands will only operate
on a single-node basis. To backup a complete database, the
command must be run on every node over which the database is
spread. Restore and roll forward are done on a node-by-node basis.
All nodes do not have to be backed up at the same time.

196 DB2 PE for AIX: Concepts and Facilities

5.11.1 Backup and Restore Scenario
Figure 64 shows a backup and restore scenario in DB2 PE.

Figure 64. Backup, Restore and Roll-Forward Operations

Figure 64 can be explained as follows:

�1�The database was changed from the default of circular logging to
log retain (archived logging). A full database backup must be
performed on all nodes for the change to take effect.

�2�Although incremental backup is not supported in DB2 PE, backup
can be done at the node level. You need not back up all the nodes
at once. Depending on your environment, you could back up one
node every day. In our 4-node example, this would give you a 4-day
rotation period. At any point in time, the maximum recovery for a
node is the restore of the backup and applying 3 days worth of log
activity.

Chapter 5. Parallel Uti l i t ies 197

You can do backup and restore of different nodes in parallel. The
one restriction is that you cannot do concurrent offline backup or
restore of the catalog node with non-catalog nodes. In our example,
node 0 is the catalog node. The catalog node could also be on a
logical node with no user data. This will shorten the time in
recovery.

�3�This is another node backup. DB2 Parallel Edition supports
multiple logical nodes as well as physical nodes. This means that
you can partition data at a finer level than the number of actual
physical nodes. Suppose you have 20 GB of data on each physical
node. You could partition two logical nodes for each physical node
(10 GB per logical node). This will help in managing smaller backup
elements.

�4�A table was loaded using the load utility provided by DB2 PE.
Note that DB2 PE does not perform logging during the load. There is
a log record that indicates that a table in the database was populated
by the Load utility. If the Rollforward utility encounters such a
record, the table will be marked as unavailable. The table will be
dropped by the Rollforward utility if it later encounters a DROP
TABLE log record. Otherwise, after the database is recovered,
SQL1477N will be issued if any attempt is made to access the table.
You should drop the table. If you want to use the table again,
re-create it.

�5�An incorrect application was executed, and its changes were
committed in the database. This caused a corruption of the
database.

�6�We will restore the database from a backup and do a roll-forward
recovery to a point in time prior to, but not including, the application
that caused the corruption.

�7�This is the point in time to which we will do a roll-forward.
However, this point in time backup does not include the load
operation of the table, T1. The load utility can perform as fast as a
backup and restore. So, recovery can be performed just as quickly
by reloading. The table should be dropped and recreated and then
reloaded. The other consideration is that the source file for the load
must be available for the load operation.

5.11.2 Backup Operation
There are two kinds of backup methods provided, offline backup and
online backup. While an offline backup is running on a node, the
database cannot be used at the node. During an online backup, the
database can be accessed, and data in the table can be updated. To
do this, the logging mode of the database must be set to “retained.”

DB2 PE provides a new mode, called exclusive at node, for
connecting to a database. It prevents other applications from making
a connection to the database on the node, but allows them to
connect to other nodes. DB2 PE uses this new mode in connecting
for the offline backup and restore of the database. For online
backup, DB2 PE uses shared mode.

198 DB2 PE for AIX: Concepts and Facilities

The backup file name format has changed from serial DB2/6000 by
adding the node number. For example:

DSS.db2pe.N4C0.19951107101429.001

This is generated using the parts shown below:

Database alias The database alias in our example is DSS.

PE instance name The instance owner is db2pe.

Node number This example indicates that the database was
created on node 0, and backed up on node 4.

Timestamp The timestamp is divided into year, month, day,
hour, and minute.

Sequence number This is a three-digit number that is used as a
file extension.

The list nodes command can be used to show the list of nodes that
are contained in a nodegroup of a database. An example of this is
shown below:

db2 list nodes

NODENUM NODENAME
--------------- ---------------

0 NODE000000
1 NODE000001
2 NODE000002
3 NODE000003

Backups will need to be run on all the nodes listed by this command
in order to have a full backup.

A utility script, db2_all, is provided which will submit backup/restore
commands at multiple nodes. This is held in $HOME/sqllib/misc.
This script is used to execute the same database command on one
or more nodes at the same time. The following is an example of the
use of the command to back up database dss on all nodes:

db2_all ″db2 backup database dss to /dbbackup″

DSS.db2pe.N0C0.19951107102105.001
DSS.db2pe.N1C0.19951107103006.001
DSS.db2pe.N2C0.19951107102938.001
DSS.db2pe.N3C0.19951107102431.001

The backup image of the data on each node has changed slightly
from serial DB2. It now contains:

• The node number to distinguish it from backup images of other
nodes of the same database.

• The catalog node number of the database.

• The release number (different from serial DB2 release number).
This prevents a backup of a serial database from being restored
into DB2 PE.

Chapter 5. Parallel Uti l i t ies 199

DB2 PE has three kinds of media interfaces for storing the database
backup image as does serial DB2/6000. The valid types are disk,
tape or ADSM.

Since AIX files are currently limited in size, if the database is backed
up to disk, the size of the database on each node must not exceed 2
GB.

ADSTAR Distributed Storage Manager (ADSM) is a product used to
manage file or database backups centrally. The ADSM server
supports many storage devices on many different platforms. DB2 PE
uses ADSM API V1.2.0 to communicate with the ADSM server for
backing up the database.

5.11.3 Restore
The restore command is used to rebuild a damaged or corrupt local
database at each node by using the log and the backup image
created by the backup database command. It returns the database on
the node to the state of the database when the backup was formed
for the node. If the backup copy was created during an online
backup, forward recovery is invoked automatically at the end of
restore operation using the logs. This concept is the same as it is in
serial DB2/6000. The only difference is that DB2 PE restores the
database portion separately at each node using local logs, while
serial DB2/6000 restores the whole database with a single log.

The restore utility will create a new database if the target database
does not exist. If the restore command (to new database) is issued
on multiple nodes at the same time, all of the restore commands will
try to create the same database. As a result, the restore command
wil l fail. Restore on the catalog node first to avoid this problem.
After a new database is created by this operation, the restore
operation at other nodes can be performed.

Because the restore utility makes a connection to the database, if the
database portion is damaged at a node, the connection cannot be
made. In this case, the restore utility fails with SQL2010N. The drop
database at node and create database at node commands should be
used in this case to recreate the database portion on the failed node.

5.11.4 Restrictions
There are some restrictions for DB2 PE backup:

• Roll-forward recovery can only be invoked from the catalog node.
If the catalog node requires forward recovery, the roll-forward
utility will hold an exclusive connection to this node until the
recovery has successfully completed. The database is not
available for use for any other application until this completion
has occurred. If the catalog node does not need to be rolled
forward, the utility will use a shared connection to perform the
roll forward. Nodes that are not being rolled forward are then
available for use by other applications.

• Concurrent offline backup of both catalog and non-catalog nodes
is not possible. As the offline backup of the catalog node makes

200 DB2 PE for AIX: Concepts and Facilities

an exclusive connection to the catalog node, no one can access
the catalog node during the backup. For this reason, you might
want to consider placing the catalog node on a logical node with
no user data. This will help to speed recovery time.

• Create/Drop/Alter Table is not allowed on any node while a
backup is executing on a node in online mode.

• Since a backup image includes the node number, it can only be
restored to a node with same node number. It is not possible to
restore a backup from another logical node. DB2 PE makes use
of hash distribution. The data on node A is hashed to that node
and cannot be moved to node B by a backup or restore
operation.

• Since a backup image includes a catalog node number, restoring
to an existing database with a different catalog number is not
allowed.

• Restoring to a new database must be done first at the catalog
node. Otherwise, the SQLCODE -6026 will be returned indicating
on which node the restore command must be issued first.

5.12 Recovery
In the DB2 PE environment, a database is spread across multiple
nodes, and each node does its own logging and backup. Any
transaction running under DB2 PE must be coordinated across the
nodes. For these reasons, detection of inconsistency between nodes,
coordinated forward recovery of the database, maintenance of
consistency for each transaction, and the sequence of transactions
across nodes become important issues.

To preserve consistency of the database between the nodes, the first
operation during a database connection on each node is to check log
file ID and log record number that are stored in the master log
control file on the catalog node.

5.12.1 Database Logs
The database log is an important resource used in recovery. The
database log at each node has a unique log path and uses the node
name in the path.

The default log path is the SQLOGDIR subdirectory in the database
directory at every node. For example, on node 1, this may be:

/$DB2INSTANCE/NODE00001/SQL00001/SQLOGDIR

When the newlogpath configuration parameter is changed, the node
name will be automatically appended to the end of the specified path.

When disks are connected to a single processor, loss of that
processor means loss of access to those disks. Without the log held
on those disks, it is impossible to restore from backup and
roll-forward changes. To protect against this, multipath disks are
strongly recommended for the log.

Chapter 5. Parallel Uti l i t ies 201

5.12.2 Virtual Tim estamps
Under serial DB2/6000, when a transaction is committed, the system
clock on the machine is used as the transaction time stamp. This
guarantees the commit sequence of transactions. DB2 PE cannot
use this method because each transaction is run across on multiple
nodes which may have different local system clocks.

To avoid database inconsistency across the nodes, DB2 PE use a
concept known as virtual time. Each node in the database keeps a
virtual clock. It can only be adjusted forward. It is always kept
ahead of the node′s local system clock. When a transaction is
committed, it uses the most advanced virtual clock over all the nodes
that are involved in the commit operation. A transaction′s time
stamp is defined as its commit time and is called its virtual
timestamp (VTS). The VTS will be stored in the log and at the same
time, all other nodes involved in that transaction will have their
virtual clocks adjusted to the chosen VTS.

Figure 65 illustrates this process. Let us suppose there are four
update SQL statements involved in the transaction. Each of the
update SQL statements will be executed at host0, host1, host2, and
host3 in parallel. The four nodes have different virtual clock times at
the transaction′s commit time. The most advanced virtual clock is set
to four o′clock on host 3. It is used as the virtual timestamp and
stored in the log at each node. At the same time, the virtual clock at
each node, except host3, will be adjusted to 4 o′clock.

Figure 65. Virtual Time Stamp

202 DB2 PE for AIX: Concepts and Facilities

When two different transactions update or reference the same row of
the same table on a node, they are said to be related. Using the
virtual time method, the most advanced clock on all the nodes
involved in a transaction is used as the VTS. Using this method DB2
PE can guarantee the commit sequence for related transactions and
can use the timestamps during database recovery.

There is a database manager configuration parameter,
max_time_diff, that can help reduce the possibility of a node having a
system clock that could push ahead the time for all the nodes defined
in a system. This parameter holds a value that is used as the
maximum amount of time in which two system clocks can differ. The
following relate to the max_time_diff parameter:

• The possible values for this parameter are from one minute to 24
hours. The default is one hour.

• When one node first attempts to connect to the database on
another node, the catalog node for the database checks to see
that the time on the node requesting the connection and the time
on the node that is to be connected to is within the limit specified
in the max_time_diff parameter. If the value specified in the
max_time_diff parameter is exceeded, the connection is not
allowed.

• An update transaction that involves more than two nodes in the
database must verify that the time on the participating nodes is
synchronized before the update can be committed. If two or
more nodes have a greater time difference than the value that is
stored in max_time_diff, the transaction is rolled back to stop the
incorrect time from being distributed to the other nodes.

5.12.3 Point-In-Time Recovery
When you do point-in-time recovery, you rollforward changes to a
specific point in time. This means that you need a backup image
from before this time, and the logs from the time of the backup until
the point in time you want to recover to.

Point-in-time recovery is done at the database system level; that is,
on all the node listed in the db2nodes.cfg file, even those that do not
contain user data. Before you can do point-in-time recovery, you
must restore the database on all nodes and ensure that each
database partition is set to the rollforward-pending state.

5.13 Governor Utility
DB2 Parallel Edition V1.2 provides a utility called the governor. The
governor utility is designed to work on multiple nodes in parallel. It
is used to monitor and change the behavior of applications that run
against a database according to the rules specified by user in the
governor configuration file. It consists of the following parts:

Chapter 5. Parallel Uti l i t ies 203

• The governor front-end utility

• The governor daemon

• The governor configuration file

• The governor log files

• The governor log query utility

For more information about the governor utility, refer to DB2 Parallel
Edition for AIX Administration Guide and Reference.

5.13.1 Governor Front-End Utility
The governor front-end utility, db2gov, is used to start and stop the
governor daemon (on either all logical nodes or on a single node).
You must have SYSADM authority to use the utility. The syntax is as
follows:

�──db2gov─ ──┬ ┬─start──database─ ──┬ ┬─────────────────── ─config-file──log-file─ ───────────────�
│ │└ ┘─nodenum──node-num─
└ ┘─stop──database─ ──┬ ┬─────────────────── ────────────────────────

└ ┘─nodenum──node-num─

where the parameters are as follows:

database Use to specify either the database name or the database
alias. Make sure the specified database has the same
name as that specified in the governor configuration file.

node-num Use to specify the node number where the governor
daemon should be started. Make sure the specified node
number is the same as that specified in the
$HOME/sqllib/db2nodes.cfg.

config-file Use to specify the name of the configuration file where
user has defined rules for the governor daemon to use for
monitored resource and took actions. The config-file can
reside in one of the following directories:

• The default directory $HOME/sqllib

• The directory of the fully specified path name

• The current directory

log-file Use to specify the base name of the log files the governor
is to write to. The log files are stored in the
$HOME/sqllib/log directory. The node number on which
the governor daemon is running is automatically
appended to the log files.

When starting the governor daemon with the db2gov utility, the
db2_all processes spawned will not exit until the governor daemons
are stopped. To have db2gov start the governor daemons without
leaving the db2_all processes around, add the ″″ flag to the db2_all
commands in the db2gov shell script:

204 DB2 PE for AIX: Concepts and Facilities

db2_all ′ ; ″ ′ db2gov start $Database nodenum ′##′ $ConfigFile $LogFile
db2_all ′ ; ″ ′ db2gov stop $Database nodenum ′## ′

5.13.2 The Governor Daemon
The governor daemon is a process that executes ″in the background″
to monitor and change the behavior of applications that run against a
database based on the set of rules defined in the governor
configuration file.

The following describes the steps involved in the governor daemon
after it is started:

 1. Call the sqlmon (Database System Monitor Switch) API to active
the unit of work switch.

 2. Check to see if the governor configuration file has changed or
has not yet been read. If either condition is true, it reads the
rules in the governor configuration file.

 3. Issue the snapshot request to obtain statistics about the
applications running against the database which it is monitoring.

 4. Check the obtained statistics against the rules specified in the
governor configuration file and take action accordingly. The
action can be:

• Force the application

• Change the priority of all the agents working on behalf of the
application on that node.

• Write a record of any action it takes to the governor log file.

• Sleep until the interval specified in the governor configuration
file is exceeded. If no interval is specified, the default interval
of 120 seconds is used.

The governor daemon only exits if it encounters an error or it is
stopped by the governor front-end utility. Before exiting, the governor
daemon will do the following:

• Obtain a snapshot of all the agents running on the database

• Reset the priority of the agents

5.13.3 Customizing the Governor Configuration File
The governor configuration file is used to define and configure the
rules which the governor uses to govern applications running against
the database. It can be changed without stopping the governor.

The governor configuration file must be created in a directory that is
accessible by the governor daemon on each node. You can specify
comment in the file by delimiting the text within the { } braces.

The rules in the configuration file consist of:

• The name of the database or its alias to which the rules apply.
This rule is only specified once in the file.

Chapter 5. Parallel Uti l i t ies 205

dbname database-name

• The interval the governor sleeps before waking up to check the
behavior of the applications. This rule is only specified once in
the file.

interval the interval in seconds (Default of 120 seconds)

• The rule that specifies how to govern the applications. The rule
clauses can be combined to form a rule. The clauses can only be
specified once in a rule but can be specified in more than one
rule. Each rule in the file must be followed by a semicolon (;).
The following shows the description of the rule clauses and it
must be specified in the order shown. Square brackets ([])
indicate an optional clause.

− The text description of the rule. It must be enclosed by either
single or double quotation marks.

[desc] ′ description′
or

[desc] ″description″

− The time period during which the rule is to be applied. If this
clause is not specified, the rule is valid 24 hours a day.

[time] hh:mm hh:mm

− The rule applies to one or more authorization ids under
which the application is executing. Multiple authids must be
separated by a comma (,). The default is that the rule will
apply to all authorization ids.

[authid] userid1, userid2,...

− The rule applies to the name of the executable that makes
the connection to the database. Multiple application names
must be separated by a comma (,). The default is the rule will
apply to all application names.

[applname] appl1, appl2,...

Note: Application names are case-sensitive and can only
have 20 characters. Otherwise, it will be truncated to 20
characters.

− The rule applies to one or more resource limits for the
governor to check. The limits can only be -1 or greater than
0.

[setlimit] limit

The governor can check the following limits and at least one
of the limits must be specified:

- The limit of the number of CPU seconds that can be
consumed by an application. If -1 is specified, the
governor does not limit the application′s CPU usage.

cpu nnn

- The limit of the number of locks that an application can
hold. If -1 is specified, the governor does not limit the
number of locks held by the application.

locks nnn

206 DB2 PE for AIX: Concepts and Facilities

- The limit of the number of rows that an application can
select. If -1 is specified, the governor does not limit the
number of rows that can be selected.

rowssel nnn

- The limit of the number of seconds for the elapsed time
of a unit of work. If -1 is specified, the elapsed time is not
limited.

uowtime nnn

− The rule to specify the action to take if one or more of the
specified limits is exceeded. The action can be one of the
following:

- Change the priority of the agents working for the
application. (The priority of the agents is set by the AIX
nice command). The valid values are from -20 to 20.,
where a lower value assigns a higher priority to the
agents. Negative nice values should be used with
caution. They give the database agents priority over all
other user processes, even the database engine itself!

[action] priority nnn

- Force the agent that is servicing the application.

[action] force

Note: If a limit is exceeded and the action clause is not
specified, the governor reduces the priority of the agents
working for the application by 10.

Note: If more than one rule is specified in the file, the last applicable
rule wins except if -1 is specified for a clause in a rule. In this case,
the value specified for the clause in the subsequent rule can only
override the value previously specified for the same clause. Other
clauses in the previous rule are still operative. Each rule in the file
must be followed by a semicolon (;).

5.13.4 Governor Log Files
To provide an audit trail of what the governor has done, records for
the following actions done by the governor front end utility or the
governor daemon and situations encountered by the governor
daemon will be logged:

• Force an application

• Read the governor configuration file

• Change the agent′s priority

• Encounter an error or warning

• Start the governor

• End the governor

A separate log file exists for each governor daemon. The log files are
stored in the $HOME/sqllib/log directory. The node number of the
node that the governor is running on is automatically appended to
the log file name. The log file name is the log name used when

Chapter 5. Parallel Uti l i t ies 207

issuing the governor front end utility db2gov. Each log record has the
following format:

Date Time NodeNum Rectype Message

• The format of the date field: YYYY-MM-DD

• The format of the time field: HH.MM.SS

• The nodenum field indicates the node number of the node on
which the governor is running

• The Rectype field consists of the following possible values:

− ERROR to indicate an error was encountered

− FORCE to indicate an application was forced

− NICE to indicate the priority of an application was changed

− READCFG to indicate the configuration file was read by the
governor

− START to indicate the governor was started

− STOP to indicate the governor was stopped

− WARNING to indicate a warning was issued

• The message field provides more detailed descriptions for the
value of the rectype field.

5.13.5 Governor Log Query Utility
The governor log query utility, db2govlg is used to query the log file.
You can query the log files for a single node or for all nodes. The
output will be sorted by date and time. You can also query the log
based on the Rectype field. The syntax is as follows:

�──db2govlg──log-file─ ──┬ ┬───────────── ──┬ ┬────────────────────── ───────────────────────────�
└ ┘─nodenum──nn─ └ ┘─rectype──record-type─

where the parameters are as follows:

log-file The base name of the log file(s) that you want to query.
monitoring.

nn The node number of the node on which the governor is
running.

record-type The type of record that you want to query. The possible
types are:

• ERROR

• FORCE

• NICE

• READCFG

• START

• STOP

• WARNING

208 DB2 PE for AIX: Concepts and Facilities

Note: There are no authorization restrictions for using the governor
query log utility. If you want to restrict access to this utility, you can
change the group permissions for the db2govlg file.

5.13.6 Considerations for the Governor Utility
The following is the list of the considerations when using the
governor.

 1. The governor daemon must be owned by root.

 2. You require SYSADM authority to use the utility.

 3. The root user must be a member of the SYSADM group (the
group that owns the $HOME/sqllib directory) on all nodes on
which the governor is to be run.

 4. The agentpri database manager parameter must be set to the
default value. Otherwise, it will override the priority clause set in
the rule.

 5. The governor requests snapshots of the database manager. It
may affect CPU usage if the wake-up interval for the governor
daemon is set too small. Consider increasing the wake-up
interval if the governor daemon uses too much CPU.

 6. When the governor daemon changes the priority of the agents
working on behalf of an application, it also has to reset the
priority of these agents if they are reused by a different
application. There may be a slight chance that another
application could use these agents during the interval between
the time that an agent stops working for an application and the
governor daemon resets the priority of that agent. This could
affect the performance of the application because the agent is
running at a nonstandard priority.

5.13.7 Examples Using Governor Utility
The following will serve as examples for this section.

• EXAMPLE 1 illustrates an error that has occurred when starting
up the governor on a 4-node system.

The following shows the steps to configure the governor
configuration file and to start up the governor for the database
dss on 4 nodes using the governor front-end utility.

The configuration file for EXAMPLE 1 instructs the governor to
check every 5 seconds for any application that selects over 1000
rows. An application that exceeds that limit will have the priority
of its agents reduced by a default of 10.

 1. Customize the governor configuration file gov.cfg. The
following shows its content:

interval 5; dbname dss;
setlimit rowssel 1000;

 2. Start up the governor using the following command:

Chapter 5. Parallel Uti l i t ies 209

db2gov start dss gov.cfg dssgov.log

The output from the screen after executing the db2gov
command:

 rah: db2pe
 rah: db2pe
 rah: db2pe
 rah: db2pe

 db2pe: db2gov: Starting db2govd for database dss on node 0
 db2pe: db2gov start dss nodenum ... completed ok

 db2pe: db2gov: Starting db2govd for database dss on node 1
 db2pe: db2gov start dss nodenum ... completed ok

 db2pe: db2gov: Starting db2govd for database dss on node 2
 db2pe: db2gov start dss nodenum ... completed ok

 db2pe: db2gov: Starting db2govd for database dss on node 3
 db2pe: db2gov start dss nodenum ... completed ok

 3. After running db2gov, perform the following steps:

a. Check to make sure the governor daemon is up and
running on all the nodes by issuing the following
command:

rah ″ ;ps -ef | grep db2govd | grep -v grep″

If the db2govd process is not there, the governor daemon
has not started successfully.

b. Check the governor log files using the query log utility by
executing the following:

 db2govlg dssgov.log

The following messages were produced in the output:

1996-09-08 14.32.11 0 ERROR (15020) SQLMONSZ Error:
SQLCode = -1092

1996-09-08 14.32.11 0 ERROR (15020) SQLMONSZ Error:
SQLCode = -1092

1996-09-08 14.32.11 0 READCFG Config = /home/db2pe/gov.cfg
1996-09-08 14.32.11 0 START Database = DSS

[Messages for node 1 - 3 omitted - they are identical
in detail]

The -1092 SQLCODE indicates the user does not have the
authority to perform the requested command. Correct the

210 DB2 PE for AIX: Concepts and Facilities

problem by adding the root user to the SYSADM group for the
instance using smitty.

• EXAMPLE 2 shows how to use the governor to monitor two
database manager nodes and force any application that has
exceeded the limit of 21,600 seconds for the elapsed unit of work
time.

 1. Customize the governor configuration file gov.cfg. The
following shows its content:

interval 5; dbname dss;
setlimit uowtime 21600 action force;

 2. Start up the governor using the following command:

db2gov start dss2 gov.cfg gov_dss2.log

The output from the screen after executing the db2gov
command:

 rah: db2pe
 rah: db2pe

 db2pe: db2gov: Starting db2govd for database dss2 on node 0
 db2pe: db2gov start dss2 nodenum ... completed ok

 db2pe: db2gov: Starting db2govd for database dss2 on node 1
 db2pe: db2gov start dss2 nodenum ... completed ok

 3. After running db2gov, perform the following steps:

a. Check to make sure the governor daemon is up and
running on all the nodes by issuing the following
command:

rah ″ ;ps -ef | grep db2govd | grep -v grep″

If the db2govd process is not there, the governor daemon
has not started successfully.

b. Check the governor log files using the query log utility by
executing the following:

 db2govlg gov_dss2.log

The following messages were produced in the output:

1996-09-10 19.20.05 0 READCFG Config = /home/db2pe/gov.cfg
1996-09-10 19.20.05 0 START Database = DSS2
1996-09-10 19.20.05 1 READCFG Config = /home/db2pe/gov.cfg
1996-09-10 19.20.05 1 START Database = DSS2

Chapter 5. Parallel Uti l i t ies 211

If any application exceeds the unit of work limitation rule, it
will be forced and the application will receive the following
message:

SQL1224N A database agent could not be started to service a
request, or was terminated as a result of a database system
shutdown or a force command

 4. Check the governor log file for node 0 using the query log
utility by executing the following:

 db2govlg gov_dss2.log nodenum 0

The following messages were produced in the output:

1996-09-10 19.20.05 0 START Database = DSS2
1996-09-10 19.20.05 0 READCFG Config = /home/db2pe/gov.cfg
1996-09-10 19.24.01 0 FORCE applname db2bp
authid DB2PE applid *LOCAL.DB2.960910232031
coord 0 (line 1) ET 21601

The entry in the log file indicates the governor has forced
db2bp application.

• EXAMPLE 3 shows how to use the governor to favor short
running queries over longer running queries:

 1. Customize the governor configuration file:

interval 5;
setlimit cpu 5 action priority 1;
setlimit cpu 10 action priority 2;
setlimit cpu 20 action priority 3;
setlimit cpu 40 action priority 4;
setlimit cpu 80 action priority 5;
setlimit cpu 160 action priority 6;
setlimit cpu 320 action priority 8;
setlimit cpu 640 action priority 10;
setlimit cpu 1280 action priority 20;

As the application accumulates CPU time, the priority of its
agents gets reduced.

5.14 db2batch Tool
db2batch is a tool provided with DB2 Parallel Edition V1.2. It resides
in the $HOME/sqllib/misc directory and does the following:

• Reads SQL statements from a flat file

• Dynamically describes and prepares the statements

• Returns an answer set

You can specify options for db2batch to do the following:

212 DB2 PE for AIX: Concepts and Facilities

• Control the size of the answer set

• Control the number of rows that should be sent from this answer
set to an output device

• Collect the elapsed time of the SQL statement or a set of SQL
statements

5.14.1 Using db2batch Tool
The syntax is as follows:

� �
db2batch [-d dbname] [-f file_name]

[-a userid/passwd]
[-r outfile,[outfile2]]
[-c on/off] [-i short/long]
[-b on/off] [-o options]
[-v on/off] [-s on/off]
[-cli] [-h]� �

where the options are as follows:

-d Database name. If not specified, the default database
name set in $DB2DBDFT will be used.

-f Input file containing SQL statements.

-a Authentication user ID/password.

-r Output file containing query results. [outfile2] will contain
just the summary, but is optional. Default - stdout.

-c Automatically commit at end of each SQL statement.
Default - on.

-i Elapsed time interval measurement.

• short - run time for query (default)

• long - time up to start of next query

-b Process groups of statements as blocks instead of
individually. Default - off.

-o Control options:

r <rows out> f <rows fetch> p <perf_detail>

The control option can also be specified in the file where
the SQL statements reside. The syntax is as follows:

--#SET <control option> <value>

-v Verbose. Sends information to stderr during query
processing. Default - off.

-s Summary table. Provides summary of elapsed and CPU
times with arithmetic and geometric means for those
values collected. Default - on.

-cli cli mode will be used when db2batch executes. The
default is embedded dynamic mode. The default mode is
somewhat faster.

-h Display help text.

Note:

Chapter 5. Parallel Uti l i t ies 213

• All SQL statements must be terminated by a semicolon (″;″).

• db2batch issues its own connect and connect reset.

• PERF_DETAIL > 1 is not available in DB2 Parallel Edition V1.2.

• All statements are executed with isolation level RR.

• The maximum SQL statement size is 3999 characters.

The following are the statements you can specify in the input file for
db2batch:

• All SQL statments must end with a semicolon (″;″). For example:

SELECT * FROM ORG;

• Statement for comment can be specified using the syntax as
follows:

-- comment text

• Statement for comment that goes to output can be specified
using the syntax as follows:

--#COMMENT output comment text

• Statement for control option can be specified using the syntax as
follows:

--#SET <control option> <value>

where the possible control option and its corresponding value is:

 option value default
ROWS_FETCH -1 to n -1 (all rows fetched from answer set)
ROWS_OUT -1 to n -1 (all fetched rows sent to output)
PERF_DETAIL 0 to 1 1 (elapsed time and statement)
PAUSE (prompts the user to continue)
TIMESTAMP (generates a timestamp)

5.14.2 Example Using db2batch Tool
The following example will illustrate how to use db2batch to collect
the elapsed time from the SQL statements and control the number of
rows to be fetched from the answer set and the number of fetched
rows to be sent to the output.

The table ORG has 8 rows and the table STAFF has 35 rows in the
database SAMPLE. The following shows the content of the input file
req.file:

� �
--#SET ROWS_FETCH -1
--#SET ROWS_OUT 5
--#SET PERF_DETAIL 1
--#SET TIMESTAMP
select * from org;
--#SET ROWS_FETCH 10
--#SET ROWS_OUT 5
--#SET PERF_DETAIL 0
--#SET TIMESTAMP
select * from staff;

� �

Execute db2batch using the following command:

214 DB2 PE for AIX: Concepts and Facilities

db2batch -d SAMPLE -f req.file -r req.out -i long

The output is sent to the file req.out and the following shows its
content:

� �

--#SET ROWS_FETCH -1 �1�
--#SET ROWS_OUT 5
--#SET TIMESTAMP

Statement number: 1
Current Timestamp: Sun Sept 08 17:57:24 1996

select * from org

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
--

15 New England 50 Eastern Boston
51 Plains 140 Midwest Dallas
10 Head Office 160 Corporate New York
38 South Atlantic 30 Eastern Atlanta
20 Mid Atlantic 10 Eastern Washington

Number of rows retrieved is: 8
Number of rows sent to output is: 5

Elapsed time is: 0.469 seconds �2�

--#SET ROWS_FETCH 10
--#SET ROWS_OUT 5
--#SET PERF_DETAIL 0 �3�
--#SET TIMESTAMP

Statement number: 2
Current Timestamp: Sun Sept 08 17:57:25 1996

select * from staff

ID NAME DEPT JOB YEARS SALARY COMM
--
 30 Marenghi 38 Mgr 5 17506.75 n/a
 20 Pernal 20 Sales 8 18171.25 612.45
 60 Quigley 38 Sales n/a 16808.30 650.25
 10 Sanders 20 Mgr 7 18357.50 n/a

100 Plotz 42 Mgr 7 18352.80 n/a

Number of rows retrieved is: 10
Number of rows sent to output is: 5

Summary of Results
==================

Statement # Elapsed Time (s) Total Application CPU Time (s)
1 0.469 Not Collected �2�
2 Not Collected Not Collected �3�

Arith. mean 0.469
Geom. mean 0.469

� �

�1� indicates all rows are to be fetched from answer set.

Chapter 5. Parallel Uti l i t ies 215

�2� indicates the elapsed time for statement # 1 is collected because
the default value for PERF_DETAIL is 1 which means the elapsed
time for the statement is to be collected.

�3� indicates that the elapsed time for statement # 2 is not collected.

5.15 DB2 Parallel Edition Database Director
DB2 Parallel Edition V1.2 provides a utility called the database
director to administer your DB2 Parallel Edition database system.
You can use this utility to administer the following:

• The database manager nodes

• The database manager configuration

• The resources for:

− Database agents, such as maximum coordinating agent

− Connection, such as the number of active local connections

− Fast communication manager, such as free FCM request
blocks

− Sorting, such as sort heap allocated

For more information about how to install and set up the database
director, refer to DB2 Parallel Edition for AIX Administration Guide
and Reference, and the $HOME/sqllib/Readme/$LANG/README file.

For more information about how to use the database director, press
F1 on each window from the database director.

5.15.1 Using the Database Director
The following are examples for use with this section.

• EXAMPLE 1 illustrates an error that has occurred when starting
up the Database Director on a 4-node system.

 1. Specify the name of the TCP/IP interface to be used by the
Database Director on the node where you are running.

The volume of data returned during performance monitoring
can be quite large, potentially enough to flood an Ethernet
connection. To avoid this situation, use the RS/6000 SP
Switch, or a guaranteed bandwidth communications interface
such as token ring.

The following command displays all network interfaces
available:

netstat -i

Specify the TCP/IP hostname to use in the DB2DD_SW_NAME
environment variable:

export DB2DD_SW_NAME=switch0

Note: It is strongly recommended to place the setting of the
DB2DD_SW_NAME environment variable in your .profile file.

216 DB2 PE for AIX: Concepts and Facilities

 2. Start up the Database Director in the background by issuing
the following command:

db2dd &

The Database Director window appears with the icon of the
database manager instances.

Figure 66. Database Director - Database Manager Instances

 3. An error message box appears.

Figure 67. Error Message from Database Manager Instances

The possible cause of the error is either that the database
manager for node 3 is not started or the Database Director
daemon db2dd_D is not started on node 3.

• EXAMPLE 2 shows the steps for starting the database manager
instance on a 2-node system using the database director.

 1. After database director is started, the following window
appears:

Chapter 5. Parallel Uti l i t ies 217

Figure 68. Database Director - Database Manager Instances

Note: The circle in the icon is dark-colored, which indicates
that the database manager nodes are down at this time.

Figure 69. View Database Manager Instance

 2. Click on the icon and select Details in the View pull-down
menu and the following window will be shown:

Figure 70. View Database Manager Instance in Detail

This window shows the name, the state, and the type of the
instance. It indicates the instance DB2PE is down at this
time.

218 DB2 PE for AIX: Concepts and Facilities

Figure 71. Start Database Manager Instance

 3. Select Start in the Selected pull-down menu to start the
database manager nodes for the instance.

The following window shows that the state of the DB2PE
instance has changed to starting:

Figure 72. Starting Database Manager Instance

After all the database manager nodes are started, the state
of the DB2PE instance in the following window will change to
started.

Chapter 5. Parallel Uti l i t ies 219

Figure 73. Database Manager Instance is Started

• EXAMPLE 3 demonstrates the steps needed to set the alert with
the beep sound and message when the database manager node
for the DB2PE instance is down or when the state of the database
manager node is unknown.

Figure 74. Open the Database Manager Instance

 1. Select Open as in the Selected pull-down menu and the
window in the following figure will be shown:

220 DB2 PE for AIX: Concepts and Facilities

Figure 75. Open Database Manager Instance for Settings

 2. Select Settings... in the Open as pull-down menu and the
Instance settings window will be shown.

Figure 76. Database Manager Instance Settings

 3. You can adjust the Refresh interval. In this example, the
default of 10 seconds is chosen.

 4. Under Actions to take when database manager node is down,
select Beep and Message .

 5. Under Actions to take when database manager node state is
unknown, select Beep and Message .

 6. Click on OK .

Chapter 5. Parallel Uti l i t ies 221

The alert is set. When either the database manager node is
down or the state of the database manager node is unknown,
the system will generate a beep sound and the following
message window will be displayed:

Figure 77. Database Director Alert Message

• EXAMPLE 4 shows the steps to start the database monitor and
set the alert for the beep sound and message when the number
of coordinating agents is greater than 3 on database manager
node 0 for database instance DB2PE.

 1. From the window shown in Figure 74 on page 220, select
Open as in the Selected pull-down menu and the window in
Figure 75 on page 221 will be shown.

 2. From the window shown in Figure 75 on page 221, select
Database manager nodes from the Open as pull-down menu.
The database manager nodes window is displayed.

Figure 78. Database Manager Nodes for Database Manager Instance

222 DB2 PE for AIX: Concepts and Facilities

Figure 79. Open Database Manager Nodes for Instance

 3. Select Open as from the Selected pull-down menu. Then
select Performance details from the Open as pull-down menu.
The performance details window is displayed.

Figure 80. Performance Details for Instance on Database Manager Node

Chapter 5. Parallel Uti l i t ies 223

Figure 81. Change Thresholds for Instance on Database Manager Node

 4. Scroll to the right to search for Maximum Coordinating
Agents. Once found, click on Maximum Coordinating Agents ,
then select Change thresholds from the Selected pull-down
menu. The Maximum Coordinating Agents - Change
Thresholds window is displayed.

Figure 82. Maximum Coordinating Agents - Change Thresholds

 5. Enter 3 in the Above field for the value of the threshold.

 6. Click on OK .

Go back to the window in Figure 80 on page 223.

224 DB2 PE for AIX: Concepts and Facilities

Figure 83. Set Actions for Snapshot Monitor

 7. Click on Maximum Coordinating Agents , then select Open as
settings from the Snapshot monitor pull-down menu. The
Snapshot monitor settings window is displayed.

Figure 84. Snapshot Monitor Settings

 8. You can adjust the Capture Interval. In this example, the
default is 20 seconds.

 9. Select Beep and Message for the threshold actions.

10. Click on OK .

When the number of coordinating agents is equal to the value
of the threshold which was set for the maximum coordinating
agents, the alert will trigger and the system will generate a
beep sound and an alert message box.

Chapter 5. Parallel Uti l i t ies 225

Figure 85. Alert Message from Snapshot Monitor

226 DB2 PE for AIX: Concepts and Facilities

Chapter 6. Installation and Configuration

This chapter describes the steps required to install and configure a
parallel database environment using DB2 PE. There is also a section
on HACMP configuration and a section on the DRDA application
server feature. The chapter is divided as follows:

• Installation procedure

• Configuration procedure

• HACMP configuration

• DRDA application server feature

The first section looks at the basic system setup and installation
tasks necessary for DB2 PE. The second section explains how to
configure the system, using the minimum steps required to check
that everything is working correctly. There are also hints on an
RS/6000 SP environment. The third section describes two
configurations for the HACMP software: idle standby and rotating
standby. Finally, the section describes the DRDA application server
feature in DB2 Parallel Edition V1.2

6.1 Installation Procedure
In this section, we describe the steps needed to install DB2 PE. The
section is divided in two subsections:

• Pre-installation tasks
• Installation tasks

For each of these subsections, we first give an overview of the steps
required, followed by a detailed description of a method for doing
each of these steps.

6.1.1 Hardware Environment
An RS/6000 SP containing 8 wide nodes was configured as the DB2
PE environment. The machines were connected via Ethernet,
token-ring and HPS. See Figure 86 on page 228 for a diagram
showing this setup.

 Copyright IBM Corp. 1996 227

Figure 86. Hardware Environment

6.1.2 Pre-Installation Tasks
The system administrator, as root user, should complete the
following tasks on every node:

 1. Create a group for DB2 PE.

 2. Create a user for DB2 PE.

 3. Set up the home directory for DB2 PE.

 4. Decide on how to distribute the DB2 PE software.

 5. Increase the maximum number of processes per user.

 6. Provide sufficient paging space.

 7. Configure syslog.

 8. Tune TCP/IP network parameters.

 9. Create a local file system to contain a DB2 PE database

228 DB2 PE for AIX: Concepts and Facilities

10. Give ownership of the database directory of that local file system
to the instance owner of DB2 PE.

In the following section, group names, user names, ID numbers, and
so on are given as examples. These will be written in italics, for
example db2pe.

Two different system environments will be considered throughout this
section. Many other configurations are also possible. The following
are the two scenarios described:

• A setup which uses no network management software; so each
operation must be replicated on every node

• An NIS and NFS environment

The first scenario describes a minimal environment which most
administrators should be able to easily recreate. The number of
physical machines in your parallel environment will help to guide you
as to which scenario is more appropriate.

Note: On an RS/6000 SP machine, you could use file collections
instead of NIS. The description and management of file collections
are not covered in this document. Also, in this section, the text
refers to running a command on all nodes. The RS/6000 SP system
provides the distributed shell command, dsh, which will assist in
running these commands. Examples of dsh are:

dsh -a command
dsh -w host1, host2, ..., hostn command

The first command is sent to all the nodes of an RS/6000 SP. The list
of all nodes of the RS/6000 SP is stored in the System Database
Repository. This command must be issued from an RS/6000 SP node
or from the control workstation. The second example sends the
command to the specified nodes. For more information on dsh, refer
to the Scalable POWERparallel 2 Administration Guide.

6.1.3 Create Group for DB2 PE Instance Owner
On every node, the system administrator, as the root user, has to
create a group for the instance owner, db2pe. This group must have
the same group ID on all machines. Any member of this group will
have SYSADM privileges for the DB2 PE instance. The following
steps are involved:

 1. Execute the command:

mkgroup db2grp

 2. Check the group ID number on all machines by running the
command:

lsgroup db2grp

 3. The group ID must be consistent across all nodes. The number
must be unused on all machines. Execute the following
command to update the group ID:

chgroup id=702 db2grp

Note: The command will give a warning message which can be
ignored.

Chapter 6. Installation and Configuration 229

If you are using NIS, the following steps should be followed on the
NIS master server:

 1. Insert a new entry into the /etc/group file. The entry should be
similar to the following:

db2grp::702:db2pe

 2. Refresh the NIS tables by running:

/etc/yp/make

Note: You may wish to wait until after the user has been created
before running this command.

6.1.4 Create Instance Owner for DB2 PE
The system administrator, as root user, must now create a user who
will be the instance owner. We will use the user db2pe with primary
group db2grp on every node. The user ID number must be
consistent across all nodes, and unique on each node.

 1. Execute the command:

mkuser id=802 pgrp=db2grp db2pe
or
mkuser id=802 pgrp=db2grp home=home-dir-path db2pe

Specifying:

• User name = db2pe
• User ID = ′unique number′ (802 in our example)
• Primary group = db2grp
• Home directory if the default, /u/db2pe, is not to be used

 2. To give the instance owner, db2pe, a password, execute the
command:

passwd db2pe

Users on an RS/6000 SP can use the spmkuser command to create the
user, and to automatically export the home directory using amd:

spmkuser id=802 pgrp=db2grp db2pe

If you are using NIS, you must do the following on the NIS master
server:

 1. Add an entry to file /etc/passwd, for example:

db2pe::802:702:Comment:/u/db2pe:/bin/ksh

Here, Comment is an optional field where you may supply user
comments or the name of the person responsible for this user ID.
This field may be left blank.

 2. Refresh the NIS tables by running the command:

/etc/yp/make

 3. Give the user ID a password in NIS by issuing the command: can
be set by issuing the command:

yppasswd db2pe

230 DB2 PE for AIX: Concepts and Facilities

6.1.5 Home Directory for the Instance Owner
There must be only one home directory for the DB2 PE instance user.
This home directory must be shared by all hosts. This may be done
via NFS, AFS or DFS. We will only describe the use of NFS.

 1. Start NFS by executing the following command on all nodes:

/usr/etc/mknfs -B

 2. The directory is exported by executing the following command on
the node which will own the directory:

mknfsexp -d/u/db2pe -t rw -c ′ host1,host2,...,hostn′ -B

 3. This directory must then be mounted on all other nodes. This is
done by entering the following command on all other nodes:

/usr/etc/mknfsmnt -f /u/db2pe -d /u/db2pe -h host0
-n -B -A -t rw -w bg -Y -Z -X

Note: Products exist which perform automatic NFS mounts and
unmounts. These can be used to improve NFS performance. Two
products which provide this service are amd and automount. If your
hardware type is an RS/6000 SP, both of these tools should be
available for use. To do this, the following steps are required:

 1. Update the following file:

• For amd, update /etc/amd/amd-maps/amd.u by adding the
following line:

db2pe host==sp2n1;type:=link;fs=/home/sp2fs/db2pe \
host!=sp2n1;type:=nfs;rhost:=sp2n1;rfs:=/home/sp2fs/db2pe

• For automount, update /etc/auto/auto.u by adding the
following line:

db2pe -rw,hard,bg,intr sp2n1=/home/sp2fs/db2pe

 2. Propagate the maps across the nodes either manually on all
nodes or by running the following command on the NIS master
server if NIS is set up to spread the maps:

/etc/yp/make

 3. Refresh the maps:

• For amd, issue on every node the following command:

/etc/amd/refresh_amd

• For automount, kill and restart the automount daemon using
the following method:

ps -ef | grep automount
kill PID Number
/usr/sbin/automount

where PID Number is the AIX PID returned by the ps command.

Chapter 6. Installation and Configuration 231

6.1.6 Decide on the Distribution of the DB2 PE Software
You may decide to install DB2 PE either locally on every node, or just
once on a master node, and mount the software directories remotely.
Release 1.2 of DB2 PE installs into the directory
/usr/lpp/db2pe_01_02. This directory must either be installed onto
every node or network mounted across the nodes. NFS mounting the
software may be an easier option than installing on every node, but
performance may suffer.

In an RS/6000 SP environment, you can create an image of a node
after the installation of DB2 PE, and replicate this on other nodes.
This procedure, standard on the RS/6000 SP machines, makes the
installation process easier. For details on this procedure, please
refer to SP2 Administration Guide.

6.1.7 Increase the Number of Processes Per User
It is necessary to change the maximum number of processes allowed
per user. This is found in the MAXUPROC parameter. The
recommendation is to set MAXUPROC to 500. The following
command must be executed on all nodes:

/etc/chdev -l sys0 -a maxuproc=500

6.1.8 Provide Sufficient Paging Space
A paging space is fixed disk storage for information that is resident
in virtual memory, but is not currently being accessed. A paging
space, also called swap space, is a logical volume with the attribute
type equal to paging. This type of logical volume is referred to as a
paging-space logical volume, or simply paging space. When the
amount of real memory in the system is low, programs or data that
have not been used recently are moved from real memory to paging
space to release real memory for other activities.

DB2 PE typically requires paging space that is at least twice the size
of real memory. The lsps -a command can be used to display all
paging spaces on a system:

Page Space Physical Vol Vol Group Size %Used Active Auto Type
paging01 hdisk2 rootvg 40MB 90 yes yes lv
paging00 hdisk1 rootvg 40MB 90 yes yes lv
hd6 hdisk0 rootvg 48MB 90 yes yes lv

And the lscfg -l mem* command can be used to display the amount
of real memory installed in a system:

DEVICE LOCATION DESCRIPTION
mem0 00-0A 8 MB Memory SIMM
mem1 00-0B 8 MB Memory SIMM
mem2 00-0C 8 MB Memory SIMM
mem3 00-0D 8 MB Memory SIMM
mem4 00-0E 8 MB Memory SIMM
mem5 00-0F 8 MB Memory SIMM
mem6 00-0G 8 MB Memory SIMM
mem7 00-0H 8 MB Memory SIMM

232 DB2 PE for AIX: Concepts and Facilities

The chps, mkps, rmps, and swapon commands are used to manage
paging space, but their use is beyond the scope of this book. Please
refer to the appropriate AIX system documentation.

6.1.9 Configure syslog
DB2 PE uses the system logger (SYSLOG) to log error and warning
conditions. Entries are added to the SYSLOG based on priority and
what facility caused the error or warning condition. DB2 PE is
represented by the facility called ′user ′. Priority refers to the
urgency of the message, and they are as follows in highest to lowest
priority:

• Emergency
• Alert
• Critical
• Error
• Warning
• Notice
• Information
• Debug

To begin logging DB2 PE error and warning conditions in the
SYSLOG, you must start logging for the facility of type ′user ′. This is
accomplished by editing the /etc/syslog.conf file. For example, add
the following line to this file:

user.warn /var/tmp/syslog.out

Note: You must have root authority to do this. Also, if this file grows
quickly, you may have to reduce its size periodically.

Next the file must be created:

touch /var/tmp/syslog.out

Finally, the syslog daemon must be sent a signal of ′1′ to extract the
latest information from the /etc/syslog.conf file. This can be
accomplished by entering the following command:

refresh -s syslogd

6.1.10 Tuning TCP/IP Network Parameters
The settings for the following parameters should be reviewed:

 1. Maximum Transmission Unit (MTU) size
 2. TCP/IP network options
 3. SP Switch device driver

Chapter 6. Installation and Configuration 233

6.1.10.1 Maximum Transmission Unit (MTU) Size
The maximum MTU size for the switch network is 65520, but setting it
this high may reduce Ethernet performance. The recommended MTU
size is 16394. This will give a middle ground for performance on the
switch and the Ethernet in terms of retransmissions.

6.1.10.2 TCP/IP Network Option
Setting the TCP/IP network option parameters (sometimes referred to
as the no parameters) may affect the names adapter′s performance.
In other words, setting the values for the switch will focus on the
switch ′s performance at the possible expense of the Ethernet
performance.

Thin Node Ethernet Wide Node Ethernet Switch
 lowclust 100 100 100
 thewall 6144 6144 6144
 mb_cl_hiwat 1220 1220 1220
 rfc1323 1 1 1
 tcp_sendspace 118784 221184 655360
 tcp_recvspace 118784 221184 655360
 udp_recvspace 118784 221184 655360
 udp_sendspace 59392 110592 327680
 sb_max 237568 442368 1310720

The current network options can be displayed with the no -a
command. Network options are usually set in the /etc/rc.net file on
RS/6000 systems, and in the /tftpboot/tuning.cust file on RS/6000
SP systems.

6.1.10.3 SP Switch Device Driver
The device driver for the SP Switch (not the previous generation High
Performance Switch) has two parameters, send and receive pool
sizes, that should be increased from their default of 512 KB for use
with DB2 PE. Setting the pool sizes between 1 MB to 2 MB would be
a good starting point:

/usr/lpp/ssp/css/chgcss -l css0 -a spoolsize=2097152
/usr/lpp/ssp/css/chgcss -l css0 -a rpoolsize=2097152

Note: The system must be rebooted to activate the change.

The lsattr -E -l css0 command can be used to display the current
settings, and the vdidl3 -i command can be used to display the
buffer statistics for the device driver.

6.1.11 Create File System for Database
The database data should reside locally on each node. To assist in
the management of your system, we suggest that you create a
separate file system for the database. To help to calculate the size
of this filesystem, The following equation may be helpful:

T = total size (in MB) of an equivalent serial DB2 database)
(including indexes)
N = number of nodes

Size = (T / N + 3 MB) * 1.2 * 2048

234 DB2 PE for AIX: Concepts and Facilities

To create the filesystem, run the following command on every node:

/etc/crfs -v jfs -g datavg -a size=Size -m/database -A yes -p rw -t no

where Size is the size in 512 blocks as calculated above. To assist in
determining the size of a serial database, refer to DB2 Administration
Guide.

6.1.12 Change Ownership of Database File System
The last step of the pre-installation tasks is to give ownership of the
database directory in the file system you created to the instance
owner, db2pe. We recommend that a subdirectory is first created
within the filesystem, for example /database/db2pe. This
subdirectory will contain the database if created by user db2pe.
Setting permissions on this directory only will allow other users to
also use the same file system, without causing ownership conflicts.
To do this, first create the subdirectory with the following command
on all nodes:

mkdir /database/db2pe

Now, update the ownership of the directory by executing the
following command on all nodes:

chown db2pe.db2grp /database/db2pe

6.1.13 Installation Tasks
If you decided to install on all nodes, the following section must be
replicated over all nodes. If you decide to remotely mount the
software directory, it should be run only on the master node, and this
directory should be remotely mounted on all nodes. All commands
should be run as root user.

6.1.14 Software Installation
The software is installed using the standard installp process. The
easiest method of installation is via the SMIT install_latest fastpath.
The following software features will be available on the media:

• db2pe_01_02.db2
• db2pe_01_02.sna
• db2pe_01_02.dd
• db2pe_01_02.drda
• db2pe_01_02.msg.De_DE
• db2pe_01_02.msg.de_DE
• db2pe_01_02.msg.Es_ES
• db2pe_01_02.msg.es_ES
• db2pe_01_02.msg.Ja_JP
• ipfx.Runtime
• ipfx.nls.%L
• db2pe_01_02.doc.%L.ipfx
• db2pe_01_02.doc.%L.pscript

The minimum software installation required:

• db2pe_01_02.db2

Chapter 6. Installation and Configuration 235

Note: If you are installing db2pe_01_02.db2 on AIX version 4.1.3, you
must apply PTF U440406 to AIX. This PTF ensures that DB2 Parallel
Edition can function correctly on AIX version 4.1.3.

6.1.15 Software Distribution
If you decide to install the software on only one node, the directory
/usr/lpp/db2pe_01_02 (on release 1.2) must now be made available
on all other nodes. If you have multiple networks connecting your
nodes, it may be better to reserve the fastest network exclusively for
the use of the DB2 PE product, and use a slower network for NFS.
The distribution of the software over NFS is done with the following
commands:

 1. The directory is exported by issuing the following command on
the node on which the software has been installed:

mknfsexp -d/usr/lpp/db2pe_01_02 -t ro -B

 2. This directory must then be mounted on all other nodes. This is
done by issuing the following command on all other nodes:

/usr/etc/mknfsmnt -f /usr/lpp/db2pe_01_02 -d /usr/lpp/db2pe_01_02
-host host0 -n -B -A -t ro -w bg -Y -Z -X

6.2 Configuration
The steps involved in configuration are as follows:

 1. Create an instance.

 2. Create the db2nodes.cfg file.

 3. Reserve the service ports for DB2 PE, and the Database Director.

 4. Modify the .profile file for the instance owner.

 5. Allow Remote Commands.

 6. Start the Database Director daemon.

6.2.1 Create an Instance
As root, create an instance by running the command:

/usr/lpp/db2pe_01_02/instance/db2instance db2pe

This is very similar to the serial DB2/6000 and creates the system
database directory for the db2pe user, $HOME/sqllib. This directory
is very similar to the serial DB2/6000, and it contains configuration
files, links to executables, logs, and so on. It also contains the file
$HOME/sqllib/sqldbdir/sqldbins which is used to synchronize and
recover database creation across all nodes. This file is called the
System Intention File.

6.2.2 Create the db2nodes.cfg File
This file must be created to tell DB2 PE which hosts will be part of
the instance. This operation should be executed as the instance
owner, db2pe. The $HOME/sqllib/db2nodes.cfg file contains one line
per node. Each line has the following fields:

• Node Number

236 DB2 PE for AIX: Concepts and Facilities

• Node Hostname
• Port Number (Optional)
• Net Name (Optional)

For more details, see 3.3, “Parallel Database Nodes” on page 45.
An example of this file is:

� �
0 host0 0 switch0
1 host1 0 switch1
2 host2 0 switch2
3 host3 0 switch3
4 host4 0 switch4
5 host5 0 switch5
6 host6 0 switch6
7 host7 0 switch7

� �

6.2.3 Reserve the Service Ports
The root user should now update the /etc/services file. This is used
to reserve port numbers on machines and it could be shared via NIS.
All nodes which were included in the db2nodes.cfg file should
reserve ports. In addition, a port should be reserved for the
Database Director. The additional lines added to the /etc/services
file will be as follows:

� �
DB2DD_db2pe 5499/tcp
DB2_db2pe 5500/tcp
DB2_db2pe_END 5507/tcp

� �

6.2.4 Modify Login Environment for the Instance Owner
As the instance owner, the following entry should be added to the
.profile file so that every login will include the DB2 PE environment:

. $HOME/sqllib/db2profile

This sets the following environment variables:

• DB2INSTANCE to $USER (for example, db2pe)
• PATH to

$PATH:$HOME/sqllib/adm:$HOME/sqllib/bin:$HOME/sqllib/misc

The new profile should now be executed by running the command:

. .profile

6.2.5 Allow Remote Commands
As the instance owner, create a $HOME/.rhosts file. This file should
have one entry per node, and its ownership bits must be set to 600.
Every record has the following two entries:

• Hostname
• User ID

Example of the .rhosts file:

Chapter 6. Installation and Configuration 237

host0 db2pe
host1 db2pe
host2 db2pe
host3 db2pe
host4 db2pe
host5 db2pe
host6 db2pe
host7 db2pe

The file permissions are updated by using the command:

chmod 600 .rhosts

The /etc/hosts.equiv file can be used to authorize remote commands
on a system-wide basis: Example of the /etc/hosts.equiv file:

host0 +
host1 +
host2 +
host3 +
host4 +
host5 +
host6 +
host7 +

Note that DB2 PE requires either a .rhosts, or /etc/hosts.equiv file.
The Kerberos equivalents that are shipped with the AIX Parallel
System Support Programs will not work with DB2 PE.

6.2.6 Start the Database Director Daemon
To gather the data from the database manager nodes that make up a
DB2 Parallel Edition Database, a daemon must be run for each
database manager instance (DB2INSTANCE) on each database
manager node that will be monitored. A file called ″rc.db2dd″ is
created in the ″usr/lpp/db2pe_01_02/cfg″ directory at installation
time. In this directory, this file is read only.

To enable the Database Director autorestart, do the following on
each node as root:

 1. Copy the ″/usr/lpp/db2pe_01_02/cfg/rc.db2dd″ file to
″/etc/rc.db2dd_instance″.

 2. Change to the ″/etc″ directory.

 3. Change the file permissions to make the file write enabled and
executable.

 4. Edit the file to specify the instance that you want to monitor.

 5. Add the file to the ″/etc/inittab″ file so that the daemon will be
started after a system restart.

cp /usr/lpp/db2pe_01_02/cfg/rc.db2dd /etc/rc.db2dd_db2pe
cd /etc
chmod 744 db2dd_db2pe
vi db2dd_db2pe
mkitab ″db2dd_db2pe:2:respawn:/etc/rc.db2dd_db2pe >/dev/console 2>&1″

238 DB2 PE for AIX: Concepts and Facilities

The ″/etc/rc.db2dd_db2pe″ should be as follows:

� �
#!/bin/sh
Initialize the Database Director Daemon (db2dd_D) for the instance
#
echo ′ Initializing DB2 Database Director Daemon′
Change db2instancename to the name of the database manager instance
to be monitored.

while [1]
do

if [-f /u/db2pe/sqllib/bin/db2dd_D]
then

su - db2pe ″-c db2dd_D > /dev/console 2>&″
exit

else
sleep 10

fi
done

� �

6.3 Database Management
All operations should be run as the instance owner, db2pe.

6.3.1 Starting a DB2 PE Instance
As db2pe, run the following command to start DB2 PE:

db2start

6.3.2 Creating a Database
The command to create a database called dss in the directory
/database is:

db2 -v ″create database dss on /database″

For information on the files created, refer to Chapter 3, “Concepts
and Data Placement” on page 35.

6.3.3 Creating a Nodegroup
To create a nodegroup named ng4 over four nodes (0, 1, 2, 3),
execute the following commands:

db2 connect to dss
db2 create nodegroup ng4 on node(0,1,2,3)
db2 connect reset

For more details on nodegroups, see 3.7.1, “Nodegroups” on
page 60.

6.3.4 Creating a Table
The command to create a table is identical to that used in serial
DB2/6000, with the optional additions of defining a partitioning key
and a nodegroup. Examples of the commands used to do this are:

Chapter 6. Installation and Configuration 239

db2 connect to dss
db2 create table lineitem (l_orderkey integer not null, \

...
l_comment char(59) not null) in ng4

db2 connect reset

This creates a table called lineitem in nodegroup ng4. For more
information on this process, please see 3.7.5, “Partit ioning Key” on
page 65.

6.3.5 Stopping a DB2 PE Instance
As the instance owner, issue the following command to stop DB2 PE:

db2stop

6.4 HACMP Configurations
When using HACMP/6000 with DB2 PE and your system configuration
experiences a failure, the HACMP software will execute. By using
HACMP you can take over resources such as disk. A machine could
serve as a standby processor in the event of a processor failure. The
HACMP software will cause the following to occur:

• Takeover of the network address

• Takeover of some filesystems (user-defined)

• Execute a user-defined script

For more information regarding of HACMP implementation for DB2
Parallel Edition, refer to the ITSO Redbook Backup, Recovery and
Availability with DB2 Parallel Edition on RS/6000 SP, SG24-4695-00.

The following configurations were tested with HACMP/6000:

• Idle Standby

• Rotating Standby

All configurations were done on a set of three machines. The
hardware setup was identical for all of them, and is shown in
Figure 87 on page 241. Two machines, Host 0 and Host 2, form an
HACMP cluster. They both have access to a shared disk containing
the following filesystems:

• /u/db2pe

• /usr/lpp/db2pe_01_02

• /database

The first two filesystems are NFS exported, to be mounted on the
third machine, Host 1. Host 0 and Host 2 both have two token-ring
adapters to attach to the network. This is to allow, for example, Host
0 to own the IP addresses for Host 0 and Host 2 at the same time.
Host 1 does not require multiple adapters since it is not running
HACMP. Hosts 0 and 2 have an RS232 serial connection to prevent a
false takeover in the event of a token-ring network failure. This
configuration is obviously flawed from a high availability point of view
because Host 1 does not have any backup; however, it allows the

240 DB2 PE for AIX: Concepts and Facilities

possibilities of HACMP with DB2 PE to be explored with a minimal
configuration.

Figure 87. HACMP Test Setup

The following sections describe each of the configurations in detail.

6.4.1 HACMP Idle Standby
In the Idle Standby configuration, Host 0 is set up to hold Node 0 of a
DB2 PE instance, and Host 1 contains Node 1. Host 2 is a standby
machine, and if Host 0 fails, it will take over the resources for Node 0
and restart DB2 PE. The HACMP cluster configuration is shown
below:

Cluster Description of Cluster db2pe
Cluster ID: 1
There were 2 networks defined : net1, net2
There are 2 nodes in this cluster.

NODE host0:
This node has 2 service interface(s):

Service Interface host0:
IP address: 9.3.1.88
Hardware Address: 0x42005a4f4165
Network: net1
Attribute: public

Service Interface host0 has a possible boot configuration:
Boot (Alternate Service) Interface: host0_boot

Chapter 6. Installation and Configuration 241

IP address: 9.3.1.188
Network: net1
Attribute: public

Service Interface host0 has 1 standby interfaces.
Standby Interface 1: host0_standby
IP address: 9.3.4.88
Network: net1
Attribute: public

Service Interface host0_tty1:
IP address: /dev/tty1
Hardware Address:
Network: net2
Attribute: serial

Service Interface host0_tty1 has no standby interfaces

NODE host2:
This node has 2 service interface(s):

Service Interface host2:
IP address: 9.3.1.78
Hardware Address:
Network: net1
Attribute: public

Service Interface host2 has 1 standby interfaces.
Standby Interface 1: host2_standby
IP address: 9.3.4.78
Network: net1
Attribute: public

Service Interface host2_tty0:
IP address: /dev/tty0
Hardware Address:
Network: net2
Attribute: serial

Service Interface host2_tty0 has no standby interfaces

Breakdown of network connections:

Connections to network net1
Node host0 is connected to network net1 by these interfaces:

host0_boot
host0
host0_standby

Node host2 is connected to network net1 by these interfaces:
host2
host2_standby

242 DB2 PE for AIX: Concepts and Facilities

Connections to network net2
Node host0 is connected to network net1 by these interfaces:

host0_tty1

Node host2 is connected to network net1 by these interfaces:
host2_tty0

The resource configuration for this setup is shown below:

Resource Group Name db2r
Node Relationship cascading
Participating Node Name(s) host0 host2
Service IP Label host0
Filesystems /database /u/db2pe

/usr/lpp/db2pe_01_02
Filesystems to be exported /u/db2pe /usr/lpp/db2pe_01_02
Filesystems to be NFS mounted
Volume Groups
Concurrent Volume Groups
Disks
Application Servers db2pe
Miscellaneous Data
Inactive Takeover false
9333 Disk Fencing false

Run Time Parameters:

Node Name host0
Debug Level high
Host uses NIS or Name Server false

Node Name host2
Debug Level high
Host uses NIS or Name Server false

An application server, db2pe, is defined to the cluster. This uses two
scripts, startpe and stoppe to control the DB2 PE environment. The
startpe script is shown below:

#!/bin/ksh

su - db2pe -c db2start

The stoppe script is shown below:

#!/bin/ksh

su - db2pe -c db2stop

6.4.2 HACMP Rotating Standby
In the Rotating Standby configuration, Host 0 and Host 2 are both set
up to be Node 0 of a DB2 PE instance, and Host 1 holds Node 1. The
first machine to start out of Host 0 and Host 2 will become Node 0. If
this machine fails, then the other machine will take over the
resources for Node 0, and restart DB2 PE. The HACMP cluster
configuration is shown below:

Chapter 6. Installation and Configuration 243

Cluster Description of Cluster db2pe
Cluster ID: 1
There were 2 networks defined : net1, net2
There are 2 nodes in this cluster.

NODE host0:
This node has 2 service interface(s):

Service Interface host0:
IP address: 9.3.1.88
Hardware Address: 0x42005a4f4165
Network: net1
Attribute: public

Service Interface host0 has a possible boot configuration:
Boot (Alternate Service) Interface: host0_boot
IP address: 9.3.1.188
Network: net1
Attribute: public

Service Interface host0 has 1 standby interfaces.
Standby Interface 1: host0_standby
IP address: 9.3.4.88
Network: net1
Attribute: public

Service Interface host0_tty1:
IP address: /dev/tty1
Hardware Address:
Network: net2
Attribute: serial

Service Interface host0_tty1 has no standby interfaces

NODE host2:
This node has 2 service interface(s):

Service Interface host0:
IP address: 9.3.1.88
Hardware Address: 0x42005a4f4165
Network: net1
Attribute: public

Service Interface host0 has a possible boot configuration:
Boot (Alternate Service) Interface: host2_boot
IP address: 9.3.1.178
Network: net1
Attribute: public

Service Interface host0 has 1 standby interfaces.
Standby Interface 1: host2_standby
IP address: 9.3.4.78
Network: net1
Attribute: public

Service Interface host2_tty0:

244 DB2 PE for AIX: Concepts and Facilities

IP address: /dev/tty0
Hardware Address:
Network: net2
Attribute: serial

Service Interface host2_tty0 has no standby interfaces

Breakdown of network connections:

Connections to network net1
Node host0 is connected to network net1 by these interfaces:

host0_boot
host0
host0_standby

Node host2 is connected to network net1 by these interfaces:
host2_boot
host0
host2_standby

Connections to network net2
Node host0 is connected to network net1 by these interfaces:

host0_tty1

Node host2 is connected to network net1 by these interfaces:
host2_tty0

The resource configuration for this setup is shown below:

Resource Group Name db2r
Node Relationship rotating
Participating Node Name(s) host0 host2
Service IP Label host0
Filesystems /database /u/db2pe

/usr/lpp/db2pe_01_02
Filesystems to be exported /u/db2pe /usr/lpp/db2pe_01_02
Filesystems to be NFS mounted
Volume Groups
Concurrent Volume Groups
Disks
Application Servers db2pe
Miscellaneous Data
Inactive Takeover false
9333 Disk Fencing false

Run Time Parameters:

Node Name host0
Debug Level high
Host uses NIS or Name Server false

Node Name host2
Debug Level high
Host uses NIS or Name Server false

Chapter 6. Installation and Configuration 245

An application server, db2pe, is defined to the cluster. This uses two
scripts, startpe and stoppe, to control the DB2 PE environment. The
startpe script is shown below:

#!/bin/ksh

su - db2pe -c db2start

The stoppe script is shown below:

#!/bin/ksh

su - db2pe -c db2stop

6.5 DRDA Application Server Feature
The DB2 Parallel Edition Distributed Relational Database Architecture
(DRDA) Application Server (AS) feature (db2pe_01_02.drda) is
supported in DB2 Parallel Edition V1.2. It enables DB2 Parallel
Edition to function as a database server for Application Requestors
using the DRDA protocol in addition to other clients that use DB2
private protocols (DB2/6000 Client Support). It provides support for
DRDA Level 1.

For more information about DRDA concepts and a detailed
description of DRDA commands and bind options, refer to the
following publications: Distributed Relational Database Architecture
Reference, (SC26-4651-01) DDM Architecture Reference Manual Level
4, (SC21-9526-05)

For more information about setting up a DRDA network, or
connecting products on different platforms, refer to the following
publication: Distributed Relational Database Architecture
Connectivity Guide, (SC26-4783-03) For more information about DRDA
AS in DB2 Parallel Edition, refer to DB2 Parallel Edition for AIX
Administration Guide and Reference .

Because DRDA Application Servers and Application Requesters
communicate using the APPC communication protocol, the SNA
support option (db2pe_01_02.sna) must also be installed.

6.5.1 Supported DRDA Application Requesters
The following IBM ARs are supported:

• DB2 for MVS Version 2.3 with PTFs UN75958, and UN54600, and
the fix for APAR PN83426.

• DB2 for MVS Version 3.1 with PTF UN75959, and the fix for APAR
PN83426.

• DB2 for MVS Version 4.1 with the fix for APAR PN83426.

• DB2 for VM Version 3.3 with PTF UN47865

• DB2 for VM Version 3.4

• OS/400 Version 2.3.0 with PTFs SF23100, SF23205, SF23101,
SF23722, SF23987, and SF23990

246 DB2 PE for AIX: Concepts and Facilities

• OS/400 Version 3.0.5 with PTFs SF23950, SF23994, SF23986,
SF23988, and SF23989

• OS/400 Version 3.1.0 with PTFs SF23270, SF23277, SF23271,
SF23721, SF23985, and SF23960

6.5.2 SNA Server/6000 Customization
SNA Server/6000 profiles must be defined to provide APPC (LU 6.2)
connectivity for the DB2 Parallel Edition DRDA AS feature. The AIX
Systems Management Interface Tool (SMIT) is used to define and
customize the profiles. All of the following profiles were created by
starting with the SMIT Advanced SNA Configuration screen. This
screen is found by selecting the following order of SMIT screens:

 1. Communications Applications and Services
 2. SNA Server/6000
 3. Configure SNA Profiles
 4. Advanced Configuration

6.5.2.1 SNA System Defaults
The DB2 Parallel Edition sysadm group must be defined as a trusted
group to allow access to the following SNA functions:

• allocate with SECUR_SAME
• use of EXTRACT_FMH5 in the ioctl() or snactl() calls

Choose the subsequent SMIT screens in the following order to
update the SNA System Defaults:

 1. SNA System Defaults
 2. Change/Show a Profile

The following values were used:

Trusted group names system db2grp

The resulting profile is shown in Figure 88.

� �
Change / Show SNA Node Profile

Profile name sna
Maximum number of sessions (1-5000) [200]
Maximum number of conversations (1-5000) [200]
Restart Action once
Dynamic inbound partner LU definitions allowed? yes
NMVT action when no NMVT process reject
*Trusted group names [system db2grp]
APPC security sense codes specific
Start SNMP subagent when SNA is started? no
Time out limited resource sessions? no
If yes, time-out value (1-3600 seconds) [15]

Standard output file/device [/dev/console]
Standard error file/device [/var/sna.stderr]

Comments []� �
Figure 88. SNA Node Profi le

Chapter 6. Installation and Configuration 247

6.5.2.2 SNA Control Point Profile
The control point profile distinguishes this control point from other
control points that may be connected to the network. The control
point name, combined with the network name, form a unique
identifier (the fully qualified name) for this control point. Each control
point name, when qualified by the network name, should be unique
across all networks.

The XID node ID consists of 8 arbitrary hexadecimal characters that
the control point uses to identify itself as a physical unit (PU). By
convention, the first three characters of 071 identify the local node as
a RISC System/6000 workstation, and the last five characters are set
to the device serial number.

If you are connecting to a VTAM host, the value in the control point
name should match the CPNAME= parameter in the VTAM PU
statement, the value in the network name field should match the
NETID= parameter in the VTAM start statement, and the XID node ID
field should match the concatenation of the IDBLK= and IDNUM=
parameters in the VTAM PU statement.

Choose SMIT screens in the following order to update the SNA
Control Point Profile:

 1. Control Point
 2. Change/Show a Profile

The following values were used:

XID node name 07150898
NETWORK name USIBMSC
CONTROL POINT name SC50898

The resulting profile is shown in Figure 89.

� �
Change / Show Control Point Profile

Profile name [node_cp]
*XID node ID [07150898]
*Network name [USIBMSC]
*Control Point (CP) name [SC50898]
Control Point alias []
Control Point type appn_end_node
Maximum number of cached routing trees [500]
Maximum number of nodes in the TRS database [500]
Route addition resistance [128]

Comments []� �
Figure 89. SNA Control Point Profi le

6.5.2.3 SNA DLC Profile
An SNA data link control (DLC) profile identifies the adapter device
driver and adapter characteristics. The following example defines a
Token Ring dynamic link station that will listen for incoming client
connection requests.

248 DB2 PE for AIX: Concepts and Facilities

Choose SMIT screens in the following order to define the Token Ring
SNA DLC Profile:

 1. Links
 2. Token Ring
 3. Token Ring SNA DLC
 4. Add a Profile

The following values were used:

Profile name tok.00001
Data link device name tok0
Dynamic link stations supported? yes
Effective capacity 15974400

The resulting profile is shown in Figure 90.

� �
Add Token Ring DLC Profile

*Profile name [tok0.00001]
*Data link device name [tok0]
Force disconnect time-out (1-600 seconds) [120]
User defined maximum I-Field size? no

If yes, Max. I-Field size (265-30729) [30729]
Max. num of active link stations (1-255) [100]

Number reserved for inbound activation [0]
Number reserved for outbound activation [0]

Transmit window count (1-127) [16]
Dynamic window increment (1-127) [1]
Retransmit count (1-30) [8]
Receive window count (1-127) [1]
Ring access priority 0
Inactivity time-out (1-120 seconds) [48]
Response time-out (1-40, 500 msec intervals) [4]
Acknowledge time out (1-40, 500 msec intervals) [1]
Local link name []
Local SAP address (02-fa) [04]
Trace base listening link station? no

If yes, trace format long
*Dynamic link stations supported? yes

Link Recovery Parameters
Retry interval (1-10000 seconds) [60]
Retry limit (1-500 attempts) [20]

Dynamic Link Activation Parameters
Solicit SSCP sessions? yes
CP-CP sessions supported? yes
Partner required to support CP-CP sessions no

Dynamic Link TG COS Characteristics
* Effective capacity [15974400]

Cost per connect time [0]
Cost per byte [0]
Security nonsecure
Propagation delay lan
User defined 1 [128]
User defined 2 [128]
User defined 3 [128]

Comments []� �
Figure 90. SNA Token Ring Data Link Control Profi le

Chapter 6. Installation and Configuration 249

6.5.2.4 SNA Local LU Profile
The local LU profile defines an independent logical unit that will be
used by DB2 Parallel Edition. This LU name must be unique with
respect to all the other local LUs defined on this node. Moreover,
the fully qualified local LU name must be unique across the network.
The fully qualified LU name is generated by SNA Server/6000 by
concatenating this LU name to the network name defined in the
Control Point Profile.

Choose SMIT screens in the following order to update the Local LU
Profile:

 1. Sessions
 2. LU 6.2
 3. LU 6.2 Local LU
 4. Add a Profile

The following values were used:

Profile name SC50898I
Local LU name SC50898I

The resulting profile is shown in Figure 91.

� �
Add LU 6.2 Local LU Profile

*Profile name [SC50898I]
*Local LU name [SC50898I]
Local LU alias []
Local LU is dependent? no

If yes,
Local LU address (1-255) []
System services control point

(SSCP) ID (*, 0-65535) [*]
Link Station Profile name []

Conversation Security Access List Profile name []
Recovery resource manager (RRM) enabled? no

Comments []� �
Figure 91. SNA LU 6.2 Local LU Profi le

6.5.2.5 SNA LU 6.2 Mode Profile
The LU 6.2 Mode Profile is used to specify parameters that can be
used to tune throughput, availability, and system resource
requirements for sessions that are established between the local LU
and partner LU.

Choose SMIT screens in the following order to configure a LU 6.2
Mode Profile:

 1. Sessions
 2. LU 6.2
 3. LU 6.2 Mode
 4. Add a Profile

The following values were used:

250 DB2 PE for AIX: Concepts and Facilities

Profile name IBMRDB
Mode name IBMRDB
Maximum number of sessions 30
Minimum contention winners 15
Minimum contention losers 15
Receive pacing window 8
Maximum RU size 4096
Minimum RU size 1024

The resulting profile is shown in Figure 92.

� �
Add LU 6.2 Mode Profile

*Profile name [IBMRDB]
*Mode name [IBMRDB]
*Maximum number of sessions (1-5000) [30]
*Minimum contention winners (0-5000) [15]
*Minimum contention losers (0-5000) [15]
Auto activate limit (0-500) [0]
Upper bound for adaptive receive pacing window [16]
*Receive pacing window (0-63) [8]
*Maximum RU size (128,...,32768: multiples of 32) [4096]
*Minimum RU size (128,...,32768: multiples of 32) [1024]
Class of Service (COS) name [#CONNECT]

Comments []� �
Figure 92. SNA LU 6.2 Mode Profi le

6.5.2.6 LU 6.2 TPN Profile
The LU 6.2 TPN Profile defines SNA and AIX characteristics
associated with a target transaction program (TP) on the local node.

Choose SMIT screens in the following order to update the LU 6.2
Transaction Program Name Profile:

 1. Sessions
 2. LU 6.2
 3. LU 6.2 Transaction Program Name (TPN)
 4. Add a Profile

The following values were used:

Profile name NYSERVER
Transaction program name (TPN) NYSERVER
Conversation type basic
Full path to TP executable /u/db2pe/sqllib/bin/db2acntp
Multiple instances supported? yes
User ID 802

Notes:

 1. NYSERVER is an arbitrary name that may be replaced with a value
that is appropriate for your environment. It must, however,
match the LINKATTR value for this location in the DB2/MVS
SYSIBM.SYSLOCATIONS table.

 2. The value for User ID (802 in our example) is the numeric userid
(uid) of the instance owner; you can find it with the AIX id
command.

Chapter 6. Installation and Configuration 251

The resulting profile is shown in Figure 93 on page 252.

� �
Add LU 6.2 TPN Profile

*Profile name [NYSERVER]
*Transaction program name (TPN) [NYSERVER]
Transaction program name (TPN) is in hexadecimal? no
PIP data? no

If yes, subfields (0-99) [0]
Use command line parameters? no
Command_line_parameters []
*Conversation type basic
Sync level none/confirm
Resource security level none

If access, Resource Security Access List Prof. []
*Full path to TP executable [/u/db2pe/sqllib/bin/db2acntp]
Multiple instances supported? yes
*User ID [802]
Server synonym name []
Restart action once
Communication type signals

If IPC, Communication IPC queue key [0]
Time out Attaches? yes

If yes, time-out value (0-3600 seconds) [60[
Standard input file/device [/dev/console]
Standard output file/device [/dev/console]
Standard error file/device [/dev/console]

Comments []� �
Figure 93. SNA LU 6.2 TPN Profi le

6.5.2.7 Verify and Commit SNA Profiles
New or changed configuration profiles are stored in a working
configuration database. Before you can actually use these profiles,
you must use the verifysna command to ensure the profiles are
correct and internally consistent.

By specifying the update (-U) option with verifysna, you can also
transfer the verified profiles to the committed configuration database,
which is used by SNA Server/6000 when running on the local system.

You can use either of the following methods to verify configuration
profiles:

• verifysna command

• Verify Configuration Profiles option on the SNA Server/6000
Advanced Configuration or Quick Configuration menu

6.5.3 Configuring the Database Manager
The DRDA Application Server is started along with the APPC client
support feature when the tpname parameter is defined in the server′s
database manager configuration file, and the DB2COMM (defined in
the $HOME/sqllib/db2profile file) is undefined, or set to null or APPC.
The tpname parameter must be set to the Transaction Program Name
(TPN) defined in the SNA Server/6000 profiles.

When you set the svcename and/or tpname database manager
configuration parameters to support remote TCP/IP and/or APPC
clients, db2start tries to start the connection and interrupt processes

252 DB2 PE for AIX: Concepts and Facilities

that are required to support remote clients. Not all the nodes,
however, are necessarily set up to support remote clients, and
db2start will fail on these nodes. To prevent this problem, you can
modify the db2profile script to disable the starting of the connection
and interrupt processes for a particular node. For example, if only
the f01n01 host is set up to support APPC clients, the db2profile
script should contain the following:

if [$(hostname) = ″f01n01″]
then export DB2COMM=APPC
else export DB2COMM=NONE

fi

The drda_heap_sz parameter specifies the number of 4 KB memory
pages to allocate for use by the DRDA Application Server. A DRDA
heap is allocated each time a DRDA Application Requestor connects
to a database, and is freed when the DRDA AR disconnects from the
database. The default value should be used unless you receive an
error code indicating that the DRDA heap is not large enough.

The following command will update the database manager
configuration:

db2 update database manager configuration using tpname NYSERVER

6.5.4 Using DRDA Trace
The DRDA Trace command, db2drdat, can be used to capture the
DRDA data stream exchanged between a DRDA Application
Requestor (AR) and the DRDA Application Server (AS). This
information is not only useful for problem determination, but also
performance tuning in a client/server environment.

The syntax for db2drdat is as follows:

db2drdat - DRDA Trace

��──db2drdat─ ──┬ ┬─on─ ──┬ ┬────────── ──┬ ┬───────────── ──── ───��
│ ││ │┌ ┐──────── └ ┘─-l=──length─
│ │└ ┘───� ┴┬ ┬─-r─
│ │├ ┤─-s─
│ │└ ┘─-t─
└ ┘─off─ ──┬ ┬──────────────── ──┬ ┬──────────

└ ┘─-t=──tracefile─ └ ┘─-p=──pid─

Chapter 6. Installation and Configuration 253

254 DB2 PE for AIX: Concepts and Facilities

Appendix A. Special Notices

This publication is intended to help database administrators, system
administrators, or anyone wanting to learn more about the parallel database
environment. In particular, this publication covers DB2 Parallel Edition V1.2 for
AIX, especially installation, configuration, and functions. See the PUBLICATIONS
section of the IBM Programming Announcement for DB2 Parallel Edition V1.2 for
AIX for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to

 Copyright IBM Corp. 1996 255

these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer ′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

AIX AIX/6000
DATABASE 2 DB2
DB2/6000 Distributed Relational Database

Architecture
DRDA ES/9000
HACMP/6000 IBM
Micro Channel POWERparallel
PROFS RISC System/6000
RS/6000 SP2
400 9076 SP2

256 DB2 PE for AIX: Concepts and Facilities

AFS Transarc Corporation

ATM Adobe Systems, Incorporated

NFS Sun Microsystems, Incorporated

DEC, VAX Digital Equipment Corporation

Interleaf Interleaf, Incorporated

Other trademarks are trademarks of their respective companies.

Appendix A. Special Notices 257

258 DB2 PE for AIX: Concepts and Facilities

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 261.

• DB2/6000 Client/Server Usage Guide, GG24-4322-00

• Backup, Recovery and Availability with DB2 Parallel Edition on RS/6000 SP,
SG24-4695-00

• Migrating and Managing Data on RS/6000 SP with DB2 Parallel Edition,
SG24-4658-00

B.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

B.3 Other Publications
These publications are also relevant as further information sources:

• DB2 Parallel Edition for AIX, Administration Guide and Reference,
SC09-1982-01

• DATABASE 2 AIX/6000 and DATABASE 2 OS/2 SQL Reference, SC09-1574-00

• DATABASE 2 AIX/6000 Command Reference, SC09-1575-00

• 9076 Scalable POWERparallel 2:Administration Guide, SH26-2486

• Distributed Relational Database Architecture Connectivity Guide,
SC26-4783-03

 Copyright IBM Corp. 1996 259

260 DB2 PE for AIX: Concepts and Facilities

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1996 261

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

262 DB2 PE for AIX: Concepts and Facilities

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 263

264 DB2 PE for AIX: Concepts and Facilities

List of Abbreviations

AFS Andrew File System

AIX Advanced Interactive
Executive

APPC Advanced
Program-to-Program
Communication

AR Application Requestor

AS Application Server

ASC Non-delimited ASCII

ASCII American National Standard
Code for Information
Interchange

ATM Asynchronous Transfer Mode

CLP Command Line Processor

CLVM Concurrent Logical Volume
Manager

CPU Central Processing Unit

CRM Concurrent Resource
Manager

CW Control Workstation

DB2 PE DATABASE 2 Parallel Edition
for AIX

DDM Distributed Data Management

DEC Digital Equipment Corporation

DEL Delimited ASCII

DDL Data Definition Language

DFS Distributed File System

DML Data Manipulation Language

DRDA Distributed Relational
Database Architecture

DSS Decision Support System

DPS Data Protection Services

EBCDIC Extended Binary Coded
Decimal Interchange Code

FCM Fast Communication Manager

FCS Fibre Channel Standard

FDDI Fiber Distributed Data
Interface

FTP File Transfer Program

HACMP High Availabil ity Cluster
Multi-processing

HACWS High Availabil ity Control
Workstation

HIPPI High Performance Parallel
Interface

HPS High Performance Switch

IBM International Business
Machines Corporation

IP Internet Protocol

ITSO International Technical
Support Organization

IXF Integrated Exchange Format

LPP Licensed Program Product

NFS Network File System

NIS Network Information Service

NTP Network Time Protocol

ODBC Open DataBase Connectivity

OLTP Online Transaction
Processing

PDB Parallel Database

RAID Redundant Array of
Independent Disks

RDBMS Relational Database
Management System

SCSI Small Computer Serial
Interface

SMIT System Management
Interface Tool

SMP Symmetric MultiProcessor

SOCC Serial Optical Channel
Converter

SQL Structured Query Language

SSA Serial Storage Architecture

TCP/IP Transmission Control
Protocol/Internet Protocol

VSD Virtual Shared Disk

VTS Virtual Timestamp

WSF Work-Sheet Format

 Copyright IBM Corp. 1996 265

266 DB2 PE for AIX: Concepts and Facilities

Index

Special Characters
/etc/group file 230
/etc/inittab file 238
/etc/passwd file 230
/etc/rc.db2dd_ file 238
/etc/rc.net file 234
/etc/services file 46, 237
/tftpboot/tuning.cust fi le 234

Numerics
7133 SSA Disk Subsystem 18
7133 SSA Disk Subsystems 7
7135 RAIDiant Array 7, 18
7204 External Disk Drive 18

A
abbreviations 265
acronyms 265
Adding Nodes

Active database manager 178
addnode command 178
db2start command 177
Example of 179, 186
Inactive database manager 178
Overview of 177

ADSTAR Distributed Storage Manager 200
AIX

Database Management 51
Instance 47
Instance owner 47, 48
Logical Volume Manager (LVM) 52
Mapping tables to files 52
Maximum file system size 51
Maximum size for tables and databases 58
Mirror ing 51
Mounting fi le systems 52

Autoloader
$HOME/.netrc file 165
autoloader command 168
autoloader specification file 167
cleanup command 172
configuration file for db2split 165
Considerations when using autoloader 165
example of autoloader log 171
example of autoloader specification file 171
example of the db2split configuration file 170
example of the log output from db2split 171
example using autoloader 170
how to use autoloader 168
load script file in autoloader 167
performance considerations 170
processes in autoloader 169

Autoloader (continued)
purpose 164

B
Backup and Restore

Log files 201
Offline and online 198
Overview of 196
Point-in-time recovery 203
Recovery 201
Restore operation 200
Restrictions 200
Scenario 197
Virtual t imestamps 202

bibliography 259
Broadcast outer-table join strategy 122
Buffered inserts 78, 80

C
CASE Expressions 81
Catalog node 71
Collocated join strategy 105
Commands (execute from AIX)

/etc/rc.db2dd_ 238
/etc/yp/make 230, 231
autoloader 168
automount 231
chgcss 234
cleanup 172
db2_all 141, 163
db2batch 213
db2dd 217
db2dd_D 239
db2drdat 253
db2empfa 54
db2expln 89
db2gov 204
db2govlg 208
db2gpmap 68
db2instance 236
db2sgmgr 143
db2split 150, 154
db2start 177, 239
db2stop 180, 240
dynexpln 89
lsattr 234
lscfg 232
lsps 232
mknfs 231
mknfsexp 231, 236
mknfsmnt 231, 236
rah 141
refresh_amd 231

 Copyright IBM Corp. 1996 267

Commands (execute from AIX) (continued)
vdidl3 234
yppasswd 230

Commands (execute from DB2 command line)
add node 178
alter table 74
create database 71, 239
create nodegroup 61, 73, 239
create table 74, 239
create table with not logged initially 77
drop database 72
drop node verify 179
drop nodegroup 73
export 175
list database directory 72
list database directory (for local) 72
list nodegroups 61, 186
load 158
lock table 134
Redistribute nodegroup 184
reorganize table 195
reorgchk 194
Runstats 193

CURRENT NODE special register 88

D
Data Splitting and Loading

Customized partit ioning map 68
Data loading considerations 164
db2split example 151
load command 158
Load util ity 157
Load uti l i ty errors 164
Load util ity examples 161
Partitioning data using nodes 154
Partitioning data with db2split 150
Populate table without logging 149
sending partition files to appropriate nodes 156
Using a customized map 151

Database director
examples 216
purpose 216
start up database director, db2dd 217

DB2 Parallel Edition 1.2 features
Autoloader Uti l i ty 164
Create table with not logged initially 75
Database Director 216
db2batch tool 212
DIGITS 86
DRDA Application Server support 246
Fetch direct in explain output (optimizer

enhancement) 93
Governor uti l i ty, db2gov 203
Left outer merge join in explain output 97
Left outer nested loop join in explain output 97
Local bypass in explain output (optimizer

enhancement) 92
Multi-page file allocation 53

DB2 Parallel Edition 1.2 features (continued)
NS (next key share) lock mode 129
NX (next key exclusive) lock mode 129
Outer Join 82
Runstats enhancement 193
software features 235
Table-in-memory in explain output (optimizer

enhancement) 93
DB2 Parallel Edition for AIX

Command Line Processor (CLP) 55, 80
Licensed Program Product (LPP) 48
Partitioning key 65
Partit ioning map 67
Process model 37
Splitting and loading in 149
SQL optimizer 88
Tools and utilities 141

db2batch tool
comment 214
comment for output 214
control option 213
example 214
example of db2batch output 215
example of the db2batch input file 214
possible control options 214
purpose 212
usage and syntax 213

db2nodes.cfg file 45, 46, 60, 62, 142, 179, 180
DIGITS Scalar Function 86
Directed inner-table and outer-table join

scrategy 116
Directed outer-table join strategy 110
Disks

External 17
HACMP Recommendations 29
Internal 17

DRDA Application Server
configure Database manager 252
customize SNA Server/6000 247
db2drdat command for drda trace 253
drda_heap_sz consideration 253
PTFs for DB2 for MVS 246
PTFs for DB2 for OS/400 246
PTFs for DB2 for VM 246
Set DB2COMM environment variable 253
Set value for DB2COMM 252
Set value for tpname 252
SNA control point profile 248
SNA DLC profile 248
SNA Local LU profile 250
SNA LU 6.2 mode profile 250
SNA LU 6.2 TPN profile 251
SNA system defaults 247
supported functions 246
Using DRDA Trace 253
Verify and commit SNA profiles 252

Dropping Nodes
Active database manager 180

268 DB2 PE for AIX: Concepts and Facilities

Dropping Nodes (continued)
db2stop command 180
drop node verify command 179
Example 180
Example of 188
Overview of 179
Using the redistribute nodegroup 188

E
Environment variables

DB2_SORT_CUSHION_FOR_PIPE 95
DB2COMM 253
DB2DD_SW_NAME 216
DB2INSTANCE 237
DB2NODE 175
PATH 237

Explain tools (db2expln, dynexpln) 89
 See explain report 89

Explaining report
Access table queue substatements 96
Access table queues 96
Aggregation 98
coordinator subsection 91
Create/Insert into table queue 96
Distinct fi lter 99
distribute subsection #n 92
Index or Filter 98
Join strategy 97
Join substatements 97
Predicates 94
routing method 92
Row access method 93
Scan direction 93
Table access statements 92
Temporary tables 94

F
Fast Communications Manager (FCM)

db2fcmdm daemon 37
description 37

FID (file ID) 55

G
Governor

considerations when using governor 209
Customize governor configuration fi le 205
daemon 205
example 209
example of a governor configuration file 211
example output from query log 210
example to query governor log 210
front-end, db2gov 204
log files 207
purpose 203
querying log file 208
rules 205

Governor (continued)
SQLCODE -1092 when starting db2gov 210
starting the governor 204
stopping the governor 204

GROUP BY operation 81

H
Hardware

Disks 16
Networks 15
RS/6000 SP 18
Sample configuration 227
Sample Configurations 30, 32
SMP configuration 47

High Performance Switch (HPS)
definit ion 15
receive pool size (rpoolsize) 234
reliabil i ty 25
scalabil ity 26
send pool size (spoolsize) 234
speed 16
topology 26

High-Availabil ity Cluster MultiProcessing
Concurrency 27
Configurations 240
Disks 29
High Availabil ity Control Workstation 30
Idle Standby 27, 241
Mutual Takeover 28
Networks 28
Points of failure 27
Power sources 28
Rotating Standby 27, 243
RS/6000 SP Configuration 33
Sample Configurations 30, 32

I
IBMCATGROUP 63
IBMDEFAULTGROUP 64
Import/Export Uti l i ty

Executing the export utility in parallel 175
File formats for 176
Overview of 175
Using the Export utility 175
Using the Import uti l ity 175

Installation and Configuration
/etc/group fi le 230
/etc/inittab fi le 238
/etc/passwd file 230
/etc/services fi le 46
Configuration procedure 236
Configure syslog 233
Create database file system 234
Create group for instance owner 229
Create instance owner 230
db2nodes.cfg file 45, 46
HACMP and idle standby 241

Index 269

Installation and Configuration (continued)
HACMP and rotating standby 243
HACMP configurations 240
Hardware environment 227
Home directory for instance owner 231
Increase number of processes per user 232
Install procedure 227
Installation tasks 235
Ownership of database directory 235
Pre-installation tasks 228
Provide Sufficient Paging Space 232
SMP example 47
Software distribution 232, 236
Software installation 235
Tuning TCP/IP network parameters 233

J
Join operations

Broadcast Outer Table 97
Broadcast outer-table 122
Collocated 97, 105
Data flow for broadcast outer-table 126
Data flow for directed inner-table and

outer-table 121
Data flow for directed outer-table 115
Data flow of collocated 109
Directed Inner and Outer Tables 97
Directed inner-table and outer-table 116
Directed Outer Table 97
Directed outer-table 110
Example of 104
Explain statement for broadcast outer-table 122
Explain statement for Directed outer-table 111
Explain statement for inner-table and

outer-table 116
Explain statement from collocated 105
Merge Join 97
Nested Loop Join 97
Optimizer and 102
Outer Merge Join 97
Outer Nested Loop Join 97
Process flow for broadcast outer-table 124
Process flow for directed inner-table and

outer-table 120
Process flow for directed outer-table 114
Process flow of collocated 108

L
Locking

Causes of deadlocks 138
Checking for deadlocks 140
Compatibi l i ty 130
Configuration parameters 139
Conversion of 135
Cursor Stability (CS) 132
Deadlock 135
Definition of 127

Locking (continued)
Distributed deadlock detection 137
Duration 131
Escalation of 135
Exclusive (X) 127, 129
Impact of temporary tables on 133
Intent Exclusive (IX) 128
Intent share (IS) 128
Isolation levels 132
lock table SQL statement 134
Lock wait 138
LOCKLIST 135, 139
MAXLOCKS 135, 139
Mode in explain reports 93
Modes of 127
NS (next key share) lock mode 129
NX (next key exclusive) lock mode 129
Repeatable Read (RR) 132
Row level 129
Share with Intent Exclusive (SIX) 129
Shared (S) 127, 128
Super Exclusive (Z) 129
Table level 128
Table locking 134
Uncommitted Read (UR) 133
Update (U) 128
Wait-for graph and deadlock 138

M
Multi-page file allocation

considerations when running db2empfa 54
db2empfa to enable multi-page file allocation 54
Enable multi-page file allocation logic 54
multi_page_alloc database parameter 54

N
Networks

Asynchronous Transfer Mode (ATM) 15
Communication independence 25
Ethernet 15
Fiber Channel Standard (FCS) 15
Fiber Distributed Data Interface (FDDI) 15
Flat topology 26
High-Performance Parallel Interface (HiPPI) 15
High-Performance Switch (HPS) 15
Node independence 26
Reliability using High-Performance Switch 25
RS/6000 SP 23
Scalable POWERparallel Switch (SP Switch) 15
Serial Optical Channel Converter (SOCC) 15
Speeds of 15
Token-ring 15

Nodegroup
Adding nodes 186
Concept of 60
Considerations for 62
Creating 61, 73

270 DB2 PE for AIX: Concepts and Facilities

Nodegroup (continued)
Data partit ioning in 59
Default 60
Dropping 73
Example of adding node 186
Example of dropping node 188
IBMCATGROUP 60, 63
IBMDEFAULTGROUP 60, 64
list nodegroups command 61
Single-node 62
User-defined 61

NODENUMBER function 87
Non-buffered inserts 78

O
Outer Join 82

P
Parallel Architecture

Parallel database 36
Parallel processing 8
Shared disk 5
Shared memory 7
Shared nothing 4, 36

Parallel database
AIX and database management 51
Alter table 74
Architecture 36
Architecture concepts and definitions 3
Buffered inserts 78
Changing the maximum size of 59
Components of 36
Control flow 43
Create database 71
Create/drop index 74
Creating a nodegroup 61, 73
Creating table 73
Data partit ioning 64
Database creation 49
Database manager 52
db2nodes.cfg 179, 180
db2nodes.cfg file 60, 62, 142
Decision support systems (DSS) 64
Default database settings 55
Definition of 35
Determining values for NUMSEGS and

SEGPAGES 57
Drop database 72
Drop nodegroup 73
Drop table 73
Instance owner 48
Instance, definition of 47
Log files 51
MAXFILOP 59
Maximum file system size in AIX 51
Maximum size for tables and database in AIX 58
Node 35, 45

Parallel database (continued)
Nodegroups 60, 62
Nodegroups and data partitioning 59
Non-buffered inserts 78
NUMSEGS 50, 55, 57, 58, 59
Online transaction processing (OLTP) 64
Partition 35
Physical objects 49
Process model 37
Segment 52
Segment directory 52, 55, 143
Segment Manager Tool 52
SEGPAGES 55, 57, 58, 59

Parallel process flow
Function shipping 10, 36
I/O shipping 11

Parallel processing
Inter-transaction 8
Intra-query 9

Parallelism
Need for 1
Parallel query 3
Parallel transaction 2

PARTITION function 87
Partitioning key

Compatibi l i ty 66
Create table 74
Creating 65
Default 65
Definition of 65
Directed outer-table join 110
Recommendations for 65
Restrictions for 66
Selection of 65

Partit ioning map
Customized 68
db2gpmap uti l i ty 68, 69
db2split util ity 68
Default 68
Definition of 67
Indirect hashing 69
Row partit ioning 69

R
Redistribution

Adding nodes to nodegroup 186
Data redistribution 181
Distribution fi le 185
Dropping nodes from nodegroup 188
Example of adding node explicitly 186
Example of adding node implicitly 187
Example of dropping node explicitly 188
Example of dropping node implicitly 189
Example using distfile 185
Example using target partitioning map 185
Failure recovery 190
Node redistribution 184
Overview of 181

Index 271

Redistribution (continued)
Process of 182
Redistribute uti l i ty syntax 184
Redistributing data on each table 183
SYSIBM.SYSNODEGROUPDEF 182
SYSIBM.SYSNODEGROUPS 181
SYSIBM.SYSPARTITIONMAPS 181
Target partit ioning map 185
Uniform data distribution 185

Reorganize Table util ity 195
Using 195

Reorgchk util i ty 194
RS/6000 SP

Components of 18
Control Workstation 26
High (SMP) node 18
High Performance Switch (HPS) 15
High-Performance Switch 24
Networks 23
Processors 18, 19
Sample Configuration 33
Sample Configurations 46
Scalable POWERparallel Switch 24
Scalable POWERparallel Switch (SP Switch) 15
System management supervisor 26
System monitor manager 27
Thin node 18
Wide node 18

Runstats
Overview of 192
Using 193

S
Segment Manager Tool

change mount (chmnt) command 148
clean up database directory (clndb) option 148
Cleaning up dropped database directory 148
db2sgmgr command 143
Display segment directory formation 146
drop database 148
Increase file system size 147
lsmnt option 143
mount (mnt) option 144
Mounting segment directory to fi le system 144
Overview of 142
Segment directory 143

SNA Server/6000
SNA control point profile 248
SNA DLC profile 248
SNA Local LU profile 250
SNA LU 6.2 mode profile 250
SNA LU 6.2 TPN profile 251
SNA system defaults 247

SQL
Data definition language (DDL) 71, 73
Data manipulation language (DML) 71, 75
explain report description 91
Explain report example 90

SQL (continued)
Explain tools 89
Join operations 97
Optimization 88
Set operations 81
SQL Functions 87

SQL operations
CASE 81
Column Functions 88
CURRENT NODE 88
DIGITS 86
EXCEPT 81
except all 81
GROUP BY 81
INTERSECT 81
intersect all 81
NODENUMBER 87
Outer Join 82
PARTITION 87
UNION 81

SYSADM 143
SYSIBM.SYSNODEGROUPDEF 61
SYSIBM.SYSNODEGROUPS 61
SYSIBM.SYSPARTITIONMAPS 61

T
Table queues

Definition of 100
Multiple receiver, single sender 102
Single receiver, multiple sender 101
Single receiver, single sender 100

TCP/IP Configuration
/etc/rc.net fi le 234
/tftpboot/tuning.cust fi le 234
MTU size 234
sb_max 234
tcp_recvspace 234
tcp_sendspace 234

272 DB2 PE for AIX: Concepts and Facilities

IBML

Printed in U.S.A.

SG24-2514-01

	DB2 Parallel Edition for AIX: Concepts and Facilities
	Contents
	Figures
	Tables
	Preface
	How This Redbook Is Organized
	DB2 Parallel Edition V 1.2 Enhancements
	Performance
	Function
	Systems Management Enhancements
	Ease of Use Enhancements
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Overview
	The Need for Parallelism
	Concepts and Definitions in Parallel Database Architecture
	Parallel Architecture
	Parallel Processing
	Parallel Process Flow

	Chapter 2. Hardware Configurations
	Networks
	Disks
	Internal Storage
	External Disks
	RISC System/ 6000 Scalable Power Parallel System
	Processors
	Networks
	Switch Network
	Control Workstation
	High- Availability Support
	Concurrency
	Points of Failure
	Networked Systems
	RS/ 6000 SP Configuration

	Chapter 3. Concepts and Data Placement
	Parallel Database
	DB2 Parallel Edition Architecture
	Major Components
	Parallel Edition Process Model
	Parallel Database Nodes
	Database Instance
	Instance Owner
	Database Creation
	Database Management and AIX
	Mapping Tables to AIX Files
	Segment Manager Tool
	Multi- Page File Allocation
	Default Database Settings
	Storage of Objects in Segment Directories
	Determining the Values for NUMSEGS and SEGPAGES
	Maximum Size for Tables and Databases
	Performance and Resource Considerations
	Changing the Maximum Size of a Database
	Nodegroups and Data Partitioning
	Nodegroups
	Creating a Nodegroup
	Considerations for Nodegroups
	Data Partitioning
	Partitioning Key
	Partitioning Map
	Row Partitioning

	Chapter 4. Parallel Processing
	SQL Statements and Database Commands
	Create/ Drop Database
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Not Initially Logged Tables
	Considerations for Using Not Logged Initially
	Example
	Buffered Inserts
	Enabling the Buffered Insert Option
	Considerations for Using Buffered Insert
	Restrictions
	SQL Operations
	Set Operations
	Group By Operations
	CASE Expressions
	Outer Join
	DIGITS Scalar Function
	SQL Functions
	Column Functions
	SQL Optimization
	Explain Tools
	Example of Explain Report
	Description of Explain Report
	Table Queues
	Single- Receiver, Single- Sender Table Queues
	Single- Receiver, Multiple- Sender Table Queues
	Multiple- Receiver, Single- Sender Table Queues
	Join Operations
	Join Methods
	Parallel and Join Strategies
	Collocated Join Strategy
	Directed Outer- Table Join Strategy
	Directed Inner- Table and Outer- Table Join Strategy
	Broadcast Outer- Table Join Strategy
	Database Locking
	Lock Modes
	Lock Mode Compatibility
	Lock Duration
	Lock Conversion
	Lock Escalation
	Deadlock
	Distributed Deadlock Detection
	Locking Configuration Parameters

	Chapter 5. Parallel Utilities
	Executing Commands on Multiple Nodes
	Segment Manager Tool
	Segment Directory File System Information
	Mounting Segment Directory to File System
	Increase Segment Directory File System Size
	Cleanup Database Directory After Dropping Database
	Data Splitting and Loading
	Populate a Table without Logging
	Partitioning Data with db2split
	db2split Example
	Sending Partition Files to Appropriate Nodes
	Load Utility
	Examples Using the Load Utility
	Errors During the Load Utility
	Autoloader Utility
	Considerations for the Autoloader Utility
	Customize the Autoloader Specification File
	Load Script File
	Using AUTOLOADER
	Autoloader Process
	Performance Considerations
	Example Using Autoloader Utility
	Import/ Export Utilities
	Using the Import Utility
	Using the Export Utility
	Executing the Export Utility in Parallel
	File Formats for Import/ Export
	Adding Nodes
	Adding a Node When the Database Manager is Active
	Adding a Node When the Database Manager is Inactive
	Add Node Example
	Dropping Nodes
	Dropping a Node When the Database Manager is Active
	Drop Node Example
	Data Redistribution
	Redistribution Process
	Redistributing Data on Each Table
	Redistribute Utility
	Node Redistribution
	Adding Nodes to a Nodegroup
	Dropping Nodes from a Nodegroup
	Failure Recovery
	Runstats Utility
	Using Runstats
	Reorgchk Utility
	Using Reorgchk
	Reorganize Table Utility
	Using Reorganize Table
	Backup and Restore
	Backup and Restore Scenario
	Backup Operation
	Restore
	Restrictions
	Recovery
	Database Logs
	Virtual Timestamps
	Point- In- Time Recovery
	Governor Utility
	Governor Front- End Utility
	The Governor Daemon
	Customizing the Governor Configuration File
	Governor Log Files
	Governor Log Query Utility
	Considerations for the Governor Utility
	Examples Using Governor Utility
	db2batch Tool
	Using db2batch Tool
	Example Using db2batch Tool
	DB2 Parallel Edition Database Director
	Using the Database Director

	Chapter 6. Installation and Configuration
	Installation Procedure
	Hardware Environment
	Pre- Installation Tasks
	Create Group for DB2 PE Instance Owner
	Create Instance Owner for DB2 PE
	Home Directory for the Instance Owner
	Decide on the Distribution of the DB2 PE Software
	Increase the Number of Processes Per User
	Provide Sufficient Paging Space
	Configure syslog
	Tuning TCP/ IP Network Parameters
	Create File System for Database
	Change Ownership of Database File System
	Installation Tasks
	Software Installation
	Software Distribution
	Configuration
	Create an Instance
	Create the db2nodes. cfg File
	Reserve the Service Ports
	Modify Login Environment for the Instance Owner
	Allow Remote Commands
	Start the Database Director Daemon
	Database Management
	Starting a DB2 PE Instance
	Creating a Database
	Creating a Nodegroup
	Creating a Table
	Stopping a DB2 PE Instance
	HACMP Configurations
	HACMP Idle Standby
	HACMP Rotating Standby
	DRDA Application Server Feature
	Supported DRDA Application Requesters
	SNA Server/ 6000 Customization
	Configuring the Database Manager
	Using DRDA Trace

	Appendix A. Special Notices
	Appendix B. Related Publications
	B. 1 International Technical Support Organization Publications
	B. 2 Redbooks on CD- ROMs
	B. 3 Other Publications

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	Special Characters
	B
	Numerics
	A
	C
	D
	H
	E
	F I
	G
	J
	M
	N
	L
	O
	P
	R
	T
	S

