
SG24-2112-00

A First Look at
TME 10 Distributed Monitoring 3.5

July 1997

This soft copy for use by IBM employees only.

International Technical Support Organization

A First Look at
TME 10 Distributed Monitoring 3.5

July 1997

SG24-2112-00

IBML

This soft copy for use by IBM employees only.

This soft copy for use by IBM employees only.

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 83.

First Edition (July 1997)

This edition applies to TME 10 Distributed Monitoring Version 3.5.

 Warning

This book is based on a pre-GA version of a product and may not apply when the product becomes generally
available. It is recommended that, when the product becomes generally available, you destroy all copies of
this version of the book that you have in your possession.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O.Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This soft copy for use by IBM employees only.

Contents

Figures . v

Preface . vii
The Team That Wrote This Redbook . vii
Comments Welcome . vii i

Chapter 1. Introduction . 1
1.1 About TME 10 Distributed Monitoring 3.5 . 1
1.2 About the Lightweight Client Framework . 2

Chapter 2. TME 10 Distributed Monitoring . 3
2.1 Introduction to The Tivoli Management Environment 3

2.1.1 Tivoli Management Regions . 4
2.1.2 Administrators and Policy Regions . 5
2.1.3 Management By Subscription . 6

2.2 Inside TME 10 Distributed Monitoring . 7
2.3 Under the Covers of TME 10 Distributed Monitoring 8

2.3.1 Creating a Monitor . 8
2.3.2 Displaying Events . 10

Chapter 3. Introducing the Lightweight Client Framework 13
3.1 Stresses and Strains in the TME Framework 13

3.1.1 PC Managed Nodes . 13
3.2 LCF to the Rescue . 14

3.2.1 Components of LCF . 14
3.2.2 How an Endpoint Gets Connected . 15
3.2.3 LCF Methods . 16
3.2.4 How Applications Work with LCF . 19
3.2.5 Downcall Example, Software Distribution 19
3.2.6 Upcall Example, Inventory Scanning . 20

Chapter 4. Setting Up the Lightweight Client Framework 21
4.1 Endpoint Manager Prerequisites . 21
4.2 Creating a Gateway . 22
4.3 Installing and Running LCF Endpoints . 24

4.3.1 Installing the LCF Files on Windows 95 24
4.3.2 Running LCF on Windows 95 . 26
4.3.3 Installing LCF on NetWare . 28
4.3.4 Running LCF on NetWare . 29

4.4 Modifying LCF Behavior Using Endpoint Policy Methods 30
4.5 Execute Tasks on LCF Endpoints . 35

Chapter 5. Sentry Meets the LCF Endpoint . 41
5.1.1 Installation Notes . 41

5.2 Creating an Endpoint Enabled Profile Manager 42
5.3 Sentry and the NetWare Endpoint . 43

5.3.1 Creating a Monitoring Profile and Setting Subscribers 43
5.3.2 Defining a Monitor for a NetWare Endpoint 45
5.3.3 Distributing a Monitor to a NetWare Endpoint 47
5.3.4 Monitor Responses from an LCF Endpoint 48

 Copyright IBM Corp. 1997 iii

This soft copy for use by IBM employees only.

Chapter 6. Data Collection and Graphing . 51
6.1 Installing the Data Collection Function . 51
6.2 Collecting Monitor Data . 51

6.2.1 Log File Size Considerations . 53
6.2.2 Collecting Non-Numeric Data . 53

6.3 The Spider Web Server . 53
6.3.1 How Spider Works . 54

6.4 Displaying TME 10 Distributed Monitoring Graphical Reports 54
6.4.1 Defining the Reports . 57

6.5 Extracting Logged Data from the Command Line 59

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 61
7.1 Overview of the Oracle Monitoring Collection 61
7.2 Prerequisites . 62
7.3 Producing Some Database Load . 64
7.4 Creating an Oracle Monitoring Profile . 65
7.5 Combining the Oracle Monitors with the Graphical Log Facility 76

Appendix A. Special Notices . 83

Appendix B. Related Publications . 85
B.1 International Technical Support Organization Publications 85
B.2 Redbooks on CD-ROMs . 85
B.3 Other Publications . 85

How to Get ITSO Redbooks . 87
How IBM Employees Can Get ITSO Redbooks 87
How Customers Can Get ITSO Redbooks . 88
IBM Redbook Order Form . 89

Index . 91

ITSO Redbook Evaluation . 93

iv TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figures

 1. TME Architecture . 3
 2. TMR Components . 5
 3. Hierarchy of Profile Managers . 6
 4. Creating a Monitor . 8
 5. Executing a Monitor Action . 9
 6. An Event Pop-up Message . 10
 7. Sentry Notices . 11
 8. Events Sent to the T/EC . 11
 9. Components of LCF . 15
10. Initial Endpoint Connection . 16
11. Downcall Invocation . 17
12. Upcall Invocation . 19
13. Lab Setup . 21
14. Creating a Gateway . 22
15. Defining an LCF Gateway . 23
16. New Endpoint Gateway Appears in Gateway List 24
17. The Initial Install Dialog . 25
18. Tivoli Program Group after LCF Install . 26
19. The LCF Console . 27
20. New LCF Node Appears in the Endpoint List 28
21. LCF Install for NetWare, Showing Destination Directory 29
22. NetWare Server Directory Tree after LCF Installation 29
23. The LCF Client Console . 30
24. The NetWare Endpoint Appears . 30
25. LCF Endpoint Policies . 32
26. Notice Group Message When LCF Client Is Rejected 34
27. Automatic Subscription of LCF Client . 35
28. Defining a Task . 37
29. Executing a Task on a Windows 95 LCF Endpoint 38
30. Output of the Windows 95 DIR Command 39
31. Defining a Profile for an LCF Endpoint . 42
32. The New Profile Manager . 42
33. Subscribing an LCF Endpoint . 44
34. The New Profile and Its Subscriber . 44
35. The NetWare Monitoring Collection . 45
36. Defining Monitor Details . 46
37. After Completing the Monitor Definition . 47
38. Tivoli Directory Tree after Distribution of First Monitor 48
39. Indicator Shows Severe Error . 49
40. Indicator Threshold Log . 49
41. Defining an Always Response . 52
42. Defining the Logging Task . 52
43. Spider Web Server Connections . 54
44. Initial Spider Menu . 55
45. User ID and Password Prompt . 55
46. Report Selection Dialog . 56
47. Monitoring Target Resource Tree . 56
48. Selecting Targets to Display Collected Data 57
49. Report Options Screen . 57
50. Graphical Reports in Action . 58
51. Time Configuration Screen . 59

 Copyright IBM Corp. 1997 v

This soft copy for use by IBM employees only.

52. Examples of Using wgdread . 60
53. convert_times Perl Script . 60
54. Extracting Historical Data with Date and Time Conversion 60
55. TME 10 Distributed Monitoring Talking to Oracle 61
56. TME 10 Install Product Window . 63
57. Profile Manager Window . 65
58. Create Profile Window . 66
59. TME 10 Distributed Monitoring Profile . 67
60. Add Monitor to TME 10 Distributed Monitoring Window 68
61. Edit Monitor Window . 69
62. TME 10 Distributed Monitoring Alert Window 70
63. TME 10 Distributed Monitoring E.EXEC Error 71
64. E.EXEC Error in Oracle Monitor . 73
65. Add Oracle Monitor . 74
66. Oracle Disk Reads Monitor Under Load 76
67. TME 10 Distributed Monitoring Edit Monitor Window 77
68. TME 10 Tasks Window . 78
69. Web Interface for TME 10 Distributed Monitoring 79
70. Add Report Window . 80
71. Graphical Representation of Oracle Monitor 81
72. Report Time Configuration Window . 82

vi TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Preface

This redbook introduces the latest version of TME 10 Distributed Monitoring,
previously known as Tivoli/Sentry. It describes the operation of the product in
the current Tivoli Management Environment and also in the new Lightweight
Client Framework (LCF) model.

This redbook will help you position TME 10 Distributed Monitoring and TME 10 as
a solution for enterprise systems management and show practical examples for
its use.

If you are planning to install TME 10 Distributed Monitoring, or if you already
have it installed, this book will help you to understand the new functions in
Version 3.5. If you want to learn about the enhanced scalability provided by the
TME Lightweight Client Framework, this book will give you a technical overview
illustrated by practical examples of how LCF is exploited by TME 10 Distributed
Monitoring 3.5.

Some of the new features of TME 10 Distributed Monitoring covered in this
redbook include database monitoring (Oracle) and data collection and graphing
using the new TME 10 Distributed Monitoring World Wide Web (WWW) interface.

The scenarios are documented in a way that service providers can use the
examples as a base in client implementations.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the Systems Management and Networking ITSO Center, Raleigh.

Rob Macgregor is a technical specialist at the Systems Management and
Networking ITSO Center, Raleigh. He writes extensively and teaches IBM
classes worldwide on systems management and network security. Before
joining the ITSO three years ago, Rob worked in the UK technical support center,
dealing with network and systems management products.

Stefan Uelpenich is an Advisory ITSO Representative, working as a project
leader at the Systems Management and Networking ITSO Center, Raleigh. He
writes extensively and teaches IBM classes worldwide on all areas of systems
management. Before joining the ITSO, he worked in IBM Germany′s
Professional Services organization as an Advisory I/T Architect for Systems
Management, consulting major IBM customers.

Andreas Kuffer is a systems management specialist in IBM Germany. He has
three years of industry experience in the area of UNIX and networking. His
areas of expertise include UNIX system administration and open network
management.

Peter Glasmacher is a Consultant in IBM Germany. He has about 15 years of
experience in networking, focusing on systems management for the last seven
years. He has worked at IBM for 24 years. His areas of expertise include
network design/implementation, security consulting and design/implementation
in the Systems Management arena.

 Copyright IBM Corp. 1997 vii

This soft copy for use by IBM employees only.

Graeme Naysmith is an Advisory I/T Specialist working in Warwick, England. He
joined IBM in 1985 and has four years AIX/UNIX monitoring and automation
experience. His areas of expertise include network and systems management.
Graeme is currently involved in the migration of SystemView applications to the
TME 10 product set.

Thanks to the following people for their invaluable contributions to this project:

David Boone, Linda Robinson, Shawn Walsh, Gail Doucette Wojton and Paul
Braun
Systems Management and Networing ITSO Center, Raleigh.

Greg Kattawar, Astrid Burnette, Sean Starke and Carol Corley
Tivoli Systems, Austin.

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 93 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Home Pages at
the following URLs:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

viii TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 1. Introduction

Under the Tivoli Management Environment, the process of managing distributed
systems is divided into a number of application categories:

Applications This area covers the management of standard
application environments, such as Lotus Notes
or Internet servers, and also the process of
making any application management-ready so
that it is instrumented and controllable.

Availability This area covers the monitoring of distributed
systems and networks. It also covers
centralized monitoring of events and
performance characteristics.

Deployment This area deals with the distribution and
implementation of applications on distributed
systems.

Operations and Administration This area covers remote control of workstations
and scheduling of background jobs in a
distributed environment.

User and Security This area covers all aspects of administrating
security in a distributed environment, creation
and maintenance of user accounts and
administration of access policies.

All of these management applications are based on a consistent framework, the
Tivoli Management Platform (TMP) which provides them with services for remote
execution, authentication, data distribution and transaction control.

This book deals primarily with an application that falls into the Availability
category: TME 10 Distributed Monitoring. It describes the functions available in
the latest version of TME 10 Distributed Monitoring, Version 3.5.

1.1 About TME 10 Distributed Monitoring 3.5
TME 10 Distributed Monitoring is an application that provides monitoring of
status and performance information for remote systems from a central point. It
makes extensive use of the TME platform for distribution of monitoring policy,
alerting, and automation.

Prior to Version 3.5, TME 10 Distributed Monitoring provided a wide range of
monitors for UNIX and NT systems and a proxy monitoring option for
management of non-platform operating systems and SNMP resources. We
discuss the way that TME 10 Distributed Monitoring works and how it fits into the
TME framework in Chapter 2, “TME 10 Distributed Monitoring” on page 3.

Version 3.5 introduces a number of enhancements to the existing product:

• Support for NetWare servers, using the new TME Lightweight Client
Framework platform extension.

• Support for historical data collection and a Web-based monitoring facility for
viewing collected data.

 Copyright IBM Corp. 1997 1

This soft copy for use by IBM employees only.

• A number of additional collections of monitors, for Oracle, Sybase and the
TME 10 Enterprise Console.

We discuss all of the enhancements, with examples, later in this book.

1.2 About the Lightweight Client Framework
One of the most significant features of TME 10 Distributed Monitoring 3.5 is that it
is the first TME application to provide support for Lightweight Client Framework
(LCF) endpoints. LCF has a number of objectives:

• To improve the scalability of the Tivoli Management Environment, by
removing some of the design limitations in the full platform

• To extend the full function of the TME platform to a large number of desktop
managed nodes

• To minimize the administrative cost of this increased scalability and scope

• To achieve all of the above with a minimal impact on the managed system

We describe how LCF works in Chapter 3, “Introducing the Lightweight Client
Framework” on page 13 and we show examples of implementing it on two
different operating systems in Chapter 4, “Setting Up the Lightweight Client
Framework” on page 21.

2 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 2. TME 10 Distributed Monitoring

In this chapter we describe the detailed operations of TME 10 Distributed
Monitoring. If you are familiar with the product, you may wish to skip this
section.

TME 10 Distributed Monitoring, previously known as Tivoli/Sentry, provides
monitoring functions for a range of UNIX platforms plus Windows NT. In the
latest release (TME 10 Distributed Monitoring 3.5) it also supports Novell
NetWare R3 and R4 servers. Sentry is based on the Tivoli Management
Environment and it uses TME functions for many operations, such as deploying
monitors to distributed systems, defining monitoring policies and sending events.

To have a good understanding of any TME application you need to understand
the function provided by the TME platform. We briefly introduce the platform
here, but for a more detailed treatment you may want to refer to TME 10
Cookbook for AIX, SG24-4867 or Understanding Tivoli′s TME 3.0 and TME 10,
SG24-4948.

2.1 Introduction to The Tivoli Management Environment
The Tivoli Management Environment (TME) contains a distributed object-oriented
infrastructure, a set of tightly integrated systems management applications and a
set of interfaces. The interfaces include a GUI for simple control, an extensive
command line interface that makes it easy to perform batch operations and
automation and a set of APIs to allow other applications to be integrated into the
framework.

Figure 1 shows a schematic view of TME.

Figure 1. TME Architecture

The Tivoli Management Framework, also referred to as the platform is
fundamental to everything that a TME application does. It is a distributed object
request broker (ORB) implementation, based on the common object request
broker (CORBA) standard. An object request broker is a function that allows

 Copyright IBM Corp. 1997 3

This soft copy for use by IBM employees only.

object-oriented programming techniques to be applied in a distributed
environment. The benefit of an object-oriented approach for heterogeneous
systems management is that the real world configuration can be masked. An
application just needs to know the interface definition of an object (the data it
exposes and the methods it provides). The problems of implementing the
method on NT or Solaris or AIX or whatever, are encapsulated within the object
itself.

In addition to the base ORB functions, the TME framework provides a number of
other services, for example:

• Administration functions

• Security (authentication and access control)

• Transaction control

• Packaging and distribution functions

It is these capabilities that make TME a specialized systems management
environment. As we go on to describe the operation of Sentry you will see how
the platform functions simplify the creation of an application.

2.1.1 Tivoli Management Regions
We have said that TME provides a distributed framework for systems
management applications, but how does that look in practice? Systems within
the framework are placed within Tivoli Management Regions (TMRs). A TMR is
comprised of one server system and a number of clients, or managed nodes.
Each system runs an object request broker (the oserv daemon) and an
application on one system within the TMR can invoke a function on any other
system by using the ORB services.

For many operations, all the systems in the TMR are peers to each other. Why,
then, is one designated the TMR server? The answer is that certain key functions
require a single point of reference, which the server provides. The main
functions provided by the server are object location services and security
controls. Some applications also use the server as a default location if they
have data or code that does not need to be present in all managed nodes.

Practical considerations limit the number of managed nodes within a TMR to
about 200. To manage a larger population of nodes, TMRs have to be
interconnected. The TMR server is responsible for communicating with the
server in an adjacent TMR.

The TME platform is a sizeable piece of code, which may not be desirable or
possible to run on every system you want to manage. To deal with this case,
you can use PC managed nodes. A PC managed node is a small piece of code
that runs on NetWare, OS/2, and all types of Windows systems. It implements a
simple endpoint function for the most commonly required TME applications,
software distribution and in certain cases user administration.

Although the PC managed node meets the basic requirements for desktop
systems, it is not very flexible and it introduces some problems of security and
maintainability. The answer, which will appear throughout the Tivoli product
range during 1997, is the Lightweight Client Framework (LCF). This provides
support for many of the Tivoli APIs, but does so with a minimal disk footprint and

4 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

without any installation or pre-definition required. Figure 2 on page 5 shows
how TMRs are put together.

Figure 2. TMR Components

2.1.2 Administrators and Policy Regions
If you want to use any of the Tivoli applications you need an administrator ID.
This ID is not a regular system ID, although TME uses a standard system user ID
and password to provide authentication. In other words, you prove your
credentials by providing your system ID and password. TME then maps that ID
onto an administrator ID. What this means is that you may have root access to
one of the systems in the TMR, but that does not necessarily give you any TME
authorization. Conversely, you can perform tasks that would normally need root
access using a regular personal user ID, if your TME access permits it.

Access controls in TME are very granular. Every object (whether a real
resource, such as a managed node or a logical entity, or a file package or a
system monitor) is created within a policy region. Each administrator holds
specific authorization roles within the policy region. So for example, an
administrator may have authority to update Sentry monitors on one group of
systems, but not on another.

Chapter 2. TME 10 Distributed Monitoring 5

This soft copy for use by IBM employees only.

Authorization roles are also applied at the TMR level. If you have a particular
role in the TMR, it overrides your authorization at the policy region level.

2.1.3 Management By Subscription
In TME, all application configurations are distributed based on policy, rather than
by configuring nodes individually. The way this works is a concept called
management by subscription. All application functions are configured using
profiles in the oserv database. The contents of a profile depends on the
application that created it. For example, a TME 10 Distributed Monitoring profile
would contain system monitoring details, whereas a TME 10 Software
Distribution profile would contain file package descriptions. Profiles are
contained in objects called profile managers. Nodes can be subscribed to these
profile managers and, when a profile is distributed, it is applied to all of the
subscribed nodes.

You can also create hierarchies of profile managers, by subscribing one profile
manager to another. This provides a very flexible way to have centralized
management for some elements of a system and distributed management for
others. Figure 3 shows an example of an organization that has a number of
workstations. There are some Sentry monitors that are applied to all of the
workstations. However, some parts of the organization have specific monitoring
requirements. The Finance department, for example, uses an RDBMS, so they
want monitors to check that it is running correctly. Over in the Research
department they run memory intensive analysis, so they need to keep an eye on
swapping activity. The hierarchy in the diagram allows this environment to be
created with minimum effort, each monitor and each node subscription being
defined only once.

Figure 3. Hierarchy of Profi le Managers

6 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

2.2 Inside TME 10 Distributed Monitoring
TME 10 Distributed Monitoring gives you the capability to create monitors for
many different aspects of a TME managed node. It is installed like any other
TME application, by selecting Desktop , Install and then Product from the TME
desktop or using the winstall command. This installs a number of components.
The main ones are:

• The Sentry engine. This is the process that actually performs the monitoring.
All monitors are executed locally on the managed node (except for the
special case of proxy monitors). The Sentry engine is a timer-driven
program that runs as a background task (as a daemon in the case of UNIX,
as a service on NT). Every minute it wakes up and processes any monitors
that are queued for execution at that time.

• Endpoint Classes. These are object classes and methods that are installed
and run on the managed node and are responsible for updating the Sentry
engine whenever monitor changes are distributed.

• Kennel Classes. These are object classes and methods that are installed on
the server. They perform the defined actions when a Sentry monitor hits a
threshold.

Each monitor is in the form of a command or program that returns a result. The
monitor result is tested against a number of threshold levels, any of which can
have actions associated with it. There are three error threshold levels named
warning, severe, and critical in order of increasing scariness. There is one other
level defined, normal which is to trigger an action when the result does not
indicate a problem. Finally, there is a threshold level named always that is
triggered regardless of the test result. It would be possible for a single monitor
to include definitions for all of these threshold levels, but normally only one or
two of them are appropriate. In these cases the other levels can be left
undefined.

When a monitor triggers a threshold there are a number of actions available:

• An administrator can be notified, via a TME notice, or pop-up message.

• An indicator can be set on the TME desktop.

• An event can be sent to the TME 10 Enterprise Console.

• Automated action can be taken, either a program or a TME task.

2.2.1.1 Monitoring Collections
Sentry can monitor UNIX, NT and NetWare systems. Although the Tivoli
Management Environment provides a consistent way to invoke monitoring,
regardless of the system platform, the monitors themselves differ from one
platform to another. Sentry reflects these variations by placing monitors into
groups called monitoring collections. Each collection contains a group of related
monitor definitions. You have to install the collections you need, dependent on
the types of system you want to manage and the applications they are running.

The monitoring collections are defined in the oserv database on the server only.
When a monitor is distributed the code appropriate to the particular platform is
sent to the managed node for processing.

Chapter 2. TME 10 Distributed Monitoring 7

This soft copy for use by IBM employees only.

2.3 Under the Covers of TME 10 Distributed Monitoring
Let us now look in some more detail at the way that Sentry operates. We divide
the operation into two steps:

 1. Creating a monitor

 2. Executing a monitor

2.3.1 Creating a Monitor
Figure 4 shows how a monitor is instantiated on a managed node.

Figure 4. Creating a Monitor

 1. The administrator creates a monitor profile using the GUI or the waddmon
CLI command. The profile can contain multiple monitor definitions. Each
monitor is actually an instance of an object class, stored in the server oserv
database.

 2. The administrator distributes the profile, either directly or by scheduling it as
a background task. The TME platform provides facilities for creating and
distributing Change Control Management System (CCMS) profiles, effectively
a package of code and data containing the instructions for the new monitor.
Because this is using a standard platform function, it can benefit from
features such as mdist (multiplexed distribution) which will reduce network
load and minimize repeated transmissions.

 3. The distribution process kicks off the monitor installation by invoking a
Sentry endpoint method on the target managed node.

 4. The endpoint method updates the Sentry engine with the new monitor profile.

8 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

2.3.1.1 Executing a Monitor
Sentry monitors start to operate as soon as they are installed in the Sentry
engine. The minimum polling interval is one minute, so the Sentry engine wakes
up at one minute intervals and looks to see what monitors are waiting in that
particular time slot. It is possible to overload the Sentry engine by giving it more
monitors than can be executed within a one minute window. If this happens, it is
possible that it will never catch up. The moral of this is: make sure that the
monitors will run in a reasonable timescale, and do not set unrealistically short
polling intervals.

When the monitor detects a result that triggers one of the defined response
levels, it will cause an action to be taken. Some of these actions, such as local
logging or local command execution, can be executed directly on the managed
node. However, most actions involve invoking a method on another node in the
TMR. This is where the kennel classes come into play.

Figure 5 shows what happens.

Figure 5. Executing a Monitor Action

 1. The Sentry engine invokes a method call on the TMR server. Calls to a
remote ORB contain an object reference and a method invocation. In this
case the object is the monitor instance and the method is whatever action is
defined in the monitor. The monitors are instantiated on the TMR server, so
that is where the invocation is made.

 2. The action method invokes the desired action(s), such as updating an
indicator icon, running a task sending e-mail, etc. These actions are

Chapter 2. TME 10 Distributed Monitoring 9

This soft copy for use by IBM employees only.

themselves method invocations that can be invoked on whichever TME node
is appropriate.

2.3.2 Displaying Events
There are several ways of displaying events using TME 10 Distributed
Monitoring. Within each monitor you can define that events are sent to any
combination of the following:

• The TME desktop

• A TME Notice group

• The Tivoli Enterprise Console (T/EC)

• A logfile

• Via a mail message

Events may be sent to any pre-defined adminstrator.

Because you can also execute TME tasks or programs as a result of a monitor
being triggered, you can also send events to other event handlers.

2.3.2.1 Generating Pop-Up Messages
Pop-ups can be defined to appear on any TME administrator’s desktop, as shown
in Figure 6.

Figure 6. An Event Pop-up Message

2.3.2.2 Notice Groups
Notice groups are a TME facility for storing, organizing and presenting event
information. Sentry has the capability to send alerts to specific notice groups.
These are:

• Sentry

• Sentry-log

• Sentry-urgent

• SentryStatus

When you define a TME administrator, you can specify which notice groups they
will be subscribed to. An event sent to a notice group can be read when
convenient and will not produce a popup, although the Notices icon changes to
show that unread notices have arrived (see Figure 7 on page 11).

10 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 7. Sentry Notices

2.3.2.3 The TME 10 Enterprise Console (T/EC)
The pop-up and notices facilities are a standard part of the TME platform. T/EC,
on the other hand, is an additional TME application specifically designed for
handling event data. T/EC uses an RDBMS to organize events and it is built
around a powerful rules engine which allows events to be correlated regardless
of generation time and source. These rules provide filtering of potentially high
numbers of events (see Figure 8).

Figure 8. Events Sent to the T/EC

Chapter 2. TME 10 Distributed Monitoring 11

This soft copy for use by IBM employees only.

12 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 3. Introducing the Lightweight Client Framework

TME 10 Distributed Monitoring 3.5 is the first TME appplication to exploit the new
Lightweight Client Framework (LCF). In this chapter we describe the factors that
led to the development of LCF and explain in detail how it works.

3.1 Stresses and Strains in the TME Framework
There is no theoretical limit to the number of managed nodes that can be
handled within the TME framework. As your environment grows you can go on
interconnecting TMRs and distributing application function through the
framework. However, as we have mentioned, there are a number of problems
with this model:

• The environment becomes increasingly complex. TMRs have to be adjacent
to allow full control across the boundaries. This leads, potentially, to a great
many inter-TMR connections and the development of single points of failure.
The ORB databases on the connected servers and clients have to be
synchronized. Apart from the possibility of database corruption arising as
the number of nodes grows, it becomes increasingly difficult to effectively
back up the databases.

• The platform and applications use a considerable amount of system
resource, principally disk space. Furthermore, this code base needs to be
maintained. TME code is installed using standard platform functions, but it is
only distributed within a TMR (unlike normal software distribution, which can
span TMR boundaries). Keeping all systems in line can become a serious
headache.

• Although the platform is implemented on many server operating systems, it
does not support the most common desktop systems, Windows 3.1, Windows
95 and OS/2.

3.1.1 PC Managed Nodes
PC managed nodes extend TME support to these desktop systems, providing
endpoint support for the most common management requirements, software
distribution and task execution. The PC managed node software is small in size
and reliable. It removes the 200 nodes per TMR restriction of managed nodes,
allowing you to create TMRs supporting thousands of nodes, in a ratio that
matches the real life ratio between server and client systems.

Introducing PC managed nodes also reduces the load on the TMR server. The
main way it achieves this is by introducing Mdist repeaters into the network.
Mdist was first introduced between TMR servers, so that data destined for a
number of machines in an adjacent TMR is only sent once over the connection
and then fans out on the other side. With PC managed nodes the principal is
extended so that managed nodes within the same TMR can act as Mdist
repeaters for a group of desktop systems.

PC managed nodes greatly improve the scalability and managability of the TME
architecture, but there are still a number of problems associated with them:

• Maintenance is an issue. The PC managed node software contains
application endpoint functions. As changes are made to the applications, or
a new function is provided on the desktop system, the PC managed node

 Copyright IBM Corp. 1997 13

This soft copy for use by IBM employees only.

code has to be upgraded. Although maintaining each node is a trivial task,
multiplying it by thousands of desktop systems creates an unwanted
administrative burden.

• Security for a PC managed node is not as strong as for platform nodes. All
messages between managed nodes contain an encrypted authentication
header to prevent a hacker from impersonating TME systems. PC managed
nodes do not have this feature.

• PC managed nodes have to be manually defined within policy regions. As in
the maintenance case, this is a trivial manual task for a small number of
nodes, but it becomes onerous for thousands of nodes.

3.2 LCF to the Rescue
The Lightweight Client Framework (LCF) retains the best features of a PC
managed node, such as a small system footprint and Mdist data distribution.
However it also provides many of the services provided by the full platform. The
way LCF achieves this is by implementing a dataless endpoint.

LCF will be implemented across all Tivoli supported platforms. When all of the
TME applications support LCF endpoint nodes, the design criteria for TMRs will
be fundamentally altered. We can envision TMRs containing a small number of
managed nodes, which will be dedicated systems management machines.
Surrounding these will be all of the other systems, which currently are either
managed nodes or PC managed nodes, but which can now be LCF endpoints.
Because there will need to be fewer managed nodes, there will be fewer
reasons to design interconnected TMRs, leading to much improved simplicity
and reliability.

3.2.1 Components of LCF
There are three roles in the LCF architecture:

 1. The endpoint. This is the LCF node itself. It runs a small daemon
(background) function, called the spawner. The spawner program is called
lcfd. This is responsible for executing program calls (actually, method
invocations) from other TME nodes. Its only connection to and knowledge of
the rest of the TME world is through an endpoint gateway.

You do not have to install any other code on the endpoint, because any
application code is downloaded automatically as needed.

 2. The endpoint gateway. This is a managed node (usually a client, but it could
be the TMR server). An endpoint gateway may have a number of LCF
endpoints assigned to it. Its job is to pass data and method invocations to
the spawner to execute (known as downcalls) and handle method requests
from the spawner (upcalls). Endpoint gateways are automatically defined as
Mdist repeaters for all of the endpoints they serve. This gives you the
benefit of an intelligent distribution mechanism without any administrative
overhead.

 3. The endpoint manager. This is the function that allocates endpoints to
endpoint gateways. Currently the endpoint manager has to also be the TMR
server, but future implementations may remove that requirement. Policy
methods are available to control the way that endpoints are allocated to
gateways.

14 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 9 on page 15 illustrates the relationships between the three roles in LCF.

Figure 9. Components of LCF

3.2.2 How an Endpoint Gets Connected
The base LCF code has to be installed on the endpoint manually, using normal
system facilities (using setup and the InstallShield function on Windows systems
for example). However, the only function that has to be installed is the spawner
and a few local utility commands, so this is a very small installation; typically
less than 1 MB. Tivoli Systems has entered into a preliminary agreement with
Intel Corporation to have the LCF spawner pre-installed in read-only memory on
new PC motherboards.

The spawner does not need any intitial customization, so when it first starts it
does not have an assigned endpoint gateway. To get connected to a gateway,
the endpoint initiates the sequence shown in Figure 10 on page 16.

Chapter 3. Introducing the Lightweight Client Framework 15

This soft copy for use by IBM employees only.

Figure 10. Initial Endpoint Connection

The numbered steps are as follows:

 1. The endpoint broadcasts on TCP port 9494, asking to be connected. All of
the gateways listen on this port, so any active gateway in the same IP
network will receive the broadcast request.

 2. The endpoint gateways do not directly accept the endpoint request, but
instead forward it to the endpoint manager (which is also their TMR server,
in the present version). This is sent using the normal ORB (oserv-oserv)
communications channel.

 3. The endpoint manager registers the new endpoint in the oserv database and
assigns it to an endpoint gateway. A number of policy methods are provided
to allow you to control how a gateway is chosen and execute any other
automatic function. For example, you may want to subscribe the new
resource to profile managers, or alert someone that it has been connected.

 4. The chosen gateway responds to the endpoint connection request. Gateway
and endpoint perform an initial handshake to establish their identities and
generate encryption keys for authentication purposes.

3.2.3 LCF Methods
A major objective in the LCF design was to make it appear as similar as
possible to the full framework, from the point of view of an application. This
means that many of the CORBA programming interfaces are retained. Some
differences inevitably arise, however, because of the nature of the endpoint
environment. For example:

• An endpoint has no object database, so each transaction has to instantiate
objects as they are needed.

• The endpoint has no notion of other TME nodes beyond its endpoint gateway.
This means that applications have to be written to handle endpoint requests
at the gateway, instead of at the target node.

Another major objective of the LCF design was to improve the scalability of the
TME framework. The smart approach to increasing scalability is to reduce the
cost of each transaction, allowing more systems to be managed by less
dedicated resource. In particular, the TMR server can be a bottleneck as he

16 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

number of managed resources increases, so anything that reduces load on it is
very beneficial.

We now look in detail at how LCF changes the way that applications operate in
TME. There are two parts to this.

 1. Endpoint methods, or downcalls, are functions invoked on the endpoint by
some other TME node.

 2. Gateway methods, or upcalls, are functions invoked by the LCF endpoint to
be executed on some other TME node. Because of the endpoint’s limited
view of the world, these are actually processed on its endpoint gateway

3.2.3.1 Downcalls
The way these operate is very similar to the way method invocations work in the
full framework.

Method Invocations in the Full Framework: In the full TME framework
environment, any system within the TMR can execute a method on any other
system. To do so, it passes the object reference, the method handle and any
arguments needed by the method to the object request broker (oserv) on the
target node. The target node resolves the object, using the ORB network to
locate it, and then invokes the method. The results are passed back to the
caller.

Downcall Methods in LCF: The general flow is the same when a managed node
invokes a method on an LCF endpoint. However the limitations of the LCF
environment place some restrictions on the functions that are possible.
Figure 11 shows the process.

Figure 11. Downcall Invocation

Let us step through the process:

 1. The application needs to build a reference for an object on the LCF endpoint.
This will involve a call to name resolution services on the TMR server. The

Chapter 3. Introducing the Lightweight Client Framework 17

This soft copy for use by IBM employees only.

object identifier is in a special format that indicates a downstream resource
of the endpoint gateway where the LCF endpoint is logged in.

 2. The application passes the object reference and method information to oserv
on its host system, which sends it to oserv on the endpoint gateway
identified by the object reference.

 3. The endpoint does not initially have any method code installed. In this case
the gateway first downloads the required files into the spawner’s disk cache.
The next time the same application is executed, the method code will
already be installed, so this step will not be required.

If the application is updated, the method code stored on the gateway will not
match the copy stored in the endpoint cache. The gateway will therefore
once again download it before proceeding, overwriting the older version.

 4. The method is launched by the spawner. Endpoint methods are simple
single-threaded programs. Also, because the endpoint does not have any
persistent object store, the objects they work with exist only for the duration
of the method. This means that it is up to the application to store any data
that it may need for future use.

 5. The result of the method invocation are passed back to the gateway, which
reroutes them to the calling system in the normal way.

As you can see, LCF places some restrictions on the scope of a method that can
be invoked on an endpoint, but the actual invocation process is the same as for
the full platform. The application is not aware of the work the gateway is doing
to install and maintain the method code.

3.2.3.2 Upcalls
An upcall is the case where an application on an endpoint wants to invoke TME
services on another node (managed node, TMR server or another endpoint).
The problem, from the point of view of the LCF endpoint, is that it has no way to
resolve the object reference in order to be able to send a method invocation.
The only contact it has with TME is through its endpoint gateway.

The way this is overcome is by the use of a mid-level method. This is a function
that is run by the gateway using the services of oserv on the endpoint gateway
system. Figure 12 on page 19 shows the flow.

18 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 12. Upcall Invocation

 1. The application on the endpoint requests a method invocation on another
node. From the application point of view this interface is similar to any other
method invocation.

 2. The gateway executes the mid-level method. This will need to create an
object reference for the target node, so it may need the location services of
the TMR server, if the information has not been cached locally on the
endpoint.

 3. The method invocation is passed to the target system (or endpoint gateway)
in the normal way.

 4. The response is passed back through the gateway to the LCF endpoint.

Note that, whereas a downcall did not necessarily require the invoking
application to be LCF-aware, an upcall will always need additional coding, in the
form of the mid-level method installed on the endpoint gateway. Although this is
extra work for the application developer it is also another opportunity to improve
scalability. The mid-level method can reduce the number of calls to centralized
services, by filtering or batching endpoint requests and by caching location data.

3.2.4 How Applications Work with LCF
This discussion of endpoint behavior can become rather abstract. Let us try to
make it more concrete by looking at some simple examples.

3.2.5 Downcall Example, Software Distribution
Consider an application that ″pushes″ software to an endpoint node. The file
package is constructed on a managed node and sent to the endpoint to be
unpacked and installed. In this case the application is only performing a
downcall, so no mid-level method is required. The application function will
comprise an invoking part, on the source managed node, and a receiving part,
comprised of a method to run on the endpoint.

Chapter 3. Introducing the Lightweight Client Framework 19

This soft copy for use by IBM employees only.

The invoking part will:

 1. Use platform services to construct a file package and send it to the endpoint
gateway. If it is sending the same package to multiple endpoints on the
same gateway, mdist processing will ensure that the data is only sent once.

 2. Invoke the receiving method on the endpoint

The receiving method will be installed automatically on the endpoint by the
gateway and will then be executed. It will:

 1. Retrieve the package from the gateway

 2. Unpack it and perform any installation actions, as specified by the arguments
passed in the method invocation.

In order to install an application like this you would have to install the invoking
part on the calling managed node an the receiving part on the endpoint gateway.
The endpoint installation happens dynamically as needed.

3.2.6 Upcall Example, Inventory Scanning
TME 10 Inventory relies on scanning software on the target node to explore the
system and generate lists of installed hardware and software. Typically this
process happens at boot time, or maybe based on an infrequent timer.

In the LCF environment, a scanner running on the endpoint would have to report
its findings by making an upcall. The mid-level method associated with the
upcall could simply forward the information on to the inventory database
application. However, a more efficient approach would be for it to store the data
locally and batch together the data for all of its attached endpoints, sending it in
one update, rather than in multiple, small updates.

To install an application like this you would have to put the endpoint and
mid-level method code on the endpoint gateway. The application would also
have to provide an installation process for the scanning application, to place it
on the endpoint and automatically invoke it when required.

20 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 4. Setting Up the Lightweight Client Framework

In this chapter we show an example of setting up a simple LCF environment for
Windows 95 and NetWare endpoints. The lab configuration we used is shown in
Figure 13

.

Figure 13. Lab Setup

The two LCF endpoints were both attached to one endpoint gateway, venus.

4.1 Endpoint Manager Prerequisites
Before proceeding with defining the endpoint gateway we installed TME 10
Framework 3.1 on the TMR server and managed node. There is no additional
product to provide endpoint support, but you do have to install a patch to the
framework, the TME 10 Light Client Framework (LCF) Patch. This patch needs to
be installed on the TMR server and on all managed nodes that will be endpoint
gateways. After the installation of the patch you will have to restart oserv on all
affected systems. The command odadmin reexec all will do this. In our case we
found that sometimes after running the command, oserv failed to restart. In
those cases simply starting it with odadmin start was effective. If you are
running TME 10 Framework 3.2 or later, then the installation of the patch is not
required.

Following the installation of the patch you should see a new icon labelled
EndPointManager on the root TME 10 Desktop. You can also check for
successful installation by using the wlookup command to display the object
information for the endpoint manager resource. The command and a typical
response is as follows:

 Copyright IBM Corp. 1997 21

This soft copy for use by IBM employees only.

wlookup EndpointManager
1176566865.1.498#TMF_LCF::EPMgr#

If the endpoint manager does not show up, double check that the patch
installation was successful. If there is a problem, restore the TME database to a
backup prior to the patch install and reinstall it.

4.2 Creating a Gateway
LCF endpoints are self-defining, as we described in Chapter 3, “Introducing the
Lightweight Client Framework” on page 13. However, before an endpoint will be
accepted by the endpoint manager, you first have to create at least one endpoint
gateway that it can connect to. You can create a gateway on any managed
node, including the TMR server. We created a gateway that handles NetWare
LCF clients as well as Windows 95 clients on venus.

To create a Gateway:

• Right-click on the EndpointManager icon. In the pop-up menu, select Create
Gateway (see Figure 14).

Figure 14. Creating a Gateway

• In the Create Gateway dialog, fill in the required information:

22 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

− Provide a name for the gateway. We chose LCF Gateway. If you leave
this field blank the default is the name of the gateway node followed by
-gateway (venus-gateway in our case).

− The TCP port used for LCF is 9494 by default. Normally you will not need
to change this.

− The Managed Node Proxy field specifies the managed node where the
gateway will reside. Each managed node can have only one gateway.
We chose venus to be our gateway node.

Once you have entered all the data, select Create & Close .

Figure 15. Defining an LCF Gateway

After creating the gateway, double-click on EndpointManager on the Tivoli
desktop. A gateway definition similar to Figure 16 on page 24 will be displayed.

Creating an Endpoint from the Command Line: You can create an endpoint
gateway using the wcrtgate command. The syntax to create the same gateway
shown above would be:

wcrtgate -h venus -n ″LCF Gateway″

There are a number of other arguments available for the wcrtgate command:

• You can set the interpreters for endpoints supported by the gateway. For
example, nw4 for NetWare Version 4 or win95 for Windows 95.

• You can define the network protocol for the endpoint connection. The only
protocol supported in the first release is TCP/IP, so you do not need to
specify this.

Chapter 4. Setting Up the Lightweight Client Framework 23

This soft copy for use by IBM employees only.

Figure 16. New Endpoint Gateway Appears in Gateway List

Selecting different endpoint gateways for different LCF node types gives you
some control over the workload in your network. For more effective control you
may need to modify the endpoint gateway policy method, as described in 4.4,
“Modifying LCF Behavior Using Endpoint Policy Methods” on page 30

The endpoint gateway function runs as a separate daemon, automatically started
by oserv. The daemon is called gateway. You can stop and restart it using the
wgateway command.

4.3 Installing and Running LCF Endpoints
Now that we have an endpoint gateway up and running, LCF endpoints can
connect to it. We look at two endpoint types, Windows 95 and Novell NetWare
Server V4.1.

4.3.1 Installing the LCF Files on Windows 95
The Light Client Framework is installed under Windows 95 just like any other
program, using native Windows tools. First you have to make the installation
files available to Windows 95. The installation files are on the LCF CD under the
win95 directory. If you do not want (or are not able) to load the CD on the
endpoint system you can either copy all the files in the directory or access them
from a network server. The total size of the install image is about 1.3 MB, so
they will fit on one diskette. We used FTP to transfer the installation package to
a local directory called lcf. Then we started the setup program by
double-clicking on it in Windows Explorer.

24 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 17. The Initial Install Dialog

The setup program will start the InstallShield Wizard and display the install
dialog. If you installed any Tivoli products, such as the TME agent or desktop,
before, the install dialog will choose the same subdirectory to install the LCF
files. Select Next to start the installation process. This will install the LCF files
and register the product to Windows 95. You will find that it adds a registry entry
under:

HKEY_LOCAL_MACHINE->SOFTWARE->Lightweight Client Framework

When the install process finishes, reboot your machine. This registers and
activates the .PIF definitions required by LCF. LCF tasks will be executed in a
Windows command shell using these definitions. After a successful installation,
you will see the LCF executables in your Tivoli program group. If you don’t have
any Tivoli products installed, the install process will create a program group
which you can then access by clicking on Start and then selecting Programs
followed by Tivoli .

Figure 18 on page 26 shows the Tivoli program group. There are three icons to
control the launch the LCF daemon in this pre-release version:

lcfd The normal lcf executable. It runs in background and writes into a
logfile called lcfd.log.

lcfd-debug A debugging version of lcfd. It opens a console window where you
can watch the logging messages issued by lcfd. The default
debug level for this selection is level 2, but you can change it to a
higher value if you want by editing the properties for the shortcut
and changing the argument on the -d switch

stop lcfd This shortcut stops lcfd and closes the window it is running in.

Chapter 4. Setting Up the Lightweight Client Framework 25

This soft copy for use by IBM employees only.

Figure 18. Tivoli Program Group after LCF Install

 Note

The lcfd.9494_debug icon just starts the console, which seems to be
equivalent to debug level 2 when running LCF under NetWare. If things don’t
work as expected, you can increase the debug level. Right-click the
lcf_debug icon and select Properties. In the shortcut tab, you will find the
target entry. Edit the command line and add a -d 9 between the program
path and the -s flag.

Normally you would want the LCF daemon to be restarted whenever the system
is booted. You do this by putting a Windows 95 shortcut to the daemon startup
icon in the Startup folder. From the Windows desktop, select Start with the right
mouse button and then select Open from the menu. Double-click on Programs
and then Startup to open the Startup folder. You can now create a shortcut to
the LCF daemon by selecting File - Create - Shortcut from the menu bar and
using the file browser to locate the lcfd executable. By default it is
Tivolilcfbinwin95mrt lcfd.exe.

4.3.2 Running LCF on Windows 95
After you successfully installed the LCF files, you can launch the LCF daemon by
selecting it from the Start menu. For the first startup, you might start LCF in
debug mode to verify its correct operation. Click on Start and then select
Programs followed by Tivoli and then lcfd_debug . The LCF console will start and
will display a number of messages similar to Figure 19 on page 27.

26 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 19. The LCF Console

 1. The LCF daemon starts in a foreground window. The first few messages are
all related to normal program startup

 2. LCFD looks for an existing configuration file, lcfd.dat. In this case it does not
have an existing configuration and therefore does not have an assigned
gateway.

 3. LCFD broadcasts a gateway request to port tcp/9494, the default gateway
port. Any gateway listening will receive this broadcast, but it will not
respond to it. Instead it will forward the gateway request to the endpoint
manager (on their local TMR server) which will choose a gateway based on
gateway configuration and local policy.

 4. LCFD receives a response from the gateway that was selected by the
endpoint manager. It then goes on to establish a connection to the gateway,
registering endpoint details and exchanging encryption keys.

 5. Now that a gateway is assigned, LCFD wil l continue to attempt to use it
whenever it is restarted. It stores the gateway details into a configuration
file, lcf.dat.

Chapter 4. Setting Up the Lightweight Client Framework 27

This soft copy for use by IBM employees only.

You can also see the effect of a successful connection to a gateway from the
TME desktop. From the desktop click on the EndpointManager icon with the right
mouse button, select View Gateways ... and select the gateway entry which
serves as a gateway for Windows 95 nodes. Choose the View ... button. This
will bring up the list of all endpoints assigned to that gateway where your
machine should appear (see Figure 20).

Figure 20. New LCF Node Appears in the Endpoint List

4.3.3 Installing LCF on NetWare
The installation process for the NetWare LCF daemon must be performed from a
NetWare client running under Windows. We used the Novell Windows 95 client
software, rather than the built-in NetWare support from Microsoft, although any
client in a 32-bit Windows environment should be acceptable.

The installation files for NetWare are found on the LCF CD, under the nw3 and
nw4 directories. We used a NetWare Release 4.1 server in our example. In
order to install you first have to map the NetWare server root directory (the SYS:
volume) to a drive under Windows and access it using supervisor authority. We
used the Supervisor user ID, but it should also be possible to use another ID with
appropriate NetWare authorization.

To install LCF, select the install directory in Windows Explorer and double-click
on the Setup program. This will then invoke the familiar InstallShield Wizard.
One piece of information required by setup is the directory path for the LCF
installation. The default for this field is C:TIVOLILCF, but you need to specify a
subdirectory under the mapped SYS: volume on the NetWare server. In our case
we chose to create a new directory named TIVOLI, as shown in Figure 21 on
page 29. To complete the installation, click on Next .

28 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 21. LCF Install for NetWare, Showing Destination Directory

The install process creates a directory hierarchy under your chosen directory, as
shown in Figure 22.

Figure 22. NetWare Server Directory Tree after LCF Installation

4.3.4 Running LCF on NetWare
You will find the LCF NetWare Loadable Module (NLM) in the BINNW4MRT
directory below the destination directory that you specified above. Normally you
would add the command to load the NLM to the AUTOEXEC.NCF file, so it will be
loaded every time the server restarts. For the first time, you might want to start
it manually. To do so, enter the LOAD command with the full NLM path at the
local console or from a remote console with Supervisor access to the NetWare
server.

In our example, the full command is:

LOAD SYS:TIVOLIBINNW4MRTLCFD.NLM

When the NLM starts it displays a formatted panel containing the same
sequence of messages seen in Figure 19 on page 27. Figure 23 on page 30
shows the NLM console.

Chapter 4. Setting Up the Lightweight Client Framework 29

This soft copy for use by IBM employees only.

Figure 23. The LCF Client Console

After a correct startup, your console window shows the LCF messages last
issued by lcfd. In addition, the upper part of the console window displays the
gateway to which your NetWare client is connected. If, for any reason, you need
to examine all messages, you can just open the logfile. By default, LCF writes
the logs into the root directory (SYS:). Now two endpoints appear below the
endpoint gateway icon on the Tivoli desktop (see Figure 24).

Figure 24. The NetWare Endpoint Appears

4.4 Modifying LCF Behavior Using Endpoint Policy Methods
Endpoint policy methods can be used to take actions at certain points when an
LCF endpoint is interacting with an endpoint gateway. The policy methods are
similar to standard TMF policy methods, however, there is a special set of
commands to deal with the policy methods for endpoint policies.

30 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

While for the standard TME framework policy methods you will use commands,
such as wgetpolm and wputpolm, the commands wgeteppol and wputeppol are
used for endpoint policies.

The following endpoint policies are available:

• allow_install_policy

• after_install_policy

• login_policy

• select_gateway_policy

In terms of the TME framework, allow_install_policy is a validation policy,
whereas the others are default policies. The validation policy
allow_install_policy can be used to determine if an endpoint that wants to be
defined at an endpoint gateway is going to be accepted.

As with standard policies, the endpoint policies can be implemented as any form
of executable which will most likely be a shell script. In case of
allow_install_policy the script returns 0 if the endpoint is permitted to be
registered with the desired gateway, or 1 if not. This can be used, for example,
to deny machines of a certain type, a certain name, or from a certain IP subnet
to be registered with an endpoint gateway. Or, you might want to maintain a list
of all the possible endpoints that are allowed to connect.

There could be good reasons for implementing your own allow_install_policy
method. As LCF endpoints are ″self-defining″ there is no strict security control
in a way that the TMR server automatically restricts which endpoints can be
registered.

Think of the following scenario: you might want to modify the after_install_policy
in a way that a new endpoint is automatically subscribed to a certain profile
manager, let’s say one that is used for distributing software packages to
Windows NT machines. This profile manager might be itself subscribed to
another profile manager for grouping purposes. If you could register your LCF
endpoint to the gateway and therefore automatically subscribe it to the profile
manager (assuming the policy to do that is in place) you could possibly gain
access to a file package that you are not supposed to have access to.

The following figure gives an overview of the endpoint policies:

Chapter 4. Setting Up the Lightweight Client Framework 31

This soft copy for use by IBM employees only.

Figure 25. LCF Endpoint Policies

The policies allow_install_policy and after_install_policy are called only during
the initial registration of the endpoint with a gateway. If there is an
allow_install_policy and the endpoint is rejected by that policy, then the
registration will be stopped. Otherwise, the endpoint will be registered
(installed) and optional actions can take place, triggered by the after_install
policy. The most common action here might be to automatically subscribe the
new endpoint to an existing profile manager.

When an endpoint initially needs a gateway assigned or has lost its assigned
gateway, the endpoint manager has to assign an endpoint gateway. If no
select_gateway_policy exists, the endpoint manager uses its default mechanism
to determine the gateway, otherwise the policy script in the
select_gateway_policy has to determine the gateway. If this script fails, the
default mechanism will be tried. The policy can either return a single gateway
or a list of gateways to try.

For example, the select_gateway_policy could be implemented in a way that all
Windows NT machines are routed to one gateway and all AIX machines to
another. Or, you might want to use the IP subnet in which the endpoint and
gateway reside as a criteria. In that case you might also want to combine the
gateway selection with collections used in TME 10 NetView, for example, by
using the select_gateway_policy to ensure that nodes in the same subnet are
also group under the same mid-level manager.

32 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Finally, the login_policy is called, whenever an endpoint connects (logs in) to a
gateway. This can be used, for example, for logging all connections to a file, or
the Tivoli notice board.

We show a very simple example for the allow_install_policy: whenever a
Windows NT LCF client tries to get installed we want to reject it and send a
message to the TME Administration notice board.

To retrieve the current policy script for the allow_install_policy we type:

wgeteppol allow_install_policy >allow.sh

This will store the existing policy script in the file allow.sh. The body of the
script is empty by default. We replace allow.sh with the following content:

#!/bin/sh
#
The following are the command line arguments passed to this script
from the Endpoint Manager.
#
$1 - The label of the endpoint machine
$2 - The object id of the endpoint machine
$3 - The architecture type of the endpoint machine
$4 - The object id of the gateway that the endpoint logged into
$5 - The ip address of the endpoint logging in.
#
if [″$3″ = ″w32-ix86″]
then
echo ″**** WARNING ****″ >/tmp/notice
echo ″The following node has tried to connect to gateway $4 ″>>/tmp/notice
echo ″and was rejected:″ >>/tmp/notice
echo ″$1 (object id=$2, ip address=$5)″ >>/tmp/notice
echo ″**** WARNING ****″ >>/tmp/notice
wsndnotif ″TME Administration″ Notice </tmp/notice
rm /tmp/notice
exit 1

fi
exit 0

When the client tries to get installed, the allow_install_policy script is invoked
and passed certain parameters describing the client. One of these parameters
is the architecture type of the client, which is w32-ix86 in the case of a Windows
NT client. If the architecture type is w32-ix86 we create a temporary file
/tmp/notice that contains a warning message and then send a notice to the TME
notice group TME Administration. Finally, we exit the script with return code 1,
indicating that the client is rejected.

To activate the new method, we type:

wputeppol allow_install_policy <allow.sh

To test the script, we install the LCF client code on a Windows NT 4.0 system,
victor in our case. After the installation has finished, we start the lcfd daemon
on the client. The client tries to connect to our existing gateway, but is rejected.

In the TME Administration notice group we receive the following message:

Chapter 4. Setting Up the Lightweight Client Framework 33

This soft copy for use by IBM employees only.

Figure 26. Notice Group Message When LCF Client Is Rejected

As a further example, we want to automatically subscribe a new LCF client to a
profile manager. We want to subscribe all new Windows NT clients to a profile
manager called WinNT. Therefore, we first have to remove the
allow_install_policy again, that does not permit Windows NT clients. You can do
this, by just replacing allow.sh with an empty script again and typing:

wputeppol allow_install_policy <allow.sh

Before we modify the after_install_policy we create the new profile manager:

wcrtprfmgr lonestar-region WinNT
wsetpm -d /Library/ProfileManager/WinNT

The first command creates the profile manager, the second enables it to handle
dataless endpoints, that is LCF clients.

To perform the automatic subscription we create the following script in
after_install.sh:

#!/bin/sh
#
The following are the command line arguments passed to this script
from the Endpoint Manager.
#
$1 - The label of the endpoint machine
$2 - The object id of the endpoint machine
$3 - The architecture type of the endpoint machine

34 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

$4 - The object id of the gateway that the endpoint logged into
$5 - The ip address of the endpoint logging in.
#
if [″$3″ = ″w32-ix86″]
then
wsub /Library/ProfileManager/WinNT @Endpoint:$1

fi
exit 0

The script checks again for the architecture type w32-ix86 and in case this
condition is met, automatically subscribes the new Windows NT LCF client to the
profile manager WinNT.

Shortly after starting the lcfd daemon on the Windows NT machine victor again,
the node will be subscribed to the profile manager:

Figure 27. Automatic Subscription of LCF Client

4.5 Execute Tasks on LCF Endpoints

Chapter 4. Setting Up the Lightweight Client Framework 35

This soft copy for use by IBM employees only.

 Note

At the time this redbook was written, it seems a Windows 95 task must
adhere to the following rules:

The task definition must consist of a single command to be executed.
Otherwise a ″too many parameters″ error will occur.

On Windows 95, the task gets executed in a win32s console, the .PIF
description file for which is provided by the LCF installation process. That
limits the useful programs to those that do not require any manual
intervention and, in addition only use Standard I/O streams to do input and
output. Launching a Windows 95 executable via LCF would start that
executable but the task would never return.

To verify our LCF setup, we executed a task on the Win95 target node.

The following steps assume there is a policy region present and the gateway
node is part of that policy region . In our case, we created a new policy region
called Light Stuff. We set the managed resources of the new region to include
task libraries. Then we created a task library and task, as follows:

 1. Create a task library in the policy region by selecting Create followed by
Task Library from the menu bar in the policy region window. We called our
task library Really Simple Tasks.

 2. We want to execute a simple DIR command on the Windows 95 node. Before
we can do this, we needed to place the command into a command script
which must reside on a managed node.
To create the command script, use your favorite text editor and produce a
file containing the command to be executed. We entered the following
command to create the file on UNIX:

echo ″dir c:*.*″>/tmp/lcf_w95_test1

 3. Then double-click the task library icon and select Create Task from the menu
bar. In the create task dialog, choose Windows 95 as the platform. The
executable for that task is the command file you just created. Provide the
complete path and click Create & Close to create the task. Don’t forget to
give the task a name. Figure 28 on page 37 shows the definition we used.

36 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 28. Defining a Task

 4. Finally you can execute the task on a selected endpoint. Select the new task
icon with the right mouse button and select Execute from the menu. The LCF
endpoints will appear in the Available Task Endpoints list, so you can select
the systems you want to execute the task on (see Figure 29 on page 38).

.

Chapter 4. Setting Up the Lightweight Client Framework 37

This soft copy for use by IBM employees only.

Figure 29. Executing a Task on a Windows 95 LCF Endpoint

Click on Execute and Dismiss to invoke the task on the managed node. The
result of the DIR command appears in the execution window (or in a file, if you
did not choose the Display on Desktop option). See Figure 30 on page 39.

.

38 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 30. Output of the Windows 95 DIR Command

Chapter 4. Setting Up the Lightweight Client Framework 39

This soft copy for use by IBM employees only.

40 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 5. Sentry Meets the LCF Endpoint

From Version 3.5 of TME 10 Distributed Monitoring, LCF endpoint support will be
included. However, in the initial release the only supported type of endpoint will
be NetWare servers.

From a TME 10 point of view, NetWare is a special kind of platform. Originally
designed to provide disk sharing for PCs in a LAN, NetWare lacks some of the
features you expect to find in a normal operating system. In particular, NetWare
has very limited command line interface support for running programs or scripts.
The programming model of netware is based on NetWare Loadable Modules
(NLMs). These are modules which can be loaded dynamically but are intended
to load and run without exit.

NetWare endpoint support is therefore implemented as a number of NLMs, which
are spawned by the LCFD daemon (also an NLM). A number of system monitors
are provided, allowing you to examine different aspects of the performance and
status of a Novell server. Table 1 lists the monitors that are available.

Table 1. List of NetWare Monitors

Note that the GUI Name and CLI Name columns refer to the TME managed node
from which you create and control the monitors. TME 10 Distributed Monitoring
provides no graphical or command line interface on the monitored NetWare
server itself.

5.1.1 Installation Notes
TME 10 Distributed Monitoring 3.5 requires the Lightweight Client Framework on
the NetWare server. Installation uses the standard TME product installation
process. As with previous versions of Sentry, the base application and the
monitoring collections are shipped as separate installation packages, so you
only need to install the monitors for the environments you need.

You should note, however, that the NetWare monitoring collection is unlike other
monitoring collections, in that it needs to be installed on the TMR server and the
endpoint gateway(s). Usually monitoring collections only have install
components for the server, but in this case there are endpoint methods that have
to be present on the gateway to allow the spawner to access them. As the other

 Copyright IBM Corp. 1997 41

This soft copy for use by IBM employees only.

monitoring collections are modifed to support LCF, we expect to see this
requirement become common across the board.

5.2 Creating an Endpoint Enabled Profile Manager
NetWare endpoints cannot be controlled by normal profile managers. They need
a special instance of a profile manager which supports the dataless endpoint
mode (in other words, LCF).

To create an endpoint-capable profile manager, follow these steps.

 1. In your selected policy region, select Create ProfileManager.

 2. Give the profile manager a name.

 3. Select the Dataless Endpoint Mode check box and click on Create & Close .
Figure 31 shows the definition that we used.

Figure 31. Defining a Profile for an LCF Endpoint

The new profile will show up in your policy region window. It should have the
LCF Endpoint icon, as shown in Figure 32. If it differs, you probably did not
select the Dataless Endpoint Mode upon creation.

Figure 32. The New Profi le Manager

Once you have created the endpoint enabled profile manager, you can start to
configure and define the profiles for your endpoints.

42 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

5.3 Sentry and the NetWare Endpoint
If you are familiar with defining Sentry monitors, working with TME 10 Distributed
Monitoring on LCF endpoints is very much like working with normal managed
nodes. However, there are some differences.

• Because endpoint nodes are different from normal managed nodes, only
limited support is given. In addition, the tools normally available might not
be present on the target node.

• The NetWare server operating system has limited ability for executing
command line programs. NetWare executables are in the form of NetWare
Loadable Modules (NLMs). You can load and unload them dynamically but,
once loaded, the modules are part of the operating system. This means that
you cannot define a program as an automated response to a monitor.

• You do not have to install any additional code on the system. However, you
do need the LCFD NLM to be running on the endpoint, and an endpoint
relationship must exist between the NetWare server and a Tivoli Endpoint
Gateway. If this relationship has been established successfully you can start
distributing monitors to NetWare.

We now step through the process of defining a sample distributed monitor for
NetWare.

5.3.1 Creating a Monitoring Profile and Setting Subscribers
We place our new profile in the profile manager we created in 5.2, “Creating an
Endpoint Enabled Profile Manager” on page 42.

 1. Double-click the profile manager icon and in the profile manager window;
select Create and then Profile from the menu bar. Select SentryProfile from
the list of available profile types, give the profile a name and click on Create
& Close . If you do not see SentryProfile listed it is probably because you
have not added the class of profile as a managed resource of the policy
region. Return to the policy region and select Properties followed by
Managed Resources from the menu bar and add the TME 10 Distributed
Monitoring resources.

 2. First, define the nodes that will subscribe to the new profile. Select Profile
Manager and then Subscribers from the profile manager window menu bar.
If you correctly set up your endpoint gateway and the NetWare server is
registered to that gateway, you will see it as an endpoint in the list of
possible subscribers (see Figure 33 on page 44).

Chapter 5. Sentry Meets the LCF Endpoint 43

This soft copy for use by IBM employees only.

Figure 33. Subscribing an LCF Endpoint

 3. Select the NetWare Server and click on Subscribe & Close . As a result, your
profile manager now shows the endpoint in its subscribers field, as shown in
Figure 34. Note the new endpoint icon.

Figure 34. The New Profile and Its Subscriber

From now on, working with the endpoint node is almost identical to the normal
tasks you would do when defining any other Sentry monitor:

44 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

 1. Choose a monitor out of the appropriate group.

 2. Provide optional parameters.

 3. Set properties such as response level, type of notice and monitoring
schedule.

 4. Save the new definition.

 5. Set the distribution defaults.

 6. Distribute the monitor.

The following section steps through this process for a NetWare monitor.

5.3.2 Defining a Monitor for a NetWare Endpoint
We now define a sample NetWare monitor and distribute it to the NetWare
server. We assume you already know how to work with Sentry monitors and will
concentrate on the differences.

 1. In your profile manager window, double-click the icon for the profile you
created earlier. In the list of monitoring collections look for NetWare
Monitors (see Figure 35). If the collection does not show up, it may be that
you did not install the NetWare Monitors component when you performed the
TME 10 Distributed Monitoring installation. See 5.1.1, “Installation Notes” on
page 41.

Figure 35. The NetWare Monitoring Collect ion

Chapter 5. Sentry Meets the LCF Endpoint 45

This soft copy for use by IBM employees only.

Some of the provided monitors for NetWare endpoints require a parameter to
be specified. Keep in mind that the NetWare operating system uses its own
naming conventions for volumes and pathnames.

 2. For our sample monitor, we selected Volume Space Remaining , defined a
path name of SYS: and then clicked on Add Empty... , which finishes the
monitor selection and leads you to the Edit Monitor dialog.

 3. We configured the monitor to send a severe condition when the free space in
the volume drops below 95 MB. We set actions to raise a Sentry notice,
pop-up a message on the administrator’s desktop and also set an indicator
icon. Figure 36 shows the monitor definition screen

Figure 36. Defining Monitor Details

 4. Click on Set Monitoring Schedule to define the interval at which to test the
monitor. For testing purposes we chose to monitor at frequent (3 minute)
intervals, but normally you would monitor less frequently.

 5. Click on Change and Close to save the monitor. The resulting summary
display is shown in Figure 37 on page 47. Note the indicator beside the new
monitor entry. This warns you that the profile has not yet been saved.
Select File and then Save from the menu bar to save the profile.

46 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 37. After Complet ing the Monitor Definit ion

5.3.3 Distributing a Monitor to a NetWare Endpoint
From the administrator’s point of view, having created a monitor definition,
distributing it is identical to any other Sentry profile distribution. Select Profile
and then Distribute from the profile properties screen to distribute the profile
with the default options. The status of the distribution is shown in messages on
the TME desktop.

However, behind the scenes some special things are going on. The first time
you distribute a monitor to a NetWare server there will be no Sentry engine
(SENTRY.NLM) running to implement the request. Furthermore, the Sentry
engine is dependent on NetFinity Base Services. NetFinity is used to provide the
system instrumentation used by the NetWare monitors, rather than the Sentry
engine having a lot of system-specific code built into it.

The first time a monitor is distributed to a NetWare server it has to install and
start these pre-requisites. The way this is handled is as follows:

• The Sentry endpoint method, DOGENDPO.NLM is invoked as a normal
downcall method. After the first invocation it will be in the method cache on
disk at the endpoint, but the first time it is automatically downloaded by the
spawner (LCFD.NLM). By default the endpoint method is cached in directory
SYS:CACHEBINNW4TMESENTRY.

• DOGENDPO discovers that the Sentry engine NLM and the NetFinity NLMs it
depends on are not installed. It invokes an upcall to retrieve them from the
endpoint gateway. Note that although these modules are being downloaded
and run in a very similar way to endpoint methods, they are not actually
methods, but modules that are installed permanently on the system.
Accordingly, they are loaded under the SYS:TIVOLI directory, not in the
method cache (see the expanded directory tree shown in Figure 38 on
page 48, compared to the original shown in Figure 22 on page 29).

Chapter 5. Sentry Meets the LCF Endpoint 47

This soft copy for use by IBM employees only.

Figure 38. Tivoli Directory Tree after Distribution of First Monitor

If you watch LCFD.NLM while the distribution is taking place, you may see
some of the modules being downloaded. One side effect is that the first
monitor takes a lot longer to install than any subsequent ones. The size of
the Sentry engine and NetFinity code is about 3 MB in total, which may take
a significant time to load on a slow speed connection.

• We want the Sentry engine to be automatically reloaded when the server is
restarted. DOGENDPO.NLM adds three lines to AUTOEXEC.NCF to achieve
this. Near the start of the file it adds a search directory specification:

SEARCH ADD SYS:TIVOLINETFIN

At the end of the file it adds load commands for the NLMs:

load sys:/tivoli/netfin/netfbase.nlm
load sys:/tivoli/sentry/nw4/sentry.nlm

Finally, SENTRY.NLM and the NetFinity NLMs are loaded and the endpoint
method to update the monitor list is executed. For subsequent monitor updates
this is the only action performed when you distribute to the endpoint.

5.3.4 Monitor Responses from an LCF Endpoint
As you would expect, the responses generated by Sentry running on an LCF
endpoint are presented in the same way as any other monitor. Behind the
scenes the responses are being executed as upcalls to the endpoint gateway,
which then invokes the kennel class methods on the TMR server to alert the
administrator (setting icons, generating popup messages, etc).

In the case of our NetWare server free disk monitor, the administrator receives a
pop-up when the free space drops below 90 MB, and the indicator icon shows
the monitor state change. Figure 39 on page 49 shows the indicator and
Figure 40 on page 49 shows the log that is displayed when you double-click on
the indicator icon.

48 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 39. Indicator Shows Severe Error

Figure 40. Indicator Threshold Log

Chapter 5. Sentry Meets the LCF Endpoint 49

This soft copy for use by IBM employees only.

50 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 6. Data Collection and Graphing

TME 10 Distributed Monitoring is primarily an alerting mechanism. It sits quietly
checking your systems and warning you, or taking action, when something is out
of line. However, there are other uses for the kind of data that it monitors.

For example, if you have some kind of system problem you may want to view
performance metrics regularly, so that you can watch out for errant patterns of
behavior. You may also want to view statistical information spread over a period
of time, to see the way that load varies over the course of a day for example.
For more serious analysis and planning you may want to summarize data over
weeks or months, to be able to spot trends and deal with potential points of
failure in advance.

TME 10 Distributed Monitoring 3.5 has a data capture capability that logs the
result of normal monitors to a file. It also provides a Web-based monitoring
application that displays numerical data in a graphical form, updated
dynamically. Concurrently, a new component of TME 10 Reporter is being
developed which will read the TME 10 Distributed Monitoring log files and
summarize the figures in its database.

6.1 Installing the Data Collection Function
The data collection and graphing function is delivered as an additional TME
component on the TME 10 Distributed Monitoring CD. The product title is
Tivoli/Spider HTTP Daemon/1.0. Install it as you would any other TME
application. It has to be installed on all managed nodes for which you want to
collect graphical data.

When you have installed the feature, a new process will be automatically started
on each system. This is called Spider and it is a special purpose Web server.
Do not be concerned if you already have a Web server running on a managed
node. Spider does not listen on the default HTTP port (tcp/80), but on a
dynamically assigned TCP port instead, so it will not conflict with existing
applications.

Once you have installed the graphical monitoring component, the next step is to
define some Sentry monitors to collect data, so that you can display it in
graphical form.

6.2 Collecting Monitor Data
Starting the data collection facility is a very simple process. You create a new
Sentry monitor within a profile in the normal way. In the monitor definition
panel, select a response level of always and click on Tasks in the action section.
Figure 41 on page 52 shows an example of doing this for a monitor that records
the free space in a UNIX filesystem.

 Copyright IBM Corp. 1997 51

This soft copy for use by IBM employees only.

Figure 41. Defining an Always Response

In the Tasks dialog, select Sentry Graphable Logs as the task library and select
task Create Graphable Log (see Figure 42).

Figure 42. Defining the Logging Task

52 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

When you define the graphable log task you will be prompted to specify how
many lines of data it should keep. The default is 1000. In most cases this will be
large enough. For example, if you are collecting at ten minute intervals, and
intend to archive the logged data daily you only need 144 data values.

The data files are stored in a directory on the managed node where the Sentry
engine is running, under the Tivoli database directory:

$DBDIR/.sntglog/<Systemname>/<Profilename>/<Monitor_type><ObjID>

Where:

• $DBDIR is the Tivoli database directory on the managed node

• <Systemname> is the name of the system where the data was collected
(usually the system where sentry_engine is running, but it could be another
system in the case of a proxy monitor, for example).

• <Profilename> is the name of the TME 10 Distributed Monitoring profile
containing the monitor. Unix_Disk in our example above.

• <Monitor_type> is a string identifying the type of monitor.It contains the
name of the monitoring collection concatenated with the internal name of the
monitor itself. In the example above it is Unix_Sentry-diskavail.

• <ObjID> is an identif ier containing an oserv object ID number.

Within the directory are two files, info which contains details of the monitor and
log which contains the data itself.

6.2.1 Log File Size Considerations
The log files are not very large, so space should not be an issue. Each data
point in the file consists of a 8-digit time stamp, the monitor value and the text of
the monitor status (critical, severe, warning, or normal). To take our disk space
monitor above as an example, the data value is a two digit number followed by a
decimal point and five decimal digits. The monitor status is usually normal, so
the total size of each entry is 8+8+6, or 22 bytes. Even a 1000-entry log file will
not be bigger than 22 KB.

6.2.2 Collecting Non-Numeric Data
Normally the data you are interested in collecting is numeric data, for graphing
or statistical purposes. However, there is nothing to prevent you from using the
data collection task on a string monitor if you wish. You could use this to
capture status information, such as whether a daemon is up or down, for
example. We show an example of extracting daemon status information from a
log file in 6.5, “Extracting Logged Data from the Command Line” on page 59.

6.3 The Spider Web Server
The new graphical monitoring function in Sentry 3.5 is based on a network of
Spider Web servers. Spider is stopped and restarted by the oserv daemon every
time oserv stops and starts. You can also control it manually using the
wstophttpd and wstarthttpd commands.

Chapter 6. Data Collection and Graphing 53

This soft copy for use by IBM employees only.

6.3.1 How Spider Works
Spider is a conventional Web server that handles HTTP get and post requests
from any Web browser. However, it is unusual in the way it is integrated with
the TME object request broker services. For example:

• It opens a dynamically-assigned TCP/IP port instead of listening on a fixed
port number. It then registers this port with oserv. When you want to
connect to Spider, you direct your browser to the normal oserv objcall port
(tcp/94). oserv then responds with an HTTP LOCATION message, passing
you to the Spider port.

• It uses system authentication services to validate your user ID and
password, which it demands using the normal HTTP Basic Authentication
challenge mechanism (sometimes called HTTP security realms). It then uses
your credentials to authenticate you as a TME administrator.

• It provides CGI programs for executing TME commands and method calls as
a result of HTTP requests, under the authorization roles assigned to your
administrator ID.

Figure 43 illustrates how Spider is related to oserv and how a user gains access
to it.

Figure 43. Spider Web Server Connections

6.4 Displaying TME 10 Distributed Monitoring Graphical Reports
To access the graphical reports, you must first connect to Spider on the TMR
server. In the browser location field, select http://<tmr_server_name>:94. This
will send an HTTP get request to oserv. If Spider is running, your session will be
connected to it.

Figure 44 on page 55 shows the initial Spider page. This is a menu of
applications. At the moment it only has the one entry in it, for TME 10
Distributed Monitoring, but as other TME applications make use of the Spider
facility you can expect the list to grow.

54 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 44. Initial Spider Menu

If you now click on the TME 10 Distributed Monitoring link, you will be prompted
for a user ID and password (see Figure 45). Note that this is a system user ID
on the TMR server. There are two things you should consider here:

 1. This ID wil l be translated into a TME administrator ID. It is quite possible for
someone to be defined as a TME administrator but not have a user ID on the
server. You may have to create an additional user ID and modify
administrator login definitions in order to give an administrator access to the
graphical reports.

 2. The mechanism for sending user ID and password, HTTP Basic
Authentication, masks the values but does not encrypt them. If you are
planning to allow people to access the graphs over the Internet, there is a
risk that the IDs may be compromised.

Figure 45. User ID and Password Prompt

Enter the ID and password and click on OK . A page will be loaded which
contains a Java applet for defining the reports you want to see. Figure 46 on
page 56 shows the report definition screen. It contains two list boxes. The one
on the left defines the target domain, that is, the TMRs and the managed nodes
within them. When you click on one or more nodes, the list on the right will
show the monitors for which data has been logged.

Chapter 6. Data Collection and Graphing 55

This soft copy for use by IBM employees only.

Figure 46. Report Selection Dialog

Open up the resource tree by clicking on the plus sign next to each icon. As you
navigate down the tree it will look something like Figure 47.

Figure 47. Monitoring Target Resource Tree

If you now select one of the target nodes from the tree, the Java applet requests
Spider on that node to return a list of monitors with logged data. In fact, the
request goes to Spider on the TME server, which finds out the TCP port for
Spider on the target node and relays the request to it. A Java applet is not
permitted to open network connections to any host other than the one it was
loaded from.

Figure 48 on page 57 shows an example with three nodes selected and two
monitors listed in the right hand box.

56 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 48. Selecting Targets to Display Collected Data

6.4.1 Defining the Reports
Now you can add graphical reports. You can have up to four graphs displayed
at a time and you can have combinations of multiple monitors and multiple
nodes on each graph. To create a graph:

 1. Select the combination of nodes and monitors that you want to see. We
selected two nodes and the Space free(/var) monitor.

 2. Click on Add Report .

The screen shown in Figure 49 will pop up. Select the options you want and
click on Add/Close .

Figure 49. Report Options Screen

You will return to the main report selection screen. Select other combinations of
nodes and monitors if you want to add more reports to the output.

Chapter 6. Data Collection and Graphing 57

This soft copy for use by IBM employees only.

When you have created the set of graphs that you want, click on Generate
Reports . A new browser window will start up, containing a number of Java
applets. Figure 50 on page 58 shows our example, a bar chart of space free in
the /var filesystem for two UNIX machines.

Figure 50. Graphical Reports in Action

You can use the scroll bar to look at data collected prior to the range of times
shown on the x-axis. By default the graphs show the most current figures and
update automatically when new data is logged.

When you first display the graph you may find that the information displayed is
not what you expect. There are two things which can cause this:

 1. When the graph is first presented, it wil l display eleven values at one minute
intervals by default. If your monitor collects at larger intervals, the data
shown will be from the last few monitored values, projected over the ten
minute time range represented by the graph.

 2. The timescale in the graph uses the timezone of the browser, not the data
source. If you are using a desktop operating system, such as Windows 95 or
Windows NT Workstation, you may not have needed to set the timezone
before, in which case it will default to GMT.

Both of these problems can be corrected by clicking on Configure Time . You can
also control the start time shown in the display and the number of intervals
displayed using this dialog (see Figure 51 on page 59).

58 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 51. Time Configuration Screen

6.5 Extracting Logged Data from the Command Line
We described how the data collection task writes its log files in 6.2, “Collecting
Monitor Data” on page 51. If you only want to show this data in a graphical
form, the Web-based mechanism is very effective. However, you may want to
extract the collected data and use it as input for some other processing, or load
it into a database or a spreadsheet.

Data is logged as a single stream of bytes, containing the time stamp, value, and
monitor status concatenated together. This is not particularly easy to parse into
useful records. Fortunately there is a program, wgdread, which will format the
records for you. It is not documented, but you can get a good understanding of
how it works by looking at CGI scripts in the graphical monitoring application
that use it.

The syntax is as follows:

wgdread [-r]|[-y]|[-u]|[-s [-b <min>] [-e <max>] [-c <count>] logdir

-r Returns the range of x values (times) of the records in the log file.

-y Returns the range of y values of the records in the log file.

-u Returns the units in which the y values are measured.

-s Prints out the logged values for the range of times bounded by
<min> and <max> to a max imum o f <coun t> l i nes .

logdir This is the directory containing the info and log files for the monito.r

As an example, Figure 52 on page 60 shows the use of wgdread to display part
of a log file containing the status of a daemon. Note that this is created by a
string monitor, so it would not be accessible using the graphing facility.

Chapter 6. Data Collection and Graphing 59

This soft copy for use by IBM employees only.

>pwd
/var/spool/Tivoli/venus.db/.sntglog/venus/Unix_Disk
>
>ls
Unix_Sentry-daemon_7e1080755863.2.7
Unix_Sentry-diskavail_6e1080755863.2.7
>
>wgdread -r Unix_Sentry-daemon_7e1080755863.2.7
″Unix_Sentry-daemon_7e1080755863.2.7″ 861252060 861311220 normal warning
severe critical
>
>wgdread -s -b 861296700 -c 10 Unix_Sentry-daemon_7e1080755863.2.7
861296701 down normal
861296820 down normal
861296940 down normal
861297060 down normal
861297180 down normal
861297301 up normal
861297420 up normal
861297540 up normal
861297660 up normal
861297780 up normal

Figure 52. Examples of Using wgdread

The time stamps in these records are not very recognizable. This is because
they are in fact specified as epoch times, that is, they are a hexadecimal
representation of the number of seconds since the beginning of 1970. The
easiest way to convert these into something more meaningful is to use a perl
program. Perl provides a number of built-in functions for manipulating time
fields. Figure 53 shows a simple perl program that can be used as a filter for
the output for the output of wgdread and Figure 54 shows an example of using it
on the same data as in the previous example

#!/usr/local/bin/perl

$line = <STDIN> ;

while ($line != ″″) {
@inparts = split(/ /, $line) ;
@tlist = localtime($inparts[0]) ;
print ($tlist[5],″ / ″ ,$tlist[4],″ / ″ ,$tlist[3],″ ″ ,$tlist[2],

″ : ″ ,$tlist[1],″ : ″ ,$tlist[0],″ ″ ,$inparts[1],″ ″ ,$inparts[2],″\n″) ;
$line = <STDIN>
}

Figure 53. convert_times Perl Script

>wgdread -s -b 861296700 -c 10 Unix_Sentry-daemon_7e1080755863.2.7 | convert_times
97/3/17 13:5:1 down normal
97/3/17 13:7:0 down normal
97/3/17 13:9:0 down normal
97/3/17 13:11:0 down normal
97/3/17 13:13:0 down normal
97/3/17 13:15:1 up normal
97/3/17 13:17:0 up normal
97/3/17 13:19:0 up normal
97/3/17 13:21:0 up normal
97/3/17 13:23:0 up normal

Figure 54. Extracting Historical Data with Date and Time Conversion

60 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring

With TME 10 Distributed Monitoring 3.5 there are several new monitoring
collections available. Two of them are for monitoring major RDBM systems,
namely Oracle and Sybase.

In this chapter we give an overview of the monitoring collection for Oracle and
show examples for its use.

7.1 Overview of the Oracle Monitoring Collection
The Oracle Monitoring collection that is delivered with TME 10 Distributed
Monitoring 3.5 provides a set of basic monitors that can be used to monitor
Oracle system parameters from the following categories:

• Oracle table space usage

• Oracle locks usage

• Oracle sessions usage

• Oracle CPU usage

• Oracle message traffic

• Oracle disk reads and writes

For table spaces, locks and sessions there are a couple of different monitors
each, for example one that checks the locks already used and one that checks
the locks still available.

All monitors use the Oracle SQL*Plus facility to query the information needed
from the Oracle system tables. SQL*Plus provides a command line interface to
the Oracle RDBMS server. The following figure shows this principle:

Figure 55. TME 10 Distributed Monitor ing Talking to Oracle

Since SQL*Plus is an interactive query facility the ouput of a request is not
directly usable by TME 10 Distributed Monitoring. Therefore, the output is first
written to a temporary file that is then further processed. For example, the
percentage value is calculated and then passed back to TME 10 Distributed
Monitoring.

The monitors provide a good start to the monitoring of the RDBM system and
are easy to use. However, if a more comprehensive management of the

 Copyright IBM Corp. 1997 61

This soft copy for use by IBM employees only.

database system is desired, for example, the automatic management of
database users by TME 10 User Administration, other components of TME 10
need also to be considered.

This can be achieved either by using, for example, the Oracle monitoring
collection and making extensions to TME 10 User Administration to handle
Oracle users and to other TME 10 applications. Or, there are several TME 10
Plus modules available that provide comprehensive management solutions for
specific database systems. These modules usually cover monitoring of the
database system, event management, user management and other key
functions.

7.2 Prerequisites
In order to use the Oracle monitoring collection you need to have at least the
following software installed:

• TME 10 Framework 3.1 with the LCF Patch B

• TME 10 Distributed Monitoring 3.5

• Oracle RDBMS Server (We use Version 7.1.6.2.0)

• Oracle SQL*Plus

After installing TME 10 Distributed Monitoring 3.5 you can install the monitoring
collection for Oracle. The following figure shows the install option:

62 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 56. TME 10 Install Product Window

After the installation of TME 10 Distributed Monitoring Oracle Monitors the
Oracle monitoring collection will be available.

The collection file will be located in:

/usr/local/Tivoli/bin/generic/SentryMonitors/oracle.col

To get an impression of how the monitors are implemented, you can type the
following command:

mcsl -q Oracle

This command will produce a large text file. You will notice that all monitors are
implemented as perl scripts that use SQL*Plus commands to obtain information
that is then processed and sent to TME 10 Distributed Monitoring.

Before you start, you should make sure that your Oracle RDBMS server is
installed and running properly.

If your database server is not running yet, start it by typing the following while
being logged in as the Oracle database owner (usually, the user with the name
oracle):

dbstart

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 63

This soft copy for use by IBM employees only.

This command will start the RDBMS server.

7.3 Producing Some Database Load
When you start testing the Oracle monitors it is likely that you will not operate in
a database production environment where you have permanent load on the
database system.

Maybe you even just installed Oracle and don’t have any load at all. In the
following we show a simple procedure that can be used to give Oracle some
work to do while running the monitors.

After the installation of SQL*Plus (remember selecting to install the SQL*PLus
demo tables during installation) you will have two sample files installed in the
following directory:

/usr/local/oracle/sqlplus/demo

The above example assumes that /usr/local/oracle is your Oracle home
directory. In this directory are two files, demobld.sql which will create some
demo tables and insert values and demodrop.sql which will remove the demo
tables from the system. We add another script select.sql that contains just the
following lines:

select * from emp;
quit

To produce a constant load we can now type the following on the AIX command
line:

cd /usr/local/oracle/sqlplus/demo
while true
do
sqlplus sys/oracle @demobld
sqlplus sys/oracle @select
sqlplus sys/oracle @demodrop
done

The above lines will add the demo tables, query one table, then remove the
table again and start all over. This can be used to create some disk
reads/writes etc.

Whenever you want to produce some database load, type the lines shown above.

 Note

The above example assumes that the password of the Oracle sys user is set
to oracle. If this is different in your environment, you must replace ’oracle’
with the appropriate password.

64 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

7.4 Creating an Oracle Monitoring Profile
The oracle monitors can be created like any other standard TME 10 Distributed
Monitoring profile. Open a profile manager in which you want to create the new
TME 10 Distributed Monitoring profile:

Figure 57. Profile Manager Window

Subscribe the managed node where Oracle is installed to the profile manager.
Create a new TME 10 Distributed Monitoring profile by selecting Create from the
menu bar and then Profile... from the pull-down menu.

The following window will appear:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 65

This soft copy for use by IBM employees only.

Figure 58. Create Profi le Window

Enter a name for the new profile and select SentryProfile from the Type selection
list. Then press the Create & Close button to create the profile. This will create
an icon in the Profile Manager window representing the new profile.
Double-click on that item to open the profile:

66 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 59. TME 10 Distributed Monitor ing Profi le

Click on then Add Monitor... button. The following window will appear:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 67

This soft copy for use by IBM employees only.

Figure 60. Add Monitor to TME 10 Distributed Monitor ing Window

As you can see in the above window there is a new monitoring collection called
Oracle available in the Monitoring Collections section. Double-click on Oracle to
display the available monitors in the Monitoring Sources section.

Clicking on Oracle disk reads per minute will pop up the Monitor Arguments
section. You need to supply the following values:

• ORACLE_HOME is the base directory where Oracle is installed, in our
example /usr/local/oracle.

• TWO_TASK is the connect string for an Oracle two-task environment. In our
case this is left blank, since our SQL*Plus client and the RDBMS server
reside on the same machine.

68 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

• SQL*PLUS path is the path name of the sqlplus command. In our case this
is /usr/local/oracle/bin/sqlplus. Do not confuse this with the
/usr/local/oracle/sqlplus director.

• User and Password are the user ID and password used for accessing
SQL*Plus. We use the Oracle sys user with a password of oracle. You
specify the password for the sys user during Oracle installation.

 Note

If you are not sure if the SQL*Plus user ID and password are correct, try
starting the sqlplus command manually first and log on with the assumed
user ID and password. If this works, specify the values in the monitor.

Select the Add Empty... button to go to the Edit Monitor window:

Figure 61. Edit Monitor Window

In order to see what kind of output the monitor produces it seems to be a good
idea to just specify a trigger for the always response level first. This will trigger
the specified action each time the monitor is run. We select the Popup check
box and then click on the Admins... button to specify a TME administrator to
receive the pop-up window. The we select the Set Monitoring Schedule... button
and specify that the monitor should run every minute. You might also want to
click on the Set Message Styles... button to set the output format for pop-up

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 69

This soft copy for use by IBM employees only.

messages, notice, etc. to get more detailed information for tracing. After doing
so we select the Change & Close button. Back in the Profile Properties window
we select Profile from the menu bar and then Save from the pull-down menu to
save the profile. Then we close the Profile Properties window.

Back in the profile manager we distribute the new profile to the subscriber.

After a while, the following window will pop up informing us about the monitor
probe:

Figure 62. TME 10 Distributed Monitor ing Alert Window

If you made a mistake when specifying the monitor, you should get an E.EXEC
error message in the pop up window. For example, the following pop-up is
created when specifying the SQL*Plus path /usr/local/oracle/sqlplus instead of
the SQL*Plus executable /usr/local/oracle/bin/sqlplus:

70 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 63. TME 10 Distributed Monitor ing E.EXEC Error

With the Oracle disk reads per minute monitor you will notice that a file
odb_reads.out is created in the /tmp directory.

Depending on the monitor, the following temporary files will be created:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 71

This soft copy for use by IBM employees only.

If you are experiencing problems with one of the monitors, it is always a good
start to look in the /tmp directory to see if the temporary file for the monitor has
been created. This file contains the output from the sqlplus command that the
monitors use for further processing.

We experienced the problem that the temporary file was not created at all and
the monitor would result in the following error:

Table 2. List of Temporary Files Depending on Oracle Monitor

72 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 64. E.EXEC Error in Oracle Monitor

 Note

In the above example, we set the monitor to send a message to the Tivoli
notice board instead of popping up a window.

If this error occurs it is most likely to be caused by the sqlplus command that is
called by the monitor failing.

The monitor directs the output of the sqlplus command to /dev/null when it is
called, so a start to get an idea to what is happening is to look at this output. To
be able to do that, you can move the original /dev/null file:

mv /dev/null /dev/null.bak

After the monitor has run, the output of the sqlplus command will be in a new file
called /dev/null. In our example this looks like:

root@rs600015:/dev# cat null
SQL*Plus: Release 3.1.3.7.1 - Production on Fri May 9 15:17:00 1997
Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.
ERROR: ORA-02700: (Cnct err, can′ t get err txt. See Servr Msgs & Codes Manual)
Enter user-name: Enter password:
ERROR: ORA-02700: (Cnct err, can′ t get err txt. See Servr Msgs & Codes Manual)
Enter user-name: ERROR: ORA-02700: (Cnct err, can′ t get err txt. See Servr Msgs

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 73

This soft copy for use by IBM employees only.

 & Codes Manual)
unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus
root@rs600015:/dev#

In our example the command fails, because the Oracle environment is not set up
correctly. To solve this problem, we have to just replace the path to the sqlplus
command in our monitor with the name of a shell script in which we first set the
environment and then call sqlplus.

The following figure shows the modified monitor:

Figure 65. Add Oracle Monitor

The script /tmp/stefan looks like the following:

#!/bin/ksh
. /home/oracle/db_setup.sh
/usr/local/oracle/bin/sqlplus $* >/tmp/sqlplus.out 2>&1

It first calls /home/oracle/db_setup.sh to set up the correct environment for this
Oracle system and the calls sqlplus, passing on the parameters from the
monitor. The /home/oracle/db_setup.sh script for our environment looks like the
following:

74 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

#!/bin/ksh
export ORACLE_OWNER=oracle
export ORACLE_HOME=/usr/local/oracle
export ORACLE_DOC=$ORACLE_HOME/docs
export PATH=$ORACLE_HOME/bin:/usr/lbin:$PATH
export ORACLE_SID=sid1

Both scripts must be set executable.

Now we can combine our monitor with the script to produce some database load
presented in 7.3, “Producing Some Database Load” on page 64. We type the
following lines and then watch the monitor:

cd /usr/local/oracle/sqlplus/demo
while true
do
sqlplus sys/oracle @demobld
sqlplus sys/oracle @select
sqlplus sys/oracle @demodrop
done

The following figure shows a notice sent to the Sentry-urgent notice group
indicating the number of disk reads while the above script is running:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 75

This soft copy for use by IBM employees only.

Figure 66. Oracle Disk Reads Monitor Under Load

7.5 Combining the Oracle Monitors with the Graphical Log Facility
A nice feature that can be combined with the database monitors is the graphical
log facility that is also new with TME 10 Distributed Monitoring 3.5. This enables
you to watch some of the database performance data, for example, disk reads
and writes or CPU utilization in a graphical form.

In order to use this feature you need to have the Tivoli/Spider HTTP daemon
installed.

76 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

The only addition you have to make to your monitor is to execute the task to
create the graphical log each time the monitor is invoked. The following figure
shows what to do:

Figure 67. TME 10 Distributed Monitor ing Edit Monitor Window

Set the Response level field to always and then click the Task... button.

This will pop up the following window:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 77

This soft copy for use by IBM employees only.

Figure 68. TME 10 Tasks Window

Select the Sentry Graphable Logs task library and then double-click on the
Create graphable log task. You will be asked for the number of entries to keep
in the log. In the above example we selected the default (1000).

When finished, click the Change & Close button and then save the modified
monitoring profile. After the profile has been saved, distribute it again to the
affected subscribers.

The results of the monitor will now be logged to a file. This file is stored under
the /var/spool/Tivoli/.sntglog directory. In order to be able to watch the log
using a Web browser, you must make sure that the Spider process is running on
the machine where the TME 10 Distributed Monitoring server is installed.

If the Spider process is not running, start it by typing:

wstarthttpd

Now start your Java-enabled Web browser (we use Netscape) and point it to the
following URL:

http:hostname:94

78 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Where hostname is the name of the managed node where your TME 10
Distributed Monitoring server and Spider daemon are installed. In our case this
is rs600015.

In the initial page click on TME 10 Distributed Monitoring. The system will ask
you for a user ID and password to access the system

Figure 69. Web Interface for TME 10 Distributed Monitor ing

Initially you will only see the Targets option. Double-click on that option to
pop-up the related options until you get to the node where the Oracle monitor
resides. In our case this is rs600015.

Clicking on rs600015 will show the available monitors in the right window. Select
the Oracle monitor and then click on the Add Report button. The system will ask
you for a name for the new report and the style of the output graph:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 79

This soft copy for use by IBM employees only.

Figure 70. Add Report Window

Enter a Report Name and select a Report Type, then select the Add/Close
button.

This will get you back to the window shown in Figure 69 on page 79. Click on
Generate Reports and you will see a graphical output for the monitor.

The following figure shows an example of a graphical representation of an
Oracle monitor:

80 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Figure 71. Graphical Representation of Oracle Monitor

The report shown above was generated from the Oracle disk writes per minute
monitor that works in exactly the same fashion as the Oracle disk reads per
minute monitor.

When the report was started (at 17:44 or 5:44 pm) the Oracle RDBMS server was
idle. To produce some database load we then started the procedure shown in
7.3, “Producing Some Database Load” on page 64. Shortly after this we can see
the number of disk writes increasing. When the procedure is stopped, the disk
writes will decrease again.

If you want to see more than just five probes at a time you can click on the
Configure Time button. This will pop up the following window:

Chapter 7. Database Monitoring Using TME 10 Distributed Monitoring 81

This soft copy for use by IBM employees only.

Figure 72. Report Time Configuration Window

82 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Appendix A. Special Notices

This publication is intended to help systems specialists, planners and
administrators to understand the capabilities of TME 10 Distributed Monitoring
3.5. The information in this publication is not intended as the specification of any
programming interfaces that are provided by any Tivoli products. See the
Programming Announcement for TME 10 Distributed Mionitoring for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

 Copyright IBM Corp. 1997 83

This soft copy for use by IBM employees only.

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Lotus and Notes are trademarks of the Lotus Development Corporation.

Tivoli, Tivoli Management Platform, TME and TME 10 are trademarks of Tivoli
Systems Inc.

Other company, product, and service names may be trademarks or
service marks of others.

NetView SystemView
AIX NetFinity
OS/2 System/390
RS/6000 AS/400

84 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 87.

• TME 10 Cookbook for AIX, SG24-4867

• TME 3.0 NT - Automated Processes, SG24-4793

B.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

B.3 Other Publications
These publications are also relevant as further information sources:

• Tivoli Sentry Documentation Kit, SK2T-6052

 Copyright IBM Corp. 1997 85

This soft copy for use by IBM employees only.

86 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Home
Page (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1997 87

This soft copy for use by IBM employees only.

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Home
Page (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

88 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 89

This soft copy for use by IBM employees only.

90 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

Index

Special Characters
/dev/nul l 73
/var/spool/Tivoli/.sntglog 78
.PIF definitions 25
(T/EC) 11
$DBDIR 53

Numerics
32-bit Windows 28

A
access policies 1
actions 7
active gateway 16
Administrat ion functions 4
administrat ive cost 2
administrator ID 5
after_install_policy 31
alert ing 1
alert ing mechanism 51
allow_install_policy 31
always 7
always response level 69
APIs 3
application categories 1
architecture type 33
arguments 17
authentication 1, 5
authorization roles 5, 54
AUTOEXEC.NCF 29
Automated action 7
automation 1
Availabi l i ty 1

B
background jobs 1
background task 7, 8
bar chart 58
bibl iography 85
bottleneck 16
broadcast request 16
broadcasts 16, 27
browser 54
browser location field 54

C
centralized management 6
centralized monitoring 1
CGI programs 54

Change Control Management System (CCMS) 8
Client Console 30
collect graphical data 51
command execution 9
command line interface 3, 41, 61
common object request 3
communications channel 16
configuration fi le 27
connect to Spider 54
CORBA programming interfaces 16
CPU utilization 76
Creating a Monitor 8
credentials 5, 54
crit ical 7

D
daemon 7, 14
data 4
data capture capability 51
data collection 51
data distribution 1
database 59

corruption 13
monitor ing 61
performance data 76

dataless endpoint 14
dataless endpoint mode 42
dbstart 64
dedicated systems management 14
default HTTP port 51
default policies 31
deploying monitors 3
Deployment 1
design criteria for TMRs 14
desktop managed nodes 2
desktop systems 4
disk

cache 18
footprint 4
reads 76
sharing 41
space 13

distribute the profile 47
distr ibuted management 6
distribution defaults 45
DOGENDPO.NLM 47
downcall method 47
downcalls 14, 17
downstream resource 18
dynamically assigned TCP port 51

 Copyright IBM Corp. 1997 91

This soft copy for use by IBM employees only.

E
E.EXEC error 70
encrypted authentication 14
encryption keys 16, 27
endpoint 13, 14

classes 7
Enabled Profile Manager 42
functions 13
gateway 14, 22
gateway policy 24
manager 14, 16
methods 8, 17
policy methods 30
types 24

environment 74
epoch 60
errant patterns 51
error threshold level 7
event handlers 10
event management 62
executable 31

F
file package 19
foreground window 27
framework 1

G
Gateway methods 17
gateway request 27
granular 5
graphable log task 53
graphical monitoring component 51
graphical reports 54, 57
Graphing 51
graphing facil ity 59

H
handshake 16
heterogeneous systems management 4
hexadecimal 60
hierarchies of profile managers 6
historical data collection 1
HTTP Basic Authentication 54
HTTP get 54
HTTP get request 54
HTTP LOCATION message 54
HTTP requests 54

I
indicator icon 9
init ial registration 32
installation package 41

InstallShield 15, 25
inter-TMR connections 13
interconnecting TMRs 13
interface definit ion 4
interpreters 23
intit ial customization 15
Inventory Scanning 20
IP network 16
IP subnet 31

J
Java applet 55

K
kennel classes 7, 9, 48

L
LAN 41
LCF 2, 4

code 15
daemon 26
endpoint 22, 31, 41
executables 25
methods 16
NetWare Loadable Module (NLM) 29
node 14

lcfd 14, 25
lcfd daemon 33, 41
lcfd-debug 25
lcfd.dat 27
LCFD.NLM 47
Lightweight Client Framework (LCF) 13
load 48
LOAD command 29
load on the TMR server 13
local logging 9
location services 19
Log File Size 53
login_policy 31
Lotus Notes 1

M
mail message 10
managabil i ty 13
managed node 22, 36
Managed Node Proxy 23
managed nodes 4, 14
managed resources 36, 43
management by subscription 6
management-ready 1
mdist (multiplexed distribution) 8
Mdist repeaters 13
method

cache 47
calls 9, 54

92 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

method (continued)
code 18
handle 17
invocation 9

methods 4
mid-level manager 32
mid-level method 18
minimize repeated transmissions 8
monitor installation 8
monitor instance 9
monitor profi le 8
monitor status 53

crit ical 53
normal 53
severe 53
warning 53

monitor ing 1
collection for Oracle 62
collections 7, 41, 68
policies 1, 3
schedule 45

N
name resolution services 17
naming conventions 46
NetFinity Base Services 47
NetWare 3, 4, 7, 21, 41

authorization 28
client 28
Loadable Modules (NLMs) 41
Release 4.1 28
server 1

network protocol 23
network server 24
NLM 29
non-numeric data 53
normal 7
notice groups 10
NT 1, 7

O
object 4, 5, 17

ID number 53
identif ier 18
location services 4
reference 9, 17
request broker 17
request broker (ORB) 3
request broker services 54

object-oriented infrastructure 3
object-oriented programming techniques 4
odb_reads.out 71
Operations and Administration 1
Oracle 2, 61

CPU usage 61
disk reads and writes 61
disk reads per minute 68

Oracle (continued)
locks usage 61
message traffic 61
RDBMS server 61
sessions usage 61
SQL*Plus facil ity 61
sys user 69
system tables 61
table space usage 61

ORACLE_HOME 68
ORB databases 13
ORB services 4
OS/2 4, 13
oserv 17, 54
oserv daemon 4
oserv database 6, 7, 16
output 69
overload the Sentry engine 9

P
parameters 45
password 5, 54, 69
pathname 46
PC managed nodes 4, 13
peers 4
performance characteristics 1
performance information 1
performance metrics 51
perl 60
persistent object store 18
platform 3
policy 6

methods 14, 16
region 5, 14, 36, 42

poll ing interval 9
pop-up message 7
Producing Some Database Load 64
profi le 6, 43

manager 6, 31, 43
propert ies 45
proxy monitor 1, 7

R
RDBM systems 61
RDBMS 6, 11
real world configuration 4
reduce network load 8
registry 25
reliabil i ty 14
remote control 1
remote execution 1
remote ORB 9
Report Name 80
Report Type 80
response level 45, 51
result 7

Index 93

This soft copy for use by IBM employees only.

rules engine 11

S
scalabil ity 2, 13
scanning software 20
scheduling 8
scope 2
SEARCH 48
Security 1, 4, 14
security controls 4, 31
security realms 54
select 64
select_gateway_policy 31
self-defining 22, 31
sending events 3
Sentry 41

endpoint method 47
engine 7, 8, 47
log 10
notice 46

Sentry-urgent 10
SENTRY.NLM 47
SentryProfile 43
SentryStatus 10
service 7
setup 15
setup program 25
severe 7
shell script 31, 74
simplicity 14
single point of reference 4
single points of failure 13
single-threaded programs 18
small system footprint 14
SNMP resources 1
Software Distribution 19
spawner 14, 41
special purpose Web server 51
Spider 51
Spider Web Server 53
spreadsheet 59
SQL*Plus commands 63
SQL*Plus path 69
sqlplus 64, 73
standard platform function 8
Startup folder 26
statistical information 51
stop lcfd 25
subscribe 34
subscribed nodes 6
summarize data 51
Supervisor user ID 28
swapping activity. 6
Sybase 2, 61
SYS 46
system ID 5

T
task libraries 36
tasks 9, 36, 77
TCP port 23, 56
TCP port 9494 16
TCP/IP 23
temporary f i le 61
threshold levels 7
time stamps 53, 60
timescale 9
Tivoli Enterprise Console (T/EC) 10
Tivoli Management Environment 1
Tivoli Management Platform (TMP) 1
Tivoli Management Regions (TMRs) 4
Tivoli program group 25
Tivoli/Sentry 3
Tivoli/Spider HTTP Daemon/1.0 51
TME 3

Administration notice board 33
administrator 10, 54
desktop 7, 10
framework 13
Lightweight Client 1
notice 7
Notice group 10
platform 1
product installation process 41
task 7

TME 10
Enterprise Console 2, 7
Framework 3.1 21
Inventory 20
Light Client Framework (LCF) Patch 21
NetView 32
Plus modules 62
Reporter 51
User Administration 62

TME 10 Commands
odadmin 21
reexec 21
wcrtgate 23
wcrtprfmgr 34
wgateway 24
wgeteppol 31, 33
wgetpolm 31
winstall 7
wlookup 22
wputeppol 31, 33
wputpolm 31
wsetpm 34

TME 10 Distributed Monitoring 1, 13, 41, 51, 61
TME 10 Distributed Monitoring Commands

mcsl -q Oracle 63
oracle.col 63
waddmon 8
wgdread 59
wstarthttpd 53, 78
wstophttpd 53

94 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

TME 10 Enterprise Console 11
TMR boundaries 13
TMR server 4, 9
transaction 16
transaction control 1, 4
TWO_TASK 68

U
UNIX 1, 3, 7
upcall 18
upcalls 14, 17, 48
URL 78
user accounts 1
user ID 54, 69
user management 62
uti l i ty commands 15

V
validation policy 31
volume 46

W
w32-ix86 33
warning 7
Web browser 78
Web server 51
Web-based monitoring 1
Web-based monitoring application 51
win32s console 36
Windows 4, 28
Windows 3.1 13
Windows 95 13, 21
Windows command shell 25
Windows Explorer 24
Windows NT 3
workload 24

Index 95

This soft copy for use by IBM employees only.

96 TME 10 Distributed Monitoring 3.5

This soft copy for use by IBM employees only.

ITSO Redbook Evaluation

A First Look at TME 10 Distributed Monitoring 3.5
SG24-2112-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 97

IBML

This soft copy for use by IBM employees only.

Printed in U.S.A.

SG24-2112-00

